Fix problems with finishing a dummy function call on simulators.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70
71 /* readline include files */
72 #include "readline/readline.h"
73 #include "readline/history.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80
81 /* Enums for exception-handling support. */
82 enum exception_event_kind
83 {
84 EX_EVENT_THROW,
85 EX_EVENT_RETHROW,
86 EX_EVENT_CATCH
87 };
88
89 /* Prototypes for local functions. */
90
91 static void enable_delete_command (char *, int);
92
93 static void enable_once_command (char *, int);
94
95 static void enable_count_command (char *, int);
96
97 static void disable_command (char *, int);
98
99 static void enable_command (char *, int);
100
101 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
102 void *),
103 void *);
104
105 static void ignore_command (char *, int);
106
107 static int breakpoint_re_set_one (void *);
108
109 static void breakpoint_re_set_default (struct breakpoint *);
110
111 static void create_sals_from_address_default (char **,
112 struct linespec_result *,
113 enum bptype, char *,
114 char **);
115
116 static void create_breakpoints_sal_default (struct gdbarch *,
117 struct linespec_result *,
118 char *, char *, enum bptype,
119 enum bpdisp, int, int,
120 int,
121 const struct breakpoint_ops *,
122 int, int, int, unsigned);
123
124 static void decode_linespec_default (struct breakpoint *, char **,
125 struct symtabs_and_lines *);
126
127 static void clear_command (char *, int);
128
129 static void catch_command (char *, int);
130
131 static int can_use_hardware_watchpoint (struct value *);
132
133 static void break_command_1 (char *, int, int);
134
135 static void mention (struct breakpoint *);
136
137 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
138 enum bptype,
139 const struct breakpoint_ops *);
140 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
141 const struct symtab_and_line *);
142
143 /* This function is used in gdbtk sources and thus can not be made
144 static. */
145 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
146 struct symtab_and_line,
147 enum bptype,
148 const struct breakpoint_ops *);
149
150 static struct breakpoint *
151 momentary_breakpoint_from_master (struct breakpoint *orig,
152 enum bptype type,
153 const struct breakpoint_ops *ops,
154 int loc_enabled);
155
156 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
157
158 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
159 CORE_ADDR bpaddr,
160 enum bptype bptype);
161
162 static void describe_other_breakpoints (struct gdbarch *,
163 struct program_space *, CORE_ADDR,
164 struct obj_section *, int);
165
166 static int watchpoint_locations_match (struct bp_location *loc1,
167 struct bp_location *loc2);
168
169 static int breakpoint_location_address_match (struct bp_location *bl,
170 struct address_space *aspace,
171 CORE_ADDR addr);
172
173 static void breakpoints_info (char *, int);
174
175 static void watchpoints_info (char *, int);
176
177 static int breakpoint_1 (char *, int,
178 int (*) (const struct breakpoint *));
179
180 static int breakpoint_cond_eval (void *);
181
182 static void cleanup_executing_breakpoints (void *);
183
184 static void commands_command (char *, int);
185
186 static void condition_command (char *, int);
187
188 typedef enum
189 {
190 mark_inserted,
191 mark_uninserted
192 }
193 insertion_state_t;
194
195 static int remove_breakpoint (struct bp_location *, insertion_state_t);
196 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
197
198 static enum print_stop_action print_bp_stop_message (bpstat bs);
199
200 static int watchpoint_check (void *);
201
202 static void maintenance_info_breakpoints (char *, int);
203
204 static int hw_breakpoint_used_count (void);
205
206 static int hw_watchpoint_use_count (struct breakpoint *);
207
208 static int hw_watchpoint_used_count_others (struct breakpoint *except,
209 enum bptype type,
210 int *other_type_used);
211
212 static void hbreak_command (char *, int);
213
214 static void thbreak_command (char *, int);
215
216 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
217 int count);
218
219 static void stop_command (char *arg, int from_tty);
220
221 static void stopin_command (char *arg, int from_tty);
222
223 static void stopat_command (char *arg, int from_tty);
224
225 static void tcatch_command (char *arg, int from_tty);
226
227 static void free_bp_location (struct bp_location *loc);
228 static void incref_bp_location (struct bp_location *loc);
229 static void decref_bp_location (struct bp_location **loc);
230
231 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
232
233 /* update_global_location_list's modes of operation wrt to whether to
234 insert locations now. */
235 enum ugll_insert_mode
236 {
237 /* Don't insert any breakpoint locations into the inferior, only
238 remove already-inserted locations that no longer should be
239 inserted. Functions that delete a breakpoint or breakpoints
240 should specify this mode, so that deleting a breakpoint doesn't
241 have the side effect of inserting the locations of other
242 breakpoints that are marked not-inserted, but should_be_inserted
243 returns true on them.
244
245 This behavior is useful is situations close to tear-down -- e.g.,
246 after an exec, while the target still has execution, but
247 breakpoint shadows of the previous executable image should *NOT*
248 be restored to the new image; or before detaching, where the
249 target still has execution and wants to delete breakpoints from
250 GDB's lists, and all breakpoints had already been removed from
251 the inferior. */
252 UGLL_DONT_INSERT,
253
254 /* May insert breakpoints iff breakpoints_should_be_inserted_now
255 claims breakpoints should be inserted now. */
256 UGLL_MAY_INSERT,
257
258 /* Insert locations now, irrespective of
259 breakpoints_should_be_inserted_now. E.g., say all threads are
260 stopped right now, and the user did "continue". We need to
261 insert breakpoints _before_ resuming the target, but
262 UGLL_MAY_INSERT wouldn't insert them, because
263 breakpoints_should_be_inserted_now returns false at that point,
264 as no thread is running yet. */
265 UGLL_INSERT
266 };
267
268 static void update_global_location_list (enum ugll_insert_mode);
269
270 static void update_global_location_list_nothrow (enum ugll_insert_mode);
271
272 static int is_hardware_watchpoint (const struct breakpoint *bpt);
273
274 static void insert_breakpoint_locations (void);
275
276 static void tracepoints_info (char *, int);
277
278 static void delete_trace_command (char *, int);
279
280 static void enable_trace_command (char *, int);
281
282 static void disable_trace_command (char *, int);
283
284 static void trace_pass_command (char *, int);
285
286 static void set_tracepoint_count (int num);
287
288 static int is_masked_watchpoint (const struct breakpoint *b);
289
290 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
291
292 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
293 otherwise. */
294
295 static int strace_marker_p (struct breakpoint *b);
296
297 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
298 that are implemented on top of software or hardware breakpoints
299 (user breakpoints, internal and momentary breakpoints, etc.). */
300 static struct breakpoint_ops bkpt_base_breakpoint_ops;
301
302 /* Internal breakpoints class type. */
303 static struct breakpoint_ops internal_breakpoint_ops;
304
305 /* Momentary breakpoints class type. */
306 static struct breakpoint_ops momentary_breakpoint_ops;
307
308 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
309 static struct breakpoint_ops longjmp_breakpoint_ops;
310
311 /* The breakpoint_ops structure to be used in regular user created
312 breakpoints. */
313 struct breakpoint_ops bkpt_breakpoint_ops;
314
315 /* Breakpoints set on probes. */
316 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
317
318 /* Dynamic printf class type. */
319 struct breakpoint_ops dprintf_breakpoint_ops;
320
321 /* The style in which to perform a dynamic printf. This is a user
322 option because different output options have different tradeoffs;
323 if GDB does the printing, there is better error handling if there
324 is a problem with any of the arguments, but using an inferior
325 function lets you have special-purpose printers and sending of
326 output to the same place as compiled-in print functions. */
327
328 static const char dprintf_style_gdb[] = "gdb";
329 static const char dprintf_style_call[] = "call";
330 static const char dprintf_style_agent[] = "agent";
331 static const char *const dprintf_style_enums[] = {
332 dprintf_style_gdb,
333 dprintf_style_call,
334 dprintf_style_agent,
335 NULL
336 };
337 static const char *dprintf_style = dprintf_style_gdb;
338
339 /* The function to use for dynamic printf if the preferred style is to
340 call into the inferior. The value is simply a string that is
341 copied into the command, so it can be anything that GDB can
342 evaluate to a callable address, not necessarily a function name. */
343
344 static char *dprintf_function = "";
345
346 /* The channel to use for dynamic printf if the preferred style is to
347 call into the inferior; if a nonempty string, it will be passed to
348 the call as the first argument, with the format string as the
349 second. As with the dprintf function, this can be anything that
350 GDB knows how to evaluate, so in addition to common choices like
351 "stderr", this could be an app-specific expression like
352 "mystreams[curlogger]". */
353
354 static char *dprintf_channel = "";
355
356 /* True if dprintf commands should continue to operate even if GDB
357 has disconnected. */
358 static int disconnected_dprintf = 1;
359
360 /* A reference-counted struct command_line. This lets multiple
361 breakpoints share a single command list. */
362 struct counted_command_line
363 {
364 /* The reference count. */
365 int refc;
366
367 /* The command list. */
368 struct command_line *commands;
369 };
370
371 struct command_line *
372 breakpoint_commands (struct breakpoint *b)
373 {
374 return b->commands ? b->commands->commands : NULL;
375 }
376
377 /* Flag indicating that a command has proceeded the inferior past the
378 current breakpoint. */
379
380 static int breakpoint_proceeded;
381
382 const char *
383 bpdisp_text (enum bpdisp disp)
384 {
385 /* NOTE: the following values are a part of MI protocol and
386 represent values of 'disp' field returned when inferior stops at
387 a breakpoint. */
388 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
389
390 return bpdisps[(int) disp];
391 }
392
393 /* Prototypes for exported functions. */
394 /* If FALSE, gdb will not use hardware support for watchpoints, even
395 if such is available. */
396 static int can_use_hw_watchpoints;
397
398 static void
399 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's willingness to use "
405 "watchpoint hardware is %s.\n"),
406 value);
407 }
408
409 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
410 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
411 for unrecognized breakpoint locations.
412 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
413 static enum auto_boolean pending_break_support;
414 static void
415 show_pending_break_support (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger's behavior regarding "
421 "pending breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
426 set with "break" but falling in read-only memory.
427 If 0, gdb will warn about such breakpoints, but won't automatically
428 use hardware breakpoints. */
429 static int automatic_hardware_breakpoints;
430 static void
431 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c,
433 const char *value)
434 {
435 fprintf_filtered (file,
436 _("Automatic usage of hardware breakpoints is %s.\n"),
437 value);
438 }
439
440 /* If on, GDB keeps breakpoints inserted even if the inferior is
441 stopped, and immediately inserts any new breakpoints as soon as
442 they're created. If off (default), GDB keeps breakpoints off of
443 the target as long as possible. That is, it delays inserting
444 breakpoints until the next resume, and removes them again when the
445 target fully stops. This is a bit safer in case GDB crashes while
446 processing user input. */
447 static int always_inserted_mode = 0;
448
449 static void
450 show_always_inserted_mode (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c, const char *value)
452 {
453 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
454 value);
455 }
456
457 /* See breakpoint.h. */
458
459 int
460 breakpoints_should_be_inserted_now (void)
461 {
462 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
463 {
464 /* If breakpoints are global, they should be inserted even if no
465 thread under gdb's control is running, or even if there are
466 no threads under GDB's control yet. */
467 return 1;
468 }
469 else if (target_has_execution)
470 {
471 if (always_inserted_mode)
472 {
473 /* The user wants breakpoints inserted even if all threads
474 are stopped. */
475 return 1;
476 }
477
478 if (threads_are_executing ())
479 return 1;
480 }
481 return 0;
482 }
483
484 static const char condition_evaluation_both[] = "host or target";
485
486 /* Modes for breakpoint condition evaluation. */
487 static const char condition_evaluation_auto[] = "auto";
488 static const char condition_evaluation_host[] = "host";
489 static const char condition_evaluation_target[] = "target";
490 static const char *const condition_evaluation_enums[] = {
491 condition_evaluation_auto,
492 condition_evaluation_host,
493 condition_evaluation_target,
494 NULL
495 };
496
497 /* Global that holds the current mode for breakpoint condition evaluation. */
498 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
499
500 /* Global that we use to display information to the user (gets its value from
501 condition_evaluation_mode_1. */
502 static const char *condition_evaluation_mode = condition_evaluation_auto;
503
504 /* Translate a condition evaluation mode MODE into either "host"
505 or "target". This is used mostly to translate from "auto" to the
506 real setting that is being used. It returns the translated
507 evaluation mode. */
508
509 static const char *
510 translate_condition_evaluation_mode (const char *mode)
511 {
512 if (mode == condition_evaluation_auto)
513 {
514 if (target_supports_evaluation_of_breakpoint_conditions ())
515 return condition_evaluation_target;
516 else
517 return condition_evaluation_host;
518 }
519 else
520 return mode;
521 }
522
523 /* Discovers what condition_evaluation_auto translates to. */
524
525 static const char *
526 breakpoint_condition_evaluation_mode (void)
527 {
528 return translate_condition_evaluation_mode (condition_evaluation_mode);
529 }
530
531 /* Return true if GDB should evaluate breakpoint conditions or false
532 otherwise. */
533
534 static int
535 gdb_evaluates_breakpoint_condition_p (void)
536 {
537 const char *mode = breakpoint_condition_evaluation_mode ();
538
539 return (mode == condition_evaluation_host);
540 }
541
542 void _initialize_breakpoint (void);
543
544 /* Are we executing breakpoint commands? */
545 static int executing_breakpoint_commands;
546
547 /* Are overlay event breakpoints enabled? */
548 static int overlay_events_enabled;
549
550 /* See description in breakpoint.h. */
551 int target_exact_watchpoints = 0;
552
553 /* Walk the following statement or block through all breakpoints.
554 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
555 current breakpoint. */
556
557 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
558
559 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
560 for (B = breakpoint_chain; \
561 B ? (TMP=B->next, 1): 0; \
562 B = TMP)
563
564 /* Similar iterator for the low-level breakpoints. SAFE variant is
565 not provided so update_global_location_list must not be called
566 while executing the block of ALL_BP_LOCATIONS. */
567
568 #define ALL_BP_LOCATIONS(B,BP_TMP) \
569 for (BP_TMP = bp_location; \
570 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
571 BP_TMP++)
572
573 /* Iterates through locations with address ADDRESS for the currently selected
574 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
575 to where the loop should start from.
576 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
577 appropriate location to start with. */
578
579 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
580 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
581 BP_LOCP_TMP = BP_LOCP_START; \
582 BP_LOCP_START \
583 && (BP_LOCP_TMP < bp_location + bp_location_count \
584 && (*BP_LOCP_TMP)->address == ADDRESS); \
585 BP_LOCP_TMP++)
586
587 /* Iterator for tracepoints only. */
588
589 #define ALL_TRACEPOINTS(B) \
590 for (B = breakpoint_chain; B; B = B->next) \
591 if (is_tracepoint (B))
592
593 /* Chains of all breakpoints defined. */
594
595 struct breakpoint *breakpoint_chain;
596
597 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
598
599 static struct bp_location **bp_location;
600
601 /* Number of elements of BP_LOCATION. */
602
603 static unsigned bp_location_count;
604
605 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
606 ADDRESS for the current elements of BP_LOCATION which get a valid
607 result from bp_location_has_shadow. You can use it for roughly
608 limiting the subrange of BP_LOCATION to scan for shadow bytes for
609 an address you need to read. */
610
611 static CORE_ADDR bp_location_placed_address_before_address_max;
612
613 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
614 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
615 BP_LOCATION which get a valid result from bp_location_has_shadow.
616 You can use it for roughly limiting the subrange of BP_LOCATION to
617 scan for shadow bytes for an address you need to read. */
618
619 static CORE_ADDR bp_location_shadow_len_after_address_max;
620
621 /* The locations that no longer correspond to any breakpoint, unlinked
622 from bp_location array, but for which a hit may still be reported
623 by a target. */
624 VEC(bp_location_p) *moribund_locations = NULL;
625
626 /* Number of last breakpoint made. */
627
628 static int breakpoint_count;
629
630 /* The value of `breakpoint_count' before the last command that
631 created breakpoints. If the last (break-like) command created more
632 than one breakpoint, then the difference between BREAKPOINT_COUNT
633 and PREV_BREAKPOINT_COUNT is more than one. */
634 static int prev_breakpoint_count;
635
636 /* Number of last tracepoint made. */
637
638 static int tracepoint_count;
639
640 static struct cmd_list_element *breakpoint_set_cmdlist;
641 static struct cmd_list_element *breakpoint_show_cmdlist;
642 struct cmd_list_element *save_cmdlist;
643
644 /* See declaration at breakpoint.h. */
645
646 struct breakpoint *
647 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
648 void *user_data)
649 {
650 struct breakpoint *b = NULL;
651
652 ALL_BREAKPOINTS (b)
653 {
654 if (func (b, user_data) != 0)
655 break;
656 }
657
658 return b;
659 }
660
661 /* Return whether a breakpoint is an active enabled breakpoint. */
662 static int
663 breakpoint_enabled (struct breakpoint *b)
664 {
665 return (b->enable_state == bp_enabled);
666 }
667
668 /* Set breakpoint count to NUM. */
669
670 static void
671 set_breakpoint_count (int num)
672 {
673 prev_breakpoint_count = breakpoint_count;
674 breakpoint_count = num;
675 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
676 }
677
678 /* Used by `start_rbreak_breakpoints' below, to record the current
679 breakpoint count before "rbreak" creates any breakpoint. */
680 static int rbreak_start_breakpoint_count;
681
682 /* Called at the start an "rbreak" command to record the first
683 breakpoint made. */
684
685 void
686 start_rbreak_breakpoints (void)
687 {
688 rbreak_start_breakpoint_count = breakpoint_count;
689 }
690
691 /* Called at the end of an "rbreak" command to record the last
692 breakpoint made. */
693
694 void
695 end_rbreak_breakpoints (void)
696 {
697 prev_breakpoint_count = rbreak_start_breakpoint_count;
698 }
699
700 /* Used in run_command to zero the hit count when a new run starts. */
701
702 void
703 clear_breakpoint_hit_counts (void)
704 {
705 struct breakpoint *b;
706
707 ALL_BREAKPOINTS (b)
708 b->hit_count = 0;
709 }
710
711 /* Allocate a new counted_command_line with reference count of 1.
712 The new structure owns COMMANDS. */
713
714 static struct counted_command_line *
715 alloc_counted_command_line (struct command_line *commands)
716 {
717 struct counted_command_line *result
718 = xmalloc (sizeof (struct counted_command_line));
719
720 result->refc = 1;
721 result->commands = commands;
722 return result;
723 }
724
725 /* Increment reference count. This does nothing if CMD is NULL. */
726
727 static void
728 incref_counted_command_line (struct counted_command_line *cmd)
729 {
730 if (cmd)
731 ++cmd->refc;
732 }
733
734 /* Decrement reference count. If the reference count reaches 0,
735 destroy the counted_command_line. Sets *CMDP to NULL. This does
736 nothing if *CMDP is NULL. */
737
738 static void
739 decref_counted_command_line (struct counted_command_line **cmdp)
740 {
741 if (*cmdp)
742 {
743 if (--(*cmdp)->refc == 0)
744 {
745 free_command_lines (&(*cmdp)->commands);
746 xfree (*cmdp);
747 }
748 *cmdp = NULL;
749 }
750 }
751
752 /* A cleanup function that calls decref_counted_command_line. */
753
754 static void
755 do_cleanup_counted_command_line (void *arg)
756 {
757 decref_counted_command_line (arg);
758 }
759
760 /* Create a cleanup that calls decref_counted_command_line on the
761 argument. */
762
763 static struct cleanup *
764 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
765 {
766 return make_cleanup (do_cleanup_counted_command_line, cmdp);
767 }
768
769 \f
770 /* Return the breakpoint with the specified number, or NULL
771 if the number does not refer to an existing breakpoint. */
772
773 struct breakpoint *
774 get_breakpoint (int num)
775 {
776 struct breakpoint *b;
777
778 ALL_BREAKPOINTS (b)
779 if (b->number == num)
780 return b;
781
782 return NULL;
783 }
784
785 \f
786
787 /* Mark locations as "conditions have changed" in case the target supports
788 evaluating conditions on its side. */
789
790 static void
791 mark_breakpoint_modified (struct breakpoint *b)
792 {
793 struct bp_location *loc;
794
795 /* This is only meaningful if the target is
796 evaluating conditions and if the user has
797 opted for condition evaluation on the target's
798 side. */
799 if (gdb_evaluates_breakpoint_condition_p ()
800 || !target_supports_evaluation_of_breakpoint_conditions ())
801 return;
802
803 if (!is_breakpoint (b))
804 return;
805
806 for (loc = b->loc; loc; loc = loc->next)
807 loc->condition_changed = condition_modified;
808 }
809
810 /* Mark location as "conditions have changed" in case the target supports
811 evaluating conditions on its side. */
812
813 static void
814 mark_breakpoint_location_modified (struct bp_location *loc)
815 {
816 /* This is only meaningful if the target is
817 evaluating conditions and if the user has
818 opted for condition evaluation on the target's
819 side. */
820 if (gdb_evaluates_breakpoint_condition_p ()
821 || !target_supports_evaluation_of_breakpoint_conditions ())
822
823 return;
824
825 if (!is_breakpoint (loc->owner))
826 return;
827
828 loc->condition_changed = condition_modified;
829 }
830
831 /* Sets the condition-evaluation mode using the static global
832 condition_evaluation_mode. */
833
834 static void
835 set_condition_evaluation_mode (char *args, int from_tty,
836 struct cmd_list_element *c)
837 {
838 const char *old_mode, *new_mode;
839
840 if ((condition_evaluation_mode_1 == condition_evaluation_target)
841 && !target_supports_evaluation_of_breakpoint_conditions ())
842 {
843 condition_evaluation_mode_1 = condition_evaluation_mode;
844 warning (_("Target does not support breakpoint condition evaluation.\n"
845 "Using host evaluation mode instead."));
846 return;
847 }
848
849 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
850 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
851
852 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
853 settings was "auto". */
854 condition_evaluation_mode = condition_evaluation_mode_1;
855
856 /* Only update the mode if the user picked a different one. */
857 if (new_mode != old_mode)
858 {
859 struct bp_location *loc, **loc_tmp;
860 /* If the user switched to a different evaluation mode, we
861 need to synch the changes with the target as follows:
862
863 "host" -> "target": Send all (valid) conditions to the target.
864 "target" -> "host": Remove all the conditions from the target.
865 */
866
867 if (new_mode == condition_evaluation_target)
868 {
869 /* Mark everything modified and synch conditions with the
870 target. */
871 ALL_BP_LOCATIONS (loc, loc_tmp)
872 mark_breakpoint_location_modified (loc);
873 }
874 else
875 {
876 /* Manually mark non-duplicate locations to synch conditions
877 with the target. We do this to remove all the conditions the
878 target knows about. */
879 ALL_BP_LOCATIONS (loc, loc_tmp)
880 if (is_breakpoint (loc->owner) && loc->inserted)
881 loc->needs_update = 1;
882 }
883
884 /* Do the update. */
885 update_global_location_list (UGLL_MAY_INSERT);
886 }
887
888 return;
889 }
890
891 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
892 what "auto" is translating to. */
893
894 static void
895 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c, const char *value)
897 {
898 if (condition_evaluation_mode == condition_evaluation_auto)
899 fprintf_filtered (file,
900 _("Breakpoint condition evaluation "
901 "mode is %s (currently %s).\n"),
902 value,
903 breakpoint_condition_evaluation_mode ());
904 else
905 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
906 value);
907 }
908
909 /* A comparison function for bp_location AP and BP that is used by
910 bsearch. This comparison function only cares about addresses, unlike
911 the more general bp_location_compare function. */
912
913 static int
914 bp_location_compare_addrs (const void *ap, const void *bp)
915 {
916 struct bp_location *a = *(void **) ap;
917 struct bp_location *b = *(void **) bp;
918
919 if (a->address == b->address)
920 return 0;
921 else
922 return ((a->address > b->address) - (a->address < b->address));
923 }
924
925 /* Helper function to skip all bp_locations with addresses
926 less than ADDRESS. It returns the first bp_location that
927 is greater than or equal to ADDRESS. If none is found, just
928 return NULL. */
929
930 static struct bp_location **
931 get_first_locp_gte_addr (CORE_ADDR address)
932 {
933 struct bp_location dummy_loc;
934 struct bp_location *dummy_locp = &dummy_loc;
935 struct bp_location **locp_found = NULL;
936
937 /* Initialize the dummy location's address field. */
938 memset (&dummy_loc, 0, sizeof (struct bp_location));
939 dummy_loc.address = address;
940
941 /* Find a close match to the first location at ADDRESS. */
942 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
943 sizeof (struct bp_location **),
944 bp_location_compare_addrs);
945
946 /* Nothing was found, nothing left to do. */
947 if (locp_found == NULL)
948 return NULL;
949
950 /* We may have found a location that is at ADDRESS but is not the first in the
951 location's list. Go backwards (if possible) and locate the first one. */
952 while ((locp_found - 1) >= bp_location
953 && (*(locp_found - 1))->address == address)
954 locp_found--;
955
956 return locp_found;
957 }
958
959 void
960 set_breakpoint_condition (struct breakpoint *b, const char *exp,
961 int from_tty)
962 {
963 xfree (b->cond_string);
964 b->cond_string = NULL;
965
966 if (is_watchpoint (b))
967 {
968 struct watchpoint *w = (struct watchpoint *) b;
969
970 xfree (w->cond_exp);
971 w->cond_exp = NULL;
972 }
973 else
974 {
975 struct bp_location *loc;
976
977 for (loc = b->loc; loc; loc = loc->next)
978 {
979 xfree (loc->cond);
980 loc->cond = NULL;
981
982 /* No need to free the condition agent expression
983 bytecode (if we have one). We will handle this
984 when we go through update_global_location_list. */
985 }
986 }
987
988 if (*exp == 0)
989 {
990 if (from_tty)
991 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
992 }
993 else
994 {
995 const char *arg = exp;
996
997 /* I don't know if it matters whether this is the string the user
998 typed in or the decompiled expression. */
999 b->cond_string = xstrdup (arg);
1000 b->condition_not_parsed = 0;
1001
1002 if (is_watchpoint (b))
1003 {
1004 struct watchpoint *w = (struct watchpoint *) b;
1005
1006 innermost_block = NULL;
1007 arg = exp;
1008 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1009 if (*arg)
1010 error (_("Junk at end of expression"));
1011 w->cond_exp_valid_block = innermost_block;
1012 }
1013 else
1014 {
1015 struct bp_location *loc;
1016
1017 for (loc = b->loc; loc; loc = loc->next)
1018 {
1019 arg = exp;
1020 loc->cond =
1021 parse_exp_1 (&arg, loc->address,
1022 block_for_pc (loc->address), 0);
1023 if (*arg)
1024 error (_("Junk at end of expression"));
1025 }
1026 }
1027 }
1028 mark_breakpoint_modified (b);
1029
1030 observer_notify_breakpoint_modified (b);
1031 }
1032
1033 /* Completion for the "condition" command. */
1034
1035 static VEC (char_ptr) *
1036 condition_completer (struct cmd_list_element *cmd,
1037 const char *text, const char *word)
1038 {
1039 const char *space;
1040
1041 text = skip_spaces_const (text);
1042 space = skip_to_space_const (text);
1043 if (*space == '\0')
1044 {
1045 int len;
1046 struct breakpoint *b;
1047 VEC (char_ptr) *result = NULL;
1048
1049 if (text[0] == '$')
1050 {
1051 /* We don't support completion of history indices. */
1052 if (isdigit (text[1]))
1053 return NULL;
1054 return complete_internalvar (&text[1]);
1055 }
1056
1057 /* We're completing the breakpoint number. */
1058 len = strlen (text);
1059
1060 ALL_BREAKPOINTS (b)
1061 {
1062 char number[50];
1063
1064 xsnprintf (number, sizeof (number), "%d", b->number);
1065
1066 if (strncmp (number, text, len) == 0)
1067 VEC_safe_push (char_ptr, result, xstrdup (number));
1068 }
1069
1070 return result;
1071 }
1072
1073 /* We're completing the expression part. */
1074 text = skip_spaces_const (space);
1075 return expression_completer (cmd, text, word);
1076 }
1077
1078 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1079
1080 static void
1081 condition_command (char *arg, int from_tty)
1082 {
1083 struct breakpoint *b;
1084 char *p;
1085 int bnum;
1086
1087 if (arg == 0)
1088 error_no_arg (_("breakpoint number"));
1089
1090 p = arg;
1091 bnum = get_number (&p);
1092 if (bnum == 0)
1093 error (_("Bad breakpoint argument: '%s'"), arg);
1094
1095 ALL_BREAKPOINTS (b)
1096 if (b->number == bnum)
1097 {
1098 /* Check if this breakpoint has a "stop" method implemented in an
1099 extension language. This method and conditions entered into GDB
1100 from the CLI are mutually exclusive. */
1101 const struct extension_language_defn *extlang
1102 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1103
1104 if (extlang != NULL)
1105 {
1106 error (_("Only one stop condition allowed. There is currently"
1107 " a %s stop condition defined for this breakpoint."),
1108 ext_lang_capitalized_name (extlang));
1109 }
1110 set_breakpoint_condition (b, p, from_tty);
1111
1112 if (is_breakpoint (b))
1113 update_global_location_list (UGLL_MAY_INSERT);
1114
1115 return;
1116 }
1117
1118 error (_("No breakpoint number %d."), bnum);
1119 }
1120
1121 /* Check that COMMAND do not contain commands that are suitable
1122 only for tracepoints and not suitable for ordinary breakpoints.
1123 Throw if any such commands is found. */
1124
1125 static void
1126 check_no_tracepoint_commands (struct command_line *commands)
1127 {
1128 struct command_line *c;
1129
1130 for (c = commands; c; c = c->next)
1131 {
1132 int i;
1133
1134 if (c->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command can "
1136 "only be used for tracepoints"));
1137
1138 for (i = 0; i < c->body_count; ++i)
1139 check_no_tracepoint_commands ((c->body_list)[i]);
1140
1141 /* Not that command parsing removes leading whitespace and comment
1142 lines and also empty lines. So, we only need to check for
1143 command directly. */
1144 if (strstr (c->line, "collect ") == c->line)
1145 error (_("The 'collect' command can only be used for tracepoints"));
1146
1147 if (strstr (c->line, "teval ") == c->line)
1148 error (_("The 'teval' command can only be used for tracepoints"));
1149 }
1150 }
1151
1152 /* Encapsulate tests for different types of tracepoints. */
1153
1154 static int
1155 is_tracepoint_type (enum bptype type)
1156 {
1157 return (type == bp_tracepoint
1158 || type == bp_fast_tracepoint
1159 || type == bp_static_tracepoint);
1160 }
1161
1162 int
1163 is_tracepoint (const struct breakpoint *b)
1164 {
1165 return is_tracepoint_type (b->type);
1166 }
1167
1168 /* A helper function that validates that COMMANDS are valid for a
1169 breakpoint. This function will throw an exception if a problem is
1170 found. */
1171
1172 static void
1173 validate_commands_for_breakpoint (struct breakpoint *b,
1174 struct command_line *commands)
1175 {
1176 if (is_tracepoint (b))
1177 {
1178 struct tracepoint *t = (struct tracepoint *) b;
1179 struct command_line *c;
1180 struct command_line *while_stepping = 0;
1181
1182 /* Reset the while-stepping step count. The previous commands
1183 might have included a while-stepping action, while the new
1184 ones might not. */
1185 t->step_count = 0;
1186
1187 /* We need to verify that each top-level element of commands is
1188 valid for tracepoints, that there's at most one
1189 while-stepping element, and that the while-stepping's body
1190 has valid tracing commands excluding nested while-stepping.
1191 We also need to validate the tracepoint action line in the
1192 context of the tracepoint --- validate_actionline actually
1193 has side effects, like setting the tracepoint's
1194 while-stepping STEP_COUNT, in addition to checking if the
1195 collect/teval actions parse and make sense in the
1196 tracepoint's context. */
1197 for (c = commands; c; c = c->next)
1198 {
1199 if (c->control_type == while_stepping_control)
1200 {
1201 if (b->type == bp_fast_tracepoint)
1202 error (_("The 'while-stepping' command "
1203 "cannot be used for fast tracepoint"));
1204 else if (b->type == bp_static_tracepoint)
1205 error (_("The 'while-stepping' command "
1206 "cannot be used for static tracepoint"));
1207
1208 if (while_stepping)
1209 error (_("The 'while-stepping' command "
1210 "can be used only once"));
1211 else
1212 while_stepping = c;
1213 }
1214
1215 validate_actionline (c->line, b);
1216 }
1217 if (while_stepping)
1218 {
1219 struct command_line *c2;
1220
1221 gdb_assert (while_stepping->body_count == 1);
1222 c2 = while_stepping->body_list[0];
1223 for (; c2; c2 = c2->next)
1224 {
1225 if (c2->control_type == while_stepping_control)
1226 error (_("The 'while-stepping' command cannot be nested"));
1227 }
1228 }
1229 }
1230 else
1231 {
1232 check_no_tracepoint_commands (commands);
1233 }
1234 }
1235
1236 /* Return a vector of all the static tracepoints set at ADDR. The
1237 caller is responsible for releasing the vector. */
1238
1239 VEC(breakpoint_p) *
1240 static_tracepoints_here (CORE_ADDR addr)
1241 {
1242 struct breakpoint *b;
1243 VEC(breakpoint_p) *found = 0;
1244 struct bp_location *loc;
1245
1246 ALL_BREAKPOINTS (b)
1247 if (b->type == bp_static_tracepoint)
1248 {
1249 for (loc = b->loc; loc; loc = loc->next)
1250 if (loc->address == addr)
1251 VEC_safe_push(breakpoint_p, found, b);
1252 }
1253
1254 return found;
1255 }
1256
1257 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1258 validate that only allowed commands are included. */
1259
1260 void
1261 breakpoint_set_commands (struct breakpoint *b,
1262 struct command_line *commands)
1263 {
1264 validate_commands_for_breakpoint (b, commands);
1265
1266 decref_counted_command_line (&b->commands);
1267 b->commands = alloc_counted_command_line (commands);
1268 observer_notify_breakpoint_modified (b);
1269 }
1270
1271 /* Set the internal `silent' flag on the breakpoint. Note that this
1272 is not the same as the "silent" that may appear in the breakpoint's
1273 commands. */
1274
1275 void
1276 breakpoint_set_silent (struct breakpoint *b, int silent)
1277 {
1278 int old_silent = b->silent;
1279
1280 b->silent = silent;
1281 if (old_silent != silent)
1282 observer_notify_breakpoint_modified (b);
1283 }
1284
1285 /* Set the thread for this breakpoint. If THREAD is -1, make the
1286 breakpoint work for any thread. */
1287
1288 void
1289 breakpoint_set_thread (struct breakpoint *b, int thread)
1290 {
1291 int old_thread = b->thread;
1292
1293 b->thread = thread;
1294 if (old_thread != thread)
1295 observer_notify_breakpoint_modified (b);
1296 }
1297
1298 /* Set the task for this breakpoint. If TASK is 0, make the
1299 breakpoint work for any task. */
1300
1301 void
1302 breakpoint_set_task (struct breakpoint *b, int task)
1303 {
1304 int old_task = b->task;
1305
1306 b->task = task;
1307 if (old_task != task)
1308 observer_notify_breakpoint_modified (b);
1309 }
1310
1311 void
1312 check_tracepoint_command (char *line, void *closure)
1313 {
1314 struct breakpoint *b = closure;
1315
1316 validate_actionline (line, b);
1317 }
1318
1319 /* A structure used to pass information through
1320 map_breakpoint_numbers. */
1321
1322 struct commands_info
1323 {
1324 /* True if the command was typed at a tty. */
1325 int from_tty;
1326
1327 /* The breakpoint range spec. */
1328 char *arg;
1329
1330 /* Non-NULL if the body of the commands are being read from this
1331 already-parsed command. */
1332 struct command_line *control;
1333
1334 /* The command lines read from the user, or NULL if they have not
1335 yet been read. */
1336 struct counted_command_line *cmd;
1337 };
1338
1339 /* A callback for map_breakpoint_numbers that sets the commands for
1340 commands_command. */
1341
1342 static void
1343 do_map_commands_command (struct breakpoint *b, void *data)
1344 {
1345 struct commands_info *info = data;
1346
1347 if (info->cmd == NULL)
1348 {
1349 struct command_line *l;
1350
1351 if (info->control != NULL)
1352 l = copy_command_lines (info->control->body_list[0]);
1353 else
1354 {
1355 struct cleanup *old_chain;
1356 char *str;
1357
1358 str = xstrprintf (_("Type commands for breakpoint(s) "
1359 "%s, one per line."),
1360 info->arg);
1361
1362 old_chain = make_cleanup (xfree, str);
1363
1364 l = read_command_lines (str,
1365 info->from_tty, 1,
1366 (is_tracepoint (b)
1367 ? check_tracepoint_command : 0),
1368 b);
1369
1370 do_cleanups (old_chain);
1371 }
1372
1373 info->cmd = alloc_counted_command_line (l);
1374 }
1375
1376 /* If a breakpoint was on the list more than once, we don't need to
1377 do anything. */
1378 if (b->commands != info->cmd)
1379 {
1380 validate_commands_for_breakpoint (b, info->cmd->commands);
1381 incref_counted_command_line (info->cmd);
1382 decref_counted_command_line (&b->commands);
1383 b->commands = info->cmd;
1384 observer_notify_breakpoint_modified (b);
1385 }
1386 }
1387
1388 static void
1389 commands_command_1 (char *arg, int from_tty,
1390 struct command_line *control)
1391 {
1392 struct cleanup *cleanups;
1393 struct commands_info info;
1394
1395 info.from_tty = from_tty;
1396 info.control = control;
1397 info.cmd = NULL;
1398 /* If we read command lines from the user, then `info' will hold an
1399 extra reference to the commands that we must clean up. */
1400 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1401
1402 if (arg == NULL || !*arg)
1403 {
1404 if (breakpoint_count - prev_breakpoint_count > 1)
1405 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1406 breakpoint_count);
1407 else if (breakpoint_count > 0)
1408 arg = xstrprintf ("%d", breakpoint_count);
1409 else
1410 {
1411 /* So that we don't try to free the incoming non-NULL
1412 argument in the cleanup below. Mapping breakpoint
1413 numbers will fail in this case. */
1414 arg = NULL;
1415 }
1416 }
1417 else
1418 /* The command loop has some static state, so we need to preserve
1419 our argument. */
1420 arg = xstrdup (arg);
1421
1422 if (arg != NULL)
1423 make_cleanup (xfree, arg);
1424
1425 info.arg = arg;
1426
1427 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1428
1429 if (info.cmd == NULL)
1430 error (_("No breakpoints specified."));
1431
1432 do_cleanups (cleanups);
1433 }
1434
1435 static void
1436 commands_command (char *arg, int from_tty)
1437 {
1438 commands_command_1 (arg, from_tty, NULL);
1439 }
1440
1441 /* Like commands_command, but instead of reading the commands from
1442 input stream, takes them from an already parsed command structure.
1443
1444 This is used by cli-script.c to DTRT with breakpoint commands
1445 that are part of if and while bodies. */
1446 enum command_control_type
1447 commands_from_control_command (char *arg, struct command_line *cmd)
1448 {
1449 commands_command_1 (arg, 0, cmd);
1450 return simple_control;
1451 }
1452
1453 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1454
1455 static int
1456 bp_location_has_shadow (struct bp_location *bl)
1457 {
1458 if (bl->loc_type != bp_loc_software_breakpoint)
1459 return 0;
1460 if (!bl->inserted)
1461 return 0;
1462 if (bl->target_info.shadow_len == 0)
1463 /* BL isn't valid, or doesn't shadow memory. */
1464 return 0;
1465 return 1;
1466 }
1467
1468 /* Update BUF, which is LEN bytes read from the target address
1469 MEMADDR, by replacing a memory breakpoint with its shadowed
1470 contents.
1471
1472 If READBUF is not NULL, this buffer must not overlap with the of
1473 the breakpoint location's shadow_contents buffer. Otherwise, a
1474 failed assertion internal error will be raised. */
1475
1476 static void
1477 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1478 const gdb_byte *writebuf_org,
1479 ULONGEST memaddr, LONGEST len,
1480 struct bp_target_info *target_info,
1481 struct gdbarch *gdbarch)
1482 {
1483 /* Now do full processing of the found relevant range of elements. */
1484 CORE_ADDR bp_addr = 0;
1485 int bp_size = 0;
1486 int bptoffset = 0;
1487
1488 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1489 current_program_space->aspace, 0))
1490 {
1491 /* The breakpoint is inserted in a different address space. */
1492 return;
1493 }
1494
1495 /* Addresses and length of the part of the breakpoint that
1496 we need to copy. */
1497 bp_addr = target_info->placed_address;
1498 bp_size = target_info->shadow_len;
1499
1500 if (bp_addr + bp_size <= memaddr)
1501 {
1502 /* The breakpoint is entirely before the chunk of memory we are
1503 reading. */
1504 return;
1505 }
1506
1507 if (bp_addr >= memaddr + len)
1508 {
1509 /* The breakpoint is entirely after the chunk of memory we are
1510 reading. */
1511 return;
1512 }
1513
1514 /* Offset within shadow_contents. */
1515 if (bp_addr < memaddr)
1516 {
1517 /* Only copy the second part of the breakpoint. */
1518 bp_size -= memaddr - bp_addr;
1519 bptoffset = memaddr - bp_addr;
1520 bp_addr = memaddr;
1521 }
1522
1523 if (bp_addr + bp_size > memaddr + len)
1524 {
1525 /* Only copy the first part of the breakpoint. */
1526 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1527 }
1528
1529 if (readbuf != NULL)
1530 {
1531 /* Verify that the readbuf buffer does not overlap with the
1532 shadow_contents buffer. */
1533 gdb_assert (target_info->shadow_contents >= readbuf + len
1534 || readbuf >= (target_info->shadow_contents
1535 + target_info->shadow_len));
1536
1537 /* Update the read buffer with this inserted breakpoint's
1538 shadow. */
1539 memcpy (readbuf + bp_addr - memaddr,
1540 target_info->shadow_contents + bptoffset, bp_size);
1541 }
1542 else
1543 {
1544 const unsigned char *bp;
1545 CORE_ADDR addr = target_info->reqstd_address;
1546 int placed_size;
1547
1548 /* Update the shadow with what we want to write to memory. */
1549 memcpy (target_info->shadow_contents + bptoffset,
1550 writebuf_org + bp_addr - memaddr, bp_size);
1551
1552 /* Determine appropriate breakpoint contents and size for this
1553 address. */
1554 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1555
1556 /* Update the final write buffer with this inserted
1557 breakpoint's INSN. */
1558 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1559 }
1560 }
1561
1562 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1563 by replacing any memory breakpoints with their shadowed contents.
1564
1565 If READBUF is not NULL, this buffer must not overlap with any of
1566 the breakpoint location's shadow_contents buffers. Otherwise,
1567 a failed assertion internal error will be raised.
1568
1569 The range of shadowed area by each bp_location is:
1570 bl->address - bp_location_placed_address_before_address_max
1571 up to bl->address + bp_location_shadow_len_after_address_max
1572 The range we were requested to resolve shadows for is:
1573 memaddr ... memaddr + len
1574 Thus the safe cutoff boundaries for performance optimization are
1575 memaddr + len <= (bl->address
1576 - bp_location_placed_address_before_address_max)
1577 and:
1578 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1579
1580 void
1581 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1582 const gdb_byte *writebuf_org,
1583 ULONGEST memaddr, LONGEST len)
1584 {
1585 /* Left boundary, right boundary and median element of our binary
1586 search. */
1587 unsigned bc_l, bc_r, bc;
1588 size_t i;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_location_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_location[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_location_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_location_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_location_count; bc++)
1641 {
1642 struct bp_location *bl = bp_location[bc];
1643 CORE_ADDR bp_addr = 0;
1644 int bp_size = 0;
1645 int bptoffset = 0;
1646
1647 /* bp_location array has BL->OWNER always non-NULL. */
1648 if (bl->owner->type == bp_none)
1649 warning (_("reading through apparently deleted breakpoint #%d?"),
1650 bl->owner->number);
1651
1652 /* Performance optimization: any further element can no longer affect BUF
1653 content. */
1654
1655 if (bl->address >= bp_location_placed_address_before_address_max
1656 && memaddr + len <= (bl->address
1657 - bp_location_placed_address_before_address_max))
1658 break;
1659
1660 if (!bp_location_has_shadow (bl))
1661 continue;
1662
1663 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1664 memaddr, len, &bl->target_info, bl->gdbarch);
1665 }
1666 }
1667
1668 \f
1669
1670 /* Return true if BPT is either a software breakpoint or a hardware
1671 breakpoint. */
1672
1673 int
1674 is_breakpoint (const struct breakpoint *bpt)
1675 {
1676 return (bpt->type == bp_breakpoint
1677 || bpt->type == bp_hardware_breakpoint
1678 || bpt->type == bp_dprintf);
1679 }
1680
1681 /* Return true if BPT is of any hardware watchpoint kind. */
1682
1683 static int
1684 is_hardware_watchpoint (const struct breakpoint *bpt)
1685 {
1686 return (bpt->type == bp_hardware_watchpoint
1687 || bpt->type == bp_read_watchpoint
1688 || bpt->type == bp_access_watchpoint);
1689 }
1690
1691 /* Return true if BPT is of any watchpoint kind, hardware or
1692 software. */
1693
1694 int
1695 is_watchpoint (const struct breakpoint *bpt)
1696 {
1697 return (is_hardware_watchpoint (bpt)
1698 || bpt->type == bp_watchpoint);
1699 }
1700
1701 /* Returns true if the current thread and its running state are safe
1702 to evaluate or update watchpoint B. Watchpoints on local
1703 expressions need to be evaluated in the context of the thread that
1704 was current when the watchpoint was created, and, that thread needs
1705 to be stopped to be able to select the correct frame context.
1706 Watchpoints on global expressions can be evaluated on any thread,
1707 and in any state. It is presently left to the target allowing
1708 memory accesses when threads are running. */
1709
1710 static int
1711 watchpoint_in_thread_scope (struct watchpoint *b)
1712 {
1713 return (b->base.pspace == current_program_space
1714 && (ptid_equal (b->watchpoint_thread, null_ptid)
1715 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1716 && !is_executing (inferior_ptid))));
1717 }
1718
1719 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1720 associated bp_watchpoint_scope breakpoint. */
1721
1722 static void
1723 watchpoint_del_at_next_stop (struct watchpoint *w)
1724 {
1725 struct breakpoint *b = &w->base;
1726
1727 if (b->related_breakpoint != b)
1728 {
1729 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1730 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1731 b->related_breakpoint->disposition = disp_del_at_next_stop;
1732 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1733 b->related_breakpoint = b;
1734 }
1735 b->disposition = disp_del_at_next_stop;
1736 }
1737
1738 /* Extract a bitfield value from value VAL using the bit parameters contained in
1739 watchpoint W. */
1740
1741 static struct value *
1742 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1743 {
1744 struct value *bit_val;
1745
1746 if (val == NULL)
1747 return NULL;
1748
1749 bit_val = allocate_value (value_type (val));
1750
1751 unpack_value_bitfield (bit_val,
1752 w->val_bitpos,
1753 w->val_bitsize,
1754 value_contents_for_printing (val),
1755 value_offset (val),
1756 val);
1757
1758 return bit_val;
1759 }
1760
1761 /* Assuming that B is a watchpoint:
1762 - Reparse watchpoint expression, if REPARSE is non-zero
1763 - Evaluate expression and store the result in B->val
1764 - Evaluate the condition if there is one, and store the result
1765 in b->loc->cond.
1766 - Update the list of values that must be watched in B->loc.
1767
1768 If the watchpoint disposition is disp_del_at_next_stop, then do
1769 nothing. If this is local watchpoint that is out of scope, delete
1770 it.
1771
1772 Even with `set breakpoint always-inserted on' the watchpoints are
1773 removed + inserted on each stop here. Normal breakpoints must
1774 never be removed because they might be missed by a running thread
1775 when debugging in non-stop mode. On the other hand, hardware
1776 watchpoints (is_hardware_watchpoint; processed here) are specific
1777 to each LWP since they are stored in each LWP's hardware debug
1778 registers. Therefore, such LWP must be stopped first in order to
1779 be able to modify its hardware watchpoints.
1780
1781 Hardware watchpoints must be reset exactly once after being
1782 presented to the user. It cannot be done sooner, because it would
1783 reset the data used to present the watchpoint hit to the user. And
1784 it must not be done later because it could display the same single
1785 watchpoint hit during multiple GDB stops. Note that the latter is
1786 relevant only to the hardware watchpoint types bp_read_watchpoint
1787 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1788 not user-visible - its hit is suppressed if the memory content has
1789 not changed.
1790
1791 The following constraints influence the location where we can reset
1792 hardware watchpoints:
1793
1794 * target_stopped_by_watchpoint and target_stopped_data_address are
1795 called several times when GDB stops.
1796
1797 [linux]
1798 * Multiple hardware watchpoints can be hit at the same time,
1799 causing GDB to stop. GDB only presents one hardware watchpoint
1800 hit at a time as the reason for stopping, and all the other hits
1801 are presented later, one after the other, each time the user
1802 requests the execution to be resumed. Execution is not resumed
1803 for the threads still having pending hit event stored in
1804 LWP_INFO->STATUS. While the watchpoint is already removed from
1805 the inferior on the first stop the thread hit event is kept being
1806 reported from its cached value by linux_nat_stopped_data_address
1807 until the real thread resume happens after the watchpoint gets
1808 presented and thus its LWP_INFO->STATUS gets reset.
1809
1810 Therefore the hardware watchpoint hit can get safely reset on the
1811 watchpoint removal from inferior. */
1812
1813 static void
1814 update_watchpoint (struct watchpoint *b, int reparse)
1815 {
1816 int within_current_scope;
1817 struct frame_id saved_frame_id;
1818 int frame_saved;
1819
1820 /* If this is a local watchpoint, we only want to check if the
1821 watchpoint frame is in scope if the current thread is the thread
1822 that was used to create the watchpoint. */
1823 if (!watchpoint_in_thread_scope (b))
1824 return;
1825
1826 if (b->base.disposition == disp_del_at_next_stop)
1827 return;
1828
1829 frame_saved = 0;
1830
1831 /* Determine if the watchpoint is within scope. */
1832 if (b->exp_valid_block == NULL)
1833 within_current_scope = 1;
1834 else
1835 {
1836 struct frame_info *fi = get_current_frame ();
1837 struct gdbarch *frame_arch = get_frame_arch (fi);
1838 CORE_ADDR frame_pc = get_frame_pc (fi);
1839
1840 /* If we're at a point where the stack has been destroyed
1841 (e.g. in a function epilogue), unwinding may not work
1842 properly. Do not attempt to recreate locations at this
1843 point. See similar comments in watchpoint_check. */
1844 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1845 return;
1846
1847 /* Save the current frame's ID so we can restore it after
1848 evaluating the watchpoint expression on its own frame. */
1849 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1850 took a frame parameter, so that we didn't have to change the
1851 selected frame. */
1852 frame_saved = 1;
1853 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1854
1855 fi = frame_find_by_id (b->watchpoint_frame);
1856 within_current_scope = (fi != NULL);
1857 if (within_current_scope)
1858 select_frame (fi);
1859 }
1860
1861 /* We don't free locations. They are stored in the bp_location array
1862 and update_global_location_list will eventually delete them and
1863 remove breakpoints if needed. */
1864 b->base.loc = NULL;
1865
1866 if (within_current_scope && reparse)
1867 {
1868 const char *s;
1869
1870 if (b->exp)
1871 {
1872 xfree (b->exp);
1873 b->exp = NULL;
1874 }
1875 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1876 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1877 /* If the meaning of expression itself changed, the old value is
1878 no longer relevant. We don't want to report a watchpoint hit
1879 to the user when the old value and the new value may actually
1880 be completely different objects. */
1881 value_free (b->val);
1882 b->val = NULL;
1883 b->val_valid = 0;
1884
1885 /* Note that unlike with breakpoints, the watchpoint's condition
1886 expression is stored in the breakpoint object, not in the
1887 locations (re)created below. */
1888 if (b->base.cond_string != NULL)
1889 {
1890 if (b->cond_exp != NULL)
1891 {
1892 xfree (b->cond_exp);
1893 b->cond_exp = NULL;
1894 }
1895
1896 s = b->base.cond_string;
1897 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1898 }
1899 }
1900
1901 /* If we failed to parse the expression, for example because
1902 it refers to a global variable in a not-yet-loaded shared library,
1903 don't try to insert watchpoint. We don't automatically delete
1904 such watchpoint, though, since failure to parse expression
1905 is different from out-of-scope watchpoint. */
1906 if (!target_has_execution)
1907 {
1908 /* Without execution, memory can't change. No use to try and
1909 set watchpoint locations. The watchpoint will be reset when
1910 the target gains execution, through breakpoint_re_set. */
1911 if (!can_use_hw_watchpoints)
1912 {
1913 if (b->base.ops->works_in_software_mode (&b->base))
1914 b->base.type = bp_watchpoint;
1915 else
1916 error (_("Can't set read/access watchpoint when "
1917 "hardware watchpoints are disabled."));
1918 }
1919 }
1920 else if (within_current_scope && b->exp)
1921 {
1922 int pc = 0;
1923 struct value *val_chain, *v, *result, *next;
1924 struct program_space *frame_pspace;
1925
1926 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1927
1928 /* Avoid setting b->val if it's already set. The meaning of
1929 b->val is 'the last value' user saw, and we should update
1930 it only if we reported that last value to user. As it
1931 happens, the code that reports it updates b->val directly.
1932 We don't keep track of the memory value for masked
1933 watchpoints. */
1934 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1935 {
1936 if (b->val_bitsize != 0)
1937 {
1938 v = extract_bitfield_from_watchpoint_value (b, v);
1939 if (v != NULL)
1940 release_value (v);
1941 }
1942 b->val = v;
1943 b->val_valid = 1;
1944 }
1945
1946 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1947
1948 /* Look at each value on the value chain. */
1949 for (v = val_chain; v; v = value_next (v))
1950 {
1951 /* If it's a memory location, and GDB actually needed
1952 its contents to evaluate the expression, then we
1953 must watch it. If the first value returned is
1954 still lazy, that means an error occurred reading it;
1955 watch it anyway in case it becomes readable. */
1956 if (VALUE_LVAL (v) == lval_memory
1957 && (v == val_chain || ! value_lazy (v)))
1958 {
1959 struct type *vtype = check_typedef (value_type (v));
1960
1961 /* We only watch structs and arrays if user asked
1962 for it explicitly, never if they just happen to
1963 appear in the middle of some value chain. */
1964 if (v == result
1965 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1966 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1967 {
1968 CORE_ADDR addr;
1969 int type;
1970 struct bp_location *loc, **tmp;
1971 int bitpos = 0, bitsize = 0;
1972
1973 if (value_bitsize (v) != 0)
1974 {
1975 /* Extract the bit parameters out from the bitfield
1976 sub-expression. */
1977 bitpos = value_bitpos (v);
1978 bitsize = value_bitsize (v);
1979 }
1980 else if (v == result && b->val_bitsize != 0)
1981 {
1982 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1983 lvalue whose bit parameters are saved in the fields
1984 VAL_BITPOS and VAL_BITSIZE. */
1985 bitpos = b->val_bitpos;
1986 bitsize = b->val_bitsize;
1987 }
1988
1989 addr = value_address (v);
1990 if (bitsize != 0)
1991 {
1992 /* Skip the bytes that don't contain the bitfield. */
1993 addr += bitpos / 8;
1994 }
1995
1996 type = hw_write;
1997 if (b->base.type == bp_read_watchpoint)
1998 type = hw_read;
1999 else if (b->base.type == bp_access_watchpoint)
2000 type = hw_access;
2001
2002 loc = allocate_bp_location (&b->base);
2003 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2004 ;
2005 *tmp = loc;
2006 loc->gdbarch = get_type_arch (value_type (v));
2007
2008 loc->pspace = frame_pspace;
2009 loc->address = addr;
2010
2011 if (bitsize != 0)
2012 {
2013 /* Just cover the bytes that make up the bitfield. */
2014 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2015 }
2016 else
2017 loc->length = TYPE_LENGTH (value_type (v));
2018
2019 loc->watchpoint_type = type;
2020 }
2021 }
2022 }
2023
2024 /* Change the type of breakpoint between hardware assisted or
2025 an ordinary watchpoint depending on the hardware support
2026 and free hardware slots. REPARSE is set when the inferior
2027 is started. */
2028 if (reparse)
2029 {
2030 int reg_cnt;
2031 enum bp_loc_type loc_type;
2032 struct bp_location *bl;
2033
2034 reg_cnt = can_use_hardware_watchpoint (val_chain);
2035
2036 if (reg_cnt)
2037 {
2038 int i, target_resources_ok, other_type_used;
2039 enum bptype type;
2040
2041 /* Use an exact watchpoint when there's only one memory region to be
2042 watched, and only one debug register is needed to watch it. */
2043 b->exact = target_exact_watchpoints && reg_cnt == 1;
2044
2045 /* We need to determine how many resources are already
2046 used for all other hardware watchpoints plus this one
2047 to see if we still have enough resources to also fit
2048 this watchpoint in as well. */
2049
2050 /* If this is a software watchpoint, we try to turn it
2051 to a hardware one -- count resources as if B was of
2052 hardware watchpoint type. */
2053 type = b->base.type;
2054 if (type == bp_watchpoint)
2055 type = bp_hardware_watchpoint;
2056
2057 /* This watchpoint may or may not have been placed on
2058 the list yet at this point (it won't be in the list
2059 if we're trying to create it for the first time,
2060 through watch_command), so always account for it
2061 manually. */
2062
2063 /* Count resources used by all watchpoints except B. */
2064 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2065
2066 /* Add in the resources needed for B. */
2067 i += hw_watchpoint_use_count (&b->base);
2068
2069 target_resources_ok
2070 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2071 if (target_resources_ok <= 0)
2072 {
2073 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2074
2075 if (target_resources_ok == 0 && !sw_mode)
2076 error (_("Target does not support this type of "
2077 "hardware watchpoint."));
2078 else if (target_resources_ok < 0 && !sw_mode)
2079 error (_("There are not enough available hardware "
2080 "resources for this watchpoint."));
2081
2082 /* Downgrade to software watchpoint. */
2083 b->base.type = bp_watchpoint;
2084 }
2085 else
2086 {
2087 /* If this was a software watchpoint, we've just
2088 found we have enough resources to turn it to a
2089 hardware watchpoint. Otherwise, this is a
2090 nop. */
2091 b->base.type = type;
2092 }
2093 }
2094 else if (!b->base.ops->works_in_software_mode (&b->base))
2095 {
2096 if (!can_use_hw_watchpoints)
2097 error (_("Can't set read/access watchpoint when "
2098 "hardware watchpoints are disabled."));
2099 else
2100 error (_("Expression cannot be implemented with "
2101 "read/access watchpoint."));
2102 }
2103 else
2104 b->base.type = bp_watchpoint;
2105
2106 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2107 : bp_loc_hardware_watchpoint);
2108 for (bl = b->base.loc; bl; bl = bl->next)
2109 bl->loc_type = loc_type;
2110 }
2111
2112 for (v = val_chain; v; v = next)
2113 {
2114 next = value_next (v);
2115 if (v != b->val)
2116 value_free (v);
2117 }
2118
2119 /* If a software watchpoint is not watching any memory, then the
2120 above left it without any location set up. But,
2121 bpstat_stop_status requires a location to be able to report
2122 stops, so make sure there's at least a dummy one. */
2123 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2124 {
2125 struct breakpoint *base = &b->base;
2126 base->loc = allocate_bp_location (base);
2127 base->loc->pspace = frame_pspace;
2128 base->loc->address = -1;
2129 base->loc->length = -1;
2130 base->loc->watchpoint_type = -1;
2131 }
2132 }
2133 else if (!within_current_scope)
2134 {
2135 printf_filtered (_("\
2136 Watchpoint %d deleted because the program has left the block\n\
2137 in which its expression is valid.\n"),
2138 b->base.number);
2139 watchpoint_del_at_next_stop (b);
2140 }
2141
2142 /* Restore the selected frame. */
2143 if (frame_saved)
2144 select_frame (frame_find_by_id (saved_frame_id));
2145 }
2146
2147
2148 /* Returns 1 iff breakpoint location should be
2149 inserted in the inferior. We don't differentiate the type of BL's owner
2150 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2151 breakpoint_ops is not defined, because in insert_bp_location,
2152 tracepoint's insert_location will not be called. */
2153 static int
2154 should_be_inserted (struct bp_location *bl)
2155 {
2156 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2157 return 0;
2158
2159 if (bl->owner->disposition == disp_del_at_next_stop)
2160 return 0;
2161
2162 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2163 return 0;
2164
2165 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2166 return 0;
2167
2168 /* This is set for example, when we're attached to the parent of a
2169 vfork, and have detached from the child. The child is running
2170 free, and we expect it to do an exec or exit, at which point the
2171 OS makes the parent schedulable again (and the target reports
2172 that the vfork is done). Until the child is done with the shared
2173 memory region, do not insert breakpoints in the parent, otherwise
2174 the child could still trip on the parent's breakpoints. Since
2175 the parent is blocked anyway, it won't miss any breakpoint. */
2176 if (bl->pspace->breakpoints_not_allowed)
2177 return 0;
2178
2179 /* Don't insert a breakpoint if we're trying to step past its
2180 location. */
2181 if ((bl->loc_type == bp_loc_software_breakpoint
2182 || bl->loc_type == bp_loc_hardware_breakpoint)
2183 && stepping_past_instruction_at (bl->pspace->aspace,
2184 bl->address))
2185 {
2186 if (debug_infrun)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "infrun: skipping breakpoint: "
2190 "stepping past insn at: %s\n",
2191 paddress (bl->gdbarch, bl->address));
2192 }
2193 return 0;
2194 }
2195
2196 /* Don't insert watchpoints if we're trying to step past the
2197 instruction that triggered one. */
2198 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2199 && stepping_past_nonsteppable_watchpoint ())
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: stepping past non-steppable watchpoint. "
2205 "skipping watchpoint at %s:%d\n",
2206 paddress (bl->gdbarch, bl->address),
2207 bl->length);
2208 }
2209 return 0;
2210 }
2211
2212 return 1;
2213 }
2214
2215 /* Same as should_be_inserted but does the check assuming
2216 that the location is not duplicated. */
2217
2218 static int
2219 unduplicated_should_be_inserted (struct bp_location *bl)
2220 {
2221 int result;
2222 const int save_duplicate = bl->duplicate;
2223
2224 bl->duplicate = 0;
2225 result = should_be_inserted (bl);
2226 bl->duplicate = save_duplicate;
2227 return result;
2228 }
2229
2230 /* Parses a conditional described by an expression COND into an
2231 agent expression bytecode suitable for evaluation
2232 by the bytecode interpreter. Return NULL if there was
2233 any error during parsing. */
2234
2235 static struct agent_expr *
2236 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2237 {
2238 struct agent_expr *aexpr = NULL;
2239
2240 if (!cond)
2241 return NULL;
2242
2243 /* We don't want to stop processing, so catch any errors
2244 that may show up. */
2245 TRY
2246 {
2247 aexpr = gen_eval_for_expr (scope, cond);
2248 }
2249
2250 CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 /* If we got here, it means the condition could not be parsed to a valid
2253 bytecode expression and thus can't be evaluated on the target's side.
2254 It's no use iterating through the conditions. */
2255 return NULL;
2256 }
2257 END_CATCH
2258
2259 /* We have a valid agent expression. */
2260 return aexpr;
2261 }
2262
2263 /* Based on location BL, create a list of breakpoint conditions to be
2264 passed on to the target. If we have duplicated locations with different
2265 conditions, we will add such conditions to the list. The idea is that the
2266 target will evaluate the list of conditions and will only notify GDB when
2267 one of them is true. */
2268
2269 static void
2270 build_target_condition_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_condition_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* Release conditions left over from a previous insert. */
2278 VEC_free (agent_expr_p, bl->target_info.conditions);
2279
2280 /* This is only meaningful if the target is
2281 evaluating conditions and if the user has
2282 opted for condition evaluation on the target's
2283 side. */
2284 if (gdb_evaluates_breakpoint_condition_p ()
2285 || !target_supports_evaluation_of_breakpoint_conditions ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the conditions since something changed. In that
2303 case we already freed the condition bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the condition to bytecodes again. */
2306 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2307 loc->cond_bytecode = aexpr;
2308
2309 /* Check if we managed to parse the conditional expression
2310 correctly. If not, we will not send this condition
2311 to the target. */
2312 if (aexpr)
2313 continue;
2314 }
2315
2316 /* If we have a NULL bytecode expression, it means something
2317 went wrong or we have a null condition expression. */
2318 if (!loc->cond_bytecode)
2319 {
2320 null_condition_or_parse_error = 1;
2321 break;
2322 }
2323 }
2324 }
2325
2326 /* If any of these happened, it means we will have to evaluate the conditions
2327 for the location's address on gdb's side. It is no use keeping bytecodes
2328 for all the other duplicate locations, thus we free all of them here.
2329
2330 This is so we have a finer control over which locations' conditions are
2331 being evaluated by GDB or the remote stub. */
2332 if (null_condition_or_parse_error)
2333 {
2334 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2335 {
2336 loc = (*loc2p);
2337 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2338 {
2339 /* Only go as far as the first NULL bytecode is
2340 located. */
2341 if (!loc->cond_bytecode)
2342 return;
2343
2344 free_agent_expr (loc->cond_bytecode);
2345 loc->cond_bytecode = NULL;
2346 }
2347 }
2348 }
2349
2350 /* No NULL conditions or failed bytecode generation. Build a condition list
2351 for this location's address. */
2352 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2353 {
2354 loc = (*loc2p);
2355 if (loc->cond
2356 && is_breakpoint (loc->owner)
2357 && loc->pspace->num == bl->pspace->num
2358 && loc->owner->enable_state == bp_enabled
2359 && loc->enabled)
2360 /* Add the condition to the vector. This will be used later to send the
2361 conditions to the target. */
2362 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2363 loc->cond_bytecode);
2364 }
2365
2366 return;
2367 }
2368
2369 /* Parses a command described by string CMD into an agent expression
2370 bytecode suitable for evaluation by the bytecode interpreter.
2371 Return NULL if there was any error during parsing. */
2372
2373 static struct agent_expr *
2374 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2375 {
2376 struct cleanup *old_cleanups = 0;
2377 struct expression *expr, **argvec;
2378 struct agent_expr *aexpr = NULL;
2379 const char *cmdrest;
2380 const char *format_start, *format_end;
2381 struct format_piece *fpieces;
2382 int nargs;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 if (!cmd)
2386 return NULL;
2387
2388 cmdrest = cmd;
2389
2390 if (*cmdrest == ',')
2391 ++cmdrest;
2392 cmdrest = skip_spaces_const (cmdrest);
2393
2394 if (*cmdrest++ != '"')
2395 error (_("No format string following the location"));
2396
2397 format_start = cmdrest;
2398
2399 fpieces = parse_format_string (&cmdrest);
2400
2401 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2402
2403 format_end = cmdrest;
2404
2405 if (*cmdrest++ != '"')
2406 error (_("Bad format string, non-terminated '\"'."));
2407
2408 cmdrest = skip_spaces_const (cmdrest);
2409
2410 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2411 error (_("Invalid argument syntax"));
2412
2413 if (*cmdrest == ',')
2414 cmdrest++;
2415 cmdrest = skip_spaces_const (cmdrest);
2416
2417 /* For each argument, make an expression. */
2418
2419 argvec = (struct expression **) alloca (strlen (cmd)
2420 * sizeof (struct expression *));
2421
2422 nargs = 0;
2423 while (*cmdrest != '\0')
2424 {
2425 const char *cmd1;
2426
2427 cmd1 = cmdrest;
2428 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2429 argvec[nargs++] = expr;
2430 cmdrest = cmd1;
2431 if (*cmdrest == ',')
2432 ++cmdrest;
2433 }
2434
2435 /* We don't want to stop processing, so catch any errors
2436 that may show up. */
2437 TRY
2438 {
2439 aexpr = gen_printf (scope, gdbarch, 0, 0,
2440 format_start, format_end - format_start,
2441 fpieces, nargs, argvec);
2442 }
2443 CATCH (ex, RETURN_MASK_ERROR)
2444 {
2445 /* If we got here, it means the command could not be parsed to a valid
2446 bytecode expression and thus can't be evaluated on the target's side.
2447 It's no use iterating through the other commands. */
2448 aexpr = NULL;
2449 }
2450 END_CATCH
2451
2452 do_cleanups (old_cleanups);
2453
2454 /* We have a valid agent expression, return it. */
2455 return aexpr;
2456 }
2457
2458 /* Based on location BL, create a list of breakpoint commands to be
2459 passed on to the target. If we have duplicated locations with
2460 different commands, we will add any such to the list. */
2461
2462 static void
2463 build_target_command_list (struct bp_location *bl)
2464 {
2465 struct bp_location **locp = NULL, **loc2p;
2466 int null_command_or_parse_error = 0;
2467 int modified = bl->needs_update;
2468 struct bp_location *loc;
2469
2470 /* Release commands left over from a previous insert. */
2471 VEC_free (agent_expr_p, bl->target_info.tcommands);
2472
2473 if (!target_can_run_breakpoint_commands ())
2474 return;
2475
2476 /* For now, limit to agent-style dprintf breakpoints. */
2477 if (dprintf_style != dprintf_style_agent)
2478 return;
2479
2480 /* For now, if we have any duplicate location that isn't a dprintf,
2481 don't install the target-side commands, as that would make the
2482 breakpoint not be reported to the core, and we'd lose
2483 control. */
2484 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2485 {
2486 loc = (*loc2p);
2487 if (is_breakpoint (loc->owner)
2488 && loc->pspace->num == bl->pspace->num
2489 && loc->owner->type != bp_dprintf)
2490 return;
2491 }
2492
2493 /* Do a first pass to check for locations with no assigned
2494 conditions or conditions that fail to parse to a valid agent expression
2495 bytecode. If any of these happen, then it's no use to send conditions
2496 to the target since this location will always trigger and generate a
2497 response back to GDB. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2502 {
2503 if (modified)
2504 {
2505 struct agent_expr *aexpr;
2506
2507 /* Re-parse the commands since something changed. In that
2508 case we already freed the command bytecodes (see
2509 force_breakpoint_reinsertion). We just
2510 need to parse the command to bytecodes again. */
2511 aexpr = parse_cmd_to_aexpr (bl->address,
2512 loc->owner->extra_string);
2513 loc->cmd_bytecode = aexpr;
2514
2515 if (!aexpr)
2516 continue;
2517 }
2518
2519 /* If we have a NULL bytecode expression, it means something
2520 went wrong or we have a null command expression. */
2521 if (!loc->cmd_bytecode)
2522 {
2523 null_command_or_parse_error = 1;
2524 break;
2525 }
2526 }
2527 }
2528
2529 /* If anything failed, then we're not doing target-side commands,
2530 and so clean up. */
2531 if (null_command_or_parse_error)
2532 {
2533 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2534 {
2535 loc = (*loc2p);
2536 if (is_breakpoint (loc->owner)
2537 && loc->pspace->num == bl->pspace->num)
2538 {
2539 /* Only go as far as the first NULL bytecode is
2540 located. */
2541 if (loc->cmd_bytecode == NULL)
2542 return;
2543
2544 free_agent_expr (loc->cmd_bytecode);
2545 loc->cmd_bytecode = NULL;
2546 }
2547 }
2548 }
2549
2550 /* No NULL commands or failed bytecode generation. Build a command list
2551 for this location's address. */
2552 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2553 {
2554 loc = (*loc2p);
2555 if (loc->owner->extra_string
2556 && is_breakpoint (loc->owner)
2557 && loc->pspace->num == bl->pspace->num
2558 && loc->owner->enable_state == bp_enabled
2559 && loc->enabled)
2560 /* Add the command to the vector. This will be used later
2561 to send the commands to the target. */
2562 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2563 loc->cmd_bytecode);
2564 }
2565
2566 bl->target_info.persist = 0;
2567 /* Maybe flag this location as persistent. */
2568 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2569 bl->target_info.persist = 1;
2570 }
2571
2572 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2573 location. Any error messages are printed to TMP_ERROR_STREAM; and
2574 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2575 Returns 0 for success, 1 if the bp_location type is not supported or
2576 -1 for failure.
2577
2578 NOTE drow/2003-09-09: This routine could be broken down to an
2579 object-style method for each breakpoint or catchpoint type. */
2580 static int
2581 insert_bp_location (struct bp_location *bl,
2582 struct ui_file *tmp_error_stream,
2583 int *disabled_breaks,
2584 int *hw_breakpoint_error,
2585 int *hw_bp_error_explained_already)
2586 {
2587 enum errors bp_err = GDB_NO_ERROR;
2588 const char *bp_err_message = NULL;
2589
2590 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2591 return 0;
2592
2593 /* Note we don't initialize bl->target_info, as that wipes out
2594 the breakpoint location's shadow_contents if the breakpoint
2595 is still inserted at that location. This in turn breaks
2596 target_read_memory which depends on these buffers when
2597 a memory read is requested at the breakpoint location:
2598 Once the target_info has been wiped, we fail to see that
2599 we have a breakpoint inserted at that address and thus
2600 read the breakpoint instead of returning the data saved in
2601 the breakpoint location's shadow contents. */
2602 bl->target_info.reqstd_address = bl->address;
2603 bl->target_info.placed_address_space = bl->pspace->aspace;
2604 bl->target_info.length = bl->length;
2605
2606 /* When working with target-side conditions, we must pass all the conditions
2607 for the same breakpoint address down to the target since GDB will not
2608 insert those locations. With a list of breakpoint conditions, the target
2609 can decide when to stop and notify GDB. */
2610
2611 if (is_breakpoint (bl->owner))
2612 {
2613 build_target_condition_list (bl);
2614 build_target_command_list (bl);
2615 /* Reset the modification marker. */
2616 bl->needs_update = 0;
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 if (bl->owner->type != bp_hardware_breakpoint)
2623 {
2624 /* If the explicitly specified breakpoint type
2625 is not hardware breakpoint, check the memory map to see
2626 if the breakpoint address is in read only memory or not.
2627
2628 Two important cases are:
2629 - location type is not hardware breakpoint, memory
2630 is readonly. We change the type of the location to
2631 hardware breakpoint.
2632 - location type is hardware breakpoint, memory is
2633 read-write. This means we've previously made the
2634 location hardware one, but then the memory map changed,
2635 so we undo.
2636
2637 When breakpoints are removed, remove_breakpoints will use
2638 location types we've just set here, the only possible
2639 problem is that memory map has changed during running
2640 program, but it's not going to work anyway with current
2641 gdb. */
2642 struct mem_region *mr
2643 = lookup_mem_region (bl->target_info.reqstd_address);
2644
2645 if (mr)
2646 {
2647 if (automatic_hardware_breakpoints)
2648 {
2649 enum bp_loc_type new_type;
2650
2651 if (mr->attrib.mode != MEM_RW)
2652 new_type = bp_loc_hardware_breakpoint;
2653 else
2654 new_type = bp_loc_software_breakpoint;
2655
2656 if (new_type != bl->loc_type)
2657 {
2658 static int said = 0;
2659
2660 bl->loc_type = new_type;
2661 if (!said)
2662 {
2663 fprintf_filtered (gdb_stdout,
2664 _("Note: automatically using "
2665 "hardware breakpoints for "
2666 "read-only addresses.\n"));
2667 said = 1;
2668 }
2669 }
2670 }
2671 else if (bl->loc_type == bp_loc_software_breakpoint
2672 && mr->attrib.mode != MEM_RW)
2673 {
2674 fprintf_unfiltered (tmp_error_stream,
2675 _("Cannot insert breakpoint %d.\n"
2676 "Cannot set software breakpoint "
2677 "at read-only address %s\n"),
2678 bl->owner->number,
2679 paddress (bl->gdbarch, bl->address));
2680 return 1;
2681 }
2682 }
2683 }
2684
2685 /* First check to see if we have to handle an overlay. */
2686 if (overlay_debugging == ovly_off
2687 || bl->section == NULL
2688 || !(section_is_overlay (bl->section)))
2689 {
2690 /* No overlay handling: just set the breakpoint. */
2691 TRY
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_err = GENERIC_ERROR;
2698 }
2699 CATCH (e, RETURN_MASK_ALL)
2700 {
2701 bp_err = e.error;
2702 bp_err_message = e.message;
2703 }
2704 END_CATCH
2705 }
2706 else
2707 {
2708 /* This breakpoint is in an overlay section.
2709 Shall we set a breakpoint at the LMA? */
2710 if (!overlay_events_enabled)
2711 {
2712 /* Yes -- overlay event support is not active,
2713 so we must try to set a breakpoint at the LMA.
2714 This will not work for a hardware breakpoint. */
2715 if (bl->loc_type == bp_loc_hardware_breakpoint)
2716 warning (_("hardware breakpoint %d not supported in overlay!"),
2717 bl->owner->number);
2718 else
2719 {
2720 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2721 bl->section);
2722 /* Set a software (trap) breakpoint at the LMA. */
2723 bl->overlay_target_info = bl->target_info;
2724 bl->overlay_target_info.reqstd_address = addr;
2725
2726 /* No overlay handling: just set the breakpoint. */
2727 TRY
2728 {
2729 int val;
2730
2731 val = target_insert_breakpoint (bl->gdbarch,
2732 &bl->overlay_target_info);
2733 if (val)
2734 bp_err = GENERIC_ERROR;
2735 }
2736 CATCH (e, RETURN_MASK_ALL)
2737 {
2738 bp_err = e.error;
2739 bp_err_message = e.message;
2740 }
2741 END_CATCH
2742
2743 if (bp_err != GDB_NO_ERROR)
2744 fprintf_unfiltered (tmp_error_stream,
2745 "Overlay breakpoint %d "
2746 "failed: in ROM?\n",
2747 bl->owner->number);
2748 }
2749 }
2750 /* Shall we set a breakpoint at the VMA? */
2751 if (section_is_mapped (bl->section))
2752 {
2753 /* Yes. This overlay section is mapped into memory. */
2754 TRY
2755 {
2756 int val;
2757
2758 val = bl->owner->ops->insert_location (bl);
2759 if (val)
2760 bp_err = GENERIC_ERROR;
2761 }
2762 CATCH (e, RETURN_MASK_ALL)
2763 {
2764 bp_err = e.error;
2765 bp_err_message = e.message;
2766 }
2767 END_CATCH
2768 }
2769 else
2770 {
2771 /* No. This breakpoint will not be inserted.
2772 No error, but do not mark the bp as 'inserted'. */
2773 return 0;
2774 }
2775 }
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 {
2779 /* Can't set the breakpoint. */
2780
2781 /* In some cases, we might not be able to insert a
2782 breakpoint in a shared library that has already been
2783 removed, but we have not yet processed the shlib unload
2784 event. Unfortunately, some targets that implement
2785 breakpoint insertion themselves can't tell why the
2786 breakpoint insertion failed (e.g., the remote target
2787 doesn't define error codes), so we must treat generic
2788 errors as memory errors. */
2789 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2790 && bl->loc_type == bp_loc_software_breakpoint
2791 && (solib_name_from_address (bl->pspace, bl->address)
2792 || shared_objfile_contains_address_p (bl->pspace,
2793 bl->address)))
2794 {
2795 /* See also: disable_breakpoints_in_shlibs. */
2796 bl->shlib_disabled = 1;
2797 observer_notify_breakpoint_modified (bl->owner);
2798 if (!*disabled_breaks)
2799 {
2800 fprintf_unfiltered (tmp_error_stream,
2801 "Cannot insert breakpoint %d.\n",
2802 bl->owner->number);
2803 fprintf_unfiltered (tmp_error_stream,
2804 "Temporarily disabling shared "
2805 "library breakpoints:\n");
2806 }
2807 *disabled_breaks = 1;
2808 fprintf_unfiltered (tmp_error_stream,
2809 "breakpoint #%d\n", bl->owner->number);
2810 return 0;
2811 }
2812 else
2813 {
2814 if (bl->loc_type == bp_loc_hardware_breakpoint)
2815 {
2816 *hw_breakpoint_error = 1;
2817 *hw_bp_error_explained_already = bp_err_message != NULL;
2818 fprintf_unfiltered (tmp_error_stream,
2819 "Cannot insert hardware breakpoint %d%s",
2820 bl->owner->number, bp_err_message ? ":" : ".\n");
2821 if (bp_err_message != NULL)
2822 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2823 }
2824 else
2825 {
2826 if (bp_err_message == NULL)
2827 {
2828 char *message
2829 = memory_error_message (TARGET_XFER_E_IO,
2830 bl->gdbarch, bl->address);
2831 struct cleanup *old_chain = make_cleanup (xfree, message);
2832
2833 fprintf_unfiltered (tmp_error_stream,
2834 "Cannot insert breakpoint %d.\n"
2835 "%s\n",
2836 bl->owner->number, message);
2837 do_cleanups (old_chain);
2838 }
2839 else
2840 {
2841 fprintf_unfiltered (tmp_error_stream,
2842 "Cannot insert breakpoint %d: %s\n",
2843 bl->owner->number,
2844 bp_err_message);
2845 }
2846 }
2847 return 1;
2848
2849 }
2850 }
2851 else
2852 bl->inserted = 1;
2853
2854 return 0;
2855 }
2856
2857 else if (bl->loc_type == bp_loc_hardware_watchpoint
2858 /* NOTE drow/2003-09-08: This state only exists for removing
2859 watchpoints. It's not clear that it's necessary... */
2860 && bl->owner->disposition != disp_del_at_next_stop)
2861 {
2862 int val;
2863
2864 gdb_assert (bl->owner->ops != NULL
2865 && bl->owner->ops->insert_location != NULL);
2866
2867 val = bl->owner->ops->insert_location (bl);
2868
2869 /* If trying to set a read-watchpoint, and it turns out it's not
2870 supported, try emulating one with an access watchpoint. */
2871 if (val == 1 && bl->watchpoint_type == hw_read)
2872 {
2873 struct bp_location *loc, **loc_temp;
2874
2875 /* But don't try to insert it, if there's already another
2876 hw_access location that would be considered a duplicate
2877 of this one. */
2878 ALL_BP_LOCATIONS (loc, loc_temp)
2879 if (loc != bl
2880 && loc->watchpoint_type == hw_access
2881 && watchpoint_locations_match (bl, loc))
2882 {
2883 bl->duplicate = 1;
2884 bl->inserted = 1;
2885 bl->target_info = loc->target_info;
2886 bl->watchpoint_type = hw_access;
2887 val = 0;
2888 break;
2889 }
2890
2891 if (val == 1)
2892 {
2893 bl->watchpoint_type = hw_access;
2894 val = bl->owner->ops->insert_location (bl);
2895
2896 if (val)
2897 /* Back to the original value. */
2898 bl->watchpoint_type = hw_read;
2899 }
2900 }
2901
2902 bl->inserted = (val == 0);
2903 }
2904
2905 else if (bl->owner->type == bp_catchpoint)
2906 {
2907 int val;
2908
2909 gdb_assert (bl->owner->ops != NULL
2910 && bl->owner->ops->insert_location != NULL);
2911
2912 val = bl->owner->ops->insert_location (bl);
2913 if (val)
2914 {
2915 bl->owner->enable_state = bp_disabled;
2916
2917 if (val == 1)
2918 warning (_("\
2919 Error inserting catchpoint %d: Your system does not support this type\n\
2920 of catchpoint."), bl->owner->number);
2921 else
2922 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2923 }
2924
2925 bl->inserted = (val == 0);
2926
2927 /* We've already printed an error message if there was a problem
2928 inserting this catchpoint, and we've disabled the catchpoint,
2929 so just return success. */
2930 return 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* This function is called when program space PSPACE is about to be
2937 deleted. It takes care of updating breakpoints to not reference
2938 PSPACE anymore. */
2939
2940 void
2941 breakpoint_program_space_exit (struct program_space *pspace)
2942 {
2943 struct breakpoint *b, *b_temp;
2944 struct bp_location *loc, **loc_temp;
2945
2946 /* Remove any breakpoint that was set through this program space. */
2947 ALL_BREAKPOINTS_SAFE (b, b_temp)
2948 {
2949 if (b->pspace == pspace)
2950 delete_breakpoint (b);
2951 }
2952
2953 /* Breakpoints set through other program spaces could have locations
2954 bound to PSPACE as well. Remove those. */
2955 ALL_BP_LOCATIONS (loc, loc_temp)
2956 {
2957 struct bp_location *tmp;
2958
2959 if (loc->pspace == pspace)
2960 {
2961 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2962 if (loc->owner->loc == loc)
2963 loc->owner->loc = loc->next;
2964 else
2965 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2966 if (tmp->next == loc)
2967 {
2968 tmp->next = loc->next;
2969 break;
2970 }
2971 }
2972 }
2973
2974 /* Now update the global location list to permanently delete the
2975 removed locations above. */
2976 update_global_location_list (UGLL_DONT_INSERT);
2977 }
2978
2979 /* Make sure all breakpoints are inserted in inferior.
2980 Throws exception on any error.
2981 A breakpoint that is already inserted won't be inserted
2982 again, so calling this function twice is safe. */
2983 void
2984 insert_breakpoints (void)
2985 {
2986 struct breakpoint *bpt;
2987
2988 ALL_BREAKPOINTS (bpt)
2989 if (is_hardware_watchpoint (bpt))
2990 {
2991 struct watchpoint *w = (struct watchpoint *) bpt;
2992
2993 update_watchpoint (w, 0 /* don't reparse. */);
2994 }
2995
2996 /* Updating watchpoints creates new locations, so update the global
2997 location list. Explicitly tell ugll to insert locations and
2998 ignore breakpoints_always_inserted_mode. */
2999 update_global_location_list (UGLL_INSERT);
3000 }
3001
3002 /* Invoke CALLBACK for each of bp_location. */
3003
3004 void
3005 iterate_over_bp_locations (walk_bp_location_callback callback)
3006 {
3007 struct bp_location *loc, **loc_tmp;
3008
3009 ALL_BP_LOCATIONS (loc, loc_tmp)
3010 {
3011 callback (loc, NULL);
3012 }
3013 }
3014
3015 /* This is used when we need to synch breakpoint conditions between GDB and the
3016 target. It is the case with deleting and disabling of breakpoints when using
3017 always-inserted mode. */
3018
3019 static void
3020 update_inserted_breakpoint_locations (void)
3021 {
3022 struct bp_location *bl, **blp_tmp;
3023 int error_flag = 0;
3024 int val = 0;
3025 int disabled_breaks = 0;
3026 int hw_breakpoint_error = 0;
3027 int hw_bp_details_reported = 0;
3028
3029 struct ui_file *tmp_error_stream = mem_fileopen ();
3030 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3031
3032 /* Explicitly mark the warning -- this will only be printed if
3033 there was an error. */
3034 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3035
3036 save_current_space_and_thread ();
3037
3038 ALL_BP_LOCATIONS (bl, blp_tmp)
3039 {
3040 /* We only want to update software breakpoints and hardware
3041 breakpoints. */
3042 if (!is_breakpoint (bl->owner))
3043 continue;
3044
3045 /* We only want to update locations that are already inserted
3046 and need updating. This is to avoid unwanted insertion during
3047 deletion of breakpoints. */
3048 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3049 continue;
3050
3051 switch_to_program_space_and_thread (bl->pspace);
3052
3053 /* For targets that support global breakpoints, there's no need
3054 to select an inferior to insert breakpoint to. In fact, even
3055 if we aren't attached to any process yet, we should still
3056 insert breakpoints. */
3057 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3058 && ptid_equal (inferior_ptid, null_ptid))
3059 continue;
3060
3061 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3062 &hw_breakpoint_error, &hw_bp_details_reported);
3063 if (val)
3064 error_flag = val;
3065 }
3066
3067 if (error_flag)
3068 {
3069 target_terminal_ours_for_output ();
3070 error_stream (tmp_error_stream);
3071 }
3072
3073 do_cleanups (cleanups);
3074 }
3075
3076 /* Used when starting or continuing the program. */
3077
3078 static void
3079 insert_breakpoint_locations (void)
3080 {
3081 struct breakpoint *bpt;
3082 struct bp_location *bl, **blp_tmp;
3083 int error_flag = 0;
3084 int val = 0;
3085 int disabled_breaks = 0;
3086 int hw_breakpoint_error = 0;
3087 int hw_bp_error_explained_already = 0;
3088
3089 struct ui_file *tmp_error_stream = mem_fileopen ();
3090 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3091
3092 /* Explicitly mark the warning -- this will only be printed if
3093 there was an error. */
3094 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3095
3096 save_current_space_and_thread ();
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3101 continue;
3102
3103 /* There is no point inserting thread-specific breakpoints if
3104 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3105 has BL->OWNER always non-NULL. */
3106 if (bl->owner->thread != -1
3107 && !valid_thread_id (bl->owner->thread))
3108 continue;
3109
3110 switch_to_program_space_and_thread (bl->pspace);
3111
3112 /* For targets that support global breakpoints, there's no need
3113 to select an inferior to insert breakpoint to. In fact, even
3114 if we aren't attached to any process yet, we should still
3115 insert breakpoints. */
3116 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3117 && ptid_equal (inferior_ptid, null_ptid))
3118 continue;
3119
3120 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3121 &hw_breakpoint_error, &hw_bp_error_explained_already);
3122 if (val)
3123 error_flag = val;
3124 }
3125
3126 /* If we failed to insert all locations of a watchpoint, remove
3127 them, as half-inserted watchpoint is of limited use. */
3128 ALL_BREAKPOINTS (bpt)
3129 {
3130 int some_failed = 0;
3131 struct bp_location *loc;
3132
3133 if (!is_hardware_watchpoint (bpt))
3134 continue;
3135
3136 if (!breakpoint_enabled (bpt))
3137 continue;
3138
3139 if (bpt->disposition == disp_del_at_next_stop)
3140 continue;
3141
3142 for (loc = bpt->loc; loc; loc = loc->next)
3143 if (!loc->inserted && should_be_inserted (loc))
3144 {
3145 some_failed = 1;
3146 break;
3147 }
3148 if (some_failed)
3149 {
3150 for (loc = bpt->loc; loc; loc = loc->next)
3151 if (loc->inserted)
3152 remove_breakpoint (loc, mark_uninserted);
3153
3154 hw_breakpoint_error = 1;
3155 fprintf_unfiltered (tmp_error_stream,
3156 "Could not insert hardware watchpoint %d.\n",
3157 bpt->number);
3158 error_flag = -1;
3159 }
3160 }
3161
3162 if (error_flag)
3163 {
3164 /* If a hardware breakpoint or watchpoint was inserted, add a
3165 message about possibly exhausted resources. */
3166 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3167 {
3168 fprintf_unfiltered (tmp_error_stream,
3169 "Could not insert hardware breakpoints:\n\
3170 You may have requested too many hardware breakpoints/watchpoints.\n");
3171 }
3172 target_terminal_ours_for_output ();
3173 error_stream (tmp_error_stream);
3174 }
3175
3176 do_cleanups (cleanups);
3177 }
3178
3179 /* Used when the program stops.
3180 Returns zero if successful, or non-zero if there was a problem
3181 removing a breakpoint location. */
3182
3183 int
3184 remove_breakpoints (void)
3185 {
3186 struct bp_location *bl, **blp_tmp;
3187 int val = 0;
3188
3189 ALL_BP_LOCATIONS (bl, blp_tmp)
3190 {
3191 if (bl->inserted && !is_tracepoint (bl->owner))
3192 val |= remove_breakpoint (bl, mark_uninserted);
3193 }
3194 return val;
3195 }
3196
3197 /* When a thread exits, remove breakpoints that are related to
3198 that thread. */
3199
3200 static void
3201 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3202 {
3203 struct breakpoint *b, *b_tmp;
3204
3205 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3206 {
3207 if (b->thread == tp->num && user_breakpoint_p (b))
3208 {
3209 b->disposition = disp_del_at_next_stop;
3210
3211 printf_filtered (_("\
3212 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3213 b->number, tp->num);
3214
3215 /* Hide it from the user. */
3216 b->number = 0;
3217 }
3218 }
3219 }
3220
3221 /* Remove breakpoints of process PID. */
3222
3223 int
3224 remove_breakpoints_pid (int pid)
3225 {
3226 struct bp_location *bl, **blp_tmp;
3227 int val;
3228 struct inferior *inf = find_inferior_pid (pid);
3229
3230 ALL_BP_LOCATIONS (bl, blp_tmp)
3231 {
3232 if (bl->pspace != inf->pspace)
3233 continue;
3234
3235 if (bl->inserted && !bl->target_info.persist)
3236 {
3237 val = remove_breakpoint (bl, mark_uninserted);
3238 if (val != 0)
3239 return val;
3240 }
3241 }
3242 return 0;
3243 }
3244
3245 int
3246 reattach_breakpoints (int pid)
3247 {
3248 struct cleanup *old_chain;
3249 struct bp_location *bl, **blp_tmp;
3250 int val;
3251 struct ui_file *tmp_error_stream;
3252 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3253 struct inferior *inf;
3254 struct thread_info *tp;
3255
3256 tp = any_live_thread_of_process (pid);
3257 if (tp == NULL)
3258 return 1;
3259
3260 inf = find_inferior_pid (pid);
3261 old_chain = save_inferior_ptid ();
3262
3263 inferior_ptid = tp->ptid;
3264
3265 tmp_error_stream = mem_fileopen ();
3266 make_cleanup_ui_file_delete (tmp_error_stream);
3267
3268 ALL_BP_LOCATIONS (bl, blp_tmp)
3269 {
3270 if (bl->pspace != inf->pspace)
3271 continue;
3272
3273 if (bl->inserted)
3274 {
3275 bl->inserted = 0;
3276 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3277 if (val != 0)
3278 {
3279 do_cleanups (old_chain);
3280 return val;
3281 }
3282 }
3283 }
3284 do_cleanups (old_chain);
3285 return 0;
3286 }
3287
3288 static int internal_breakpoint_number = -1;
3289
3290 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3291 If INTERNAL is non-zero, the breakpoint number will be populated
3292 from internal_breakpoint_number and that variable decremented.
3293 Otherwise the breakpoint number will be populated from
3294 breakpoint_count and that value incremented. Internal breakpoints
3295 do not set the internal var bpnum. */
3296 static void
3297 set_breakpoint_number (int internal, struct breakpoint *b)
3298 {
3299 if (internal)
3300 b->number = internal_breakpoint_number--;
3301 else
3302 {
3303 set_breakpoint_count (breakpoint_count + 1);
3304 b->number = breakpoint_count;
3305 }
3306 }
3307
3308 static struct breakpoint *
3309 create_internal_breakpoint (struct gdbarch *gdbarch,
3310 CORE_ADDR address, enum bptype type,
3311 const struct breakpoint_ops *ops)
3312 {
3313 struct symtab_and_line sal;
3314 struct breakpoint *b;
3315
3316 init_sal (&sal); /* Initialize to zeroes. */
3317
3318 sal.pc = address;
3319 sal.section = find_pc_overlay (sal.pc);
3320 sal.pspace = current_program_space;
3321
3322 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3323 b->number = internal_breakpoint_number--;
3324 b->disposition = disp_donttouch;
3325
3326 return b;
3327 }
3328
3329 static const char *const longjmp_names[] =
3330 {
3331 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3332 };
3333 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3334
3335 /* Per-objfile data private to breakpoint.c. */
3336 struct breakpoint_objfile_data
3337 {
3338 /* Minimal symbol for "_ovly_debug_event" (if any). */
3339 struct bound_minimal_symbol overlay_msym;
3340
3341 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3342 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3343
3344 /* True if we have looked for longjmp probes. */
3345 int longjmp_searched;
3346
3347 /* SystemTap probe points for longjmp (if any). */
3348 VEC (probe_p) *longjmp_probes;
3349
3350 /* Minimal symbol for "std::terminate()" (if any). */
3351 struct bound_minimal_symbol terminate_msym;
3352
3353 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3354 struct bound_minimal_symbol exception_msym;
3355
3356 /* True if we have looked for exception probes. */
3357 int exception_searched;
3358
3359 /* SystemTap probe points for unwinding (if any). */
3360 VEC (probe_p) *exception_probes;
3361 };
3362
3363 static const struct objfile_data *breakpoint_objfile_key;
3364
3365 /* Minimal symbol not found sentinel. */
3366 static struct minimal_symbol msym_not_found;
3367
3368 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3369
3370 static int
3371 msym_not_found_p (const struct minimal_symbol *msym)
3372 {
3373 return msym == &msym_not_found;
3374 }
3375
3376 /* Return per-objfile data needed by breakpoint.c.
3377 Allocate the data if necessary. */
3378
3379 static struct breakpoint_objfile_data *
3380 get_breakpoint_objfile_data (struct objfile *objfile)
3381 {
3382 struct breakpoint_objfile_data *bp_objfile_data;
3383
3384 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3385 if (bp_objfile_data == NULL)
3386 {
3387 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3388 sizeof (*bp_objfile_data));
3389
3390 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3391 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3392 }
3393 return bp_objfile_data;
3394 }
3395
3396 static void
3397 free_breakpoint_probes (struct objfile *obj, void *data)
3398 {
3399 struct breakpoint_objfile_data *bp_objfile_data = data;
3400
3401 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3402 VEC_free (probe_p, bp_objfile_data->exception_probes);
3403 }
3404
3405 static void
3406 create_overlay_event_breakpoint (void)
3407 {
3408 struct objfile *objfile;
3409 const char *const func_name = "_ovly_debug_event";
3410
3411 ALL_OBJFILES (objfile)
3412 {
3413 struct breakpoint *b;
3414 struct breakpoint_objfile_data *bp_objfile_data;
3415 CORE_ADDR addr;
3416
3417 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3418
3419 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3420 continue;
3421
3422 if (bp_objfile_data->overlay_msym.minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Avoid future lookups in this objfile. */
3430 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->overlay_msym = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3437 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3438 bp_overlay_event,
3439 &internal_breakpoint_ops);
3440 b->addr_string = xstrdup (func_name);
3441
3442 if (overlay_debugging == ovly_auto)
3443 {
3444 b->enable_state = bp_enabled;
3445 overlay_events_enabled = 1;
3446 }
3447 else
3448 {
3449 b->enable_state = bp_disabled;
3450 overlay_events_enabled = 0;
3451 }
3452 }
3453 update_global_location_list (UGLL_MAY_INSERT);
3454 }
3455
3456 static void
3457 create_longjmp_master_breakpoint (void)
3458 {
3459 struct program_space *pspace;
3460 struct cleanup *old_chain;
3461
3462 old_chain = save_current_program_space ();
3463
3464 ALL_PSPACES (pspace)
3465 {
3466 struct objfile *objfile;
3467
3468 set_current_program_space (pspace);
3469
3470 ALL_OBJFILES (objfile)
3471 {
3472 int i;
3473 struct gdbarch *gdbarch;
3474 struct breakpoint_objfile_data *bp_objfile_data;
3475
3476 gdbarch = get_objfile_arch (objfile);
3477
3478 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3479
3480 if (!bp_objfile_data->longjmp_searched)
3481 {
3482 VEC (probe_p) *ret;
3483
3484 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3485 if (ret != NULL)
3486 {
3487 /* We are only interested in checking one element. */
3488 struct probe *p = VEC_index (probe_p, ret, 0);
3489
3490 if (!can_evaluate_probe_arguments (p))
3491 {
3492 /* We cannot use the probe interface here, because it does
3493 not know how to evaluate arguments. */
3494 VEC_free (probe_p, ret);
3495 ret = NULL;
3496 }
3497 }
3498 bp_objfile_data->longjmp_probes = ret;
3499 bp_objfile_data->longjmp_searched = 1;
3500 }
3501
3502 if (bp_objfile_data->longjmp_probes != NULL)
3503 {
3504 int i;
3505 struct probe *probe;
3506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3507
3508 for (i = 0;
3509 VEC_iterate (probe_p,
3510 bp_objfile_data->longjmp_probes,
3511 i, probe);
3512 ++i)
3513 {
3514 struct breakpoint *b;
3515
3516 b = create_internal_breakpoint (gdbarch,
3517 get_probe_address (probe,
3518 objfile),
3519 bp_longjmp_master,
3520 &internal_breakpoint_ops);
3521 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3522 b->enable_state = bp_disabled;
3523 }
3524
3525 continue;
3526 }
3527
3528 if (!gdbarch_get_longjmp_target_p (gdbarch))
3529 continue;
3530
3531 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3532 {
3533 struct breakpoint *b;
3534 const char *func_name;
3535 CORE_ADDR addr;
3536
3537 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3538 continue;
3539
3540 func_name = longjmp_names[i];
3541 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3542 {
3543 struct bound_minimal_symbol m;
3544
3545 m = lookup_minimal_symbol_text (func_name, objfile);
3546 if (m.minsym == NULL)
3547 {
3548 /* Prevent future lookups in this objfile. */
3549 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3550 continue;
3551 }
3552 bp_objfile_data->longjmp_msym[i] = m;
3553 }
3554
3555 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3556 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3557 &internal_breakpoint_ops);
3558 b->addr_string = xstrdup (func_name);
3559 b->enable_state = bp_disabled;
3560 }
3561 }
3562 }
3563 update_global_location_list (UGLL_MAY_INSERT);
3564
3565 do_cleanups (old_chain);
3566 }
3567
3568 /* Create a master std::terminate breakpoint. */
3569 static void
3570 create_std_terminate_master_breakpoint (void)
3571 {
3572 struct program_space *pspace;
3573 struct cleanup *old_chain;
3574 const char *const func_name = "std::terminate()";
3575
3576 old_chain = save_current_program_space ();
3577
3578 ALL_PSPACES (pspace)
3579 {
3580 struct objfile *objfile;
3581 CORE_ADDR addr;
3582
3583 set_current_program_space (pspace);
3584
3585 ALL_OBJFILES (objfile)
3586 {
3587 struct breakpoint *b;
3588 struct breakpoint_objfile_data *bp_objfile_data;
3589
3590 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3591
3592 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3593 continue;
3594
3595 if (bp_objfile_data->terminate_msym.minsym == NULL)
3596 {
3597 struct bound_minimal_symbol m;
3598
3599 m = lookup_minimal_symbol (func_name, NULL, objfile);
3600 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3601 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3602 {
3603 /* Prevent future lookups in this objfile. */
3604 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3605 continue;
3606 }
3607 bp_objfile_data->terminate_msym = m;
3608 }
3609
3610 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3611 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3612 bp_std_terminate_master,
3613 &internal_breakpoint_ops);
3614 b->addr_string = xstrdup (func_name);
3615 b->enable_state = bp_disabled;
3616 }
3617 }
3618
3619 update_global_location_list (UGLL_MAY_INSERT);
3620
3621 do_cleanups (old_chain);
3622 }
3623
3624 /* Install a master breakpoint on the unwinder's debug hook. */
3625
3626 static void
3627 create_exception_master_breakpoint (void)
3628 {
3629 struct objfile *objfile;
3630 const char *const func_name = "_Unwind_DebugHook";
3631
3632 ALL_OBJFILES (objfile)
3633 {
3634 struct breakpoint *b;
3635 struct gdbarch *gdbarch;
3636 struct breakpoint_objfile_data *bp_objfile_data;
3637 CORE_ADDR addr;
3638
3639 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3640
3641 /* We prefer the SystemTap probe point if it exists. */
3642 if (!bp_objfile_data->exception_searched)
3643 {
3644 VEC (probe_p) *ret;
3645
3646 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3647
3648 if (ret != NULL)
3649 {
3650 /* We are only interested in checking one element. */
3651 struct probe *p = VEC_index (probe_p, ret, 0);
3652
3653 if (!can_evaluate_probe_arguments (p))
3654 {
3655 /* We cannot use the probe interface here, because it does
3656 not know how to evaluate arguments. */
3657 VEC_free (probe_p, ret);
3658 ret = NULL;
3659 }
3660 }
3661 bp_objfile_data->exception_probes = ret;
3662 bp_objfile_data->exception_searched = 1;
3663 }
3664
3665 if (bp_objfile_data->exception_probes != NULL)
3666 {
3667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3668 int i;
3669 struct probe *probe;
3670
3671 for (i = 0;
3672 VEC_iterate (probe_p,
3673 bp_objfile_data->exception_probes,
3674 i, probe);
3675 ++i)
3676 {
3677 struct breakpoint *b;
3678
3679 b = create_internal_breakpoint (gdbarch,
3680 get_probe_address (probe,
3681 objfile),
3682 bp_exception_master,
3683 &internal_breakpoint_ops);
3684 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3685 b->enable_state = bp_disabled;
3686 }
3687
3688 continue;
3689 }
3690
3691 /* Otherwise, try the hook function. */
3692
3693 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3694 continue;
3695
3696 gdbarch = get_objfile_arch (objfile);
3697
3698 if (bp_objfile_data->exception_msym.minsym == NULL)
3699 {
3700 struct bound_minimal_symbol debug_hook;
3701
3702 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3703 if (debug_hook.minsym == NULL)
3704 {
3705 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3706 continue;
3707 }
3708
3709 bp_objfile_data->exception_msym = debug_hook;
3710 }
3711
3712 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3713 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3714 &current_target);
3715 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3716 &internal_breakpoint_ops);
3717 b->addr_string = xstrdup (func_name);
3718 b->enable_state = bp_disabled;
3719 }
3720
3721 update_global_location_list (UGLL_MAY_INSERT);
3722 }
3723
3724 void
3725 update_breakpoints_after_exec (void)
3726 {
3727 struct breakpoint *b, *b_tmp;
3728 struct bp_location *bploc, **bplocp_tmp;
3729
3730 /* We're about to delete breakpoints from GDB's lists. If the
3731 INSERTED flag is true, GDB will try to lift the breakpoints by
3732 writing the breakpoints' "shadow contents" back into memory. The
3733 "shadow contents" are NOT valid after an exec, so GDB should not
3734 do that. Instead, the target is responsible from marking
3735 breakpoints out as soon as it detects an exec. We don't do that
3736 here instead, because there may be other attempts to delete
3737 breakpoints after detecting an exec and before reaching here. */
3738 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3739 if (bploc->pspace == current_program_space)
3740 gdb_assert (!bploc->inserted);
3741
3742 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3743 {
3744 if (b->pspace != current_program_space)
3745 continue;
3746
3747 /* Solib breakpoints must be explicitly reset after an exec(). */
3748 if (b->type == bp_shlib_event)
3749 {
3750 delete_breakpoint (b);
3751 continue;
3752 }
3753
3754 /* JIT breakpoints must be explicitly reset after an exec(). */
3755 if (b->type == bp_jit_event)
3756 {
3757 delete_breakpoint (b);
3758 continue;
3759 }
3760
3761 /* Thread event breakpoints must be set anew after an exec(),
3762 as must overlay event and longjmp master breakpoints. */
3763 if (b->type == bp_thread_event || b->type == bp_overlay_event
3764 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3765 || b->type == bp_exception_master)
3766 {
3767 delete_breakpoint (b);
3768 continue;
3769 }
3770
3771 /* Step-resume breakpoints are meaningless after an exec(). */
3772 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3773 {
3774 delete_breakpoint (b);
3775 continue;
3776 }
3777
3778 /* Just like single-step breakpoints. */
3779 if (b->type == bp_single_step)
3780 {
3781 delete_breakpoint (b);
3782 continue;
3783 }
3784
3785 /* Longjmp and longjmp-resume breakpoints are also meaningless
3786 after an exec. */
3787 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3788 || b->type == bp_longjmp_call_dummy
3789 || b->type == bp_exception || b->type == bp_exception_resume)
3790 {
3791 delete_breakpoint (b);
3792 continue;
3793 }
3794
3795 if (b->type == bp_catchpoint)
3796 {
3797 /* For now, none of the bp_catchpoint breakpoints need to
3798 do anything at this point. In the future, if some of
3799 the catchpoints need to something, we will need to add
3800 a new method, and call this method from here. */
3801 continue;
3802 }
3803
3804 /* bp_finish is a special case. The only way we ought to be able
3805 to see one of these when an exec() has happened, is if the user
3806 caught a vfork, and then said "finish". Ordinarily a finish just
3807 carries them to the call-site of the current callee, by setting
3808 a temporary bp there and resuming. But in this case, the finish
3809 will carry them entirely through the vfork & exec.
3810
3811 We don't want to allow a bp_finish to remain inserted now. But
3812 we can't safely delete it, 'cause finish_command has a handle to
3813 the bp on a bpstat, and will later want to delete it. There's a
3814 chance (and I've seen it happen) that if we delete the bp_finish
3815 here, that its storage will get reused by the time finish_command
3816 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3817 We really must allow finish_command to delete a bp_finish.
3818
3819 In the absence of a general solution for the "how do we know
3820 it's safe to delete something others may have handles to?"
3821 problem, what we'll do here is just uninsert the bp_finish, and
3822 let finish_command delete it.
3823
3824 (We know the bp_finish is "doomed" in the sense that it's
3825 momentary, and will be deleted as soon as finish_command sees
3826 the inferior stopped. So it doesn't matter that the bp's
3827 address is probably bogus in the new a.out, unlike e.g., the
3828 solib breakpoints.) */
3829
3830 if (b->type == bp_finish)
3831 {
3832 continue;
3833 }
3834
3835 /* Without a symbolic address, we have little hope of the
3836 pre-exec() address meaning the same thing in the post-exec()
3837 a.out. */
3838 if (b->addr_string == NULL)
3839 {
3840 delete_breakpoint (b);
3841 continue;
3842 }
3843 }
3844 }
3845
3846 int
3847 detach_breakpoints (ptid_t ptid)
3848 {
3849 struct bp_location *bl, **blp_tmp;
3850 int val = 0;
3851 struct cleanup *old_chain = save_inferior_ptid ();
3852 struct inferior *inf = current_inferior ();
3853
3854 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3855 error (_("Cannot detach breakpoints of inferior_ptid"));
3856
3857 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3858 inferior_ptid = ptid;
3859 ALL_BP_LOCATIONS (bl, blp_tmp)
3860 {
3861 if (bl->pspace != inf->pspace)
3862 continue;
3863
3864 /* This function must physically remove breakpoints locations
3865 from the specified ptid, without modifying the breakpoint
3866 package's state. Locations of type bp_loc_other are only
3867 maintained at GDB side. So, there is no need to remove
3868 these bp_loc_other locations. Moreover, removing these
3869 would modify the breakpoint package's state. */
3870 if (bl->loc_type == bp_loc_other)
3871 continue;
3872
3873 if (bl->inserted)
3874 val |= remove_breakpoint_1 (bl, mark_inserted);
3875 }
3876
3877 do_cleanups (old_chain);
3878 return val;
3879 }
3880
3881 /* Remove the breakpoint location BL from the current address space.
3882 Note that this is used to detach breakpoints from a child fork.
3883 When we get here, the child isn't in the inferior list, and neither
3884 do we have objects to represent its address space --- we should
3885 *not* look at bl->pspace->aspace here. */
3886
3887 static int
3888 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3889 {
3890 int val;
3891
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 if (bl->permanent)
3896 /* Permanent breakpoints cannot be inserted or removed. */
3897 return 0;
3898
3899 /* The type of none suggests that owner is actually deleted.
3900 This should not ever happen. */
3901 gdb_assert (bl->owner->type != bp_none);
3902
3903 if (bl->loc_type == bp_loc_software_breakpoint
3904 || bl->loc_type == bp_loc_hardware_breakpoint)
3905 {
3906 /* "Normal" instruction breakpoint: either the standard
3907 trap-instruction bp (bp_breakpoint), or a
3908 bp_hardware_breakpoint. */
3909
3910 /* First check to see if we have to handle an overlay. */
3911 if (overlay_debugging == ovly_off
3912 || bl->section == NULL
3913 || !(section_is_overlay (bl->section)))
3914 {
3915 /* No overlay handling: just remove the breakpoint. */
3916
3917 /* If we're trying to uninsert a memory breakpoint that we
3918 know is set in a dynamic object that is marked
3919 shlib_disabled, then either the dynamic object was
3920 removed with "remove-symbol-file" or with
3921 "nosharedlibrary". In the former case, we don't know
3922 whether another dynamic object might have loaded over the
3923 breakpoint's address -- the user might well let us know
3924 about it next with add-symbol-file (the whole point of
3925 add-symbol-file is letting the user manually maintain a
3926 list of dynamically loaded objects). If we have the
3927 breakpoint's shadow memory, that is, this is a software
3928 breakpoint managed by GDB, check whether the breakpoint
3929 is still inserted in memory, to avoid overwriting wrong
3930 code with stale saved shadow contents. Note that HW
3931 breakpoints don't have shadow memory, as they're
3932 implemented using a mechanism that is not dependent on
3933 being able to modify the target's memory, and as such
3934 they should always be removed. */
3935 if (bl->shlib_disabled
3936 && bl->target_info.shadow_len != 0
3937 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3938 val = 0;
3939 else
3940 val = bl->owner->ops->remove_location (bl);
3941 }
3942 else
3943 {
3944 /* This breakpoint is in an overlay section.
3945 Did we set a breakpoint at the LMA? */
3946 if (!overlay_events_enabled)
3947 {
3948 /* Yes -- overlay event support is not active, so we
3949 should have set a breakpoint at the LMA. Remove it.
3950 */
3951 /* Ignore any failures: if the LMA is in ROM, we will
3952 have already warned when we failed to insert it. */
3953 if (bl->loc_type == bp_loc_hardware_breakpoint)
3954 target_remove_hw_breakpoint (bl->gdbarch,
3955 &bl->overlay_target_info);
3956 else
3957 target_remove_breakpoint (bl->gdbarch,
3958 &bl->overlay_target_info);
3959 }
3960 /* Did we set a breakpoint at the VMA?
3961 If so, we will have marked the breakpoint 'inserted'. */
3962 if (bl->inserted)
3963 {
3964 /* Yes -- remove it. Previously we did not bother to
3965 remove the breakpoint if the section had been
3966 unmapped, but let's not rely on that being safe. We
3967 don't know what the overlay manager might do. */
3968
3969 /* However, we should remove *software* breakpoints only
3970 if the section is still mapped, or else we overwrite
3971 wrong code with the saved shadow contents. */
3972 if (bl->loc_type == bp_loc_hardware_breakpoint
3973 || section_is_mapped (bl->section))
3974 val = bl->owner->ops->remove_location (bl);
3975 else
3976 val = 0;
3977 }
3978 else
3979 {
3980 /* No -- not inserted, so no need to remove. No error. */
3981 val = 0;
3982 }
3983 }
3984
3985 /* In some cases, we might not be able to remove a breakpoint in
3986 a shared library that has already been removed, but we have
3987 not yet processed the shlib unload event. Similarly for an
3988 unloaded add-symbol-file object - the user might not yet have
3989 had the chance to remove-symbol-file it. shlib_disabled will
3990 be set if the library/object has already been removed, but
3991 the breakpoint hasn't been uninserted yet, e.g., after
3992 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3993 always-inserted mode. */
3994 if (val
3995 && (bl->loc_type == bp_loc_software_breakpoint
3996 && (bl->shlib_disabled
3997 || solib_name_from_address (bl->pspace, bl->address)
3998 || shared_objfile_contains_address_p (bl->pspace,
3999 bl->address))))
4000 val = 0;
4001
4002 if (val)
4003 return val;
4004 bl->inserted = (is == mark_inserted);
4005 }
4006 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4007 {
4008 gdb_assert (bl->owner->ops != NULL
4009 && bl->owner->ops->remove_location != NULL);
4010
4011 bl->inserted = (is == mark_inserted);
4012 bl->owner->ops->remove_location (bl);
4013
4014 /* Failure to remove any of the hardware watchpoints comes here. */
4015 if ((is == mark_uninserted) && (bl->inserted))
4016 warning (_("Could not remove hardware watchpoint %d."),
4017 bl->owner->number);
4018 }
4019 else if (bl->owner->type == bp_catchpoint
4020 && breakpoint_enabled (bl->owner)
4021 && !bl->duplicate)
4022 {
4023 gdb_assert (bl->owner->ops != NULL
4024 && bl->owner->ops->remove_location != NULL);
4025
4026 val = bl->owner->ops->remove_location (bl);
4027 if (val)
4028 return val;
4029
4030 bl->inserted = (is == mark_inserted);
4031 }
4032
4033 return 0;
4034 }
4035
4036 static int
4037 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4038 {
4039 int ret;
4040 struct cleanup *old_chain;
4041
4042 /* BL is never in moribund_locations by our callers. */
4043 gdb_assert (bl->owner != NULL);
4044
4045 if (bl->permanent)
4046 /* Permanent breakpoints cannot be inserted or removed. */
4047 return 0;
4048
4049 /* The type of none suggests that owner is actually deleted.
4050 This should not ever happen. */
4051 gdb_assert (bl->owner->type != bp_none);
4052
4053 old_chain = save_current_space_and_thread ();
4054
4055 switch_to_program_space_and_thread (bl->pspace);
4056
4057 ret = remove_breakpoint_1 (bl, is);
4058
4059 do_cleanups (old_chain);
4060 return ret;
4061 }
4062
4063 /* Clear the "inserted" flag in all breakpoints. */
4064
4065 void
4066 mark_breakpoints_out (void)
4067 {
4068 struct bp_location *bl, **blp_tmp;
4069
4070 ALL_BP_LOCATIONS (bl, blp_tmp)
4071 if (bl->pspace == current_program_space
4072 && !bl->permanent)
4073 bl->inserted = 0;
4074 }
4075
4076 /* Clear the "inserted" flag in all breakpoints and delete any
4077 breakpoints which should go away between runs of the program.
4078
4079 Plus other such housekeeping that has to be done for breakpoints
4080 between runs.
4081
4082 Note: this function gets called at the end of a run (by
4083 generic_mourn_inferior) and when a run begins (by
4084 init_wait_for_inferior). */
4085
4086
4087
4088 void
4089 breakpoint_init_inferior (enum inf_context context)
4090 {
4091 struct breakpoint *b, *b_tmp;
4092 struct bp_location *bl, **blp_tmp;
4093 int ix;
4094 struct program_space *pspace = current_program_space;
4095
4096 /* If breakpoint locations are shared across processes, then there's
4097 nothing to do. */
4098 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4099 return;
4100
4101 mark_breakpoints_out ();
4102
4103 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4104 {
4105 if (b->loc && b->loc->pspace != pspace)
4106 continue;
4107
4108 switch (b->type)
4109 {
4110 case bp_call_dummy:
4111 case bp_longjmp_call_dummy:
4112
4113 /* If the call dummy breakpoint is at the entry point it will
4114 cause problems when the inferior is rerun, so we better get
4115 rid of it. */
4116
4117 case bp_watchpoint_scope:
4118
4119 /* Also get rid of scope breakpoints. */
4120
4121 case bp_shlib_event:
4122
4123 /* Also remove solib event breakpoints. Their addresses may
4124 have changed since the last time we ran the program.
4125 Actually we may now be debugging against different target;
4126 and so the solib backend that installed this breakpoint may
4127 not be used in by the target. E.g.,
4128
4129 (gdb) file prog-linux
4130 (gdb) run # native linux target
4131 ...
4132 (gdb) kill
4133 (gdb) file prog-win.exe
4134 (gdb) tar rem :9999 # remote Windows gdbserver.
4135 */
4136
4137 case bp_step_resume:
4138
4139 /* Also remove step-resume breakpoints. */
4140
4141 case bp_single_step:
4142
4143 /* Also remove single-step breakpoints. */
4144
4145 delete_breakpoint (b);
4146 break;
4147
4148 case bp_watchpoint:
4149 case bp_hardware_watchpoint:
4150 case bp_read_watchpoint:
4151 case bp_access_watchpoint:
4152 {
4153 struct watchpoint *w = (struct watchpoint *) b;
4154
4155 /* Likewise for watchpoints on local expressions. */
4156 if (w->exp_valid_block != NULL)
4157 delete_breakpoint (b);
4158 else if (context == inf_starting)
4159 {
4160 /* Reset val field to force reread of starting value in
4161 insert_breakpoints. */
4162 if (w->val)
4163 value_free (w->val);
4164 w->val = NULL;
4165 w->val_valid = 0;
4166 }
4167 }
4168 break;
4169 default:
4170 break;
4171 }
4172 }
4173
4174 /* Get rid of the moribund locations. */
4175 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4176 decref_bp_location (&bl);
4177 VEC_free (bp_location_p, moribund_locations);
4178 }
4179
4180 /* These functions concern about actual breakpoints inserted in the
4181 target --- to e.g. check if we need to do decr_pc adjustment or if
4182 we need to hop over the bkpt --- so we check for address space
4183 match, not program space. */
4184
4185 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4186 exists at PC. It returns ordinary_breakpoint_here if it's an
4187 ordinary breakpoint, or permanent_breakpoint_here if it's a
4188 permanent breakpoint.
4189 - When continuing from a location with an ordinary breakpoint, we
4190 actually single step once before calling insert_breakpoints.
4191 - When continuing from a location with a permanent breakpoint, we
4192 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4193 the target, to advance the PC past the breakpoint. */
4194
4195 enum breakpoint_here
4196 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4197 {
4198 struct bp_location *bl, **blp_tmp;
4199 int any_breakpoint_here = 0;
4200
4201 ALL_BP_LOCATIONS (bl, blp_tmp)
4202 {
4203 if (bl->loc_type != bp_loc_software_breakpoint
4204 && bl->loc_type != bp_loc_hardware_breakpoint)
4205 continue;
4206
4207 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4208 if ((breakpoint_enabled (bl->owner)
4209 || bl->permanent)
4210 && breakpoint_location_address_match (bl, aspace, pc))
4211 {
4212 if (overlay_debugging
4213 && section_is_overlay (bl->section)
4214 && !section_is_mapped (bl->section))
4215 continue; /* unmapped overlay -- can't be a match */
4216 else if (bl->permanent)
4217 return permanent_breakpoint_here;
4218 else
4219 any_breakpoint_here = 1;
4220 }
4221 }
4222
4223 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4224 }
4225
4226 /* Return true if there's a moribund breakpoint at PC. */
4227
4228 int
4229 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4230 {
4231 struct bp_location *loc;
4232 int ix;
4233
4234 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4235 if (breakpoint_location_address_match (loc, aspace, pc))
4236 return 1;
4237
4238 return 0;
4239 }
4240
4241 /* Returns non-zero iff BL is inserted at PC, in address space
4242 ASPACE. */
4243
4244 static int
4245 bp_location_inserted_here_p (struct bp_location *bl,
4246 struct address_space *aspace, CORE_ADDR pc)
4247 {
4248 if (bl->inserted
4249 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4250 aspace, pc))
4251 {
4252 if (overlay_debugging
4253 && section_is_overlay (bl->section)
4254 && !section_is_mapped (bl->section))
4255 return 0; /* unmapped overlay -- can't be a match */
4256 else
4257 return 1;
4258 }
4259 return 0;
4260 }
4261
4262 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4263
4264 int
4265 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4266 {
4267 struct bp_location **blp, **blp_tmp = NULL;
4268 struct bp_location *bl;
4269
4270 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4271 {
4272 struct bp_location *bl = *blp;
4273
4274 if (bl->loc_type != bp_loc_software_breakpoint
4275 && bl->loc_type != bp_loc_hardware_breakpoint)
4276 continue;
4277
4278 if (bp_location_inserted_here_p (bl, aspace, pc))
4279 return 1;
4280 }
4281 return 0;
4282 }
4283
4284 /* This function returns non-zero iff there is a software breakpoint
4285 inserted at PC. */
4286
4287 int
4288 software_breakpoint_inserted_here_p (struct address_space *aspace,
4289 CORE_ADDR pc)
4290 {
4291 struct bp_location **blp, **blp_tmp = NULL;
4292 struct bp_location *bl;
4293
4294 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4295 {
4296 struct bp_location *bl = *blp;
4297
4298 if (bl->loc_type != bp_loc_software_breakpoint)
4299 continue;
4300
4301 if (bp_location_inserted_here_p (bl, aspace, pc))
4302 return 1;
4303 }
4304
4305 return 0;
4306 }
4307
4308 /* See breakpoint.h. */
4309
4310 int
4311 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4312 CORE_ADDR pc)
4313 {
4314 struct bp_location **blp, **blp_tmp = NULL;
4315 struct bp_location *bl;
4316
4317 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4318 {
4319 struct bp_location *bl = *blp;
4320
4321 if (bl->loc_type != bp_loc_hardware_breakpoint)
4322 continue;
4323
4324 if (bp_location_inserted_here_p (bl, aspace, pc))
4325 return 1;
4326 }
4327
4328 return 0;
4329 }
4330
4331 int
4332 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4333 CORE_ADDR addr, ULONGEST len)
4334 {
4335 struct breakpoint *bpt;
4336
4337 ALL_BREAKPOINTS (bpt)
4338 {
4339 struct bp_location *loc;
4340
4341 if (bpt->type != bp_hardware_watchpoint
4342 && bpt->type != bp_access_watchpoint)
4343 continue;
4344
4345 if (!breakpoint_enabled (bpt))
4346 continue;
4347
4348 for (loc = bpt->loc; loc; loc = loc->next)
4349 if (loc->pspace->aspace == aspace && loc->inserted)
4350 {
4351 CORE_ADDR l, h;
4352
4353 /* Check for intersection. */
4354 l = max (loc->address, addr);
4355 h = min (loc->address + loc->length, addr + len);
4356 if (l < h)
4357 return 1;
4358 }
4359 }
4360 return 0;
4361 }
4362 \f
4363
4364 /* bpstat stuff. External routines' interfaces are documented
4365 in breakpoint.h. */
4366
4367 int
4368 is_catchpoint (struct breakpoint *ep)
4369 {
4370 return (ep->type == bp_catchpoint);
4371 }
4372
4373 /* Frees any storage that is part of a bpstat. Does not walk the
4374 'next' chain. */
4375
4376 static void
4377 bpstat_free (bpstat bs)
4378 {
4379 if (bs->old_val != NULL)
4380 value_free (bs->old_val);
4381 decref_counted_command_line (&bs->commands);
4382 decref_bp_location (&bs->bp_location_at);
4383 xfree (bs);
4384 }
4385
4386 /* Clear a bpstat so that it says we are not at any breakpoint.
4387 Also free any storage that is part of a bpstat. */
4388
4389 void
4390 bpstat_clear (bpstat *bsp)
4391 {
4392 bpstat p;
4393 bpstat q;
4394
4395 if (bsp == 0)
4396 return;
4397 p = *bsp;
4398 while (p != NULL)
4399 {
4400 q = p->next;
4401 bpstat_free (p);
4402 p = q;
4403 }
4404 *bsp = NULL;
4405 }
4406
4407 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4408 is part of the bpstat is copied as well. */
4409
4410 bpstat
4411 bpstat_copy (bpstat bs)
4412 {
4413 bpstat p = NULL;
4414 bpstat tmp;
4415 bpstat retval = NULL;
4416
4417 if (bs == NULL)
4418 return bs;
4419
4420 for (; bs != NULL; bs = bs->next)
4421 {
4422 tmp = (bpstat) xmalloc (sizeof (*tmp));
4423 memcpy (tmp, bs, sizeof (*tmp));
4424 incref_counted_command_line (tmp->commands);
4425 incref_bp_location (tmp->bp_location_at);
4426 if (bs->old_val != NULL)
4427 {
4428 tmp->old_val = value_copy (bs->old_val);
4429 release_value (tmp->old_val);
4430 }
4431
4432 if (p == NULL)
4433 /* This is the first thing in the chain. */
4434 retval = tmp;
4435 else
4436 p->next = tmp;
4437 p = tmp;
4438 }
4439 p->next = NULL;
4440 return retval;
4441 }
4442
4443 /* Find the bpstat associated with this breakpoint. */
4444
4445 bpstat
4446 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4447 {
4448 if (bsp == NULL)
4449 return NULL;
4450
4451 for (; bsp != NULL; bsp = bsp->next)
4452 {
4453 if (bsp->breakpoint_at == breakpoint)
4454 return bsp;
4455 }
4456 return NULL;
4457 }
4458
4459 /* See breakpoint.h. */
4460
4461 int
4462 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4463 {
4464 for (; bsp != NULL; bsp = bsp->next)
4465 {
4466 if (bsp->breakpoint_at == NULL)
4467 {
4468 /* A moribund location can never explain a signal other than
4469 GDB_SIGNAL_TRAP. */
4470 if (sig == GDB_SIGNAL_TRAP)
4471 return 1;
4472 }
4473 else
4474 {
4475 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4476 sig))
4477 return 1;
4478 }
4479 }
4480
4481 return 0;
4482 }
4483
4484 /* Put in *NUM the breakpoint number of the first breakpoint we are
4485 stopped at. *BSP upon return is a bpstat which points to the
4486 remaining breakpoints stopped at (but which is not guaranteed to be
4487 good for anything but further calls to bpstat_num).
4488
4489 Return 0 if passed a bpstat which does not indicate any breakpoints.
4490 Return -1 if stopped at a breakpoint that has been deleted since
4491 we set it.
4492 Return 1 otherwise. */
4493
4494 int
4495 bpstat_num (bpstat *bsp, int *num)
4496 {
4497 struct breakpoint *b;
4498
4499 if ((*bsp) == NULL)
4500 return 0; /* No more breakpoint values */
4501
4502 /* We assume we'll never have several bpstats that correspond to a
4503 single breakpoint -- otherwise, this function might return the
4504 same number more than once and this will look ugly. */
4505 b = (*bsp)->breakpoint_at;
4506 *bsp = (*bsp)->next;
4507 if (b == NULL)
4508 return -1; /* breakpoint that's been deleted since */
4509
4510 *num = b->number; /* We have its number */
4511 return 1;
4512 }
4513
4514 /* See breakpoint.h. */
4515
4516 void
4517 bpstat_clear_actions (void)
4518 {
4519 struct thread_info *tp;
4520 bpstat bs;
4521
4522 if (ptid_equal (inferior_ptid, null_ptid))
4523 return;
4524
4525 tp = find_thread_ptid (inferior_ptid);
4526 if (tp == NULL)
4527 return;
4528
4529 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4530 {
4531 decref_counted_command_line (&bs->commands);
4532
4533 if (bs->old_val != NULL)
4534 {
4535 value_free (bs->old_val);
4536 bs->old_val = NULL;
4537 }
4538 }
4539 }
4540
4541 /* Called when a command is about to proceed the inferior. */
4542
4543 static void
4544 breakpoint_about_to_proceed (void)
4545 {
4546 if (!ptid_equal (inferior_ptid, null_ptid))
4547 {
4548 struct thread_info *tp = inferior_thread ();
4549
4550 /* Allow inferior function calls in breakpoint commands to not
4551 interrupt the command list. When the call finishes
4552 successfully, the inferior will be standing at the same
4553 breakpoint as if nothing happened. */
4554 if (tp->control.in_infcall)
4555 return;
4556 }
4557
4558 breakpoint_proceeded = 1;
4559 }
4560
4561 /* Stub for cleaning up our state if we error-out of a breakpoint
4562 command. */
4563 static void
4564 cleanup_executing_breakpoints (void *ignore)
4565 {
4566 executing_breakpoint_commands = 0;
4567 }
4568
4569 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4570 or its equivalent. */
4571
4572 static int
4573 command_line_is_silent (struct command_line *cmd)
4574 {
4575 return cmd && (strcmp ("silent", cmd->line) == 0);
4576 }
4577
4578 /* Execute all the commands associated with all the breakpoints at
4579 this location. Any of these commands could cause the process to
4580 proceed beyond this point, etc. We look out for such changes by
4581 checking the global "breakpoint_proceeded" after each command.
4582
4583 Returns true if a breakpoint command resumed the inferior. In that
4584 case, it is the caller's responsibility to recall it again with the
4585 bpstat of the current thread. */
4586
4587 static int
4588 bpstat_do_actions_1 (bpstat *bsp)
4589 {
4590 bpstat bs;
4591 struct cleanup *old_chain;
4592 int again = 0;
4593
4594 /* Avoid endless recursion if a `source' command is contained
4595 in bs->commands. */
4596 if (executing_breakpoint_commands)
4597 return 0;
4598
4599 executing_breakpoint_commands = 1;
4600 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4601
4602 prevent_dont_repeat ();
4603
4604 /* This pointer will iterate over the list of bpstat's. */
4605 bs = *bsp;
4606
4607 breakpoint_proceeded = 0;
4608 for (; bs != NULL; bs = bs->next)
4609 {
4610 struct counted_command_line *ccmd;
4611 struct command_line *cmd;
4612 struct cleanup *this_cmd_tree_chain;
4613
4614 /* Take ownership of the BSP's command tree, if it has one.
4615
4616 The command tree could legitimately contain commands like
4617 'step' and 'next', which call clear_proceed_status, which
4618 frees stop_bpstat's command tree. To make sure this doesn't
4619 free the tree we're executing out from under us, we need to
4620 take ownership of the tree ourselves. Since a given bpstat's
4621 commands are only executed once, we don't need to copy it; we
4622 can clear the pointer in the bpstat, and make sure we free
4623 the tree when we're done. */
4624 ccmd = bs->commands;
4625 bs->commands = NULL;
4626 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4627 cmd = ccmd ? ccmd->commands : NULL;
4628 if (command_line_is_silent (cmd))
4629 {
4630 /* The action has been already done by bpstat_stop_status. */
4631 cmd = cmd->next;
4632 }
4633
4634 while (cmd != NULL)
4635 {
4636 execute_control_command (cmd);
4637
4638 if (breakpoint_proceeded)
4639 break;
4640 else
4641 cmd = cmd->next;
4642 }
4643
4644 /* We can free this command tree now. */
4645 do_cleanups (this_cmd_tree_chain);
4646
4647 if (breakpoint_proceeded)
4648 {
4649 if (interpreter_async && target_can_async_p ())
4650 /* If we are in async mode, then the target might be still
4651 running, not stopped at any breakpoint, so nothing for
4652 us to do here -- just return to the event loop. */
4653 ;
4654 else
4655 /* In sync mode, when execute_control_command returns
4656 we're already standing on the next breakpoint.
4657 Breakpoint commands for that stop were not run, since
4658 execute_command does not run breakpoint commands --
4659 only command_line_handler does, but that one is not
4660 involved in execution of breakpoint commands. So, we
4661 can now execute breakpoint commands. It should be
4662 noted that making execute_command do bpstat actions is
4663 not an option -- in this case we'll have recursive
4664 invocation of bpstat for each breakpoint with a
4665 command, and can easily blow up GDB stack. Instead, we
4666 return true, which will trigger the caller to recall us
4667 with the new stop_bpstat. */
4668 again = 1;
4669 break;
4670 }
4671 }
4672 do_cleanups (old_chain);
4673 return again;
4674 }
4675
4676 void
4677 bpstat_do_actions (void)
4678 {
4679 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4680
4681 /* Do any commands attached to breakpoint we are stopped at. */
4682 while (!ptid_equal (inferior_ptid, null_ptid)
4683 && target_has_execution
4684 && !is_exited (inferior_ptid)
4685 && !is_executing (inferior_ptid))
4686 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4687 and only return when it is stopped at the next breakpoint, we
4688 keep doing breakpoint actions until it returns false to
4689 indicate the inferior was not resumed. */
4690 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4691 break;
4692
4693 discard_cleanups (cleanup_if_error);
4694 }
4695
4696 /* Print out the (old or new) value associated with a watchpoint. */
4697
4698 static void
4699 watchpoint_value_print (struct value *val, struct ui_file *stream)
4700 {
4701 if (val == NULL)
4702 fprintf_unfiltered (stream, _("<unreadable>"));
4703 else
4704 {
4705 struct value_print_options opts;
4706 get_user_print_options (&opts);
4707 value_print (val, stream, &opts);
4708 }
4709 }
4710
4711 /* Generic routine for printing messages indicating why we
4712 stopped. The behavior of this function depends on the value
4713 'print_it' in the bpstat structure. Under some circumstances we
4714 may decide not to print anything here and delegate the task to
4715 normal_stop(). */
4716
4717 static enum print_stop_action
4718 print_bp_stop_message (bpstat bs)
4719 {
4720 switch (bs->print_it)
4721 {
4722 case print_it_noop:
4723 /* Nothing should be printed for this bpstat entry. */
4724 return PRINT_UNKNOWN;
4725 break;
4726
4727 case print_it_done:
4728 /* We still want to print the frame, but we already printed the
4729 relevant messages. */
4730 return PRINT_SRC_AND_LOC;
4731 break;
4732
4733 case print_it_normal:
4734 {
4735 struct breakpoint *b = bs->breakpoint_at;
4736
4737 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4738 which has since been deleted. */
4739 if (b == NULL)
4740 return PRINT_UNKNOWN;
4741
4742 /* Normal case. Call the breakpoint's print_it method. */
4743 return b->ops->print_it (bs);
4744 }
4745 break;
4746
4747 default:
4748 internal_error (__FILE__, __LINE__,
4749 _("print_bp_stop_message: unrecognized enum value"));
4750 break;
4751 }
4752 }
4753
4754 /* A helper function that prints a shared library stopped event. */
4755
4756 static void
4757 print_solib_event (int is_catchpoint)
4758 {
4759 int any_deleted
4760 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4761 int any_added
4762 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4763
4764 if (!is_catchpoint)
4765 {
4766 if (any_added || any_deleted)
4767 ui_out_text (current_uiout,
4768 _("Stopped due to shared library event:\n"));
4769 else
4770 ui_out_text (current_uiout,
4771 _("Stopped due to shared library event (no "
4772 "libraries added or removed)\n"));
4773 }
4774
4775 if (ui_out_is_mi_like_p (current_uiout))
4776 ui_out_field_string (current_uiout, "reason",
4777 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4778
4779 if (any_deleted)
4780 {
4781 struct cleanup *cleanup;
4782 char *name;
4783 int ix;
4784
4785 ui_out_text (current_uiout, _(" Inferior unloaded "));
4786 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4787 "removed");
4788 for (ix = 0;
4789 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4790 ix, name);
4791 ++ix)
4792 {
4793 if (ix > 0)
4794 ui_out_text (current_uiout, " ");
4795 ui_out_field_string (current_uiout, "library", name);
4796 ui_out_text (current_uiout, "\n");
4797 }
4798
4799 do_cleanups (cleanup);
4800 }
4801
4802 if (any_added)
4803 {
4804 struct so_list *iter;
4805 int ix;
4806 struct cleanup *cleanup;
4807
4808 ui_out_text (current_uiout, _(" Inferior loaded "));
4809 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4810 "added");
4811 for (ix = 0;
4812 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4813 ix, iter);
4814 ++ix)
4815 {
4816 if (ix > 0)
4817 ui_out_text (current_uiout, " ");
4818 ui_out_field_string (current_uiout, "library", iter->so_name);
4819 ui_out_text (current_uiout, "\n");
4820 }
4821
4822 do_cleanups (cleanup);
4823 }
4824 }
4825
4826 /* Print a message indicating what happened. This is called from
4827 normal_stop(). The input to this routine is the head of the bpstat
4828 list - a list of the eventpoints that caused this stop. KIND is
4829 the target_waitkind for the stopping event. This
4830 routine calls the generic print routine for printing a message
4831 about reasons for stopping. This will print (for example) the
4832 "Breakpoint n," part of the output. The return value of this
4833 routine is one of:
4834
4835 PRINT_UNKNOWN: Means we printed nothing.
4836 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4837 code to print the location. An example is
4838 "Breakpoint 1, " which should be followed by
4839 the location.
4840 PRINT_SRC_ONLY: Means we printed something, but there is no need
4841 to also print the location part of the message.
4842 An example is the catch/throw messages, which
4843 don't require a location appended to the end.
4844 PRINT_NOTHING: We have done some printing and we don't need any
4845 further info to be printed. */
4846
4847 enum print_stop_action
4848 bpstat_print (bpstat bs, int kind)
4849 {
4850 int val;
4851
4852 /* Maybe another breakpoint in the chain caused us to stop.
4853 (Currently all watchpoints go on the bpstat whether hit or not.
4854 That probably could (should) be changed, provided care is taken
4855 with respect to bpstat_explains_signal). */
4856 for (; bs; bs = bs->next)
4857 {
4858 val = print_bp_stop_message (bs);
4859 if (val == PRINT_SRC_ONLY
4860 || val == PRINT_SRC_AND_LOC
4861 || val == PRINT_NOTHING)
4862 return val;
4863 }
4864
4865 /* If we had hit a shared library event breakpoint,
4866 print_bp_stop_message would print out this message. If we hit an
4867 OS-level shared library event, do the same thing. */
4868 if (kind == TARGET_WAITKIND_LOADED)
4869 {
4870 print_solib_event (0);
4871 return PRINT_NOTHING;
4872 }
4873
4874 /* We reached the end of the chain, or we got a null BS to start
4875 with and nothing was printed. */
4876 return PRINT_UNKNOWN;
4877 }
4878
4879 /* Evaluate the expression EXP and return 1 if value is zero.
4880 This returns the inverse of the condition because it is called
4881 from catch_errors which returns 0 if an exception happened, and if an
4882 exception happens we want execution to stop.
4883 The argument is a "struct expression *" that has been cast to a
4884 "void *" to make it pass through catch_errors. */
4885
4886 static int
4887 breakpoint_cond_eval (void *exp)
4888 {
4889 struct value *mark = value_mark ();
4890 int i = !value_true (evaluate_expression ((struct expression *) exp));
4891
4892 value_free_to_mark (mark);
4893 return i;
4894 }
4895
4896 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4897
4898 static bpstat
4899 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4900 {
4901 bpstat bs;
4902
4903 bs = (bpstat) xmalloc (sizeof (*bs));
4904 bs->next = NULL;
4905 **bs_link_pointer = bs;
4906 *bs_link_pointer = &bs->next;
4907 bs->breakpoint_at = bl->owner;
4908 bs->bp_location_at = bl;
4909 incref_bp_location (bl);
4910 /* If the condition is false, etc., don't do the commands. */
4911 bs->commands = NULL;
4912 bs->old_val = NULL;
4913 bs->print_it = print_it_normal;
4914 return bs;
4915 }
4916 \f
4917 /* The target has stopped with waitstatus WS. Check if any hardware
4918 watchpoints have triggered, according to the target. */
4919
4920 int
4921 watchpoints_triggered (struct target_waitstatus *ws)
4922 {
4923 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4924 CORE_ADDR addr;
4925 struct breakpoint *b;
4926
4927 if (!stopped_by_watchpoint)
4928 {
4929 /* We were not stopped by a watchpoint. Mark all watchpoints
4930 as not triggered. */
4931 ALL_BREAKPOINTS (b)
4932 if (is_hardware_watchpoint (b))
4933 {
4934 struct watchpoint *w = (struct watchpoint *) b;
4935
4936 w->watchpoint_triggered = watch_triggered_no;
4937 }
4938
4939 return 0;
4940 }
4941
4942 if (!target_stopped_data_address (&current_target, &addr))
4943 {
4944 /* We were stopped by a watchpoint, but we don't know where.
4945 Mark all watchpoints as unknown. */
4946 ALL_BREAKPOINTS (b)
4947 if (is_hardware_watchpoint (b))
4948 {
4949 struct watchpoint *w = (struct watchpoint *) b;
4950
4951 w->watchpoint_triggered = watch_triggered_unknown;
4952 }
4953
4954 return 1;
4955 }
4956
4957 /* The target could report the data address. Mark watchpoints
4958 affected by this data address as triggered, and all others as not
4959 triggered. */
4960
4961 ALL_BREAKPOINTS (b)
4962 if (is_hardware_watchpoint (b))
4963 {
4964 struct watchpoint *w = (struct watchpoint *) b;
4965 struct bp_location *loc;
4966
4967 w->watchpoint_triggered = watch_triggered_no;
4968 for (loc = b->loc; loc; loc = loc->next)
4969 {
4970 if (is_masked_watchpoint (b))
4971 {
4972 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4973 CORE_ADDR start = loc->address & w->hw_wp_mask;
4974
4975 if (newaddr == start)
4976 {
4977 w->watchpoint_triggered = watch_triggered_yes;
4978 break;
4979 }
4980 }
4981 /* Exact match not required. Within range is sufficient. */
4982 else if (target_watchpoint_addr_within_range (&current_target,
4983 addr, loc->address,
4984 loc->length))
4985 {
4986 w->watchpoint_triggered = watch_triggered_yes;
4987 break;
4988 }
4989 }
4990 }
4991
4992 return 1;
4993 }
4994
4995 /* Possible return values for watchpoint_check (this can't be an enum
4996 because of check_errors). */
4997 /* The watchpoint has been deleted. */
4998 #define WP_DELETED 1
4999 /* The value has changed. */
5000 #define WP_VALUE_CHANGED 2
5001 /* The value has not changed. */
5002 #define WP_VALUE_NOT_CHANGED 3
5003 /* Ignore this watchpoint, no matter if the value changed or not. */
5004 #define WP_IGNORE 4
5005
5006 #define BP_TEMPFLAG 1
5007 #define BP_HARDWAREFLAG 2
5008
5009 /* Evaluate watchpoint condition expression and check if its value
5010 changed.
5011
5012 P should be a pointer to struct bpstat, but is defined as a void *
5013 in order for this function to be usable with catch_errors. */
5014
5015 static int
5016 watchpoint_check (void *p)
5017 {
5018 bpstat bs = (bpstat) p;
5019 struct watchpoint *b;
5020 struct frame_info *fr;
5021 int within_current_scope;
5022
5023 /* BS is built from an existing struct breakpoint. */
5024 gdb_assert (bs->breakpoint_at != NULL);
5025 b = (struct watchpoint *) bs->breakpoint_at;
5026
5027 /* If this is a local watchpoint, we only want to check if the
5028 watchpoint frame is in scope if the current thread is the thread
5029 that was used to create the watchpoint. */
5030 if (!watchpoint_in_thread_scope (b))
5031 return WP_IGNORE;
5032
5033 if (b->exp_valid_block == NULL)
5034 within_current_scope = 1;
5035 else
5036 {
5037 struct frame_info *frame = get_current_frame ();
5038 struct gdbarch *frame_arch = get_frame_arch (frame);
5039 CORE_ADDR frame_pc = get_frame_pc (frame);
5040
5041 /* stack_frame_destroyed_p() returns a non-zero value if we're
5042 still in the function but the stack frame has already been
5043 invalidated. Since we can't rely on the values of local
5044 variables after the stack has been destroyed, we are treating
5045 the watchpoint in that state as `not changed' without further
5046 checking. Don't mark watchpoints as changed if the current
5047 frame is in an epilogue - even if they are in some other
5048 frame, our view of the stack is likely to be wrong and
5049 frame_find_by_id could error out. */
5050 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5051 return WP_IGNORE;
5052
5053 fr = frame_find_by_id (b->watchpoint_frame);
5054 within_current_scope = (fr != NULL);
5055
5056 /* If we've gotten confused in the unwinder, we might have
5057 returned a frame that can't describe this variable. */
5058 if (within_current_scope)
5059 {
5060 struct symbol *function;
5061
5062 function = get_frame_function (fr);
5063 if (function == NULL
5064 || !contained_in (b->exp_valid_block,
5065 SYMBOL_BLOCK_VALUE (function)))
5066 within_current_scope = 0;
5067 }
5068
5069 if (within_current_scope)
5070 /* If we end up stopping, the current frame will get selected
5071 in normal_stop. So this call to select_frame won't affect
5072 the user. */
5073 select_frame (fr);
5074 }
5075
5076 if (within_current_scope)
5077 {
5078 /* We use value_{,free_to_}mark because it could be a *long*
5079 time before we return to the command level and call
5080 free_all_values. We can't call free_all_values because we
5081 might be in the middle of evaluating a function call. */
5082
5083 int pc = 0;
5084 struct value *mark;
5085 struct value *new_val;
5086
5087 if (is_masked_watchpoint (&b->base))
5088 /* Since we don't know the exact trigger address (from
5089 stopped_data_address), just tell the user we've triggered
5090 a mask watchpoint. */
5091 return WP_VALUE_CHANGED;
5092
5093 mark = value_mark ();
5094 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5095
5096 if (b->val_bitsize != 0)
5097 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5098
5099 /* We use value_equal_contents instead of value_equal because
5100 the latter coerces an array to a pointer, thus comparing just
5101 the address of the array instead of its contents. This is
5102 not what we want. */
5103 if ((b->val != NULL) != (new_val != NULL)
5104 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5105 {
5106 if (new_val != NULL)
5107 {
5108 release_value (new_val);
5109 value_free_to_mark (mark);
5110 }
5111 bs->old_val = b->val;
5112 b->val = new_val;
5113 b->val_valid = 1;
5114 return WP_VALUE_CHANGED;
5115 }
5116 else
5117 {
5118 /* Nothing changed. */
5119 value_free_to_mark (mark);
5120 return WP_VALUE_NOT_CHANGED;
5121 }
5122 }
5123 else
5124 {
5125 struct ui_out *uiout = current_uiout;
5126
5127 /* This seems like the only logical thing to do because
5128 if we temporarily ignored the watchpoint, then when
5129 we reenter the block in which it is valid it contains
5130 garbage (in the case of a function, it may have two
5131 garbage values, one before and one after the prologue).
5132 So we can't even detect the first assignment to it and
5133 watch after that (since the garbage may or may not equal
5134 the first value assigned). */
5135 /* We print all the stop information in
5136 breakpoint_ops->print_it, but in this case, by the time we
5137 call breakpoint_ops->print_it this bp will be deleted
5138 already. So we have no choice but print the information
5139 here. */
5140 if (ui_out_is_mi_like_p (uiout))
5141 ui_out_field_string
5142 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5143 ui_out_text (uiout, "\nWatchpoint ");
5144 ui_out_field_int (uiout, "wpnum", b->base.number);
5145 ui_out_text (uiout,
5146 " deleted because the program has left the block in\n\
5147 which its expression is valid.\n");
5148
5149 /* Make sure the watchpoint's commands aren't executed. */
5150 decref_counted_command_line (&b->base.commands);
5151 watchpoint_del_at_next_stop (b);
5152
5153 return WP_DELETED;
5154 }
5155 }
5156
5157 /* Return true if it looks like target has stopped due to hitting
5158 breakpoint location BL. This function does not check if we should
5159 stop, only if BL explains the stop. */
5160
5161 static int
5162 bpstat_check_location (const struct bp_location *bl,
5163 struct address_space *aspace, CORE_ADDR bp_addr,
5164 const struct target_waitstatus *ws)
5165 {
5166 struct breakpoint *b = bl->owner;
5167
5168 /* BL is from an existing breakpoint. */
5169 gdb_assert (b != NULL);
5170
5171 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5172 }
5173
5174 /* Determine if the watched values have actually changed, and we
5175 should stop. If not, set BS->stop to 0. */
5176
5177 static void
5178 bpstat_check_watchpoint (bpstat bs)
5179 {
5180 const struct bp_location *bl;
5181 struct watchpoint *b;
5182
5183 /* BS is built for existing struct breakpoint. */
5184 bl = bs->bp_location_at;
5185 gdb_assert (bl != NULL);
5186 b = (struct watchpoint *) bs->breakpoint_at;
5187 gdb_assert (b != NULL);
5188
5189 {
5190 int must_check_value = 0;
5191
5192 if (b->base.type == bp_watchpoint)
5193 /* For a software watchpoint, we must always check the
5194 watched value. */
5195 must_check_value = 1;
5196 else if (b->watchpoint_triggered == watch_triggered_yes)
5197 /* We have a hardware watchpoint (read, write, or access)
5198 and the target earlier reported an address watched by
5199 this watchpoint. */
5200 must_check_value = 1;
5201 else if (b->watchpoint_triggered == watch_triggered_unknown
5202 && b->base.type == bp_hardware_watchpoint)
5203 /* We were stopped by a hardware watchpoint, but the target could
5204 not report the data address. We must check the watchpoint's
5205 value. Access and read watchpoints are out of luck; without
5206 a data address, we can't figure it out. */
5207 must_check_value = 1;
5208
5209 if (must_check_value)
5210 {
5211 char *message
5212 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5213 b->base.number);
5214 struct cleanup *cleanups = make_cleanup (xfree, message);
5215 int e = catch_errors (watchpoint_check, bs, message,
5216 RETURN_MASK_ALL);
5217 do_cleanups (cleanups);
5218 switch (e)
5219 {
5220 case WP_DELETED:
5221 /* We've already printed what needs to be printed. */
5222 bs->print_it = print_it_done;
5223 /* Stop. */
5224 break;
5225 case WP_IGNORE:
5226 bs->print_it = print_it_noop;
5227 bs->stop = 0;
5228 break;
5229 case WP_VALUE_CHANGED:
5230 if (b->base.type == bp_read_watchpoint)
5231 {
5232 /* There are two cases to consider here:
5233
5234 1. We're watching the triggered memory for reads.
5235 In that case, trust the target, and always report
5236 the watchpoint hit to the user. Even though
5237 reads don't cause value changes, the value may
5238 have changed since the last time it was read, and
5239 since we're not trapping writes, we will not see
5240 those, and as such we should ignore our notion of
5241 old value.
5242
5243 2. We're watching the triggered memory for both
5244 reads and writes. There are two ways this may
5245 happen:
5246
5247 2.1. This is a target that can't break on data
5248 reads only, but can break on accesses (reads or
5249 writes), such as e.g., x86. We detect this case
5250 at the time we try to insert read watchpoints.
5251
5252 2.2. Otherwise, the target supports read
5253 watchpoints, but, the user set an access or write
5254 watchpoint watching the same memory as this read
5255 watchpoint.
5256
5257 If we're watching memory writes as well as reads,
5258 ignore watchpoint hits when we find that the
5259 value hasn't changed, as reads don't cause
5260 changes. This still gives false positives when
5261 the program writes the same value to memory as
5262 what there was already in memory (we will confuse
5263 it for a read), but it's much better than
5264 nothing. */
5265
5266 int other_write_watchpoint = 0;
5267
5268 if (bl->watchpoint_type == hw_read)
5269 {
5270 struct breakpoint *other_b;
5271
5272 ALL_BREAKPOINTS (other_b)
5273 if (other_b->type == bp_hardware_watchpoint
5274 || other_b->type == bp_access_watchpoint)
5275 {
5276 struct watchpoint *other_w =
5277 (struct watchpoint *) other_b;
5278
5279 if (other_w->watchpoint_triggered
5280 == watch_triggered_yes)
5281 {
5282 other_write_watchpoint = 1;
5283 break;
5284 }
5285 }
5286 }
5287
5288 if (other_write_watchpoint
5289 || bl->watchpoint_type == hw_access)
5290 {
5291 /* We're watching the same memory for writes,
5292 and the value changed since the last time we
5293 updated it, so this trap must be for a write.
5294 Ignore it. */
5295 bs->print_it = print_it_noop;
5296 bs->stop = 0;
5297 }
5298 }
5299 break;
5300 case WP_VALUE_NOT_CHANGED:
5301 if (b->base.type == bp_hardware_watchpoint
5302 || b->base.type == bp_watchpoint)
5303 {
5304 /* Don't stop: write watchpoints shouldn't fire if
5305 the value hasn't changed. */
5306 bs->print_it = print_it_noop;
5307 bs->stop = 0;
5308 }
5309 /* Stop. */
5310 break;
5311 default:
5312 /* Can't happen. */
5313 case 0:
5314 /* Error from catch_errors. */
5315 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5316 watchpoint_del_at_next_stop (b);
5317 /* We've already printed what needs to be printed. */
5318 bs->print_it = print_it_done;
5319 break;
5320 }
5321 }
5322 else /* must_check_value == 0 */
5323 {
5324 /* This is a case where some watchpoint(s) triggered, but
5325 not at the address of this watchpoint, or else no
5326 watchpoint triggered after all. So don't print
5327 anything for this watchpoint. */
5328 bs->print_it = print_it_noop;
5329 bs->stop = 0;
5330 }
5331 }
5332 }
5333
5334 /* For breakpoints that are currently marked as telling gdb to stop,
5335 check conditions (condition proper, frame, thread and ignore count)
5336 of breakpoint referred to by BS. If we should not stop for this
5337 breakpoint, set BS->stop to 0. */
5338
5339 static void
5340 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5341 {
5342 const struct bp_location *bl;
5343 struct breakpoint *b;
5344 int value_is_zero = 0;
5345 struct expression *cond;
5346
5347 gdb_assert (bs->stop);
5348
5349 /* BS is built for existing struct breakpoint. */
5350 bl = bs->bp_location_at;
5351 gdb_assert (bl != NULL);
5352 b = bs->breakpoint_at;
5353 gdb_assert (b != NULL);
5354
5355 /* Even if the target evaluated the condition on its end and notified GDB, we
5356 need to do so again since GDB does not know if we stopped due to a
5357 breakpoint or a single step breakpoint. */
5358
5359 if (frame_id_p (b->frame_id)
5360 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5361 {
5362 bs->stop = 0;
5363 return;
5364 }
5365
5366 /* If this is a thread/task-specific breakpoint, don't waste cpu
5367 evaluating the condition if this isn't the specified
5368 thread/task. */
5369 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5370 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5371
5372 {
5373 bs->stop = 0;
5374 return;
5375 }
5376
5377 /* Evaluate extension language breakpoints that have a "stop" method
5378 implemented. */
5379 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5380
5381 if (is_watchpoint (b))
5382 {
5383 struct watchpoint *w = (struct watchpoint *) b;
5384
5385 cond = w->cond_exp;
5386 }
5387 else
5388 cond = bl->cond;
5389
5390 if (cond && b->disposition != disp_del_at_next_stop)
5391 {
5392 int within_current_scope = 1;
5393 struct watchpoint * w;
5394
5395 /* We use value_mark and value_free_to_mark because it could
5396 be a long time before we return to the command level and
5397 call free_all_values. We can't call free_all_values
5398 because we might be in the middle of evaluating a
5399 function call. */
5400 struct value *mark = value_mark ();
5401
5402 if (is_watchpoint (b))
5403 w = (struct watchpoint *) b;
5404 else
5405 w = NULL;
5406
5407 /* Need to select the frame, with all that implies so that
5408 the conditions will have the right context. Because we
5409 use the frame, we will not see an inlined function's
5410 variables when we arrive at a breakpoint at the start
5411 of the inlined function; the current frame will be the
5412 call site. */
5413 if (w == NULL || w->cond_exp_valid_block == NULL)
5414 select_frame (get_current_frame ());
5415 else
5416 {
5417 struct frame_info *frame;
5418
5419 /* For local watchpoint expressions, which particular
5420 instance of a local is being watched matters, so we
5421 keep track of the frame to evaluate the expression
5422 in. To evaluate the condition however, it doesn't
5423 really matter which instantiation of the function
5424 where the condition makes sense triggers the
5425 watchpoint. This allows an expression like "watch
5426 global if q > 10" set in `func', catch writes to
5427 global on all threads that call `func', or catch
5428 writes on all recursive calls of `func' by a single
5429 thread. We simply always evaluate the condition in
5430 the innermost frame that's executing where it makes
5431 sense to evaluate the condition. It seems
5432 intuitive. */
5433 frame = block_innermost_frame (w->cond_exp_valid_block);
5434 if (frame != NULL)
5435 select_frame (frame);
5436 else
5437 within_current_scope = 0;
5438 }
5439 if (within_current_scope)
5440 value_is_zero
5441 = catch_errors (breakpoint_cond_eval, cond,
5442 "Error in testing breakpoint condition:\n",
5443 RETURN_MASK_ALL);
5444 else
5445 {
5446 warning (_("Watchpoint condition cannot be tested "
5447 "in the current scope"));
5448 /* If we failed to set the right context for this
5449 watchpoint, unconditionally report it. */
5450 value_is_zero = 0;
5451 }
5452 /* FIXME-someday, should give breakpoint #. */
5453 value_free_to_mark (mark);
5454 }
5455
5456 if (cond && value_is_zero)
5457 {
5458 bs->stop = 0;
5459 }
5460 else if (b->ignore_count > 0)
5461 {
5462 b->ignore_count--;
5463 bs->stop = 0;
5464 /* Increase the hit count even though we don't stop. */
5465 ++(b->hit_count);
5466 observer_notify_breakpoint_modified (b);
5467 }
5468 }
5469
5470 /* Returns true if we need to track moribund locations of LOC's type
5471 on the current target. */
5472
5473 static int
5474 need_moribund_for_location_type (struct bp_location *loc)
5475 {
5476 return ((loc->loc_type == bp_loc_software_breakpoint
5477 && !target_supports_stopped_by_sw_breakpoint ())
5478 || (loc->loc_type == bp_loc_hardware_breakpoint
5479 && !target_supports_stopped_by_hw_breakpoint ()));
5480 }
5481
5482
5483 /* Get a bpstat associated with having just stopped at address
5484 BP_ADDR in thread PTID.
5485
5486 Determine whether we stopped at a breakpoint, etc, or whether we
5487 don't understand this stop. Result is a chain of bpstat's such
5488 that:
5489
5490 if we don't understand the stop, the result is a null pointer.
5491
5492 if we understand why we stopped, the result is not null.
5493
5494 Each element of the chain refers to a particular breakpoint or
5495 watchpoint at which we have stopped. (We may have stopped for
5496 several reasons concurrently.)
5497
5498 Each element of the chain has valid next, breakpoint_at,
5499 commands, FIXME??? fields. */
5500
5501 bpstat
5502 bpstat_stop_status (struct address_space *aspace,
5503 CORE_ADDR bp_addr, ptid_t ptid,
5504 const struct target_waitstatus *ws)
5505 {
5506 struct breakpoint *b = NULL;
5507 struct bp_location *bl;
5508 struct bp_location *loc;
5509 /* First item of allocated bpstat's. */
5510 bpstat bs_head = NULL, *bs_link = &bs_head;
5511 /* Pointer to the last thing in the chain currently. */
5512 bpstat bs;
5513 int ix;
5514 int need_remove_insert;
5515 int removed_any;
5516
5517 /* First, build the bpstat chain with locations that explain a
5518 target stop, while being careful to not set the target running,
5519 as that may invalidate locations (in particular watchpoint
5520 locations are recreated). Resuming will happen here with
5521 breakpoint conditions or watchpoint expressions that include
5522 inferior function calls. */
5523
5524 ALL_BREAKPOINTS (b)
5525 {
5526 if (!breakpoint_enabled (b))
5527 continue;
5528
5529 for (bl = b->loc; bl != NULL; bl = bl->next)
5530 {
5531 /* For hardware watchpoints, we look only at the first
5532 location. The watchpoint_check function will work on the
5533 entire expression, not the individual locations. For
5534 read watchpoints, the watchpoints_triggered function has
5535 checked all locations already. */
5536 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5537 break;
5538
5539 if (!bl->enabled || bl->shlib_disabled)
5540 continue;
5541
5542 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5543 continue;
5544
5545 /* Come here if it's a watchpoint, or if the break address
5546 matches. */
5547
5548 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5549 explain stop. */
5550
5551 /* Assume we stop. Should we find a watchpoint that is not
5552 actually triggered, or if the condition of the breakpoint
5553 evaluates as false, we'll reset 'stop' to 0. */
5554 bs->stop = 1;
5555 bs->print = 1;
5556
5557 /* If this is a scope breakpoint, mark the associated
5558 watchpoint as triggered so that we will handle the
5559 out-of-scope event. We'll get to the watchpoint next
5560 iteration. */
5561 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5562 {
5563 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5564
5565 w->watchpoint_triggered = watch_triggered_yes;
5566 }
5567 }
5568 }
5569
5570 /* Check if a moribund breakpoint explains the stop. */
5571 if (!target_supports_stopped_by_sw_breakpoint ()
5572 || !target_supports_stopped_by_hw_breakpoint ())
5573 {
5574 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5575 {
5576 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5577 && need_moribund_for_location_type (loc))
5578 {
5579 bs = bpstat_alloc (loc, &bs_link);
5580 /* For hits of moribund locations, we should just proceed. */
5581 bs->stop = 0;
5582 bs->print = 0;
5583 bs->print_it = print_it_noop;
5584 }
5585 }
5586 }
5587
5588 /* A bit of special processing for shlib breakpoints. We need to
5589 process solib loading here, so that the lists of loaded and
5590 unloaded libraries are correct before we handle "catch load" and
5591 "catch unload". */
5592 for (bs = bs_head; bs != NULL; bs = bs->next)
5593 {
5594 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5595 {
5596 handle_solib_event ();
5597 break;
5598 }
5599 }
5600
5601 /* Now go through the locations that caused the target to stop, and
5602 check whether we're interested in reporting this stop to higher
5603 layers, or whether we should resume the target transparently. */
5604
5605 removed_any = 0;
5606
5607 for (bs = bs_head; bs != NULL; bs = bs->next)
5608 {
5609 if (!bs->stop)
5610 continue;
5611
5612 b = bs->breakpoint_at;
5613 b->ops->check_status (bs);
5614 if (bs->stop)
5615 {
5616 bpstat_check_breakpoint_conditions (bs, ptid);
5617
5618 if (bs->stop)
5619 {
5620 ++(b->hit_count);
5621 observer_notify_breakpoint_modified (b);
5622
5623 /* We will stop here. */
5624 if (b->disposition == disp_disable)
5625 {
5626 --(b->enable_count);
5627 if (b->enable_count <= 0)
5628 b->enable_state = bp_disabled;
5629 removed_any = 1;
5630 }
5631 if (b->silent)
5632 bs->print = 0;
5633 bs->commands = b->commands;
5634 incref_counted_command_line (bs->commands);
5635 if (command_line_is_silent (bs->commands
5636 ? bs->commands->commands : NULL))
5637 bs->print = 0;
5638
5639 b->ops->after_condition_true (bs);
5640 }
5641
5642 }
5643
5644 /* Print nothing for this entry if we don't stop or don't
5645 print. */
5646 if (!bs->stop || !bs->print)
5647 bs->print_it = print_it_noop;
5648 }
5649
5650 /* If we aren't stopping, the value of some hardware watchpoint may
5651 not have changed, but the intermediate memory locations we are
5652 watching may have. Don't bother if we're stopping; this will get
5653 done later. */
5654 need_remove_insert = 0;
5655 if (! bpstat_causes_stop (bs_head))
5656 for (bs = bs_head; bs != NULL; bs = bs->next)
5657 if (!bs->stop
5658 && bs->breakpoint_at
5659 && is_hardware_watchpoint (bs->breakpoint_at))
5660 {
5661 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5662
5663 update_watchpoint (w, 0 /* don't reparse. */);
5664 need_remove_insert = 1;
5665 }
5666
5667 if (need_remove_insert)
5668 update_global_location_list (UGLL_MAY_INSERT);
5669 else if (removed_any)
5670 update_global_location_list (UGLL_DONT_INSERT);
5671
5672 return bs_head;
5673 }
5674
5675 static void
5676 handle_jit_event (void)
5677 {
5678 struct frame_info *frame;
5679 struct gdbarch *gdbarch;
5680
5681 /* Switch terminal for any messages produced by
5682 breakpoint_re_set. */
5683 target_terminal_ours_for_output ();
5684
5685 frame = get_current_frame ();
5686 gdbarch = get_frame_arch (frame);
5687
5688 jit_event_handler (gdbarch);
5689
5690 target_terminal_inferior ();
5691 }
5692
5693 /* Prepare WHAT final decision for infrun. */
5694
5695 /* Decide what infrun needs to do with this bpstat. */
5696
5697 struct bpstat_what
5698 bpstat_what (bpstat bs_head)
5699 {
5700 struct bpstat_what retval;
5701 int jit_event = 0;
5702 bpstat bs;
5703
5704 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5705 retval.call_dummy = STOP_NONE;
5706 retval.is_longjmp = 0;
5707
5708 for (bs = bs_head; bs != NULL; bs = bs->next)
5709 {
5710 /* Extract this BS's action. After processing each BS, we check
5711 if its action overrides all we've seem so far. */
5712 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5713 enum bptype bptype;
5714
5715 if (bs->breakpoint_at == NULL)
5716 {
5717 /* I suspect this can happen if it was a momentary
5718 breakpoint which has since been deleted. */
5719 bptype = bp_none;
5720 }
5721 else
5722 bptype = bs->breakpoint_at->type;
5723
5724 switch (bptype)
5725 {
5726 case bp_none:
5727 break;
5728 case bp_breakpoint:
5729 case bp_hardware_breakpoint:
5730 case bp_single_step:
5731 case bp_until:
5732 case bp_finish:
5733 case bp_shlib_event:
5734 if (bs->stop)
5735 {
5736 if (bs->print)
5737 this_action = BPSTAT_WHAT_STOP_NOISY;
5738 else
5739 this_action = BPSTAT_WHAT_STOP_SILENT;
5740 }
5741 else
5742 this_action = BPSTAT_WHAT_SINGLE;
5743 break;
5744 case bp_watchpoint:
5745 case bp_hardware_watchpoint:
5746 case bp_read_watchpoint:
5747 case bp_access_watchpoint:
5748 if (bs->stop)
5749 {
5750 if (bs->print)
5751 this_action = BPSTAT_WHAT_STOP_NOISY;
5752 else
5753 this_action = BPSTAT_WHAT_STOP_SILENT;
5754 }
5755 else
5756 {
5757 /* There was a watchpoint, but we're not stopping.
5758 This requires no further action. */
5759 }
5760 break;
5761 case bp_longjmp:
5762 case bp_longjmp_call_dummy:
5763 case bp_exception:
5764 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5765 retval.is_longjmp = bptype != bp_exception;
5766 break;
5767 case bp_longjmp_resume:
5768 case bp_exception_resume:
5769 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5770 retval.is_longjmp = bptype == bp_longjmp_resume;
5771 break;
5772 case bp_step_resume:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_STEP_RESUME;
5775 else
5776 {
5777 /* It is for the wrong frame. */
5778 this_action = BPSTAT_WHAT_SINGLE;
5779 }
5780 break;
5781 case bp_hp_step_resume:
5782 if (bs->stop)
5783 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5784 else
5785 {
5786 /* It is for the wrong frame. */
5787 this_action = BPSTAT_WHAT_SINGLE;
5788 }
5789 break;
5790 case bp_watchpoint_scope:
5791 case bp_thread_event:
5792 case bp_overlay_event:
5793 case bp_longjmp_master:
5794 case bp_std_terminate_master:
5795 case bp_exception_master:
5796 this_action = BPSTAT_WHAT_SINGLE;
5797 break;
5798 case bp_catchpoint:
5799 if (bs->stop)
5800 {
5801 if (bs->print)
5802 this_action = BPSTAT_WHAT_STOP_NOISY;
5803 else
5804 this_action = BPSTAT_WHAT_STOP_SILENT;
5805 }
5806 else
5807 {
5808 /* There was a catchpoint, but we're not stopping.
5809 This requires no further action. */
5810 }
5811 break;
5812 case bp_jit_event:
5813 jit_event = 1;
5814 this_action = BPSTAT_WHAT_SINGLE;
5815 break;
5816 case bp_call_dummy:
5817 /* Make sure the action is stop (silent or noisy),
5818 so infrun.c pops the dummy frame. */
5819 retval.call_dummy = STOP_STACK_DUMMY;
5820 this_action = BPSTAT_WHAT_STOP_SILENT;
5821 break;
5822 case bp_std_terminate:
5823 /* Make sure the action is stop (silent or noisy),
5824 so infrun.c pops the dummy frame. */
5825 retval.call_dummy = STOP_STD_TERMINATE;
5826 this_action = BPSTAT_WHAT_STOP_SILENT;
5827 break;
5828 case bp_tracepoint:
5829 case bp_fast_tracepoint:
5830 case bp_static_tracepoint:
5831 /* Tracepoint hits should not be reported back to GDB, and
5832 if one got through somehow, it should have been filtered
5833 out already. */
5834 internal_error (__FILE__, __LINE__,
5835 _("bpstat_what: tracepoint encountered"));
5836 break;
5837 case bp_gnu_ifunc_resolver:
5838 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5839 this_action = BPSTAT_WHAT_SINGLE;
5840 break;
5841 case bp_gnu_ifunc_resolver_return:
5842 /* The breakpoint will be removed, execution will restart from the
5843 PC of the former breakpoint. */
5844 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5845 break;
5846
5847 case bp_dprintf:
5848 if (bs->stop)
5849 this_action = BPSTAT_WHAT_STOP_SILENT;
5850 else
5851 this_action = BPSTAT_WHAT_SINGLE;
5852 break;
5853
5854 default:
5855 internal_error (__FILE__, __LINE__,
5856 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5857 }
5858
5859 retval.main_action = max (retval.main_action, this_action);
5860 }
5861
5862 /* These operations may affect the bs->breakpoint_at state so they are
5863 delayed after MAIN_ACTION is decided above. */
5864
5865 if (jit_event)
5866 {
5867 if (debug_infrun)
5868 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5869
5870 handle_jit_event ();
5871 }
5872
5873 for (bs = bs_head; bs != NULL; bs = bs->next)
5874 {
5875 struct breakpoint *b = bs->breakpoint_at;
5876
5877 if (b == NULL)
5878 continue;
5879 switch (b->type)
5880 {
5881 case bp_gnu_ifunc_resolver:
5882 gnu_ifunc_resolver_stop (b);
5883 break;
5884 case bp_gnu_ifunc_resolver_return:
5885 gnu_ifunc_resolver_return_stop (b);
5886 break;
5887 }
5888 }
5889
5890 return retval;
5891 }
5892
5893 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5894 without hardware support). This isn't related to a specific bpstat,
5895 just to things like whether watchpoints are set. */
5896
5897 int
5898 bpstat_should_step (void)
5899 {
5900 struct breakpoint *b;
5901
5902 ALL_BREAKPOINTS (b)
5903 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5904 return 1;
5905 return 0;
5906 }
5907
5908 int
5909 bpstat_causes_stop (bpstat bs)
5910 {
5911 for (; bs != NULL; bs = bs->next)
5912 if (bs->stop)
5913 return 1;
5914
5915 return 0;
5916 }
5917
5918 \f
5919
5920 /* Compute a string of spaces suitable to indent the next line
5921 so it starts at the position corresponding to the table column
5922 named COL_NAME in the currently active table of UIOUT. */
5923
5924 static char *
5925 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5926 {
5927 static char wrap_indent[80];
5928 int i, total_width, width, align;
5929 char *text;
5930
5931 total_width = 0;
5932 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5933 {
5934 if (strcmp (text, col_name) == 0)
5935 {
5936 gdb_assert (total_width < sizeof wrap_indent);
5937 memset (wrap_indent, ' ', total_width);
5938 wrap_indent[total_width] = 0;
5939
5940 return wrap_indent;
5941 }
5942
5943 total_width += width + 1;
5944 }
5945
5946 return NULL;
5947 }
5948
5949 /* Determine if the locations of this breakpoint will have their conditions
5950 evaluated by the target, host or a mix of both. Returns the following:
5951
5952 "host": Host evals condition.
5953 "host or target": Host or Target evals condition.
5954 "target": Target evals condition.
5955 */
5956
5957 static const char *
5958 bp_condition_evaluator (struct breakpoint *b)
5959 {
5960 struct bp_location *bl;
5961 char host_evals = 0;
5962 char target_evals = 0;
5963
5964 if (!b)
5965 return NULL;
5966
5967 if (!is_breakpoint (b))
5968 return NULL;
5969
5970 if (gdb_evaluates_breakpoint_condition_p ()
5971 || !target_supports_evaluation_of_breakpoint_conditions ())
5972 return condition_evaluation_host;
5973
5974 for (bl = b->loc; bl; bl = bl->next)
5975 {
5976 if (bl->cond_bytecode)
5977 target_evals++;
5978 else
5979 host_evals++;
5980 }
5981
5982 if (host_evals && target_evals)
5983 return condition_evaluation_both;
5984 else if (target_evals)
5985 return condition_evaluation_target;
5986 else
5987 return condition_evaluation_host;
5988 }
5989
5990 /* Determine the breakpoint location's condition evaluator. This is
5991 similar to bp_condition_evaluator, but for locations. */
5992
5993 static const char *
5994 bp_location_condition_evaluator (struct bp_location *bl)
5995 {
5996 if (bl && !is_breakpoint (bl->owner))
5997 return NULL;
5998
5999 if (gdb_evaluates_breakpoint_condition_p ()
6000 || !target_supports_evaluation_of_breakpoint_conditions ())
6001 return condition_evaluation_host;
6002
6003 if (bl && bl->cond_bytecode)
6004 return condition_evaluation_target;
6005 else
6006 return condition_evaluation_host;
6007 }
6008
6009 /* Print the LOC location out of the list of B->LOC locations. */
6010
6011 static void
6012 print_breakpoint_location (struct breakpoint *b,
6013 struct bp_location *loc)
6014 {
6015 struct ui_out *uiout = current_uiout;
6016 struct cleanup *old_chain = save_current_program_space ();
6017
6018 if (loc != NULL && loc->shlib_disabled)
6019 loc = NULL;
6020
6021 if (loc != NULL)
6022 set_current_program_space (loc->pspace);
6023
6024 if (b->display_canonical)
6025 ui_out_field_string (uiout, "what", b->addr_string);
6026 else if (loc && loc->symtab)
6027 {
6028 struct symbol *sym
6029 = find_pc_sect_function (loc->address, loc->section);
6030 if (sym)
6031 {
6032 ui_out_text (uiout, "in ");
6033 ui_out_field_string (uiout, "func",
6034 SYMBOL_PRINT_NAME (sym));
6035 ui_out_text (uiout, " ");
6036 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6037 ui_out_text (uiout, "at ");
6038 }
6039 ui_out_field_string (uiout, "file",
6040 symtab_to_filename_for_display (loc->symtab));
6041 ui_out_text (uiout, ":");
6042
6043 if (ui_out_is_mi_like_p (uiout))
6044 ui_out_field_string (uiout, "fullname",
6045 symtab_to_fullname (loc->symtab));
6046
6047 ui_out_field_int (uiout, "line", loc->line_number);
6048 }
6049 else if (loc)
6050 {
6051 struct ui_file *stb = mem_fileopen ();
6052 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6053
6054 print_address_symbolic (loc->gdbarch, loc->address, stb,
6055 demangle, "");
6056 ui_out_field_stream (uiout, "at", stb);
6057
6058 do_cleanups (stb_chain);
6059 }
6060 else
6061 ui_out_field_string (uiout, "pending", b->addr_string);
6062
6063 if (loc && is_breakpoint (b)
6064 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6065 && bp_condition_evaluator (b) == condition_evaluation_both)
6066 {
6067 ui_out_text (uiout, " (");
6068 ui_out_field_string (uiout, "evaluated-by",
6069 bp_location_condition_evaluator (loc));
6070 ui_out_text (uiout, ")");
6071 }
6072
6073 do_cleanups (old_chain);
6074 }
6075
6076 static const char *
6077 bptype_string (enum bptype type)
6078 {
6079 struct ep_type_description
6080 {
6081 enum bptype type;
6082 char *description;
6083 };
6084 static struct ep_type_description bptypes[] =
6085 {
6086 {bp_none, "?deleted?"},
6087 {bp_breakpoint, "breakpoint"},
6088 {bp_hardware_breakpoint, "hw breakpoint"},
6089 {bp_single_step, "sw single-step"},
6090 {bp_until, "until"},
6091 {bp_finish, "finish"},
6092 {bp_watchpoint, "watchpoint"},
6093 {bp_hardware_watchpoint, "hw watchpoint"},
6094 {bp_read_watchpoint, "read watchpoint"},
6095 {bp_access_watchpoint, "acc watchpoint"},
6096 {bp_longjmp, "longjmp"},
6097 {bp_longjmp_resume, "longjmp resume"},
6098 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6099 {bp_exception, "exception"},
6100 {bp_exception_resume, "exception resume"},
6101 {bp_step_resume, "step resume"},
6102 {bp_hp_step_resume, "high-priority step resume"},
6103 {bp_watchpoint_scope, "watchpoint scope"},
6104 {bp_call_dummy, "call dummy"},
6105 {bp_std_terminate, "std::terminate"},
6106 {bp_shlib_event, "shlib events"},
6107 {bp_thread_event, "thread events"},
6108 {bp_overlay_event, "overlay events"},
6109 {bp_longjmp_master, "longjmp master"},
6110 {bp_std_terminate_master, "std::terminate master"},
6111 {bp_exception_master, "exception master"},
6112 {bp_catchpoint, "catchpoint"},
6113 {bp_tracepoint, "tracepoint"},
6114 {bp_fast_tracepoint, "fast tracepoint"},
6115 {bp_static_tracepoint, "static tracepoint"},
6116 {bp_dprintf, "dprintf"},
6117 {bp_jit_event, "jit events"},
6118 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6119 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6120 };
6121
6122 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6123 || ((int) type != bptypes[(int) type].type))
6124 internal_error (__FILE__, __LINE__,
6125 _("bptypes table does not describe type #%d."),
6126 (int) type);
6127
6128 return bptypes[(int) type].description;
6129 }
6130
6131 /* For MI, output a field named 'thread-groups' with a list as the value.
6132 For CLI, prefix the list with the string 'inf'. */
6133
6134 static void
6135 output_thread_groups (struct ui_out *uiout,
6136 const char *field_name,
6137 VEC(int) *inf_num,
6138 int mi_only)
6139 {
6140 struct cleanup *back_to;
6141 int is_mi = ui_out_is_mi_like_p (uiout);
6142 int inf;
6143 int i;
6144
6145 /* For backward compatibility, don't display inferiors in CLI unless
6146 there are several. Always display them for MI. */
6147 if (!is_mi && mi_only)
6148 return;
6149
6150 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6151
6152 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6153 {
6154 if (is_mi)
6155 {
6156 char mi_group[10];
6157
6158 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6159 ui_out_field_string (uiout, NULL, mi_group);
6160 }
6161 else
6162 {
6163 if (i == 0)
6164 ui_out_text (uiout, " inf ");
6165 else
6166 ui_out_text (uiout, ", ");
6167
6168 ui_out_text (uiout, plongest (inf));
6169 }
6170 }
6171
6172 do_cleanups (back_to);
6173 }
6174
6175 /* Print B to gdb_stdout. */
6176
6177 static void
6178 print_one_breakpoint_location (struct breakpoint *b,
6179 struct bp_location *loc,
6180 int loc_number,
6181 struct bp_location **last_loc,
6182 int allflag)
6183 {
6184 struct command_line *l;
6185 static char bpenables[] = "nynny";
6186
6187 struct ui_out *uiout = current_uiout;
6188 int header_of_multiple = 0;
6189 int part_of_multiple = (loc != NULL);
6190 struct value_print_options opts;
6191
6192 get_user_print_options (&opts);
6193
6194 gdb_assert (!loc || loc_number != 0);
6195 /* See comment in print_one_breakpoint concerning treatment of
6196 breakpoints with single disabled location. */
6197 if (loc == NULL
6198 && (b->loc != NULL
6199 && (b->loc->next != NULL || !b->loc->enabled)))
6200 header_of_multiple = 1;
6201 if (loc == NULL)
6202 loc = b->loc;
6203
6204 annotate_record ();
6205
6206 /* 1 */
6207 annotate_field (0);
6208 if (part_of_multiple)
6209 {
6210 char *formatted;
6211 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6212 ui_out_field_string (uiout, "number", formatted);
6213 xfree (formatted);
6214 }
6215 else
6216 {
6217 ui_out_field_int (uiout, "number", b->number);
6218 }
6219
6220 /* 2 */
6221 annotate_field (1);
6222 if (part_of_multiple)
6223 ui_out_field_skip (uiout, "type");
6224 else
6225 ui_out_field_string (uiout, "type", bptype_string (b->type));
6226
6227 /* 3 */
6228 annotate_field (2);
6229 if (part_of_multiple)
6230 ui_out_field_skip (uiout, "disp");
6231 else
6232 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6233
6234
6235 /* 4 */
6236 annotate_field (3);
6237 if (part_of_multiple)
6238 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6239 else
6240 ui_out_field_fmt (uiout, "enabled", "%c",
6241 bpenables[(int) b->enable_state]);
6242 ui_out_spaces (uiout, 2);
6243
6244
6245 /* 5 and 6 */
6246 if (b->ops != NULL && b->ops->print_one != NULL)
6247 {
6248 /* Although the print_one can possibly print all locations,
6249 calling it here is not likely to get any nice result. So,
6250 make sure there's just one location. */
6251 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6252 b->ops->print_one (b, last_loc);
6253 }
6254 else
6255 switch (b->type)
6256 {
6257 case bp_none:
6258 internal_error (__FILE__, __LINE__,
6259 _("print_one_breakpoint: bp_none encountered\n"));
6260 break;
6261
6262 case bp_watchpoint:
6263 case bp_hardware_watchpoint:
6264 case bp_read_watchpoint:
6265 case bp_access_watchpoint:
6266 {
6267 struct watchpoint *w = (struct watchpoint *) b;
6268
6269 /* Field 4, the address, is omitted (which makes the columns
6270 not line up too nicely with the headers, but the effect
6271 is relatively readable). */
6272 if (opts.addressprint)
6273 ui_out_field_skip (uiout, "addr");
6274 annotate_field (5);
6275 ui_out_field_string (uiout, "what", w->exp_string);
6276 }
6277 break;
6278
6279 case bp_breakpoint:
6280 case bp_hardware_breakpoint:
6281 case bp_single_step:
6282 case bp_until:
6283 case bp_finish:
6284 case bp_longjmp:
6285 case bp_longjmp_resume:
6286 case bp_longjmp_call_dummy:
6287 case bp_exception:
6288 case bp_exception_resume:
6289 case bp_step_resume:
6290 case bp_hp_step_resume:
6291 case bp_watchpoint_scope:
6292 case bp_call_dummy:
6293 case bp_std_terminate:
6294 case bp_shlib_event:
6295 case bp_thread_event:
6296 case bp_overlay_event:
6297 case bp_longjmp_master:
6298 case bp_std_terminate_master:
6299 case bp_exception_master:
6300 case bp_tracepoint:
6301 case bp_fast_tracepoint:
6302 case bp_static_tracepoint:
6303 case bp_dprintf:
6304 case bp_jit_event:
6305 case bp_gnu_ifunc_resolver:
6306 case bp_gnu_ifunc_resolver_return:
6307 if (opts.addressprint)
6308 {
6309 annotate_field (4);
6310 if (header_of_multiple)
6311 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6312 else if (b->loc == NULL || loc->shlib_disabled)
6313 ui_out_field_string (uiout, "addr", "<PENDING>");
6314 else
6315 ui_out_field_core_addr (uiout, "addr",
6316 loc->gdbarch, loc->address);
6317 }
6318 annotate_field (5);
6319 if (!header_of_multiple)
6320 print_breakpoint_location (b, loc);
6321 if (b->loc)
6322 *last_loc = b->loc;
6323 break;
6324 }
6325
6326
6327 if (loc != NULL && !header_of_multiple)
6328 {
6329 struct inferior *inf;
6330 VEC(int) *inf_num = NULL;
6331 int mi_only = 1;
6332
6333 ALL_INFERIORS (inf)
6334 {
6335 if (inf->pspace == loc->pspace)
6336 VEC_safe_push (int, inf_num, inf->num);
6337 }
6338
6339 /* For backward compatibility, don't display inferiors in CLI unless
6340 there are several. Always display for MI. */
6341 if (allflag
6342 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6343 && (number_of_program_spaces () > 1
6344 || number_of_inferiors () > 1)
6345 /* LOC is for existing B, it cannot be in
6346 moribund_locations and thus having NULL OWNER. */
6347 && loc->owner->type != bp_catchpoint))
6348 mi_only = 0;
6349 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6350 VEC_free (int, inf_num);
6351 }
6352
6353 if (!part_of_multiple)
6354 {
6355 if (b->thread != -1)
6356 {
6357 /* FIXME: This seems to be redundant and lost here; see the
6358 "stop only in" line a little further down. */
6359 ui_out_text (uiout, " thread ");
6360 ui_out_field_int (uiout, "thread", b->thread);
6361 }
6362 else if (b->task != 0)
6363 {
6364 ui_out_text (uiout, " task ");
6365 ui_out_field_int (uiout, "task", b->task);
6366 }
6367 }
6368
6369 ui_out_text (uiout, "\n");
6370
6371 if (!part_of_multiple)
6372 b->ops->print_one_detail (b, uiout);
6373
6374 if (part_of_multiple && frame_id_p (b->frame_id))
6375 {
6376 annotate_field (6);
6377 ui_out_text (uiout, "\tstop only in stack frame at ");
6378 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6379 the frame ID. */
6380 ui_out_field_core_addr (uiout, "frame",
6381 b->gdbarch, b->frame_id.stack_addr);
6382 ui_out_text (uiout, "\n");
6383 }
6384
6385 if (!part_of_multiple && b->cond_string)
6386 {
6387 annotate_field (7);
6388 if (is_tracepoint (b))
6389 ui_out_text (uiout, "\ttrace only if ");
6390 else
6391 ui_out_text (uiout, "\tstop only if ");
6392 ui_out_field_string (uiout, "cond", b->cond_string);
6393
6394 /* Print whether the target is doing the breakpoint's condition
6395 evaluation. If GDB is doing the evaluation, don't print anything. */
6396 if (is_breakpoint (b)
6397 && breakpoint_condition_evaluation_mode ()
6398 == condition_evaluation_target)
6399 {
6400 ui_out_text (uiout, " (");
6401 ui_out_field_string (uiout, "evaluated-by",
6402 bp_condition_evaluator (b));
6403 ui_out_text (uiout, " evals)");
6404 }
6405 ui_out_text (uiout, "\n");
6406 }
6407
6408 if (!part_of_multiple && b->thread != -1)
6409 {
6410 /* FIXME should make an annotation for this. */
6411 ui_out_text (uiout, "\tstop only in thread ");
6412 ui_out_field_int (uiout, "thread", b->thread);
6413 ui_out_text (uiout, "\n");
6414 }
6415
6416 if (!part_of_multiple)
6417 {
6418 if (b->hit_count)
6419 {
6420 /* FIXME should make an annotation for this. */
6421 if (is_catchpoint (b))
6422 ui_out_text (uiout, "\tcatchpoint");
6423 else if (is_tracepoint (b))
6424 ui_out_text (uiout, "\ttracepoint");
6425 else
6426 ui_out_text (uiout, "\tbreakpoint");
6427 ui_out_text (uiout, " already hit ");
6428 ui_out_field_int (uiout, "times", b->hit_count);
6429 if (b->hit_count == 1)
6430 ui_out_text (uiout, " time\n");
6431 else
6432 ui_out_text (uiout, " times\n");
6433 }
6434 else
6435 {
6436 /* Output the count also if it is zero, but only if this is mi. */
6437 if (ui_out_is_mi_like_p (uiout))
6438 ui_out_field_int (uiout, "times", b->hit_count);
6439 }
6440 }
6441
6442 if (!part_of_multiple && b->ignore_count)
6443 {
6444 annotate_field (8);
6445 ui_out_text (uiout, "\tignore next ");
6446 ui_out_field_int (uiout, "ignore", b->ignore_count);
6447 ui_out_text (uiout, " hits\n");
6448 }
6449
6450 /* Note that an enable count of 1 corresponds to "enable once"
6451 behavior, which is reported by the combination of enablement and
6452 disposition, so we don't need to mention it here. */
6453 if (!part_of_multiple && b->enable_count > 1)
6454 {
6455 annotate_field (8);
6456 ui_out_text (uiout, "\tdisable after ");
6457 /* Tweak the wording to clarify that ignore and enable counts
6458 are distinct, and have additive effect. */
6459 if (b->ignore_count)
6460 ui_out_text (uiout, "additional ");
6461 else
6462 ui_out_text (uiout, "next ");
6463 ui_out_field_int (uiout, "enable", b->enable_count);
6464 ui_out_text (uiout, " hits\n");
6465 }
6466
6467 if (!part_of_multiple && is_tracepoint (b))
6468 {
6469 struct tracepoint *tp = (struct tracepoint *) b;
6470
6471 if (tp->traceframe_usage)
6472 {
6473 ui_out_text (uiout, "\ttrace buffer usage ");
6474 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6475 ui_out_text (uiout, " bytes\n");
6476 }
6477 }
6478
6479 l = b->commands ? b->commands->commands : NULL;
6480 if (!part_of_multiple && l)
6481 {
6482 struct cleanup *script_chain;
6483
6484 annotate_field (9);
6485 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6486 print_command_lines (uiout, l, 4);
6487 do_cleanups (script_chain);
6488 }
6489
6490 if (is_tracepoint (b))
6491 {
6492 struct tracepoint *t = (struct tracepoint *) b;
6493
6494 if (!part_of_multiple && t->pass_count)
6495 {
6496 annotate_field (10);
6497 ui_out_text (uiout, "\tpass count ");
6498 ui_out_field_int (uiout, "pass", t->pass_count);
6499 ui_out_text (uiout, " \n");
6500 }
6501
6502 /* Don't display it when tracepoint or tracepoint location is
6503 pending. */
6504 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6505 {
6506 annotate_field (11);
6507
6508 if (ui_out_is_mi_like_p (uiout))
6509 ui_out_field_string (uiout, "installed",
6510 loc->inserted ? "y" : "n");
6511 else
6512 {
6513 if (loc->inserted)
6514 ui_out_text (uiout, "\t");
6515 else
6516 ui_out_text (uiout, "\tnot ");
6517 ui_out_text (uiout, "installed on target\n");
6518 }
6519 }
6520 }
6521
6522 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6523 {
6524 if (is_watchpoint (b))
6525 {
6526 struct watchpoint *w = (struct watchpoint *) b;
6527
6528 ui_out_field_string (uiout, "original-location", w->exp_string);
6529 }
6530 else if (b->addr_string)
6531 ui_out_field_string (uiout, "original-location", b->addr_string);
6532 }
6533 }
6534
6535 static void
6536 print_one_breakpoint (struct breakpoint *b,
6537 struct bp_location **last_loc,
6538 int allflag)
6539 {
6540 struct cleanup *bkpt_chain;
6541 struct ui_out *uiout = current_uiout;
6542
6543 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6544
6545 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6546 do_cleanups (bkpt_chain);
6547
6548 /* If this breakpoint has custom print function,
6549 it's already printed. Otherwise, print individual
6550 locations, if any. */
6551 if (b->ops == NULL || b->ops->print_one == NULL)
6552 {
6553 /* If breakpoint has a single location that is disabled, we
6554 print it as if it had several locations, since otherwise it's
6555 hard to represent "breakpoint enabled, location disabled"
6556 situation.
6557
6558 Note that while hardware watchpoints have several locations
6559 internally, that's not a property exposed to user. */
6560 if (b->loc
6561 && !is_hardware_watchpoint (b)
6562 && (b->loc->next || !b->loc->enabled))
6563 {
6564 struct bp_location *loc;
6565 int n = 1;
6566
6567 for (loc = b->loc; loc; loc = loc->next, ++n)
6568 {
6569 struct cleanup *inner2 =
6570 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6571 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6572 do_cleanups (inner2);
6573 }
6574 }
6575 }
6576 }
6577
6578 static int
6579 breakpoint_address_bits (struct breakpoint *b)
6580 {
6581 int print_address_bits = 0;
6582 struct bp_location *loc;
6583
6584 for (loc = b->loc; loc; loc = loc->next)
6585 {
6586 int addr_bit;
6587
6588 /* Software watchpoints that aren't watching memory don't have
6589 an address to print. */
6590 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6591 continue;
6592
6593 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6594 if (addr_bit > print_address_bits)
6595 print_address_bits = addr_bit;
6596 }
6597
6598 return print_address_bits;
6599 }
6600
6601 struct captured_breakpoint_query_args
6602 {
6603 int bnum;
6604 };
6605
6606 static int
6607 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6608 {
6609 struct captured_breakpoint_query_args *args = data;
6610 struct breakpoint *b;
6611 struct bp_location *dummy_loc = NULL;
6612
6613 ALL_BREAKPOINTS (b)
6614 {
6615 if (args->bnum == b->number)
6616 {
6617 print_one_breakpoint (b, &dummy_loc, 0);
6618 return GDB_RC_OK;
6619 }
6620 }
6621 return GDB_RC_NONE;
6622 }
6623
6624 enum gdb_rc
6625 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6626 char **error_message)
6627 {
6628 struct captured_breakpoint_query_args args;
6629
6630 args.bnum = bnum;
6631 /* For the moment we don't trust print_one_breakpoint() to not throw
6632 an error. */
6633 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6634 error_message, RETURN_MASK_ALL) < 0)
6635 return GDB_RC_FAIL;
6636 else
6637 return GDB_RC_OK;
6638 }
6639
6640 /* Return true if this breakpoint was set by the user, false if it is
6641 internal or momentary. */
6642
6643 int
6644 user_breakpoint_p (struct breakpoint *b)
6645 {
6646 return b->number > 0;
6647 }
6648
6649 /* Print information on user settable breakpoint (watchpoint, etc)
6650 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6651 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6652 FILTER is non-NULL, call it on each breakpoint and only include the
6653 ones for which it returns non-zero. Return the total number of
6654 breakpoints listed. */
6655
6656 static int
6657 breakpoint_1 (char *args, int allflag,
6658 int (*filter) (const struct breakpoint *))
6659 {
6660 struct breakpoint *b;
6661 struct bp_location *last_loc = NULL;
6662 int nr_printable_breakpoints;
6663 struct cleanup *bkpttbl_chain;
6664 struct value_print_options opts;
6665 int print_address_bits = 0;
6666 int print_type_col_width = 14;
6667 struct ui_out *uiout = current_uiout;
6668
6669 get_user_print_options (&opts);
6670
6671 /* Compute the number of rows in the table, as well as the size
6672 required for address fields. */
6673 nr_printable_breakpoints = 0;
6674 ALL_BREAKPOINTS (b)
6675 {
6676 /* If we have a filter, only list the breakpoints it accepts. */
6677 if (filter && !filter (b))
6678 continue;
6679
6680 /* If we have an "args" string, it is a list of breakpoints to
6681 accept. Skip the others. */
6682 if (args != NULL && *args != '\0')
6683 {
6684 if (allflag && parse_and_eval_long (args) != b->number)
6685 continue;
6686 if (!allflag && !number_is_in_list (args, b->number))
6687 continue;
6688 }
6689
6690 if (allflag || user_breakpoint_p (b))
6691 {
6692 int addr_bit, type_len;
6693
6694 addr_bit = breakpoint_address_bits (b);
6695 if (addr_bit > print_address_bits)
6696 print_address_bits = addr_bit;
6697
6698 type_len = strlen (bptype_string (b->type));
6699 if (type_len > print_type_col_width)
6700 print_type_col_width = type_len;
6701
6702 nr_printable_breakpoints++;
6703 }
6704 }
6705
6706 if (opts.addressprint)
6707 bkpttbl_chain
6708 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6709 nr_printable_breakpoints,
6710 "BreakpointTable");
6711 else
6712 bkpttbl_chain
6713 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6714 nr_printable_breakpoints,
6715 "BreakpointTable");
6716
6717 if (nr_printable_breakpoints > 0)
6718 annotate_breakpoints_headers ();
6719 if (nr_printable_breakpoints > 0)
6720 annotate_field (0);
6721 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6722 if (nr_printable_breakpoints > 0)
6723 annotate_field (1);
6724 ui_out_table_header (uiout, print_type_col_width, ui_left,
6725 "type", "Type"); /* 2 */
6726 if (nr_printable_breakpoints > 0)
6727 annotate_field (2);
6728 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6729 if (nr_printable_breakpoints > 0)
6730 annotate_field (3);
6731 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6732 if (opts.addressprint)
6733 {
6734 if (nr_printable_breakpoints > 0)
6735 annotate_field (4);
6736 if (print_address_bits <= 32)
6737 ui_out_table_header (uiout, 10, ui_left,
6738 "addr", "Address"); /* 5 */
6739 else
6740 ui_out_table_header (uiout, 18, ui_left,
6741 "addr", "Address"); /* 5 */
6742 }
6743 if (nr_printable_breakpoints > 0)
6744 annotate_field (5);
6745 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6746 ui_out_table_body (uiout);
6747 if (nr_printable_breakpoints > 0)
6748 annotate_breakpoints_table ();
6749
6750 ALL_BREAKPOINTS (b)
6751 {
6752 QUIT;
6753 /* If we have a filter, only list the breakpoints it accepts. */
6754 if (filter && !filter (b))
6755 continue;
6756
6757 /* If we have an "args" string, it is a list of breakpoints to
6758 accept. Skip the others. */
6759
6760 if (args != NULL && *args != '\0')
6761 {
6762 if (allflag) /* maintenance info breakpoint */
6763 {
6764 if (parse_and_eval_long (args) != b->number)
6765 continue;
6766 }
6767 else /* all others */
6768 {
6769 if (!number_is_in_list (args, b->number))
6770 continue;
6771 }
6772 }
6773 /* We only print out user settable breakpoints unless the
6774 allflag is set. */
6775 if (allflag || user_breakpoint_p (b))
6776 print_one_breakpoint (b, &last_loc, allflag);
6777 }
6778
6779 do_cleanups (bkpttbl_chain);
6780
6781 if (nr_printable_breakpoints == 0)
6782 {
6783 /* If there's a filter, let the caller decide how to report
6784 empty list. */
6785 if (!filter)
6786 {
6787 if (args == NULL || *args == '\0')
6788 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6789 else
6790 ui_out_message (uiout, 0,
6791 "No breakpoint or watchpoint matching '%s'.\n",
6792 args);
6793 }
6794 }
6795 else
6796 {
6797 if (last_loc && !server_command)
6798 set_next_address (last_loc->gdbarch, last_loc->address);
6799 }
6800
6801 /* FIXME? Should this be moved up so that it is only called when
6802 there have been breakpoints? */
6803 annotate_breakpoints_table_end ();
6804
6805 return nr_printable_breakpoints;
6806 }
6807
6808 /* Display the value of default-collect in a way that is generally
6809 compatible with the breakpoint list. */
6810
6811 static void
6812 default_collect_info (void)
6813 {
6814 struct ui_out *uiout = current_uiout;
6815
6816 /* If it has no value (which is frequently the case), say nothing; a
6817 message like "No default-collect." gets in user's face when it's
6818 not wanted. */
6819 if (!*default_collect)
6820 return;
6821
6822 /* The following phrase lines up nicely with per-tracepoint collect
6823 actions. */
6824 ui_out_text (uiout, "default collect ");
6825 ui_out_field_string (uiout, "default-collect", default_collect);
6826 ui_out_text (uiout, " \n");
6827 }
6828
6829 static void
6830 breakpoints_info (char *args, int from_tty)
6831 {
6832 breakpoint_1 (args, 0, NULL);
6833
6834 default_collect_info ();
6835 }
6836
6837 static void
6838 watchpoints_info (char *args, int from_tty)
6839 {
6840 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6841 struct ui_out *uiout = current_uiout;
6842
6843 if (num_printed == 0)
6844 {
6845 if (args == NULL || *args == '\0')
6846 ui_out_message (uiout, 0, "No watchpoints.\n");
6847 else
6848 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6849 }
6850 }
6851
6852 static void
6853 maintenance_info_breakpoints (char *args, int from_tty)
6854 {
6855 breakpoint_1 (args, 1, NULL);
6856
6857 default_collect_info ();
6858 }
6859
6860 static int
6861 breakpoint_has_pc (struct breakpoint *b,
6862 struct program_space *pspace,
6863 CORE_ADDR pc, struct obj_section *section)
6864 {
6865 struct bp_location *bl = b->loc;
6866
6867 for (; bl; bl = bl->next)
6868 {
6869 if (bl->pspace == pspace
6870 && bl->address == pc
6871 && (!overlay_debugging || bl->section == section))
6872 return 1;
6873 }
6874 return 0;
6875 }
6876
6877 /* Print a message describing any user-breakpoints set at PC. This
6878 concerns with logical breakpoints, so we match program spaces, not
6879 address spaces. */
6880
6881 static void
6882 describe_other_breakpoints (struct gdbarch *gdbarch,
6883 struct program_space *pspace, CORE_ADDR pc,
6884 struct obj_section *section, int thread)
6885 {
6886 int others = 0;
6887 struct breakpoint *b;
6888
6889 ALL_BREAKPOINTS (b)
6890 others += (user_breakpoint_p (b)
6891 && breakpoint_has_pc (b, pspace, pc, section));
6892 if (others > 0)
6893 {
6894 if (others == 1)
6895 printf_filtered (_("Note: breakpoint "));
6896 else /* if (others == ???) */
6897 printf_filtered (_("Note: breakpoints "));
6898 ALL_BREAKPOINTS (b)
6899 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6900 {
6901 others--;
6902 printf_filtered ("%d", b->number);
6903 if (b->thread == -1 && thread != -1)
6904 printf_filtered (" (all threads)");
6905 else if (b->thread != -1)
6906 printf_filtered (" (thread %d)", b->thread);
6907 printf_filtered ("%s%s ",
6908 ((b->enable_state == bp_disabled
6909 || b->enable_state == bp_call_disabled)
6910 ? " (disabled)"
6911 : ""),
6912 (others > 1) ? ","
6913 : ((others == 1) ? " and" : ""));
6914 }
6915 printf_filtered (_("also set at pc "));
6916 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6917 printf_filtered (".\n");
6918 }
6919 }
6920 \f
6921
6922 /* Return true iff it is meaningful to use the address member of
6923 BPT. For some breakpoint types, the address member is irrelevant
6924 and it makes no sense to attempt to compare it to other addresses
6925 (or use it for any other purpose either).
6926
6927 More specifically, each of the following breakpoint types will
6928 always have a zero valued address and we don't want to mark
6929 breakpoints of any of these types to be a duplicate of an actual
6930 breakpoint at address zero:
6931
6932 bp_watchpoint
6933 bp_catchpoint
6934
6935 */
6936
6937 static int
6938 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6939 {
6940 enum bptype type = bpt->type;
6941
6942 return (type != bp_watchpoint && type != bp_catchpoint);
6943 }
6944
6945 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6946 true if LOC1 and LOC2 represent the same watchpoint location. */
6947
6948 static int
6949 watchpoint_locations_match (struct bp_location *loc1,
6950 struct bp_location *loc2)
6951 {
6952 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6953 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6954
6955 /* Both of them must exist. */
6956 gdb_assert (w1 != NULL);
6957 gdb_assert (w2 != NULL);
6958
6959 /* If the target can evaluate the condition expression in hardware,
6960 then we we need to insert both watchpoints even if they are at
6961 the same place. Otherwise the watchpoint will only trigger when
6962 the condition of whichever watchpoint was inserted evaluates to
6963 true, not giving a chance for GDB to check the condition of the
6964 other watchpoint. */
6965 if ((w1->cond_exp
6966 && target_can_accel_watchpoint_condition (loc1->address,
6967 loc1->length,
6968 loc1->watchpoint_type,
6969 w1->cond_exp))
6970 || (w2->cond_exp
6971 && target_can_accel_watchpoint_condition (loc2->address,
6972 loc2->length,
6973 loc2->watchpoint_type,
6974 w2->cond_exp)))
6975 return 0;
6976
6977 /* Note that this checks the owner's type, not the location's. In
6978 case the target does not support read watchpoints, but does
6979 support access watchpoints, we'll have bp_read_watchpoint
6980 watchpoints with hw_access locations. Those should be considered
6981 duplicates of hw_read locations. The hw_read locations will
6982 become hw_access locations later. */
6983 return (loc1->owner->type == loc2->owner->type
6984 && loc1->pspace->aspace == loc2->pspace->aspace
6985 && loc1->address == loc2->address
6986 && loc1->length == loc2->length);
6987 }
6988
6989 /* See breakpoint.h. */
6990
6991 int
6992 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6993 struct address_space *aspace2, CORE_ADDR addr2)
6994 {
6995 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6996 || aspace1 == aspace2)
6997 && addr1 == addr2);
6998 }
6999
7000 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7001 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7002 matches ASPACE2. On targets that have global breakpoints, the address
7003 space doesn't really matter. */
7004
7005 static int
7006 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7007 int len1, struct address_space *aspace2,
7008 CORE_ADDR addr2)
7009 {
7010 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7011 || aspace1 == aspace2)
7012 && addr2 >= addr1 && addr2 < addr1 + len1);
7013 }
7014
7015 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7016 a ranged breakpoint. In most targets, a match happens only if ASPACE
7017 matches the breakpoint's address space. On targets that have global
7018 breakpoints, the address space doesn't really matter. */
7019
7020 static int
7021 breakpoint_location_address_match (struct bp_location *bl,
7022 struct address_space *aspace,
7023 CORE_ADDR addr)
7024 {
7025 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7026 aspace, addr)
7027 || (bl->length
7028 && breakpoint_address_match_range (bl->pspace->aspace,
7029 bl->address, bl->length,
7030 aspace, addr)));
7031 }
7032
7033 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7034 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7035 true, otherwise returns false. */
7036
7037 static int
7038 tracepoint_locations_match (struct bp_location *loc1,
7039 struct bp_location *loc2)
7040 {
7041 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7042 /* Since tracepoint locations are never duplicated with others', tracepoint
7043 locations at the same address of different tracepoints are regarded as
7044 different locations. */
7045 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7046 else
7047 return 0;
7048 }
7049
7050 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7051 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7052 represent the same location. */
7053
7054 static int
7055 breakpoint_locations_match (struct bp_location *loc1,
7056 struct bp_location *loc2)
7057 {
7058 int hw_point1, hw_point2;
7059
7060 /* Both of them must not be in moribund_locations. */
7061 gdb_assert (loc1->owner != NULL);
7062 gdb_assert (loc2->owner != NULL);
7063
7064 hw_point1 = is_hardware_watchpoint (loc1->owner);
7065 hw_point2 = is_hardware_watchpoint (loc2->owner);
7066
7067 if (hw_point1 != hw_point2)
7068 return 0;
7069 else if (hw_point1)
7070 return watchpoint_locations_match (loc1, loc2);
7071 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7072 return tracepoint_locations_match (loc1, loc2);
7073 else
7074 /* We compare bp_location.length in order to cover ranged breakpoints. */
7075 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7076 loc2->pspace->aspace, loc2->address)
7077 && loc1->length == loc2->length);
7078 }
7079
7080 static void
7081 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7082 int bnum, int have_bnum)
7083 {
7084 /* The longest string possibly returned by hex_string_custom
7085 is 50 chars. These must be at least that big for safety. */
7086 char astr1[64];
7087 char astr2[64];
7088
7089 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7090 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7091 if (have_bnum)
7092 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7093 bnum, astr1, astr2);
7094 else
7095 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7096 }
7097
7098 /* Adjust a breakpoint's address to account for architectural
7099 constraints on breakpoint placement. Return the adjusted address.
7100 Note: Very few targets require this kind of adjustment. For most
7101 targets, this function is simply the identity function. */
7102
7103 static CORE_ADDR
7104 adjust_breakpoint_address (struct gdbarch *gdbarch,
7105 CORE_ADDR bpaddr, enum bptype bptype)
7106 {
7107 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7108 {
7109 /* Very few targets need any kind of breakpoint adjustment. */
7110 return bpaddr;
7111 }
7112 else if (bptype == bp_watchpoint
7113 || bptype == bp_hardware_watchpoint
7114 || bptype == bp_read_watchpoint
7115 || bptype == bp_access_watchpoint
7116 || bptype == bp_catchpoint)
7117 {
7118 /* Watchpoints and the various bp_catch_* eventpoints should not
7119 have their addresses modified. */
7120 return bpaddr;
7121 }
7122 else if (bptype == bp_single_step)
7123 {
7124 /* Single-step breakpoints should not have their addresses
7125 modified. If there's any architectural constrain that
7126 applies to this address, then it should have already been
7127 taken into account when the breakpoint was created in the
7128 first place. If we didn't do this, stepping through e.g.,
7129 Thumb-2 IT blocks would break. */
7130 return bpaddr;
7131 }
7132 else
7133 {
7134 CORE_ADDR adjusted_bpaddr;
7135
7136 /* Some targets have architectural constraints on the placement
7137 of breakpoint instructions. Obtain the adjusted address. */
7138 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7139
7140 /* An adjusted breakpoint address can significantly alter
7141 a user's expectations. Print a warning if an adjustment
7142 is required. */
7143 if (adjusted_bpaddr != bpaddr)
7144 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7145
7146 return adjusted_bpaddr;
7147 }
7148 }
7149
7150 void
7151 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7152 struct breakpoint *owner)
7153 {
7154 memset (loc, 0, sizeof (*loc));
7155
7156 gdb_assert (ops != NULL);
7157
7158 loc->ops = ops;
7159 loc->owner = owner;
7160 loc->cond = NULL;
7161 loc->cond_bytecode = NULL;
7162 loc->shlib_disabled = 0;
7163 loc->enabled = 1;
7164
7165 switch (owner->type)
7166 {
7167 case bp_breakpoint:
7168 case bp_single_step:
7169 case bp_until:
7170 case bp_finish:
7171 case bp_longjmp:
7172 case bp_longjmp_resume:
7173 case bp_longjmp_call_dummy:
7174 case bp_exception:
7175 case bp_exception_resume:
7176 case bp_step_resume:
7177 case bp_hp_step_resume:
7178 case bp_watchpoint_scope:
7179 case bp_call_dummy:
7180 case bp_std_terminate:
7181 case bp_shlib_event:
7182 case bp_thread_event:
7183 case bp_overlay_event:
7184 case bp_jit_event:
7185 case bp_longjmp_master:
7186 case bp_std_terminate_master:
7187 case bp_exception_master:
7188 case bp_gnu_ifunc_resolver:
7189 case bp_gnu_ifunc_resolver_return:
7190 case bp_dprintf:
7191 loc->loc_type = bp_loc_software_breakpoint;
7192 mark_breakpoint_location_modified (loc);
7193 break;
7194 case bp_hardware_breakpoint:
7195 loc->loc_type = bp_loc_hardware_breakpoint;
7196 mark_breakpoint_location_modified (loc);
7197 break;
7198 case bp_hardware_watchpoint:
7199 case bp_read_watchpoint:
7200 case bp_access_watchpoint:
7201 loc->loc_type = bp_loc_hardware_watchpoint;
7202 break;
7203 case bp_watchpoint:
7204 case bp_catchpoint:
7205 case bp_tracepoint:
7206 case bp_fast_tracepoint:
7207 case bp_static_tracepoint:
7208 loc->loc_type = bp_loc_other;
7209 break;
7210 default:
7211 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7212 }
7213
7214 loc->refc = 1;
7215 }
7216
7217 /* Allocate a struct bp_location. */
7218
7219 static struct bp_location *
7220 allocate_bp_location (struct breakpoint *bpt)
7221 {
7222 return bpt->ops->allocate_location (bpt);
7223 }
7224
7225 static void
7226 free_bp_location (struct bp_location *loc)
7227 {
7228 loc->ops->dtor (loc);
7229 xfree (loc);
7230 }
7231
7232 /* Increment reference count. */
7233
7234 static void
7235 incref_bp_location (struct bp_location *bl)
7236 {
7237 ++bl->refc;
7238 }
7239
7240 /* Decrement reference count. If the reference count reaches 0,
7241 destroy the bp_location. Sets *BLP to NULL. */
7242
7243 static void
7244 decref_bp_location (struct bp_location **blp)
7245 {
7246 gdb_assert ((*blp)->refc > 0);
7247
7248 if (--(*blp)->refc == 0)
7249 free_bp_location (*blp);
7250 *blp = NULL;
7251 }
7252
7253 /* Add breakpoint B at the end of the global breakpoint chain. */
7254
7255 static void
7256 add_to_breakpoint_chain (struct breakpoint *b)
7257 {
7258 struct breakpoint *b1;
7259
7260 /* Add this breakpoint to the end of the chain so that a list of
7261 breakpoints will come out in order of increasing numbers. */
7262
7263 b1 = breakpoint_chain;
7264 if (b1 == 0)
7265 breakpoint_chain = b;
7266 else
7267 {
7268 while (b1->next)
7269 b1 = b1->next;
7270 b1->next = b;
7271 }
7272 }
7273
7274 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7275
7276 static void
7277 init_raw_breakpoint_without_location (struct breakpoint *b,
7278 struct gdbarch *gdbarch,
7279 enum bptype bptype,
7280 const struct breakpoint_ops *ops)
7281 {
7282 memset (b, 0, sizeof (*b));
7283
7284 gdb_assert (ops != NULL);
7285
7286 b->ops = ops;
7287 b->type = bptype;
7288 b->gdbarch = gdbarch;
7289 b->language = current_language->la_language;
7290 b->input_radix = input_radix;
7291 b->thread = -1;
7292 b->enable_state = bp_enabled;
7293 b->next = 0;
7294 b->silent = 0;
7295 b->ignore_count = 0;
7296 b->commands = NULL;
7297 b->frame_id = null_frame_id;
7298 b->condition_not_parsed = 0;
7299 b->py_bp_object = NULL;
7300 b->related_breakpoint = b;
7301 }
7302
7303 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7304 that has type BPTYPE and has no locations as yet. */
7305
7306 static struct breakpoint *
7307 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7308 enum bptype bptype,
7309 const struct breakpoint_ops *ops)
7310 {
7311 struct breakpoint *b = XNEW (struct breakpoint);
7312
7313 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7314 add_to_breakpoint_chain (b);
7315 return b;
7316 }
7317
7318 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7319 resolutions should be made as the user specified the location explicitly
7320 enough. */
7321
7322 static void
7323 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7324 {
7325 gdb_assert (loc->owner != NULL);
7326
7327 if (loc->owner->type == bp_breakpoint
7328 || loc->owner->type == bp_hardware_breakpoint
7329 || is_tracepoint (loc->owner))
7330 {
7331 int is_gnu_ifunc;
7332 const char *function_name;
7333 CORE_ADDR func_addr;
7334
7335 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7336 &func_addr, NULL, &is_gnu_ifunc);
7337
7338 if (is_gnu_ifunc && !explicit_loc)
7339 {
7340 struct breakpoint *b = loc->owner;
7341
7342 gdb_assert (loc->pspace == current_program_space);
7343 if (gnu_ifunc_resolve_name (function_name,
7344 &loc->requested_address))
7345 {
7346 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7347 loc->address = adjust_breakpoint_address (loc->gdbarch,
7348 loc->requested_address,
7349 b->type);
7350 }
7351 else if (b->type == bp_breakpoint && b->loc == loc
7352 && loc->next == NULL && b->related_breakpoint == b)
7353 {
7354 /* Create only the whole new breakpoint of this type but do not
7355 mess more complicated breakpoints with multiple locations. */
7356 b->type = bp_gnu_ifunc_resolver;
7357 /* Remember the resolver's address for use by the return
7358 breakpoint. */
7359 loc->related_address = func_addr;
7360 }
7361 }
7362
7363 if (function_name)
7364 loc->function_name = xstrdup (function_name);
7365 }
7366 }
7367
7368 /* Attempt to determine architecture of location identified by SAL. */
7369 struct gdbarch *
7370 get_sal_arch (struct symtab_and_line sal)
7371 {
7372 if (sal.section)
7373 return get_objfile_arch (sal.section->objfile);
7374 if (sal.symtab)
7375 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7376
7377 return NULL;
7378 }
7379
7380 /* Low level routine for partially initializing a breakpoint of type
7381 BPTYPE. The newly created breakpoint's address, section, source
7382 file name, and line number are provided by SAL.
7383
7384 It is expected that the caller will complete the initialization of
7385 the newly created breakpoint struct as well as output any status
7386 information regarding the creation of a new breakpoint. */
7387
7388 static void
7389 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7390 struct symtab_and_line sal, enum bptype bptype,
7391 const struct breakpoint_ops *ops)
7392 {
7393 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7394
7395 add_location_to_breakpoint (b, &sal);
7396
7397 if (bptype != bp_catchpoint)
7398 gdb_assert (sal.pspace != NULL);
7399
7400 /* Store the program space that was used to set the breakpoint,
7401 except for ordinary breakpoints, which are independent of the
7402 program space. */
7403 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7404 b->pspace = sal.pspace;
7405 }
7406
7407 /* set_raw_breakpoint is a low level routine for allocating and
7408 partially initializing a breakpoint of type BPTYPE. The newly
7409 created breakpoint's address, section, source file name, and line
7410 number are provided by SAL. The newly created and partially
7411 initialized breakpoint is added to the breakpoint chain and
7412 is also returned as the value of this function.
7413
7414 It is expected that the caller will complete the initialization of
7415 the newly created breakpoint struct as well as output any status
7416 information regarding the creation of a new breakpoint. In
7417 particular, set_raw_breakpoint does NOT set the breakpoint
7418 number! Care should be taken to not allow an error to occur
7419 prior to completing the initialization of the breakpoint. If this
7420 should happen, a bogus breakpoint will be left on the chain. */
7421
7422 struct breakpoint *
7423 set_raw_breakpoint (struct gdbarch *gdbarch,
7424 struct symtab_and_line sal, enum bptype bptype,
7425 const struct breakpoint_ops *ops)
7426 {
7427 struct breakpoint *b = XNEW (struct breakpoint);
7428
7429 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7430 add_to_breakpoint_chain (b);
7431 return b;
7432 }
7433
7434 /* Call this routine when stepping and nexting to enable a breakpoint
7435 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7436 initiated the operation. */
7437
7438 void
7439 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7440 {
7441 struct breakpoint *b, *b_tmp;
7442 int thread = tp->num;
7443
7444 /* To avoid having to rescan all objfile symbols at every step,
7445 we maintain a list of continually-inserted but always disabled
7446 longjmp "master" breakpoints. Here, we simply create momentary
7447 clones of those and enable them for the requested thread. */
7448 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7449 if (b->pspace == current_program_space
7450 && (b->type == bp_longjmp_master
7451 || b->type == bp_exception_master))
7452 {
7453 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7454 struct breakpoint *clone;
7455
7456 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7457 after their removal. */
7458 clone = momentary_breakpoint_from_master (b, type,
7459 &longjmp_breakpoint_ops, 1);
7460 clone->thread = thread;
7461 }
7462
7463 tp->initiating_frame = frame;
7464 }
7465
7466 /* Delete all longjmp breakpoints from THREAD. */
7467 void
7468 delete_longjmp_breakpoint (int thread)
7469 {
7470 struct breakpoint *b, *b_tmp;
7471
7472 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7473 if (b->type == bp_longjmp || b->type == bp_exception)
7474 {
7475 if (b->thread == thread)
7476 delete_breakpoint (b);
7477 }
7478 }
7479
7480 void
7481 delete_longjmp_breakpoint_at_next_stop (int thread)
7482 {
7483 struct breakpoint *b, *b_tmp;
7484
7485 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7486 if (b->type == bp_longjmp || b->type == bp_exception)
7487 {
7488 if (b->thread == thread)
7489 b->disposition = disp_del_at_next_stop;
7490 }
7491 }
7492
7493 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7494 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7495 pointer to any of them. Return NULL if this system cannot place longjmp
7496 breakpoints. */
7497
7498 struct breakpoint *
7499 set_longjmp_breakpoint_for_call_dummy (void)
7500 {
7501 struct breakpoint *b, *retval = NULL;
7502
7503 ALL_BREAKPOINTS (b)
7504 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7505 {
7506 struct breakpoint *new_b;
7507
7508 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7509 &momentary_breakpoint_ops,
7510 1);
7511 new_b->thread = pid_to_thread_id (inferior_ptid);
7512
7513 /* Link NEW_B into the chain of RETVAL breakpoints. */
7514
7515 gdb_assert (new_b->related_breakpoint == new_b);
7516 if (retval == NULL)
7517 retval = new_b;
7518 new_b->related_breakpoint = retval;
7519 while (retval->related_breakpoint != new_b->related_breakpoint)
7520 retval = retval->related_breakpoint;
7521 retval->related_breakpoint = new_b;
7522 }
7523
7524 return retval;
7525 }
7526
7527 /* Verify all existing dummy frames and their associated breakpoints for
7528 TP. Remove those which can no longer be found in the current frame
7529 stack.
7530
7531 You should call this function only at places where it is safe to currently
7532 unwind the whole stack. Failed stack unwind would discard live dummy
7533 frames. */
7534
7535 void
7536 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7537 {
7538 struct breakpoint *b, *b_tmp;
7539
7540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7541 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7542 {
7543 struct breakpoint *dummy_b = b->related_breakpoint;
7544
7545 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7546 dummy_b = dummy_b->related_breakpoint;
7547 if (dummy_b->type != bp_call_dummy
7548 || frame_find_by_id (dummy_b->frame_id) != NULL)
7549 continue;
7550
7551 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7552
7553 while (b->related_breakpoint != b)
7554 {
7555 if (b_tmp == b->related_breakpoint)
7556 b_tmp = b->related_breakpoint->next;
7557 delete_breakpoint (b->related_breakpoint);
7558 }
7559 delete_breakpoint (b);
7560 }
7561 }
7562
7563 void
7564 enable_overlay_breakpoints (void)
7565 {
7566 struct breakpoint *b;
7567
7568 ALL_BREAKPOINTS (b)
7569 if (b->type == bp_overlay_event)
7570 {
7571 b->enable_state = bp_enabled;
7572 update_global_location_list (UGLL_MAY_INSERT);
7573 overlay_events_enabled = 1;
7574 }
7575 }
7576
7577 void
7578 disable_overlay_breakpoints (void)
7579 {
7580 struct breakpoint *b;
7581
7582 ALL_BREAKPOINTS (b)
7583 if (b->type == bp_overlay_event)
7584 {
7585 b->enable_state = bp_disabled;
7586 update_global_location_list (UGLL_DONT_INSERT);
7587 overlay_events_enabled = 0;
7588 }
7589 }
7590
7591 /* Set an active std::terminate breakpoint for each std::terminate
7592 master breakpoint. */
7593 void
7594 set_std_terminate_breakpoint (void)
7595 {
7596 struct breakpoint *b, *b_tmp;
7597
7598 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7599 if (b->pspace == current_program_space
7600 && b->type == bp_std_terminate_master)
7601 {
7602 momentary_breakpoint_from_master (b, bp_std_terminate,
7603 &momentary_breakpoint_ops, 1);
7604 }
7605 }
7606
7607 /* Delete all the std::terminate breakpoints. */
7608 void
7609 delete_std_terminate_breakpoint (void)
7610 {
7611 struct breakpoint *b, *b_tmp;
7612
7613 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7614 if (b->type == bp_std_terminate)
7615 delete_breakpoint (b);
7616 }
7617
7618 struct breakpoint *
7619 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7620 {
7621 struct breakpoint *b;
7622
7623 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7624 &internal_breakpoint_ops);
7625
7626 b->enable_state = bp_enabled;
7627 /* addr_string has to be used or breakpoint_re_set will delete me. */
7628 b->addr_string
7629 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7630
7631 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7632
7633 return b;
7634 }
7635
7636 void
7637 remove_thread_event_breakpoints (void)
7638 {
7639 struct breakpoint *b, *b_tmp;
7640
7641 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7642 if (b->type == bp_thread_event
7643 && b->loc->pspace == current_program_space)
7644 delete_breakpoint (b);
7645 }
7646
7647 struct lang_and_radix
7648 {
7649 enum language lang;
7650 int radix;
7651 };
7652
7653 /* Create a breakpoint for JIT code registration and unregistration. */
7654
7655 struct breakpoint *
7656 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7657 {
7658 struct breakpoint *b;
7659
7660 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7661 &internal_breakpoint_ops);
7662 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7663 return b;
7664 }
7665
7666 /* Remove JIT code registration and unregistration breakpoint(s). */
7667
7668 void
7669 remove_jit_event_breakpoints (void)
7670 {
7671 struct breakpoint *b, *b_tmp;
7672
7673 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7674 if (b->type == bp_jit_event
7675 && b->loc->pspace == current_program_space)
7676 delete_breakpoint (b);
7677 }
7678
7679 void
7680 remove_solib_event_breakpoints (void)
7681 {
7682 struct breakpoint *b, *b_tmp;
7683
7684 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7685 if (b->type == bp_shlib_event
7686 && b->loc->pspace == current_program_space)
7687 delete_breakpoint (b);
7688 }
7689
7690 /* See breakpoint.h. */
7691
7692 void
7693 remove_solib_event_breakpoints_at_next_stop (void)
7694 {
7695 struct breakpoint *b, *b_tmp;
7696
7697 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7698 if (b->type == bp_shlib_event
7699 && b->loc->pspace == current_program_space)
7700 b->disposition = disp_del_at_next_stop;
7701 }
7702
7703 /* Helper for create_solib_event_breakpoint /
7704 create_and_insert_solib_event_breakpoint. Allows specifying which
7705 INSERT_MODE to pass through to update_global_location_list. */
7706
7707 static struct breakpoint *
7708 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7709 enum ugll_insert_mode insert_mode)
7710 {
7711 struct breakpoint *b;
7712
7713 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7714 &internal_breakpoint_ops);
7715 update_global_location_list_nothrow (insert_mode);
7716 return b;
7717 }
7718
7719 struct breakpoint *
7720 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7721 {
7722 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7723 }
7724
7725 /* See breakpoint.h. */
7726
7727 struct breakpoint *
7728 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7729 {
7730 struct breakpoint *b;
7731
7732 /* Explicitly tell update_global_location_list to insert
7733 locations. */
7734 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7735 if (!b->loc->inserted)
7736 {
7737 delete_breakpoint (b);
7738 return NULL;
7739 }
7740 return b;
7741 }
7742
7743 /* Disable any breakpoints that are on code in shared libraries. Only
7744 apply to enabled breakpoints, disabled ones can just stay disabled. */
7745
7746 void
7747 disable_breakpoints_in_shlibs (void)
7748 {
7749 struct bp_location *loc, **locp_tmp;
7750
7751 ALL_BP_LOCATIONS (loc, locp_tmp)
7752 {
7753 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7754 struct breakpoint *b = loc->owner;
7755
7756 /* We apply the check to all breakpoints, including disabled for
7757 those with loc->duplicate set. This is so that when breakpoint
7758 becomes enabled, or the duplicate is removed, gdb will try to
7759 insert all breakpoints. If we don't set shlib_disabled here,
7760 we'll try to insert those breakpoints and fail. */
7761 if (((b->type == bp_breakpoint)
7762 || (b->type == bp_jit_event)
7763 || (b->type == bp_hardware_breakpoint)
7764 || (is_tracepoint (b)))
7765 && loc->pspace == current_program_space
7766 && !loc->shlib_disabled
7767 && solib_name_from_address (loc->pspace, loc->address)
7768 )
7769 {
7770 loc->shlib_disabled = 1;
7771 }
7772 }
7773 }
7774
7775 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7776 notification of unloaded_shlib. Only apply to enabled breakpoints,
7777 disabled ones can just stay disabled. */
7778
7779 static void
7780 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7781 {
7782 struct bp_location *loc, **locp_tmp;
7783 int disabled_shlib_breaks = 0;
7784
7785 /* SunOS a.out shared libraries are always mapped, so do not
7786 disable breakpoints; they will only be reported as unloaded
7787 through clear_solib when GDB discards its shared library
7788 list. See clear_solib for more information. */
7789 if (exec_bfd != NULL
7790 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7791 return;
7792
7793 ALL_BP_LOCATIONS (loc, locp_tmp)
7794 {
7795 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7796 struct breakpoint *b = loc->owner;
7797
7798 if (solib->pspace == loc->pspace
7799 && !loc->shlib_disabled
7800 && (((b->type == bp_breakpoint
7801 || b->type == bp_jit_event
7802 || b->type == bp_hardware_breakpoint)
7803 && (loc->loc_type == bp_loc_hardware_breakpoint
7804 || loc->loc_type == bp_loc_software_breakpoint))
7805 || is_tracepoint (b))
7806 && solib_contains_address_p (solib, loc->address))
7807 {
7808 loc->shlib_disabled = 1;
7809 /* At this point, we cannot rely on remove_breakpoint
7810 succeeding so we must mark the breakpoint as not inserted
7811 to prevent future errors occurring in remove_breakpoints. */
7812 loc->inserted = 0;
7813
7814 /* This may cause duplicate notifications for the same breakpoint. */
7815 observer_notify_breakpoint_modified (b);
7816
7817 if (!disabled_shlib_breaks)
7818 {
7819 target_terminal_ours_for_output ();
7820 warning (_("Temporarily disabling breakpoints "
7821 "for unloaded shared library \"%s\""),
7822 solib->so_name);
7823 }
7824 disabled_shlib_breaks = 1;
7825 }
7826 }
7827 }
7828
7829 /* Disable any breakpoints and tracepoints in OBJFILE upon
7830 notification of free_objfile. Only apply to enabled breakpoints,
7831 disabled ones can just stay disabled. */
7832
7833 static void
7834 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7835 {
7836 struct breakpoint *b;
7837
7838 if (objfile == NULL)
7839 return;
7840
7841 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7842 managed by the user with add-symbol-file/remove-symbol-file.
7843 Similarly to how breakpoints in shared libraries are handled in
7844 response to "nosharedlibrary", mark breakpoints in such modules
7845 shlib_disabled so they end up uninserted on the next global
7846 location list update. Shared libraries not loaded by the user
7847 aren't handled here -- they're already handled in
7848 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7849 solib_unloaded observer. We skip objfiles that are not
7850 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7851 main objfile). */
7852 if ((objfile->flags & OBJF_SHARED) == 0
7853 || (objfile->flags & OBJF_USERLOADED) == 0)
7854 return;
7855
7856 ALL_BREAKPOINTS (b)
7857 {
7858 struct bp_location *loc;
7859 int bp_modified = 0;
7860
7861 if (!is_breakpoint (b) && !is_tracepoint (b))
7862 continue;
7863
7864 for (loc = b->loc; loc != NULL; loc = loc->next)
7865 {
7866 CORE_ADDR loc_addr = loc->address;
7867
7868 if (loc->loc_type != bp_loc_hardware_breakpoint
7869 && loc->loc_type != bp_loc_software_breakpoint)
7870 continue;
7871
7872 if (loc->shlib_disabled != 0)
7873 continue;
7874
7875 if (objfile->pspace != loc->pspace)
7876 continue;
7877
7878 if (loc->loc_type != bp_loc_hardware_breakpoint
7879 && loc->loc_type != bp_loc_software_breakpoint)
7880 continue;
7881
7882 if (is_addr_in_objfile (loc_addr, objfile))
7883 {
7884 loc->shlib_disabled = 1;
7885 /* At this point, we don't know whether the object was
7886 unmapped from the inferior or not, so leave the
7887 inserted flag alone. We'll handle failure to
7888 uninsert quietly, in case the object was indeed
7889 unmapped. */
7890
7891 mark_breakpoint_location_modified (loc);
7892
7893 bp_modified = 1;
7894 }
7895 }
7896
7897 if (bp_modified)
7898 observer_notify_breakpoint_modified (b);
7899 }
7900 }
7901
7902 /* FORK & VFORK catchpoints. */
7903
7904 /* An instance of this type is used to represent a fork or vfork
7905 catchpoint. It includes a "struct breakpoint" as a kind of base
7906 class; users downcast to "struct breakpoint *" when needed. A
7907 breakpoint is really of this type iff its ops pointer points to
7908 CATCH_FORK_BREAKPOINT_OPS. */
7909
7910 struct fork_catchpoint
7911 {
7912 /* The base class. */
7913 struct breakpoint base;
7914
7915 /* Process id of a child process whose forking triggered this
7916 catchpoint. This field is only valid immediately after this
7917 catchpoint has triggered. */
7918 ptid_t forked_inferior_pid;
7919 };
7920
7921 /* Implement the "insert" breakpoint_ops method for fork
7922 catchpoints. */
7923
7924 static int
7925 insert_catch_fork (struct bp_location *bl)
7926 {
7927 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7928 }
7929
7930 /* Implement the "remove" breakpoint_ops method for fork
7931 catchpoints. */
7932
7933 static int
7934 remove_catch_fork (struct bp_location *bl)
7935 {
7936 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7937 }
7938
7939 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7940 catchpoints. */
7941
7942 static int
7943 breakpoint_hit_catch_fork (const struct bp_location *bl,
7944 struct address_space *aspace, CORE_ADDR bp_addr,
7945 const struct target_waitstatus *ws)
7946 {
7947 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7948
7949 if (ws->kind != TARGET_WAITKIND_FORKED)
7950 return 0;
7951
7952 c->forked_inferior_pid = ws->value.related_pid;
7953 return 1;
7954 }
7955
7956 /* Implement the "print_it" breakpoint_ops method for fork
7957 catchpoints. */
7958
7959 static enum print_stop_action
7960 print_it_catch_fork (bpstat bs)
7961 {
7962 struct ui_out *uiout = current_uiout;
7963 struct breakpoint *b = bs->breakpoint_at;
7964 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7965
7966 annotate_catchpoint (b->number);
7967 if (b->disposition == disp_del)
7968 ui_out_text (uiout, "\nTemporary catchpoint ");
7969 else
7970 ui_out_text (uiout, "\nCatchpoint ");
7971 if (ui_out_is_mi_like_p (uiout))
7972 {
7973 ui_out_field_string (uiout, "reason",
7974 async_reason_lookup (EXEC_ASYNC_FORK));
7975 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7976 }
7977 ui_out_field_int (uiout, "bkptno", b->number);
7978 ui_out_text (uiout, " (forked process ");
7979 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7980 ui_out_text (uiout, "), ");
7981 return PRINT_SRC_AND_LOC;
7982 }
7983
7984 /* Implement the "print_one" breakpoint_ops method for fork
7985 catchpoints. */
7986
7987 static void
7988 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7989 {
7990 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7991 struct value_print_options opts;
7992 struct ui_out *uiout = current_uiout;
7993
7994 get_user_print_options (&opts);
7995
7996 /* Field 4, the address, is omitted (which makes the columns not
7997 line up too nicely with the headers, but the effect is relatively
7998 readable). */
7999 if (opts.addressprint)
8000 ui_out_field_skip (uiout, "addr");
8001 annotate_field (5);
8002 ui_out_text (uiout, "fork");
8003 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8004 {
8005 ui_out_text (uiout, ", process ");
8006 ui_out_field_int (uiout, "what",
8007 ptid_get_pid (c->forked_inferior_pid));
8008 ui_out_spaces (uiout, 1);
8009 }
8010
8011 if (ui_out_is_mi_like_p (uiout))
8012 ui_out_field_string (uiout, "catch-type", "fork");
8013 }
8014
8015 /* Implement the "print_mention" breakpoint_ops method for fork
8016 catchpoints. */
8017
8018 static void
8019 print_mention_catch_fork (struct breakpoint *b)
8020 {
8021 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8022 }
8023
8024 /* Implement the "print_recreate" breakpoint_ops method for fork
8025 catchpoints. */
8026
8027 static void
8028 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8029 {
8030 fprintf_unfiltered (fp, "catch fork");
8031 print_recreate_thread (b, fp);
8032 }
8033
8034 /* The breakpoint_ops structure to be used in fork catchpoints. */
8035
8036 static struct breakpoint_ops catch_fork_breakpoint_ops;
8037
8038 /* Implement the "insert" breakpoint_ops method for vfork
8039 catchpoints. */
8040
8041 static int
8042 insert_catch_vfork (struct bp_location *bl)
8043 {
8044 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8045 }
8046
8047 /* Implement the "remove" breakpoint_ops method for vfork
8048 catchpoints. */
8049
8050 static int
8051 remove_catch_vfork (struct bp_location *bl)
8052 {
8053 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8054 }
8055
8056 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8057 catchpoints. */
8058
8059 static int
8060 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8061 struct address_space *aspace, CORE_ADDR bp_addr,
8062 const struct target_waitstatus *ws)
8063 {
8064 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8065
8066 if (ws->kind != TARGET_WAITKIND_VFORKED)
8067 return 0;
8068
8069 c->forked_inferior_pid = ws->value.related_pid;
8070 return 1;
8071 }
8072
8073 /* Implement the "print_it" breakpoint_ops method for vfork
8074 catchpoints. */
8075
8076 static enum print_stop_action
8077 print_it_catch_vfork (bpstat bs)
8078 {
8079 struct ui_out *uiout = current_uiout;
8080 struct breakpoint *b = bs->breakpoint_at;
8081 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8082
8083 annotate_catchpoint (b->number);
8084 if (b->disposition == disp_del)
8085 ui_out_text (uiout, "\nTemporary catchpoint ");
8086 else
8087 ui_out_text (uiout, "\nCatchpoint ");
8088 if (ui_out_is_mi_like_p (uiout))
8089 {
8090 ui_out_field_string (uiout, "reason",
8091 async_reason_lookup (EXEC_ASYNC_VFORK));
8092 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8093 }
8094 ui_out_field_int (uiout, "bkptno", b->number);
8095 ui_out_text (uiout, " (vforked process ");
8096 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8097 ui_out_text (uiout, "), ");
8098 return PRINT_SRC_AND_LOC;
8099 }
8100
8101 /* Implement the "print_one" breakpoint_ops method for vfork
8102 catchpoints. */
8103
8104 static void
8105 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8106 {
8107 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8108 struct value_print_options opts;
8109 struct ui_out *uiout = current_uiout;
8110
8111 get_user_print_options (&opts);
8112 /* Field 4, the address, is omitted (which makes the columns not
8113 line up too nicely with the headers, but the effect is relatively
8114 readable). */
8115 if (opts.addressprint)
8116 ui_out_field_skip (uiout, "addr");
8117 annotate_field (5);
8118 ui_out_text (uiout, "vfork");
8119 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8120 {
8121 ui_out_text (uiout, ", process ");
8122 ui_out_field_int (uiout, "what",
8123 ptid_get_pid (c->forked_inferior_pid));
8124 ui_out_spaces (uiout, 1);
8125 }
8126
8127 if (ui_out_is_mi_like_p (uiout))
8128 ui_out_field_string (uiout, "catch-type", "vfork");
8129 }
8130
8131 /* Implement the "print_mention" breakpoint_ops method for vfork
8132 catchpoints. */
8133
8134 static void
8135 print_mention_catch_vfork (struct breakpoint *b)
8136 {
8137 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8138 }
8139
8140 /* Implement the "print_recreate" breakpoint_ops method for vfork
8141 catchpoints. */
8142
8143 static void
8144 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8145 {
8146 fprintf_unfiltered (fp, "catch vfork");
8147 print_recreate_thread (b, fp);
8148 }
8149
8150 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8151
8152 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8153
8154 /* An instance of this type is used to represent an solib catchpoint.
8155 It includes a "struct breakpoint" as a kind of base class; users
8156 downcast to "struct breakpoint *" when needed. A breakpoint is
8157 really of this type iff its ops pointer points to
8158 CATCH_SOLIB_BREAKPOINT_OPS. */
8159
8160 struct solib_catchpoint
8161 {
8162 /* The base class. */
8163 struct breakpoint base;
8164
8165 /* True for "catch load", false for "catch unload". */
8166 unsigned char is_load;
8167
8168 /* Regular expression to match, if any. COMPILED is only valid when
8169 REGEX is non-NULL. */
8170 char *regex;
8171 regex_t compiled;
8172 };
8173
8174 static void
8175 dtor_catch_solib (struct breakpoint *b)
8176 {
8177 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8178
8179 if (self->regex)
8180 regfree (&self->compiled);
8181 xfree (self->regex);
8182
8183 base_breakpoint_ops.dtor (b);
8184 }
8185
8186 static int
8187 insert_catch_solib (struct bp_location *ignore)
8188 {
8189 return 0;
8190 }
8191
8192 static int
8193 remove_catch_solib (struct bp_location *ignore)
8194 {
8195 return 0;
8196 }
8197
8198 static int
8199 breakpoint_hit_catch_solib (const struct bp_location *bl,
8200 struct address_space *aspace,
8201 CORE_ADDR bp_addr,
8202 const struct target_waitstatus *ws)
8203 {
8204 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8205 struct breakpoint *other;
8206
8207 if (ws->kind == TARGET_WAITKIND_LOADED)
8208 return 1;
8209
8210 ALL_BREAKPOINTS (other)
8211 {
8212 struct bp_location *other_bl;
8213
8214 if (other == bl->owner)
8215 continue;
8216
8217 if (other->type != bp_shlib_event)
8218 continue;
8219
8220 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8221 continue;
8222
8223 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8224 {
8225 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8226 return 1;
8227 }
8228 }
8229
8230 return 0;
8231 }
8232
8233 static void
8234 check_status_catch_solib (struct bpstats *bs)
8235 {
8236 struct solib_catchpoint *self
8237 = (struct solib_catchpoint *) bs->breakpoint_at;
8238 int ix;
8239
8240 if (self->is_load)
8241 {
8242 struct so_list *iter;
8243
8244 for (ix = 0;
8245 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8246 ix, iter);
8247 ++ix)
8248 {
8249 if (!self->regex
8250 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8251 return;
8252 }
8253 }
8254 else
8255 {
8256 char *iter;
8257
8258 for (ix = 0;
8259 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8260 ix, iter);
8261 ++ix)
8262 {
8263 if (!self->regex
8264 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8265 return;
8266 }
8267 }
8268
8269 bs->stop = 0;
8270 bs->print_it = print_it_noop;
8271 }
8272
8273 static enum print_stop_action
8274 print_it_catch_solib (bpstat bs)
8275 {
8276 struct breakpoint *b = bs->breakpoint_at;
8277 struct ui_out *uiout = current_uiout;
8278
8279 annotate_catchpoint (b->number);
8280 if (b->disposition == disp_del)
8281 ui_out_text (uiout, "\nTemporary catchpoint ");
8282 else
8283 ui_out_text (uiout, "\nCatchpoint ");
8284 ui_out_field_int (uiout, "bkptno", b->number);
8285 ui_out_text (uiout, "\n");
8286 if (ui_out_is_mi_like_p (uiout))
8287 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8288 print_solib_event (1);
8289 return PRINT_SRC_AND_LOC;
8290 }
8291
8292 static void
8293 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8294 {
8295 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8296 struct value_print_options opts;
8297 struct ui_out *uiout = current_uiout;
8298 char *msg;
8299
8300 get_user_print_options (&opts);
8301 /* Field 4, the address, is omitted (which makes the columns not
8302 line up too nicely with the headers, but the effect is relatively
8303 readable). */
8304 if (opts.addressprint)
8305 {
8306 annotate_field (4);
8307 ui_out_field_skip (uiout, "addr");
8308 }
8309
8310 annotate_field (5);
8311 if (self->is_load)
8312 {
8313 if (self->regex)
8314 msg = xstrprintf (_("load of library matching %s"), self->regex);
8315 else
8316 msg = xstrdup (_("load of library"));
8317 }
8318 else
8319 {
8320 if (self->regex)
8321 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8322 else
8323 msg = xstrdup (_("unload of library"));
8324 }
8325 ui_out_field_string (uiout, "what", msg);
8326 xfree (msg);
8327
8328 if (ui_out_is_mi_like_p (uiout))
8329 ui_out_field_string (uiout, "catch-type",
8330 self->is_load ? "load" : "unload");
8331 }
8332
8333 static void
8334 print_mention_catch_solib (struct breakpoint *b)
8335 {
8336 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8337
8338 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8339 self->is_load ? "load" : "unload");
8340 }
8341
8342 static void
8343 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8344 {
8345 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8346
8347 fprintf_unfiltered (fp, "%s %s",
8348 b->disposition == disp_del ? "tcatch" : "catch",
8349 self->is_load ? "load" : "unload");
8350 if (self->regex)
8351 fprintf_unfiltered (fp, " %s", self->regex);
8352 fprintf_unfiltered (fp, "\n");
8353 }
8354
8355 static struct breakpoint_ops catch_solib_breakpoint_ops;
8356
8357 /* Shared helper function (MI and CLI) for creating and installing
8358 a shared object event catchpoint. If IS_LOAD is non-zero then
8359 the events to be caught are load events, otherwise they are
8360 unload events. If IS_TEMP is non-zero the catchpoint is a
8361 temporary one. If ENABLED is non-zero the catchpoint is
8362 created in an enabled state. */
8363
8364 void
8365 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8366 {
8367 struct solib_catchpoint *c;
8368 struct gdbarch *gdbarch = get_current_arch ();
8369 struct cleanup *cleanup;
8370
8371 if (!arg)
8372 arg = "";
8373 arg = skip_spaces (arg);
8374
8375 c = XCNEW (struct solib_catchpoint);
8376 cleanup = make_cleanup (xfree, c);
8377
8378 if (*arg != '\0')
8379 {
8380 int errcode;
8381
8382 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8383 if (errcode != 0)
8384 {
8385 char *err = get_regcomp_error (errcode, &c->compiled);
8386
8387 make_cleanup (xfree, err);
8388 error (_("Invalid regexp (%s): %s"), err, arg);
8389 }
8390 c->regex = xstrdup (arg);
8391 }
8392
8393 c->is_load = is_load;
8394 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8395 &catch_solib_breakpoint_ops);
8396
8397 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8398
8399 discard_cleanups (cleanup);
8400 install_breakpoint (0, &c->base, 1);
8401 }
8402
8403 /* A helper function that does all the work for "catch load" and
8404 "catch unload". */
8405
8406 static void
8407 catch_load_or_unload (char *arg, int from_tty, int is_load,
8408 struct cmd_list_element *command)
8409 {
8410 int tempflag;
8411 const int enabled = 1;
8412
8413 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8414
8415 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8416 }
8417
8418 static void
8419 catch_load_command_1 (char *arg, int from_tty,
8420 struct cmd_list_element *command)
8421 {
8422 catch_load_or_unload (arg, from_tty, 1, command);
8423 }
8424
8425 static void
8426 catch_unload_command_1 (char *arg, int from_tty,
8427 struct cmd_list_element *command)
8428 {
8429 catch_load_or_unload (arg, from_tty, 0, command);
8430 }
8431
8432 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8433 is non-zero, then make the breakpoint temporary. If COND_STRING is
8434 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8435 the breakpoint_ops structure associated to the catchpoint. */
8436
8437 void
8438 init_catchpoint (struct breakpoint *b,
8439 struct gdbarch *gdbarch, int tempflag,
8440 char *cond_string,
8441 const struct breakpoint_ops *ops)
8442 {
8443 struct symtab_and_line sal;
8444
8445 init_sal (&sal);
8446 sal.pspace = current_program_space;
8447
8448 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8449
8450 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8451 b->disposition = tempflag ? disp_del : disp_donttouch;
8452 }
8453
8454 void
8455 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8456 {
8457 add_to_breakpoint_chain (b);
8458 set_breakpoint_number (internal, b);
8459 if (is_tracepoint (b))
8460 set_tracepoint_count (breakpoint_count);
8461 if (!internal)
8462 mention (b);
8463 observer_notify_breakpoint_created (b);
8464
8465 if (update_gll)
8466 update_global_location_list (UGLL_MAY_INSERT);
8467 }
8468
8469 static void
8470 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8471 int tempflag, char *cond_string,
8472 const struct breakpoint_ops *ops)
8473 {
8474 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8475
8476 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8477
8478 c->forked_inferior_pid = null_ptid;
8479
8480 install_breakpoint (0, &c->base, 1);
8481 }
8482
8483 /* Exec catchpoints. */
8484
8485 /* An instance of this type is used to represent an exec catchpoint.
8486 It includes a "struct breakpoint" as a kind of base class; users
8487 downcast to "struct breakpoint *" when needed. A breakpoint is
8488 really of this type iff its ops pointer points to
8489 CATCH_EXEC_BREAKPOINT_OPS. */
8490
8491 struct exec_catchpoint
8492 {
8493 /* The base class. */
8494 struct breakpoint base;
8495
8496 /* Filename of a program whose exec triggered this catchpoint.
8497 This field is only valid immediately after this catchpoint has
8498 triggered. */
8499 char *exec_pathname;
8500 };
8501
8502 /* Implement the "dtor" breakpoint_ops method for exec
8503 catchpoints. */
8504
8505 static void
8506 dtor_catch_exec (struct breakpoint *b)
8507 {
8508 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8509
8510 xfree (c->exec_pathname);
8511
8512 base_breakpoint_ops.dtor (b);
8513 }
8514
8515 static int
8516 insert_catch_exec (struct bp_location *bl)
8517 {
8518 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8519 }
8520
8521 static int
8522 remove_catch_exec (struct bp_location *bl)
8523 {
8524 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8525 }
8526
8527 static int
8528 breakpoint_hit_catch_exec (const struct bp_location *bl,
8529 struct address_space *aspace, CORE_ADDR bp_addr,
8530 const struct target_waitstatus *ws)
8531 {
8532 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8533
8534 if (ws->kind != TARGET_WAITKIND_EXECD)
8535 return 0;
8536
8537 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8538 return 1;
8539 }
8540
8541 static enum print_stop_action
8542 print_it_catch_exec (bpstat bs)
8543 {
8544 struct ui_out *uiout = current_uiout;
8545 struct breakpoint *b = bs->breakpoint_at;
8546 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8547
8548 annotate_catchpoint (b->number);
8549 if (b->disposition == disp_del)
8550 ui_out_text (uiout, "\nTemporary catchpoint ");
8551 else
8552 ui_out_text (uiout, "\nCatchpoint ");
8553 if (ui_out_is_mi_like_p (uiout))
8554 {
8555 ui_out_field_string (uiout, "reason",
8556 async_reason_lookup (EXEC_ASYNC_EXEC));
8557 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8558 }
8559 ui_out_field_int (uiout, "bkptno", b->number);
8560 ui_out_text (uiout, " (exec'd ");
8561 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8562 ui_out_text (uiout, "), ");
8563
8564 return PRINT_SRC_AND_LOC;
8565 }
8566
8567 static void
8568 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8569 {
8570 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8571 struct value_print_options opts;
8572 struct ui_out *uiout = current_uiout;
8573
8574 get_user_print_options (&opts);
8575
8576 /* Field 4, the address, is omitted (which makes the columns
8577 not line up too nicely with the headers, but the effect
8578 is relatively readable). */
8579 if (opts.addressprint)
8580 ui_out_field_skip (uiout, "addr");
8581 annotate_field (5);
8582 ui_out_text (uiout, "exec");
8583 if (c->exec_pathname != NULL)
8584 {
8585 ui_out_text (uiout, ", program \"");
8586 ui_out_field_string (uiout, "what", c->exec_pathname);
8587 ui_out_text (uiout, "\" ");
8588 }
8589
8590 if (ui_out_is_mi_like_p (uiout))
8591 ui_out_field_string (uiout, "catch-type", "exec");
8592 }
8593
8594 static void
8595 print_mention_catch_exec (struct breakpoint *b)
8596 {
8597 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8598 }
8599
8600 /* Implement the "print_recreate" breakpoint_ops method for exec
8601 catchpoints. */
8602
8603 static void
8604 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8605 {
8606 fprintf_unfiltered (fp, "catch exec");
8607 print_recreate_thread (b, fp);
8608 }
8609
8610 static struct breakpoint_ops catch_exec_breakpoint_ops;
8611
8612 static int
8613 hw_breakpoint_used_count (void)
8614 {
8615 int i = 0;
8616 struct breakpoint *b;
8617 struct bp_location *bl;
8618
8619 ALL_BREAKPOINTS (b)
8620 {
8621 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8622 for (bl = b->loc; bl; bl = bl->next)
8623 {
8624 /* Special types of hardware breakpoints may use more than
8625 one register. */
8626 i += b->ops->resources_needed (bl);
8627 }
8628 }
8629
8630 return i;
8631 }
8632
8633 /* Returns the resources B would use if it were a hardware
8634 watchpoint. */
8635
8636 static int
8637 hw_watchpoint_use_count (struct breakpoint *b)
8638 {
8639 int i = 0;
8640 struct bp_location *bl;
8641
8642 if (!breakpoint_enabled (b))
8643 return 0;
8644
8645 for (bl = b->loc; bl; bl = bl->next)
8646 {
8647 /* Special types of hardware watchpoints may use more than
8648 one register. */
8649 i += b->ops->resources_needed (bl);
8650 }
8651
8652 return i;
8653 }
8654
8655 /* Returns the sum the used resources of all hardware watchpoints of
8656 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8657 the sum of the used resources of all hardware watchpoints of other
8658 types _not_ TYPE. */
8659
8660 static int
8661 hw_watchpoint_used_count_others (struct breakpoint *except,
8662 enum bptype type, int *other_type_used)
8663 {
8664 int i = 0;
8665 struct breakpoint *b;
8666
8667 *other_type_used = 0;
8668 ALL_BREAKPOINTS (b)
8669 {
8670 if (b == except)
8671 continue;
8672 if (!breakpoint_enabled (b))
8673 continue;
8674
8675 if (b->type == type)
8676 i += hw_watchpoint_use_count (b);
8677 else if (is_hardware_watchpoint (b))
8678 *other_type_used = 1;
8679 }
8680
8681 return i;
8682 }
8683
8684 void
8685 disable_watchpoints_before_interactive_call_start (void)
8686 {
8687 struct breakpoint *b;
8688
8689 ALL_BREAKPOINTS (b)
8690 {
8691 if (is_watchpoint (b) && breakpoint_enabled (b))
8692 {
8693 b->enable_state = bp_call_disabled;
8694 update_global_location_list (UGLL_DONT_INSERT);
8695 }
8696 }
8697 }
8698
8699 void
8700 enable_watchpoints_after_interactive_call_stop (void)
8701 {
8702 struct breakpoint *b;
8703
8704 ALL_BREAKPOINTS (b)
8705 {
8706 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8707 {
8708 b->enable_state = bp_enabled;
8709 update_global_location_list (UGLL_MAY_INSERT);
8710 }
8711 }
8712 }
8713
8714 void
8715 disable_breakpoints_before_startup (void)
8716 {
8717 current_program_space->executing_startup = 1;
8718 update_global_location_list (UGLL_DONT_INSERT);
8719 }
8720
8721 void
8722 enable_breakpoints_after_startup (void)
8723 {
8724 current_program_space->executing_startup = 0;
8725 breakpoint_re_set ();
8726 }
8727
8728 /* Create a new single-step breakpoint for thread THREAD, with no
8729 locations. */
8730
8731 static struct breakpoint *
8732 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8733 {
8734 struct breakpoint *b = XNEW (struct breakpoint);
8735
8736 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8737 &momentary_breakpoint_ops);
8738
8739 b->disposition = disp_donttouch;
8740 b->frame_id = null_frame_id;
8741
8742 b->thread = thread;
8743 gdb_assert (b->thread != 0);
8744
8745 add_to_breakpoint_chain (b);
8746
8747 return b;
8748 }
8749
8750 /* Set a momentary breakpoint of type TYPE at address specified by
8751 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8752 frame. */
8753
8754 struct breakpoint *
8755 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8756 struct frame_id frame_id, enum bptype type)
8757 {
8758 struct breakpoint *b;
8759
8760 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8761 tail-called one. */
8762 gdb_assert (!frame_id_artificial_p (frame_id));
8763
8764 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8765 b->enable_state = bp_enabled;
8766 b->disposition = disp_donttouch;
8767 b->frame_id = frame_id;
8768
8769 /* If we're debugging a multi-threaded program, then we want
8770 momentary breakpoints to be active in only a single thread of
8771 control. */
8772 if (in_thread_list (inferior_ptid))
8773 b->thread = pid_to_thread_id (inferior_ptid);
8774
8775 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8776
8777 return b;
8778 }
8779
8780 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8781 The new breakpoint will have type TYPE, use OPS as its
8782 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8783
8784 static struct breakpoint *
8785 momentary_breakpoint_from_master (struct breakpoint *orig,
8786 enum bptype type,
8787 const struct breakpoint_ops *ops,
8788 int loc_enabled)
8789 {
8790 struct breakpoint *copy;
8791
8792 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8793 copy->loc = allocate_bp_location (copy);
8794 set_breakpoint_location_function (copy->loc, 1);
8795
8796 copy->loc->gdbarch = orig->loc->gdbarch;
8797 copy->loc->requested_address = orig->loc->requested_address;
8798 copy->loc->address = orig->loc->address;
8799 copy->loc->section = orig->loc->section;
8800 copy->loc->pspace = orig->loc->pspace;
8801 copy->loc->probe = orig->loc->probe;
8802 copy->loc->line_number = orig->loc->line_number;
8803 copy->loc->symtab = orig->loc->symtab;
8804 copy->loc->enabled = loc_enabled;
8805 copy->frame_id = orig->frame_id;
8806 copy->thread = orig->thread;
8807 copy->pspace = orig->pspace;
8808
8809 copy->enable_state = bp_enabled;
8810 copy->disposition = disp_donttouch;
8811 copy->number = internal_breakpoint_number--;
8812
8813 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8814 return copy;
8815 }
8816
8817 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8818 ORIG is NULL. */
8819
8820 struct breakpoint *
8821 clone_momentary_breakpoint (struct breakpoint *orig)
8822 {
8823 /* If there's nothing to clone, then return nothing. */
8824 if (orig == NULL)
8825 return NULL;
8826
8827 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8828 }
8829
8830 struct breakpoint *
8831 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8832 enum bptype type)
8833 {
8834 struct symtab_and_line sal;
8835
8836 sal = find_pc_line (pc, 0);
8837 sal.pc = pc;
8838 sal.section = find_pc_overlay (pc);
8839 sal.explicit_pc = 1;
8840
8841 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8842 }
8843 \f
8844
8845 /* Tell the user we have just set a breakpoint B. */
8846
8847 static void
8848 mention (struct breakpoint *b)
8849 {
8850 b->ops->print_mention (b);
8851 if (ui_out_is_mi_like_p (current_uiout))
8852 return;
8853 printf_filtered ("\n");
8854 }
8855 \f
8856
8857 static int bp_loc_is_permanent (struct bp_location *loc);
8858
8859 static struct bp_location *
8860 add_location_to_breakpoint (struct breakpoint *b,
8861 const struct symtab_and_line *sal)
8862 {
8863 struct bp_location *loc, **tmp;
8864 CORE_ADDR adjusted_address;
8865 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8866
8867 if (loc_gdbarch == NULL)
8868 loc_gdbarch = b->gdbarch;
8869
8870 /* Adjust the breakpoint's address prior to allocating a location.
8871 Once we call allocate_bp_location(), that mostly uninitialized
8872 location will be placed on the location chain. Adjustment of the
8873 breakpoint may cause target_read_memory() to be called and we do
8874 not want its scan of the location chain to find a breakpoint and
8875 location that's only been partially initialized. */
8876 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8877 sal->pc, b->type);
8878
8879 /* Sort the locations by their ADDRESS. */
8880 loc = allocate_bp_location (b);
8881 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8882 tmp = &((*tmp)->next))
8883 ;
8884 loc->next = *tmp;
8885 *tmp = loc;
8886
8887 loc->requested_address = sal->pc;
8888 loc->address = adjusted_address;
8889 loc->pspace = sal->pspace;
8890 loc->probe.probe = sal->probe;
8891 loc->probe.objfile = sal->objfile;
8892 gdb_assert (loc->pspace != NULL);
8893 loc->section = sal->section;
8894 loc->gdbarch = loc_gdbarch;
8895 loc->line_number = sal->line;
8896 loc->symtab = sal->symtab;
8897
8898 set_breakpoint_location_function (loc,
8899 sal->explicit_pc || sal->explicit_line);
8900
8901 /* While by definition, permanent breakpoints are already present in the
8902 code, we don't mark the location as inserted. Normally one would expect
8903 that GDB could rely on that breakpoint instruction to stop the program,
8904 thus removing the need to insert its own breakpoint, except that executing
8905 the breakpoint instruction can kill the target instead of reporting a
8906 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8907 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8908 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8909 breakpoint be inserted normally results in QEMU knowing about the GDB
8910 breakpoint, and thus trap before the breakpoint instruction is executed.
8911 (If GDB later needs to continue execution past the permanent breakpoint,
8912 it manually increments the PC, thus avoiding executing the breakpoint
8913 instruction.) */
8914 if (bp_loc_is_permanent (loc))
8915 loc->permanent = 1;
8916
8917 return loc;
8918 }
8919 \f
8920
8921 /* See breakpoint.h. */
8922
8923 int
8924 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8925 {
8926 int len;
8927 CORE_ADDR addr;
8928 const gdb_byte *bpoint;
8929 gdb_byte *target_mem;
8930 struct cleanup *cleanup;
8931 int retval = 0;
8932
8933 addr = address;
8934 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8935
8936 /* Software breakpoints unsupported? */
8937 if (bpoint == NULL)
8938 return 0;
8939
8940 target_mem = alloca (len);
8941
8942 /* Enable the automatic memory restoration from breakpoints while
8943 we read the memory. Otherwise we could say about our temporary
8944 breakpoints they are permanent. */
8945 cleanup = make_show_memory_breakpoints_cleanup (0);
8946
8947 if (target_read_memory (address, target_mem, len) == 0
8948 && memcmp (target_mem, bpoint, len) == 0)
8949 retval = 1;
8950
8951 do_cleanups (cleanup);
8952
8953 return retval;
8954 }
8955
8956 /* Return 1 if LOC is pointing to a permanent breakpoint,
8957 return 0 otherwise. */
8958
8959 static int
8960 bp_loc_is_permanent (struct bp_location *loc)
8961 {
8962 struct cleanup *cleanup;
8963 int retval;
8964
8965 gdb_assert (loc != NULL);
8966
8967 cleanup = save_current_space_and_thread ();
8968 switch_to_program_space_and_thread (loc->pspace);
8969
8970 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
8971
8972 do_cleanups (cleanup);
8973
8974 return retval;
8975 }
8976
8977 /* Build a command list for the dprintf corresponding to the current
8978 settings of the dprintf style options. */
8979
8980 static void
8981 update_dprintf_command_list (struct breakpoint *b)
8982 {
8983 char *dprintf_args = b->extra_string;
8984 char *printf_line = NULL;
8985
8986 if (!dprintf_args)
8987 return;
8988
8989 dprintf_args = skip_spaces (dprintf_args);
8990
8991 /* Allow a comma, as it may have terminated a location, but don't
8992 insist on it. */
8993 if (*dprintf_args == ',')
8994 ++dprintf_args;
8995 dprintf_args = skip_spaces (dprintf_args);
8996
8997 if (*dprintf_args != '"')
8998 error (_("Bad format string, missing '\"'."));
8999
9000 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9001 printf_line = xstrprintf ("printf %s", dprintf_args);
9002 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9003 {
9004 if (!dprintf_function)
9005 error (_("No function supplied for dprintf call"));
9006
9007 if (dprintf_channel && strlen (dprintf_channel) > 0)
9008 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9009 dprintf_function,
9010 dprintf_channel,
9011 dprintf_args);
9012 else
9013 printf_line = xstrprintf ("call (void) %s (%s)",
9014 dprintf_function,
9015 dprintf_args);
9016 }
9017 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9018 {
9019 if (target_can_run_breakpoint_commands ())
9020 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9021 else
9022 {
9023 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9024 printf_line = xstrprintf ("printf %s", dprintf_args);
9025 }
9026 }
9027 else
9028 internal_error (__FILE__, __LINE__,
9029 _("Invalid dprintf style."));
9030
9031 gdb_assert (printf_line != NULL);
9032 /* Manufacture a printf sequence. */
9033 {
9034 struct command_line *printf_cmd_line
9035 = xmalloc (sizeof (struct command_line));
9036
9037 printf_cmd_line->control_type = simple_control;
9038 printf_cmd_line->body_count = 0;
9039 printf_cmd_line->body_list = NULL;
9040 printf_cmd_line->next = NULL;
9041 printf_cmd_line->line = printf_line;
9042
9043 breakpoint_set_commands (b, printf_cmd_line);
9044 }
9045 }
9046
9047 /* Update all dprintf commands, making their command lists reflect
9048 current style settings. */
9049
9050 static void
9051 update_dprintf_commands (char *args, int from_tty,
9052 struct cmd_list_element *c)
9053 {
9054 struct breakpoint *b;
9055
9056 ALL_BREAKPOINTS (b)
9057 {
9058 if (b->type == bp_dprintf)
9059 update_dprintf_command_list (b);
9060 }
9061 }
9062
9063 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9064 as textual description of the location, and COND_STRING
9065 as condition expression. */
9066
9067 static void
9068 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9069 struct symtabs_and_lines sals, char *addr_string,
9070 char *filter, char *cond_string,
9071 char *extra_string,
9072 enum bptype type, enum bpdisp disposition,
9073 int thread, int task, int ignore_count,
9074 const struct breakpoint_ops *ops, int from_tty,
9075 int enabled, int internal, unsigned flags,
9076 int display_canonical)
9077 {
9078 int i;
9079
9080 if (type == bp_hardware_breakpoint)
9081 {
9082 int target_resources_ok;
9083
9084 i = hw_breakpoint_used_count ();
9085 target_resources_ok =
9086 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9087 i + 1, 0);
9088 if (target_resources_ok == 0)
9089 error (_("No hardware breakpoint support in the target."));
9090 else if (target_resources_ok < 0)
9091 error (_("Hardware breakpoints used exceeds limit."));
9092 }
9093
9094 gdb_assert (sals.nelts > 0);
9095
9096 for (i = 0; i < sals.nelts; ++i)
9097 {
9098 struct symtab_and_line sal = sals.sals[i];
9099 struct bp_location *loc;
9100
9101 if (from_tty)
9102 {
9103 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9104 if (!loc_gdbarch)
9105 loc_gdbarch = gdbarch;
9106
9107 describe_other_breakpoints (loc_gdbarch,
9108 sal.pspace, sal.pc, sal.section, thread);
9109 }
9110
9111 if (i == 0)
9112 {
9113 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9114 b->thread = thread;
9115 b->task = task;
9116
9117 b->cond_string = cond_string;
9118 b->extra_string = extra_string;
9119 b->ignore_count = ignore_count;
9120 b->enable_state = enabled ? bp_enabled : bp_disabled;
9121 b->disposition = disposition;
9122
9123 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9124 b->loc->inserted = 1;
9125
9126 if (type == bp_static_tracepoint)
9127 {
9128 struct tracepoint *t = (struct tracepoint *) b;
9129 struct static_tracepoint_marker marker;
9130
9131 if (strace_marker_p (b))
9132 {
9133 /* We already know the marker exists, otherwise, we
9134 wouldn't see a sal for it. */
9135 char *p = &addr_string[3];
9136 char *endp;
9137 char *marker_str;
9138
9139 p = skip_spaces (p);
9140
9141 endp = skip_to_space (p);
9142
9143 marker_str = savestring (p, endp - p);
9144 t->static_trace_marker_id = marker_str;
9145
9146 printf_filtered (_("Probed static tracepoint "
9147 "marker \"%s\"\n"),
9148 t->static_trace_marker_id);
9149 }
9150 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9151 {
9152 t->static_trace_marker_id = xstrdup (marker.str_id);
9153 release_static_tracepoint_marker (&marker);
9154
9155 printf_filtered (_("Probed static tracepoint "
9156 "marker \"%s\"\n"),
9157 t->static_trace_marker_id);
9158 }
9159 else
9160 warning (_("Couldn't determine the static "
9161 "tracepoint marker to probe"));
9162 }
9163
9164 loc = b->loc;
9165 }
9166 else
9167 {
9168 loc = add_location_to_breakpoint (b, &sal);
9169 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9170 loc->inserted = 1;
9171 }
9172
9173 if (b->cond_string)
9174 {
9175 const char *arg = b->cond_string;
9176
9177 loc->cond = parse_exp_1 (&arg, loc->address,
9178 block_for_pc (loc->address), 0);
9179 if (*arg)
9180 error (_("Garbage '%s' follows condition"), arg);
9181 }
9182
9183 /* Dynamic printf requires and uses additional arguments on the
9184 command line, otherwise it's an error. */
9185 if (type == bp_dprintf)
9186 {
9187 if (b->extra_string)
9188 update_dprintf_command_list (b);
9189 else
9190 error (_("Format string required"));
9191 }
9192 else if (b->extra_string)
9193 error (_("Garbage '%s' at end of command"), b->extra_string);
9194 }
9195
9196 b->display_canonical = display_canonical;
9197 if (addr_string)
9198 b->addr_string = addr_string;
9199 else
9200 /* addr_string has to be used or breakpoint_re_set will delete
9201 me. */
9202 b->addr_string
9203 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9204 b->filter = filter;
9205 }
9206
9207 static void
9208 create_breakpoint_sal (struct gdbarch *gdbarch,
9209 struct symtabs_and_lines sals, char *addr_string,
9210 char *filter, char *cond_string,
9211 char *extra_string,
9212 enum bptype type, enum bpdisp disposition,
9213 int thread, int task, int ignore_count,
9214 const struct breakpoint_ops *ops, int from_tty,
9215 int enabled, int internal, unsigned flags,
9216 int display_canonical)
9217 {
9218 struct breakpoint *b;
9219 struct cleanup *old_chain;
9220
9221 if (is_tracepoint_type (type))
9222 {
9223 struct tracepoint *t;
9224
9225 t = XCNEW (struct tracepoint);
9226 b = &t->base;
9227 }
9228 else
9229 b = XNEW (struct breakpoint);
9230
9231 old_chain = make_cleanup (xfree, b);
9232
9233 init_breakpoint_sal (b, gdbarch,
9234 sals, addr_string,
9235 filter, cond_string, extra_string,
9236 type, disposition,
9237 thread, task, ignore_count,
9238 ops, from_tty,
9239 enabled, internal, flags,
9240 display_canonical);
9241 discard_cleanups (old_chain);
9242
9243 install_breakpoint (internal, b, 0);
9244 }
9245
9246 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9247 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9248 value. COND_STRING, if not NULL, specified the condition to be
9249 used for all breakpoints. Essentially the only case where
9250 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9251 function. In that case, it's still not possible to specify
9252 separate conditions for different overloaded functions, so
9253 we take just a single condition string.
9254
9255 NOTE: If the function succeeds, the caller is expected to cleanup
9256 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9257 array contents). If the function fails (error() is called), the
9258 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9259 COND and SALS arrays and each of those arrays contents. */
9260
9261 static void
9262 create_breakpoints_sal (struct gdbarch *gdbarch,
9263 struct linespec_result *canonical,
9264 char *cond_string, char *extra_string,
9265 enum bptype type, enum bpdisp disposition,
9266 int thread, int task, int ignore_count,
9267 const struct breakpoint_ops *ops, int from_tty,
9268 int enabled, int internal, unsigned flags)
9269 {
9270 int i;
9271 struct linespec_sals *lsal;
9272
9273 if (canonical->pre_expanded)
9274 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9275
9276 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9277 {
9278 /* Note that 'addr_string' can be NULL in the case of a plain
9279 'break', without arguments. */
9280 char *addr_string = (canonical->addr_string
9281 ? xstrdup (canonical->addr_string)
9282 : NULL);
9283 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9284 struct cleanup *inner = make_cleanup (xfree, addr_string);
9285
9286 make_cleanup (xfree, filter_string);
9287 create_breakpoint_sal (gdbarch, lsal->sals,
9288 addr_string,
9289 filter_string,
9290 cond_string, extra_string,
9291 type, disposition,
9292 thread, task, ignore_count, ops,
9293 from_tty, enabled, internal, flags,
9294 canonical->special_display);
9295 discard_cleanups (inner);
9296 }
9297 }
9298
9299 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9300 followed by conditionals. On return, SALS contains an array of SAL
9301 addresses found. ADDR_STRING contains a vector of (canonical)
9302 address strings. ADDRESS points to the end of the SAL.
9303
9304 The array and the line spec strings are allocated on the heap, it is
9305 the caller's responsibility to free them. */
9306
9307 static void
9308 parse_breakpoint_sals (char **address,
9309 struct linespec_result *canonical)
9310 {
9311 /* If no arg given, or if first arg is 'if ', use the default
9312 breakpoint. */
9313 if ((*address) == NULL || linespec_lexer_lex_keyword (*address))
9314 {
9315 /* The last displayed codepoint, if it's valid, is our default breakpoint
9316 address. */
9317 if (last_displayed_sal_is_valid ())
9318 {
9319 struct linespec_sals lsal;
9320 struct symtab_and_line sal;
9321 CORE_ADDR pc;
9322
9323 init_sal (&sal); /* Initialize to zeroes. */
9324 lsal.sals.sals = (struct symtab_and_line *)
9325 xmalloc (sizeof (struct symtab_and_line));
9326
9327 /* Set sal's pspace, pc, symtab, and line to the values
9328 corresponding to the last call to print_frame_info.
9329 Be sure to reinitialize LINE with NOTCURRENT == 0
9330 as the breakpoint line number is inappropriate otherwise.
9331 find_pc_line would adjust PC, re-set it back. */
9332 get_last_displayed_sal (&sal);
9333 pc = sal.pc;
9334 sal = find_pc_line (pc, 0);
9335
9336 /* "break" without arguments is equivalent to "break *PC"
9337 where PC is the last displayed codepoint's address. So
9338 make sure to set sal.explicit_pc to prevent GDB from
9339 trying to expand the list of sals to include all other
9340 instances with the same symtab and line. */
9341 sal.pc = pc;
9342 sal.explicit_pc = 1;
9343
9344 lsal.sals.sals[0] = sal;
9345 lsal.sals.nelts = 1;
9346 lsal.canonical = NULL;
9347
9348 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9349 }
9350 else
9351 error (_("No default breakpoint address now."));
9352 }
9353 else
9354 {
9355 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9356
9357 /* Force almost all breakpoints to be in terms of the
9358 current_source_symtab (which is decode_line_1's default).
9359 This should produce the results we want almost all of the
9360 time while leaving default_breakpoint_* alone.
9361
9362 ObjC: However, don't match an Objective-C method name which
9363 may have a '+' or '-' succeeded by a '['. */
9364 if (last_displayed_sal_is_valid ()
9365 && (!cursal.symtab
9366 || ((strchr ("+-", (*address)[0]) != NULL)
9367 && ((*address)[1] != '['))))
9368 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9369 get_last_displayed_symtab (),
9370 get_last_displayed_line (),
9371 canonical, NULL, NULL);
9372 else
9373 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9374 cursal.symtab, cursal.line, canonical, NULL, NULL);
9375 }
9376 }
9377
9378
9379 /* Convert each SAL into a real PC. Verify that the PC can be
9380 inserted as a breakpoint. If it can't throw an error. */
9381
9382 static void
9383 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9384 {
9385 int i;
9386
9387 for (i = 0; i < sals->nelts; i++)
9388 resolve_sal_pc (&sals->sals[i]);
9389 }
9390
9391 /* Fast tracepoints may have restrictions on valid locations. For
9392 instance, a fast tracepoint using a jump instead of a trap will
9393 likely have to overwrite more bytes than a trap would, and so can
9394 only be placed where the instruction is longer than the jump, or a
9395 multi-instruction sequence does not have a jump into the middle of
9396 it, etc. */
9397
9398 static void
9399 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9400 struct symtabs_and_lines *sals)
9401 {
9402 int i, rslt;
9403 struct symtab_and_line *sal;
9404 char *msg;
9405 struct cleanup *old_chain;
9406
9407 for (i = 0; i < sals->nelts; i++)
9408 {
9409 struct gdbarch *sarch;
9410
9411 sal = &sals->sals[i];
9412
9413 sarch = get_sal_arch (*sal);
9414 /* We fall back to GDBARCH if there is no architecture
9415 associated with SAL. */
9416 if (sarch == NULL)
9417 sarch = gdbarch;
9418 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9419 NULL, &msg);
9420 old_chain = make_cleanup (xfree, msg);
9421
9422 if (!rslt)
9423 error (_("May not have a fast tracepoint at 0x%s%s"),
9424 paddress (sarch, sal->pc), (msg ? msg : ""));
9425
9426 do_cleanups (old_chain);
9427 }
9428 }
9429
9430 /* Issue an invalid thread ID error. */
9431
9432 static void ATTRIBUTE_NORETURN
9433 invalid_thread_id_error (int id)
9434 {
9435 error (_("Unknown thread %d."), id);
9436 }
9437
9438 /* Given TOK, a string specification of condition and thread, as
9439 accepted by the 'break' command, extract the condition
9440 string and thread number and set *COND_STRING and *THREAD.
9441 PC identifies the context at which the condition should be parsed.
9442 If no condition is found, *COND_STRING is set to NULL.
9443 If no thread is found, *THREAD is set to -1. */
9444
9445 static void
9446 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9447 char **cond_string, int *thread, int *task,
9448 char **rest)
9449 {
9450 *cond_string = NULL;
9451 *thread = -1;
9452 *task = 0;
9453 *rest = NULL;
9454
9455 while (tok && *tok)
9456 {
9457 const char *end_tok;
9458 int toklen;
9459 const char *cond_start = NULL;
9460 const char *cond_end = NULL;
9461
9462 tok = skip_spaces_const (tok);
9463
9464 if ((*tok == '"' || *tok == ',') && rest)
9465 {
9466 *rest = savestring (tok, strlen (tok));
9467 return;
9468 }
9469
9470 end_tok = skip_to_space_const (tok);
9471
9472 toklen = end_tok - tok;
9473
9474 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9475 {
9476 struct expression *expr;
9477
9478 tok = cond_start = end_tok + 1;
9479 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9480 xfree (expr);
9481 cond_end = tok;
9482 *cond_string = savestring (cond_start, cond_end - cond_start);
9483 }
9484 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9485 {
9486 char *tmptok;
9487
9488 tok = end_tok + 1;
9489 *thread = strtol (tok, &tmptok, 0);
9490 if (tok == tmptok)
9491 error (_("Junk after thread keyword."));
9492 if (!valid_thread_id (*thread))
9493 invalid_thread_id_error (*thread);
9494 tok = tmptok;
9495 }
9496 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9497 {
9498 char *tmptok;
9499
9500 tok = end_tok + 1;
9501 *task = strtol (tok, &tmptok, 0);
9502 if (tok == tmptok)
9503 error (_("Junk after task keyword."));
9504 if (!valid_task_id (*task))
9505 error (_("Unknown task %d."), *task);
9506 tok = tmptok;
9507 }
9508 else if (rest)
9509 {
9510 *rest = savestring (tok, strlen (tok));
9511 return;
9512 }
9513 else
9514 error (_("Junk at end of arguments."));
9515 }
9516 }
9517
9518 /* Decode a static tracepoint marker spec. */
9519
9520 static struct symtabs_and_lines
9521 decode_static_tracepoint_spec (char **arg_p)
9522 {
9523 VEC(static_tracepoint_marker_p) *markers = NULL;
9524 struct symtabs_and_lines sals;
9525 struct cleanup *old_chain;
9526 char *p = &(*arg_p)[3];
9527 char *endp;
9528 char *marker_str;
9529 int i;
9530
9531 p = skip_spaces (p);
9532
9533 endp = skip_to_space (p);
9534
9535 marker_str = savestring (p, endp - p);
9536 old_chain = make_cleanup (xfree, marker_str);
9537
9538 markers = target_static_tracepoint_markers_by_strid (marker_str);
9539 if (VEC_empty(static_tracepoint_marker_p, markers))
9540 error (_("No known static tracepoint marker named %s"), marker_str);
9541
9542 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9543 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9544
9545 for (i = 0; i < sals.nelts; i++)
9546 {
9547 struct static_tracepoint_marker *marker;
9548
9549 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9550
9551 init_sal (&sals.sals[i]);
9552
9553 sals.sals[i] = find_pc_line (marker->address, 0);
9554 sals.sals[i].pc = marker->address;
9555
9556 release_static_tracepoint_marker (marker);
9557 }
9558
9559 do_cleanups (old_chain);
9560
9561 *arg_p = endp;
9562 return sals;
9563 }
9564
9565 /* Set a breakpoint. This function is shared between CLI and MI
9566 functions for setting a breakpoint. This function has two major
9567 modes of operations, selected by the PARSE_ARG parameter. If
9568 non-zero, the function will parse ARG, extracting location,
9569 condition, thread and extra string. Otherwise, ARG is just the
9570 breakpoint's location, with condition, thread, and extra string
9571 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9572 If INTERNAL is non-zero, the breakpoint number will be allocated
9573 from the internal breakpoint count. Returns true if any breakpoint
9574 was created; false otherwise. */
9575
9576 int
9577 create_breakpoint (struct gdbarch *gdbarch,
9578 char *arg, char *cond_string,
9579 int thread, char *extra_string,
9580 int parse_arg,
9581 int tempflag, enum bptype type_wanted,
9582 int ignore_count,
9583 enum auto_boolean pending_break_support,
9584 const struct breakpoint_ops *ops,
9585 int from_tty, int enabled, int internal,
9586 unsigned flags)
9587 {
9588 char *copy_arg = NULL;
9589 char *addr_start = arg;
9590 struct linespec_result canonical;
9591 struct cleanup *old_chain;
9592 struct cleanup *bkpt_chain = NULL;
9593 int pending = 0;
9594 int task = 0;
9595 int prev_bkpt_count = breakpoint_count;
9596
9597 gdb_assert (ops != NULL);
9598
9599 init_linespec_result (&canonical);
9600
9601 TRY
9602 {
9603 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9604 addr_start, &copy_arg);
9605 }
9606 CATCH (e, RETURN_MASK_ERROR)
9607 {
9608 /* If caller is interested in rc value from parse, set
9609 value. */
9610 if (e.error == NOT_FOUND_ERROR)
9611 {
9612 /* If pending breakpoint support is turned off, throw
9613 error. */
9614
9615 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9616 throw_exception (e);
9617
9618 exception_print (gdb_stderr, e);
9619
9620 /* If pending breakpoint support is auto query and the user
9621 selects no, then simply return the error code. */
9622 if (pending_break_support == AUTO_BOOLEAN_AUTO
9623 && !nquery (_("Make %s pending on future shared library load? "),
9624 bptype_string (type_wanted)))
9625 return 0;
9626
9627 /* At this point, either the user was queried about setting
9628 a pending breakpoint and selected yes, or pending
9629 breakpoint behavior is on and thus a pending breakpoint
9630 is defaulted on behalf of the user. */
9631 {
9632 struct linespec_sals lsal;
9633
9634 copy_arg = xstrdup (addr_start);
9635 lsal.canonical = xstrdup (copy_arg);
9636 lsal.sals.nelts = 1;
9637 lsal.sals.sals = XNEW (struct symtab_and_line);
9638 init_sal (&lsal.sals.sals[0]);
9639 pending = 1;
9640 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9641 }
9642 }
9643 else
9644 throw_exception (e);
9645 }
9646 END_CATCH
9647
9648 if (VEC_empty (linespec_sals, canonical.sals))
9649 return 0;
9650
9651 /* Create a chain of things that always need to be cleaned up. */
9652 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9653
9654 /* ----------------------------- SNIP -----------------------------
9655 Anything added to the cleanup chain beyond this point is assumed
9656 to be part of a breakpoint. If the breakpoint create succeeds
9657 then the memory is not reclaimed. */
9658 bkpt_chain = make_cleanup (null_cleanup, 0);
9659
9660 /* Resolve all line numbers to PC's and verify that the addresses
9661 are ok for the target. */
9662 if (!pending)
9663 {
9664 int ix;
9665 struct linespec_sals *iter;
9666
9667 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9668 breakpoint_sals_to_pc (&iter->sals);
9669 }
9670
9671 /* Fast tracepoints may have additional restrictions on location. */
9672 if (!pending && type_wanted == bp_fast_tracepoint)
9673 {
9674 int ix;
9675 struct linespec_sals *iter;
9676
9677 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9678 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9679 }
9680
9681 /* Verify that condition can be parsed, before setting any
9682 breakpoints. Allocate a separate condition expression for each
9683 breakpoint. */
9684 if (!pending)
9685 {
9686 if (parse_arg)
9687 {
9688 char *rest;
9689 struct linespec_sals *lsal;
9690
9691 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9692
9693 /* Here we only parse 'arg' to separate condition
9694 from thread number, so parsing in context of first
9695 sal is OK. When setting the breakpoint we'll
9696 re-parse it in context of each sal. */
9697
9698 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9699 &thread, &task, &rest);
9700 if (cond_string)
9701 make_cleanup (xfree, cond_string);
9702 if (rest)
9703 make_cleanup (xfree, rest);
9704 if (rest)
9705 extra_string = rest;
9706 }
9707 else
9708 {
9709 if (*arg != '\0')
9710 error (_("Garbage '%s' at end of location"), arg);
9711
9712 /* Create a private copy of condition string. */
9713 if (cond_string)
9714 {
9715 cond_string = xstrdup (cond_string);
9716 make_cleanup (xfree, cond_string);
9717 }
9718 /* Create a private copy of any extra string. */
9719 if (extra_string)
9720 {
9721 extra_string = xstrdup (extra_string);
9722 make_cleanup (xfree, extra_string);
9723 }
9724 }
9725
9726 ops->create_breakpoints_sal (gdbarch, &canonical,
9727 cond_string, extra_string, type_wanted,
9728 tempflag ? disp_del : disp_donttouch,
9729 thread, task, ignore_count, ops,
9730 from_tty, enabled, internal, flags);
9731 }
9732 else
9733 {
9734 struct breakpoint *b;
9735
9736 make_cleanup (xfree, copy_arg);
9737
9738 if (is_tracepoint_type (type_wanted))
9739 {
9740 struct tracepoint *t;
9741
9742 t = XCNEW (struct tracepoint);
9743 b = &t->base;
9744 }
9745 else
9746 b = XNEW (struct breakpoint);
9747
9748 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9749
9750 b->addr_string = copy_arg;
9751 if (parse_arg)
9752 {
9753 b->cond_string = NULL;
9754 b->extra_string = NULL;
9755 }
9756 else
9757 {
9758 /* Create a private copy of condition string. */
9759 if (cond_string)
9760 {
9761 cond_string = xstrdup (cond_string);
9762 make_cleanup (xfree, cond_string);
9763 }
9764 /* Create a private copy of any extra string. */
9765 if (extra_string != NULL)
9766 {
9767 extra_string = xstrdup (extra_string);
9768 make_cleanup (xfree, extra_string);
9769 }
9770 b->cond_string = cond_string;
9771 b->extra_string = extra_string;
9772 b->thread = thread;
9773 }
9774 b->ignore_count = ignore_count;
9775 b->disposition = tempflag ? disp_del : disp_donttouch;
9776 b->condition_not_parsed = 1;
9777 b->enable_state = enabled ? bp_enabled : bp_disabled;
9778 if ((type_wanted != bp_breakpoint
9779 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9780 b->pspace = current_program_space;
9781
9782 install_breakpoint (internal, b, 0);
9783 }
9784
9785 if (VEC_length (linespec_sals, canonical.sals) > 1)
9786 {
9787 warning (_("Multiple breakpoints were set.\nUse the "
9788 "\"delete\" command to delete unwanted breakpoints."));
9789 prev_breakpoint_count = prev_bkpt_count;
9790 }
9791
9792 /* That's it. Discard the cleanups for data inserted into the
9793 breakpoint. */
9794 discard_cleanups (bkpt_chain);
9795 /* But cleanup everything else. */
9796 do_cleanups (old_chain);
9797
9798 /* error call may happen here - have BKPT_CHAIN already discarded. */
9799 update_global_location_list (UGLL_MAY_INSERT);
9800
9801 return 1;
9802 }
9803
9804 /* Set a breakpoint.
9805 ARG is a string describing breakpoint address,
9806 condition, and thread.
9807 FLAG specifies if a breakpoint is hardware on,
9808 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9809 and BP_TEMPFLAG. */
9810
9811 static void
9812 break_command_1 (char *arg, int flag, int from_tty)
9813 {
9814 int tempflag = flag & BP_TEMPFLAG;
9815 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9816 ? bp_hardware_breakpoint
9817 : bp_breakpoint);
9818 struct breakpoint_ops *ops;
9819 const char *arg_cp = arg;
9820
9821 /* Matching breakpoints on probes. */
9822 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9823 ops = &bkpt_probe_breakpoint_ops;
9824 else
9825 ops = &bkpt_breakpoint_ops;
9826
9827 create_breakpoint (get_current_arch (),
9828 arg,
9829 NULL, 0, NULL, 1 /* parse arg */,
9830 tempflag, type_wanted,
9831 0 /* Ignore count */,
9832 pending_break_support,
9833 ops,
9834 from_tty,
9835 1 /* enabled */,
9836 0 /* internal */,
9837 0);
9838 }
9839
9840 /* Helper function for break_command_1 and disassemble_command. */
9841
9842 void
9843 resolve_sal_pc (struct symtab_and_line *sal)
9844 {
9845 CORE_ADDR pc;
9846
9847 if (sal->pc == 0 && sal->symtab != NULL)
9848 {
9849 if (!find_line_pc (sal->symtab, sal->line, &pc))
9850 error (_("No line %d in file \"%s\"."),
9851 sal->line, symtab_to_filename_for_display (sal->symtab));
9852 sal->pc = pc;
9853
9854 /* If this SAL corresponds to a breakpoint inserted using a line
9855 number, then skip the function prologue if necessary. */
9856 if (sal->explicit_line)
9857 skip_prologue_sal (sal);
9858 }
9859
9860 if (sal->section == 0 && sal->symtab != NULL)
9861 {
9862 const struct blockvector *bv;
9863 const struct block *b;
9864 struct symbol *sym;
9865
9866 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9867 SYMTAB_COMPUNIT (sal->symtab));
9868 if (bv != NULL)
9869 {
9870 sym = block_linkage_function (b);
9871 if (sym != NULL)
9872 {
9873 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9874 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9875 sym);
9876 }
9877 else
9878 {
9879 /* It really is worthwhile to have the section, so we'll
9880 just have to look harder. This case can be executed
9881 if we have line numbers but no functions (as can
9882 happen in assembly source). */
9883
9884 struct bound_minimal_symbol msym;
9885 struct cleanup *old_chain = save_current_space_and_thread ();
9886
9887 switch_to_program_space_and_thread (sal->pspace);
9888
9889 msym = lookup_minimal_symbol_by_pc (sal->pc);
9890 if (msym.minsym)
9891 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9892
9893 do_cleanups (old_chain);
9894 }
9895 }
9896 }
9897 }
9898
9899 void
9900 break_command (char *arg, int from_tty)
9901 {
9902 break_command_1 (arg, 0, from_tty);
9903 }
9904
9905 void
9906 tbreak_command (char *arg, int from_tty)
9907 {
9908 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9909 }
9910
9911 static void
9912 hbreak_command (char *arg, int from_tty)
9913 {
9914 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9915 }
9916
9917 static void
9918 thbreak_command (char *arg, int from_tty)
9919 {
9920 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9921 }
9922
9923 static void
9924 stop_command (char *arg, int from_tty)
9925 {
9926 printf_filtered (_("Specify the type of breakpoint to set.\n\
9927 Usage: stop in <function | address>\n\
9928 stop at <line>\n"));
9929 }
9930
9931 static void
9932 stopin_command (char *arg, int from_tty)
9933 {
9934 int badInput = 0;
9935
9936 if (arg == (char *) NULL)
9937 badInput = 1;
9938 else if (*arg != '*')
9939 {
9940 char *argptr = arg;
9941 int hasColon = 0;
9942
9943 /* Look for a ':'. If this is a line number specification, then
9944 say it is bad, otherwise, it should be an address or
9945 function/method name. */
9946 while (*argptr && !hasColon)
9947 {
9948 hasColon = (*argptr == ':');
9949 argptr++;
9950 }
9951
9952 if (hasColon)
9953 badInput = (*argptr != ':'); /* Not a class::method */
9954 else
9955 badInput = isdigit (*arg); /* a simple line number */
9956 }
9957
9958 if (badInput)
9959 printf_filtered (_("Usage: stop in <function | address>\n"));
9960 else
9961 break_command_1 (arg, 0, from_tty);
9962 }
9963
9964 static void
9965 stopat_command (char *arg, int from_tty)
9966 {
9967 int badInput = 0;
9968
9969 if (arg == (char *) NULL || *arg == '*') /* no line number */
9970 badInput = 1;
9971 else
9972 {
9973 char *argptr = arg;
9974 int hasColon = 0;
9975
9976 /* Look for a ':'. If there is a '::' then get out, otherwise
9977 it is probably a line number. */
9978 while (*argptr && !hasColon)
9979 {
9980 hasColon = (*argptr == ':');
9981 argptr++;
9982 }
9983
9984 if (hasColon)
9985 badInput = (*argptr == ':'); /* we have class::method */
9986 else
9987 badInput = !isdigit (*arg); /* not a line number */
9988 }
9989
9990 if (badInput)
9991 printf_filtered (_("Usage: stop at <line>\n"));
9992 else
9993 break_command_1 (arg, 0, from_tty);
9994 }
9995
9996 /* The dynamic printf command is mostly like a regular breakpoint, but
9997 with a prewired command list consisting of a single output command,
9998 built from extra arguments supplied on the dprintf command
9999 line. */
10000
10001 static void
10002 dprintf_command (char *arg, int from_tty)
10003 {
10004 create_breakpoint (get_current_arch (),
10005 arg,
10006 NULL, 0, NULL, 1 /* parse arg */,
10007 0, bp_dprintf,
10008 0 /* Ignore count */,
10009 pending_break_support,
10010 &dprintf_breakpoint_ops,
10011 from_tty,
10012 1 /* enabled */,
10013 0 /* internal */,
10014 0);
10015 }
10016
10017 static void
10018 agent_printf_command (char *arg, int from_tty)
10019 {
10020 error (_("May only run agent-printf on the target"));
10021 }
10022
10023 /* Implement the "breakpoint_hit" breakpoint_ops method for
10024 ranged breakpoints. */
10025
10026 static int
10027 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10028 struct address_space *aspace,
10029 CORE_ADDR bp_addr,
10030 const struct target_waitstatus *ws)
10031 {
10032 if (ws->kind != TARGET_WAITKIND_STOPPED
10033 || ws->value.sig != GDB_SIGNAL_TRAP)
10034 return 0;
10035
10036 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10037 bl->length, aspace, bp_addr);
10038 }
10039
10040 /* Implement the "resources_needed" breakpoint_ops method for
10041 ranged breakpoints. */
10042
10043 static int
10044 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10045 {
10046 return target_ranged_break_num_registers ();
10047 }
10048
10049 /* Implement the "print_it" breakpoint_ops method for
10050 ranged breakpoints. */
10051
10052 static enum print_stop_action
10053 print_it_ranged_breakpoint (bpstat bs)
10054 {
10055 struct breakpoint *b = bs->breakpoint_at;
10056 struct bp_location *bl = b->loc;
10057 struct ui_out *uiout = current_uiout;
10058
10059 gdb_assert (b->type == bp_hardware_breakpoint);
10060
10061 /* Ranged breakpoints have only one location. */
10062 gdb_assert (bl && bl->next == NULL);
10063
10064 annotate_breakpoint (b->number);
10065 if (b->disposition == disp_del)
10066 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10067 else
10068 ui_out_text (uiout, "\nRanged breakpoint ");
10069 if (ui_out_is_mi_like_p (uiout))
10070 {
10071 ui_out_field_string (uiout, "reason",
10072 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10073 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10074 }
10075 ui_out_field_int (uiout, "bkptno", b->number);
10076 ui_out_text (uiout, ", ");
10077
10078 return PRINT_SRC_AND_LOC;
10079 }
10080
10081 /* Implement the "print_one" breakpoint_ops method for
10082 ranged breakpoints. */
10083
10084 static void
10085 print_one_ranged_breakpoint (struct breakpoint *b,
10086 struct bp_location **last_loc)
10087 {
10088 struct bp_location *bl = b->loc;
10089 struct value_print_options opts;
10090 struct ui_out *uiout = current_uiout;
10091
10092 /* Ranged breakpoints have only one location. */
10093 gdb_assert (bl && bl->next == NULL);
10094
10095 get_user_print_options (&opts);
10096
10097 if (opts.addressprint)
10098 /* We don't print the address range here, it will be printed later
10099 by print_one_detail_ranged_breakpoint. */
10100 ui_out_field_skip (uiout, "addr");
10101 annotate_field (5);
10102 print_breakpoint_location (b, bl);
10103 *last_loc = bl;
10104 }
10105
10106 /* Implement the "print_one_detail" breakpoint_ops method for
10107 ranged breakpoints. */
10108
10109 static void
10110 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10111 struct ui_out *uiout)
10112 {
10113 CORE_ADDR address_start, address_end;
10114 struct bp_location *bl = b->loc;
10115 struct ui_file *stb = mem_fileopen ();
10116 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10117
10118 gdb_assert (bl);
10119
10120 address_start = bl->address;
10121 address_end = address_start + bl->length - 1;
10122
10123 ui_out_text (uiout, "\taddress range: ");
10124 fprintf_unfiltered (stb, "[%s, %s]",
10125 print_core_address (bl->gdbarch, address_start),
10126 print_core_address (bl->gdbarch, address_end));
10127 ui_out_field_stream (uiout, "addr", stb);
10128 ui_out_text (uiout, "\n");
10129
10130 do_cleanups (cleanup);
10131 }
10132
10133 /* Implement the "print_mention" breakpoint_ops method for
10134 ranged breakpoints. */
10135
10136 static void
10137 print_mention_ranged_breakpoint (struct breakpoint *b)
10138 {
10139 struct bp_location *bl = b->loc;
10140 struct ui_out *uiout = current_uiout;
10141
10142 gdb_assert (bl);
10143 gdb_assert (b->type == bp_hardware_breakpoint);
10144
10145 if (ui_out_is_mi_like_p (uiout))
10146 return;
10147
10148 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10149 b->number, paddress (bl->gdbarch, bl->address),
10150 paddress (bl->gdbarch, bl->address + bl->length - 1));
10151 }
10152
10153 /* Implement the "print_recreate" breakpoint_ops method for
10154 ranged breakpoints. */
10155
10156 static void
10157 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10158 {
10159 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10160 b->addr_string_range_end);
10161 print_recreate_thread (b, fp);
10162 }
10163
10164 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10165
10166 static struct breakpoint_ops ranged_breakpoint_ops;
10167
10168 /* Find the address where the end of the breakpoint range should be
10169 placed, given the SAL of the end of the range. This is so that if
10170 the user provides a line number, the end of the range is set to the
10171 last instruction of the given line. */
10172
10173 static CORE_ADDR
10174 find_breakpoint_range_end (struct symtab_and_line sal)
10175 {
10176 CORE_ADDR end;
10177
10178 /* If the user provided a PC value, use it. Otherwise,
10179 find the address of the end of the given location. */
10180 if (sal.explicit_pc)
10181 end = sal.pc;
10182 else
10183 {
10184 int ret;
10185 CORE_ADDR start;
10186
10187 ret = find_line_pc_range (sal, &start, &end);
10188 if (!ret)
10189 error (_("Could not find location of the end of the range."));
10190
10191 /* find_line_pc_range returns the start of the next line. */
10192 end--;
10193 }
10194
10195 return end;
10196 }
10197
10198 /* Implement the "break-range" CLI command. */
10199
10200 static void
10201 break_range_command (char *arg, int from_tty)
10202 {
10203 char *arg_start, *addr_string_start, *addr_string_end;
10204 struct linespec_result canonical_start, canonical_end;
10205 int bp_count, can_use_bp, length;
10206 CORE_ADDR end;
10207 struct breakpoint *b;
10208 struct symtab_and_line sal_start, sal_end;
10209 struct cleanup *cleanup_bkpt;
10210 struct linespec_sals *lsal_start, *lsal_end;
10211
10212 /* We don't support software ranged breakpoints. */
10213 if (target_ranged_break_num_registers () < 0)
10214 error (_("This target does not support hardware ranged breakpoints."));
10215
10216 bp_count = hw_breakpoint_used_count ();
10217 bp_count += target_ranged_break_num_registers ();
10218 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10219 bp_count, 0);
10220 if (can_use_bp < 0)
10221 error (_("Hardware breakpoints used exceeds limit."));
10222
10223 arg = skip_spaces (arg);
10224 if (arg == NULL || arg[0] == '\0')
10225 error(_("No address range specified."));
10226
10227 init_linespec_result (&canonical_start);
10228
10229 arg_start = arg;
10230 parse_breakpoint_sals (&arg, &canonical_start);
10231
10232 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10233
10234 if (arg[0] != ',')
10235 error (_("Too few arguments."));
10236 else if (VEC_empty (linespec_sals, canonical_start.sals))
10237 error (_("Could not find location of the beginning of the range."));
10238
10239 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10240
10241 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10242 || lsal_start->sals.nelts != 1)
10243 error (_("Cannot create a ranged breakpoint with multiple locations."));
10244
10245 sal_start = lsal_start->sals.sals[0];
10246 addr_string_start = savestring (arg_start, arg - arg_start);
10247 make_cleanup (xfree, addr_string_start);
10248
10249 arg++; /* Skip the comma. */
10250 arg = skip_spaces (arg);
10251
10252 /* Parse the end location. */
10253
10254 init_linespec_result (&canonical_end);
10255 arg_start = arg;
10256
10257 /* We call decode_line_full directly here instead of using
10258 parse_breakpoint_sals because we need to specify the start location's
10259 symtab and line as the default symtab and line for the end of the
10260 range. This makes it possible to have ranges like "foo.c:27, +14",
10261 where +14 means 14 lines from the start location. */
10262 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10263 sal_start.symtab, sal_start.line,
10264 &canonical_end, NULL, NULL);
10265
10266 make_cleanup_destroy_linespec_result (&canonical_end);
10267
10268 if (VEC_empty (linespec_sals, canonical_end.sals))
10269 error (_("Could not find location of the end of the range."));
10270
10271 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10272 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10273 || lsal_end->sals.nelts != 1)
10274 error (_("Cannot create a ranged breakpoint with multiple locations."));
10275
10276 sal_end = lsal_end->sals.sals[0];
10277 addr_string_end = savestring (arg_start, arg - arg_start);
10278 make_cleanup (xfree, addr_string_end);
10279
10280 end = find_breakpoint_range_end (sal_end);
10281 if (sal_start.pc > end)
10282 error (_("Invalid address range, end precedes start."));
10283
10284 length = end - sal_start.pc + 1;
10285 if (length < 0)
10286 /* Length overflowed. */
10287 error (_("Address range too large."));
10288 else if (length == 1)
10289 {
10290 /* This range is simple enough to be handled by
10291 the `hbreak' command. */
10292 hbreak_command (addr_string_start, 1);
10293
10294 do_cleanups (cleanup_bkpt);
10295
10296 return;
10297 }
10298
10299 /* Now set up the breakpoint. */
10300 b = set_raw_breakpoint (get_current_arch (), sal_start,
10301 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10302 set_breakpoint_count (breakpoint_count + 1);
10303 b->number = breakpoint_count;
10304 b->disposition = disp_donttouch;
10305 b->addr_string = xstrdup (addr_string_start);
10306 b->addr_string_range_end = xstrdup (addr_string_end);
10307 b->loc->length = length;
10308
10309 do_cleanups (cleanup_bkpt);
10310
10311 mention (b);
10312 observer_notify_breakpoint_created (b);
10313 update_global_location_list (UGLL_MAY_INSERT);
10314 }
10315
10316 /* Return non-zero if EXP is verified as constant. Returned zero
10317 means EXP is variable. Also the constant detection may fail for
10318 some constant expressions and in such case still falsely return
10319 zero. */
10320
10321 static int
10322 watchpoint_exp_is_const (const struct expression *exp)
10323 {
10324 int i = exp->nelts;
10325
10326 while (i > 0)
10327 {
10328 int oplenp, argsp;
10329
10330 /* We are only interested in the descriptor of each element. */
10331 operator_length (exp, i, &oplenp, &argsp);
10332 i -= oplenp;
10333
10334 switch (exp->elts[i].opcode)
10335 {
10336 case BINOP_ADD:
10337 case BINOP_SUB:
10338 case BINOP_MUL:
10339 case BINOP_DIV:
10340 case BINOP_REM:
10341 case BINOP_MOD:
10342 case BINOP_LSH:
10343 case BINOP_RSH:
10344 case BINOP_LOGICAL_AND:
10345 case BINOP_LOGICAL_OR:
10346 case BINOP_BITWISE_AND:
10347 case BINOP_BITWISE_IOR:
10348 case BINOP_BITWISE_XOR:
10349 case BINOP_EQUAL:
10350 case BINOP_NOTEQUAL:
10351 case BINOP_LESS:
10352 case BINOP_GTR:
10353 case BINOP_LEQ:
10354 case BINOP_GEQ:
10355 case BINOP_REPEAT:
10356 case BINOP_COMMA:
10357 case BINOP_EXP:
10358 case BINOP_MIN:
10359 case BINOP_MAX:
10360 case BINOP_INTDIV:
10361 case BINOP_CONCAT:
10362 case TERNOP_COND:
10363 case TERNOP_SLICE:
10364
10365 case OP_LONG:
10366 case OP_DOUBLE:
10367 case OP_DECFLOAT:
10368 case OP_LAST:
10369 case OP_COMPLEX:
10370 case OP_STRING:
10371 case OP_ARRAY:
10372 case OP_TYPE:
10373 case OP_TYPEOF:
10374 case OP_DECLTYPE:
10375 case OP_TYPEID:
10376 case OP_NAME:
10377 case OP_OBJC_NSSTRING:
10378
10379 case UNOP_NEG:
10380 case UNOP_LOGICAL_NOT:
10381 case UNOP_COMPLEMENT:
10382 case UNOP_ADDR:
10383 case UNOP_HIGH:
10384 case UNOP_CAST:
10385
10386 case UNOP_CAST_TYPE:
10387 case UNOP_REINTERPRET_CAST:
10388 case UNOP_DYNAMIC_CAST:
10389 /* Unary, binary and ternary operators: We have to check
10390 their operands. If they are constant, then so is the
10391 result of that operation. For instance, if A and B are
10392 determined to be constants, then so is "A + B".
10393
10394 UNOP_IND is one exception to the rule above, because the
10395 value of *ADDR is not necessarily a constant, even when
10396 ADDR is. */
10397 break;
10398
10399 case OP_VAR_VALUE:
10400 /* Check whether the associated symbol is a constant.
10401
10402 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10403 possible that a buggy compiler could mark a variable as
10404 constant even when it is not, and TYPE_CONST would return
10405 true in this case, while SYMBOL_CLASS wouldn't.
10406
10407 We also have to check for function symbols because they
10408 are always constant. */
10409 {
10410 struct symbol *s = exp->elts[i + 2].symbol;
10411
10412 if (SYMBOL_CLASS (s) != LOC_BLOCK
10413 && SYMBOL_CLASS (s) != LOC_CONST
10414 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10415 return 0;
10416 break;
10417 }
10418
10419 /* The default action is to return 0 because we are using
10420 the optimistic approach here: If we don't know something,
10421 then it is not a constant. */
10422 default:
10423 return 0;
10424 }
10425 }
10426
10427 return 1;
10428 }
10429
10430 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10431
10432 static void
10433 dtor_watchpoint (struct breakpoint *self)
10434 {
10435 struct watchpoint *w = (struct watchpoint *) self;
10436
10437 xfree (w->cond_exp);
10438 xfree (w->exp);
10439 xfree (w->exp_string);
10440 xfree (w->exp_string_reparse);
10441 value_free (w->val);
10442
10443 base_breakpoint_ops.dtor (self);
10444 }
10445
10446 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10447
10448 static void
10449 re_set_watchpoint (struct breakpoint *b)
10450 {
10451 struct watchpoint *w = (struct watchpoint *) b;
10452
10453 /* Watchpoint can be either on expression using entirely global
10454 variables, or it can be on local variables.
10455
10456 Watchpoints of the first kind are never auto-deleted, and even
10457 persist across program restarts. Since they can use variables
10458 from shared libraries, we need to reparse expression as libraries
10459 are loaded and unloaded.
10460
10461 Watchpoints on local variables can also change meaning as result
10462 of solib event. For example, if a watchpoint uses both a local
10463 and a global variables in expression, it's a local watchpoint,
10464 but unloading of a shared library will make the expression
10465 invalid. This is not a very common use case, but we still
10466 re-evaluate expression, to avoid surprises to the user.
10467
10468 Note that for local watchpoints, we re-evaluate it only if
10469 watchpoints frame id is still valid. If it's not, it means the
10470 watchpoint is out of scope and will be deleted soon. In fact,
10471 I'm not sure we'll ever be called in this case.
10472
10473 If a local watchpoint's frame id is still valid, then
10474 w->exp_valid_block is likewise valid, and we can safely use it.
10475
10476 Don't do anything about disabled watchpoints, since they will be
10477 reevaluated again when enabled. */
10478 update_watchpoint (w, 1 /* reparse */);
10479 }
10480
10481 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10482
10483 static int
10484 insert_watchpoint (struct bp_location *bl)
10485 {
10486 struct watchpoint *w = (struct watchpoint *) bl->owner;
10487 int length = w->exact ? 1 : bl->length;
10488
10489 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10490 w->cond_exp);
10491 }
10492
10493 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10494
10495 static int
10496 remove_watchpoint (struct bp_location *bl)
10497 {
10498 struct watchpoint *w = (struct watchpoint *) bl->owner;
10499 int length = w->exact ? 1 : bl->length;
10500
10501 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10502 w->cond_exp);
10503 }
10504
10505 static int
10506 breakpoint_hit_watchpoint (const struct bp_location *bl,
10507 struct address_space *aspace, CORE_ADDR bp_addr,
10508 const struct target_waitstatus *ws)
10509 {
10510 struct breakpoint *b = bl->owner;
10511 struct watchpoint *w = (struct watchpoint *) b;
10512
10513 /* Continuable hardware watchpoints are treated as non-existent if the
10514 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10515 some data address). Otherwise gdb won't stop on a break instruction
10516 in the code (not from a breakpoint) when a hardware watchpoint has
10517 been defined. Also skip watchpoints which we know did not trigger
10518 (did not match the data address). */
10519 if (is_hardware_watchpoint (b)
10520 && w->watchpoint_triggered == watch_triggered_no)
10521 return 0;
10522
10523 return 1;
10524 }
10525
10526 static void
10527 check_status_watchpoint (bpstat bs)
10528 {
10529 gdb_assert (is_watchpoint (bs->breakpoint_at));
10530
10531 bpstat_check_watchpoint (bs);
10532 }
10533
10534 /* Implement the "resources_needed" breakpoint_ops method for
10535 hardware watchpoints. */
10536
10537 static int
10538 resources_needed_watchpoint (const struct bp_location *bl)
10539 {
10540 struct watchpoint *w = (struct watchpoint *) bl->owner;
10541 int length = w->exact? 1 : bl->length;
10542
10543 return target_region_ok_for_hw_watchpoint (bl->address, length);
10544 }
10545
10546 /* Implement the "works_in_software_mode" breakpoint_ops method for
10547 hardware watchpoints. */
10548
10549 static int
10550 works_in_software_mode_watchpoint (const struct breakpoint *b)
10551 {
10552 /* Read and access watchpoints only work with hardware support. */
10553 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10554 }
10555
10556 static enum print_stop_action
10557 print_it_watchpoint (bpstat bs)
10558 {
10559 struct cleanup *old_chain;
10560 struct breakpoint *b;
10561 struct ui_file *stb;
10562 enum print_stop_action result;
10563 struct watchpoint *w;
10564 struct ui_out *uiout = current_uiout;
10565
10566 gdb_assert (bs->bp_location_at != NULL);
10567
10568 b = bs->breakpoint_at;
10569 w = (struct watchpoint *) b;
10570
10571 stb = mem_fileopen ();
10572 old_chain = make_cleanup_ui_file_delete (stb);
10573
10574 switch (b->type)
10575 {
10576 case bp_watchpoint:
10577 case bp_hardware_watchpoint:
10578 annotate_watchpoint (b->number);
10579 if (ui_out_is_mi_like_p (uiout))
10580 ui_out_field_string
10581 (uiout, "reason",
10582 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10583 mention (b);
10584 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10585 ui_out_text (uiout, "\nOld value = ");
10586 watchpoint_value_print (bs->old_val, stb);
10587 ui_out_field_stream (uiout, "old", stb);
10588 ui_out_text (uiout, "\nNew value = ");
10589 watchpoint_value_print (w->val, stb);
10590 ui_out_field_stream (uiout, "new", stb);
10591 ui_out_text (uiout, "\n");
10592 /* More than one watchpoint may have been triggered. */
10593 result = PRINT_UNKNOWN;
10594 break;
10595
10596 case bp_read_watchpoint:
10597 if (ui_out_is_mi_like_p (uiout))
10598 ui_out_field_string
10599 (uiout, "reason",
10600 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10601 mention (b);
10602 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10603 ui_out_text (uiout, "\nValue = ");
10604 watchpoint_value_print (w->val, stb);
10605 ui_out_field_stream (uiout, "value", stb);
10606 ui_out_text (uiout, "\n");
10607 result = PRINT_UNKNOWN;
10608 break;
10609
10610 case bp_access_watchpoint:
10611 if (bs->old_val != NULL)
10612 {
10613 annotate_watchpoint (b->number);
10614 if (ui_out_is_mi_like_p (uiout))
10615 ui_out_field_string
10616 (uiout, "reason",
10617 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10618 mention (b);
10619 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10620 ui_out_text (uiout, "\nOld value = ");
10621 watchpoint_value_print (bs->old_val, stb);
10622 ui_out_field_stream (uiout, "old", stb);
10623 ui_out_text (uiout, "\nNew value = ");
10624 }
10625 else
10626 {
10627 mention (b);
10628 if (ui_out_is_mi_like_p (uiout))
10629 ui_out_field_string
10630 (uiout, "reason",
10631 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10632 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10633 ui_out_text (uiout, "\nValue = ");
10634 }
10635 watchpoint_value_print (w->val, stb);
10636 ui_out_field_stream (uiout, "new", stb);
10637 ui_out_text (uiout, "\n");
10638 result = PRINT_UNKNOWN;
10639 break;
10640 default:
10641 result = PRINT_UNKNOWN;
10642 }
10643
10644 do_cleanups (old_chain);
10645 return result;
10646 }
10647
10648 /* Implement the "print_mention" breakpoint_ops method for hardware
10649 watchpoints. */
10650
10651 static void
10652 print_mention_watchpoint (struct breakpoint *b)
10653 {
10654 struct cleanup *ui_out_chain;
10655 struct watchpoint *w = (struct watchpoint *) b;
10656 struct ui_out *uiout = current_uiout;
10657
10658 switch (b->type)
10659 {
10660 case bp_watchpoint:
10661 ui_out_text (uiout, "Watchpoint ");
10662 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10663 break;
10664 case bp_hardware_watchpoint:
10665 ui_out_text (uiout, "Hardware watchpoint ");
10666 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10667 break;
10668 case bp_read_watchpoint:
10669 ui_out_text (uiout, "Hardware read watchpoint ");
10670 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10671 break;
10672 case bp_access_watchpoint:
10673 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10674 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10675 break;
10676 default:
10677 internal_error (__FILE__, __LINE__,
10678 _("Invalid hardware watchpoint type."));
10679 }
10680
10681 ui_out_field_int (uiout, "number", b->number);
10682 ui_out_text (uiout, ": ");
10683 ui_out_field_string (uiout, "exp", w->exp_string);
10684 do_cleanups (ui_out_chain);
10685 }
10686
10687 /* Implement the "print_recreate" breakpoint_ops method for
10688 watchpoints. */
10689
10690 static void
10691 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10692 {
10693 struct watchpoint *w = (struct watchpoint *) b;
10694
10695 switch (b->type)
10696 {
10697 case bp_watchpoint:
10698 case bp_hardware_watchpoint:
10699 fprintf_unfiltered (fp, "watch");
10700 break;
10701 case bp_read_watchpoint:
10702 fprintf_unfiltered (fp, "rwatch");
10703 break;
10704 case bp_access_watchpoint:
10705 fprintf_unfiltered (fp, "awatch");
10706 break;
10707 default:
10708 internal_error (__FILE__, __LINE__,
10709 _("Invalid watchpoint type."));
10710 }
10711
10712 fprintf_unfiltered (fp, " %s", w->exp_string);
10713 print_recreate_thread (b, fp);
10714 }
10715
10716 /* Implement the "explains_signal" breakpoint_ops method for
10717 watchpoints. */
10718
10719 static int
10720 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10721 {
10722 /* A software watchpoint cannot cause a signal other than
10723 GDB_SIGNAL_TRAP. */
10724 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10725 return 0;
10726
10727 return 1;
10728 }
10729
10730 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10731
10732 static struct breakpoint_ops watchpoint_breakpoint_ops;
10733
10734 /* Implement the "insert" breakpoint_ops method for
10735 masked hardware watchpoints. */
10736
10737 static int
10738 insert_masked_watchpoint (struct bp_location *bl)
10739 {
10740 struct watchpoint *w = (struct watchpoint *) bl->owner;
10741
10742 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10743 bl->watchpoint_type);
10744 }
10745
10746 /* Implement the "remove" breakpoint_ops method for
10747 masked hardware watchpoints. */
10748
10749 static int
10750 remove_masked_watchpoint (struct bp_location *bl)
10751 {
10752 struct watchpoint *w = (struct watchpoint *) bl->owner;
10753
10754 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10755 bl->watchpoint_type);
10756 }
10757
10758 /* Implement the "resources_needed" breakpoint_ops method for
10759 masked hardware watchpoints. */
10760
10761 static int
10762 resources_needed_masked_watchpoint (const struct bp_location *bl)
10763 {
10764 struct watchpoint *w = (struct watchpoint *) bl->owner;
10765
10766 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10767 }
10768
10769 /* Implement the "works_in_software_mode" breakpoint_ops method for
10770 masked hardware watchpoints. */
10771
10772 static int
10773 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10774 {
10775 return 0;
10776 }
10777
10778 /* Implement the "print_it" breakpoint_ops method for
10779 masked hardware watchpoints. */
10780
10781 static enum print_stop_action
10782 print_it_masked_watchpoint (bpstat bs)
10783 {
10784 struct breakpoint *b = bs->breakpoint_at;
10785 struct ui_out *uiout = current_uiout;
10786
10787 /* Masked watchpoints have only one location. */
10788 gdb_assert (b->loc && b->loc->next == NULL);
10789
10790 switch (b->type)
10791 {
10792 case bp_hardware_watchpoint:
10793 annotate_watchpoint (b->number);
10794 if (ui_out_is_mi_like_p (uiout))
10795 ui_out_field_string
10796 (uiout, "reason",
10797 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10798 break;
10799
10800 case bp_read_watchpoint:
10801 if (ui_out_is_mi_like_p (uiout))
10802 ui_out_field_string
10803 (uiout, "reason",
10804 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10805 break;
10806
10807 case bp_access_watchpoint:
10808 if (ui_out_is_mi_like_p (uiout))
10809 ui_out_field_string
10810 (uiout, "reason",
10811 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10812 break;
10813 default:
10814 internal_error (__FILE__, __LINE__,
10815 _("Invalid hardware watchpoint type."));
10816 }
10817
10818 mention (b);
10819 ui_out_text (uiout, _("\n\
10820 Check the underlying instruction at PC for the memory\n\
10821 address and value which triggered this watchpoint.\n"));
10822 ui_out_text (uiout, "\n");
10823
10824 /* More than one watchpoint may have been triggered. */
10825 return PRINT_UNKNOWN;
10826 }
10827
10828 /* Implement the "print_one_detail" breakpoint_ops method for
10829 masked hardware watchpoints. */
10830
10831 static void
10832 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10833 struct ui_out *uiout)
10834 {
10835 struct watchpoint *w = (struct watchpoint *) b;
10836
10837 /* Masked watchpoints have only one location. */
10838 gdb_assert (b->loc && b->loc->next == NULL);
10839
10840 ui_out_text (uiout, "\tmask ");
10841 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10842 ui_out_text (uiout, "\n");
10843 }
10844
10845 /* Implement the "print_mention" breakpoint_ops method for
10846 masked hardware watchpoints. */
10847
10848 static void
10849 print_mention_masked_watchpoint (struct breakpoint *b)
10850 {
10851 struct watchpoint *w = (struct watchpoint *) b;
10852 struct ui_out *uiout = current_uiout;
10853 struct cleanup *ui_out_chain;
10854
10855 switch (b->type)
10856 {
10857 case bp_hardware_watchpoint:
10858 ui_out_text (uiout, "Masked hardware watchpoint ");
10859 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10860 break;
10861 case bp_read_watchpoint:
10862 ui_out_text (uiout, "Masked hardware read watchpoint ");
10863 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10864 break;
10865 case bp_access_watchpoint:
10866 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10867 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10868 break;
10869 default:
10870 internal_error (__FILE__, __LINE__,
10871 _("Invalid hardware watchpoint type."));
10872 }
10873
10874 ui_out_field_int (uiout, "number", b->number);
10875 ui_out_text (uiout, ": ");
10876 ui_out_field_string (uiout, "exp", w->exp_string);
10877 do_cleanups (ui_out_chain);
10878 }
10879
10880 /* Implement the "print_recreate" breakpoint_ops method for
10881 masked hardware watchpoints. */
10882
10883 static void
10884 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10885 {
10886 struct watchpoint *w = (struct watchpoint *) b;
10887 char tmp[40];
10888
10889 switch (b->type)
10890 {
10891 case bp_hardware_watchpoint:
10892 fprintf_unfiltered (fp, "watch");
10893 break;
10894 case bp_read_watchpoint:
10895 fprintf_unfiltered (fp, "rwatch");
10896 break;
10897 case bp_access_watchpoint:
10898 fprintf_unfiltered (fp, "awatch");
10899 break;
10900 default:
10901 internal_error (__FILE__, __LINE__,
10902 _("Invalid hardware watchpoint type."));
10903 }
10904
10905 sprintf_vma (tmp, w->hw_wp_mask);
10906 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10907 print_recreate_thread (b, fp);
10908 }
10909
10910 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10911
10912 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10913
10914 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10915
10916 static int
10917 is_masked_watchpoint (const struct breakpoint *b)
10918 {
10919 return b->ops == &masked_watchpoint_breakpoint_ops;
10920 }
10921
10922 /* accessflag: hw_write: watch write,
10923 hw_read: watch read,
10924 hw_access: watch access (read or write) */
10925 static void
10926 watch_command_1 (const char *arg, int accessflag, int from_tty,
10927 int just_location, int internal)
10928 {
10929 struct breakpoint *b, *scope_breakpoint = NULL;
10930 struct expression *exp;
10931 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10932 struct value *val, *mark, *result;
10933 int saved_bitpos = 0, saved_bitsize = 0;
10934 struct frame_info *frame;
10935 const char *exp_start = NULL;
10936 const char *exp_end = NULL;
10937 const char *tok, *end_tok;
10938 int toklen = -1;
10939 const char *cond_start = NULL;
10940 const char *cond_end = NULL;
10941 enum bptype bp_type;
10942 int thread = -1;
10943 int pc = 0;
10944 /* Flag to indicate whether we are going to use masks for
10945 the hardware watchpoint. */
10946 int use_mask = 0;
10947 CORE_ADDR mask = 0;
10948 struct watchpoint *w;
10949 char *expression;
10950 struct cleanup *back_to;
10951
10952 /* Make sure that we actually have parameters to parse. */
10953 if (arg != NULL && arg[0] != '\0')
10954 {
10955 const char *value_start;
10956
10957 exp_end = arg + strlen (arg);
10958
10959 /* Look for "parameter value" pairs at the end
10960 of the arguments string. */
10961 for (tok = exp_end - 1; tok > arg; tok--)
10962 {
10963 /* Skip whitespace at the end of the argument list. */
10964 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10965 tok--;
10966
10967 /* Find the beginning of the last token.
10968 This is the value of the parameter. */
10969 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10970 tok--;
10971 value_start = tok + 1;
10972
10973 /* Skip whitespace. */
10974 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10975 tok--;
10976
10977 end_tok = tok;
10978
10979 /* Find the beginning of the second to last token.
10980 This is the parameter itself. */
10981 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10982 tok--;
10983 tok++;
10984 toklen = end_tok - tok + 1;
10985
10986 if (toklen == 6 && startswith (tok, "thread"))
10987 {
10988 /* At this point we've found a "thread" token, which means
10989 the user is trying to set a watchpoint that triggers
10990 only in a specific thread. */
10991 char *endp;
10992
10993 if (thread != -1)
10994 error(_("You can specify only one thread."));
10995
10996 /* Extract the thread ID from the next token. */
10997 thread = strtol (value_start, &endp, 0);
10998
10999 /* Check if the user provided a valid numeric value for the
11000 thread ID. */
11001 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11002 error (_("Invalid thread ID specification %s."), value_start);
11003
11004 /* Check if the thread actually exists. */
11005 if (!valid_thread_id (thread))
11006 invalid_thread_id_error (thread);
11007 }
11008 else if (toklen == 4 && startswith (tok, "mask"))
11009 {
11010 /* We've found a "mask" token, which means the user wants to
11011 create a hardware watchpoint that is going to have the mask
11012 facility. */
11013 struct value *mask_value, *mark;
11014
11015 if (use_mask)
11016 error(_("You can specify only one mask."));
11017
11018 use_mask = just_location = 1;
11019
11020 mark = value_mark ();
11021 mask_value = parse_to_comma_and_eval (&value_start);
11022 mask = value_as_address (mask_value);
11023 value_free_to_mark (mark);
11024 }
11025 else
11026 /* We didn't recognize what we found. We should stop here. */
11027 break;
11028
11029 /* Truncate the string and get rid of the "parameter value" pair before
11030 the arguments string is parsed by the parse_exp_1 function. */
11031 exp_end = tok;
11032 }
11033 }
11034 else
11035 exp_end = arg;
11036
11037 /* Parse the rest of the arguments. From here on out, everything
11038 is in terms of a newly allocated string instead of the original
11039 ARG. */
11040 innermost_block = NULL;
11041 expression = savestring (arg, exp_end - arg);
11042 back_to = make_cleanup (xfree, expression);
11043 exp_start = arg = expression;
11044 exp = parse_exp_1 (&arg, 0, 0, 0);
11045 exp_end = arg;
11046 /* Remove trailing whitespace from the expression before saving it.
11047 This makes the eventual display of the expression string a bit
11048 prettier. */
11049 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11050 --exp_end;
11051
11052 /* Checking if the expression is not constant. */
11053 if (watchpoint_exp_is_const (exp))
11054 {
11055 int len;
11056
11057 len = exp_end - exp_start;
11058 while (len > 0 && isspace (exp_start[len - 1]))
11059 len--;
11060 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11061 }
11062
11063 exp_valid_block = innermost_block;
11064 mark = value_mark ();
11065 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11066
11067 if (val != NULL && just_location)
11068 {
11069 saved_bitpos = value_bitpos (val);
11070 saved_bitsize = value_bitsize (val);
11071 }
11072
11073 if (just_location)
11074 {
11075 int ret;
11076
11077 exp_valid_block = NULL;
11078 val = value_addr (result);
11079 release_value (val);
11080 value_free_to_mark (mark);
11081
11082 if (use_mask)
11083 {
11084 ret = target_masked_watch_num_registers (value_as_address (val),
11085 mask);
11086 if (ret == -1)
11087 error (_("This target does not support masked watchpoints."));
11088 else if (ret == -2)
11089 error (_("Invalid mask or memory region."));
11090 }
11091 }
11092 else if (val != NULL)
11093 release_value (val);
11094
11095 tok = skip_spaces_const (arg);
11096 end_tok = skip_to_space_const (tok);
11097
11098 toklen = end_tok - tok;
11099 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11100 {
11101 struct expression *cond;
11102
11103 innermost_block = NULL;
11104 tok = cond_start = end_tok + 1;
11105 cond = parse_exp_1 (&tok, 0, 0, 0);
11106
11107 /* The watchpoint expression may not be local, but the condition
11108 may still be. E.g.: `watch global if local > 0'. */
11109 cond_exp_valid_block = innermost_block;
11110
11111 xfree (cond);
11112 cond_end = tok;
11113 }
11114 if (*tok)
11115 error (_("Junk at end of command."));
11116
11117 frame = block_innermost_frame (exp_valid_block);
11118
11119 /* If the expression is "local", then set up a "watchpoint scope"
11120 breakpoint at the point where we've left the scope of the watchpoint
11121 expression. Create the scope breakpoint before the watchpoint, so
11122 that we will encounter it first in bpstat_stop_status. */
11123 if (exp_valid_block && frame)
11124 {
11125 if (frame_id_p (frame_unwind_caller_id (frame)))
11126 {
11127 scope_breakpoint
11128 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11129 frame_unwind_caller_pc (frame),
11130 bp_watchpoint_scope,
11131 &momentary_breakpoint_ops);
11132
11133 scope_breakpoint->enable_state = bp_enabled;
11134
11135 /* Automatically delete the breakpoint when it hits. */
11136 scope_breakpoint->disposition = disp_del;
11137
11138 /* Only break in the proper frame (help with recursion). */
11139 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11140
11141 /* Set the address at which we will stop. */
11142 scope_breakpoint->loc->gdbarch
11143 = frame_unwind_caller_arch (frame);
11144 scope_breakpoint->loc->requested_address
11145 = frame_unwind_caller_pc (frame);
11146 scope_breakpoint->loc->address
11147 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11148 scope_breakpoint->loc->requested_address,
11149 scope_breakpoint->type);
11150 }
11151 }
11152
11153 /* Now set up the breakpoint. We create all watchpoints as hardware
11154 watchpoints here even if hardware watchpoints are turned off, a call
11155 to update_watchpoint later in this function will cause the type to
11156 drop back to bp_watchpoint (software watchpoint) if required. */
11157
11158 if (accessflag == hw_read)
11159 bp_type = bp_read_watchpoint;
11160 else if (accessflag == hw_access)
11161 bp_type = bp_access_watchpoint;
11162 else
11163 bp_type = bp_hardware_watchpoint;
11164
11165 w = XCNEW (struct watchpoint);
11166 b = &w->base;
11167 if (use_mask)
11168 init_raw_breakpoint_without_location (b, NULL, bp_type,
11169 &masked_watchpoint_breakpoint_ops);
11170 else
11171 init_raw_breakpoint_without_location (b, NULL, bp_type,
11172 &watchpoint_breakpoint_ops);
11173 b->thread = thread;
11174 b->disposition = disp_donttouch;
11175 b->pspace = current_program_space;
11176 w->exp = exp;
11177 w->exp_valid_block = exp_valid_block;
11178 w->cond_exp_valid_block = cond_exp_valid_block;
11179 if (just_location)
11180 {
11181 struct type *t = value_type (val);
11182 CORE_ADDR addr = value_as_address (val);
11183 char *name;
11184
11185 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11186 name = type_to_string (t);
11187
11188 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11189 core_addr_to_string (addr));
11190 xfree (name);
11191
11192 w->exp_string = xstrprintf ("-location %.*s",
11193 (int) (exp_end - exp_start), exp_start);
11194
11195 /* The above expression is in C. */
11196 b->language = language_c;
11197 }
11198 else
11199 w->exp_string = savestring (exp_start, exp_end - exp_start);
11200
11201 if (use_mask)
11202 {
11203 w->hw_wp_mask = mask;
11204 }
11205 else
11206 {
11207 w->val = val;
11208 w->val_bitpos = saved_bitpos;
11209 w->val_bitsize = saved_bitsize;
11210 w->val_valid = 1;
11211 }
11212
11213 if (cond_start)
11214 b->cond_string = savestring (cond_start, cond_end - cond_start);
11215 else
11216 b->cond_string = 0;
11217
11218 if (frame)
11219 {
11220 w->watchpoint_frame = get_frame_id (frame);
11221 w->watchpoint_thread = inferior_ptid;
11222 }
11223 else
11224 {
11225 w->watchpoint_frame = null_frame_id;
11226 w->watchpoint_thread = null_ptid;
11227 }
11228
11229 if (scope_breakpoint != NULL)
11230 {
11231 /* The scope breakpoint is related to the watchpoint. We will
11232 need to act on them together. */
11233 b->related_breakpoint = scope_breakpoint;
11234 scope_breakpoint->related_breakpoint = b;
11235 }
11236
11237 if (!just_location)
11238 value_free_to_mark (mark);
11239
11240 TRY
11241 {
11242 /* Finally update the new watchpoint. This creates the locations
11243 that should be inserted. */
11244 update_watchpoint (w, 1);
11245 }
11246 CATCH (e, RETURN_MASK_ALL)
11247 {
11248 delete_breakpoint (b);
11249 throw_exception (e);
11250 }
11251 END_CATCH
11252
11253 install_breakpoint (internal, b, 1);
11254 do_cleanups (back_to);
11255 }
11256
11257 /* Return count of debug registers needed to watch the given expression.
11258 If the watchpoint cannot be handled in hardware return zero. */
11259
11260 static int
11261 can_use_hardware_watchpoint (struct value *v)
11262 {
11263 int found_memory_cnt = 0;
11264 struct value *head = v;
11265
11266 /* Did the user specifically forbid us to use hardware watchpoints? */
11267 if (!can_use_hw_watchpoints)
11268 return 0;
11269
11270 /* Make sure that the value of the expression depends only upon
11271 memory contents, and values computed from them within GDB. If we
11272 find any register references or function calls, we can't use a
11273 hardware watchpoint.
11274
11275 The idea here is that evaluating an expression generates a series
11276 of values, one holding the value of every subexpression. (The
11277 expression a*b+c has five subexpressions: a, b, a*b, c, and
11278 a*b+c.) GDB's values hold almost enough information to establish
11279 the criteria given above --- they identify memory lvalues,
11280 register lvalues, computed values, etcetera. So we can evaluate
11281 the expression, and then scan the chain of values that leaves
11282 behind to decide whether we can detect any possible change to the
11283 expression's final value using only hardware watchpoints.
11284
11285 However, I don't think that the values returned by inferior
11286 function calls are special in any way. So this function may not
11287 notice that an expression involving an inferior function call
11288 can't be watched with hardware watchpoints. FIXME. */
11289 for (; v; v = value_next (v))
11290 {
11291 if (VALUE_LVAL (v) == lval_memory)
11292 {
11293 if (v != head && value_lazy (v))
11294 /* A lazy memory lvalue in the chain is one that GDB never
11295 needed to fetch; we either just used its address (e.g.,
11296 `a' in `a.b') or we never needed it at all (e.g., `a'
11297 in `a,b'). This doesn't apply to HEAD; if that is
11298 lazy then it was not readable, but watch it anyway. */
11299 ;
11300 else
11301 {
11302 /* Ahh, memory we actually used! Check if we can cover
11303 it with hardware watchpoints. */
11304 struct type *vtype = check_typedef (value_type (v));
11305
11306 /* We only watch structs and arrays if user asked for it
11307 explicitly, never if they just happen to appear in a
11308 middle of some value chain. */
11309 if (v == head
11310 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11311 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11312 {
11313 CORE_ADDR vaddr = value_address (v);
11314 int len;
11315 int num_regs;
11316
11317 len = (target_exact_watchpoints
11318 && is_scalar_type_recursive (vtype))?
11319 1 : TYPE_LENGTH (value_type (v));
11320
11321 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11322 if (!num_regs)
11323 return 0;
11324 else
11325 found_memory_cnt += num_regs;
11326 }
11327 }
11328 }
11329 else if (VALUE_LVAL (v) != not_lval
11330 && deprecated_value_modifiable (v) == 0)
11331 return 0; /* These are values from the history (e.g., $1). */
11332 else if (VALUE_LVAL (v) == lval_register)
11333 return 0; /* Cannot watch a register with a HW watchpoint. */
11334 }
11335
11336 /* The expression itself looks suitable for using a hardware
11337 watchpoint, but give the target machine a chance to reject it. */
11338 return found_memory_cnt;
11339 }
11340
11341 void
11342 watch_command_wrapper (char *arg, int from_tty, int internal)
11343 {
11344 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11345 }
11346
11347 /* A helper function that looks for the "-location" argument and then
11348 calls watch_command_1. */
11349
11350 static void
11351 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11352 {
11353 int just_location = 0;
11354
11355 if (arg
11356 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11357 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11358 {
11359 arg = skip_spaces (arg);
11360 just_location = 1;
11361 }
11362
11363 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11364 }
11365
11366 static void
11367 watch_command (char *arg, int from_tty)
11368 {
11369 watch_maybe_just_location (arg, hw_write, from_tty);
11370 }
11371
11372 void
11373 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11374 {
11375 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11376 }
11377
11378 static void
11379 rwatch_command (char *arg, int from_tty)
11380 {
11381 watch_maybe_just_location (arg, hw_read, from_tty);
11382 }
11383
11384 void
11385 awatch_command_wrapper (char *arg, int from_tty, int internal)
11386 {
11387 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11388 }
11389
11390 static void
11391 awatch_command (char *arg, int from_tty)
11392 {
11393 watch_maybe_just_location (arg, hw_access, from_tty);
11394 }
11395 \f
11396
11397 /* Helper routines for the until_command routine in infcmd.c. Here
11398 because it uses the mechanisms of breakpoints. */
11399
11400 struct until_break_command_continuation_args
11401 {
11402 struct breakpoint *breakpoint;
11403 struct breakpoint *breakpoint2;
11404 int thread_num;
11405 };
11406
11407 /* This function is called by fetch_inferior_event via the
11408 cmd_continuation pointer, to complete the until command. It takes
11409 care of cleaning up the temporary breakpoints set up by the until
11410 command. */
11411 static void
11412 until_break_command_continuation (void *arg, int err)
11413 {
11414 struct until_break_command_continuation_args *a = arg;
11415
11416 delete_breakpoint (a->breakpoint);
11417 if (a->breakpoint2)
11418 delete_breakpoint (a->breakpoint2);
11419 delete_longjmp_breakpoint (a->thread_num);
11420 }
11421
11422 void
11423 until_break_command (char *arg, int from_tty, int anywhere)
11424 {
11425 struct symtabs_and_lines sals;
11426 struct symtab_and_line sal;
11427 struct frame_info *frame;
11428 struct gdbarch *frame_gdbarch;
11429 struct frame_id stack_frame_id;
11430 struct frame_id caller_frame_id;
11431 struct breakpoint *breakpoint;
11432 struct breakpoint *breakpoint2 = NULL;
11433 struct cleanup *old_chain;
11434 int thread;
11435 struct thread_info *tp;
11436
11437 clear_proceed_status (0);
11438
11439 /* Set a breakpoint where the user wants it and at return from
11440 this function. */
11441
11442 if (last_displayed_sal_is_valid ())
11443 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11444 get_last_displayed_symtab (),
11445 get_last_displayed_line ());
11446 else
11447 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11448 (struct symtab *) NULL, 0);
11449
11450 if (sals.nelts != 1)
11451 error (_("Couldn't get information on specified line."));
11452
11453 sal = sals.sals[0];
11454 xfree (sals.sals); /* malloc'd, so freed. */
11455
11456 if (*arg)
11457 error (_("Junk at end of arguments."));
11458
11459 resolve_sal_pc (&sal);
11460
11461 tp = inferior_thread ();
11462 thread = tp->num;
11463
11464 old_chain = make_cleanup (null_cleanup, NULL);
11465
11466 /* Note linespec handling above invalidates the frame chain.
11467 Installing a breakpoint also invalidates the frame chain (as it
11468 may need to switch threads), so do any frame handling before
11469 that. */
11470
11471 frame = get_selected_frame (NULL);
11472 frame_gdbarch = get_frame_arch (frame);
11473 stack_frame_id = get_stack_frame_id (frame);
11474 caller_frame_id = frame_unwind_caller_id (frame);
11475
11476 /* Keep within the current frame, or in frames called by the current
11477 one. */
11478
11479 if (frame_id_p (caller_frame_id))
11480 {
11481 struct symtab_and_line sal2;
11482
11483 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11484 sal2.pc = frame_unwind_caller_pc (frame);
11485 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11486 sal2,
11487 caller_frame_id,
11488 bp_until);
11489 make_cleanup_delete_breakpoint (breakpoint2);
11490
11491 set_longjmp_breakpoint (tp, caller_frame_id);
11492 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11493 }
11494
11495 /* set_momentary_breakpoint could invalidate FRAME. */
11496 frame = NULL;
11497
11498 if (anywhere)
11499 /* If the user told us to continue until a specified location,
11500 we don't specify a frame at which we need to stop. */
11501 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11502 null_frame_id, bp_until);
11503 else
11504 /* Otherwise, specify the selected frame, because we want to stop
11505 only at the very same frame. */
11506 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11507 stack_frame_id, bp_until);
11508 make_cleanup_delete_breakpoint (breakpoint);
11509
11510 proceed (-1, GDB_SIGNAL_DEFAULT);
11511
11512 /* If we are running asynchronously, and proceed call above has
11513 actually managed to start the target, arrange for breakpoints to
11514 be deleted when the target stops. Otherwise, we're already
11515 stopped and delete breakpoints via cleanup chain. */
11516
11517 if (target_can_async_p () && is_running (inferior_ptid))
11518 {
11519 struct until_break_command_continuation_args *args;
11520 args = xmalloc (sizeof (*args));
11521
11522 args->breakpoint = breakpoint;
11523 args->breakpoint2 = breakpoint2;
11524 args->thread_num = thread;
11525
11526 discard_cleanups (old_chain);
11527 add_continuation (inferior_thread (),
11528 until_break_command_continuation, args,
11529 xfree);
11530 }
11531 else
11532 do_cleanups (old_chain);
11533 }
11534
11535 /* This function attempts to parse an optional "if <cond>" clause
11536 from the arg string. If one is not found, it returns NULL.
11537
11538 Else, it returns a pointer to the condition string. (It does not
11539 attempt to evaluate the string against a particular block.) And,
11540 it updates arg to point to the first character following the parsed
11541 if clause in the arg string. */
11542
11543 char *
11544 ep_parse_optional_if_clause (char **arg)
11545 {
11546 char *cond_string;
11547
11548 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11549 return NULL;
11550
11551 /* Skip the "if" keyword. */
11552 (*arg) += 2;
11553
11554 /* Skip any extra leading whitespace, and record the start of the
11555 condition string. */
11556 *arg = skip_spaces (*arg);
11557 cond_string = *arg;
11558
11559 /* Assume that the condition occupies the remainder of the arg
11560 string. */
11561 (*arg) += strlen (cond_string);
11562
11563 return cond_string;
11564 }
11565
11566 /* Commands to deal with catching events, such as signals, exceptions,
11567 process start/exit, etc. */
11568
11569 typedef enum
11570 {
11571 catch_fork_temporary, catch_vfork_temporary,
11572 catch_fork_permanent, catch_vfork_permanent
11573 }
11574 catch_fork_kind;
11575
11576 static void
11577 catch_fork_command_1 (char *arg, int from_tty,
11578 struct cmd_list_element *command)
11579 {
11580 struct gdbarch *gdbarch = get_current_arch ();
11581 char *cond_string = NULL;
11582 catch_fork_kind fork_kind;
11583 int tempflag;
11584
11585 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11586 tempflag = (fork_kind == catch_fork_temporary
11587 || fork_kind == catch_vfork_temporary);
11588
11589 if (!arg)
11590 arg = "";
11591 arg = skip_spaces (arg);
11592
11593 /* The allowed syntax is:
11594 catch [v]fork
11595 catch [v]fork if <cond>
11596
11597 First, check if there's an if clause. */
11598 cond_string = ep_parse_optional_if_clause (&arg);
11599
11600 if ((*arg != '\0') && !isspace (*arg))
11601 error (_("Junk at end of arguments."));
11602
11603 /* If this target supports it, create a fork or vfork catchpoint
11604 and enable reporting of such events. */
11605 switch (fork_kind)
11606 {
11607 case catch_fork_temporary:
11608 case catch_fork_permanent:
11609 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11610 &catch_fork_breakpoint_ops);
11611 break;
11612 case catch_vfork_temporary:
11613 case catch_vfork_permanent:
11614 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11615 &catch_vfork_breakpoint_ops);
11616 break;
11617 default:
11618 error (_("unsupported or unknown fork kind; cannot catch it"));
11619 break;
11620 }
11621 }
11622
11623 static void
11624 catch_exec_command_1 (char *arg, int from_tty,
11625 struct cmd_list_element *command)
11626 {
11627 struct exec_catchpoint *c;
11628 struct gdbarch *gdbarch = get_current_arch ();
11629 int tempflag;
11630 char *cond_string = NULL;
11631
11632 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11633
11634 if (!arg)
11635 arg = "";
11636 arg = skip_spaces (arg);
11637
11638 /* The allowed syntax is:
11639 catch exec
11640 catch exec if <cond>
11641
11642 First, check if there's an if clause. */
11643 cond_string = ep_parse_optional_if_clause (&arg);
11644
11645 if ((*arg != '\0') && !isspace (*arg))
11646 error (_("Junk at end of arguments."));
11647
11648 c = XNEW (struct exec_catchpoint);
11649 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11650 &catch_exec_breakpoint_ops);
11651 c->exec_pathname = NULL;
11652
11653 install_breakpoint (0, &c->base, 1);
11654 }
11655
11656 void
11657 init_ada_exception_breakpoint (struct breakpoint *b,
11658 struct gdbarch *gdbarch,
11659 struct symtab_and_line sal,
11660 char *addr_string,
11661 const struct breakpoint_ops *ops,
11662 int tempflag,
11663 int enabled,
11664 int from_tty)
11665 {
11666 if (from_tty)
11667 {
11668 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11669 if (!loc_gdbarch)
11670 loc_gdbarch = gdbarch;
11671
11672 describe_other_breakpoints (loc_gdbarch,
11673 sal.pspace, sal.pc, sal.section, -1);
11674 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11675 version for exception catchpoints, because two catchpoints
11676 used for different exception names will use the same address.
11677 In this case, a "breakpoint ... also set at..." warning is
11678 unproductive. Besides, the warning phrasing is also a bit
11679 inappropriate, we should use the word catchpoint, and tell
11680 the user what type of catchpoint it is. The above is good
11681 enough for now, though. */
11682 }
11683
11684 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11685
11686 b->enable_state = enabled ? bp_enabled : bp_disabled;
11687 b->disposition = tempflag ? disp_del : disp_donttouch;
11688 b->addr_string = addr_string;
11689 b->language = language_ada;
11690 }
11691
11692 static void
11693 catch_command (char *arg, int from_tty)
11694 {
11695 error (_("Catch requires an event name."));
11696 }
11697 \f
11698
11699 static void
11700 tcatch_command (char *arg, int from_tty)
11701 {
11702 error (_("Catch requires an event name."));
11703 }
11704
11705 /* A qsort comparison function that sorts breakpoints in order. */
11706
11707 static int
11708 compare_breakpoints (const void *a, const void *b)
11709 {
11710 const breakpoint_p *ba = a;
11711 uintptr_t ua = (uintptr_t) *ba;
11712 const breakpoint_p *bb = b;
11713 uintptr_t ub = (uintptr_t) *bb;
11714
11715 if ((*ba)->number < (*bb)->number)
11716 return -1;
11717 else if ((*ba)->number > (*bb)->number)
11718 return 1;
11719
11720 /* Now sort by address, in case we see, e..g, two breakpoints with
11721 the number 0. */
11722 if (ua < ub)
11723 return -1;
11724 return ua > ub ? 1 : 0;
11725 }
11726
11727 /* Delete breakpoints by address or line. */
11728
11729 static void
11730 clear_command (char *arg, int from_tty)
11731 {
11732 struct breakpoint *b, *prev;
11733 VEC(breakpoint_p) *found = 0;
11734 int ix;
11735 int default_match;
11736 struct symtabs_and_lines sals;
11737 struct symtab_and_line sal;
11738 int i;
11739 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11740
11741 if (arg)
11742 {
11743 sals = decode_line_with_current_source (arg,
11744 (DECODE_LINE_FUNFIRSTLINE
11745 | DECODE_LINE_LIST_MODE));
11746 make_cleanup (xfree, sals.sals);
11747 default_match = 0;
11748 }
11749 else
11750 {
11751 sals.sals = (struct symtab_and_line *)
11752 xmalloc (sizeof (struct symtab_and_line));
11753 make_cleanup (xfree, sals.sals);
11754 init_sal (&sal); /* Initialize to zeroes. */
11755
11756 /* Set sal's line, symtab, pc, and pspace to the values
11757 corresponding to the last call to print_frame_info. If the
11758 codepoint is not valid, this will set all the fields to 0. */
11759 get_last_displayed_sal (&sal);
11760 if (sal.symtab == 0)
11761 error (_("No source file specified."));
11762
11763 sals.sals[0] = sal;
11764 sals.nelts = 1;
11765
11766 default_match = 1;
11767 }
11768
11769 /* We don't call resolve_sal_pc here. That's not as bad as it
11770 seems, because all existing breakpoints typically have both
11771 file/line and pc set. So, if clear is given file/line, we can
11772 match this to existing breakpoint without obtaining pc at all.
11773
11774 We only support clearing given the address explicitly
11775 present in breakpoint table. Say, we've set breakpoint
11776 at file:line. There were several PC values for that file:line,
11777 due to optimization, all in one block.
11778
11779 We've picked one PC value. If "clear" is issued with another
11780 PC corresponding to the same file:line, the breakpoint won't
11781 be cleared. We probably can still clear the breakpoint, but
11782 since the other PC value is never presented to user, user
11783 can only find it by guessing, and it does not seem important
11784 to support that. */
11785
11786 /* For each line spec given, delete bps which correspond to it. Do
11787 it in two passes, solely to preserve the current behavior that
11788 from_tty is forced true if we delete more than one
11789 breakpoint. */
11790
11791 found = NULL;
11792 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11793 for (i = 0; i < sals.nelts; i++)
11794 {
11795 const char *sal_fullname;
11796
11797 /* If exact pc given, clear bpts at that pc.
11798 If line given (pc == 0), clear all bpts on specified line.
11799 If defaulting, clear all bpts on default line
11800 or at default pc.
11801
11802 defaulting sal.pc != 0 tests to do
11803
11804 0 1 pc
11805 1 1 pc _and_ line
11806 0 0 line
11807 1 0 <can't happen> */
11808
11809 sal = sals.sals[i];
11810 sal_fullname = (sal.symtab == NULL
11811 ? NULL : symtab_to_fullname (sal.symtab));
11812
11813 /* Find all matching breakpoints and add them to 'found'. */
11814 ALL_BREAKPOINTS (b)
11815 {
11816 int match = 0;
11817 /* Are we going to delete b? */
11818 if (b->type != bp_none && !is_watchpoint (b))
11819 {
11820 struct bp_location *loc = b->loc;
11821 for (; loc; loc = loc->next)
11822 {
11823 /* If the user specified file:line, don't allow a PC
11824 match. This matches historical gdb behavior. */
11825 int pc_match = (!sal.explicit_line
11826 && sal.pc
11827 && (loc->pspace == sal.pspace)
11828 && (loc->address == sal.pc)
11829 && (!section_is_overlay (loc->section)
11830 || loc->section == sal.section));
11831 int line_match = 0;
11832
11833 if ((default_match || sal.explicit_line)
11834 && loc->symtab != NULL
11835 && sal_fullname != NULL
11836 && sal.pspace == loc->pspace
11837 && loc->line_number == sal.line
11838 && filename_cmp (symtab_to_fullname (loc->symtab),
11839 sal_fullname) == 0)
11840 line_match = 1;
11841
11842 if (pc_match || line_match)
11843 {
11844 match = 1;
11845 break;
11846 }
11847 }
11848 }
11849
11850 if (match)
11851 VEC_safe_push(breakpoint_p, found, b);
11852 }
11853 }
11854
11855 /* Now go thru the 'found' chain and delete them. */
11856 if (VEC_empty(breakpoint_p, found))
11857 {
11858 if (arg)
11859 error (_("No breakpoint at %s."), arg);
11860 else
11861 error (_("No breakpoint at this line."));
11862 }
11863
11864 /* Remove duplicates from the vec. */
11865 qsort (VEC_address (breakpoint_p, found),
11866 VEC_length (breakpoint_p, found),
11867 sizeof (breakpoint_p),
11868 compare_breakpoints);
11869 prev = VEC_index (breakpoint_p, found, 0);
11870 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11871 {
11872 if (b == prev)
11873 {
11874 VEC_ordered_remove (breakpoint_p, found, ix);
11875 --ix;
11876 }
11877 }
11878
11879 if (VEC_length(breakpoint_p, found) > 1)
11880 from_tty = 1; /* Always report if deleted more than one. */
11881 if (from_tty)
11882 {
11883 if (VEC_length(breakpoint_p, found) == 1)
11884 printf_unfiltered (_("Deleted breakpoint "));
11885 else
11886 printf_unfiltered (_("Deleted breakpoints "));
11887 }
11888
11889 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11890 {
11891 if (from_tty)
11892 printf_unfiltered ("%d ", b->number);
11893 delete_breakpoint (b);
11894 }
11895 if (from_tty)
11896 putchar_unfiltered ('\n');
11897
11898 do_cleanups (cleanups);
11899 }
11900 \f
11901 /* Delete breakpoint in BS if they are `delete' breakpoints and
11902 all breakpoints that are marked for deletion, whether hit or not.
11903 This is called after any breakpoint is hit, or after errors. */
11904
11905 void
11906 breakpoint_auto_delete (bpstat bs)
11907 {
11908 struct breakpoint *b, *b_tmp;
11909
11910 for (; bs; bs = bs->next)
11911 if (bs->breakpoint_at
11912 && bs->breakpoint_at->disposition == disp_del
11913 && bs->stop)
11914 delete_breakpoint (bs->breakpoint_at);
11915
11916 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11917 {
11918 if (b->disposition == disp_del_at_next_stop)
11919 delete_breakpoint (b);
11920 }
11921 }
11922
11923 /* A comparison function for bp_location AP and BP being interfaced to
11924 qsort. Sort elements primarily by their ADDRESS (no matter what
11925 does breakpoint_address_is_meaningful say for its OWNER),
11926 secondarily by ordering first permanent elements and
11927 terciarily just ensuring the array is sorted stable way despite
11928 qsort being an unstable algorithm. */
11929
11930 static int
11931 bp_location_compare (const void *ap, const void *bp)
11932 {
11933 struct bp_location *a = *(void **) ap;
11934 struct bp_location *b = *(void **) bp;
11935
11936 if (a->address != b->address)
11937 return (a->address > b->address) - (a->address < b->address);
11938
11939 /* Sort locations at the same address by their pspace number, keeping
11940 locations of the same inferior (in a multi-inferior environment)
11941 grouped. */
11942
11943 if (a->pspace->num != b->pspace->num)
11944 return ((a->pspace->num > b->pspace->num)
11945 - (a->pspace->num < b->pspace->num));
11946
11947 /* Sort permanent breakpoints first. */
11948 if (a->permanent != b->permanent)
11949 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11950
11951 /* Make the internal GDB representation stable across GDB runs
11952 where A and B memory inside GDB can differ. Breakpoint locations of
11953 the same type at the same address can be sorted in arbitrary order. */
11954
11955 if (a->owner->number != b->owner->number)
11956 return ((a->owner->number > b->owner->number)
11957 - (a->owner->number < b->owner->number));
11958
11959 return (a > b) - (a < b);
11960 }
11961
11962 /* Set bp_location_placed_address_before_address_max and
11963 bp_location_shadow_len_after_address_max according to the current
11964 content of the bp_location array. */
11965
11966 static void
11967 bp_location_target_extensions_update (void)
11968 {
11969 struct bp_location *bl, **blp_tmp;
11970
11971 bp_location_placed_address_before_address_max = 0;
11972 bp_location_shadow_len_after_address_max = 0;
11973
11974 ALL_BP_LOCATIONS (bl, blp_tmp)
11975 {
11976 CORE_ADDR start, end, addr;
11977
11978 if (!bp_location_has_shadow (bl))
11979 continue;
11980
11981 start = bl->target_info.placed_address;
11982 end = start + bl->target_info.shadow_len;
11983
11984 gdb_assert (bl->address >= start);
11985 addr = bl->address - start;
11986 if (addr > bp_location_placed_address_before_address_max)
11987 bp_location_placed_address_before_address_max = addr;
11988
11989 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11990
11991 gdb_assert (bl->address < end);
11992 addr = end - bl->address;
11993 if (addr > bp_location_shadow_len_after_address_max)
11994 bp_location_shadow_len_after_address_max = addr;
11995 }
11996 }
11997
11998 /* Download tracepoint locations if they haven't been. */
11999
12000 static void
12001 download_tracepoint_locations (void)
12002 {
12003 struct breakpoint *b;
12004 struct cleanup *old_chain;
12005
12006 if (!target_can_download_tracepoint ())
12007 return;
12008
12009 old_chain = save_current_space_and_thread ();
12010
12011 ALL_TRACEPOINTS (b)
12012 {
12013 struct bp_location *bl;
12014 struct tracepoint *t;
12015 int bp_location_downloaded = 0;
12016
12017 if ((b->type == bp_fast_tracepoint
12018 ? !may_insert_fast_tracepoints
12019 : !may_insert_tracepoints))
12020 continue;
12021
12022 for (bl = b->loc; bl; bl = bl->next)
12023 {
12024 /* In tracepoint, locations are _never_ duplicated, so
12025 should_be_inserted is equivalent to
12026 unduplicated_should_be_inserted. */
12027 if (!should_be_inserted (bl) || bl->inserted)
12028 continue;
12029
12030 switch_to_program_space_and_thread (bl->pspace);
12031
12032 target_download_tracepoint (bl);
12033
12034 bl->inserted = 1;
12035 bp_location_downloaded = 1;
12036 }
12037 t = (struct tracepoint *) b;
12038 t->number_on_target = b->number;
12039 if (bp_location_downloaded)
12040 observer_notify_breakpoint_modified (b);
12041 }
12042
12043 do_cleanups (old_chain);
12044 }
12045
12046 /* Swap the insertion/duplication state between two locations. */
12047
12048 static void
12049 swap_insertion (struct bp_location *left, struct bp_location *right)
12050 {
12051 const int left_inserted = left->inserted;
12052 const int left_duplicate = left->duplicate;
12053 const int left_needs_update = left->needs_update;
12054 const struct bp_target_info left_target_info = left->target_info;
12055
12056 /* Locations of tracepoints can never be duplicated. */
12057 if (is_tracepoint (left->owner))
12058 gdb_assert (!left->duplicate);
12059 if (is_tracepoint (right->owner))
12060 gdb_assert (!right->duplicate);
12061
12062 left->inserted = right->inserted;
12063 left->duplicate = right->duplicate;
12064 left->needs_update = right->needs_update;
12065 left->target_info = right->target_info;
12066 right->inserted = left_inserted;
12067 right->duplicate = left_duplicate;
12068 right->needs_update = left_needs_update;
12069 right->target_info = left_target_info;
12070 }
12071
12072 /* Force the re-insertion of the locations at ADDRESS. This is called
12073 once a new/deleted/modified duplicate location is found and we are evaluating
12074 conditions on the target's side. Such conditions need to be updated on
12075 the target. */
12076
12077 static void
12078 force_breakpoint_reinsertion (struct bp_location *bl)
12079 {
12080 struct bp_location **locp = NULL, **loc2p;
12081 struct bp_location *loc;
12082 CORE_ADDR address = 0;
12083 int pspace_num;
12084
12085 address = bl->address;
12086 pspace_num = bl->pspace->num;
12087
12088 /* This is only meaningful if the target is
12089 evaluating conditions and if the user has
12090 opted for condition evaluation on the target's
12091 side. */
12092 if (gdb_evaluates_breakpoint_condition_p ()
12093 || !target_supports_evaluation_of_breakpoint_conditions ())
12094 return;
12095
12096 /* Flag all breakpoint locations with this address and
12097 the same program space as the location
12098 as "its condition has changed". We need to
12099 update the conditions on the target's side. */
12100 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12101 {
12102 loc = *loc2p;
12103
12104 if (!is_breakpoint (loc->owner)
12105 || pspace_num != loc->pspace->num)
12106 continue;
12107
12108 /* Flag the location appropriately. We use a different state to
12109 let everyone know that we already updated the set of locations
12110 with addr bl->address and program space bl->pspace. This is so
12111 we don't have to keep calling these functions just to mark locations
12112 that have already been marked. */
12113 loc->condition_changed = condition_updated;
12114
12115 /* Free the agent expression bytecode as well. We will compute
12116 it later on. */
12117 if (loc->cond_bytecode)
12118 {
12119 free_agent_expr (loc->cond_bytecode);
12120 loc->cond_bytecode = NULL;
12121 }
12122 }
12123 }
12124 /* Called whether new breakpoints are created, or existing breakpoints
12125 deleted, to update the global location list and recompute which
12126 locations are duplicate of which.
12127
12128 The INSERT_MODE flag determines whether locations may not, may, or
12129 shall be inserted now. See 'enum ugll_insert_mode' for more
12130 info. */
12131
12132 static void
12133 update_global_location_list (enum ugll_insert_mode insert_mode)
12134 {
12135 struct breakpoint *b;
12136 struct bp_location **locp, *loc;
12137 struct cleanup *cleanups;
12138 /* Last breakpoint location address that was marked for update. */
12139 CORE_ADDR last_addr = 0;
12140 /* Last breakpoint location program space that was marked for update. */
12141 int last_pspace_num = -1;
12142
12143 /* Used in the duplicates detection below. When iterating over all
12144 bp_locations, points to the first bp_location of a given address.
12145 Breakpoints and watchpoints of different types are never
12146 duplicates of each other. Keep one pointer for each type of
12147 breakpoint/watchpoint, so we only need to loop over all locations
12148 once. */
12149 struct bp_location *bp_loc_first; /* breakpoint */
12150 struct bp_location *wp_loc_first; /* hardware watchpoint */
12151 struct bp_location *awp_loc_first; /* access watchpoint */
12152 struct bp_location *rwp_loc_first; /* read watchpoint */
12153
12154 /* Saved former bp_location array which we compare against the newly
12155 built bp_location from the current state of ALL_BREAKPOINTS. */
12156 struct bp_location **old_location, **old_locp;
12157 unsigned old_location_count;
12158
12159 old_location = bp_location;
12160 old_location_count = bp_location_count;
12161 bp_location = NULL;
12162 bp_location_count = 0;
12163 cleanups = make_cleanup (xfree, old_location);
12164
12165 ALL_BREAKPOINTS (b)
12166 for (loc = b->loc; loc; loc = loc->next)
12167 bp_location_count++;
12168
12169 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12170 locp = bp_location;
12171 ALL_BREAKPOINTS (b)
12172 for (loc = b->loc; loc; loc = loc->next)
12173 *locp++ = loc;
12174 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12175 bp_location_compare);
12176
12177 bp_location_target_extensions_update ();
12178
12179 /* Identify bp_location instances that are no longer present in the
12180 new list, and therefore should be freed. Note that it's not
12181 necessary that those locations should be removed from inferior --
12182 if there's another location at the same address (previously
12183 marked as duplicate), we don't need to remove/insert the
12184 location.
12185
12186 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12187 and former bp_location array state respectively. */
12188
12189 locp = bp_location;
12190 for (old_locp = old_location; old_locp < old_location + old_location_count;
12191 old_locp++)
12192 {
12193 struct bp_location *old_loc = *old_locp;
12194 struct bp_location **loc2p;
12195
12196 /* Tells if 'old_loc' is found among the new locations. If
12197 not, we have to free it. */
12198 int found_object = 0;
12199 /* Tells if the location should remain inserted in the target. */
12200 int keep_in_target = 0;
12201 int removed = 0;
12202
12203 /* Skip LOCP entries which will definitely never be needed.
12204 Stop either at or being the one matching OLD_LOC. */
12205 while (locp < bp_location + bp_location_count
12206 && (*locp)->address < old_loc->address)
12207 locp++;
12208
12209 for (loc2p = locp;
12210 (loc2p < bp_location + bp_location_count
12211 && (*loc2p)->address == old_loc->address);
12212 loc2p++)
12213 {
12214 /* Check if this is a new/duplicated location or a duplicated
12215 location that had its condition modified. If so, we want to send
12216 its condition to the target if evaluation of conditions is taking
12217 place there. */
12218 if ((*loc2p)->condition_changed == condition_modified
12219 && (last_addr != old_loc->address
12220 || last_pspace_num != old_loc->pspace->num))
12221 {
12222 force_breakpoint_reinsertion (*loc2p);
12223 last_pspace_num = old_loc->pspace->num;
12224 }
12225
12226 if (*loc2p == old_loc)
12227 found_object = 1;
12228 }
12229
12230 /* We have already handled this address, update it so that we don't
12231 have to go through updates again. */
12232 last_addr = old_loc->address;
12233
12234 /* Target-side condition evaluation: Handle deleted locations. */
12235 if (!found_object)
12236 force_breakpoint_reinsertion (old_loc);
12237
12238 /* If this location is no longer present, and inserted, look if
12239 there's maybe a new location at the same address. If so,
12240 mark that one inserted, and don't remove this one. This is
12241 needed so that we don't have a time window where a breakpoint
12242 at certain location is not inserted. */
12243
12244 if (old_loc->inserted)
12245 {
12246 /* If the location is inserted now, we might have to remove
12247 it. */
12248
12249 if (found_object && should_be_inserted (old_loc))
12250 {
12251 /* The location is still present in the location list,
12252 and still should be inserted. Don't do anything. */
12253 keep_in_target = 1;
12254 }
12255 else
12256 {
12257 /* This location still exists, but it won't be kept in the
12258 target since it may have been disabled. We proceed to
12259 remove its target-side condition. */
12260
12261 /* The location is either no longer present, or got
12262 disabled. See if there's another location at the
12263 same address, in which case we don't need to remove
12264 this one from the target. */
12265
12266 /* OLD_LOC comes from existing struct breakpoint. */
12267 if (breakpoint_address_is_meaningful (old_loc->owner))
12268 {
12269 for (loc2p = locp;
12270 (loc2p < bp_location + bp_location_count
12271 && (*loc2p)->address == old_loc->address);
12272 loc2p++)
12273 {
12274 struct bp_location *loc2 = *loc2p;
12275
12276 if (breakpoint_locations_match (loc2, old_loc))
12277 {
12278 /* Read watchpoint locations are switched to
12279 access watchpoints, if the former are not
12280 supported, but the latter are. */
12281 if (is_hardware_watchpoint (old_loc->owner))
12282 {
12283 gdb_assert (is_hardware_watchpoint (loc2->owner));
12284 loc2->watchpoint_type = old_loc->watchpoint_type;
12285 }
12286
12287 /* loc2 is a duplicated location. We need to check
12288 if it should be inserted in case it will be
12289 unduplicated. */
12290 if (loc2 != old_loc
12291 && unduplicated_should_be_inserted (loc2))
12292 {
12293 swap_insertion (old_loc, loc2);
12294 keep_in_target = 1;
12295 break;
12296 }
12297 }
12298 }
12299 }
12300 }
12301
12302 if (!keep_in_target)
12303 {
12304 if (remove_breakpoint (old_loc, mark_uninserted))
12305 {
12306 /* This is just about all we can do. We could keep
12307 this location on the global list, and try to
12308 remove it next time, but there's no particular
12309 reason why we will succeed next time.
12310
12311 Note that at this point, old_loc->owner is still
12312 valid, as delete_breakpoint frees the breakpoint
12313 only after calling us. */
12314 printf_filtered (_("warning: Error removing "
12315 "breakpoint %d\n"),
12316 old_loc->owner->number);
12317 }
12318 removed = 1;
12319 }
12320 }
12321
12322 if (!found_object)
12323 {
12324 if (removed && non_stop
12325 && need_moribund_for_location_type (old_loc))
12326 {
12327 /* This location was removed from the target. In
12328 non-stop mode, a race condition is possible where
12329 we've removed a breakpoint, but stop events for that
12330 breakpoint are already queued and will arrive later.
12331 We apply an heuristic to be able to distinguish such
12332 SIGTRAPs from other random SIGTRAPs: we keep this
12333 breakpoint location for a bit, and will retire it
12334 after we see some number of events. The theory here
12335 is that reporting of events should, "on the average",
12336 be fair, so after a while we'll see events from all
12337 threads that have anything of interest, and no longer
12338 need to keep this breakpoint location around. We
12339 don't hold locations forever so to reduce chances of
12340 mistaking a non-breakpoint SIGTRAP for a breakpoint
12341 SIGTRAP.
12342
12343 The heuristic failing can be disastrous on
12344 decr_pc_after_break targets.
12345
12346 On decr_pc_after_break targets, like e.g., x86-linux,
12347 if we fail to recognize a late breakpoint SIGTRAP,
12348 because events_till_retirement has reached 0 too
12349 soon, we'll fail to do the PC adjustment, and report
12350 a random SIGTRAP to the user. When the user resumes
12351 the inferior, it will most likely immediately crash
12352 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12353 corrupted, because of being resumed e.g., in the
12354 middle of a multi-byte instruction, or skipped a
12355 one-byte instruction. This was actually seen happen
12356 on native x86-linux, and should be less rare on
12357 targets that do not support new thread events, like
12358 remote, due to the heuristic depending on
12359 thread_count.
12360
12361 Mistaking a random SIGTRAP for a breakpoint trap
12362 causes similar symptoms (PC adjustment applied when
12363 it shouldn't), but then again, playing with SIGTRAPs
12364 behind the debugger's back is asking for trouble.
12365
12366 Since hardware watchpoint traps are always
12367 distinguishable from other traps, so we don't need to
12368 apply keep hardware watchpoint moribund locations
12369 around. We simply always ignore hardware watchpoint
12370 traps we can no longer explain. */
12371
12372 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12373 old_loc->owner = NULL;
12374
12375 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12376 }
12377 else
12378 {
12379 old_loc->owner = NULL;
12380 decref_bp_location (&old_loc);
12381 }
12382 }
12383 }
12384
12385 /* Rescan breakpoints at the same address and section, marking the
12386 first one as "first" and any others as "duplicates". This is so
12387 that the bpt instruction is only inserted once. If we have a
12388 permanent breakpoint at the same place as BPT, make that one the
12389 official one, and the rest as duplicates. Permanent breakpoints
12390 are sorted first for the same address.
12391
12392 Do the same for hardware watchpoints, but also considering the
12393 watchpoint's type (regular/access/read) and length. */
12394
12395 bp_loc_first = NULL;
12396 wp_loc_first = NULL;
12397 awp_loc_first = NULL;
12398 rwp_loc_first = NULL;
12399 ALL_BP_LOCATIONS (loc, locp)
12400 {
12401 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12402 non-NULL. */
12403 struct bp_location **loc_first_p;
12404 b = loc->owner;
12405
12406 if (!unduplicated_should_be_inserted (loc)
12407 || !breakpoint_address_is_meaningful (b)
12408 /* Don't detect duplicate for tracepoint locations because they are
12409 never duplicated. See the comments in field `duplicate' of
12410 `struct bp_location'. */
12411 || is_tracepoint (b))
12412 {
12413 /* Clear the condition modification flag. */
12414 loc->condition_changed = condition_unchanged;
12415 continue;
12416 }
12417
12418 if (b->type == bp_hardware_watchpoint)
12419 loc_first_p = &wp_loc_first;
12420 else if (b->type == bp_read_watchpoint)
12421 loc_first_p = &rwp_loc_first;
12422 else if (b->type == bp_access_watchpoint)
12423 loc_first_p = &awp_loc_first;
12424 else
12425 loc_first_p = &bp_loc_first;
12426
12427 if (*loc_first_p == NULL
12428 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12429 || !breakpoint_locations_match (loc, *loc_first_p))
12430 {
12431 *loc_first_p = loc;
12432 loc->duplicate = 0;
12433
12434 if (is_breakpoint (loc->owner) && loc->condition_changed)
12435 {
12436 loc->needs_update = 1;
12437 /* Clear the condition modification flag. */
12438 loc->condition_changed = condition_unchanged;
12439 }
12440 continue;
12441 }
12442
12443
12444 /* This and the above ensure the invariant that the first location
12445 is not duplicated, and is the inserted one.
12446 All following are marked as duplicated, and are not inserted. */
12447 if (loc->inserted)
12448 swap_insertion (loc, *loc_first_p);
12449 loc->duplicate = 1;
12450
12451 /* Clear the condition modification flag. */
12452 loc->condition_changed = condition_unchanged;
12453 }
12454
12455 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12456 {
12457 if (insert_mode != UGLL_DONT_INSERT)
12458 insert_breakpoint_locations ();
12459 else
12460 {
12461 /* Even though the caller told us to not insert new
12462 locations, we may still need to update conditions on the
12463 target's side of breakpoints that were already inserted
12464 if the target is evaluating breakpoint conditions. We
12465 only update conditions for locations that are marked
12466 "needs_update". */
12467 update_inserted_breakpoint_locations ();
12468 }
12469 }
12470
12471 if (insert_mode != UGLL_DONT_INSERT)
12472 download_tracepoint_locations ();
12473
12474 do_cleanups (cleanups);
12475 }
12476
12477 void
12478 breakpoint_retire_moribund (void)
12479 {
12480 struct bp_location *loc;
12481 int ix;
12482
12483 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12484 if (--(loc->events_till_retirement) == 0)
12485 {
12486 decref_bp_location (&loc);
12487 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12488 --ix;
12489 }
12490 }
12491
12492 static void
12493 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12494 {
12495
12496 TRY
12497 {
12498 update_global_location_list (insert_mode);
12499 }
12500 CATCH (e, RETURN_MASK_ERROR)
12501 {
12502 }
12503 END_CATCH
12504 }
12505
12506 /* Clear BKP from a BPS. */
12507
12508 static void
12509 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12510 {
12511 bpstat bs;
12512
12513 for (bs = bps; bs; bs = bs->next)
12514 if (bs->breakpoint_at == bpt)
12515 {
12516 bs->breakpoint_at = NULL;
12517 bs->old_val = NULL;
12518 /* bs->commands will be freed later. */
12519 }
12520 }
12521
12522 /* Callback for iterate_over_threads. */
12523 static int
12524 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12525 {
12526 struct breakpoint *bpt = data;
12527
12528 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12529 return 0;
12530 }
12531
12532 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12533 callbacks. */
12534
12535 static void
12536 say_where (struct breakpoint *b)
12537 {
12538 struct value_print_options opts;
12539
12540 get_user_print_options (&opts);
12541
12542 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12543 single string. */
12544 if (b->loc == NULL)
12545 {
12546 printf_filtered (_(" (%s) pending."), b->addr_string);
12547 }
12548 else
12549 {
12550 if (opts.addressprint || b->loc->symtab == NULL)
12551 {
12552 printf_filtered (" at ");
12553 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12554 gdb_stdout);
12555 }
12556 if (b->loc->symtab != NULL)
12557 {
12558 /* If there is a single location, we can print the location
12559 more nicely. */
12560 if (b->loc->next == NULL)
12561 printf_filtered (": file %s, line %d.",
12562 symtab_to_filename_for_display (b->loc->symtab),
12563 b->loc->line_number);
12564 else
12565 /* This is not ideal, but each location may have a
12566 different file name, and this at least reflects the
12567 real situation somewhat. */
12568 printf_filtered (": %s.", b->addr_string);
12569 }
12570
12571 if (b->loc->next)
12572 {
12573 struct bp_location *loc = b->loc;
12574 int n = 0;
12575 for (; loc; loc = loc->next)
12576 ++n;
12577 printf_filtered (" (%d locations)", n);
12578 }
12579 }
12580 }
12581
12582 /* Default bp_location_ops methods. */
12583
12584 static void
12585 bp_location_dtor (struct bp_location *self)
12586 {
12587 xfree (self->cond);
12588 if (self->cond_bytecode)
12589 free_agent_expr (self->cond_bytecode);
12590 xfree (self->function_name);
12591
12592 VEC_free (agent_expr_p, self->target_info.conditions);
12593 VEC_free (agent_expr_p, self->target_info.tcommands);
12594 }
12595
12596 static const struct bp_location_ops bp_location_ops =
12597 {
12598 bp_location_dtor
12599 };
12600
12601 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12602 inherit from. */
12603
12604 static void
12605 base_breakpoint_dtor (struct breakpoint *self)
12606 {
12607 decref_counted_command_line (&self->commands);
12608 xfree (self->cond_string);
12609 xfree (self->extra_string);
12610 xfree (self->addr_string);
12611 xfree (self->filter);
12612 xfree (self->addr_string_range_end);
12613 }
12614
12615 static struct bp_location *
12616 base_breakpoint_allocate_location (struct breakpoint *self)
12617 {
12618 struct bp_location *loc;
12619
12620 loc = XNEW (struct bp_location);
12621 init_bp_location (loc, &bp_location_ops, self);
12622 return loc;
12623 }
12624
12625 static void
12626 base_breakpoint_re_set (struct breakpoint *b)
12627 {
12628 /* Nothing to re-set. */
12629 }
12630
12631 #define internal_error_pure_virtual_called() \
12632 gdb_assert_not_reached ("pure virtual function called")
12633
12634 static int
12635 base_breakpoint_insert_location (struct bp_location *bl)
12636 {
12637 internal_error_pure_virtual_called ();
12638 }
12639
12640 static int
12641 base_breakpoint_remove_location (struct bp_location *bl)
12642 {
12643 internal_error_pure_virtual_called ();
12644 }
12645
12646 static int
12647 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12648 struct address_space *aspace,
12649 CORE_ADDR bp_addr,
12650 const struct target_waitstatus *ws)
12651 {
12652 internal_error_pure_virtual_called ();
12653 }
12654
12655 static void
12656 base_breakpoint_check_status (bpstat bs)
12657 {
12658 /* Always stop. */
12659 }
12660
12661 /* A "works_in_software_mode" breakpoint_ops method that just internal
12662 errors. */
12663
12664 static int
12665 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12666 {
12667 internal_error_pure_virtual_called ();
12668 }
12669
12670 /* A "resources_needed" breakpoint_ops method that just internal
12671 errors. */
12672
12673 static int
12674 base_breakpoint_resources_needed (const struct bp_location *bl)
12675 {
12676 internal_error_pure_virtual_called ();
12677 }
12678
12679 static enum print_stop_action
12680 base_breakpoint_print_it (bpstat bs)
12681 {
12682 internal_error_pure_virtual_called ();
12683 }
12684
12685 static void
12686 base_breakpoint_print_one_detail (const struct breakpoint *self,
12687 struct ui_out *uiout)
12688 {
12689 /* nothing */
12690 }
12691
12692 static void
12693 base_breakpoint_print_mention (struct breakpoint *b)
12694 {
12695 internal_error_pure_virtual_called ();
12696 }
12697
12698 static void
12699 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12700 {
12701 internal_error_pure_virtual_called ();
12702 }
12703
12704 static void
12705 base_breakpoint_create_sals_from_address (char **arg,
12706 struct linespec_result *canonical,
12707 enum bptype type_wanted,
12708 char *addr_start,
12709 char **copy_arg)
12710 {
12711 internal_error_pure_virtual_called ();
12712 }
12713
12714 static void
12715 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12716 struct linespec_result *c,
12717 char *cond_string,
12718 char *extra_string,
12719 enum bptype type_wanted,
12720 enum bpdisp disposition,
12721 int thread,
12722 int task, int ignore_count,
12723 const struct breakpoint_ops *o,
12724 int from_tty, int enabled,
12725 int internal, unsigned flags)
12726 {
12727 internal_error_pure_virtual_called ();
12728 }
12729
12730 static void
12731 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12732 struct symtabs_and_lines *sals)
12733 {
12734 internal_error_pure_virtual_called ();
12735 }
12736
12737 /* The default 'explains_signal' method. */
12738
12739 static int
12740 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12741 {
12742 return 1;
12743 }
12744
12745 /* The default "after_condition_true" method. */
12746
12747 static void
12748 base_breakpoint_after_condition_true (struct bpstats *bs)
12749 {
12750 /* Nothing to do. */
12751 }
12752
12753 struct breakpoint_ops base_breakpoint_ops =
12754 {
12755 base_breakpoint_dtor,
12756 base_breakpoint_allocate_location,
12757 base_breakpoint_re_set,
12758 base_breakpoint_insert_location,
12759 base_breakpoint_remove_location,
12760 base_breakpoint_breakpoint_hit,
12761 base_breakpoint_check_status,
12762 base_breakpoint_resources_needed,
12763 base_breakpoint_works_in_software_mode,
12764 base_breakpoint_print_it,
12765 NULL,
12766 base_breakpoint_print_one_detail,
12767 base_breakpoint_print_mention,
12768 base_breakpoint_print_recreate,
12769 base_breakpoint_create_sals_from_address,
12770 base_breakpoint_create_breakpoints_sal,
12771 base_breakpoint_decode_linespec,
12772 base_breakpoint_explains_signal,
12773 base_breakpoint_after_condition_true,
12774 };
12775
12776 /* Default breakpoint_ops methods. */
12777
12778 static void
12779 bkpt_re_set (struct breakpoint *b)
12780 {
12781 /* FIXME: is this still reachable? */
12782 if (b->addr_string == NULL)
12783 {
12784 /* Anything without a string can't be re-set. */
12785 delete_breakpoint (b);
12786 return;
12787 }
12788
12789 breakpoint_re_set_default (b);
12790 }
12791
12792 static int
12793 bkpt_insert_location (struct bp_location *bl)
12794 {
12795 if (bl->loc_type == bp_loc_hardware_breakpoint)
12796 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12797 else
12798 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12799 }
12800
12801 static int
12802 bkpt_remove_location (struct bp_location *bl)
12803 {
12804 if (bl->loc_type == bp_loc_hardware_breakpoint)
12805 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12806 else
12807 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12808 }
12809
12810 static int
12811 bkpt_breakpoint_hit (const struct bp_location *bl,
12812 struct address_space *aspace, CORE_ADDR bp_addr,
12813 const struct target_waitstatus *ws)
12814 {
12815 if (ws->kind != TARGET_WAITKIND_STOPPED
12816 || ws->value.sig != GDB_SIGNAL_TRAP)
12817 return 0;
12818
12819 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12820 aspace, bp_addr))
12821 return 0;
12822
12823 if (overlay_debugging /* unmapped overlay section */
12824 && section_is_overlay (bl->section)
12825 && !section_is_mapped (bl->section))
12826 return 0;
12827
12828 return 1;
12829 }
12830
12831 static int
12832 dprintf_breakpoint_hit (const struct bp_location *bl,
12833 struct address_space *aspace, CORE_ADDR bp_addr,
12834 const struct target_waitstatus *ws)
12835 {
12836 if (dprintf_style == dprintf_style_agent
12837 && target_can_run_breakpoint_commands ())
12838 {
12839 /* An agent-style dprintf never causes a stop. If we see a trap
12840 for this address it must be for a breakpoint that happens to
12841 be set at the same address. */
12842 return 0;
12843 }
12844
12845 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12846 }
12847
12848 static int
12849 bkpt_resources_needed (const struct bp_location *bl)
12850 {
12851 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12852
12853 return 1;
12854 }
12855
12856 static enum print_stop_action
12857 bkpt_print_it (bpstat bs)
12858 {
12859 struct breakpoint *b;
12860 const struct bp_location *bl;
12861 int bp_temp;
12862 struct ui_out *uiout = current_uiout;
12863
12864 gdb_assert (bs->bp_location_at != NULL);
12865
12866 bl = bs->bp_location_at;
12867 b = bs->breakpoint_at;
12868
12869 bp_temp = b->disposition == disp_del;
12870 if (bl->address != bl->requested_address)
12871 breakpoint_adjustment_warning (bl->requested_address,
12872 bl->address,
12873 b->number, 1);
12874 annotate_breakpoint (b->number);
12875 if (bp_temp)
12876 ui_out_text (uiout, "\nTemporary breakpoint ");
12877 else
12878 ui_out_text (uiout, "\nBreakpoint ");
12879 if (ui_out_is_mi_like_p (uiout))
12880 {
12881 ui_out_field_string (uiout, "reason",
12882 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12883 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12884 }
12885 ui_out_field_int (uiout, "bkptno", b->number);
12886 ui_out_text (uiout, ", ");
12887
12888 return PRINT_SRC_AND_LOC;
12889 }
12890
12891 static void
12892 bkpt_print_mention (struct breakpoint *b)
12893 {
12894 if (ui_out_is_mi_like_p (current_uiout))
12895 return;
12896
12897 switch (b->type)
12898 {
12899 case bp_breakpoint:
12900 case bp_gnu_ifunc_resolver:
12901 if (b->disposition == disp_del)
12902 printf_filtered (_("Temporary breakpoint"));
12903 else
12904 printf_filtered (_("Breakpoint"));
12905 printf_filtered (_(" %d"), b->number);
12906 if (b->type == bp_gnu_ifunc_resolver)
12907 printf_filtered (_(" at gnu-indirect-function resolver"));
12908 break;
12909 case bp_hardware_breakpoint:
12910 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12911 break;
12912 case bp_dprintf:
12913 printf_filtered (_("Dprintf %d"), b->number);
12914 break;
12915 }
12916
12917 say_where (b);
12918 }
12919
12920 static void
12921 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12922 {
12923 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12924 fprintf_unfiltered (fp, "tbreak");
12925 else if (tp->type == bp_breakpoint)
12926 fprintf_unfiltered (fp, "break");
12927 else if (tp->type == bp_hardware_breakpoint
12928 && tp->disposition == disp_del)
12929 fprintf_unfiltered (fp, "thbreak");
12930 else if (tp->type == bp_hardware_breakpoint)
12931 fprintf_unfiltered (fp, "hbreak");
12932 else
12933 internal_error (__FILE__, __LINE__,
12934 _("unhandled breakpoint type %d"), (int) tp->type);
12935
12936 fprintf_unfiltered (fp, " %s", tp->addr_string);
12937 print_recreate_thread (tp, fp);
12938 }
12939
12940 static void
12941 bkpt_create_sals_from_address (char **arg,
12942 struct linespec_result *canonical,
12943 enum bptype type_wanted,
12944 char *addr_start, char **copy_arg)
12945 {
12946 create_sals_from_address_default (arg, canonical, type_wanted,
12947 addr_start, copy_arg);
12948 }
12949
12950 static void
12951 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12952 struct linespec_result *canonical,
12953 char *cond_string,
12954 char *extra_string,
12955 enum bptype type_wanted,
12956 enum bpdisp disposition,
12957 int thread,
12958 int task, int ignore_count,
12959 const struct breakpoint_ops *ops,
12960 int from_tty, int enabled,
12961 int internal, unsigned flags)
12962 {
12963 create_breakpoints_sal_default (gdbarch, canonical,
12964 cond_string, extra_string,
12965 type_wanted,
12966 disposition, thread, task,
12967 ignore_count, ops, from_tty,
12968 enabled, internal, flags);
12969 }
12970
12971 static void
12972 bkpt_decode_linespec (struct breakpoint *b, char **s,
12973 struct symtabs_and_lines *sals)
12974 {
12975 decode_linespec_default (b, s, sals);
12976 }
12977
12978 /* Virtual table for internal breakpoints. */
12979
12980 static void
12981 internal_bkpt_re_set (struct breakpoint *b)
12982 {
12983 switch (b->type)
12984 {
12985 /* Delete overlay event and longjmp master breakpoints; they
12986 will be reset later by breakpoint_re_set. */
12987 case bp_overlay_event:
12988 case bp_longjmp_master:
12989 case bp_std_terminate_master:
12990 case bp_exception_master:
12991 delete_breakpoint (b);
12992 break;
12993
12994 /* This breakpoint is special, it's set up when the inferior
12995 starts and we really don't want to touch it. */
12996 case bp_shlib_event:
12997
12998 /* Like bp_shlib_event, this breakpoint type is special. Once
12999 it is set up, we do not want to touch it. */
13000 case bp_thread_event:
13001 break;
13002 }
13003 }
13004
13005 static void
13006 internal_bkpt_check_status (bpstat bs)
13007 {
13008 if (bs->breakpoint_at->type == bp_shlib_event)
13009 {
13010 /* If requested, stop when the dynamic linker notifies GDB of
13011 events. This allows the user to get control and place
13012 breakpoints in initializer routines for dynamically loaded
13013 objects (among other things). */
13014 bs->stop = stop_on_solib_events;
13015 bs->print = stop_on_solib_events;
13016 }
13017 else
13018 bs->stop = 0;
13019 }
13020
13021 static enum print_stop_action
13022 internal_bkpt_print_it (bpstat bs)
13023 {
13024 struct breakpoint *b;
13025
13026 b = bs->breakpoint_at;
13027
13028 switch (b->type)
13029 {
13030 case bp_shlib_event:
13031 /* Did we stop because the user set the stop_on_solib_events
13032 variable? (If so, we report this as a generic, "Stopped due
13033 to shlib event" message.) */
13034 print_solib_event (0);
13035 break;
13036
13037 case bp_thread_event:
13038 /* Not sure how we will get here.
13039 GDB should not stop for these breakpoints. */
13040 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13041 break;
13042
13043 case bp_overlay_event:
13044 /* By analogy with the thread event, GDB should not stop for these. */
13045 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13046 break;
13047
13048 case bp_longjmp_master:
13049 /* These should never be enabled. */
13050 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13051 break;
13052
13053 case bp_std_terminate_master:
13054 /* These should never be enabled. */
13055 printf_filtered (_("std::terminate Master Breakpoint: "
13056 "gdb should not stop!\n"));
13057 break;
13058
13059 case bp_exception_master:
13060 /* These should never be enabled. */
13061 printf_filtered (_("Exception Master Breakpoint: "
13062 "gdb should not stop!\n"));
13063 break;
13064 }
13065
13066 return PRINT_NOTHING;
13067 }
13068
13069 static void
13070 internal_bkpt_print_mention (struct breakpoint *b)
13071 {
13072 /* Nothing to mention. These breakpoints are internal. */
13073 }
13074
13075 /* Virtual table for momentary breakpoints */
13076
13077 static void
13078 momentary_bkpt_re_set (struct breakpoint *b)
13079 {
13080 /* Keep temporary breakpoints, which can be encountered when we step
13081 over a dlopen call and solib_add is resetting the breakpoints.
13082 Otherwise these should have been blown away via the cleanup chain
13083 or by breakpoint_init_inferior when we rerun the executable. */
13084 }
13085
13086 static void
13087 momentary_bkpt_check_status (bpstat bs)
13088 {
13089 /* Nothing. The point of these breakpoints is causing a stop. */
13090 }
13091
13092 static enum print_stop_action
13093 momentary_bkpt_print_it (bpstat bs)
13094 {
13095 struct ui_out *uiout = current_uiout;
13096
13097 if (ui_out_is_mi_like_p (uiout))
13098 {
13099 struct breakpoint *b = bs->breakpoint_at;
13100
13101 switch (b->type)
13102 {
13103 case bp_finish:
13104 ui_out_field_string
13105 (uiout, "reason",
13106 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13107 break;
13108
13109 case bp_until:
13110 ui_out_field_string
13111 (uiout, "reason",
13112 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13113 break;
13114 }
13115 }
13116
13117 return PRINT_UNKNOWN;
13118 }
13119
13120 static void
13121 momentary_bkpt_print_mention (struct breakpoint *b)
13122 {
13123 /* Nothing to mention. These breakpoints are internal. */
13124 }
13125
13126 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13127
13128 It gets cleared already on the removal of the first one of such placed
13129 breakpoints. This is OK as they get all removed altogether. */
13130
13131 static void
13132 longjmp_bkpt_dtor (struct breakpoint *self)
13133 {
13134 struct thread_info *tp = find_thread_id (self->thread);
13135
13136 if (tp)
13137 tp->initiating_frame = null_frame_id;
13138
13139 momentary_breakpoint_ops.dtor (self);
13140 }
13141
13142 /* Specific methods for probe breakpoints. */
13143
13144 static int
13145 bkpt_probe_insert_location (struct bp_location *bl)
13146 {
13147 int v = bkpt_insert_location (bl);
13148
13149 if (v == 0)
13150 {
13151 /* The insertion was successful, now let's set the probe's semaphore
13152 if needed. */
13153 if (bl->probe.probe->pops->set_semaphore != NULL)
13154 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13155 bl->probe.objfile,
13156 bl->gdbarch);
13157 }
13158
13159 return v;
13160 }
13161
13162 static int
13163 bkpt_probe_remove_location (struct bp_location *bl)
13164 {
13165 /* Let's clear the semaphore before removing the location. */
13166 if (bl->probe.probe->pops->clear_semaphore != NULL)
13167 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13168 bl->probe.objfile,
13169 bl->gdbarch);
13170
13171 return bkpt_remove_location (bl);
13172 }
13173
13174 static void
13175 bkpt_probe_create_sals_from_address (char **arg,
13176 struct linespec_result *canonical,
13177 enum bptype type_wanted,
13178 char *addr_start, char **copy_arg)
13179 {
13180 struct linespec_sals lsal;
13181
13182 lsal.sals = parse_probes (arg, canonical);
13183
13184 *copy_arg = xstrdup (canonical->addr_string);
13185 lsal.canonical = xstrdup (*copy_arg);
13186
13187 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13188 }
13189
13190 static void
13191 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13192 struct symtabs_and_lines *sals)
13193 {
13194 *sals = parse_probes (s, NULL);
13195 if (!sals->sals)
13196 error (_("probe not found"));
13197 }
13198
13199 /* The breakpoint_ops structure to be used in tracepoints. */
13200
13201 static void
13202 tracepoint_re_set (struct breakpoint *b)
13203 {
13204 breakpoint_re_set_default (b);
13205 }
13206
13207 static int
13208 tracepoint_breakpoint_hit (const struct bp_location *bl,
13209 struct address_space *aspace, CORE_ADDR bp_addr,
13210 const struct target_waitstatus *ws)
13211 {
13212 /* By definition, the inferior does not report stops at
13213 tracepoints. */
13214 return 0;
13215 }
13216
13217 static void
13218 tracepoint_print_one_detail (const struct breakpoint *self,
13219 struct ui_out *uiout)
13220 {
13221 struct tracepoint *tp = (struct tracepoint *) self;
13222 if (tp->static_trace_marker_id)
13223 {
13224 gdb_assert (self->type == bp_static_tracepoint);
13225
13226 ui_out_text (uiout, "\tmarker id is ");
13227 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13228 tp->static_trace_marker_id);
13229 ui_out_text (uiout, "\n");
13230 }
13231 }
13232
13233 static void
13234 tracepoint_print_mention (struct breakpoint *b)
13235 {
13236 if (ui_out_is_mi_like_p (current_uiout))
13237 return;
13238
13239 switch (b->type)
13240 {
13241 case bp_tracepoint:
13242 printf_filtered (_("Tracepoint"));
13243 printf_filtered (_(" %d"), b->number);
13244 break;
13245 case bp_fast_tracepoint:
13246 printf_filtered (_("Fast tracepoint"));
13247 printf_filtered (_(" %d"), b->number);
13248 break;
13249 case bp_static_tracepoint:
13250 printf_filtered (_("Static tracepoint"));
13251 printf_filtered (_(" %d"), b->number);
13252 break;
13253 default:
13254 internal_error (__FILE__, __LINE__,
13255 _("unhandled tracepoint type %d"), (int) b->type);
13256 }
13257
13258 say_where (b);
13259 }
13260
13261 static void
13262 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13263 {
13264 struct tracepoint *tp = (struct tracepoint *) self;
13265
13266 if (self->type == bp_fast_tracepoint)
13267 fprintf_unfiltered (fp, "ftrace");
13268 if (self->type == bp_static_tracepoint)
13269 fprintf_unfiltered (fp, "strace");
13270 else if (self->type == bp_tracepoint)
13271 fprintf_unfiltered (fp, "trace");
13272 else
13273 internal_error (__FILE__, __LINE__,
13274 _("unhandled tracepoint type %d"), (int) self->type);
13275
13276 fprintf_unfiltered (fp, " %s", self->addr_string);
13277 print_recreate_thread (self, fp);
13278
13279 if (tp->pass_count)
13280 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13281 }
13282
13283 static void
13284 tracepoint_create_sals_from_address (char **arg,
13285 struct linespec_result *canonical,
13286 enum bptype type_wanted,
13287 char *addr_start, char **copy_arg)
13288 {
13289 create_sals_from_address_default (arg, canonical, type_wanted,
13290 addr_start, copy_arg);
13291 }
13292
13293 static void
13294 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13295 struct linespec_result *canonical,
13296 char *cond_string,
13297 char *extra_string,
13298 enum bptype type_wanted,
13299 enum bpdisp disposition,
13300 int thread,
13301 int task, int ignore_count,
13302 const struct breakpoint_ops *ops,
13303 int from_tty, int enabled,
13304 int internal, unsigned flags)
13305 {
13306 create_breakpoints_sal_default (gdbarch, canonical,
13307 cond_string, extra_string,
13308 type_wanted,
13309 disposition, thread, task,
13310 ignore_count, ops, from_tty,
13311 enabled, internal, flags);
13312 }
13313
13314 static void
13315 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13316 struct symtabs_and_lines *sals)
13317 {
13318 decode_linespec_default (b, s, sals);
13319 }
13320
13321 struct breakpoint_ops tracepoint_breakpoint_ops;
13322
13323 /* The breakpoint_ops structure to be use on tracepoints placed in a
13324 static probe. */
13325
13326 static void
13327 tracepoint_probe_create_sals_from_address (char **arg,
13328 struct linespec_result *canonical,
13329 enum bptype type_wanted,
13330 char *addr_start, char **copy_arg)
13331 {
13332 /* We use the same method for breakpoint on probes. */
13333 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13334 addr_start, copy_arg);
13335 }
13336
13337 static void
13338 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13339 struct symtabs_and_lines *sals)
13340 {
13341 /* We use the same method for breakpoint on probes. */
13342 bkpt_probe_decode_linespec (b, s, sals);
13343 }
13344
13345 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13346
13347 /* Dprintf breakpoint_ops methods. */
13348
13349 static void
13350 dprintf_re_set (struct breakpoint *b)
13351 {
13352 breakpoint_re_set_default (b);
13353
13354 /* This breakpoint could have been pending, and be resolved now, and
13355 if so, we should now have the extra string. If we don't, the
13356 dprintf was malformed when created, but we couldn't tell because
13357 we can't extract the extra string until the location is
13358 resolved. */
13359 if (b->loc != NULL && b->extra_string == NULL)
13360 error (_("Format string required"));
13361
13362 /* 1 - connect to target 1, that can run breakpoint commands.
13363 2 - create a dprintf, which resolves fine.
13364 3 - disconnect from target 1
13365 4 - connect to target 2, that can NOT run breakpoint commands.
13366
13367 After steps #3/#4, you'll want the dprintf command list to
13368 be updated, because target 1 and 2 may well return different
13369 answers for target_can_run_breakpoint_commands().
13370 Given absence of finer grained resetting, we get to do
13371 it all the time. */
13372 if (b->extra_string != NULL)
13373 update_dprintf_command_list (b);
13374 }
13375
13376 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13377
13378 static void
13379 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13380 {
13381 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13382 tp->extra_string);
13383 print_recreate_thread (tp, fp);
13384 }
13385
13386 /* Implement the "after_condition_true" breakpoint_ops method for
13387 dprintf.
13388
13389 dprintf's are implemented with regular commands in their command
13390 list, but we run the commands here instead of before presenting the
13391 stop to the user, as dprintf's don't actually cause a stop. This
13392 also makes it so that the commands of multiple dprintfs at the same
13393 address are all handled. */
13394
13395 static void
13396 dprintf_after_condition_true (struct bpstats *bs)
13397 {
13398 struct cleanup *old_chain;
13399 struct bpstats tmp_bs = { NULL };
13400 struct bpstats *tmp_bs_p = &tmp_bs;
13401
13402 /* dprintf's never cause a stop. This wasn't set in the
13403 check_status hook instead because that would make the dprintf's
13404 condition not be evaluated. */
13405 bs->stop = 0;
13406
13407 /* Run the command list here. Take ownership of it instead of
13408 copying. We never want these commands to run later in
13409 bpstat_do_actions, if a breakpoint that causes a stop happens to
13410 be set at same address as this dprintf, or even if running the
13411 commands here throws. */
13412 tmp_bs.commands = bs->commands;
13413 bs->commands = NULL;
13414 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13415
13416 bpstat_do_actions_1 (&tmp_bs_p);
13417
13418 /* 'tmp_bs.commands' will usually be NULL by now, but
13419 bpstat_do_actions_1 may return early without processing the whole
13420 list. */
13421 do_cleanups (old_chain);
13422 }
13423
13424 /* The breakpoint_ops structure to be used on static tracepoints with
13425 markers (`-m'). */
13426
13427 static void
13428 strace_marker_create_sals_from_address (char **arg,
13429 struct linespec_result *canonical,
13430 enum bptype type_wanted,
13431 char *addr_start, char **copy_arg)
13432 {
13433 struct linespec_sals lsal;
13434
13435 lsal.sals = decode_static_tracepoint_spec (arg);
13436
13437 *copy_arg = savestring (addr_start, *arg - addr_start);
13438
13439 canonical->addr_string = xstrdup (*copy_arg);
13440 lsal.canonical = xstrdup (*copy_arg);
13441 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13442 }
13443
13444 static void
13445 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13446 struct linespec_result *canonical,
13447 char *cond_string,
13448 char *extra_string,
13449 enum bptype type_wanted,
13450 enum bpdisp disposition,
13451 int thread,
13452 int task, int ignore_count,
13453 const struct breakpoint_ops *ops,
13454 int from_tty, int enabled,
13455 int internal, unsigned flags)
13456 {
13457 int i;
13458 struct linespec_sals *lsal = VEC_index (linespec_sals,
13459 canonical->sals, 0);
13460
13461 /* If the user is creating a static tracepoint by marker id
13462 (strace -m MARKER_ID), then store the sals index, so that
13463 breakpoint_re_set can try to match up which of the newly
13464 found markers corresponds to this one, and, don't try to
13465 expand multiple locations for each sal, given than SALS
13466 already should contain all sals for MARKER_ID. */
13467
13468 for (i = 0; i < lsal->sals.nelts; ++i)
13469 {
13470 struct symtabs_and_lines expanded;
13471 struct tracepoint *tp;
13472 struct cleanup *old_chain;
13473 char *addr_string;
13474
13475 expanded.nelts = 1;
13476 expanded.sals = &lsal->sals.sals[i];
13477
13478 addr_string = xstrdup (canonical->addr_string);
13479 old_chain = make_cleanup (xfree, addr_string);
13480
13481 tp = XCNEW (struct tracepoint);
13482 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13483 addr_string, NULL,
13484 cond_string, extra_string,
13485 type_wanted, disposition,
13486 thread, task, ignore_count, ops,
13487 from_tty, enabled, internal, flags,
13488 canonical->special_display);
13489 /* Given that its possible to have multiple markers with
13490 the same string id, if the user is creating a static
13491 tracepoint by marker id ("strace -m MARKER_ID"), then
13492 store the sals index, so that breakpoint_re_set can
13493 try to match up which of the newly found markers
13494 corresponds to this one */
13495 tp->static_trace_marker_id_idx = i;
13496
13497 install_breakpoint (internal, &tp->base, 0);
13498
13499 discard_cleanups (old_chain);
13500 }
13501 }
13502
13503 static void
13504 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13505 struct symtabs_and_lines *sals)
13506 {
13507 struct tracepoint *tp = (struct tracepoint *) b;
13508
13509 *sals = decode_static_tracepoint_spec (s);
13510 if (sals->nelts > tp->static_trace_marker_id_idx)
13511 {
13512 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13513 sals->nelts = 1;
13514 }
13515 else
13516 error (_("marker %s not found"), tp->static_trace_marker_id);
13517 }
13518
13519 static struct breakpoint_ops strace_marker_breakpoint_ops;
13520
13521 static int
13522 strace_marker_p (struct breakpoint *b)
13523 {
13524 return b->ops == &strace_marker_breakpoint_ops;
13525 }
13526
13527 /* Delete a breakpoint and clean up all traces of it in the data
13528 structures. */
13529
13530 void
13531 delete_breakpoint (struct breakpoint *bpt)
13532 {
13533 struct breakpoint *b;
13534
13535 gdb_assert (bpt != NULL);
13536
13537 /* Has this bp already been deleted? This can happen because
13538 multiple lists can hold pointers to bp's. bpstat lists are
13539 especial culprits.
13540
13541 One example of this happening is a watchpoint's scope bp. When
13542 the scope bp triggers, we notice that the watchpoint is out of
13543 scope, and delete it. We also delete its scope bp. But the
13544 scope bp is marked "auto-deleting", and is already on a bpstat.
13545 That bpstat is then checked for auto-deleting bp's, which are
13546 deleted.
13547
13548 A real solution to this problem might involve reference counts in
13549 bp's, and/or giving them pointers back to their referencing
13550 bpstat's, and teaching delete_breakpoint to only free a bp's
13551 storage when no more references were extent. A cheaper bandaid
13552 was chosen. */
13553 if (bpt->type == bp_none)
13554 return;
13555
13556 /* At least avoid this stale reference until the reference counting
13557 of breakpoints gets resolved. */
13558 if (bpt->related_breakpoint != bpt)
13559 {
13560 struct breakpoint *related;
13561 struct watchpoint *w;
13562
13563 if (bpt->type == bp_watchpoint_scope)
13564 w = (struct watchpoint *) bpt->related_breakpoint;
13565 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13566 w = (struct watchpoint *) bpt;
13567 else
13568 w = NULL;
13569 if (w != NULL)
13570 watchpoint_del_at_next_stop (w);
13571
13572 /* Unlink bpt from the bpt->related_breakpoint ring. */
13573 for (related = bpt; related->related_breakpoint != bpt;
13574 related = related->related_breakpoint);
13575 related->related_breakpoint = bpt->related_breakpoint;
13576 bpt->related_breakpoint = bpt;
13577 }
13578
13579 /* watch_command_1 creates a watchpoint but only sets its number if
13580 update_watchpoint succeeds in creating its bp_locations. If there's
13581 a problem in that process, we'll be asked to delete the half-created
13582 watchpoint. In that case, don't announce the deletion. */
13583 if (bpt->number)
13584 observer_notify_breakpoint_deleted (bpt);
13585
13586 if (breakpoint_chain == bpt)
13587 breakpoint_chain = bpt->next;
13588
13589 ALL_BREAKPOINTS (b)
13590 if (b->next == bpt)
13591 {
13592 b->next = bpt->next;
13593 break;
13594 }
13595
13596 /* Be sure no bpstat's are pointing at the breakpoint after it's
13597 been freed. */
13598 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13599 in all threads for now. Note that we cannot just remove bpstats
13600 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13601 commands are associated with the bpstat; if we remove it here,
13602 then the later call to bpstat_do_actions (&stop_bpstat); in
13603 event-top.c won't do anything, and temporary breakpoints with
13604 commands won't work. */
13605
13606 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13607
13608 /* Now that breakpoint is removed from breakpoint list, update the
13609 global location list. This will remove locations that used to
13610 belong to this breakpoint. Do this before freeing the breakpoint
13611 itself, since remove_breakpoint looks at location's owner. It
13612 might be better design to have location completely
13613 self-contained, but it's not the case now. */
13614 update_global_location_list (UGLL_DONT_INSERT);
13615
13616 bpt->ops->dtor (bpt);
13617 /* On the chance that someone will soon try again to delete this
13618 same bp, we mark it as deleted before freeing its storage. */
13619 bpt->type = bp_none;
13620 xfree (bpt);
13621 }
13622
13623 static void
13624 do_delete_breakpoint_cleanup (void *b)
13625 {
13626 delete_breakpoint (b);
13627 }
13628
13629 struct cleanup *
13630 make_cleanup_delete_breakpoint (struct breakpoint *b)
13631 {
13632 return make_cleanup (do_delete_breakpoint_cleanup, b);
13633 }
13634
13635 /* Iterator function to call a user-provided callback function once
13636 for each of B and its related breakpoints. */
13637
13638 static void
13639 iterate_over_related_breakpoints (struct breakpoint *b,
13640 void (*function) (struct breakpoint *,
13641 void *),
13642 void *data)
13643 {
13644 struct breakpoint *related;
13645
13646 related = b;
13647 do
13648 {
13649 struct breakpoint *next;
13650
13651 /* FUNCTION may delete RELATED. */
13652 next = related->related_breakpoint;
13653
13654 if (next == related)
13655 {
13656 /* RELATED is the last ring entry. */
13657 function (related, data);
13658
13659 /* FUNCTION may have deleted it, so we'd never reach back to
13660 B. There's nothing left to do anyway, so just break
13661 out. */
13662 break;
13663 }
13664 else
13665 function (related, data);
13666
13667 related = next;
13668 }
13669 while (related != b);
13670 }
13671
13672 static void
13673 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13674 {
13675 delete_breakpoint (b);
13676 }
13677
13678 /* A callback for map_breakpoint_numbers that calls
13679 delete_breakpoint. */
13680
13681 static void
13682 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13683 {
13684 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13685 }
13686
13687 void
13688 delete_command (char *arg, int from_tty)
13689 {
13690 struct breakpoint *b, *b_tmp;
13691
13692 dont_repeat ();
13693
13694 if (arg == 0)
13695 {
13696 int breaks_to_delete = 0;
13697
13698 /* Delete all breakpoints if no argument. Do not delete
13699 internal breakpoints, these have to be deleted with an
13700 explicit breakpoint number argument. */
13701 ALL_BREAKPOINTS (b)
13702 if (user_breakpoint_p (b))
13703 {
13704 breaks_to_delete = 1;
13705 break;
13706 }
13707
13708 /* Ask user only if there are some breakpoints to delete. */
13709 if (!from_tty
13710 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13711 {
13712 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13713 if (user_breakpoint_p (b))
13714 delete_breakpoint (b);
13715 }
13716 }
13717 else
13718 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13719 }
13720
13721 static int
13722 all_locations_are_pending (struct bp_location *loc)
13723 {
13724 for (; loc; loc = loc->next)
13725 if (!loc->shlib_disabled
13726 && !loc->pspace->executing_startup)
13727 return 0;
13728 return 1;
13729 }
13730
13731 /* Subroutine of update_breakpoint_locations to simplify it.
13732 Return non-zero if multiple fns in list LOC have the same name.
13733 Null names are ignored. */
13734
13735 static int
13736 ambiguous_names_p (struct bp_location *loc)
13737 {
13738 struct bp_location *l;
13739 htab_t htab = htab_create_alloc (13, htab_hash_string,
13740 (int (*) (const void *,
13741 const void *)) streq,
13742 NULL, xcalloc, xfree);
13743
13744 for (l = loc; l != NULL; l = l->next)
13745 {
13746 const char **slot;
13747 const char *name = l->function_name;
13748
13749 /* Allow for some names to be NULL, ignore them. */
13750 if (name == NULL)
13751 continue;
13752
13753 slot = (const char **) htab_find_slot (htab, (const void *) name,
13754 INSERT);
13755 /* NOTE: We can assume slot != NULL here because xcalloc never
13756 returns NULL. */
13757 if (*slot != NULL)
13758 {
13759 htab_delete (htab);
13760 return 1;
13761 }
13762 *slot = name;
13763 }
13764
13765 htab_delete (htab);
13766 return 0;
13767 }
13768
13769 /* When symbols change, it probably means the sources changed as well,
13770 and it might mean the static tracepoint markers are no longer at
13771 the same address or line numbers they used to be at last we
13772 checked. Losing your static tracepoints whenever you rebuild is
13773 undesirable. This function tries to resync/rematch gdb static
13774 tracepoints with the markers on the target, for static tracepoints
13775 that have not been set by marker id. Static tracepoint that have
13776 been set by marker id are reset by marker id in breakpoint_re_set.
13777 The heuristic is:
13778
13779 1) For a tracepoint set at a specific address, look for a marker at
13780 the old PC. If one is found there, assume to be the same marker.
13781 If the name / string id of the marker found is different from the
13782 previous known name, assume that means the user renamed the marker
13783 in the sources, and output a warning.
13784
13785 2) For a tracepoint set at a given line number, look for a marker
13786 at the new address of the old line number. If one is found there,
13787 assume to be the same marker. If the name / string id of the
13788 marker found is different from the previous known name, assume that
13789 means the user renamed the marker in the sources, and output a
13790 warning.
13791
13792 3) If a marker is no longer found at the same address or line, it
13793 may mean the marker no longer exists. But it may also just mean
13794 the code changed a bit. Maybe the user added a few lines of code
13795 that made the marker move up or down (in line number terms). Ask
13796 the target for info about the marker with the string id as we knew
13797 it. If found, update line number and address in the matching
13798 static tracepoint. This will get confused if there's more than one
13799 marker with the same ID (possible in UST, although unadvised
13800 precisely because it confuses tools). */
13801
13802 static struct symtab_and_line
13803 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13804 {
13805 struct tracepoint *tp = (struct tracepoint *) b;
13806 struct static_tracepoint_marker marker;
13807 CORE_ADDR pc;
13808
13809 pc = sal.pc;
13810 if (sal.line)
13811 find_line_pc (sal.symtab, sal.line, &pc);
13812
13813 if (target_static_tracepoint_marker_at (pc, &marker))
13814 {
13815 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13816 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13817 b->number,
13818 tp->static_trace_marker_id, marker.str_id);
13819
13820 xfree (tp->static_trace_marker_id);
13821 tp->static_trace_marker_id = xstrdup (marker.str_id);
13822 release_static_tracepoint_marker (&marker);
13823
13824 return sal;
13825 }
13826
13827 /* Old marker wasn't found on target at lineno. Try looking it up
13828 by string ID. */
13829 if (!sal.explicit_pc
13830 && sal.line != 0
13831 && sal.symtab != NULL
13832 && tp->static_trace_marker_id != NULL)
13833 {
13834 VEC(static_tracepoint_marker_p) *markers;
13835
13836 markers
13837 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13838
13839 if (!VEC_empty(static_tracepoint_marker_p, markers))
13840 {
13841 struct symtab_and_line sal2;
13842 struct symbol *sym;
13843 struct static_tracepoint_marker *tpmarker;
13844 struct ui_out *uiout = current_uiout;
13845
13846 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13847
13848 xfree (tp->static_trace_marker_id);
13849 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13850
13851 warning (_("marker for static tracepoint %d (%s) not "
13852 "found at previous line number"),
13853 b->number, tp->static_trace_marker_id);
13854
13855 init_sal (&sal2);
13856
13857 sal2.pc = tpmarker->address;
13858
13859 sal2 = find_pc_line (tpmarker->address, 0);
13860 sym = find_pc_sect_function (tpmarker->address, NULL);
13861 ui_out_text (uiout, "Now in ");
13862 if (sym)
13863 {
13864 ui_out_field_string (uiout, "func",
13865 SYMBOL_PRINT_NAME (sym));
13866 ui_out_text (uiout, " at ");
13867 }
13868 ui_out_field_string (uiout, "file",
13869 symtab_to_filename_for_display (sal2.symtab));
13870 ui_out_text (uiout, ":");
13871
13872 if (ui_out_is_mi_like_p (uiout))
13873 {
13874 const char *fullname = symtab_to_fullname (sal2.symtab);
13875
13876 ui_out_field_string (uiout, "fullname", fullname);
13877 }
13878
13879 ui_out_field_int (uiout, "line", sal2.line);
13880 ui_out_text (uiout, "\n");
13881
13882 b->loc->line_number = sal2.line;
13883 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13884
13885 xfree (b->addr_string);
13886 b->addr_string = xstrprintf ("%s:%d",
13887 symtab_to_filename_for_display (sal2.symtab),
13888 b->loc->line_number);
13889
13890 /* Might be nice to check if function changed, and warn if
13891 so. */
13892
13893 release_static_tracepoint_marker (tpmarker);
13894 }
13895 }
13896 return sal;
13897 }
13898
13899 /* Returns 1 iff locations A and B are sufficiently same that
13900 we don't need to report breakpoint as changed. */
13901
13902 static int
13903 locations_are_equal (struct bp_location *a, struct bp_location *b)
13904 {
13905 while (a && b)
13906 {
13907 if (a->address != b->address)
13908 return 0;
13909
13910 if (a->shlib_disabled != b->shlib_disabled)
13911 return 0;
13912
13913 if (a->enabled != b->enabled)
13914 return 0;
13915
13916 a = a->next;
13917 b = b->next;
13918 }
13919
13920 if ((a == NULL) != (b == NULL))
13921 return 0;
13922
13923 return 1;
13924 }
13925
13926 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13927 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13928 a ranged breakpoint. */
13929
13930 void
13931 update_breakpoint_locations (struct breakpoint *b,
13932 struct symtabs_and_lines sals,
13933 struct symtabs_and_lines sals_end)
13934 {
13935 int i;
13936 struct bp_location *existing_locations = b->loc;
13937
13938 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13939 {
13940 /* Ranged breakpoints have only one start location and one end
13941 location. */
13942 b->enable_state = bp_disabled;
13943 update_global_location_list (UGLL_MAY_INSERT);
13944 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13945 "multiple locations found\n"),
13946 b->number);
13947 return;
13948 }
13949
13950 /* If there's no new locations, and all existing locations are
13951 pending, don't do anything. This optimizes the common case where
13952 all locations are in the same shared library, that was unloaded.
13953 We'd like to retain the location, so that when the library is
13954 loaded again, we don't loose the enabled/disabled status of the
13955 individual locations. */
13956 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13957 return;
13958
13959 b->loc = NULL;
13960
13961 for (i = 0; i < sals.nelts; ++i)
13962 {
13963 struct bp_location *new_loc;
13964
13965 switch_to_program_space_and_thread (sals.sals[i].pspace);
13966
13967 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13968
13969 /* Reparse conditions, they might contain references to the
13970 old symtab. */
13971 if (b->cond_string != NULL)
13972 {
13973 const char *s;
13974
13975 s = b->cond_string;
13976 TRY
13977 {
13978 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13979 block_for_pc (sals.sals[i].pc),
13980 0);
13981 }
13982 CATCH (e, RETURN_MASK_ERROR)
13983 {
13984 warning (_("failed to reevaluate condition "
13985 "for breakpoint %d: %s"),
13986 b->number, e.message);
13987 new_loc->enabled = 0;
13988 }
13989 END_CATCH
13990 }
13991
13992 if (sals_end.nelts)
13993 {
13994 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13995
13996 new_loc->length = end - sals.sals[0].pc + 1;
13997 }
13998 }
13999
14000 /* If possible, carry over 'disable' status from existing
14001 breakpoints. */
14002 {
14003 struct bp_location *e = existing_locations;
14004 /* If there are multiple breakpoints with the same function name,
14005 e.g. for inline functions, comparing function names won't work.
14006 Instead compare pc addresses; this is just a heuristic as things
14007 may have moved, but in practice it gives the correct answer
14008 often enough until a better solution is found. */
14009 int have_ambiguous_names = ambiguous_names_p (b->loc);
14010
14011 for (; e; e = e->next)
14012 {
14013 if (!e->enabled && e->function_name)
14014 {
14015 struct bp_location *l = b->loc;
14016 if (have_ambiguous_names)
14017 {
14018 for (; l; l = l->next)
14019 if (breakpoint_locations_match (e, l))
14020 {
14021 l->enabled = 0;
14022 break;
14023 }
14024 }
14025 else
14026 {
14027 for (; l; l = l->next)
14028 if (l->function_name
14029 && strcmp (e->function_name, l->function_name) == 0)
14030 {
14031 l->enabled = 0;
14032 break;
14033 }
14034 }
14035 }
14036 }
14037 }
14038
14039 if (!locations_are_equal (existing_locations, b->loc))
14040 observer_notify_breakpoint_modified (b);
14041
14042 update_global_location_list (UGLL_MAY_INSERT);
14043 }
14044
14045 /* Find the SaL locations corresponding to the given ADDR_STRING.
14046 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14047
14048 static struct symtabs_and_lines
14049 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14050 {
14051 char *s;
14052 struct symtabs_and_lines sals = {0};
14053 struct gdb_exception exception = exception_none;
14054
14055 gdb_assert (b->ops != NULL);
14056 s = addr_string;
14057
14058 TRY
14059 {
14060 b->ops->decode_linespec (b, &s, &sals);
14061 }
14062 CATCH (e, RETURN_MASK_ERROR)
14063 {
14064 int not_found_and_ok = 0;
14065
14066 exception = e;
14067
14068 /* For pending breakpoints, it's expected that parsing will
14069 fail until the right shared library is loaded. User has
14070 already told to create pending breakpoints and don't need
14071 extra messages. If breakpoint is in bp_shlib_disabled
14072 state, then user already saw the message about that
14073 breakpoint being disabled, and don't want to see more
14074 errors. */
14075 if (e.error == NOT_FOUND_ERROR
14076 && (b->condition_not_parsed
14077 || (b->loc && b->loc->shlib_disabled)
14078 || (b->loc && b->loc->pspace->executing_startup)
14079 || b->enable_state == bp_disabled))
14080 not_found_and_ok = 1;
14081
14082 if (!not_found_and_ok)
14083 {
14084 /* We surely don't want to warn about the same breakpoint
14085 10 times. One solution, implemented here, is disable
14086 the breakpoint on error. Another solution would be to
14087 have separate 'warning emitted' flag. Since this
14088 happens only when a binary has changed, I don't know
14089 which approach is better. */
14090 b->enable_state = bp_disabled;
14091 throw_exception (e);
14092 }
14093 }
14094 END_CATCH
14095
14096 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14097 {
14098 int i;
14099
14100 for (i = 0; i < sals.nelts; ++i)
14101 resolve_sal_pc (&sals.sals[i]);
14102 if (b->condition_not_parsed && s && s[0])
14103 {
14104 char *cond_string, *extra_string;
14105 int thread, task;
14106
14107 find_condition_and_thread (s, sals.sals[0].pc,
14108 &cond_string, &thread, &task,
14109 &extra_string);
14110 if (cond_string)
14111 b->cond_string = cond_string;
14112 b->thread = thread;
14113 b->task = task;
14114 if (extra_string)
14115 b->extra_string = extra_string;
14116 b->condition_not_parsed = 0;
14117 }
14118
14119 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14120 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14121
14122 *found = 1;
14123 }
14124 else
14125 *found = 0;
14126
14127 return sals;
14128 }
14129
14130 /* The default re_set method, for typical hardware or software
14131 breakpoints. Reevaluate the breakpoint and recreate its
14132 locations. */
14133
14134 static void
14135 breakpoint_re_set_default (struct breakpoint *b)
14136 {
14137 int found;
14138 struct symtabs_and_lines sals, sals_end;
14139 struct symtabs_and_lines expanded = {0};
14140 struct symtabs_and_lines expanded_end = {0};
14141
14142 sals = addr_string_to_sals (b, b->addr_string, &found);
14143 if (found)
14144 {
14145 make_cleanup (xfree, sals.sals);
14146 expanded = sals;
14147 }
14148
14149 if (b->addr_string_range_end)
14150 {
14151 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14152 if (found)
14153 {
14154 make_cleanup (xfree, sals_end.sals);
14155 expanded_end = sals_end;
14156 }
14157 }
14158
14159 update_breakpoint_locations (b, expanded, expanded_end);
14160 }
14161
14162 /* Default method for creating SALs from an address string. It basically
14163 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14164
14165 static void
14166 create_sals_from_address_default (char **arg,
14167 struct linespec_result *canonical,
14168 enum bptype type_wanted,
14169 char *addr_start, char **copy_arg)
14170 {
14171 parse_breakpoint_sals (arg, canonical);
14172 }
14173
14174 /* Call create_breakpoints_sal for the given arguments. This is the default
14175 function for the `create_breakpoints_sal' method of
14176 breakpoint_ops. */
14177
14178 static void
14179 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14180 struct linespec_result *canonical,
14181 char *cond_string,
14182 char *extra_string,
14183 enum bptype type_wanted,
14184 enum bpdisp disposition,
14185 int thread,
14186 int task, int ignore_count,
14187 const struct breakpoint_ops *ops,
14188 int from_tty, int enabled,
14189 int internal, unsigned flags)
14190 {
14191 create_breakpoints_sal (gdbarch, canonical, cond_string,
14192 extra_string,
14193 type_wanted, disposition,
14194 thread, task, ignore_count, ops, from_tty,
14195 enabled, internal, flags);
14196 }
14197
14198 /* Decode the line represented by S by calling decode_line_full. This is the
14199 default function for the `decode_linespec' method of breakpoint_ops. */
14200
14201 static void
14202 decode_linespec_default (struct breakpoint *b, char **s,
14203 struct symtabs_and_lines *sals)
14204 {
14205 struct linespec_result canonical;
14206
14207 init_linespec_result (&canonical);
14208 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14209 (struct symtab *) NULL, 0,
14210 &canonical, multiple_symbols_all,
14211 b->filter);
14212
14213 /* We should get 0 or 1 resulting SALs. */
14214 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14215
14216 if (VEC_length (linespec_sals, canonical.sals) > 0)
14217 {
14218 struct linespec_sals *lsal;
14219
14220 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14221 *sals = lsal->sals;
14222 /* Arrange it so the destructor does not free the
14223 contents. */
14224 lsal->sals.sals = NULL;
14225 }
14226
14227 destroy_linespec_result (&canonical);
14228 }
14229
14230 /* Prepare the global context for a re-set of breakpoint B. */
14231
14232 static struct cleanup *
14233 prepare_re_set_context (struct breakpoint *b)
14234 {
14235 struct cleanup *cleanups;
14236
14237 input_radix = b->input_radix;
14238 cleanups = save_current_space_and_thread ();
14239 if (b->pspace != NULL)
14240 switch_to_program_space_and_thread (b->pspace);
14241 set_language (b->language);
14242
14243 return cleanups;
14244 }
14245
14246 /* Reset a breakpoint given it's struct breakpoint * BINT.
14247 The value we return ends up being the return value from catch_errors.
14248 Unused in this case. */
14249
14250 static int
14251 breakpoint_re_set_one (void *bint)
14252 {
14253 /* Get past catch_errs. */
14254 struct breakpoint *b = (struct breakpoint *) bint;
14255 struct cleanup *cleanups;
14256
14257 cleanups = prepare_re_set_context (b);
14258 b->ops->re_set (b);
14259 do_cleanups (cleanups);
14260 return 0;
14261 }
14262
14263 /* Re-set all breakpoints after symbols have been re-loaded. */
14264 void
14265 breakpoint_re_set (void)
14266 {
14267 struct breakpoint *b, *b_tmp;
14268 enum language save_language;
14269 int save_input_radix;
14270 struct cleanup *old_chain;
14271
14272 save_language = current_language->la_language;
14273 save_input_radix = input_radix;
14274 old_chain = save_current_program_space ();
14275
14276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14277 {
14278 /* Format possible error msg. */
14279 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14280 b->number);
14281 struct cleanup *cleanups = make_cleanup (xfree, message);
14282 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14283 do_cleanups (cleanups);
14284 }
14285 set_language (save_language);
14286 input_radix = save_input_radix;
14287
14288 jit_breakpoint_re_set ();
14289
14290 do_cleanups (old_chain);
14291
14292 create_overlay_event_breakpoint ();
14293 create_longjmp_master_breakpoint ();
14294 create_std_terminate_master_breakpoint ();
14295 create_exception_master_breakpoint ();
14296 }
14297 \f
14298 /* Reset the thread number of this breakpoint:
14299
14300 - If the breakpoint is for all threads, leave it as-is.
14301 - Else, reset it to the current thread for inferior_ptid. */
14302 void
14303 breakpoint_re_set_thread (struct breakpoint *b)
14304 {
14305 if (b->thread != -1)
14306 {
14307 if (in_thread_list (inferior_ptid))
14308 b->thread = pid_to_thread_id (inferior_ptid);
14309
14310 /* We're being called after following a fork. The new fork is
14311 selected as current, and unless this was a vfork will have a
14312 different program space from the original thread. Reset that
14313 as well. */
14314 b->loc->pspace = current_program_space;
14315 }
14316 }
14317
14318 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14319 If from_tty is nonzero, it prints a message to that effect,
14320 which ends with a period (no newline). */
14321
14322 void
14323 set_ignore_count (int bptnum, int count, int from_tty)
14324 {
14325 struct breakpoint *b;
14326
14327 if (count < 0)
14328 count = 0;
14329
14330 ALL_BREAKPOINTS (b)
14331 if (b->number == bptnum)
14332 {
14333 if (is_tracepoint (b))
14334 {
14335 if (from_tty && count != 0)
14336 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14337 bptnum);
14338 return;
14339 }
14340
14341 b->ignore_count = count;
14342 if (from_tty)
14343 {
14344 if (count == 0)
14345 printf_filtered (_("Will stop next time "
14346 "breakpoint %d is reached."),
14347 bptnum);
14348 else if (count == 1)
14349 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14350 bptnum);
14351 else
14352 printf_filtered (_("Will ignore next %d "
14353 "crossings of breakpoint %d."),
14354 count, bptnum);
14355 }
14356 observer_notify_breakpoint_modified (b);
14357 return;
14358 }
14359
14360 error (_("No breakpoint number %d."), bptnum);
14361 }
14362
14363 /* Command to set ignore-count of breakpoint N to COUNT. */
14364
14365 static void
14366 ignore_command (char *args, int from_tty)
14367 {
14368 char *p = args;
14369 int num;
14370
14371 if (p == 0)
14372 error_no_arg (_("a breakpoint number"));
14373
14374 num = get_number (&p);
14375 if (num == 0)
14376 error (_("bad breakpoint number: '%s'"), args);
14377 if (*p == 0)
14378 error (_("Second argument (specified ignore-count) is missing."));
14379
14380 set_ignore_count (num,
14381 longest_to_int (value_as_long (parse_and_eval (p))),
14382 from_tty);
14383 if (from_tty)
14384 printf_filtered ("\n");
14385 }
14386 \f
14387 /* Call FUNCTION on each of the breakpoints
14388 whose numbers are given in ARGS. */
14389
14390 static void
14391 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14392 void *),
14393 void *data)
14394 {
14395 int num;
14396 struct breakpoint *b, *tmp;
14397 int match;
14398 struct get_number_or_range_state state;
14399
14400 if (args == 0 || *args == '\0')
14401 error_no_arg (_("one or more breakpoint numbers"));
14402
14403 init_number_or_range (&state, args);
14404
14405 while (!state.finished)
14406 {
14407 const char *p = state.string;
14408
14409 match = 0;
14410
14411 num = get_number_or_range (&state);
14412 if (num == 0)
14413 {
14414 warning (_("bad breakpoint number at or near '%s'"), p);
14415 }
14416 else
14417 {
14418 ALL_BREAKPOINTS_SAFE (b, tmp)
14419 if (b->number == num)
14420 {
14421 match = 1;
14422 function (b, data);
14423 break;
14424 }
14425 if (match == 0)
14426 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14427 }
14428 }
14429 }
14430
14431 static struct bp_location *
14432 find_location_by_number (char *number)
14433 {
14434 char *dot = strchr (number, '.');
14435 char *p1;
14436 int bp_num;
14437 int loc_num;
14438 struct breakpoint *b;
14439 struct bp_location *loc;
14440
14441 *dot = '\0';
14442
14443 p1 = number;
14444 bp_num = get_number (&p1);
14445 if (bp_num == 0)
14446 error (_("Bad breakpoint number '%s'"), number);
14447
14448 ALL_BREAKPOINTS (b)
14449 if (b->number == bp_num)
14450 {
14451 break;
14452 }
14453
14454 if (!b || b->number != bp_num)
14455 error (_("Bad breakpoint number '%s'"), number);
14456
14457 p1 = dot+1;
14458 loc_num = get_number (&p1);
14459 if (loc_num == 0)
14460 error (_("Bad breakpoint location number '%s'"), number);
14461
14462 --loc_num;
14463 loc = b->loc;
14464 for (;loc_num && loc; --loc_num, loc = loc->next)
14465 ;
14466 if (!loc)
14467 error (_("Bad breakpoint location number '%s'"), dot+1);
14468
14469 return loc;
14470 }
14471
14472
14473 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14474 If from_tty is nonzero, it prints a message to that effect,
14475 which ends with a period (no newline). */
14476
14477 void
14478 disable_breakpoint (struct breakpoint *bpt)
14479 {
14480 /* Never disable a watchpoint scope breakpoint; we want to
14481 hit them when we leave scope so we can delete both the
14482 watchpoint and its scope breakpoint at that time. */
14483 if (bpt->type == bp_watchpoint_scope)
14484 return;
14485
14486 bpt->enable_state = bp_disabled;
14487
14488 /* Mark breakpoint locations modified. */
14489 mark_breakpoint_modified (bpt);
14490
14491 if (target_supports_enable_disable_tracepoint ()
14492 && current_trace_status ()->running && is_tracepoint (bpt))
14493 {
14494 struct bp_location *location;
14495
14496 for (location = bpt->loc; location; location = location->next)
14497 target_disable_tracepoint (location);
14498 }
14499
14500 update_global_location_list (UGLL_DONT_INSERT);
14501
14502 observer_notify_breakpoint_modified (bpt);
14503 }
14504
14505 /* A callback for iterate_over_related_breakpoints. */
14506
14507 static void
14508 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14509 {
14510 disable_breakpoint (b);
14511 }
14512
14513 /* A callback for map_breakpoint_numbers that calls
14514 disable_breakpoint. */
14515
14516 static void
14517 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14518 {
14519 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14520 }
14521
14522 static void
14523 disable_command (char *args, int from_tty)
14524 {
14525 if (args == 0)
14526 {
14527 struct breakpoint *bpt;
14528
14529 ALL_BREAKPOINTS (bpt)
14530 if (user_breakpoint_p (bpt))
14531 disable_breakpoint (bpt);
14532 }
14533 else
14534 {
14535 char *num = extract_arg (&args);
14536
14537 while (num)
14538 {
14539 if (strchr (num, '.'))
14540 {
14541 struct bp_location *loc = find_location_by_number (num);
14542
14543 if (loc)
14544 {
14545 if (loc->enabled)
14546 {
14547 loc->enabled = 0;
14548 mark_breakpoint_location_modified (loc);
14549 }
14550 if (target_supports_enable_disable_tracepoint ()
14551 && current_trace_status ()->running && loc->owner
14552 && is_tracepoint (loc->owner))
14553 target_disable_tracepoint (loc);
14554 }
14555 update_global_location_list (UGLL_DONT_INSERT);
14556 }
14557 else
14558 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14559 num = extract_arg (&args);
14560 }
14561 }
14562 }
14563
14564 static void
14565 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14566 int count)
14567 {
14568 int target_resources_ok;
14569
14570 if (bpt->type == bp_hardware_breakpoint)
14571 {
14572 int i;
14573 i = hw_breakpoint_used_count ();
14574 target_resources_ok =
14575 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14576 i + 1, 0);
14577 if (target_resources_ok == 0)
14578 error (_("No hardware breakpoint support in the target."));
14579 else if (target_resources_ok < 0)
14580 error (_("Hardware breakpoints used exceeds limit."));
14581 }
14582
14583 if (is_watchpoint (bpt))
14584 {
14585 /* Initialize it just to avoid a GCC false warning. */
14586 enum enable_state orig_enable_state = 0;
14587
14588 TRY
14589 {
14590 struct watchpoint *w = (struct watchpoint *) bpt;
14591
14592 orig_enable_state = bpt->enable_state;
14593 bpt->enable_state = bp_enabled;
14594 update_watchpoint (w, 1 /* reparse */);
14595 }
14596 CATCH (e, RETURN_MASK_ALL)
14597 {
14598 bpt->enable_state = orig_enable_state;
14599 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14600 bpt->number);
14601 return;
14602 }
14603 END_CATCH
14604 }
14605
14606 bpt->enable_state = bp_enabled;
14607
14608 /* Mark breakpoint locations modified. */
14609 mark_breakpoint_modified (bpt);
14610
14611 if (target_supports_enable_disable_tracepoint ()
14612 && current_trace_status ()->running && is_tracepoint (bpt))
14613 {
14614 struct bp_location *location;
14615
14616 for (location = bpt->loc; location; location = location->next)
14617 target_enable_tracepoint (location);
14618 }
14619
14620 bpt->disposition = disposition;
14621 bpt->enable_count = count;
14622 update_global_location_list (UGLL_MAY_INSERT);
14623
14624 observer_notify_breakpoint_modified (bpt);
14625 }
14626
14627
14628 void
14629 enable_breakpoint (struct breakpoint *bpt)
14630 {
14631 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14632 }
14633
14634 static void
14635 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14636 {
14637 enable_breakpoint (bpt);
14638 }
14639
14640 /* A callback for map_breakpoint_numbers that calls
14641 enable_breakpoint. */
14642
14643 static void
14644 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14645 {
14646 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14647 }
14648
14649 /* The enable command enables the specified breakpoints (or all defined
14650 breakpoints) so they once again become (or continue to be) effective
14651 in stopping the inferior. */
14652
14653 static void
14654 enable_command (char *args, int from_tty)
14655 {
14656 if (args == 0)
14657 {
14658 struct breakpoint *bpt;
14659
14660 ALL_BREAKPOINTS (bpt)
14661 if (user_breakpoint_p (bpt))
14662 enable_breakpoint (bpt);
14663 }
14664 else
14665 {
14666 char *num = extract_arg (&args);
14667
14668 while (num)
14669 {
14670 if (strchr (num, '.'))
14671 {
14672 struct bp_location *loc = find_location_by_number (num);
14673
14674 if (loc)
14675 {
14676 if (!loc->enabled)
14677 {
14678 loc->enabled = 1;
14679 mark_breakpoint_location_modified (loc);
14680 }
14681 if (target_supports_enable_disable_tracepoint ()
14682 && current_trace_status ()->running && loc->owner
14683 && is_tracepoint (loc->owner))
14684 target_enable_tracepoint (loc);
14685 }
14686 update_global_location_list (UGLL_MAY_INSERT);
14687 }
14688 else
14689 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14690 num = extract_arg (&args);
14691 }
14692 }
14693 }
14694
14695 /* This struct packages up disposition data for application to multiple
14696 breakpoints. */
14697
14698 struct disp_data
14699 {
14700 enum bpdisp disp;
14701 int count;
14702 };
14703
14704 static void
14705 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14706 {
14707 struct disp_data disp_data = *(struct disp_data *) arg;
14708
14709 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14710 }
14711
14712 static void
14713 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14714 {
14715 struct disp_data disp = { disp_disable, 1 };
14716
14717 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14718 }
14719
14720 static void
14721 enable_once_command (char *args, int from_tty)
14722 {
14723 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14724 }
14725
14726 static void
14727 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14728 {
14729 struct disp_data disp = { disp_disable, *(int *) countptr };
14730
14731 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14732 }
14733
14734 static void
14735 enable_count_command (char *args, int from_tty)
14736 {
14737 int count;
14738
14739 if (args == NULL)
14740 error_no_arg (_("hit count"));
14741
14742 count = get_number (&args);
14743
14744 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14745 }
14746
14747 static void
14748 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14749 {
14750 struct disp_data disp = { disp_del, 1 };
14751
14752 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14753 }
14754
14755 static void
14756 enable_delete_command (char *args, int from_tty)
14757 {
14758 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14759 }
14760 \f
14761 static void
14762 set_breakpoint_cmd (char *args, int from_tty)
14763 {
14764 }
14765
14766 static void
14767 show_breakpoint_cmd (char *args, int from_tty)
14768 {
14769 }
14770
14771 /* Invalidate last known value of any hardware watchpoint if
14772 the memory which that value represents has been written to by
14773 GDB itself. */
14774
14775 static void
14776 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14777 CORE_ADDR addr, ssize_t len,
14778 const bfd_byte *data)
14779 {
14780 struct breakpoint *bp;
14781
14782 ALL_BREAKPOINTS (bp)
14783 if (bp->enable_state == bp_enabled
14784 && bp->type == bp_hardware_watchpoint)
14785 {
14786 struct watchpoint *wp = (struct watchpoint *) bp;
14787
14788 if (wp->val_valid && wp->val)
14789 {
14790 struct bp_location *loc;
14791
14792 for (loc = bp->loc; loc != NULL; loc = loc->next)
14793 if (loc->loc_type == bp_loc_hardware_watchpoint
14794 && loc->address + loc->length > addr
14795 && addr + len > loc->address)
14796 {
14797 value_free (wp->val);
14798 wp->val = NULL;
14799 wp->val_valid = 0;
14800 }
14801 }
14802 }
14803 }
14804
14805 /* Create and insert a breakpoint for software single step. */
14806
14807 void
14808 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14809 struct address_space *aspace,
14810 CORE_ADDR next_pc)
14811 {
14812 struct thread_info *tp = inferior_thread ();
14813 struct symtab_and_line sal;
14814 CORE_ADDR pc = next_pc;
14815
14816 if (tp->control.single_step_breakpoints == NULL)
14817 {
14818 tp->control.single_step_breakpoints
14819 = new_single_step_breakpoint (tp->num, gdbarch);
14820 }
14821
14822 sal = find_pc_line (pc, 0);
14823 sal.pc = pc;
14824 sal.section = find_pc_overlay (pc);
14825 sal.explicit_pc = 1;
14826 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14827
14828 update_global_location_list (UGLL_INSERT);
14829 }
14830
14831 /* See breakpoint.h. */
14832
14833 int
14834 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14835 struct address_space *aspace,
14836 CORE_ADDR pc)
14837 {
14838 struct bp_location *loc;
14839
14840 for (loc = bp->loc; loc != NULL; loc = loc->next)
14841 if (loc->inserted
14842 && breakpoint_location_address_match (loc, aspace, pc))
14843 return 1;
14844
14845 return 0;
14846 }
14847
14848 /* Check whether a software single-step breakpoint is inserted at
14849 PC. */
14850
14851 int
14852 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14853 CORE_ADDR pc)
14854 {
14855 struct breakpoint *bpt;
14856
14857 ALL_BREAKPOINTS (bpt)
14858 {
14859 if (bpt->type == bp_single_step
14860 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14861 return 1;
14862 }
14863 return 0;
14864 }
14865
14866 /* Tracepoint-specific operations. */
14867
14868 /* Set tracepoint count to NUM. */
14869 static void
14870 set_tracepoint_count (int num)
14871 {
14872 tracepoint_count = num;
14873 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14874 }
14875
14876 static void
14877 trace_command (char *arg, int from_tty)
14878 {
14879 struct breakpoint_ops *ops;
14880 const char *arg_cp = arg;
14881
14882 if (arg && probe_linespec_to_ops (&arg_cp))
14883 ops = &tracepoint_probe_breakpoint_ops;
14884 else
14885 ops = &tracepoint_breakpoint_ops;
14886
14887 create_breakpoint (get_current_arch (),
14888 arg,
14889 NULL, 0, NULL, 1 /* parse arg */,
14890 0 /* tempflag */,
14891 bp_tracepoint /* type_wanted */,
14892 0 /* Ignore count */,
14893 pending_break_support,
14894 ops,
14895 from_tty,
14896 1 /* enabled */,
14897 0 /* internal */, 0);
14898 }
14899
14900 static void
14901 ftrace_command (char *arg, int from_tty)
14902 {
14903 create_breakpoint (get_current_arch (),
14904 arg,
14905 NULL, 0, NULL, 1 /* parse arg */,
14906 0 /* tempflag */,
14907 bp_fast_tracepoint /* type_wanted */,
14908 0 /* Ignore count */,
14909 pending_break_support,
14910 &tracepoint_breakpoint_ops,
14911 from_tty,
14912 1 /* enabled */,
14913 0 /* internal */, 0);
14914 }
14915
14916 /* strace command implementation. Creates a static tracepoint. */
14917
14918 static void
14919 strace_command (char *arg, int from_tty)
14920 {
14921 struct breakpoint_ops *ops;
14922
14923 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14924 or with a normal static tracepoint. */
14925 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14926 ops = &strace_marker_breakpoint_ops;
14927 else
14928 ops = &tracepoint_breakpoint_ops;
14929
14930 create_breakpoint (get_current_arch (),
14931 arg,
14932 NULL, 0, NULL, 1 /* parse arg */,
14933 0 /* tempflag */,
14934 bp_static_tracepoint /* type_wanted */,
14935 0 /* Ignore count */,
14936 pending_break_support,
14937 ops,
14938 from_tty,
14939 1 /* enabled */,
14940 0 /* internal */, 0);
14941 }
14942
14943 /* Set up a fake reader function that gets command lines from a linked
14944 list that was acquired during tracepoint uploading. */
14945
14946 static struct uploaded_tp *this_utp;
14947 static int next_cmd;
14948
14949 static char *
14950 read_uploaded_action (void)
14951 {
14952 char *rslt;
14953
14954 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14955
14956 next_cmd++;
14957
14958 return rslt;
14959 }
14960
14961 /* Given information about a tracepoint as recorded on a target (which
14962 can be either a live system or a trace file), attempt to create an
14963 equivalent GDB tracepoint. This is not a reliable process, since
14964 the target does not necessarily have all the information used when
14965 the tracepoint was originally defined. */
14966
14967 struct tracepoint *
14968 create_tracepoint_from_upload (struct uploaded_tp *utp)
14969 {
14970 char *addr_str, small_buf[100];
14971 struct tracepoint *tp;
14972
14973 if (utp->at_string)
14974 addr_str = utp->at_string;
14975 else
14976 {
14977 /* In the absence of a source location, fall back to raw
14978 address. Since there is no way to confirm that the address
14979 means the same thing as when the trace was started, warn the
14980 user. */
14981 warning (_("Uploaded tracepoint %d has no "
14982 "source location, using raw address"),
14983 utp->number);
14984 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14985 addr_str = small_buf;
14986 }
14987
14988 /* There's not much we can do with a sequence of bytecodes. */
14989 if (utp->cond && !utp->cond_string)
14990 warning (_("Uploaded tracepoint %d condition "
14991 "has no source form, ignoring it"),
14992 utp->number);
14993
14994 if (!create_breakpoint (get_current_arch (),
14995 addr_str,
14996 utp->cond_string, -1, NULL,
14997 0 /* parse cond/thread */,
14998 0 /* tempflag */,
14999 utp->type /* type_wanted */,
15000 0 /* Ignore count */,
15001 pending_break_support,
15002 &tracepoint_breakpoint_ops,
15003 0 /* from_tty */,
15004 utp->enabled /* enabled */,
15005 0 /* internal */,
15006 CREATE_BREAKPOINT_FLAGS_INSERTED))
15007 return NULL;
15008
15009 /* Get the tracepoint we just created. */
15010 tp = get_tracepoint (tracepoint_count);
15011 gdb_assert (tp != NULL);
15012
15013 if (utp->pass > 0)
15014 {
15015 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15016 tp->base.number);
15017
15018 trace_pass_command (small_buf, 0);
15019 }
15020
15021 /* If we have uploaded versions of the original commands, set up a
15022 special-purpose "reader" function and call the usual command line
15023 reader, then pass the result to the breakpoint command-setting
15024 function. */
15025 if (!VEC_empty (char_ptr, utp->cmd_strings))
15026 {
15027 struct command_line *cmd_list;
15028
15029 this_utp = utp;
15030 next_cmd = 0;
15031
15032 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15033
15034 breakpoint_set_commands (&tp->base, cmd_list);
15035 }
15036 else if (!VEC_empty (char_ptr, utp->actions)
15037 || !VEC_empty (char_ptr, utp->step_actions))
15038 warning (_("Uploaded tracepoint %d actions "
15039 "have no source form, ignoring them"),
15040 utp->number);
15041
15042 /* Copy any status information that might be available. */
15043 tp->base.hit_count = utp->hit_count;
15044 tp->traceframe_usage = utp->traceframe_usage;
15045
15046 return tp;
15047 }
15048
15049 /* Print information on tracepoint number TPNUM_EXP, or all if
15050 omitted. */
15051
15052 static void
15053 tracepoints_info (char *args, int from_tty)
15054 {
15055 struct ui_out *uiout = current_uiout;
15056 int num_printed;
15057
15058 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15059
15060 if (num_printed == 0)
15061 {
15062 if (args == NULL || *args == '\0')
15063 ui_out_message (uiout, 0, "No tracepoints.\n");
15064 else
15065 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15066 }
15067
15068 default_collect_info ();
15069 }
15070
15071 /* The 'enable trace' command enables tracepoints.
15072 Not supported by all targets. */
15073 static void
15074 enable_trace_command (char *args, int from_tty)
15075 {
15076 enable_command (args, from_tty);
15077 }
15078
15079 /* The 'disable trace' command disables tracepoints.
15080 Not supported by all targets. */
15081 static void
15082 disable_trace_command (char *args, int from_tty)
15083 {
15084 disable_command (args, from_tty);
15085 }
15086
15087 /* Remove a tracepoint (or all if no argument). */
15088 static void
15089 delete_trace_command (char *arg, int from_tty)
15090 {
15091 struct breakpoint *b, *b_tmp;
15092
15093 dont_repeat ();
15094
15095 if (arg == 0)
15096 {
15097 int breaks_to_delete = 0;
15098
15099 /* Delete all breakpoints if no argument.
15100 Do not delete internal or call-dummy breakpoints, these
15101 have to be deleted with an explicit breakpoint number
15102 argument. */
15103 ALL_TRACEPOINTS (b)
15104 if (is_tracepoint (b) && user_breakpoint_p (b))
15105 {
15106 breaks_to_delete = 1;
15107 break;
15108 }
15109
15110 /* Ask user only if there are some breakpoints to delete. */
15111 if (!from_tty
15112 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15113 {
15114 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15115 if (is_tracepoint (b) && user_breakpoint_p (b))
15116 delete_breakpoint (b);
15117 }
15118 }
15119 else
15120 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15121 }
15122
15123 /* Helper function for trace_pass_command. */
15124
15125 static void
15126 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15127 {
15128 tp->pass_count = count;
15129 observer_notify_breakpoint_modified (&tp->base);
15130 if (from_tty)
15131 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15132 tp->base.number, count);
15133 }
15134
15135 /* Set passcount for tracepoint.
15136
15137 First command argument is passcount, second is tracepoint number.
15138 If tracepoint number omitted, apply to most recently defined.
15139 Also accepts special argument "all". */
15140
15141 static void
15142 trace_pass_command (char *args, int from_tty)
15143 {
15144 struct tracepoint *t1;
15145 unsigned int count;
15146
15147 if (args == 0 || *args == 0)
15148 error (_("passcount command requires an "
15149 "argument (count + optional TP num)"));
15150
15151 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15152
15153 args = skip_spaces (args);
15154 if (*args && strncasecmp (args, "all", 3) == 0)
15155 {
15156 struct breakpoint *b;
15157
15158 args += 3; /* Skip special argument "all". */
15159 if (*args)
15160 error (_("Junk at end of arguments."));
15161
15162 ALL_TRACEPOINTS (b)
15163 {
15164 t1 = (struct tracepoint *) b;
15165 trace_pass_set_count (t1, count, from_tty);
15166 }
15167 }
15168 else if (*args == '\0')
15169 {
15170 t1 = get_tracepoint_by_number (&args, NULL);
15171 if (t1)
15172 trace_pass_set_count (t1, count, from_tty);
15173 }
15174 else
15175 {
15176 struct get_number_or_range_state state;
15177
15178 init_number_or_range (&state, args);
15179 while (!state.finished)
15180 {
15181 t1 = get_tracepoint_by_number (&args, &state);
15182 if (t1)
15183 trace_pass_set_count (t1, count, from_tty);
15184 }
15185 }
15186 }
15187
15188 struct tracepoint *
15189 get_tracepoint (int num)
15190 {
15191 struct breakpoint *t;
15192
15193 ALL_TRACEPOINTS (t)
15194 if (t->number == num)
15195 return (struct tracepoint *) t;
15196
15197 return NULL;
15198 }
15199
15200 /* Find the tracepoint with the given target-side number (which may be
15201 different from the tracepoint number after disconnecting and
15202 reconnecting). */
15203
15204 struct tracepoint *
15205 get_tracepoint_by_number_on_target (int num)
15206 {
15207 struct breakpoint *b;
15208
15209 ALL_TRACEPOINTS (b)
15210 {
15211 struct tracepoint *t = (struct tracepoint *) b;
15212
15213 if (t->number_on_target == num)
15214 return t;
15215 }
15216
15217 return NULL;
15218 }
15219
15220 /* Utility: parse a tracepoint number and look it up in the list.
15221 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15222 If the argument is missing, the most recent tracepoint
15223 (tracepoint_count) is returned. */
15224
15225 struct tracepoint *
15226 get_tracepoint_by_number (char **arg,
15227 struct get_number_or_range_state *state)
15228 {
15229 struct breakpoint *t;
15230 int tpnum;
15231 char *instring = arg == NULL ? NULL : *arg;
15232
15233 if (state)
15234 {
15235 gdb_assert (!state->finished);
15236 tpnum = get_number_or_range (state);
15237 }
15238 else if (arg == NULL || *arg == NULL || ! **arg)
15239 tpnum = tracepoint_count;
15240 else
15241 tpnum = get_number (arg);
15242
15243 if (tpnum <= 0)
15244 {
15245 if (instring && *instring)
15246 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15247 instring);
15248 else
15249 printf_filtered (_("No previous tracepoint\n"));
15250 return NULL;
15251 }
15252
15253 ALL_TRACEPOINTS (t)
15254 if (t->number == tpnum)
15255 {
15256 return (struct tracepoint *) t;
15257 }
15258
15259 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15260 return NULL;
15261 }
15262
15263 void
15264 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15265 {
15266 if (b->thread != -1)
15267 fprintf_unfiltered (fp, " thread %d", b->thread);
15268
15269 if (b->task != 0)
15270 fprintf_unfiltered (fp, " task %d", b->task);
15271
15272 fprintf_unfiltered (fp, "\n");
15273 }
15274
15275 /* Save information on user settable breakpoints (watchpoints, etc) to
15276 a new script file named FILENAME. If FILTER is non-NULL, call it
15277 on each breakpoint and only include the ones for which it returns
15278 non-zero. */
15279
15280 static void
15281 save_breakpoints (char *filename, int from_tty,
15282 int (*filter) (const struct breakpoint *))
15283 {
15284 struct breakpoint *tp;
15285 int any = 0;
15286 struct cleanup *cleanup;
15287 struct ui_file *fp;
15288 int extra_trace_bits = 0;
15289
15290 if (filename == 0 || *filename == 0)
15291 error (_("Argument required (file name in which to save)"));
15292
15293 /* See if we have anything to save. */
15294 ALL_BREAKPOINTS (tp)
15295 {
15296 /* Skip internal and momentary breakpoints. */
15297 if (!user_breakpoint_p (tp))
15298 continue;
15299
15300 /* If we have a filter, only save the breakpoints it accepts. */
15301 if (filter && !filter (tp))
15302 continue;
15303
15304 any = 1;
15305
15306 if (is_tracepoint (tp))
15307 {
15308 extra_trace_bits = 1;
15309
15310 /* We can stop searching. */
15311 break;
15312 }
15313 }
15314
15315 if (!any)
15316 {
15317 warning (_("Nothing to save."));
15318 return;
15319 }
15320
15321 filename = tilde_expand (filename);
15322 cleanup = make_cleanup (xfree, filename);
15323 fp = gdb_fopen (filename, "w");
15324 if (!fp)
15325 error (_("Unable to open file '%s' for saving (%s)"),
15326 filename, safe_strerror (errno));
15327 make_cleanup_ui_file_delete (fp);
15328
15329 if (extra_trace_bits)
15330 save_trace_state_variables (fp);
15331
15332 ALL_BREAKPOINTS (tp)
15333 {
15334 /* Skip internal and momentary breakpoints. */
15335 if (!user_breakpoint_p (tp))
15336 continue;
15337
15338 /* If we have a filter, only save the breakpoints it accepts. */
15339 if (filter && !filter (tp))
15340 continue;
15341
15342 tp->ops->print_recreate (tp, fp);
15343
15344 /* Note, we can't rely on tp->number for anything, as we can't
15345 assume the recreated breakpoint numbers will match. Use $bpnum
15346 instead. */
15347
15348 if (tp->cond_string)
15349 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15350
15351 if (tp->ignore_count)
15352 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15353
15354 if (tp->type != bp_dprintf && tp->commands)
15355 {
15356 struct gdb_exception exception;
15357
15358 fprintf_unfiltered (fp, " commands\n");
15359
15360 ui_out_redirect (current_uiout, fp);
15361 TRY
15362 {
15363 print_command_lines (current_uiout, tp->commands->commands, 2);
15364 }
15365 CATCH (ex, RETURN_MASK_ALL)
15366 {
15367 ui_out_redirect (current_uiout, NULL);
15368 throw_exception (ex);
15369 }
15370 END_CATCH
15371
15372 ui_out_redirect (current_uiout, NULL);
15373 fprintf_unfiltered (fp, " end\n");
15374 }
15375
15376 if (tp->enable_state == bp_disabled)
15377 fprintf_unfiltered (fp, "disable $bpnum\n");
15378
15379 /* If this is a multi-location breakpoint, check if the locations
15380 should be individually disabled. Watchpoint locations are
15381 special, and not user visible. */
15382 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15383 {
15384 struct bp_location *loc;
15385 int n = 1;
15386
15387 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15388 if (!loc->enabled)
15389 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15390 }
15391 }
15392
15393 if (extra_trace_bits && *default_collect)
15394 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15395
15396 if (from_tty)
15397 printf_filtered (_("Saved to file '%s'.\n"), filename);
15398 do_cleanups (cleanup);
15399 }
15400
15401 /* The `save breakpoints' command. */
15402
15403 static void
15404 save_breakpoints_command (char *args, int from_tty)
15405 {
15406 save_breakpoints (args, from_tty, NULL);
15407 }
15408
15409 /* The `save tracepoints' command. */
15410
15411 static void
15412 save_tracepoints_command (char *args, int from_tty)
15413 {
15414 save_breakpoints (args, from_tty, is_tracepoint);
15415 }
15416
15417 /* Create a vector of all tracepoints. */
15418
15419 VEC(breakpoint_p) *
15420 all_tracepoints (void)
15421 {
15422 VEC(breakpoint_p) *tp_vec = 0;
15423 struct breakpoint *tp;
15424
15425 ALL_TRACEPOINTS (tp)
15426 {
15427 VEC_safe_push (breakpoint_p, tp_vec, tp);
15428 }
15429
15430 return tp_vec;
15431 }
15432
15433 \f
15434 /* This help string is used for the break, hbreak, tbreak and thbreak
15435 commands. It is defined as a macro to prevent duplication.
15436 COMMAND should be a string constant containing the name of the
15437 command. */
15438 #define BREAK_ARGS_HELP(command) \
15439 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15440 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15441 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15442 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15443 `-probe-dtrace' (for a DTrace probe).\n\
15444 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15445 If a line number is specified, break at start of code for that line.\n\
15446 If a function is specified, break at start of code for that function.\n\
15447 If an address is specified, break at that exact address.\n\
15448 With no LOCATION, uses current execution address of the selected\n\
15449 stack frame. This is useful for breaking on return to a stack frame.\n\
15450 \n\
15451 THREADNUM is the number from \"info threads\".\n\
15452 CONDITION is a boolean expression.\n\
15453 \n\
15454 Multiple breakpoints at one place are permitted, and useful if their\n\
15455 conditions are different.\n\
15456 \n\
15457 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15458
15459 /* List of subcommands for "catch". */
15460 static struct cmd_list_element *catch_cmdlist;
15461
15462 /* List of subcommands for "tcatch". */
15463 static struct cmd_list_element *tcatch_cmdlist;
15464
15465 void
15466 add_catch_command (char *name, char *docstring,
15467 cmd_sfunc_ftype *sfunc,
15468 completer_ftype *completer,
15469 void *user_data_catch,
15470 void *user_data_tcatch)
15471 {
15472 struct cmd_list_element *command;
15473
15474 command = add_cmd (name, class_breakpoint, NULL, docstring,
15475 &catch_cmdlist);
15476 set_cmd_sfunc (command, sfunc);
15477 set_cmd_context (command, user_data_catch);
15478 set_cmd_completer (command, completer);
15479
15480 command = add_cmd (name, class_breakpoint, NULL, docstring,
15481 &tcatch_cmdlist);
15482 set_cmd_sfunc (command, sfunc);
15483 set_cmd_context (command, user_data_tcatch);
15484 set_cmd_completer (command, completer);
15485 }
15486
15487 static void
15488 save_command (char *arg, int from_tty)
15489 {
15490 printf_unfiltered (_("\"save\" must be followed by "
15491 "the name of a save subcommand.\n"));
15492 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15493 }
15494
15495 struct breakpoint *
15496 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15497 void *data)
15498 {
15499 struct breakpoint *b, *b_tmp;
15500
15501 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15502 {
15503 if ((*callback) (b, data))
15504 return b;
15505 }
15506
15507 return NULL;
15508 }
15509
15510 /* Zero if any of the breakpoint's locations could be a location where
15511 functions have been inlined, nonzero otherwise. */
15512
15513 static int
15514 is_non_inline_function (struct breakpoint *b)
15515 {
15516 /* The shared library event breakpoint is set on the address of a
15517 non-inline function. */
15518 if (b->type == bp_shlib_event)
15519 return 1;
15520
15521 return 0;
15522 }
15523
15524 /* Nonzero if the specified PC cannot be a location where functions
15525 have been inlined. */
15526
15527 int
15528 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15529 const struct target_waitstatus *ws)
15530 {
15531 struct breakpoint *b;
15532 struct bp_location *bl;
15533
15534 ALL_BREAKPOINTS (b)
15535 {
15536 if (!is_non_inline_function (b))
15537 continue;
15538
15539 for (bl = b->loc; bl != NULL; bl = bl->next)
15540 {
15541 if (!bl->shlib_disabled
15542 && bpstat_check_location (bl, aspace, pc, ws))
15543 return 1;
15544 }
15545 }
15546
15547 return 0;
15548 }
15549
15550 /* Remove any references to OBJFILE which is going to be freed. */
15551
15552 void
15553 breakpoint_free_objfile (struct objfile *objfile)
15554 {
15555 struct bp_location **locp, *loc;
15556
15557 ALL_BP_LOCATIONS (loc, locp)
15558 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15559 loc->symtab = NULL;
15560 }
15561
15562 void
15563 initialize_breakpoint_ops (void)
15564 {
15565 static int initialized = 0;
15566
15567 struct breakpoint_ops *ops;
15568
15569 if (initialized)
15570 return;
15571 initialized = 1;
15572
15573 /* The breakpoint_ops structure to be inherit by all kinds of
15574 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15575 internal and momentary breakpoints, etc.). */
15576 ops = &bkpt_base_breakpoint_ops;
15577 *ops = base_breakpoint_ops;
15578 ops->re_set = bkpt_re_set;
15579 ops->insert_location = bkpt_insert_location;
15580 ops->remove_location = bkpt_remove_location;
15581 ops->breakpoint_hit = bkpt_breakpoint_hit;
15582 ops->create_sals_from_address = bkpt_create_sals_from_address;
15583 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15584 ops->decode_linespec = bkpt_decode_linespec;
15585
15586 /* The breakpoint_ops structure to be used in regular breakpoints. */
15587 ops = &bkpt_breakpoint_ops;
15588 *ops = bkpt_base_breakpoint_ops;
15589 ops->re_set = bkpt_re_set;
15590 ops->resources_needed = bkpt_resources_needed;
15591 ops->print_it = bkpt_print_it;
15592 ops->print_mention = bkpt_print_mention;
15593 ops->print_recreate = bkpt_print_recreate;
15594
15595 /* Ranged breakpoints. */
15596 ops = &ranged_breakpoint_ops;
15597 *ops = bkpt_breakpoint_ops;
15598 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15599 ops->resources_needed = resources_needed_ranged_breakpoint;
15600 ops->print_it = print_it_ranged_breakpoint;
15601 ops->print_one = print_one_ranged_breakpoint;
15602 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15603 ops->print_mention = print_mention_ranged_breakpoint;
15604 ops->print_recreate = print_recreate_ranged_breakpoint;
15605
15606 /* Internal breakpoints. */
15607 ops = &internal_breakpoint_ops;
15608 *ops = bkpt_base_breakpoint_ops;
15609 ops->re_set = internal_bkpt_re_set;
15610 ops->check_status = internal_bkpt_check_status;
15611 ops->print_it = internal_bkpt_print_it;
15612 ops->print_mention = internal_bkpt_print_mention;
15613
15614 /* Momentary breakpoints. */
15615 ops = &momentary_breakpoint_ops;
15616 *ops = bkpt_base_breakpoint_ops;
15617 ops->re_set = momentary_bkpt_re_set;
15618 ops->check_status = momentary_bkpt_check_status;
15619 ops->print_it = momentary_bkpt_print_it;
15620 ops->print_mention = momentary_bkpt_print_mention;
15621
15622 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15623 ops = &longjmp_breakpoint_ops;
15624 *ops = momentary_breakpoint_ops;
15625 ops->dtor = longjmp_bkpt_dtor;
15626
15627 /* Probe breakpoints. */
15628 ops = &bkpt_probe_breakpoint_ops;
15629 *ops = bkpt_breakpoint_ops;
15630 ops->insert_location = bkpt_probe_insert_location;
15631 ops->remove_location = bkpt_probe_remove_location;
15632 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15633 ops->decode_linespec = bkpt_probe_decode_linespec;
15634
15635 /* Watchpoints. */
15636 ops = &watchpoint_breakpoint_ops;
15637 *ops = base_breakpoint_ops;
15638 ops->dtor = dtor_watchpoint;
15639 ops->re_set = re_set_watchpoint;
15640 ops->insert_location = insert_watchpoint;
15641 ops->remove_location = remove_watchpoint;
15642 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15643 ops->check_status = check_status_watchpoint;
15644 ops->resources_needed = resources_needed_watchpoint;
15645 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15646 ops->print_it = print_it_watchpoint;
15647 ops->print_mention = print_mention_watchpoint;
15648 ops->print_recreate = print_recreate_watchpoint;
15649 ops->explains_signal = explains_signal_watchpoint;
15650
15651 /* Masked watchpoints. */
15652 ops = &masked_watchpoint_breakpoint_ops;
15653 *ops = watchpoint_breakpoint_ops;
15654 ops->insert_location = insert_masked_watchpoint;
15655 ops->remove_location = remove_masked_watchpoint;
15656 ops->resources_needed = resources_needed_masked_watchpoint;
15657 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15658 ops->print_it = print_it_masked_watchpoint;
15659 ops->print_one_detail = print_one_detail_masked_watchpoint;
15660 ops->print_mention = print_mention_masked_watchpoint;
15661 ops->print_recreate = print_recreate_masked_watchpoint;
15662
15663 /* Tracepoints. */
15664 ops = &tracepoint_breakpoint_ops;
15665 *ops = base_breakpoint_ops;
15666 ops->re_set = tracepoint_re_set;
15667 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15668 ops->print_one_detail = tracepoint_print_one_detail;
15669 ops->print_mention = tracepoint_print_mention;
15670 ops->print_recreate = tracepoint_print_recreate;
15671 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15672 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15673 ops->decode_linespec = tracepoint_decode_linespec;
15674
15675 /* Probe tracepoints. */
15676 ops = &tracepoint_probe_breakpoint_ops;
15677 *ops = tracepoint_breakpoint_ops;
15678 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15679 ops->decode_linespec = tracepoint_probe_decode_linespec;
15680
15681 /* Static tracepoints with marker (`-m'). */
15682 ops = &strace_marker_breakpoint_ops;
15683 *ops = tracepoint_breakpoint_ops;
15684 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15685 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15686 ops->decode_linespec = strace_marker_decode_linespec;
15687
15688 /* Fork catchpoints. */
15689 ops = &catch_fork_breakpoint_ops;
15690 *ops = base_breakpoint_ops;
15691 ops->insert_location = insert_catch_fork;
15692 ops->remove_location = remove_catch_fork;
15693 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15694 ops->print_it = print_it_catch_fork;
15695 ops->print_one = print_one_catch_fork;
15696 ops->print_mention = print_mention_catch_fork;
15697 ops->print_recreate = print_recreate_catch_fork;
15698
15699 /* Vfork catchpoints. */
15700 ops = &catch_vfork_breakpoint_ops;
15701 *ops = base_breakpoint_ops;
15702 ops->insert_location = insert_catch_vfork;
15703 ops->remove_location = remove_catch_vfork;
15704 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15705 ops->print_it = print_it_catch_vfork;
15706 ops->print_one = print_one_catch_vfork;
15707 ops->print_mention = print_mention_catch_vfork;
15708 ops->print_recreate = print_recreate_catch_vfork;
15709
15710 /* Exec catchpoints. */
15711 ops = &catch_exec_breakpoint_ops;
15712 *ops = base_breakpoint_ops;
15713 ops->dtor = dtor_catch_exec;
15714 ops->insert_location = insert_catch_exec;
15715 ops->remove_location = remove_catch_exec;
15716 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15717 ops->print_it = print_it_catch_exec;
15718 ops->print_one = print_one_catch_exec;
15719 ops->print_mention = print_mention_catch_exec;
15720 ops->print_recreate = print_recreate_catch_exec;
15721
15722 /* Solib-related catchpoints. */
15723 ops = &catch_solib_breakpoint_ops;
15724 *ops = base_breakpoint_ops;
15725 ops->dtor = dtor_catch_solib;
15726 ops->insert_location = insert_catch_solib;
15727 ops->remove_location = remove_catch_solib;
15728 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15729 ops->check_status = check_status_catch_solib;
15730 ops->print_it = print_it_catch_solib;
15731 ops->print_one = print_one_catch_solib;
15732 ops->print_mention = print_mention_catch_solib;
15733 ops->print_recreate = print_recreate_catch_solib;
15734
15735 ops = &dprintf_breakpoint_ops;
15736 *ops = bkpt_base_breakpoint_ops;
15737 ops->re_set = dprintf_re_set;
15738 ops->resources_needed = bkpt_resources_needed;
15739 ops->print_it = bkpt_print_it;
15740 ops->print_mention = bkpt_print_mention;
15741 ops->print_recreate = dprintf_print_recreate;
15742 ops->after_condition_true = dprintf_after_condition_true;
15743 ops->breakpoint_hit = dprintf_breakpoint_hit;
15744 }
15745
15746 /* Chain containing all defined "enable breakpoint" subcommands. */
15747
15748 static struct cmd_list_element *enablebreaklist = NULL;
15749
15750 void
15751 _initialize_breakpoint (void)
15752 {
15753 struct cmd_list_element *c;
15754
15755 initialize_breakpoint_ops ();
15756
15757 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15758 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15759 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15760
15761 breakpoint_objfile_key
15762 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15763
15764 breakpoint_chain = 0;
15765 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15766 before a breakpoint is set. */
15767 breakpoint_count = 0;
15768
15769 tracepoint_count = 0;
15770
15771 add_com ("ignore", class_breakpoint, ignore_command, _("\
15772 Set ignore-count of breakpoint number N to COUNT.\n\
15773 Usage is `ignore N COUNT'."));
15774
15775 add_com ("commands", class_breakpoint, commands_command, _("\
15776 Set commands to be executed when a breakpoint is hit.\n\
15777 Give breakpoint number as argument after \"commands\".\n\
15778 With no argument, the targeted breakpoint is the last one set.\n\
15779 The commands themselves follow starting on the next line.\n\
15780 Type a line containing \"end\" to indicate the end of them.\n\
15781 Give \"silent\" as the first line to make the breakpoint silent;\n\
15782 then no output is printed when it is hit, except what the commands print."));
15783
15784 c = add_com ("condition", class_breakpoint, condition_command, _("\
15785 Specify breakpoint number N to break only if COND is true.\n\
15786 Usage is `condition N COND', where N is an integer and COND is an\n\
15787 expression to be evaluated whenever breakpoint N is reached."));
15788 set_cmd_completer (c, condition_completer);
15789
15790 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15791 Set a temporary breakpoint.\n\
15792 Like \"break\" except the breakpoint is only temporary,\n\
15793 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15794 by using \"enable delete\" on the breakpoint number.\n\
15795 \n"
15796 BREAK_ARGS_HELP ("tbreak")));
15797 set_cmd_completer (c, location_completer);
15798
15799 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15800 Set a hardware assisted breakpoint.\n\
15801 Like \"break\" except the breakpoint requires hardware support,\n\
15802 some target hardware may not have this support.\n\
15803 \n"
15804 BREAK_ARGS_HELP ("hbreak")));
15805 set_cmd_completer (c, location_completer);
15806
15807 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15808 Set a temporary hardware assisted breakpoint.\n\
15809 Like \"hbreak\" except the breakpoint is only temporary,\n\
15810 so it will be deleted when hit.\n\
15811 \n"
15812 BREAK_ARGS_HELP ("thbreak")));
15813 set_cmd_completer (c, location_completer);
15814
15815 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15816 Enable some breakpoints.\n\
15817 Give breakpoint numbers (separated by spaces) as arguments.\n\
15818 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15819 This is used to cancel the effect of the \"disable\" command.\n\
15820 With a subcommand you can enable temporarily."),
15821 &enablelist, "enable ", 1, &cmdlist);
15822
15823 add_com_alias ("en", "enable", class_breakpoint, 1);
15824
15825 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15826 Enable some breakpoints.\n\
15827 Give breakpoint numbers (separated by spaces) as arguments.\n\
15828 This is used to cancel the effect of the \"disable\" command.\n\
15829 May be abbreviated to simply \"enable\".\n"),
15830 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15831
15832 add_cmd ("once", no_class, enable_once_command, _("\
15833 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15834 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15835 &enablebreaklist);
15836
15837 add_cmd ("delete", no_class, enable_delete_command, _("\
15838 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15839 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15840 &enablebreaklist);
15841
15842 add_cmd ("count", no_class, enable_count_command, _("\
15843 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15844 If a breakpoint is hit while enabled in this fashion,\n\
15845 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15846 &enablebreaklist);
15847
15848 add_cmd ("delete", no_class, enable_delete_command, _("\
15849 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15850 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15851 &enablelist);
15852
15853 add_cmd ("once", no_class, enable_once_command, _("\
15854 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15855 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15856 &enablelist);
15857
15858 add_cmd ("count", no_class, enable_count_command, _("\
15859 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15860 If a breakpoint is hit while enabled in this fashion,\n\
15861 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15862 &enablelist);
15863
15864 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15865 Disable some breakpoints.\n\
15866 Arguments are breakpoint numbers with spaces in between.\n\
15867 To disable all breakpoints, give no argument.\n\
15868 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15869 &disablelist, "disable ", 1, &cmdlist);
15870 add_com_alias ("dis", "disable", class_breakpoint, 1);
15871 add_com_alias ("disa", "disable", class_breakpoint, 1);
15872
15873 add_cmd ("breakpoints", class_alias, disable_command, _("\
15874 Disable some breakpoints.\n\
15875 Arguments are breakpoint numbers with spaces in between.\n\
15876 To disable all breakpoints, give no argument.\n\
15877 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15878 This command may be abbreviated \"disable\"."),
15879 &disablelist);
15880
15881 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15882 Delete some breakpoints or auto-display expressions.\n\
15883 Arguments are breakpoint numbers with spaces in between.\n\
15884 To delete all breakpoints, give no argument.\n\
15885 \n\
15886 Also a prefix command for deletion of other GDB objects.\n\
15887 The \"unset\" command is also an alias for \"delete\"."),
15888 &deletelist, "delete ", 1, &cmdlist);
15889 add_com_alias ("d", "delete", class_breakpoint, 1);
15890 add_com_alias ("del", "delete", class_breakpoint, 1);
15891
15892 add_cmd ("breakpoints", class_alias, delete_command, _("\
15893 Delete some breakpoints or auto-display expressions.\n\
15894 Arguments are breakpoint numbers with spaces in between.\n\
15895 To delete all breakpoints, give no argument.\n\
15896 This command may be abbreviated \"delete\"."),
15897 &deletelist);
15898
15899 add_com ("clear", class_breakpoint, clear_command, _("\
15900 Clear breakpoint at specified line or function.\n\
15901 Argument may be line number, function name, or \"*\" and an address.\n\
15902 If line number is specified, all breakpoints in that line are cleared.\n\
15903 If function is specified, breakpoints at beginning of function are cleared.\n\
15904 If an address is specified, breakpoints at that address are cleared.\n\
15905 \n\
15906 With no argument, clears all breakpoints in the line that the selected frame\n\
15907 is executing in.\n\
15908 \n\
15909 See also the \"delete\" command which clears breakpoints by number."));
15910 add_com_alias ("cl", "clear", class_breakpoint, 1);
15911
15912 c = add_com ("break", class_breakpoint, break_command, _("\
15913 Set breakpoint at specified line or function.\n"
15914 BREAK_ARGS_HELP ("break")));
15915 set_cmd_completer (c, location_completer);
15916
15917 add_com_alias ("b", "break", class_run, 1);
15918 add_com_alias ("br", "break", class_run, 1);
15919 add_com_alias ("bre", "break", class_run, 1);
15920 add_com_alias ("brea", "break", class_run, 1);
15921
15922 if (dbx_commands)
15923 {
15924 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15925 Break in function/address or break at a line in the current file."),
15926 &stoplist, "stop ", 1, &cmdlist);
15927 add_cmd ("in", class_breakpoint, stopin_command,
15928 _("Break in function or address."), &stoplist);
15929 add_cmd ("at", class_breakpoint, stopat_command,
15930 _("Break at a line in the current file."), &stoplist);
15931 add_com ("status", class_info, breakpoints_info, _("\
15932 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15933 The \"Type\" column indicates one of:\n\
15934 \tbreakpoint - normal breakpoint\n\
15935 \twatchpoint - watchpoint\n\
15936 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15937 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15938 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15939 address and file/line number respectively.\n\
15940 \n\
15941 Convenience variable \"$_\" and default examine address for \"x\"\n\
15942 are set to the address of the last breakpoint listed unless the command\n\
15943 is prefixed with \"server \".\n\n\
15944 Convenience variable \"$bpnum\" contains the number of the last\n\
15945 breakpoint set."));
15946 }
15947
15948 add_info ("breakpoints", breakpoints_info, _("\
15949 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15950 The \"Type\" column indicates one of:\n\
15951 \tbreakpoint - normal breakpoint\n\
15952 \twatchpoint - watchpoint\n\
15953 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15954 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15955 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15956 address and file/line number respectively.\n\
15957 \n\
15958 Convenience variable \"$_\" and default examine address for \"x\"\n\
15959 are set to the address of the last breakpoint listed unless the command\n\
15960 is prefixed with \"server \".\n\n\
15961 Convenience variable \"$bpnum\" contains the number of the last\n\
15962 breakpoint set."));
15963
15964 add_info_alias ("b", "breakpoints", 1);
15965
15966 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15967 Status of all breakpoints, or breakpoint number NUMBER.\n\
15968 The \"Type\" column indicates one of:\n\
15969 \tbreakpoint - normal breakpoint\n\
15970 \twatchpoint - watchpoint\n\
15971 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15972 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15973 \tuntil - internal breakpoint used by the \"until\" command\n\
15974 \tfinish - internal breakpoint used by the \"finish\" command\n\
15975 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15976 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15977 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15978 address and file/line number respectively.\n\
15979 \n\
15980 Convenience variable \"$_\" and default examine address for \"x\"\n\
15981 are set to the address of the last breakpoint listed unless the command\n\
15982 is prefixed with \"server \".\n\n\
15983 Convenience variable \"$bpnum\" contains the number of the last\n\
15984 breakpoint set."),
15985 &maintenanceinfolist);
15986
15987 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15988 Set catchpoints to catch events."),
15989 &catch_cmdlist, "catch ",
15990 0/*allow-unknown*/, &cmdlist);
15991
15992 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15993 Set temporary catchpoints to catch events."),
15994 &tcatch_cmdlist, "tcatch ",
15995 0/*allow-unknown*/, &cmdlist);
15996
15997 add_catch_command ("fork", _("Catch calls to fork."),
15998 catch_fork_command_1,
15999 NULL,
16000 (void *) (uintptr_t) catch_fork_permanent,
16001 (void *) (uintptr_t) catch_fork_temporary);
16002 add_catch_command ("vfork", _("Catch calls to vfork."),
16003 catch_fork_command_1,
16004 NULL,
16005 (void *) (uintptr_t) catch_vfork_permanent,
16006 (void *) (uintptr_t) catch_vfork_temporary);
16007 add_catch_command ("exec", _("Catch calls to exec."),
16008 catch_exec_command_1,
16009 NULL,
16010 CATCH_PERMANENT,
16011 CATCH_TEMPORARY);
16012 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16013 Usage: catch load [REGEX]\n\
16014 If REGEX is given, only stop for libraries matching the regular expression."),
16015 catch_load_command_1,
16016 NULL,
16017 CATCH_PERMANENT,
16018 CATCH_TEMPORARY);
16019 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16020 Usage: catch unload [REGEX]\n\
16021 If REGEX is given, only stop for libraries matching the regular expression."),
16022 catch_unload_command_1,
16023 NULL,
16024 CATCH_PERMANENT,
16025 CATCH_TEMPORARY);
16026
16027 c = add_com ("watch", class_breakpoint, watch_command, _("\
16028 Set a watchpoint for an expression.\n\
16029 Usage: watch [-l|-location] EXPRESSION\n\
16030 A watchpoint stops execution of your program whenever the value of\n\
16031 an expression changes.\n\
16032 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16033 the memory to which it refers."));
16034 set_cmd_completer (c, expression_completer);
16035
16036 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16037 Set a read watchpoint for an expression.\n\
16038 Usage: rwatch [-l|-location] EXPRESSION\n\
16039 A watchpoint stops execution of your program whenever the value of\n\
16040 an expression is read.\n\
16041 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16042 the memory to which it refers."));
16043 set_cmd_completer (c, expression_completer);
16044
16045 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16046 Set a watchpoint for an expression.\n\
16047 Usage: awatch [-l|-location] EXPRESSION\n\
16048 A watchpoint stops execution of your program whenever the value of\n\
16049 an expression is either read or written.\n\
16050 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16051 the memory to which it refers."));
16052 set_cmd_completer (c, expression_completer);
16053
16054 add_info ("watchpoints", watchpoints_info, _("\
16055 Status of specified watchpoints (all watchpoints if no argument)."));
16056
16057 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16058 respond to changes - contrary to the description. */
16059 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16060 &can_use_hw_watchpoints, _("\
16061 Set debugger's willingness to use watchpoint hardware."), _("\
16062 Show debugger's willingness to use watchpoint hardware."), _("\
16063 If zero, gdb will not use hardware for new watchpoints, even if\n\
16064 such is available. (However, any hardware watchpoints that were\n\
16065 created before setting this to nonzero, will continue to use watchpoint\n\
16066 hardware.)"),
16067 NULL,
16068 show_can_use_hw_watchpoints,
16069 &setlist, &showlist);
16070
16071 can_use_hw_watchpoints = 1;
16072
16073 /* Tracepoint manipulation commands. */
16074
16075 c = add_com ("trace", class_breakpoint, trace_command, _("\
16076 Set a tracepoint at specified line or function.\n\
16077 \n"
16078 BREAK_ARGS_HELP ("trace") "\n\
16079 Do \"help tracepoints\" for info on other tracepoint commands."));
16080 set_cmd_completer (c, location_completer);
16081
16082 add_com_alias ("tp", "trace", class_alias, 0);
16083 add_com_alias ("tr", "trace", class_alias, 1);
16084 add_com_alias ("tra", "trace", class_alias, 1);
16085 add_com_alias ("trac", "trace", class_alias, 1);
16086
16087 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16088 Set a fast tracepoint at specified line or function.\n\
16089 \n"
16090 BREAK_ARGS_HELP ("ftrace") "\n\
16091 Do \"help tracepoints\" for info on other tracepoint commands."));
16092 set_cmd_completer (c, location_completer);
16093
16094 c = add_com ("strace", class_breakpoint, strace_command, _("\
16095 Set a static tracepoint at specified line, function or marker.\n\
16096 \n\
16097 strace [LOCATION] [if CONDITION]\n\
16098 LOCATION may be a line number, function name, \"*\" and an address,\n\
16099 or -m MARKER_ID.\n\
16100 If a line number is specified, probe the marker at start of code\n\
16101 for that line. If a function is specified, probe the marker at start\n\
16102 of code for that function. If an address is specified, probe the marker\n\
16103 at that exact address. If a marker id is specified, probe the marker\n\
16104 with that name. With no LOCATION, uses current execution address of\n\
16105 the selected stack frame.\n\
16106 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16107 This collects arbitrary user data passed in the probe point call to the\n\
16108 tracing library. You can inspect it when analyzing the trace buffer,\n\
16109 by printing the $_sdata variable like any other convenience variable.\n\
16110 \n\
16111 CONDITION is a boolean expression.\n\
16112 \n\
16113 Multiple tracepoints at one place are permitted, and useful if their\n\
16114 conditions are different.\n\
16115 \n\
16116 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16117 Do \"help tracepoints\" for info on other tracepoint commands."));
16118 set_cmd_completer (c, location_completer);
16119
16120 add_info ("tracepoints", tracepoints_info, _("\
16121 Status of specified tracepoints (all tracepoints if no argument).\n\
16122 Convenience variable \"$tpnum\" contains the number of the\n\
16123 last tracepoint set."));
16124
16125 add_info_alias ("tp", "tracepoints", 1);
16126
16127 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16128 Delete specified tracepoints.\n\
16129 Arguments are tracepoint numbers, separated by spaces.\n\
16130 No argument means delete all tracepoints."),
16131 &deletelist);
16132 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16133
16134 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16135 Disable specified tracepoints.\n\
16136 Arguments are tracepoint numbers, separated by spaces.\n\
16137 No argument means disable all tracepoints."),
16138 &disablelist);
16139 deprecate_cmd (c, "disable");
16140
16141 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16142 Enable specified tracepoints.\n\
16143 Arguments are tracepoint numbers, separated by spaces.\n\
16144 No argument means enable all tracepoints."),
16145 &enablelist);
16146 deprecate_cmd (c, "enable");
16147
16148 add_com ("passcount", class_trace, trace_pass_command, _("\
16149 Set the passcount for a tracepoint.\n\
16150 The trace will end when the tracepoint has been passed 'count' times.\n\
16151 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16152 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16153
16154 add_prefix_cmd ("save", class_breakpoint, save_command,
16155 _("Save breakpoint definitions as a script."),
16156 &save_cmdlist, "save ",
16157 0/*allow-unknown*/, &cmdlist);
16158
16159 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16160 Save current breakpoint definitions as a script.\n\
16161 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16162 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16163 session to restore them."),
16164 &save_cmdlist);
16165 set_cmd_completer (c, filename_completer);
16166
16167 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16168 Save current tracepoint definitions as a script.\n\
16169 Use the 'source' command in another debug session to restore them."),
16170 &save_cmdlist);
16171 set_cmd_completer (c, filename_completer);
16172
16173 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16174 deprecate_cmd (c, "save tracepoints");
16175
16176 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16177 Breakpoint specific settings\n\
16178 Configure various breakpoint-specific variables such as\n\
16179 pending breakpoint behavior"),
16180 &breakpoint_set_cmdlist, "set breakpoint ",
16181 0/*allow-unknown*/, &setlist);
16182 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16183 Breakpoint specific settings\n\
16184 Configure various breakpoint-specific variables such as\n\
16185 pending breakpoint behavior"),
16186 &breakpoint_show_cmdlist, "show breakpoint ",
16187 0/*allow-unknown*/, &showlist);
16188
16189 add_setshow_auto_boolean_cmd ("pending", no_class,
16190 &pending_break_support, _("\
16191 Set debugger's behavior regarding pending breakpoints."), _("\
16192 Show debugger's behavior regarding pending breakpoints."), _("\
16193 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16194 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16195 an error. If auto, an unrecognized breakpoint location results in a\n\
16196 user-query to see if a pending breakpoint should be created."),
16197 NULL,
16198 show_pending_break_support,
16199 &breakpoint_set_cmdlist,
16200 &breakpoint_show_cmdlist);
16201
16202 pending_break_support = AUTO_BOOLEAN_AUTO;
16203
16204 add_setshow_boolean_cmd ("auto-hw", no_class,
16205 &automatic_hardware_breakpoints, _("\
16206 Set automatic usage of hardware breakpoints."), _("\
16207 Show automatic usage of hardware breakpoints."), _("\
16208 If set, the debugger will automatically use hardware breakpoints for\n\
16209 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16210 a warning will be emitted for such breakpoints."),
16211 NULL,
16212 show_automatic_hardware_breakpoints,
16213 &breakpoint_set_cmdlist,
16214 &breakpoint_show_cmdlist);
16215
16216 add_setshow_boolean_cmd ("always-inserted", class_support,
16217 &always_inserted_mode, _("\
16218 Set mode for inserting breakpoints."), _("\
16219 Show mode for inserting breakpoints."), _("\
16220 When this mode is on, breakpoints are inserted immediately as soon as\n\
16221 they're created, kept inserted even when execution stops, and removed\n\
16222 only when the user deletes them. When this mode is off (the default),\n\
16223 breakpoints are inserted only when execution continues, and removed\n\
16224 when execution stops."),
16225 NULL,
16226 &show_always_inserted_mode,
16227 &breakpoint_set_cmdlist,
16228 &breakpoint_show_cmdlist);
16229
16230 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16231 condition_evaluation_enums,
16232 &condition_evaluation_mode_1, _("\
16233 Set mode of breakpoint condition evaluation."), _("\
16234 Show mode of breakpoint condition evaluation."), _("\
16235 When this is set to \"host\", breakpoint conditions will be\n\
16236 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16237 breakpoint conditions will be downloaded to the target (if the target\n\
16238 supports such feature) and conditions will be evaluated on the target's side.\n\
16239 If this is set to \"auto\" (default), this will be automatically set to\n\
16240 \"target\" if it supports condition evaluation, otherwise it will\n\
16241 be set to \"gdb\""),
16242 &set_condition_evaluation_mode,
16243 &show_condition_evaluation_mode,
16244 &breakpoint_set_cmdlist,
16245 &breakpoint_show_cmdlist);
16246
16247 add_com ("break-range", class_breakpoint, break_range_command, _("\
16248 Set a breakpoint for an address range.\n\
16249 break-range START-LOCATION, END-LOCATION\n\
16250 where START-LOCATION and END-LOCATION can be one of the following:\n\
16251 LINENUM, for that line in the current file,\n\
16252 FILE:LINENUM, for that line in that file,\n\
16253 +OFFSET, for that number of lines after the current line\n\
16254 or the start of the range\n\
16255 FUNCTION, for the first line in that function,\n\
16256 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16257 *ADDRESS, for the instruction at that address.\n\
16258 \n\
16259 The breakpoint will stop execution of the inferior whenever it executes\n\
16260 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16261 range (including START-LOCATION and END-LOCATION)."));
16262
16263 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16264 Set a dynamic printf at specified line or function.\n\
16265 dprintf location,format string,arg1,arg2,...\n\
16266 location may be a line number, function name, or \"*\" and an address.\n\
16267 If a line number is specified, break at start of code for that line.\n\
16268 If a function is specified, break at start of code for that function."));
16269 set_cmd_completer (c, location_completer);
16270
16271 add_setshow_enum_cmd ("dprintf-style", class_support,
16272 dprintf_style_enums, &dprintf_style, _("\
16273 Set the style of usage for dynamic printf."), _("\
16274 Show the style of usage for dynamic printf."), _("\
16275 This setting chooses how GDB will do a dynamic printf.\n\
16276 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16277 console, as with the \"printf\" command.\n\
16278 If the value is \"call\", the print is done by calling a function in your\n\
16279 program; by default printf(), but you can choose a different function or\n\
16280 output stream by setting dprintf-function and dprintf-channel."),
16281 update_dprintf_commands, NULL,
16282 &setlist, &showlist);
16283
16284 dprintf_function = xstrdup ("printf");
16285 add_setshow_string_cmd ("dprintf-function", class_support,
16286 &dprintf_function, _("\
16287 Set the function to use for dynamic printf"), _("\
16288 Show the function to use for dynamic printf"), NULL,
16289 update_dprintf_commands, NULL,
16290 &setlist, &showlist);
16291
16292 dprintf_channel = xstrdup ("");
16293 add_setshow_string_cmd ("dprintf-channel", class_support,
16294 &dprintf_channel, _("\
16295 Set the channel to use for dynamic printf"), _("\
16296 Show the channel to use for dynamic printf"), NULL,
16297 update_dprintf_commands, NULL,
16298 &setlist, &showlist);
16299
16300 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16301 &disconnected_dprintf, _("\
16302 Set whether dprintf continues after GDB disconnects."), _("\
16303 Show whether dprintf continues after GDB disconnects."), _("\
16304 Use this to let dprintf commands continue to hit and produce output\n\
16305 even if GDB disconnects or detaches from the target."),
16306 NULL,
16307 NULL,
16308 &setlist, &showlist);
16309
16310 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16311 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16312 (target agent only) This is useful for formatted output in user-defined commands."));
16313
16314 automatic_hardware_breakpoints = 1;
16315
16316 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16317 observer_attach_thread_exit (remove_threaded_breakpoints);
16318 }
This page took 0.380509 seconds and 5 git commands to generate.