gdb/breakpoint: refactor 'set_breakpoint_condition'
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (const struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, const struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Tracepoints set on probes. */
254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
255
256 /* Dynamic printf class type. */
257 struct breakpoint_ops dprintf_breakpoint_ops;
258
259 /* The style in which to perform a dynamic printf. This is a user
260 option because different output options have different tradeoffs;
261 if GDB does the printing, there is better error handling if there
262 is a problem with any of the arguments, but using an inferior
263 function lets you have special-purpose printers and sending of
264 output to the same place as compiled-in print functions. */
265
266 static const char dprintf_style_gdb[] = "gdb";
267 static const char dprintf_style_call[] = "call";
268 static const char dprintf_style_agent[] = "agent";
269 static const char *const dprintf_style_enums[] = {
270 dprintf_style_gdb,
271 dprintf_style_call,
272 dprintf_style_agent,
273 NULL
274 };
275 static const char *dprintf_style = dprintf_style_gdb;
276
277 /* The function to use for dynamic printf if the preferred style is to
278 call into the inferior. The value is simply a string that is
279 copied into the command, so it can be anything that GDB can
280 evaluate to a callable address, not necessarily a function name. */
281
282 static char *dprintf_function;
283
284 /* The channel to use for dynamic printf if the preferred style is to
285 call into the inferior; if a nonempty string, it will be passed to
286 the call as the first argument, with the format string as the
287 second. As with the dprintf function, this can be anything that
288 GDB knows how to evaluate, so in addition to common choices like
289 "stderr", this could be an app-specific expression like
290 "mystreams[curlogger]". */
291
292 static char *dprintf_channel;
293
294 /* True if dprintf commands should continue to operate even if GDB
295 has disconnected. */
296 static bool disconnected_dprintf = true;
297
298 struct command_line *
299 breakpoint_commands (struct breakpoint *b)
300 {
301 return b->commands ? b->commands.get () : NULL;
302 }
303
304 /* Flag indicating that a command has proceeded the inferior past the
305 current breakpoint. */
306
307 static bool breakpoint_proceeded;
308
309 const char *
310 bpdisp_text (enum bpdisp disp)
311 {
312 /* NOTE: the following values are a part of MI protocol and
313 represent values of 'disp' field returned when inferior stops at
314 a breakpoint. */
315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
316
317 return bpdisps[(int) disp];
318 }
319
320 /* Prototypes for exported functions. */
321 /* If FALSE, gdb will not use hardware support for watchpoints, even
322 if such is available. */
323 static int can_use_hw_watchpoints;
324
325 static void
326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c,
328 const char *value)
329 {
330 fprintf_filtered (file,
331 _("Debugger's willingness to use "
332 "watchpoint hardware is %s.\n"),
333 value);
334 }
335
336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
338 for unrecognized breakpoint locations.
339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
340 static enum auto_boolean pending_break_support;
341 static void
342 show_pending_break_support (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c,
344 const char *value)
345 {
346 fprintf_filtered (file,
347 _("Debugger's behavior regarding "
348 "pending breakpoints is %s.\n"),
349 value);
350 }
351
352 /* If true, gdb will automatically use hardware breakpoints for breakpoints
353 set with "break" but falling in read-only memory.
354 If false, gdb will warn about such breakpoints, but won't automatically
355 use hardware breakpoints. */
356 static bool automatic_hardware_breakpoints;
357 static void
358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c,
360 const char *value)
361 {
362 fprintf_filtered (file,
363 _("Automatic usage of hardware breakpoints is %s.\n"),
364 value);
365 }
366
367 /* If on, GDB keeps breakpoints inserted even if the inferior is
368 stopped, and immediately inserts any new breakpoints as soon as
369 they're created. If off (default), GDB keeps breakpoints off of
370 the target as long as possible. That is, it delays inserting
371 breakpoints until the next resume, and removes them again when the
372 target fully stops. This is a bit safer in case GDB crashes while
373 processing user input. */
374 static bool always_inserted_mode = false;
375
376 static void
377 show_always_inserted_mode (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379 {
380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
381 value);
382 }
383
384 /* See breakpoint.h. */
385
386 int
387 breakpoints_should_be_inserted_now (void)
388 {
389 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
390 {
391 /* If breakpoints are global, they should be inserted even if no
392 thread under gdb's control is running, or even if there are
393 no threads under GDB's control yet. */
394 return 1;
395 }
396 else
397 {
398 if (always_inserted_mode)
399 {
400 /* The user wants breakpoints inserted even if all threads
401 are stopped. */
402 return 1;
403 }
404
405 for (inferior *inf : all_inferiors ())
406 if (inf->has_execution ()
407 && threads_are_executing (inf->process_target ()))
408 return 1;
409
410 /* Don't remove breakpoints yet if, even though all threads are
411 stopped, we still have events to process. */
412 for (thread_info *tp : all_non_exited_threads ())
413 if (tp->resumed
414 && tp->suspend.waitstatus_pending_p)
415 return 1;
416 }
417 return 0;
418 }
419
420 static const char condition_evaluation_both[] = "host or target";
421
422 /* Modes for breakpoint condition evaluation. */
423 static const char condition_evaluation_auto[] = "auto";
424 static const char condition_evaluation_host[] = "host";
425 static const char condition_evaluation_target[] = "target";
426 static const char *const condition_evaluation_enums[] = {
427 condition_evaluation_auto,
428 condition_evaluation_host,
429 condition_evaluation_target,
430 NULL
431 };
432
433 /* Global that holds the current mode for breakpoint condition evaluation. */
434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
435
436 /* Global that we use to display information to the user (gets its value from
437 condition_evaluation_mode_1. */
438 static const char *condition_evaluation_mode = condition_evaluation_auto;
439
440 /* Translate a condition evaluation mode MODE into either "host"
441 or "target". This is used mostly to translate from "auto" to the
442 real setting that is being used. It returns the translated
443 evaluation mode. */
444
445 static const char *
446 translate_condition_evaluation_mode (const char *mode)
447 {
448 if (mode == condition_evaluation_auto)
449 {
450 if (target_supports_evaluation_of_breakpoint_conditions ())
451 return condition_evaluation_target;
452 else
453 return condition_evaluation_host;
454 }
455 else
456 return mode;
457 }
458
459 /* Discovers what condition_evaluation_auto translates to. */
460
461 static const char *
462 breakpoint_condition_evaluation_mode (void)
463 {
464 return translate_condition_evaluation_mode (condition_evaluation_mode);
465 }
466
467 /* Return true if GDB should evaluate breakpoint conditions or false
468 otherwise. */
469
470 static int
471 gdb_evaluates_breakpoint_condition_p (void)
472 {
473 const char *mode = breakpoint_condition_evaluation_mode ();
474
475 return (mode == condition_evaluation_host);
476 }
477
478 /* Are we executing breakpoint commands? */
479 static int executing_breakpoint_commands;
480
481 /* Are overlay event breakpoints enabled? */
482 static int overlay_events_enabled;
483
484 /* See description in breakpoint.h. */
485 bool target_exact_watchpoints = false;
486
487 /* Walk the following statement or block through all breakpoints.
488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
489 current breakpoint. */
490
491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
492
493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
494 for (B = breakpoint_chain; \
495 B ? (TMP=B->next, 1): 0; \
496 B = TMP)
497
498 /* Similar iterator for the low-level breakpoints. SAFE variant is
499 not provided so update_global_location_list must not be called
500 while executing the block of ALL_BP_LOCATIONS. */
501
502 #define ALL_BP_LOCATIONS(B,BP_TMP) \
503 for (BP_TMP = bp_locations; \
504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
505 BP_TMP++)
506
507 /* Iterates through locations with address ADDRESS for the currently selected
508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
509 to where the loop should start from.
510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
511 appropriate location to start with. */
512
513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
515 BP_LOCP_TMP = BP_LOCP_START; \
516 BP_LOCP_START \
517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
518 && (*BP_LOCP_TMP)->address == ADDRESS); \
519 BP_LOCP_TMP++)
520
521 /* Iterator for tracepoints only. */
522
523 #define ALL_TRACEPOINTS(B) \
524 for (B = breakpoint_chain; B; B = B->next) \
525 if (is_tracepoint (B))
526
527 /* Chains of all breakpoints defined. */
528
529 static struct breakpoint *breakpoint_chain;
530
531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
532
533 static struct bp_location **bp_locations;
534
535 /* Number of elements of BP_LOCATIONS. */
536
537 static unsigned bp_locations_count;
538
539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
540 ADDRESS for the current elements of BP_LOCATIONS which get a valid
541 result from bp_location_has_shadow. You can use it for roughly
542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
543 an address you need to read. */
544
545 static CORE_ADDR bp_locations_placed_address_before_address_max;
546
547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
549 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
550 You can use it for roughly limiting the subrange of BP_LOCATIONS to
551 scan for shadow bytes for an address you need to read. */
552
553 static CORE_ADDR bp_locations_shadow_len_after_address_max;
554
555 /* The locations that no longer correspond to any breakpoint, unlinked
556 from the bp_locations array, but for which a hit may still be
557 reported by a target. */
558 static std::vector<bp_location *> moribund_locations;
559
560 /* Number of last breakpoint made. */
561
562 static int breakpoint_count;
563
564 /* The value of `breakpoint_count' before the last command that
565 created breakpoints. If the last (break-like) command created more
566 than one breakpoint, then the difference between BREAKPOINT_COUNT
567 and PREV_BREAKPOINT_COUNT is more than one. */
568 static int prev_breakpoint_count;
569
570 /* Number of last tracepoint made. */
571
572 static int tracepoint_count;
573
574 static struct cmd_list_element *breakpoint_set_cmdlist;
575 static struct cmd_list_element *breakpoint_show_cmdlist;
576 struct cmd_list_element *save_cmdlist;
577
578 /* See declaration at breakpoint.h. */
579
580 struct breakpoint *
581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
582 void *user_data)
583 {
584 struct breakpoint *b = NULL;
585
586 ALL_BREAKPOINTS (b)
587 {
588 if (func (b, user_data) != 0)
589 break;
590 }
591
592 return b;
593 }
594
595 /* Return whether a breakpoint is an active enabled breakpoint. */
596 static int
597 breakpoint_enabled (struct breakpoint *b)
598 {
599 return (b->enable_state == bp_enabled);
600 }
601
602 /* Set breakpoint count to NUM. */
603
604 static void
605 set_breakpoint_count (int num)
606 {
607 prev_breakpoint_count = breakpoint_count;
608 breakpoint_count = num;
609 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
610 }
611
612 /* Used by `start_rbreak_breakpoints' below, to record the current
613 breakpoint count before "rbreak" creates any breakpoint. */
614 static int rbreak_start_breakpoint_count;
615
616 /* Called at the start an "rbreak" command to record the first
617 breakpoint made. */
618
619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
620 {
621 rbreak_start_breakpoint_count = breakpoint_count;
622 }
623
624 /* Called at the end of an "rbreak" command to record the last
625 breakpoint made. */
626
627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
628 {
629 prev_breakpoint_count = rbreak_start_breakpoint_count;
630 }
631
632 /* Used in run_command to zero the hit count when a new run starts. */
633
634 void
635 clear_breakpoint_hit_counts (void)
636 {
637 struct breakpoint *b;
638
639 ALL_BREAKPOINTS (b)
640 b->hit_count = 0;
641 }
642
643 \f
644 /* Return the breakpoint with the specified number, or NULL
645 if the number does not refer to an existing breakpoint. */
646
647 struct breakpoint *
648 get_breakpoint (int num)
649 {
650 struct breakpoint *b;
651
652 ALL_BREAKPOINTS (b)
653 if (b->number == num)
654 return b;
655
656 return NULL;
657 }
658
659 \f
660
661 /* Mark locations as "conditions have changed" in case the target supports
662 evaluating conditions on its side. */
663
664 static void
665 mark_breakpoint_modified (struct breakpoint *b)
666 {
667 struct bp_location *loc;
668
669 /* This is only meaningful if the target is
670 evaluating conditions and if the user has
671 opted for condition evaluation on the target's
672 side. */
673 if (gdb_evaluates_breakpoint_condition_p ()
674 || !target_supports_evaluation_of_breakpoint_conditions ())
675 return;
676
677 if (!is_breakpoint (b))
678 return;
679
680 for (loc = b->loc; loc; loc = loc->next)
681 loc->condition_changed = condition_modified;
682 }
683
684 /* Mark location as "conditions have changed" in case the target supports
685 evaluating conditions on its side. */
686
687 static void
688 mark_breakpoint_location_modified (struct bp_location *loc)
689 {
690 /* This is only meaningful if the target is
691 evaluating conditions and if the user has
692 opted for condition evaluation on the target's
693 side. */
694 if (gdb_evaluates_breakpoint_condition_p ()
695 || !target_supports_evaluation_of_breakpoint_conditions ())
696
697 return;
698
699 if (!is_breakpoint (loc->owner))
700 return;
701
702 loc->condition_changed = condition_modified;
703 }
704
705 /* Sets the condition-evaluation mode using the static global
706 condition_evaluation_mode. */
707
708 static void
709 set_condition_evaluation_mode (const char *args, int from_tty,
710 struct cmd_list_element *c)
711 {
712 const char *old_mode, *new_mode;
713
714 if ((condition_evaluation_mode_1 == condition_evaluation_target)
715 && !target_supports_evaluation_of_breakpoint_conditions ())
716 {
717 condition_evaluation_mode_1 = condition_evaluation_mode;
718 warning (_("Target does not support breakpoint condition evaluation.\n"
719 "Using host evaluation mode instead."));
720 return;
721 }
722
723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
725
726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
727 settings was "auto". */
728 condition_evaluation_mode = condition_evaluation_mode_1;
729
730 /* Only update the mode if the user picked a different one. */
731 if (new_mode != old_mode)
732 {
733 struct bp_location *loc, **loc_tmp;
734 /* If the user switched to a different evaluation mode, we
735 need to synch the changes with the target as follows:
736
737 "host" -> "target": Send all (valid) conditions to the target.
738 "target" -> "host": Remove all the conditions from the target.
739 */
740
741 if (new_mode == condition_evaluation_target)
742 {
743 /* Mark everything modified and synch conditions with the
744 target. */
745 ALL_BP_LOCATIONS (loc, loc_tmp)
746 mark_breakpoint_location_modified (loc);
747 }
748 else
749 {
750 /* Manually mark non-duplicate locations to synch conditions
751 with the target. We do this to remove all the conditions the
752 target knows about. */
753 ALL_BP_LOCATIONS (loc, loc_tmp)
754 if (is_breakpoint (loc->owner) && loc->inserted)
755 loc->needs_update = 1;
756 }
757
758 /* Do the update. */
759 update_global_location_list (UGLL_MAY_INSERT);
760 }
761
762 return;
763 }
764
765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
766 what "auto" is translating to. */
767
768 static void
769 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 if (condition_evaluation_mode == condition_evaluation_auto)
773 fprintf_filtered (file,
774 _("Breakpoint condition evaluation "
775 "mode is %s (currently %s).\n"),
776 value,
777 breakpoint_condition_evaluation_mode ());
778 else
779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
780 value);
781 }
782
783 /* A comparison function for bp_location AP and BP that is used by
784 bsearch. This comparison function only cares about addresses, unlike
785 the more general bp_location_is_less_than function. */
786
787 static int
788 bp_locations_compare_addrs (const void *ap, const void *bp)
789 {
790 const struct bp_location *a = *(const struct bp_location **) ap;
791 const struct bp_location *b = *(const struct bp_location **) bp;
792
793 if (a->address == b->address)
794 return 0;
795 else
796 return ((a->address > b->address) - (a->address < b->address));
797 }
798
799 /* Helper function to skip all bp_locations with addresses
800 less than ADDRESS. It returns the first bp_location that
801 is greater than or equal to ADDRESS. If none is found, just
802 return NULL. */
803
804 static struct bp_location **
805 get_first_locp_gte_addr (CORE_ADDR address)
806 {
807 struct bp_location dummy_loc;
808 struct bp_location *dummy_locp = &dummy_loc;
809 struct bp_location **locp_found = NULL;
810
811 /* Initialize the dummy location's address field. */
812 dummy_loc.address = address;
813
814 /* Find a close match to the first location at ADDRESS. */
815 locp_found = ((struct bp_location **)
816 bsearch (&dummy_locp, bp_locations, bp_locations_count,
817 sizeof (struct bp_location **),
818 bp_locations_compare_addrs));
819
820 /* Nothing was found, nothing left to do. */
821 if (locp_found == NULL)
822 return NULL;
823
824 /* We may have found a location that is at ADDRESS but is not the first in the
825 location's list. Go backwards (if possible) and locate the first one. */
826 while ((locp_found - 1) >= bp_locations
827 && (*(locp_found - 1))->address == address)
828 locp_found--;
829
830 return locp_found;
831 }
832
833 void
834 set_breakpoint_condition (struct breakpoint *b, const char *exp,
835 int from_tty)
836 {
837 if (*exp == 0)
838 {
839 xfree (b->cond_string);
840 b->cond_string = nullptr;
841
842 if (is_watchpoint (b))
843 static_cast<watchpoint *> (b)->cond_exp.reset ();
844 else
845 {
846 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
847 {
848 loc->cond.reset ();
849
850 /* No need to free the condition agent expression
851 bytecode (if we have one). We will handle this
852 when we go through update_global_location_list. */
853 }
854 }
855
856 if (from_tty)
857 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
858 }
859 else
860 {
861 if (is_watchpoint (b))
862 {
863 innermost_block_tracker tracker;
864 const char *arg = exp;
865 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
866 if (*arg != 0)
867 error (_("Junk at end of expression"));
868 watchpoint *w = static_cast<watchpoint *> (b);
869 w->cond_exp = std::move (new_exp);
870 w->cond_exp_valid_block = tracker.block ();
871 }
872 else
873 {
874 /* Parse and set condition expressions. We make two passes.
875 In the first, we parse the condition string to see if it
876 is valid in all locations. If so, the condition would be
877 accepted. So we go ahead and set the locations'
878 conditions. In case a failing case is found, we throw
879 the error and the condition string will be rejected.
880 This two-pass approach is taken to avoid setting the
881 state of locations in case of a reject. */
882 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
883 {
884 const char *arg = exp;
885 parse_exp_1 (&arg, loc->address,
886 block_for_pc (loc->address), 0);
887 if (*arg != 0)
888 error (_("Junk at end of expression"));
889 }
890
891 /* If we reach here, the condition is valid at all locations. */
892 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
893 {
894 const char *arg = exp;
895 loc->cond =
896 parse_exp_1 (&arg, loc->address,
897 block_for_pc (loc->address), 0);
898 }
899 }
900
901 /* We know that the new condition parsed successfully. The
902 condition string of the breakpoint can be safely updated. */
903 xfree (b->cond_string);
904 b->cond_string = xstrdup (exp);
905 b->condition_not_parsed = 0;
906 }
907 mark_breakpoint_modified (b);
908
909 gdb::observers::breakpoint_modified.notify (b);
910 }
911
912 /* Completion for the "condition" command. */
913
914 static void
915 condition_completer (struct cmd_list_element *cmd,
916 completion_tracker &tracker,
917 const char *text, const char *word)
918 {
919 const char *space;
920
921 text = skip_spaces (text);
922 space = skip_to_space (text);
923 if (*space == '\0')
924 {
925 int len;
926 struct breakpoint *b;
927
928 if (text[0] == '$')
929 {
930 /* We don't support completion of history indices. */
931 if (!isdigit (text[1]))
932 complete_internalvar (tracker, &text[1]);
933 return;
934 }
935
936 /* We're completing the breakpoint number. */
937 len = strlen (text);
938
939 ALL_BREAKPOINTS (b)
940 {
941 char number[50];
942
943 xsnprintf (number, sizeof (number), "%d", b->number);
944
945 if (strncmp (number, text, len) == 0)
946 tracker.add_completion (make_unique_xstrdup (number));
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 /* See breakpoint.h. */
1051
1052 bool
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_list_1 == nullptr);
1130 c2 = while_stepping->body_list_0.get ();
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 std::vector<breakpoint *>
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 std::vector<breakpoint *> found;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 found.push_back (b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 counted_command_line &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 static void
1219 commands_command_1 (const char *arg, int from_tty,
1220 struct command_line *control)
1221 {
1222 counted_command_line cmd;
1223 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1224 NULL after the call to read_command_lines if the user provides an empty
1225 list of command by just typing "end". */
1226 bool cmd_read = false;
1227
1228 std::string new_arg;
1229
1230 if (arg == NULL || !*arg)
1231 {
1232 if (breakpoint_count - prev_breakpoint_count > 1)
1233 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1234 breakpoint_count);
1235 else if (breakpoint_count > 0)
1236 new_arg = string_printf ("%d", breakpoint_count);
1237 arg = new_arg.c_str ();
1238 }
1239
1240 map_breakpoint_numbers
1241 (arg, [&] (breakpoint *b)
1242 {
1243 if (!cmd_read)
1244 {
1245 gdb_assert (cmd == NULL);
1246 if (control != NULL)
1247 cmd = control->body_list_0;
1248 else
1249 {
1250 std::string str
1251 = string_printf (_("Type commands for breakpoint(s) "
1252 "%s, one per line."),
1253 arg);
1254
1255 auto do_validate = [=] (const char *line)
1256 {
1257 validate_actionline (line, b);
1258 };
1259 gdb::function_view<void (const char *)> validator;
1260 if (is_tracepoint (b))
1261 validator = do_validate;
1262
1263 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1264 }
1265 cmd_read = true;
1266 }
1267
1268 /* If a breakpoint was on the list more than once, we don't need to
1269 do anything. */
1270 if (b->commands != cmd)
1271 {
1272 validate_commands_for_breakpoint (b, cmd.get ());
1273 b->commands = cmd;
1274 gdb::observers::breakpoint_modified.notify (b);
1275 }
1276 });
1277 }
1278
1279 static void
1280 commands_command (const char *arg, int from_tty)
1281 {
1282 commands_command_1 (arg, from_tty, NULL);
1283 }
1284
1285 /* Like commands_command, but instead of reading the commands from
1286 input stream, takes them from an already parsed command structure.
1287
1288 This is used by cli-script.c to DTRT with breakpoint commands
1289 that are part of if and while bodies. */
1290 enum command_control_type
1291 commands_from_control_command (const char *arg, struct command_line *cmd)
1292 {
1293 commands_command_1 (arg, 0, cmd);
1294 return simple_control;
1295 }
1296
1297 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1298
1299 static int
1300 bp_location_has_shadow (struct bp_location *bl)
1301 {
1302 if (bl->loc_type != bp_loc_software_breakpoint)
1303 return 0;
1304 if (!bl->inserted)
1305 return 0;
1306 if (bl->target_info.shadow_len == 0)
1307 /* BL isn't valid, or doesn't shadow memory. */
1308 return 0;
1309 return 1;
1310 }
1311
1312 /* Update BUF, which is LEN bytes read from the target address
1313 MEMADDR, by replacing a memory breakpoint with its shadowed
1314 contents.
1315
1316 If READBUF is not NULL, this buffer must not overlap with the of
1317 the breakpoint location's shadow_contents buffer. Otherwise, a
1318 failed assertion internal error will be raised. */
1319
1320 static void
1321 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1322 const gdb_byte *writebuf_org,
1323 ULONGEST memaddr, LONGEST len,
1324 struct bp_target_info *target_info,
1325 struct gdbarch *gdbarch)
1326 {
1327 /* Now do full processing of the found relevant range of elements. */
1328 CORE_ADDR bp_addr = 0;
1329 int bp_size = 0;
1330 int bptoffset = 0;
1331
1332 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1333 current_program_space->aspace, 0))
1334 {
1335 /* The breakpoint is inserted in a different address space. */
1336 return;
1337 }
1338
1339 /* Addresses and length of the part of the breakpoint that
1340 we need to copy. */
1341 bp_addr = target_info->placed_address;
1342 bp_size = target_info->shadow_len;
1343
1344 if (bp_addr + bp_size <= memaddr)
1345 {
1346 /* The breakpoint is entirely before the chunk of memory we are
1347 reading. */
1348 return;
1349 }
1350
1351 if (bp_addr >= memaddr + len)
1352 {
1353 /* The breakpoint is entirely after the chunk of memory we are
1354 reading. */
1355 return;
1356 }
1357
1358 /* Offset within shadow_contents. */
1359 if (bp_addr < memaddr)
1360 {
1361 /* Only copy the second part of the breakpoint. */
1362 bp_size -= memaddr - bp_addr;
1363 bptoffset = memaddr - bp_addr;
1364 bp_addr = memaddr;
1365 }
1366
1367 if (bp_addr + bp_size > memaddr + len)
1368 {
1369 /* Only copy the first part of the breakpoint. */
1370 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1371 }
1372
1373 if (readbuf != NULL)
1374 {
1375 /* Verify that the readbuf buffer does not overlap with the
1376 shadow_contents buffer. */
1377 gdb_assert (target_info->shadow_contents >= readbuf + len
1378 || readbuf >= (target_info->shadow_contents
1379 + target_info->shadow_len));
1380
1381 /* Update the read buffer with this inserted breakpoint's
1382 shadow. */
1383 memcpy (readbuf + bp_addr - memaddr,
1384 target_info->shadow_contents + bptoffset, bp_size);
1385 }
1386 else
1387 {
1388 const unsigned char *bp;
1389 CORE_ADDR addr = target_info->reqstd_address;
1390 int placed_size;
1391
1392 /* Update the shadow with what we want to write to memory. */
1393 memcpy (target_info->shadow_contents + bptoffset,
1394 writebuf_org + bp_addr - memaddr, bp_size);
1395
1396 /* Determine appropriate breakpoint contents and size for this
1397 address. */
1398 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1399
1400 /* Update the final write buffer with this inserted
1401 breakpoint's INSN. */
1402 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1403 }
1404 }
1405
1406 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1407 by replacing any memory breakpoints with their shadowed contents.
1408
1409 If READBUF is not NULL, this buffer must not overlap with any of
1410 the breakpoint location's shadow_contents buffers. Otherwise,
1411 a failed assertion internal error will be raised.
1412
1413 The range of shadowed area by each bp_location is:
1414 bl->address - bp_locations_placed_address_before_address_max
1415 up to bl->address + bp_locations_shadow_len_after_address_max
1416 The range we were requested to resolve shadows for is:
1417 memaddr ... memaddr + len
1418 Thus the safe cutoff boundaries for performance optimization are
1419 memaddr + len <= (bl->address
1420 - bp_locations_placed_address_before_address_max)
1421 and:
1422 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1423
1424 void
1425 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1426 const gdb_byte *writebuf_org,
1427 ULONGEST memaddr, LONGEST len)
1428 {
1429 /* Left boundary, right boundary and median element of our binary
1430 search. */
1431 unsigned bc_l, bc_r, bc;
1432
1433 /* Find BC_L which is a leftmost element which may affect BUF
1434 content. It is safe to report lower value but a failure to
1435 report higher one. */
1436
1437 bc_l = 0;
1438 bc_r = bp_locations_count;
1439 while (bc_l + 1 < bc_r)
1440 {
1441 struct bp_location *bl;
1442
1443 bc = (bc_l + bc_r) / 2;
1444 bl = bp_locations[bc];
1445
1446 /* Check first BL->ADDRESS will not overflow due to the added
1447 constant. Then advance the left boundary only if we are sure
1448 the BC element can in no way affect the BUF content (MEMADDR
1449 to MEMADDR + LEN range).
1450
1451 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1452 offset so that we cannot miss a breakpoint with its shadow
1453 range tail still reaching MEMADDR. */
1454
1455 if ((bl->address + bp_locations_shadow_len_after_address_max
1456 >= bl->address)
1457 && (bl->address + bp_locations_shadow_len_after_address_max
1458 <= memaddr))
1459 bc_l = bc;
1460 else
1461 bc_r = bc;
1462 }
1463
1464 /* Due to the binary search above, we need to make sure we pick the
1465 first location that's at BC_L's address. E.g., if there are
1466 multiple locations at the same address, BC_L may end up pointing
1467 at a duplicate location, and miss the "master"/"inserted"
1468 location. Say, given locations L1, L2 and L3 at addresses A and
1469 B:
1470
1471 L1@A, L2@A, L3@B, ...
1472
1473 BC_L could end up pointing at location L2, while the "master"
1474 location could be L1. Since the `loc->inserted' flag is only set
1475 on "master" locations, we'd forget to restore the shadow of L1
1476 and L2. */
1477 while (bc_l > 0
1478 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1479 bc_l--;
1480
1481 /* Now do full processing of the found relevant range of elements. */
1482
1483 for (bc = bc_l; bc < bp_locations_count; bc++)
1484 {
1485 struct bp_location *bl = bp_locations[bc];
1486
1487 /* bp_location array has BL->OWNER always non-NULL. */
1488 if (bl->owner->type == bp_none)
1489 warning (_("reading through apparently deleted breakpoint #%d?"),
1490 bl->owner->number);
1491
1492 /* Performance optimization: any further element can no longer affect BUF
1493 content. */
1494
1495 if (bl->address >= bp_locations_placed_address_before_address_max
1496 && memaddr + len <= (bl->address
1497 - bp_locations_placed_address_before_address_max))
1498 break;
1499
1500 if (!bp_location_has_shadow (bl))
1501 continue;
1502
1503 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1504 memaddr, len, &bl->target_info, bl->gdbarch);
1505 }
1506 }
1507
1508 /* See breakpoint.h. */
1509
1510 bool
1511 is_breakpoint (const struct breakpoint *bpt)
1512 {
1513 return (bpt->type == bp_breakpoint
1514 || bpt->type == bp_hardware_breakpoint
1515 || bpt->type == bp_dprintf);
1516 }
1517
1518 /* Return true if BPT is of any hardware watchpoint kind. */
1519
1520 static bool
1521 is_hardware_watchpoint (const struct breakpoint *bpt)
1522 {
1523 return (bpt->type == bp_hardware_watchpoint
1524 || bpt->type == bp_read_watchpoint
1525 || bpt->type == bp_access_watchpoint);
1526 }
1527
1528 /* See breakpoint.h. */
1529
1530 bool
1531 is_watchpoint (const struct breakpoint *bpt)
1532 {
1533 return (is_hardware_watchpoint (bpt)
1534 || bpt->type == bp_watchpoint);
1535 }
1536
1537 /* Returns true if the current thread and its running state are safe
1538 to evaluate or update watchpoint B. Watchpoints on local
1539 expressions need to be evaluated in the context of the thread that
1540 was current when the watchpoint was created, and, that thread needs
1541 to be stopped to be able to select the correct frame context.
1542 Watchpoints on global expressions can be evaluated on any thread,
1543 and in any state. It is presently left to the target allowing
1544 memory accesses when threads are running. */
1545
1546 static int
1547 watchpoint_in_thread_scope (struct watchpoint *b)
1548 {
1549 return (b->pspace == current_program_space
1550 && (b->watchpoint_thread == null_ptid
1551 || (inferior_ptid == b->watchpoint_thread
1552 && !inferior_thread ()->executing)));
1553 }
1554
1555 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1556 associated bp_watchpoint_scope breakpoint. */
1557
1558 static void
1559 watchpoint_del_at_next_stop (struct watchpoint *w)
1560 {
1561 if (w->related_breakpoint != w)
1562 {
1563 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1564 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1565 w->related_breakpoint->disposition = disp_del_at_next_stop;
1566 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1567 w->related_breakpoint = w;
1568 }
1569 w->disposition = disp_del_at_next_stop;
1570 }
1571
1572 /* Extract a bitfield value from value VAL using the bit parameters contained in
1573 watchpoint W. */
1574
1575 static struct value *
1576 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1577 {
1578 struct value *bit_val;
1579
1580 if (val == NULL)
1581 return NULL;
1582
1583 bit_val = allocate_value (value_type (val));
1584
1585 unpack_value_bitfield (bit_val,
1586 w->val_bitpos,
1587 w->val_bitsize,
1588 value_contents_for_printing (val),
1589 value_offset (val),
1590 val);
1591
1592 return bit_val;
1593 }
1594
1595 /* Allocate a dummy location and add it to B, which must be a software
1596 watchpoint. This is required because even if a software watchpoint
1597 is not watching any memory, bpstat_stop_status requires a location
1598 to be able to report stops. */
1599
1600 static void
1601 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1602 struct program_space *pspace)
1603 {
1604 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1605
1606 b->loc = allocate_bp_location (b);
1607 b->loc->pspace = pspace;
1608 b->loc->address = -1;
1609 b->loc->length = -1;
1610 }
1611
1612 /* Returns true if B is a software watchpoint that is not watching any
1613 memory (e.g., "watch $pc"). */
1614
1615 static bool
1616 is_no_memory_software_watchpoint (struct breakpoint *b)
1617 {
1618 return (b->type == bp_watchpoint
1619 && b->loc != NULL
1620 && b->loc->next == NULL
1621 && b->loc->address == -1
1622 && b->loc->length == -1);
1623 }
1624
1625 /* Assuming that B is a watchpoint:
1626 - Reparse watchpoint expression, if REPARSE is non-zero
1627 - Evaluate expression and store the result in B->val
1628 - Evaluate the condition if there is one, and store the result
1629 in b->loc->cond.
1630 - Update the list of values that must be watched in B->loc.
1631
1632 If the watchpoint disposition is disp_del_at_next_stop, then do
1633 nothing. If this is local watchpoint that is out of scope, delete
1634 it.
1635
1636 Even with `set breakpoint always-inserted on' the watchpoints are
1637 removed + inserted on each stop here. Normal breakpoints must
1638 never be removed because they might be missed by a running thread
1639 when debugging in non-stop mode. On the other hand, hardware
1640 watchpoints (is_hardware_watchpoint; processed here) are specific
1641 to each LWP since they are stored in each LWP's hardware debug
1642 registers. Therefore, such LWP must be stopped first in order to
1643 be able to modify its hardware watchpoints.
1644
1645 Hardware watchpoints must be reset exactly once after being
1646 presented to the user. It cannot be done sooner, because it would
1647 reset the data used to present the watchpoint hit to the user. And
1648 it must not be done later because it could display the same single
1649 watchpoint hit during multiple GDB stops. Note that the latter is
1650 relevant only to the hardware watchpoint types bp_read_watchpoint
1651 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1652 not user-visible - its hit is suppressed if the memory content has
1653 not changed.
1654
1655 The following constraints influence the location where we can reset
1656 hardware watchpoints:
1657
1658 * target_stopped_by_watchpoint and target_stopped_data_address are
1659 called several times when GDB stops.
1660
1661 [linux]
1662 * Multiple hardware watchpoints can be hit at the same time,
1663 causing GDB to stop. GDB only presents one hardware watchpoint
1664 hit at a time as the reason for stopping, and all the other hits
1665 are presented later, one after the other, each time the user
1666 requests the execution to be resumed. Execution is not resumed
1667 for the threads still having pending hit event stored in
1668 LWP_INFO->STATUS. While the watchpoint is already removed from
1669 the inferior on the first stop the thread hit event is kept being
1670 reported from its cached value by linux_nat_stopped_data_address
1671 until the real thread resume happens after the watchpoint gets
1672 presented and thus its LWP_INFO->STATUS gets reset.
1673
1674 Therefore the hardware watchpoint hit can get safely reset on the
1675 watchpoint removal from inferior. */
1676
1677 static void
1678 update_watchpoint (struct watchpoint *b, int reparse)
1679 {
1680 int within_current_scope;
1681 struct frame_id saved_frame_id;
1682 int frame_saved;
1683
1684 /* If this is a local watchpoint, we only want to check if the
1685 watchpoint frame is in scope if the current thread is the thread
1686 that was used to create the watchpoint. */
1687 if (!watchpoint_in_thread_scope (b))
1688 return;
1689
1690 if (b->disposition == disp_del_at_next_stop)
1691 return;
1692
1693 frame_saved = 0;
1694
1695 /* Determine if the watchpoint is within scope. */
1696 if (b->exp_valid_block == NULL)
1697 within_current_scope = 1;
1698 else
1699 {
1700 struct frame_info *fi = get_current_frame ();
1701 struct gdbarch *frame_arch = get_frame_arch (fi);
1702 CORE_ADDR frame_pc = get_frame_pc (fi);
1703
1704 /* If we're at a point where the stack has been destroyed
1705 (e.g. in a function epilogue), unwinding may not work
1706 properly. Do not attempt to recreate locations at this
1707 point. See similar comments in watchpoint_check. */
1708 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1709 return;
1710
1711 /* Save the current frame's ID so we can restore it after
1712 evaluating the watchpoint expression on its own frame. */
1713 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1714 took a frame parameter, so that we didn't have to change the
1715 selected frame. */
1716 frame_saved = 1;
1717 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1718
1719 fi = frame_find_by_id (b->watchpoint_frame);
1720 within_current_scope = (fi != NULL);
1721 if (within_current_scope)
1722 select_frame (fi);
1723 }
1724
1725 /* We don't free locations. They are stored in the bp_location array
1726 and update_global_location_list will eventually delete them and
1727 remove breakpoints if needed. */
1728 b->loc = NULL;
1729
1730 if (within_current_scope && reparse)
1731 {
1732 const char *s;
1733
1734 b->exp.reset ();
1735 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1736 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1737 /* If the meaning of expression itself changed, the old value is
1738 no longer relevant. We don't want to report a watchpoint hit
1739 to the user when the old value and the new value may actually
1740 be completely different objects. */
1741 b->val = NULL;
1742 b->val_valid = false;
1743
1744 /* Note that unlike with breakpoints, the watchpoint's condition
1745 expression is stored in the breakpoint object, not in the
1746 locations (re)created below. */
1747 if (b->cond_string != NULL)
1748 {
1749 b->cond_exp.reset ();
1750
1751 s = b->cond_string;
1752 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1753 }
1754 }
1755
1756 /* If we failed to parse the expression, for example because
1757 it refers to a global variable in a not-yet-loaded shared library,
1758 don't try to insert watchpoint. We don't automatically delete
1759 such watchpoint, though, since failure to parse expression
1760 is different from out-of-scope watchpoint. */
1761 if (!target_has_execution)
1762 {
1763 /* Without execution, memory can't change. No use to try and
1764 set watchpoint locations. The watchpoint will be reset when
1765 the target gains execution, through breakpoint_re_set. */
1766 if (!can_use_hw_watchpoints)
1767 {
1768 if (b->ops->works_in_software_mode (b))
1769 b->type = bp_watchpoint;
1770 else
1771 error (_("Can't set read/access watchpoint when "
1772 "hardware watchpoints are disabled."));
1773 }
1774 }
1775 else if (within_current_scope && b->exp)
1776 {
1777 int pc = 0;
1778 std::vector<value_ref_ptr> val_chain;
1779 struct value *v, *result;
1780 struct program_space *frame_pspace;
1781
1782 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1783
1784 /* Avoid setting b->val if it's already set. The meaning of
1785 b->val is 'the last value' user saw, and we should update
1786 it only if we reported that last value to user. As it
1787 happens, the code that reports it updates b->val directly.
1788 We don't keep track of the memory value for masked
1789 watchpoints. */
1790 if (!b->val_valid && !is_masked_watchpoint (b))
1791 {
1792 if (b->val_bitsize != 0)
1793 v = extract_bitfield_from_watchpoint_value (b, v);
1794 b->val = release_value (v);
1795 b->val_valid = true;
1796 }
1797
1798 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1799
1800 /* Look at each value on the value chain. */
1801 gdb_assert (!val_chain.empty ());
1802 for (const value_ref_ptr &iter : val_chain)
1803 {
1804 v = iter.get ();
1805
1806 /* If it's a memory location, and GDB actually needed
1807 its contents to evaluate the expression, then we
1808 must watch it. If the first value returned is
1809 still lazy, that means an error occurred reading it;
1810 watch it anyway in case it becomes readable. */
1811 if (VALUE_LVAL (v) == lval_memory
1812 && (v == val_chain[0] || ! value_lazy (v)))
1813 {
1814 struct type *vtype = check_typedef (value_type (v));
1815
1816 /* We only watch structs and arrays if user asked
1817 for it explicitly, never if they just happen to
1818 appear in the middle of some value chain. */
1819 if (v == result
1820 || (vtype->code () != TYPE_CODE_STRUCT
1821 && vtype->code () != TYPE_CODE_ARRAY))
1822 {
1823 CORE_ADDR addr;
1824 enum target_hw_bp_type type;
1825 struct bp_location *loc, **tmp;
1826 int bitpos = 0, bitsize = 0;
1827
1828 if (value_bitsize (v) != 0)
1829 {
1830 /* Extract the bit parameters out from the bitfield
1831 sub-expression. */
1832 bitpos = value_bitpos (v);
1833 bitsize = value_bitsize (v);
1834 }
1835 else if (v == result && b->val_bitsize != 0)
1836 {
1837 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1838 lvalue whose bit parameters are saved in the fields
1839 VAL_BITPOS and VAL_BITSIZE. */
1840 bitpos = b->val_bitpos;
1841 bitsize = b->val_bitsize;
1842 }
1843
1844 addr = value_address (v);
1845 if (bitsize != 0)
1846 {
1847 /* Skip the bytes that don't contain the bitfield. */
1848 addr += bitpos / 8;
1849 }
1850
1851 type = hw_write;
1852 if (b->type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (b);
1858 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = address_significant (loc->gdbarch, addr);
1865
1866 if (bitsize != 0)
1867 {
1868 /* Just cover the bytes that make up the bitfield. */
1869 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1870 }
1871 else
1872 loc->length = TYPE_LENGTH (value_type (v));
1873
1874 loc->watchpoint_type = type;
1875 }
1876 }
1877 }
1878
1879 /* Change the type of breakpoint between hardware assisted or
1880 an ordinary watchpoint depending on the hardware support
1881 and free hardware slots. REPARSE is set when the inferior
1882 is started. */
1883 if (reparse)
1884 {
1885 int reg_cnt;
1886 enum bp_loc_type loc_type;
1887 struct bp_location *bl;
1888
1889 reg_cnt = can_use_hardware_watchpoint (val_chain);
1890
1891 if (reg_cnt)
1892 {
1893 int i, target_resources_ok, other_type_used;
1894 enum bptype type;
1895
1896 /* Use an exact watchpoint when there's only one memory region to be
1897 watched, and only one debug register is needed to watch it. */
1898 b->exact = target_exact_watchpoints && reg_cnt == 1;
1899
1900 /* We need to determine how many resources are already
1901 used for all other hardware watchpoints plus this one
1902 to see if we still have enough resources to also fit
1903 this watchpoint in as well. */
1904
1905 /* If this is a software watchpoint, we try to turn it
1906 to a hardware one -- count resources as if B was of
1907 hardware watchpoint type. */
1908 type = b->type;
1909 if (type == bp_watchpoint)
1910 type = bp_hardware_watchpoint;
1911
1912 /* This watchpoint may or may not have been placed on
1913 the list yet at this point (it won't be in the list
1914 if we're trying to create it for the first time,
1915 through watch_command), so always account for it
1916 manually. */
1917
1918 /* Count resources used by all watchpoints except B. */
1919 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1920
1921 /* Add in the resources needed for B. */
1922 i += hw_watchpoint_use_count (b);
1923
1924 target_resources_ok
1925 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1926 if (target_resources_ok <= 0)
1927 {
1928 int sw_mode = b->ops->works_in_software_mode (b);
1929
1930 if (target_resources_ok == 0 && !sw_mode)
1931 error (_("Target does not support this type of "
1932 "hardware watchpoint."));
1933 else if (target_resources_ok < 0 && !sw_mode)
1934 error (_("There are not enough available hardware "
1935 "resources for this watchpoint."));
1936
1937 /* Downgrade to software watchpoint. */
1938 b->type = bp_watchpoint;
1939 }
1940 else
1941 {
1942 /* If this was a software watchpoint, we've just
1943 found we have enough resources to turn it to a
1944 hardware watchpoint. Otherwise, this is a
1945 nop. */
1946 b->type = type;
1947 }
1948 }
1949 else if (!b->ops->works_in_software_mode (b))
1950 {
1951 if (!can_use_hw_watchpoints)
1952 error (_("Can't set read/access watchpoint when "
1953 "hardware watchpoints are disabled."));
1954 else
1955 error (_("Expression cannot be implemented with "
1956 "read/access watchpoint."));
1957 }
1958 else
1959 b->type = bp_watchpoint;
1960
1961 loc_type = (b->type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 /* If a software watchpoint is not watching any memory, then the
1968 above left it without any location set up. But,
1969 bpstat_stop_status requires a location to be able to report
1970 stops, so make sure there's at least a dummy one. */
1971 if (b->type == bp_watchpoint && b->loc == NULL)
1972 software_watchpoint_add_no_memory_location (b, frame_pspace);
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 /* Don't insert a breakpoint if we're trying to step past its
2021 location, except if the breakpoint is a single-step breakpoint,
2022 and the breakpoint's thread is the thread which is stepping past
2023 a breakpoint. */
2024 if ((bl->loc_type == bp_loc_software_breakpoint
2025 || bl->loc_type == bp_loc_hardware_breakpoint)
2026 && stepping_past_instruction_at (bl->pspace->aspace,
2027 bl->address)
2028 /* The single-step breakpoint may be inserted at the location
2029 we're trying to step if the instruction branches to itself.
2030 However, the instruction won't be executed at all and it may
2031 break the semantics of the instruction, for example, the
2032 instruction is a conditional branch or updates some flags.
2033 We can't fix it unless GDB is able to emulate the instruction
2034 or switch to displaced stepping. */
2035 && !(bl->owner->type == bp_single_step
2036 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2037 {
2038 if (debug_infrun)
2039 {
2040 fprintf_unfiltered (gdb_stdlog,
2041 "infrun: skipping breakpoint: "
2042 "stepping past insn at: %s\n",
2043 paddress (bl->gdbarch, bl->address));
2044 }
2045 return 0;
2046 }
2047
2048 /* Don't insert watchpoints if we're trying to step past the
2049 instruction that triggered one. */
2050 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2051 && stepping_past_nonsteppable_watchpoint ())
2052 {
2053 if (debug_infrun)
2054 {
2055 fprintf_unfiltered (gdb_stdlog,
2056 "infrun: stepping past non-steppable watchpoint. "
2057 "skipping watchpoint at %s:%d\n",
2058 paddress (bl->gdbarch, bl->address),
2059 bl->length);
2060 }
2061 return 0;
2062 }
2063
2064 return 1;
2065 }
2066
2067 /* Same as should_be_inserted but does the check assuming
2068 that the location is not duplicated. */
2069
2070 static int
2071 unduplicated_should_be_inserted (struct bp_location *bl)
2072 {
2073 int result;
2074 const int save_duplicate = bl->duplicate;
2075
2076 bl->duplicate = 0;
2077 result = should_be_inserted (bl);
2078 bl->duplicate = save_duplicate;
2079 return result;
2080 }
2081
2082 /* Parses a conditional described by an expression COND into an
2083 agent expression bytecode suitable for evaluation
2084 by the bytecode interpreter. Return NULL if there was
2085 any error during parsing. */
2086
2087 static agent_expr_up
2088 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2089 {
2090 if (cond == NULL)
2091 return NULL;
2092
2093 agent_expr_up aexpr;
2094
2095 /* We don't want to stop processing, so catch any errors
2096 that may show up. */
2097 try
2098 {
2099 aexpr = gen_eval_for_expr (scope, cond);
2100 }
2101
2102 catch (const gdb_exception_error &ex)
2103 {
2104 /* If we got here, it means the condition could not be parsed to a valid
2105 bytecode expression and thus can't be evaluated on the target's side.
2106 It's no use iterating through the conditions. */
2107 }
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent
2140 expression bytecode. If any of these happen, then it's no use to
2141 send conditions to the target since this location will always
2142 trigger and generate a response back to GDB. Note we consider
2143 all locations at the same address irrespective of type, i.e.,
2144 even if the locations aren't considered duplicates (e.g.,
2145 software breakpoint and hardware breakpoint at the same
2146 address). */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a
2196 condition list for this location's address. If we have software
2197 and hardware locations at the same address, they aren't
2198 considered duplicates, but we still marge all the conditions
2199 anyway, as it's simpler, and doesn't really make a practical
2200 difference. */
2201 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2202 {
2203 loc = (*loc2p);
2204 if (loc->cond
2205 && is_breakpoint (loc->owner)
2206 && loc->pspace->num == bl->pspace->num
2207 && loc->owner->enable_state == bp_enabled
2208 && loc->enabled)
2209 {
2210 /* Add the condition to the vector. This will be used later
2211 to send the conditions to the target. */
2212 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2213 }
2214 }
2215
2216 return;
2217 }
2218
2219 /* Parses a command described by string CMD into an agent expression
2220 bytecode suitable for evaluation by the bytecode interpreter.
2221 Return NULL if there was any error during parsing. */
2222
2223 static agent_expr_up
2224 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2225 {
2226 const char *cmdrest;
2227 const char *format_start, *format_end;
2228 struct gdbarch *gdbarch = get_current_arch ();
2229
2230 if (cmd == NULL)
2231 return NULL;
2232
2233 cmdrest = cmd;
2234
2235 if (*cmdrest == ',')
2236 ++cmdrest;
2237 cmdrest = skip_spaces (cmdrest);
2238
2239 if (*cmdrest++ != '"')
2240 error (_("No format string following the location"));
2241
2242 format_start = cmdrest;
2243
2244 format_pieces fpieces (&cmdrest);
2245
2246 format_end = cmdrest;
2247
2248 if (*cmdrest++ != '"')
2249 error (_("Bad format string, non-terminated '\"'."));
2250
2251 cmdrest = skip_spaces (cmdrest);
2252
2253 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2254 error (_("Invalid argument syntax"));
2255
2256 if (*cmdrest == ',')
2257 cmdrest++;
2258 cmdrest = skip_spaces (cmdrest);
2259
2260 /* For each argument, make an expression. */
2261
2262 std::vector<struct expression *> argvec;
2263 while (*cmdrest != '\0')
2264 {
2265 const char *cmd1;
2266
2267 cmd1 = cmdrest;
2268 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2269 argvec.push_back (expr.release ());
2270 cmdrest = cmd1;
2271 if (*cmdrest == ',')
2272 ++cmdrest;
2273 }
2274
2275 agent_expr_up aexpr;
2276
2277 /* We don't want to stop processing, so catch any errors
2278 that may show up. */
2279 try
2280 {
2281 aexpr = gen_printf (scope, gdbarch, 0, 0,
2282 format_start, format_end - format_start,
2283 argvec.size (), argvec.data ());
2284 }
2285 catch (const gdb_exception_error &ex)
2286 {
2287 /* If we got here, it means the command could not be parsed to a valid
2288 bytecode expression and thus can't be evaluated on the target's side.
2289 It's no use iterating through the other commands. */
2290 }
2291
2292 /* We have a valid agent expression, return it. */
2293 return aexpr;
2294 }
2295
2296 /* Based on location BL, create a list of breakpoint commands to be
2297 passed on to the target. If we have duplicated locations with
2298 different commands, we will add any such to the list. */
2299
2300 static void
2301 build_target_command_list (struct bp_location *bl)
2302 {
2303 struct bp_location **locp = NULL, **loc2p;
2304 int null_command_or_parse_error = 0;
2305 int modified = bl->needs_update;
2306 struct bp_location *loc;
2307
2308 /* Clear commands left over from a previous insert. */
2309 bl->target_info.tcommands.clear ();
2310
2311 if (!target_can_run_breakpoint_commands ())
2312 return;
2313
2314 /* For now, limit to agent-style dprintf breakpoints. */
2315 if (dprintf_style != dprintf_style_agent)
2316 return;
2317
2318 /* For now, if we have any location at the same address that isn't a
2319 dprintf, don't install the target-side commands, as that would
2320 make the breakpoint not be reported to the core, and we'd lose
2321 control. */
2322 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2323 {
2324 loc = (*loc2p);
2325 if (is_breakpoint (loc->owner)
2326 && loc->pspace->num == bl->pspace->num
2327 && loc->owner->type != bp_dprintf)
2328 return;
2329 }
2330
2331 /* Do a first pass to check for locations with no assigned
2332 conditions or conditions that fail to parse to a valid agent expression
2333 bytecode. If any of these happen, then it's no use to send conditions
2334 to the target since this location will always trigger and generate a
2335 response back to GDB. */
2336 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2337 {
2338 loc = (*loc2p);
2339 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2340 {
2341 if (modified)
2342 {
2343 /* Re-parse the commands since something changed. In that
2344 case we already freed the command bytecodes (see
2345 force_breakpoint_reinsertion). We just
2346 need to parse the command to bytecodes again. */
2347 loc->cmd_bytecode
2348 = parse_cmd_to_aexpr (bl->address,
2349 loc->owner->extra_string);
2350 }
2351
2352 /* If we have a NULL bytecode expression, it means something
2353 went wrong or we have a null command expression. */
2354 if (!loc->cmd_bytecode)
2355 {
2356 null_command_or_parse_error = 1;
2357 break;
2358 }
2359 }
2360 }
2361
2362 /* If anything failed, then we're not doing target-side commands,
2363 and so clean up. */
2364 if (null_command_or_parse_error)
2365 {
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num)
2371 {
2372 /* Only go as far as the first NULL bytecode is
2373 located. */
2374 if (loc->cmd_bytecode == NULL)
2375 return;
2376
2377 loc->cmd_bytecode.reset ();
2378 }
2379 }
2380 }
2381
2382 /* No NULL commands or failed bytecode generation. Build a command
2383 list for all duplicate locations at this location's address.
2384 Note that here we must care for whether the breakpoint location
2385 types are considered duplicates, otherwise, say, if we have a
2386 software and hardware location at the same address, the target
2387 could end up running the commands twice. For the moment, we only
2388 support targets-side commands with dprintf, but it doesn't hurt
2389 to be pedantically correct in case that changes. */
2390 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2391 {
2392 loc = (*loc2p);
2393 if (breakpoint_locations_match (bl, loc)
2394 && loc->owner->extra_string
2395 && is_breakpoint (loc->owner)
2396 && loc->pspace->num == bl->pspace->num
2397 && loc->owner->enable_state == bp_enabled
2398 && loc->enabled)
2399 {
2400 /* Add the command to the vector. This will be used later
2401 to send the commands to the target. */
2402 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2403 }
2404 }
2405
2406 bl->target_info.persist = 0;
2407 /* Maybe flag this location as persistent. */
2408 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2409 bl->target_info.persist = 1;
2410 }
2411
2412 /* Return the kind of breakpoint on address *ADDR. Get the kind
2413 of breakpoint according to ADDR except single-step breakpoint.
2414 Get the kind of single-step breakpoint according to the current
2415 registers state. */
2416
2417 static int
2418 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2419 {
2420 if (bl->owner->type == bp_single_step)
2421 {
2422 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2423 struct regcache *regcache;
2424
2425 regcache = get_thread_regcache (thr);
2426
2427 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2428 regcache, addr);
2429 }
2430 else
2431 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2432 }
2433
2434 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2435 location. Any error messages are printed to TMP_ERROR_STREAM; and
2436 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2437 Returns 0 for success, 1 if the bp_location type is not supported or
2438 -1 for failure.
2439
2440 NOTE drow/2003-09-09: This routine could be broken down to an
2441 object-style method for each breakpoint or catchpoint type. */
2442 static int
2443 insert_bp_location (struct bp_location *bl,
2444 struct ui_file *tmp_error_stream,
2445 int *disabled_breaks,
2446 int *hw_breakpoint_error,
2447 int *hw_bp_error_explained_already)
2448 {
2449 gdb_exception bp_excpt;
2450
2451 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2452 return 0;
2453
2454 /* Note we don't initialize bl->target_info, as that wipes out
2455 the breakpoint location's shadow_contents if the breakpoint
2456 is still inserted at that location. This in turn breaks
2457 target_read_memory which depends on these buffers when
2458 a memory read is requested at the breakpoint location:
2459 Once the target_info has been wiped, we fail to see that
2460 we have a breakpoint inserted at that address and thus
2461 read the breakpoint instead of returning the data saved in
2462 the breakpoint location's shadow contents. */
2463 bl->target_info.reqstd_address = bl->address;
2464 bl->target_info.placed_address_space = bl->pspace->aspace;
2465 bl->target_info.length = bl->length;
2466
2467 /* When working with target-side conditions, we must pass all the conditions
2468 for the same breakpoint address down to the target since GDB will not
2469 insert those locations. With a list of breakpoint conditions, the target
2470 can decide when to stop and notify GDB. */
2471
2472 if (is_breakpoint (bl->owner))
2473 {
2474 build_target_condition_list (bl);
2475 build_target_command_list (bl);
2476 /* Reset the modification marker. */
2477 bl->needs_update = 0;
2478 }
2479
2480 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2481 set at a read-only address, then a breakpoint location will have
2482 been changed to hardware breakpoint before we get here. If it is
2483 "off" however, error out before actually trying to insert the
2484 breakpoint, with a nicer error message. */
2485 if (bl->loc_type == bp_loc_software_breakpoint
2486 && !automatic_hardware_breakpoints)
2487 {
2488 mem_region *mr = lookup_mem_region (bl->address);
2489
2490 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2491 {
2492 fprintf_unfiltered (tmp_error_stream,
2493 _("Cannot insert breakpoint %d.\n"
2494 "Cannot set software breakpoint "
2495 "at read-only address %s\n"),
2496 bl->owner->number,
2497 paddress (bl->gdbarch, bl->address));
2498 return 1;
2499 }
2500 }
2501
2502 if (bl->loc_type == bp_loc_software_breakpoint
2503 || bl->loc_type == bp_loc_hardware_breakpoint)
2504 {
2505 /* First check to see if we have to handle an overlay. */
2506 if (overlay_debugging == ovly_off
2507 || bl->section == NULL
2508 || !(section_is_overlay (bl->section)))
2509 {
2510 /* No overlay handling: just set the breakpoint. */
2511 try
2512 {
2513 int val;
2514
2515 val = bl->owner->ops->insert_location (bl);
2516 if (val)
2517 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2518 }
2519 catch (gdb_exception &e)
2520 {
2521 bp_excpt = std::move (e);
2522 }
2523 }
2524 else
2525 {
2526 /* This breakpoint is in an overlay section.
2527 Shall we set a breakpoint at the LMA? */
2528 if (!overlay_events_enabled)
2529 {
2530 /* Yes -- overlay event support is not active,
2531 so we must try to set a breakpoint at the LMA.
2532 This will not work for a hardware breakpoint. */
2533 if (bl->loc_type == bp_loc_hardware_breakpoint)
2534 warning (_("hardware breakpoint %d not supported in overlay!"),
2535 bl->owner->number);
2536 else
2537 {
2538 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2539 bl->section);
2540 /* Set a software (trap) breakpoint at the LMA. */
2541 bl->overlay_target_info = bl->target_info;
2542 bl->overlay_target_info.reqstd_address = addr;
2543
2544 /* No overlay handling: just set the breakpoint. */
2545 try
2546 {
2547 int val;
2548
2549 bl->overlay_target_info.kind
2550 = breakpoint_kind (bl, &addr);
2551 bl->overlay_target_info.placed_address = addr;
2552 val = target_insert_breakpoint (bl->gdbarch,
2553 &bl->overlay_target_info);
2554 if (val)
2555 bp_excpt
2556 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2557 }
2558 catch (gdb_exception &e)
2559 {
2560 bp_excpt = std::move (e);
2561 }
2562
2563 if (bp_excpt.reason != 0)
2564 fprintf_unfiltered (tmp_error_stream,
2565 "Overlay breakpoint %d "
2566 "failed: in ROM?\n",
2567 bl->owner->number);
2568 }
2569 }
2570 /* Shall we set a breakpoint at the VMA? */
2571 if (section_is_mapped (bl->section))
2572 {
2573 /* Yes. This overlay section is mapped into memory. */
2574 try
2575 {
2576 int val;
2577
2578 val = bl->owner->ops->insert_location (bl);
2579 if (val)
2580 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2581 }
2582 catch (gdb_exception &e)
2583 {
2584 bp_excpt = std::move (e);
2585 }
2586 }
2587 else
2588 {
2589 /* No. This breakpoint will not be inserted.
2590 No error, but do not mark the bp as 'inserted'. */
2591 return 0;
2592 }
2593 }
2594
2595 if (bp_excpt.reason != 0)
2596 {
2597 /* Can't set the breakpoint. */
2598
2599 /* In some cases, we might not be able to insert a
2600 breakpoint in a shared library that has already been
2601 removed, but we have not yet processed the shlib unload
2602 event. Unfortunately, some targets that implement
2603 breakpoint insertion themselves can't tell why the
2604 breakpoint insertion failed (e.g., the remote target
2605 doesn't define error codes), so we must treat generic
2606 errors as memory errors. */
2607 if (bp_excpt.reason == RETURN_ERROR
2608 && (bp_excpt.error == GENERIC_ERROR
2609 || bp_excpt.error == MEMORY_ERROR)
2610 && bl->loc_type == bp_loc_software_breakpoint
2611 && (solib_name_from_address (bl->pspace, bl->address)
2612 || shared_objfile_contains_address_p (bl->pspace,
2613 bl->address)))
2614 {
2615 /* See also: disable_breakpoints_in_shlibs. */
2616 bl->shlib_disabled = 1;
2617 gdb::observers::breakpoint_modified.notify (bl->owner);
2618 if (!*disabled_breaks)
2619 {
2620 fprintf_unfiltered (tmp_error_stream,
2621 "Cannot insert breakpoint %d.\n",
2622 bl->owner->number);
2623 fprintf_unfiltered (tmp_error_stream,
2624 "Temporarily disabling shared "
2625 "library breakpoints:\n");
2626 }
2627 *disabled_breaks = 1;
2628 fprintf_unfiltered (tmp_error_stream,
2629 "breakpoint #%d\n", bl->owner->number);
2630 return 0;
2631 }
2632 else
2633 {
2634 if (bl->loc_type == bp_loc_hardware_breakpoint)
2635 {
2636 *hw_breakpoint_error = 1;
2637 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert hardware breakpoint %d%s",
2640 bl->owner->number,
2641 bp_excpt.message ? ":" : ".\n");
2642 if (bp_excpt.message != NULL)
2643 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2644 bp_excpt.what ());
2645 }
2646 else
2647 {
2648 if (bp_excpt.message == NULL)
2649 {
2650 std::string message
2651 = memory_error_message (TARGET_XFER_E_IO,
2652 bl->gdbarch, bl->address);
2653
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n"
2656 "%s\n",
2657 bl->owner->number, message.c_str ());
2658 }
2659 else
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d: %s\n",
2663 bl->owner->number,
2664 bp_excpt.what ());
2665 }
2666 }
2667 return 1;
2668
2669 }
2670 }
2671 else
2672 bl->inserted = 1;
2673
2674 return 0;
2675 }
2676
2677 else if (bl->loc_type == bp_loc_hardware_watchpoint
2678 /* NOTE drow/2003-09-08: This state only exists for removing
2679 watchpoints. It's not clear that it's necessary... */
2680 && bl->owner->disposition != disp_del_at_next_stop)
2681 {
2682 int val;
2683
2684 gdb_assert (bl->owner->ops != NULL
2685 && bl->owner->ops->insert_location != NULL);
2686
2687 val = bl->owner->ops->insert_location (bl);
2688
2689 /* If trying to set a read-watchpoint, and it turns out it's not
2690 supported, try emulating one with an access watchpoint. */
2691 if (val == 1 && bl->watchpoint_type == hw_read)
2692 {
2693 struct bp_location *loc, **loc_temp;
2694
2695 /* But don't try to insert it, if there's already another
2696 hw_access location that would be considered a duplicate
2697 of this one. */
2698 ALL_BP_LOCATIONS (loc, loc_temp)
2699 if (loc != bl
2700 && loc->watchpoint_type == hw_access
2701 && watchpoint_locations_match (bl, loc))
2702 {
2703 bl->duplicate = 1;
2704 bl->inserted = 1;
2705 bl->target_info = loc->target_info;
2706 bl->watchpoint_type = hw_access;
2707 val = 0;
2708 break;
2709 }
2710
2711 if (val == 1)
2712 {
2713 bl->watchpoint_type = hw_access;
2714 val = bl->owner->ops->insert_location (bl);
2715
2716 if (val)
2717 /* Back to the original value. */
2718 bl->watchpoint_type = hw_read;
2719 }
2720 }
2721
2722 bl->inserted = (val == 0);
2723 }
2724
2725 else if (bl->owner->type == bp_catchpoint)
2726 {
2727 int val;
2728
2729 gdb_assert (bl->owner->ops != NULL
2730 && bl->owner->ops->insert_location != NULL);
2731
2732 val = bl->owner->ops->insert_location (bl);
2733 if (val)
2734 {
2735 bl->owner->enable_state = bp_disabled;
2736
2737 if (val == 1)
2738 warning (_("\
2739 Error inserting catchpoint %d: Your system does not support this type\n\
2740 of catchpoint."), bl->owner->number);
2741 else
2742 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2743 }
2744
2745 bl->inserted = (val == 0);
2746
2747 /* We've already printed an error message if there was a problem
2748 inserting this catchpoint, and we've disabled the catchpoint,
2749 so just return success. */
2750 return 0;
2751 }
2752
2753 return 0;
2754 }
2755
2756 /* This function is called when program space PSPACE is about to be
2757 deleted. It takes care of updating breakpoints to not reference
2758 PSPACE anymore. */
2759
2760 void
2761 breakpoint_program_space_exit (struct program_space *pspace)
2762 {
2763 struct breakpoint *b, *b_temp;
2764 struct bp_location *loc, **loc_temp;
2765
2766 /* Remove any breakpoint that was set through this program space. */
2767 ALL_BREAKPOINTS_SAFE (b, b_temp)
2768 {
2769 if (b->pspace == pspace)
2770 delete_breakpoint (b);
2771 }
2772
2773 /* Breakpoints set through other program spaces could have locations
2774 bound to PSPACE as well. Remove those. */
2775 ALL_BP_LOCATIONS (loc, loc_temp)
2776 {
2777 struct bp_location *tmp;
2778
2779 if (loc->pspace == pspace)
2780 {
2781 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2782 if (loc->owner->loc == loc)
2783 loc->owner->loc = loc->next;
2784 else
2785 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2786 if (tmp->next == loc)
2787 {
2788 tmp->next = loc->next;
2789 break;
2790 }
2791 }
2792 }
2793
2794 /* Now update the global location list to permanently delete the
2795 removed locations above. */
2796 update_global_location_list (UGLL_DONT_INSERT);
2797 }
2798
2799 /* Make sure all breakpoints are inserted in inferior.
2800 Throws exception on any error.
2801 A breakpoint that is already inserted won't be inserted
2802 again, so calling this function twice is safe. */
2803 void
2804 insert_breakpoints (void)
2805 {
2806 struct breakpoint *bpt;
2807
2808 ALL_BREAKPOINTS (bpt)
2809 if (is_hardware_watchpoint (bpt))
2810 {
2811 struct watchpoint *w = (struct watchpoint *) bpt;
2812
2813 update_watchpoint (w, 0 /* don't reparse. */);
2814 }
2815
2816 /* Updating watchpoints creates new locations, so update the global
2817 location list. Explicitly tell ugll to insert locations and
2818 ignore breakpoints_always_inserted_mode. Also,
2819 update_global_location_list tries to "upgrade" software
2820 breakpoints to hardware breakpoints to handle "set breakpoint
2821 auto-hw", so we need to call it even if we don't have new
2822 locations. */
2823 update_global_location_list (UGLL_INSERT);
2824 }
2825
2826 /* Invoke CALLBACK for each of bp_location. */
2827
2828 void
2829 iterate_over_bp_locations (walk_bp_location_callback callback)
2830 {
2831 struct bp_location *loc, **loc_tmp;
2832
2833 ALL_BP_LOCATIONS (loc, loc_tmp)
2834 {
2835 callback (loc, NULL);
2836 }
2837 }
2838
2839 /* This is used when we need to synch breakpoint conditions between GDB and the
2840 target. It is the case with deleting and disabling of breakpoints when using
2841 always-inserted mode. */
2842
2843 static void
2844 update_inserted_breakpoint_locations (void)
2845 {
2846 struct bp_location *bl, **blp_tmp;
2847 int error_flag = 0;
2848 int val = 0;
2849 int disabled_breaks = 0;
2850 int hw_breakpoint_error = 0;
2851 int hw_bp_details_reported = 0;
2852
2853 string_file tmp_error_stream;
2854
2855 /* Explicitly mark the warning -- this will only be printed if
2856 there was an error. */
2857 tmp_error_stream.puts ("Warning:\n");
2858
2859 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2860
2861 ALL_BP_LOCATIONS (bl, blp_tmp)
2862 {
2863 /* We only want to update software breakpoints and hardware
2864 breakpoints. */
2865 if (!is_breakpoint (bl->owner))
2866 continue;
2867
2868 /* We only want to update locations that are already inserted
2869 and need updating. This is to avoid unwanted insertion during
2870 deletion of breakpoints. */
2871 if (!bl->inserted || !bl->needs_update)
2872 continue;
2873
2874 switch_to_program_space_and_thread (bl->pspace);
2875
2876 /* For targets that support global breakpoints, there's no need
2877 to select an inferior to insert breakpoint to. In fact, even
2878 if we aren't attached to any process yet, we should still
2879 insert breakpoints. */
2880 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2881 && (inferior_ptid == null_ptid || !target_has_execution))
2882 continue;
2883
2884 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2885 &hw_breakpoint_error, &hw_bp_details_reported);
2886 if (val)
2887 error_flag = val;
2888 }
2889
2890 if (error_flag)
2891 {
2892 target_terminal::ours_for_output ();
2893 error_stream (tmp_error_stream);
2894 }
2895 }
2896
2897 /* Used when starting or continuing the program. */
2898
2899 static void
2900 insert_breakpoint_locations (void)
2901 {
2902 struct breakpoint *bpt;
2903 struct bp_location *bl, **blp_tmp;
2904 int error_flag = 0;
2905 int val = 0;
2906 int disabled_breaks = 0;
2907 int hw_breakpoint_error = 0;
2908 int hw_bp_error_explained_already = 0;
2909
2910 string_file tmp_error_stream;
2911
2912 /* Explicitly mark the warning -- this will only be printed if
2913 there was an error. */
2914 tmp_error_stream.puts ("Warning:\n");
2915
2916 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2917
2918 ALL_BP_LOCATIONS (bl, blp_tmp)
2919 {
2920 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2921 continue;
2922
2923 /* There is no point inserting thread-specific breakpoints if
2924 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2925 has BL->OWNER always non-NULL. */
2926 if (bl->owner->thread != -1
2927 && !valid_global_thread_id (bl->owner->thread))
2928 continue;
2929
2930 switch_to_program_space_and_thread (bl->pspace);
2931
2932 /* For targets that support global breakpoints, there's no need
2933 to select an inferior to insert breakpoint to. In fact, even
2934 if we aren't attached to any process yet, we should still
2935 insert breakpoints. */
2936 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2937 && (inferior_ptid == null_ptid || !target_has_execution))
2938 continue;
2939
2940 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2941 &hw_breakpoint_error, &hw_bp_error_explained_already);
2942 if (val)
2943 error_flag = val;
2944 }
2945
2946 /* If we failed to insert all locations of a watchpoint, remove
2947 them, as half-inserted watchpoint is of limited use. */
2948 ALL_BREAKPOINTS (bpt)
2949 {
2950 int some_failed = 0;
2951 struct bp_location *loc;
2952
2953 if (!is_hardware_watchpoint (bpt))
2954 continue;
2955
2956 if (!breakpoint_enabled (bpt))
2957 continue;
2958
2959 if (bpt->disposition == disp_del_at_next_stop)
2960 continue;
2961
2962 for (loc = bpt->loc; loc; loc = loc->next)
2963 if (!loc->inserted && should_be_inserted (loc))
2964 {
2965 some_failed = 1;
2966 break;
2967 }
2968 if (some_failed)
2969 {
2970 for (loc = bpt->loc; loc; loc = loc->next)
2971 if (loc->inserted)
2972 remove_breakpoint (loc);
2973
2974 hw_breakpoint_error = 1;
2975 tmp_error_stream.printf ("Could not insert "
2976 "hardware watchpoint %d.\n",
2977 bpt->number);
2978 error_flag = -1;
2979 }
2980 }
2981
2982 if (error_flag)
2983 {
2984 /* If a hardware breakpoint or watchpoint was inserted, add a
2985 message about possibly exhausted resources. */
2986 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2987 {
2988 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2989 You may have requested too many hardware breakpoints/watchpoints.\n");
2990 }
2991 target_terminal::ours_for_output ();
2992 error_stream (tmp_error_stream);
2993 }
2994 }
2995
2996 /* Used when the program stops.
2997 Returns zero if successful, or non-zero if there was a problem
2998 removing a breakpoint location. */
2999
3000 int
3001 remove_breakpoints (void)
3002 {
3003 struct bp_location *bl, **blp_tmp;
3004 int val = 0;
3005
3006 ALL_BP_LOCATIONS (bl, blp_tmp)
3007 {
3008 if (bl->inserted && !is_tracepoint (bl->owner))
3009 val |= remove_breakpoint (bl);
3010 }
3011 return val;
3012 }
3013
3014 /* When a thread exits, remove breakpoints that are related to
3015 that thread. */
3016
3017 static void
3018 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3019 {
3020 struct breakpoint *b, *b_tmp;
3021
3022 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3023 {
3024 if (b->thread == tp->global_num && user_breakpoint_p (b))
3025 {
3026 b->disposition = disp_del_at_next_stop;
3027
3028 printf_filtered (_("\
3029 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3030 b->number, print_thread_id (tp));
3031
3032 /* Hide it from the user. */
3033 b->number = 0;
3034 }
3035 }
3036 }
3037
3038 /* See breakpoint.h. */
3039
3040 void
3041 remove_breakpoints_inf (inferior *inf)
3042 {
3043 struct bp_location *bl, **blp_tmp;
3044 int val;
3045
3046 ALL_BP_LOCATIONS (bl, blp_tmp)
3047 {
3048 if (bl->pspace != inf->pspace)
3049 continue;
3050
3051 if (bl->inserted && !bl->target_info.persist)
3052 {
3053 val = remove_breakpoint (bl);
3054 if (val != 0)
3055 return;
3056 }
3057 }
3058 }
3059
3060 static int internal_breakpoint_number = -1;
3061
3062 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3063 If INTERNAL is non-zero, the breakpoint number will be populated
3064 from internal_breakpoint_number and that variable decremented.
3065 Otherwise the breakpoint number will be populated from
3066 breakpoint_count and that value incremented. Internal breakpoints
3067 do not set the internal var bpnum. */
3068 static void
3069 set_breakpoint_number (int internal, struct breakpoint *b)
3070 {
3071 if (internal)
3072 b->number = internal_breakpoint_number--;
3073 else
3074 {
3075 set_breakpoint_count (breakpoint_count + 1);
3076 b->number = breakpoint_count;
3077 }
3078 }
3079
3080 static struct breakpoint *
3081 create_internal_breakpoint (struct gdbarch *gdbarch,
3082 CORE_ADDR address, enum bptype type,
3083 const struct breakpoint_ops *ops)
3084 {
3085 symtab_and_line sal;
3086 sal.pc = address;
3087 sal.section = find_pc_overlay (sal.pc);
3088 sal.pspace = current_program_space;
3089
3090 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3091 b->number = internal_breakpoint_number--;
3092 b->disposition = disp_donttouch;
3093
3094 return b;
3095 }
3096
3097 static const char *const longjmp_names[] =
3098 {
3099 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3100 };
3101 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3102
3103 /* Per-objfile data private to breakpoint.c. */
3104 struct breakpoint_objfile_data
3105 {
3106 /* Minimal symbol for "_ovly_debug_event" (if any). */
3107 struct bound_minimal_symbol overlay_msym {};
3108
3109 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3110 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3111
3112 /* True if we have looked for longjmp probes. */
3113 int longjmp_searched = 0;
3114
3115 /* SystemTap probe points for longjmp (if any). These are non-owning
3116 references. */
3117 std::vector<probe *> longjmp_probes;
3118
3119 /* Minimal symbol for "std::terminate()" (if any). */
3120 struct bound_minimal_symbol terminate_msym {};
3121
3122 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3123 struct bound_minimal_symbol exception_msym {};
3124
3125 /* True if we have looked for exception probes. */
3126 int exception_searched = 0;
3127
3128 /* SystemTap probe points for unwinding (if any). These are non-owning
3129 references. */
3130 std::vector<probe *> exception_probes;
3131 };
3132
3133 static const struct objfile_key<breakpoint_objfile_data>
3134 breakpoint_objfile_key;
3135
3136 /* Minimal symbol not found sentinel. */
3137 static struct minimal_symbol msym_not_found;
3138
3139 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3140
3141 static int
3142 msym_not_found_p (const struct minimal_symbol *msym)
3143 {
3144 return msym == &msym_not_found;
3145 }
3146
3147 /* Return per-objfile data needed by breakpoint.c.
3148 Allocate the data if necessary. */
3149
3150 static struct breakpoint_objfile_data *
3151 get_breakpoint_objfile_data (struct objfile *objfile)
3152 {
3153 struct breakpoint_objfile_data *bp_objfile_data;
3154
3155 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3156 if (bp_objfile_data == NULL)
3157 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3158 return bp_objfile_data;
3159 }
3160
3161 static void
3162 create_overlay_event_breakpoint (void)
3163 {
3164 const char *const func_name = "_ovly_debug_event";
3165
3166 for (objfile *objfile : current_program_space->objfiles ())
3167 {
3168 struct breakpoint *b;
3169 struct breakpoint_objfile_data *bp_objfile_data;
3170 CORE_ADDR addr;
3171 struct explicit_location explicit_loc;
3172
3173 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3174
3175 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3176 continue;
3177
3178 if (bp_objfile_data->overlay_msym.minsym == NULL)
3179 {
3180 struct bound_minimal_symbol m;
3181
3182 m = lookup_minimal_symbol_text (func_name, objfile);
3183 if (m.minsym == NULL)
3184 {
3185 /* Avoid future lookups in this objfile. */
3186 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3187 continue;
3188 }
3189 bp_objfile_data->overlay_msym = m;
3190 }
3191
3192 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3193 b = create_internal_breakpoint (objfile->arch (), addr,
3194 bp_overlay_event,
3195 &internal_breakpoint_ops);
3196 initialize_explicit_location (&explicit_loc);
3197 explicit_loc.function_name = ASTRDUP (func_name);
3198 b->location = new_explicit_location (&explicit_loc);
3199
3200 if (overlay_debugging == ovly_auto)
3201 {
3202 b->enable_state = bp_enabled;
3203 overlay_events_enabled = 1;
3204 }
3205 else
3206 {
3207 b->enable_state = bp_disabled;
3208 overlay_events_enabled = 0;
3209 }
3210 }
3211 }
3212
3213 static void
3214 create_longjmp_master_breakpoint (void)
3215 {
3216 scoped_restore_current_program_space restore_pspace;
3217
3218 for (struct program_space *pspace : program_spaces)
3219 {
3220 set_current_program_space (pspace);
3221
3222 for (objfile *objfile : current_program_space->objfiles ())
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = objfile->arch ();
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 std::vector<probe *> ret
3235 = find_probes_in_objfile (objfile, "libc", "longjmp");
3236
3237 if (!ret.empty ())
3238 {
3239 /* We are only interested in checking one element. */
3240 probe *p = ret[0];
3241
3242 if (!p->can_evaluate_arguments ())
3243 {
3244 /* We cannot use the probe interface here,
3245 because it does not know how to evaluate
3246 arguments. */
3247 ret.clear ();
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (!bp_objfile_data->longjmp_probes.empty ())
3255 {
3256 for (probe *p : bp_objfile_data->longjmp_probes)
3257 {
3258 struct breakpoint *b;
3259
3260 b = create_internal_breakpoint (gdbarch,
3261 p->get_relocated_address (objfile),
3262 bp_longjmp_master,
3263 &internal_breakpoint_ops);
3264 b->location = new_probe_location ("-probe-stap libc:longjmp");
3265 b->enable_state = bp_disabled;
3266 }
3267
3268 continue;
3269 }
3270
3271 if (!gdbarch_get_longjmp_target_p (gdbarch))
3272 continue;
3273
3274 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3275 {
3276 struct breakpoint *b;
3277 const char *func_name;
3278 CORE_ADDR addr;
3279 struct explicit_location explicit_loc;
3280
3281 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3282 continue;
3283
3284 func_name = longjmp_names[i];
3285 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3286 {
3287 struct bound_minimal_symbol m;
3288
3289 m = lookup_minimal_symbol_text (func_name, objfile);
3290 if (m.minsym == NULL)
3291 {
3292 /* Prevent future lookups in this objfile. */
3293 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3294 continue;
3295 }
3296 bp_objfile_data->longjmp_msym[i] = m;
3297 }
3298
3299 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3300 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3301 &internal_breakpoint_ops);
3302 initialize_explicit_location (&explicit_loc);
3303 explicit_loc.function_name = ASTRDUP (func_name);
3304 b->location = new_explicit_location (&explicit_loc);
3305 b->enable_state = bp_disabled;
3306 }
3307 }
3308 }
3309 }
3310
3311 /* Create a master std::terminate breakpoint. */
3312 static void
3313 create_std_terminate_master_breakpoint (void)
3314 {
3315 const char *const func_name = "std::terminate()";
3316
3317 scoped_restore_current_program_space restore_pspace;
3318
3319 for (struct program_space *pspace : program_spaces)
3320 {
3321 CORE_ADDR addr;
3322
3323 set_current_program_space (pspace);
3324
3325 for (objfile *objfile : current_program_space->objfiles ())
3326 {
3327 struct breakpoint *b;
3328 struct breakpoint_objfile_data *bp_objfile_data;
3329 struct explicit_location explicit_loc;
3330
3331 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3332
3333 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3334 continue;
3335
3336 if (bp_objfile_data->terminate_msym.minsym == NULL)
3337 {
3338 struct bound_minimal_symbol m;
3339
3340 m = lookup_minimal_symbol (func_name, NULL, objfile);
3341 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3342 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3343 {
3344 /* Prevent future lookups in this objfile. */
3345 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3346 continue;
3347 }
3348 bp_objfile_data->terminate_msym = m;
3349 }
3350
3351 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3352 b = create_internal_breakpoint (objfile->arch (), addr,
3353 bp_std_terminate_master,
3354 &internal_breakpoint_ops);
3355 initialize_explicit_location (&explicit_loc);
3356 explicit_loc.function_name = ASTRDUP (func_name);
3357 b->location = new_explicit_location (&explicit_loc);
3358 b->enable_state = bp_disabled;
3359 }
3360 }
3361 }
3362
3363 /* Install a master breakpoint on the unwinder's debug hook. */
3364
3365 static void
3366 create_exception_master_breakpoint (void)
3367 {
3368 const char *const func_name = "_Unwind_DebugHook";
3369
3370 for (objfile *objfile : current_program_space->objfiles ())
3371 {
3372 struct breakpoint *b;
3373 struct gdbarch *gdbarch;
3374 struct breakpoint_objfile_data *bp_objfile_data;
3375 CORE_ADDR addr;
3376 struct explicit_location explicit_loc;
3377
3378 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3379
3380 /* We prefer the SystemTap probe point if it exists. */
3381 if (!bp_objfile_data->exception_searched)
3382 {
3383 std::vector<probe *> ret
3384 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3385
3386 if (!ret.empty ())
3387 {
3388 /* We are only interested in checking one element. */
3389 probe *p = ret[0];
3390
3391 if (!p->can_evaluate_arguments ())
3392 {
3393 /* We cannot use the probe interface here, because it does
3394 not know how to evaluate arguments. */
3395 ret.clear ();
3396 }
3397 }
3398 bp_objfile_data->exception_probes = ret;
3399 bp_objfile_data->exception_searched = 1;
3400 }
3401
3402 if (!bp_objfile_data->exception_probes.empty ())
3403 {
3404 gdbarch = objfile->arch ();
3405
3406 for (probe *p : bp_objfile_data->exception_probes)
3407 {
3408 b = create_internal_breakpoint (gdbarch,
3409 p->get_relocated_address (objfile),
3410 bp_exception_master,
3411 &internal_breakpoint_ops);
3412 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3413 b->enable_state = bp_disabled;
3414 }
3415
3416 continue;
3417 }
3418
3419 /* Otherwise, try the hook function. */
3420
3421 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3422 continue;
3423
3424 gdbarch = objfile->arch ();
3425
3426 if (bp_objfile_data->exception_msym.minsym == NULL)
3427 {
3428 struct bound_minimal_symbol debug_hook;
3429
3430 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3431 if (debug_hook.minsym == NULL)
3432 {
3433 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3434 continue;
3435 }
3436
3437 bp_objfile_data->exception_msym = debug_hook;
3438 }
3439
3440 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3441 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3442 current_top_target ());
3443 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3444 &internal_breakpoint_ops);
3445 initialize_explicit_location (&explicit_loc);
3446 explicit_loc.function_name = ASTRDUP (func_name);
3447 b->location = new_explicit_location (&explicit_loc);
3448 b->enable_state = bp_disabled;
3449 }
3450 }
3451
3452 /* Does B have a location spec? */
3453
3454 static int
3455 breakpoint_event_location_empty_p (const struct breakpoint *b)
3456 {
3457 return b->location != NULL && event_location_empty_p (b->location.get ());
3458 }
3459
3460 void
3461 update_breakpoints_after_exec (void)
3462 {
3463 struct breakpoint *b, *b_tmp;
3464 struct bp_location *bploc, **bplocp_tmp;
3465
3466 /* We're about to delete breakpoints from GDB's lists. If the
3467 INSERTED flag is true, GDB will try to lift the breakpoints by
3468 writing the breakpoints' "shadow contents" back into memory. The
3469 "shadow contents" are NOT valid after an exec, so GDB should not
3470 do that. Instead, the target is responsible from marking
3471 breakpoints out as soon as it detects an exec. We don't do that
3472 here instead, because there may be other attempts to delete
3473 breakpoints after detecting an exec and before reaching here. */
3474 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3475 if (bploc->pspace == current_program_space)
3476 gdb_assert (!bploc->inserted);
3477
3478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3479 {
3480 if (b->pspace != current_program_space)
3481 continue;
3482
3483 /* Solib breakpoints must be explicitly reset after an exec(). */
3484 if (b->type == bp_shlib_event)
3485 {
3486 delete_breakpoint (b);
3487 continue;
3488 }
3489
3490 /* JIT breakpoints must be explicitly reset after an exec(). */
3491 if (b->type == bp_jit_event)
3492 {
3493 delete_breakpoint (b);
3494 continue;
3495 }
3496
3497 /* Thread event breakpoints must be set anew after an exec(),
3498 as must overlay event and longjmp master breakpoints. */
3499 if (b->type == bp_thread_event || b->type == bp_overlay_event
3500 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3501 || b->type == bp_exception_master)
3502 {
3503 delete_breakpoint (b);
3504 continue;
3505 }
3506
3507 /* Step-resume breakpoints are meaningless after an exec(). */
3508 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513
3514 /* Just like single-step breakpoints. */
3515 if (b->type == bp_single_step)
3516 {
3517 delete_breakpoint (b);
3518 continue;
3519 }
3520
3521 /* Longjmp and longjmp-resume breakpoints are also meaningless
3522 after an exec. */
3523 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3524 || b->type == bp_longjmp_call_dummy
3525 || b->type == bp_exception || b->type == bp_exception_resume)
3526 {
3527 delete_breakpoint (b);
3528 continue;
3529 }
3530
3531 if (b->type == bp_catchpoint)
3532 {
3533 /* For now, none of the bp_catchpoint breakpoints need to
3534 do anything at this point. In the future, if some of
3535 the catchpoints need to something, we will need to add
3536 a new method, and call this method from here. */
3537 continue;
3538 }
3539
3540 /* bp_finish is a special case. The only way we ought to be able
3541 to see one of these when an exec() has happened, is if the user
3542 caught a vfork, and then said "finish". Ordinarily a finish just
3543 carries them to the call-site of the current callee, by setting
3544 a temporary bp there and resuming. But in this case, the finish
3545 will carry them entirely through the vfork & exec.
3546
3547 We don't want to allow a bp_finish to remain inserted now. But
3548 we can't safely delete it, 'cause finish_command has a handle to
3549 the bp on a bpstat, and will later want to delete it. There's a
3550 chance (and I've seen it happen) that if we delete the bp_finish
3551 here, that its storage will get reused by the time finish_command
3552 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3553 We really must allow finish_command to delete a bp_finish.
3554
3555 In the absence of a general solution for the "how do we know
3556 it's safe to delete something others may have handles to?"
3557 problem, what we'll do here is just uninsert the bp_finish, and
3558 let finish_command delete it.
3559
3560 (We know the bp_finish is "doomed" in the sense that it's
3561 momentary, and will be deleted as soon as finish_command sees
3562 the inferior stopped. So it doesn't matter that the bp's
3563 address is probably bogus in the new a.out, unlike e.g., the
3564 solib breakpoints.) */
3565
3566 if (b->type == bp_finish)
3567 {
3568 continue;
3569 }
3570
3571 /* Without a symbolic address, we have little hope of the
3572 pre-exec() address meaning the same thing in the post-exec()
3573 a.out. */
3574 if (breakpoint_event_location_empty_p (b))
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579 }
3580 }
3581
3582 int
3583 detach_breakpoints (ptid_t ptid)
3584 {
3585 struct bp_location *bl, **blp_tmp;
3586 int val = 0;
3587 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3588 struct inferior *inf = current_inferior ();
3589
3590 if (ptid.pid () == inferior_ptid.pid ())
3591 error (_("Cannot detach breakpoints of inferior_ptid"));
3592
3593 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3594 inferior_ptid = ptid;
3595 ALL_BP_LOCATIONS (bl, blp_tmp)
3596 {
3597 if (bl->pspace != inf->pspace)
3598 continue;
3599
3600 /* This function must physically remove breakpoints locations
3601 from the specified ptid, without modifying the breakpoint
3602 package's state. Locations of type bp_loc_other are only
3603 maintained at GDB side. So, there is no need to remove
3604 these bp_loc_other locations. Moreover, removing these
3605 would modify the breakpoint package's state. */
3606 if (bl->loc_type == bp_loc_other)
3607 continue;
3608
3609 if (bl->inserted)
3610 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3611 }
3612
3613 return val;
3614 }
3615
3616 /* Remove the breakpoint location BL from the current address space.
3617 Note that this is used to detach breakpoints from a child fork.
3618 When we get here, the child isn't in the inferior list, and neither
3619 do we have objects to represent its address space --- we should
3620 *not* look at bl->pspace->aspace here. */
3621
3622 static int
3623 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3624 {
3625 int val;
3626
3627 /* BL is never in moribund_locations by our callers. */
3628 gdb_assert (bl->owner != NULL);
3629
3630 /* The type of none suggests that owner is actually deleted.
3631 This should not ever happen. */
3632 gdb_assert (bl->owner->type != bp_none);
3633
3634 if (bl->loc_type == bp_loc_software_breakpoint
3635 || bl->loc_type == bp_loc_hardware_breakpoint)
3636 {
3637 /* "Normal" instruction breakpoint: either the standard
3638 trap-instruction bp (bp_breakpoint), or a
3639 bp_hardware_breakpoint. */
3640
3641 /* First check to see if we have to handle an overlay. */
3642 if (overlay_debugging == ovly_off
3643 || bl->section == NULL
3644 || !(section_is_overlay (bl->section)))
3645 {
3646 /* No overlay handling: just remove the breakpoint. */
3647
3648 /* If we're trying to uninsert a memory breakpoint that we
3649 know is set in a dynamic object that is marked
3650 shlib_disabled, then either the dynamic object was
3651 removed with "remove-symbol-file" or with
3652 "nosharedlibrary". In the former case, we don't know
3653 whether another dynamic object might have loaded over the
3654 breakpoint's address -- the user might well let us know
3655 about it next with add-symbol-file (the whole point of
3656 add-symbol-file is letting the user manually maintain a
3657 list of dynamically loaded objects). If we have the
3658 breakpoint's shadow memory, that is, this is a software
3659 breakpoint managed by GDB, check whether the breakpoint
3660 is still inserted in memory, to avoid overwriting wrong
3661 code with stale saved shadow contents. Note that HW
3662 breakpoints don't have shadow memory, as they're
3663 implemented using a mechanism that is not dependent on
3664 being able to modify the target's memory, and as such
3665 they should always be removed. */
3666 if (bl->shlib_disabled
3667 && bl->target_info.shadow_len != 0
3668 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3669 val = 0;
3670 else
3671 val = bl->owner->ops->remove_location (bl, reason);
3672 }
3673 else
3674 {
3675 /* This breakpoint is in an overlay section.
3676 Did we set a breakpoint at the LMA? */
3677 if (!overlay_events_enabled)
3678 {
3679 /* Yes -- overlay event support is not active, so we
3680 should have set a breakpoint at the LMA. Remove it.
3681 */
3682 /* Ignore any failures: if the LMA is in ROM, we will
3683 have already warned when we failed to insert it. */
3684 if (bl->loc_type == bp_loc_hardware_breakpoint)
3685 target_remove_hw_breakpoint (bl->gdbarch,
3686 &bl->overlay_target_info);
3687 else
3688 target_remove_breakpoint (bl->gdbarch,
3689 &bl->overlay_target_info,
3690 reason);
3691 }
3692 /* Did we set a breakpoint at the VMA?
3693 If so, we will have marked the breakpoint 'inserted'. */
3694 if (bl->inserted)
3695 {
3696 /* Yes -- remove it. Previously we did not bother to
3697 remove the breakpoint if the section had been
3698 unmapped, but let's not rely on that being safe. We
3699 don't know what the overlay manager might do. */
3700
3701 /* However, we should remove *software* breakpoints only
3702 if the section is still mapped, or else we overwrite
3703 wrong code with the saved shadow contents. */
3704 if (bl->loc_type == bp_loc_hardware_breakpoint
3705 || section_is_mapped (bl->section))
3706 val = bl->owner->ops->remove_location (bl, reason);
3707 else
3708 val = 0;
3709 }
3710 else
3711 {
3712 /* No -- not inserted, so no need to remove. No error. */
3713 val = 0;
3714 }
3715 }
3716
3717 /* In some cases, we might not be able to remove a breakpoint in
3718 a shared library that has already been removed, but we have
3719 not yet processed the shlib unload event. Similarly for an
3720 unloaded add-symbol-file object - the user might not yet have
3721 had the chance to remove-symbol-file it. shlib_disabled will
3722 be set if the library/object has already been removed, but
3723 the breakpoint hasn't been uninserted yet, e.g., after
3724 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3725 always-inserted mode. */
3726 if (val
3727 && (bl->loc_type == bp_loc_software_breakpoint
3728 && (bl->shlib_disabled
3729 || solib_name_from_address (bl->pspace, bl->address)
3730 || shared_objfile_contains_address_p (bl->pspace,
3731 bl->address))))
3732 val = 0;
3733
3734 if (val)
3735 return val;
3736 bl->inserted = (reason == DETACH_BREAKPOINT);
3737 }
3738 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3739 {
3740 gdb_assert (bl->owner->ops != NULL
3741 && bl->owner->ops->remove_location != NULL);
3742
3743 bl->inserted = (reason == DETACH_BREAKPOINT);
3744 bl->owner->ops->remove_location (bl, reason);
3745
3746 /* Failure to remove any of the hardware watchpoints comes here. */
3747 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3748 warning (_("Could not remove hardware watchpoint %d."),
3749 bl->owner->number);
3750 }
3751 else if (bl->owner->type == bp_catchpoint
3752 && breakpoint_enabled (bl->owner)
3753 && !bl->duplicate)
3754 {
3755 gdb_assert (bl->owner->ops != NULL
3756 && bl->owner->ops->remove_location != NULL);
3757
3758 val = bl->owner->ops->remove_location (bl, reason);
3759 if (val)
3760 return val;
3761
3762 bl->inserted = (reason == DETACH_BREAKPOINT);
3763 }
3764
3765 return 0;
3766 }
3767
3768 static int
3769 remove_breakpoint (struct bp_location *bl)
3770 {
3771 /* BL is never in moribund_locations by our callers. */
3772 gdb_assert (bl->owner != NULL);
3773
3774 /* The type of none suggests that owner is actually deleted.
3775 This should not ever happen. */
3776 gdb_assert (bl->owner->type != bp_none);
3777
3778 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3779
3780 switch_to_program_space_and_thread (bl->pspace);
3781
3782 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3783 }
3784
3785 /* Clear the "inserted" flag in all breakpoints. */
3786
3787 void
3788 mark_breakpoints_out (void)
3789 {
3790 struct bp_location *bl, **blp_tmp;
3791
3792 ALL_BP_LOCATIONS (bl, blp_tmp)
3793 if (bl->pspace == current_program_space)
3794 bl->inserted = 0;
3795 }
3796
3797 /* Clear the "inserted" flag in all breakpoints and delete any
3798 breakpoints which should go away between runs of the program.
3799
3800 Plus other such housekeeping that has to be done for breakpoints
3801 between runs.
3802
3803 Note: this function gets called at the end of a run (by
3804 generic_mourn_inferior) and when a run begins (by
3805 init_wait_for_inferior). */
3806
3807
3808
3809 void
3810 breakpoint_init_inferior (enum inf_context context)
3811 {
3812 struct breakpoint *b, *b_tmp;
3813 struct program_space *pspace = current_program_space;
3814
3815 /* If breakpoint locations are shared across processes, then there's
3816 nothing to do. */
3817 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3818 return;
3819
3820 mark_breakpoints_out ();
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 case bp_single_step:
3861
3862 /* Also remove single-step breakpoints. */
3863
3864 delete_breakpoint (b);
3865 break;
3866
3867 case bp_watchpoint:
3868 case bp_hardware_watchpoint:
3869 case bp_read_watchpoint:
3870 case bp_access_watchpoint:
3871 {
3872 struct watchpoint *w = (struct watchpoint *) b;
3873
3874 /* Likewise for watchpoints on local expressions. */
3875 if (w->exp_valid_block != NULL)
3876 delete_breakpoint (b);
3877 else
3878 {
3879 /* Get rid of existing locations, which are no longer
3880 valid. New ones will be created in
3881 update_watchpoint, when the inferior is restarted.
3882 The next update_global_location_list call will
3883 garbage collect them. */
3884 b->loc = NULL;
3885
3886 if (context == inf_starting)
3887 {
3888 /* Reset val field to force reread of starting value in
3889 insert_breakpoints. */
3890 w->val.reset (nullptr);
3891 w->val_valid = false;
3892 }
3893 }
3894 }
3895 break;
3896 default:
3897 break;
3898 }
3899 }
3900
3901 /* Get rid of the moribund locations. */
3902 for (bp_location *bl : moribund_locations)
3903 decref_bp_location (&bl);
3904 moribund_locations.clear ();
3905 }
3906
3907 /* These functions concern about actual breakpoints inserted in the
3908 target --- to e.g. check if we need to do decr_pc adjustment or if
3909 we need to hop over the bkpt --- so we check for address space
3910 match, not program space. */
3911
3912 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3913 exists at PC. It returns ordinary_breakpoint_here if it's an
3914 ordinary breakpoint, or permanent_breakpoint_here if it's a
3915 permanent breakpoint.
3916 - When continuing from a location with an ordinary breakpoint, we
3917 actually single step once before calling insert_breakpoints.
3918 - When continuing from a location with a permanent breakpoint, we
3919 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3920 the target, to advance the PC past the breakpoint. */
3921
3922 enum breakpoint_here
3923 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3924 {
3925 struct bp_location *bl, **blp_tmp;
3926 int any_breakpoint_here = 0;
3927
3928 ALL_BP_LOCATIONS (bl, blp_tmp)
3929 {
3930 if (bl->loc_type != bp_loc_software_breakpoint
3931 && bl->loc_type != bp_loc_hardware_breakpoint)
3932 continue;
3933
3934 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3935 if ((breakpoint_enabled (bl->owner)
3936 || bl->permanent)
3937 && breakpoint_location_address_match (bl, aspace, pc))
3938 {
3939 if (overlay_debugging
3940 && section_is_overlay (bl->section)
3941 && !section_is_mapped (bl->section))
3942 continue; /* unmapped overlay -- can't be a match */
3943 else if (bl->permanent)
3944 return permanent_breakpoint_here;
3945 else
3946 any_breakpoint_here = 1;
3947 }
3948 }
3949
3950 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3951 }
3952
3953 /* See breakpoint.h. */
3954
3955 int
3956 breakpoint_in_range_p (const address_space *aspace,
3957 CORE_ADDR addr, ULONGEST len)
3958 {
3959 struct bp_location *bl, **blp_tmp;
3960
3961 ALL_BP_LOCATIONS (bl, blp_tmp)
3962 {
3963 if (bl->loc_type != bp_loc_software_breakpoint
3964 && bl->loc_type != bp_loc_hardware_breakpoint)
3965 continue;
3966
3967 if ((breakpoint_enabled (bl->owner)
3968 || bl->permanent)
3969 && breakpoint_location_address_range_overlap (bl, aspace,
3970 addr, len))
3971 {
3972 if (overlay_debugging
3973 && section_is_overlay (bl->section)
3974 && !section_is_mapped (bl->section))
3975 {
3976 /* Unmapped overlay -- can't be a match. */
3977 continue;
3978 }
3979
3980 return 1;
3981 }
3982 }
3983
3984 return 0;
3985 }
3986
3987 /* Return true if there's a moribund breakpoint at PC. */
3988
3989 int
3990 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3991 {
3992 for (bp_location *loc : moribund_locations)
3993 if (breakpoint_location_address_match (loc, aspace, pc))
3994 return 1;
3995
3996 return 0;
3997 }
3998
3999 /* Returns non-zero iff BL is inserted at PC, in address space
4000 ASPACE. */
4001
4002 static int
4003 bp_location_inserted_here_p (struct bp_location *bl,
4004 const address_space *aspace, CORE_ADDR pc)
4005 {
4006 if (bl->inserted
4007 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4008 aspace, pc))
4009 {
4010 if (overlay_debugging
4011 && section_is_overlay (bl->section)
4012 && !section_is_mapped (bl->section))
4013 return 0; /* unmapped overlay -- can't be a match */
4014 else
4015 return 1;
4016 }
4017 return 0;
4018 }
4019
4020 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4021
4022 int
4023 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4024 {
4025 struct bp_location **blp, **blp_tmp = NULL;
4026
4027 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4028 {
4029 struct bp_location *bl = *blp;
4030
4031 if (bl->loc_type != bp_loc_software_breakpoint
4032 && bl->loc_type != bp_loc_hardware_breakpoint)
4033 continue;
4034
4035 if (bp_location_inserted_here_p (bl, aspace, pc))
4036 return 1;
4037 }
4038 return 0;
4039 }
4040
4041 /* This function returns non-zero iff there is a software breakpoint
4042 inserted at PC. */
4043
4044 int
4045 software_breakpoint_inserted_here_p (const address_space *aspace,
4046 CORE_ADDR pc)
4047 {
4048 struct bp_location **blp, **blp_tmp = NULL;
4049
4050 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4051 {
4052 struct bp_location *bl = *blp;
4053
4054 if (bl->loc_type != bp_loc_software_breakpoint)
4055 continue;
4056
4057 if (bp_location_inserted_here_p (bl, aspace, pc))
4058 return 1;
4059 }
4060
4061 return 0;
4062 }
4063
4064 /* See breakpoint.h. */
4065
4066 int
4067 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4068 CORE_ADDR pc)
4069 {
4070 struct bp_location **blp, **blp_tmp = NULL;
4071
4072 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4073 {
4074 struct bp_location *bl = *blp;
4075
4076 if (bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082
4083 return 0;
4084 }
4085
4086 int
4087 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4088 CORE_ADDR addr, ULONGEST len)
4089 {
4090 struct breakpoint *bpt;
4091
4092 ALL_BREAKPOINTS (bpt)
4093 {
4094 struct bp_location *loc;
4095
4096 if (bpt->type != bp_hardware_watchpoint
4097 && bpt->type != bp_access_watchpoint)
4098 continue;
4099
4100 if (!breakpoint_enabled (bpt))
4101 continue;
4102
4103 for (loc = bpt->loc; loc; loc = loc->next)
4104 if (loc->pspace->aspace == aspace && loc->inserted)
4105 {
4106 CORE_ADDR l, h;
4107
4108 /* Check for intersection. */
4109 l = std::max<CORE_ADDR> (loc->address, addr);
4110 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4111 if (l < h)
4112 return 1;
4113 }
4114 }
4115 return 0;
4116 }
4117
4118 /* See breakpoint.h. */
4119
4120 bool
4121 is_catchpoint (struct breakpoint *b)
4122 {
4123 return (b->type == bp_catchpoint);
4124 }
4125
4126 /* Frees any storage that is part of a bpstat. Does not walk the
4127 'next' chain. */
4128
4129 bpstats::~bpstats ()
4130 {
4131 if (bp_location_at != NULL)
4132 decref_bp_location (&bp_location_at);
4133 }
4134
4135 /* Clear a bpstat so that it says we are not at any breakpoint.
4136 Also free any storage that is part of a bpstat. */
4137
4138 void
4139 bpstat_clear (bpstat *bsp)
4140 {
4141 bpstat p;
4142 bpstat q;
4143
4144 if (bsp == 0)
4145 return;
4146 p = *bsp;
4147 while (p != NULL)
4148 {
4149 q = p->next;
4150 delete p;
4151 p = q;
4152 }
4153 *bsp = NULL;
4154 }
4155
4156 bpstats::bpstats (const bpstats &other)
4157 : next (NULL),
4158 bp_location_at (other.bp_location_at),
4159 breakpoint_at (other.breakpoint_at),
4160 commands (other.commands),
4161 print (other.print),
4162 stop (other.stop),
4163 print_it (other.print_it)
4164 {
4165 if (other.old_val != NULL)
4166 old_val = release_value (value_copy (other.old_val.get ()));
4167 incref_bp_location (bp_location_at);
4168 }
4169
4170 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4171 is part of the bpstat is copied as well. */
4172
4173 bpstat
4174 bpstat_copy (bpstat bs)
4175 {
4176 bpstat p = NULL;
4177 bpstat tmp;
4178 bpstat retval = NULL;
4179
4180 if (bs == NULL)
4181 return bs;
4182
4183 for (; bs != NULL; bs = bs->next)
4184 {
4185 tmp = new bpstats (*bs);
4186
4187 if (p == NULL)
4188 /* This is the first thing in the chain. */
4189 retval = tmp;
4190 else
4191 p->next = tmp;
4192 p = tmp;
4193 }
4194 p->next = NULL;
4195 return retval;
4196 }
4197
4198 /* Find the bpstat associated with this breakpoint. */
4199
4200 bpstat
4201 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4202 {
4203 if (bsp == NULL)
4204 return NULL;
4205
4206 for (; bsp != NULL; bsp = bsp->next)
4207 {
4208 if (bsp->breakpoint_at == breakpoint)
4209 return bsp;
4210 }
4211 return NULL;
4212 }
4213
4214 /* See breakpoint.h. */
4215
4216 bool
4217 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4218 {
4219 for (; bsp != NULL; bsp = bsp->next)
4220 {
4221 if (bsp->breakpoint_at == NULL)
4222 {
4223 /* A moribund location can never explain a signal other than
4224 GDB_SIGNAL_TRAP. */
4225 if (sig == GDB_SIGNAL_TRAP)
4226 return true;
4227 }
4228 else
4229 {
4230 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4231 sig))
4232 return true;
4233 }
4234 }
4235
4236 return false;
4237 }
4238
4239 /* Put in *NUM the breakpoint number of the first breakpoint we are
4240 stopped at. *BSP upon return is a bpstat which points to the
4241 remaining breakpoints stopped at (but which is not guaranteed to be
4242 good for anything but further calls to bpstat_num).
4243
4244 Return 0 if passed a bpstat which does not indicate any breakpoints.
4245 Return -1 if stopped at a breakpoint that has been deleted since
4246 we set it.
4247 Return 1 otherwise. */
4248
4249 int
4250 bpstat_num (bpstat *bsp, int *num)
4251 {
4252 struct breakpoint *b;
4253
4254 if ((*bsp) == NULL)
4255 return 0; /* No more breakpoint values */
4256
4257 /* We assume we'll never have several bpstats that correspond to a
4258 single breakpoint -- otherwise, this function might return the
4259 same number more than once and this will look ugly. */
4260 b = (*bsp)->breakpoint_at;
4261 *bsp = (*bsp)->next;
4262 if (b == NULL)
4263 return -1; /* breakpoint that's been deleted since */
4264
4265 *num = b->number; /* We have its number */
4266 return 1;
4267 }
4268
4269 /* See breakpoint.h. */
4270
4271 void
4272 bpstat_clear_actions (void)
4273 {
4274 bpstat bs;
4275
4276 if (inferior_ptid == null_ptid)
4277 return;
4278
4279 thread_info *tp = inferior_thread ();
4280 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4281 {
4282 bs->commands = NULL;
4283 bs->old_val.reset (nullptr);
4284 }
4285 }
4286
4287 /* Called when a command is about to proceed the inferior. */
4288
4289 static void
4290 breakpoint_about_to_proceed (void)
4291 {
4292 if (inferior_ptid != null_ptid)
4293 {
4294 struct thread_info *tp = inferior_thread ();
4295
4296 /* Allow inferior function calls in breakpoint commands to not
4297 interrupt the command list. When the call finishes
4298 successfully, the inferior will be standing at the same
4299 breakpoint as if nothing happened. */
4300 if (tp->control.in_infcall)
4301 return;
4302 }
4303
4304 breakpoint_proceeded = 1;
4305 }
4306
4307 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4308 or its equivalent. */
4309
4310 static int
4311 command_line_is_silent (struct command_line *cmd)
4312 {
4313 return cmd && (strcmp ("silent", cmd->line) == 0);
4314 }
4315
4316 /* Execute all the commands associated with all the breakpoints at
4317 this location. Any of these commands could cause the process to
4318 proceed beyond this point, etc. We look out for such changes by
4319 checking the global "breakpoint_proceeded" after each command.
4320
4321 Returns true if a breakpoint command resumed the inferior. In that
4322 case, it is the caller's responsibility to recall it again with the
4323 bpstat of the current thread. */
4324
4325 static int
4326 bpstat_do_actions_1 (bpstat *bsp)
4327 {
4328 bpstat bs;
4329 int again = 0;
4330
4331 /* Avoid endless recursion if a `source' command is contained
4332 in bs->commands. */
4333 if (executing_breakpoint_commands)
4334 return 0;
4335
4336 scoped_restore save_executing
4337 = make_scoped_restore (&executing_breakpoint_commands, 1);
4338
4339 scoped_restore preventer = prevent_dont_repeat ();
4340
4341 /* This pointer will iterate over the list of bpstat's. */
4342 bs = *bsp;
4343
4344 breakpoint_proceeded = 0;
4345 for (; bs != NULL; bs = bs->next)
4346 {
4347 struct command_line *cmd = NULL;
4348
4349 /* Take ownership of the BSP's command tree, if it has one.
4350
4351 The command tree could legitimately contain commands like
4352 'step' and 'next', which call clear_proceed_status, which
4353 frees stop_bpstat's command tree. To make sure this doesn't
4354 free the tree we're executing out from under us, we need to
4355 take ownership of the tree ourselves. Since a given bpstat's
4356 commands are only executed once, we don't need to copy it; we
4357 can clear the pointer in the bpstat, and make sure we free
4358 the tree when we're done. */
4359 counted_command_line ccmd = bs->commands;
4360 bs->commands = NULL;
4361 if (ccmd != NULL)
4362 cmd = ccmd.get ();
4363 if (command_line_is_silent (cmd))
4364 {
4365 /* The action has been already done by bpstat_stop_status. */
4366 cmd = cmd->next;
4367 }
4368
4369 while (cmd != NULL)
4370 {
4371 execute_control_command (cmd);
4372
4373 if (breakpoint_proceeded)
4374 break;
4375 else
4376 cmd = cmd->next;
4377 }
4378
4379 if (breakpoint_proceeded)
4380 {
4381 if (current_ui->async)
4382 /* If we are in async mode, then the target might be still
4383 running, not stopped at any breakpoint, so nothing for
4384 us to do here -- just return to the event loop. */
4385 ;
4386 else
4387 /* In sync mode, when execute_control_command returns
4388 we're already standing on the next breakpoint.
4389 Breakpoint commands for that stop were not run, since
4390 execute_command does not run breakpoint commands --
4391 only command_line_handler does, but that one is not
4392 involved in execution of breakpoint commands. So, we
4393 can now execute breakpoint commands. It should be
4394 noted that making execute_command do bpstat actions is
4395 not an option -- in this case we'll have recursive
4396 invocation of bpstat for each breakpoint with a
4397 command, and can easily blow up GDB stack. Instead, we
4398 return true, which will trigger the caller to recall us
4399 with the new stop_bpstat. */
4400 again = 1;
4401 break;
4402 }
4403 }
4404 return again;
4405 }
4406
4407 /* Helper for bpstat_do_actions. Get the current thread, if there's
4408 one, is alive and has execution. Return NULL otherwise. */
4409
4410 static thread_info *
4411 get_bpstat_thread ()
4412 {
4413 if (inferior_ptid == null_ptid || !target_has_execution)
4414 return NULL;
4415
4416 thread_info *tp = inferior_thread ();
4417 if (tp->state == THREAD_EXITED || tp->executing)
4418 return NULL;
4419 return tp;
4420 }
4421
4422 void
4423 bpstat_do_actions (void)
4424 {
4425 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4426 thread_info *tp;
4427
4428 /* Do any commands attached to breakpoint we are stopped at. */
4429 while ((tp = get_bpstat_thread ()) != NULL)
4430 {
4431 /* Since in sync mode, bpstat_do_actions may resume the
4432 inferior, and only return when it is stopped at the next
4433 breakpoint, we keep doing breakpoint actions until it returns
4434 false to indicate the inferior was not resumed. */
4435 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4436 break;
4437 }
4438
4439 cleanup_if_error.release ();
4440 }
4441
4442 /* Print out the (old or new) value associated with a watchpoint. */
4443
4444 static void
4445 watchpoint_value_print (struct value *val, struct ui_file *stream)
4446 {
4447 if (val == NULL)
4448 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4449 else
4450 {
4451 struct value_print_options opts;
4452 get_user_print_options (&opts);
4453 value_print (val, stream, &opts);
4454 }
4455 }
4456
4457 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4458 debugging multiple threads. */
4459
4460 void
4461 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4462 {
4463 if (uiout->is_mi_like_p ())
4464 return;
4465
4466 uiout->text ("\n");
4467
4468 if (show_thread_that_caused_stop ())
4469 {
4470 const char *name;
4471 struct thread_info *thr = inferior_thread ();
4472
4473 uiout->text ("Thread ");
4474 uiout->field_string ("thread-id", print_thread_id (thr));
4475
4476 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4477 if (name != NULL)
4478 {
4479 uiout->text (" \"");
4480 uiout->field_string ("name", name);
4481 uiout->text ("\"");
4482 }
4483
4484 uiout->text (" hit ");
4485 }
4486 }
4487
4488 /* Generic routine for printing messages indicating why we
4489 stopped. The behavior of this function depends on the value
4490 'print_it' in the bpstat structure. Under some circumstances we
4491 may decide not to print anything here and delegate the task to
4492 normal_stop(). */
4493
4494 static enum print_stop_action
4495 print_bp_stop_message (bpstat bs)
4496 {
4497 switch (bs->print_it)
4498 {
4499 case print_it_noop:
4500 /* Nothing should be printed for this bpstat entry. */
4501 return PRINT_UNKNOWN;
4502 break;
4503
4504 case print_it_done:
4505 /* We still want to print the frame, but we already printed the
4506 relevant messages. */
4507 return PRINT_SRC_AND_LOC;
4508 break;
4509
4510 case print_it_normal:
4511 {
4512 struct breakpoint *b = bs->breakpoint_at;
4513
4514 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4515 which has since been deleted. */
4516 if (b == NULL)
4517 return PRINT_UNKNOWN;
4518
4519 /* Normal case. Call the breakpoint's print_it method. */
4520 return b->ops->print_it (bs);
4521 }
4522 break;
4523
4524 default:
4525 internal_error (__FILE__, __LINE__,
4526 _("print_bp_stop_message: unrecognized enum value"));
4527 break;
4528 }
4529 }
4530
4531 /* A helper function that prints a shared library stopped event. */
4532
4533 static void
4534 print_solib_event (int is_catchpoint)
4535 {
4536 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4537 bool any_added = !current_program_space->added_solibs.empty ();
4538
4539 if (!is_catchpoint)
4540 {
4541 if (any_added || any_deleted)
4542 current_uiout->text (_("Stopped due to shared library event:\n"));
4543 else
4544 current_uiout->text (_("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (current_uiout->is_mi_like_p ())
4549 current_uiout->field_string ("reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 current_uiout->text (_(" Inferior unloaded "));
4555 ui_out_emit_list list_emitter (current_uiout, "removed");
4556 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4557 {
4558 const std::string &name = current_program_space->deleted_solibs[ix];
4559
4560 if (ix > 0)
4561 current_uiout->text (" ");
4562 current_uiout->field_string ("library", name);
4563 current_uiout->text ("\n");
4564 }
4565 }
4566
4567 if (any_added)
4568 {
4569 current_uiout->text (_(" Inferior loaded "));
4570 ui_out_emit_list list_emitter (current_uiout, "added");
4571 bool first = true;
4572 for (so_list *iter : current_program_space->added_solibs)
4573 {
4574 if (!first)
4575 current_uiout->text (" ");
4576 first = false;
4577 current_uiout->field_string ("library", iter->so_name);
4578 current_uiout->text ("\n");
4579 }
4580 }
4581 }
4582
4583 /* Print a message indicating what happened. This is called from
4584 normal_stop(). The input to this routine is the head of the bpstat
4585 list - a list of the eventpoints that caused this stop. KIND is
4586 the target_waitkind for the stopping event. This
4587 routine calls the generic print routine for printing a message
4588 about reasons for stopping. This will print (for example) the
4589 "Breakpoint n," part of the output. The return value of this
4590 routine is one of:
4591
4592 PRINT_UNKNOWN: Means we printed nothing.
4593 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4594 code to print the location. An example is
4595 "Breakpoint 1, " which should be followed by
4596 the location.
4597 PRINT_SRC_ONLY: Means we printed something, but there is no need
4598 to also print the location part of the message.
4599 An example is the catch/throw messages, which
4600 don't require a location appended to the end.
4601 PRINT_NOTHING: We have done some printing and we don't need any
4602 further info to be printed. */
4603
4604 enum print_stop_action
4605 bpstat_print (bpstat bs, int kind)
4606 {
4607 enum print_stop_action val;
4608
4609 /* Maybe another breakpoint in the chain caused us to stop.
4610 (Currently all watchpoints go on the bpstat whether hit or not.
4611 That probably could (should) be changed, provided care is taken
4612 with respect to bpstat_explains_signal). */
4613 for (; bs; bs = bs->next)
4614 {
4615 val = print_bp_stop_message (bs);
4616 if (val == PRINT_SRC_ONLY
4617 || val == PRINT_SRC_AND_LOC
4618 || val == PRINT_NOTHING)
4619 return val;
4620 }
4621
4622 /* If we had hit a shared library event breakpoint,
4623 print_bp_stop_message would print out this message. If we hit an
4624 OS-level shared library event, do the same thing. */
4625 if (kind == TARGET_WAITKIND_LOADED)
4626 {
4627 print_solib_event (0);
4628 return PRINT_NOTHING;
4629 }
4630
4631 /* We reached the end of the chain, or we got a null BS to start
4632 with and nothing was printed. */
4633 return PRINT_UNKNOWN;
4634 }
4635
4636 /* Evaluate the boolean expression EXP and return the result. */
4637
4638 static bool
4639 breakpoint_cond_eval (expression *exp)
4640 {
4641 struct value *mark = value_mark ();
4642 bool res = value_true (evaluate_expression (exp));
4643
4644 value_free_to_mark (mark);
4645 return res;
4646 }
4647
4648 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4649
4650 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4651 : next (NULL),
4652 bp_location_at (bl),
4653 breakpoint_at (bl->owner),
4654 commands (NULL),
4655 print (0),
4656 stop (0),
4657 print_it (print_it_normal)
4658 {
4659 incref_bp_location (bl);
4660 **bs_link_pointer = this;
4661 *bs_link_pointer = &next;
4662 }
4663
4664 bpstats::bpstats ()
4665 : next (NULL),
4666 bp_location_at (NULL),
4667 breakpoint_at (NULL),
4668 commands (NULL),
4669 print (0),
4670 stop (0),
4671 print_it (print_it_normal)
4672 {
4673 }
4674 \f
4675 /* The target has stopped with waitstatus WS. Check if any hardware
4676 watchpoints have triggered, according to the target. */
4677
4678 int
4679 watchpoints_triggered (struct target_waitstatus *ws)
4680 {
4681 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4682 CORE_ADDR addr;
4683 struct breakpoint *b;
4684
4685 if (!stopped_by_watchpoint)
4686 {
4687 /* We were not stopped by a watchpoint. Mark all watchpoints
4688 as not triggered. */
4689 ALL_BREAKPOINTS (b)
4690 if (is_hardware_watchpoint (b))
4691 {
4692 struct watchpoint *w = (struct watchpoint *) b;
4693
4694 w->watchpoint_triggered = watch_triggered_no;
4695 }
4696
4697 return 0;
4698 }
4699
4700 if (!target_stopped_data_address (current_top_target (), &addr))
4701 {
4702 /* We were stopped by a watchpoint, but we don't know where.
4703 Mark all watchpoints as unknown. */
4704 ALL_BREAKPOINTS (b)
4705 if (is_hardware_watchpoint (b))
4706 {
4707 struct watchpoint *w = (struct watchpoint *) b;
4708
4709 w->watchpoint_triggered = watch_triggered_unknown;
4710 }
4711
4712 return 1;
4713 }
4714
4715 /* The target could report the data address. Mark watchpoints
4716 affected by this data address as triggered, and all others as not
4717 triggered. */
4718
4719 ALL_BREAKPOINTS (b)
4720 if (is_hardware_watchpoint (b))
4721 {
4722 struct watchpoint *w = (struct watchpoint *) b;
4723 struct bp_location *loc;
4724
4725 w->watchpoint_triggered = watch_triggered_no;
4726 for (loc = b->loc; loc; loc = loc->next)
4727 {
4728 if (is_masked_watchpoint (b))
4729 {
4730 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4731 CORE_ADDR start = loc->address & w->hw_wp_mask;
4732
4733 if (newaddr == start)
4734 {
4735 w->watchpoint_triggered = watch_triggered_yes;
4736 break;
4737 }
4738 }
4739 /* Exact match not required. Within range is sufficient. */
4740 else if (target_watchpoint_addr_within_range (current_top_target (),
4741 addr, loc->address,
4742 loc->length))
4743 {
4744 w->watchpoint_triggered = watch_triggered_yes;
4745 break;
4746 }
4747 }
4748 }
4749
4750 return 1;
4751 }
4752
4753 /* Possible return values for watchpoint_check. */
4754 enum wp_check_result
4755 {
4756 /* The watchpoint has been deleted. */
4757 WP_DELETED = 1,
4758
4759 /* The value has changed. */
4760 WP_VALUE_CHANGED = 2,
4761
4762 /* The value has not changed. */
4763 WP_VALUE_NOT_CHANGED = 3,
4764
4765 /* Ignore this watchpoint, no matter if the value changed or not. */
4766 WP_IGNORE = 4,
4767 };
4768
4769 #define BP_TEMPFLAG 1
4770 #define BP_HARDWAREFLAG 2
4771
4772 /* Evaluate watchpoint condition expression and check if its value
4773 changed. */
4774
4775 static wp_check_result
4776 watchpoint_check (bpstat bs)
4777 {
4778 struct watchpoint *b;
4779 struct frame_info *fr;
4780 int within_current_scope;
4781
4782 /* BS is built from an existing struct breakpoint. */
4783 gdb_assert (bs->breakpoint_at != NULL);
4784 b = (struct watchpoint *) bs->breakpoint_at;
4785
4786 /* If this is a local watchpoint, we only want to check if the
4787 watchpoint frame is in scope if the current thread is the thread
4788 that was used to create the watchpoint. */
4789 if (!watchpoint_in_thread_scope (b))
4790 return WP_IGNORE;
4791
4792 if (b->exp_valid_block == NULL)
4793 within_current_scope = 1;
4794 else
4795 {
4796 struct frame_info *frame = get_current_frame ();
4797 struct gdbarch *frame_arch = get_frame_arch (frame);
4798 CORE_ADDR frame_pc = get_frame_pc (frame);
4799
4800 /* stack_frame_destroyed_p() returns a non-zero value if we're
4801 still in the function but the stack frame has already been
4802 invalidated. Since we can't rely on the values of local
4803 variables after the stack has been destroyed, we are treating
4804 the watchpoint in that state as `not changed' without further
4805 checking. Don't mark watchpoints as changed if the current
4806 frame is in an epilogue - even if they are in some other
4807 frame, our view of the stack is likely to be wrong and
4808 frame_find_by_id could error out. */
4809 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4810 return WP_IGNORE;
4811
4812 fr = frame_find_by_id (b->watchpoint_frame);
4813 within_current_scope = (fr != NULL);
4814
4815 /* If we've gotten confused in the unwinder, we might have
4816 returned a frame that can't describe this variable. */
4817 if (within_current_scope)
4818 {
4819 struct symbol *function;
4820
4821 function = get_frame_function (fr);
4822 if (function == NULL
4823 || !contained_in (b->exp_valid_block,
4824 SYMBOL_BLOCK_VALUE (function)))
4825 within_current_scope = 0;
4826 }
4827
4828 if (within_current_scope)
4829 /* If we end up stopping, the current frame will get selected
4830 in normal_stop. So this call to select_frame won't affect
4831 the user. */
4832 select_frame (fr);
4833 }
4834
4835 if (within_current_scope)
4836 {
4837 /* We use value_{,free_to_}mark because it could be a *long*
4838 time before we return to the command level and call
4839 free_all_values. We can't call free_all_values because we
4840 might be in the middle of evaluating a function call. */
4841
4842 int pc = 0;
4843 struct value *mark;
4844 struct value *new_val;
4845
4846 if (is_masked_watchpoint (b))
4847 /* Since we don't know the exact trigger address (from
4848 stopped_data_address), just tell the user we've triggered
4849 a mask watchpoint. */
4850 return WP_VALUE_CHANGED;
4851
4852 mark = value_mark ();
4853 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4854
4855 if (b->val_bitsize != 0)
4856 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4857
4858 /* We use value_equal_contents instead of value_equal because
4859 the latter coerces an array to a pointer, thus comparing just
4860 the address of the array instead of its contents. This is
4861 not what we want. */
4862 if ((b->val != NULL) != (new_val != NULL)
4863 || (b->val != NULL && !value_equal_contents (b->val.get (),
4864 new_val)))
4865 {
4866 bs->old_val = b->val;
4867 b->val = release_value (new_val);
4868 b->val_valid = true;
4869 if (new_val != NULL)
4870 value_free_to_mark (mark);
4871 return WP_VALUE_CHANGED;
4872 }
4873 else
4874 {
4875 /* Nothing changed. */
4876 value_free_to_mark (mark);
4877 return WP_VALUE_NOT_CHANGED;
4878 }
4879 }
4880 else
4881 {
4882 /* This seems like the only logical thing to do because
4883 if we temporarily ignored the watchpoint, then when
4884 we reenter the block in which it is valid it contains
4885 garbage (in the case of a function, it may have two
4886 garbage values, one before and one after the prologue).
4887 So we can't even detect the first assignment to it and
4888 watch after that (since the garbage may or may not equal
4889 the first value assigned). */
4890 /* We print all the stop information in
4891 breakpoint_ops->print_it, but in this case, by the time we
4892 call breakpoint_ops->print_it this bp will be deleted
4893 already. So we have no choice but print the information
4894 here. */
4895
4896 SWITCH_THRU_ALL_UIS ()
4897 {
4898 struct ui_out *uiout = current_uiout;
4899
4900 if (uiout->is_mi_like_p ())
4901 uiout->field_string
4902 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4903 uiout->message ("\nWatchpoint %pF deleted because the program has "
4904 "left the block in\n"
4905 "which its expression is valid.\n",
4906 signed_field ("wpnum", b->number));
4907 }
4908
4909 /* Make sure the watchpoint's commands aren't executed. */
4910 b->commands = NULL;
4911 watchpoint_del_at_next_stop (b);
4912
4913 return WP_DELETED;
4914 }
4915 }
4916
4917 /* Return true if it looks like target has stopped due to hitting
4918 breakpoint location BL. This function does not check if we should
4919 stop, only if BL explains the stop. */
4920
4921 static int
4922 bpstat_check_location (const struct bp_location *bl,
4923 const address_space *aspace, CORE_ADDR bp_addr,
4924 const struct target_waitstatus *ws)
4925 {
4926 struct breakpoint *b = bl->owner;
4927
4928 /* BL is from an existing breakpoint. */
4929 gdb_assert (b != NULL);
4930
4931 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4932 }
4933
4934 /* Determine if the watched values have actually changed, and we
4935 should stop. If not, set BS->stop to 0. */
4936
4937 static void
4938 bpstat_check_watchpoint (bpstat bs)
4939 {
4940 const struct bp_location *bl;
4941 struct watchpoint *b;
4942
4943 /* BS is built for existing struct breakpoint. */
4944 bl = bs->bp_location_at;
4945 gdb_assert (bl != NULL);
4946 b = (struct watchpoint *) bs->breakpoint_at;
4947 gdb_assert (b != NULL);
4948
4949 {
4950 int must_check_value = 0;
4951
4952 if (b->type == bp_watchpoint)
4953 /* For a software watchpoint, we must always check the
4954 watched value. */
4955 must_check_value = 1;
4956 else if (b->watchpoint_triggered == watch_triggered_yes)
4957 /* We have a hardware watchpoint (read, write, or access)
4958 and the target earlier reported an address watched by
4959 this watchpoint. */
4960 must_check_value = 1;
4961 else if (b->watchpoint_triggered == watch_triggered_unknown
4962 && b->type == bp_hardware_watchpoint)
4963 /* We were stopped by a hardware watchpoint, but the target could
4964 not report the data address. We must check the watchpoint's
4965 value. Access and read watchpoints are out of luck; without
4966 a data address, we can't figure it out. */
4967 must_check_value = 1;
4968
4969 if (must_check_value)
4970 {
4971 wp_check_result e;
4972
4973 try
4974 {
4975 e = watchpoint_check (bs);
4976 }
4977 catch (const gdb_exception &ex)
4978 {
4979 exception_fprintf (gdb_stderr, ex,
4980 "Error evaluating expression "
4981 "for watchpoint %d\n",
4982 b->number);
4983
4984 SWITCH_THRU_ALL_UIS ()
4985 {
4986 printf_filtered (_("Watchpoint %d deleted.\n"),
4987 b->number);
4988 }
4989 watchpoint_del_at_next_stop (b);
4990 e = WP_DELETED;
4991 }
4992
4993 switch (e)
4994 {
4995 case WP_DELETED:
4996 /* We've already printed what needs to be printed. */
4997 bs->print_it = print_it_done;
4998 /* Stop. */
4999 break;
5000 case WP_IGNORE:
5001 bs->print_it = print_it_noop;
5002 bs->stop = 0;
5003 break;
5004 case WP_VALUE_CHANGED:
5005 if (b->type == bp_read_watchpoint)
5006 {
5007 /* There are two cases to consider here:
5008
5009 1. We're watching the triggered memory for reads.
5010 In that case, trust the target, and always report
5011 the watchpoint hit to the user. Even though
5012 reads don't cause value changes, the value may
5013 have changed since the last time it was read, and
5014 since we're not trapping writes, we will not see
5015 those, and as such we should ignore our notion of
5016 old value.
5017
5018 2. We're watching the triggered memory for both
5019 reads and writes. There are two ways this may
5020 happen:
5021
5022 2.1. This is a target that can't break on data
5023 reads only, but can break on accesses (reads or
5024 writes), such as e.g., x86. We detect this case
5025 at the time we try to insert read watchpoints.
5026
5027 2.2. Otherwise, the target supports read
5028 watchpoints, but, the user set an access or write
5029 watchpoint watching the same memory as this read
5030 watchpoint.
5031
5032 If we're watching memory writes as well as reads,
5033 ignore watchpoint hits when we find that the
5034 value hasn't changed, as reads don't cause
5035 changes. This still gives false positives when
5036 the program writes the same value to memory as
5037 what there was already in memory (we will confuse
5038 it for a read), but it's much better than
5039 nothing. */
5040
5041 int other_write_watchpoint = 0;
5042
5043 if (bl->watchpoint_type == hw_read)
5044 {
5045 struct breakpoint *other_b;
5046
5047 ALL_BREAKPOINTS (other_b)
5048 if (other_b->type == bp_hardware_watchpoint
5049 || other_b->type == bp_access_watchpoint)
5050 {
5051 struct watchpoint *other_w =
5052 (struct watchpoint *) other_b;
5053
5054 if (other_w->watchpoint_triggered
5055 == watch_triggered_yes)
5056 {
5057 other_write_watchpoint = 1;
5058 break;
5059 }
5060 }
5061 }
5062
5063 if (other_write_watchpoint
5064 || bl->watchpoint_type == hw_access)
5065 {
5066 /* We're watching the same memory for writes,
5067 and the value changed since the last time we
5068 updated it, so this trap must be for a write.
5069 Ignore it. */
5070 bs->print_it = print_it_noop;
5071 bs->stop = 0;
5072 }
5073 }
5074 break;
5075 case WP_VALUE_NOT_CHANGED:
5076 if (b->type == bp_hardware_watchpoint
5077 || b->type == bp_watchpoint)
5078 {
5079 /* Don't stop: write watchpoints shouldn't fire if
5080 the value hasn't changed. */
5081 bs->print_it = print_it_noop;
5082 bs->stop = 0;
5083 }
5084 /* Stop. */
5085 break;
5086 default:
5087 /* Can't happen. */
5088 break;
5089 }
5090 }
5091 else /* must_check_value == 0 */
5092 {
5093 /* This is a case where some watchpoint(s) triggered, but
5094 not at the address of this watchpoint, or else no
5095 watchpoint triggered after all. So don't print
5096 anything for this watchpoint. */
5097 bs->print_it = print_it_noop;
5098 bs->stop = 0;
5099 }
5100 }
5101 }
5102
5103 /* For breakpoints that are currently marked as telling gdb to stop,
5104 check conditions (condition proper, frame, thread and ignore count)
5105 of breakpoint referred to by BS. If we should not stop for this
5106 breakpoint, set BS->stop to 0. */
5107
5108 static void
5109 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5110 {
5111 const struct bp_location *bl;
5112 struct breakpoint *b;
5113 /* Assume stop. */
5114 bool condition_result = true;
5115 struct expression *cond;
5116
5117 gdb_assert (bs->stop);
5118
5119 /* BS is built for existing struct breakpoint. */
5120 bl = bs->bp_location_at;
5121 gdb_assert (bl != NULL);
5122 b = bs->breakpoint_at;
5123 gdb_assert (b != NULL);
5124
5125 /* Even if the target evaluated the condition on its end and notified GDB, we
5126 need to do so again since GDB does not know if we stopped due to a
5127 breakpoint or a single step breakpoint. */
5128
5129 if (frame_id_p (b->frame_id)
5130 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5131 {
5132 bs->stop = 0;
5133 return;
5134 }
5135
5136 /* If this is a thread/task-specific breakpoint, don't waste cpu
5137 evaluating the condition if this isn't the specified
5138 thread/task. */
5139 if ((b->thread != -1 && b->thread != thread->global_num)
5140 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5141 {
5142 bs->stop = 0;
5143 return;
5144 }
5145
5146 /* Evaluate extension language breakpoints that have a "stop" method
5147 implemented. */
5148 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5149
5150 if (is_watchpoint (b))
5151 {
5152 struct watchpoint *w = (struct watchpoint *) b;
5153
5154 cond = w->cond_exp.get ();
5155 }
5156 else
5157 cond = bl->cond.get ();
5158
5159 if (cond && b->disposition != disp_del_at_next_stop)
5160 {
5161 int within_current_scope = 1;
5162 struct watchpoint * w;
5163
5164 /* We use value_mark and value_free_to_mark because it could
5165 be a long time before we return to the command level and
5166 call free_all_values. We can't call free_all_values
5167 because we might be in the middle of evaluating a
5168 function call. */
5169 struct value *mark = value_mark ();
5170
5171 if (is_watchpoint (b))
5172 w = (struct watchpoint *) b;
5173 else
5174 w = NULL;
5175
5176 /* Need to select the frame, with all that implies so that
5177 the conditions will have the right context. Because we
5178 use the frame, we will not see an inlined function's
5179 variables when we arrive at a breakpoint at the start
5180 of the inlined function; the current frame will be the
5181 call site. */
5182 if (w == NULL || w->cond_exp_valid_block == NULL)
5183 select_frame (get_current_frame ());
5184 else
5185 {
5186 struct frame_info *frame;
5187
5188 /* For local watchpoint expressions, which particular
5189 instance of a local is being watched matters, so we
5190 keep track of the frame to evaluate the expression
5191 in. To evaluate the condition however, it doesn't
5192 really matter which instantiation of the function
5193 where the condition makes sense triggers the
5194 watchpoint. This allows an expression like "watch
5195 global if q > 10" set in `func', catch writes to
5196 global on all threads that call `func', or catch
5197 writes on all recursive calls of `func' by a single
5198 thread. We simply always evaluate the condition in
5199 the innermost frame that's executing where it makes
5200 sense to evaluate the condition. It seems
5201 intuitive. */
5202 frame = block_innermost_frame (w->cond_exp_valid_block);
5203 if (frame != NULL)
5204 select_frame (frame);
5205 else
5206 within_current_scope = 0;
5207 }
5208 if (within_current_scope)
5209 {
5210 try
5211 {
5212 condition_result = breakpoint_cond_eval (cond);
5213 }
5214 catch (const gdb_exception &ex)
5215 {
5216 exception_fprintf (gdb_stderr, ex,
5217 "Error in testing breakpoint condition:\n");
5218 }
5219 }
5220 else
5221 {
5222 warning (_("Watchpoint condition cannot be tested "
5223 "in the current scope"));
5224 /* If we failed to set the right context for this
5225 watchpoint, unconditionally report it. */
5226 }
5227 /* FIXME-someday, should give breakpoint #. */
5228 value_free_to_mark (mark);
5229 }
5230
5231 if (cond && !condition_result)
5232 {
5233 bs->stop = 0;
5234 }
5235 else if (b->ignore_count > 0)
5236 {
5237 b->ignore_count--;
5238 bs->stop = 0;
5239 /* Increase the hit count even though we don't stop. */
5240 ++(b->hit_count);
5241 gdb::observers::breakpoint_modified.notify (b);
5242 }
5243 }
5244
5245 /* Returns true if we need to track moribund locations of LOC's type
5246 on the current target. */
5247
5248 static int
5249 need_moribund_for_location_type (struct bp_location *loc)
5250 {
5251 return ((loc->loc_type == bp_loc_software_breakpoint
5252 && !target_supports_stopped_by_sw_breakpoint ())
5253 || (loc->loc_type == bp_loc_hardware_breakpoint
5254 && !target_supports_stopped_by_hw_breakpoint ()));
5255 }
5256
5257 /* See breakpoint.h. */
5258
5259 bpstat
5260 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5261 const struct target_waitstatus *ws)
5262 {
5263 struct breakpoint *b;
5264 bpstat bs_head = NULL, *bs_link = &bs_head;
5265
5266 ALL_BREAKPOINTS (b)
5267 {
5268 if (!breakpoint_enabled (b))
5269 continue;
5270
5271 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5272 {
5273 /* For hardware watchpoints, we look only at the first
5274 location. The watchpoint_check function will work on the
5275 entire expression, not the individual locations. For
5276 read watchpoints, the watchpoints_triggered function has
5277 checked all locations already. */
5278 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5279 break;
5280
5281 if (!bl->enabled || bl->shlib_disabled)
5282 continue;
5283
5284 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5285 continue;
5286
5287 /* Come here if it's a watchpoint, or if the break address
5288 matches. */
5289
5290 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5291 explain stop. */
5292
5293 /* Assume we stop. Should we find a watchpoint that is not
5294 actually triggered, or if the condition of the breakpoint
5295 evaluates as false, we'll reset 'stop' to 0. */
5296 bs->stop = 1;
5297 bs->print = 1;
5298
5299 /* If this is a scope breakpoint, mark the associated
5300 watchpoint as triggered so that we will handle the
5301 out-of-scope event. We'll get to the watchpoint next
5302 iteration. */
5303 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5304 {
5305 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5306
5307 w->watchpoint_triggered = watch_triggered_yes;
5308 }
5309 }
5310 }
5311
5312 /* Check if a moribund breakpoint explains the stop. */
5313 if (!target_supports_stopped_by_sw_breakpoint ()
5314 || !target_supports_stopped_by_hw_breakpoint ())
5315 {
5316 for (bp_location *loc : moribund_locations)
5317 {
5318 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5319 && need_moribund_for_location_type (loc))
5320 {
5321 bpstat bs = new bpstats (loc, &bs_link);
5322 /* For hits of moribund locations, we should just proceed. */
5323 bs->stop = 0;
5324 bs->print = 0;
5325 bs->print_it = print_it_noop;
5326 }
5327 }
5328 }
5329
5330 return bs_head;
5331 }
5332
5333 /* See breakpoint.h. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, thread_info *thread,
5338 const struct target_waitstatus *ws,
5339 bpstat stop_chain)
5340 {
5341 struct breakpoint *b = NULL;
5342 /* First item of allocated bpstat's. */
5343 bpstat bs_head = stop_chain;
5344 bpstat bs;
5345 int need_remove_insert;
5346 int removed_any;
5347
5348 /* First, build the bpstat chain with locations that explain a
5349 target stop, while being careful to not set the target running,
5350 as that may invalidate locations (in particular watchpoint
5351 locations are recreated). Resuming will happen here with
5352 breakpoint conditions or watchpoint expressions that include
5353 inferior function calls. */
5354 if (bs_head == NULL)
5355 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5356
5357 /* A bit of special processing for shlib breakpoints. We need to
5358 process solib loading here, so that the lists of loaded and
5359 unloaded libraries are correct before we handle "catch load" and
5360 "catch unload". */
5361 for (bs = bs_head; bs != NULL; bs = bs->next)
5362 {
5363 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5364 {
5365 handle_solib_event ();
5366 break;
5367 }
5368 }
5369
5370 /* Now go through the locations that caused the target to stop, and
5371 check whether we're interested in reporting this stop to higher
5372 layers, or whether we should resume the target transparently. */
5373
5374 removed_any = 0;
5375
5376 for (bs = bs_head; bs != NULL; bs = bs->next)
5377 {
5378 if (!bs->stop)
5379 continue;
5380
5381 b = bs->breakpoint_at;
5382 b->ops->check_status (bs);
5383 if (bs->stop)
5384 {
5385 bpstat_check_breakpoint_conditions (bs, thread);
5386
5387 if (bs->stop)
5388 {
5389 ++(b->hit_count);
5390 gdb::observers::breakpoint_modified.notify (b);
5391
5392 /* We will stop here. */
5393 if (b->disposition == disp_disable)
5394 {
5395 --(b->enable_count);
5396 if (b->enable_count <= 0)
5397 b->enable_state = bp_disabled;
5398 removed_any = 1;
5399 }
5400 if (b->silent)
5401 bs->print = 0;
5402 bs->commands = b->commands;
5403 if (command_line_is_silent (bs->commands
5404 ? bs->commands.get () : NULL))
5405 bs->print = 0;
5406
5407 b->ops->after_condition_true (bs);
5408 }
5409
5410 }
5411
5412 /* Print nothing for this entry if we don't stop or don't
5413 print. */
5414 if (!bs->stop || !bs->print)
5415 bs->print_it = print_it_noop;
5416 }
5417
5418 /* If we aren't stopping, the value of some hardware watchpoint may
5419 not have changed, but the intermediate memory locations we are
5420 watching may have. Don't bother if we're stopping; this will get
5421 done later. */
5422 need_remove_insert = 0;
5423 if (! bpstat_causes_stop (bs_head))
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 if (!bs->stop
5426 && bs->breakpoint_at
5427 && is_hardware_watchpoint (bs->breakpoint_at))
5428 {
5429 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5430
5431 update_watchpoint (w, 0 /* don't reparse. */);
5432 need_remove_insert = 1;
5433 }
5434
5435 if (need_remove_insert)
5436 update_global_location_list (UGLL_MAY_INSERT);
5437 else if (removed_any)
5438 update_global_location_list (UGLL_DONT_INSERT);
5439
5440 return bs_head;
5441 }
5442
5443 static void
5444 handle_jit_event (void)
5445 {
5446 struct frame_info *frame;
5447 struct gdbarch *gdbarch;
5448
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5451
5452 /* Switch terminal for any messages produced by
5453 breakpoint_re_set. */
5454 target_terminal::ours_for_output ();
5455
5456 frame = get_current_frame ();
5457 gdbarch = get_frame_arch (frame);
5458 objfile *jiter = symbol_objfile (get_frame_function (frame));
5459
5460 jit_event_handler (gdbarch, jiter);
5461
5462 target_terminal::inferior ();
5463 }
5464
5465 /* Prepare WHAT final decision for infrun. */
5466
5467 /* Decide what infrun needs to do with this bpstat. */
5468
5469 struct bpstat_what
5470 bpstat_what (bpstat bs_head)
5471 {
5472 struct bpstat_what retval;
5473 bpstat bs;
5474
5475 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5476 retval.call_dummy = STOP_NONE;
5477 retval.is_longjmp = false;
5478
5479 for (bs = bs_head; bs != NULL; bs = bs->next)
5480 {
5481 /* Extract this BS's action. After processing each BS, we check
5482 if its action overrides all we've seem so far. */
5483 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5484 enum bptype bptype;
5485
5486 if (bs->breakpoint_at == NULL)
5487 {
5488 /* I suspect this can happen if it was a momentary
5489 breakpoint which has since been deleted. */
5490 bptype = bp_none;
5491 }
5492 else
5493 bptype = bs->breakpoint_at->type;
5494
5495 switch (bptype)
5496 {
5497 case bp_none:
5498 break;
5499 case bp_breakpoint:
5500 case bp_hardware_breakpoint:
5501 case bp_single_step:
5502 case bp_until:
5503 case bp_finish:
5504 case bp_shlib_event:
5505 if (bs->stop)
5506 {
5507 if (bs->print)
5508 this_action = BPSTAT_WHAT_STOP_NOISY;
5509 else
5510 this_action = BPSTAT_WHAT_STOP_SILENT;
5511 }
5512 else
5513 this_action = BPSTAT_WHAT_SINGLE;
5514 break;
5515 case bp_watchpoint:
5516 case bp_hardware_watchpoint:
5517 case bp_read_watchpoint:
5518 case bp_access_watchpoint:
5519 if (bs->stop)
5520 {
5521 if (bs->print)
5522 this_action = BPSTAT_WHAT_STOP_NOISY;
5523 else
5524 this_action = BPSTAT_WHAT_STOP_SILENT;
5525 }
5526 else
5527 {
5528 /* There was a watchpoint, but we're not stopping.
5529 This requires no further action. */
5530 }
5531 break;
5532 case bp_longjmp:
5533 case bp_longjmp_call_dummy:
5534 case bp_exception:
5535 if (bs->stop)
5536 {
5537 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5538 retval.is_longjmp = bptype != bp_exception;
5539 }
5540 else
5541 this_action = BPSTAT_WHAT_SINGLE;
5542 break;
5543 case bp_longjmp_resume:
5544 case bp_exception_resume:
5545 if (bs->stop)
5546 {
5547 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5548 retval.is_longjmp = bptype == bp_longjmp_resume;
5549 }
5550 else
5551 this_action = BPSTAT_WHAT_SINGLE;
5552 break;
5553 case bp_step_resume:
5554 if (bs->stop)
5555 this_action = BPSTAT_WHAT_STEP_RESUME;
5556 else
5557 {
5558 /* It is for the wrong frame. */
5559 this_action = BPSTAT_WHAT_SINGLE;
5560 }
5561 break;
5562 case bp_hp_step_resume:
5563 if (bs->stop)
5564 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5565 else
5566 {
5567 /* It is for the wrong frame. */
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 }
5570 break;
5571 case bp_watchpoint_scope:
5572 case bp_thread_event:
5573 case bp_overlay_event:
5574 case bp_longjmp_master:
5575 case bp_std_terminate_master:
5576 case bp_exception_master:
5577 this_action = BPSTAT_WHAT_SINGLE;
5578 break;
5579 case bp_catchpoint:
5580 if (bs->stop)
5581 {
5582 if (bs->print)
5583 this_action = BPSTAT_WHAT_STOP_NOISY;
5584 else
5585 this_action = BPSTAT_WHAT_STOP_SILENT;
5586 }
5587 else
5588 {
5589 /* Some catchpoints are implemented with breakpoints.
5590 For those, we need to step over the breakpoint. */
5591 if (bs->bp_location_at->loc_type != bp_loc_other)
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 }
5594 break;
5595 case bp_jit_event:
5596 this_action = BPSTAT_WHAT_SINGLE;
5597 break;
5598 case bp_call_dummy:
5599 /* Make sure the action is stop (silent or noisy),
5600 so infrun.c pops the dummy frame. */
5601 retval.call_dummy = STOP_STACK_DUMMY;
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 break;
5604 case bp_std_terminate:
5605 /* Make sure the action is stop (silent or noisy),
5606 so infrun.c pops the dummy frame. */
5607 retval.call_dummy = STOP_STD_TERMINATE;
5608 this_action = BPSTAT_WHAT_STOP_SILENT;
5609 break;
5610 case bp_tracepoint:
5611 case bp_fast_tracepoint:
5612 case bp_static_tracepoint:
5613 /* Tracepoint hits should not be reported back to GDB, and
5614 if one got through somehow, it should have been filtered
5615 out already. */
5616 internal_error (__FILE__, __LINE__,
5617 _("bpstat_what: tracepoint encountered"));
5618 break;
5619 case bp_gnu_ifunc_resolver:
5620 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5621 this_action = BPSTAT_WHAT_SINGLE;
5622 break;
5623 case bp_gnu_ifunc_resolver_return:
5624 /* The breakpoint will be removed, execution will restart from the
5625 PC of the former breakpoint. */
5626 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5627 break;
5628
5629 case bp_dprintf:
5630 if (bs->stop)
5631 this_action = BPSTAT_WHAT_STOP_SILENT;
5632 else
5633 this_action = BPSTAT_WHAT_SINGLE;
5634 break;
5635
5636 default:
5637 internal_error (__FILE__, __LINE__,
5638 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5639 }
5640
5641 retval.main_action = std::max (retval.main_action, this_action);
5642 }
5643
5644 return retval;
5645 }
5646
5647 void
5648 bpstat_run_callbacks (bpstat bs_head)
5649 {
5650 bpstat bs;
5651
5652 for (bs = bs_head; bs != NULL; bs = bs->next)
5653 {
5654 struct breakpoint *b = bs->breakpoint_at;
5655
5656 if (b == NULL)
5657 continue;
5658 switch (b->type)
5659 {
5660 case bp_jit_event:
5661 handle_jit_event ();
5662 break;
5663 case bp_gnu_ifunc_resolver:
5664 gnu_ifunc_resolver_stop (b);
5665 break;
5666 case bp_gnu_ifunc_resolver_return:
5667 gnu_ifunc_resolver_return_stop (b);
5668 break;
5669 }
5670 }
5671 }
5672
5673 /* See breakpoint.h. */
5674
5675 bool
5676 bpstat_should_step ()
5677 {
5678 struct breakpoint *b;
5679
5680 ALL_BREAKPOINTS (b)
5681 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5682 return true;
5683 return false;
5684 }
5685
5686 /* See breakpoint.h. */
5687
5688 bool
5689 bpstat_causes_stop (bpstat bs)
5690 {
5691 for (; bs != NULL; bs = bs->next)
5692 if (bs->stop)
5693 return true;
5694
5695 return false;
5696 }
5697
5698 \f
5699
5700 /* Compute a string of spaces suitable to indent the next line
5701 so it starts at the position corresponding to the table column
5702 named COL_NAME in the currently active table of UIOUT. */
5703
5704 static char *
5705 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5706 {
5707 static char wrap_indent[80];
5708 int i, total_width, width, align;
5709 const char *text;
5710
5711 total_width = 0;
5712 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5713 {
5714 if (strcmp (text, col_name) == 0)
5715 {
5716 gdb_assert (total_width < sizeof wrap_indent);
5717 memset (wrap_indent, ' ', total_width);
5718 wrap_indent[total_width] = 0;
5719
5720 return wrap_indent;
5721 }
5722
5723 total_width += width + 1;
5724 }
5725
5726 return NULL;
5727 }
5728
5729 /* Determine if the locations of this breakpoint will have their conditions
5730 evaluated by the target, host or a mix of both. Returns the following:
5731
5732 "host": Host evals condition.
5733 "host or target": Host or Target evals condition.
5734 "target": Target evals condition.
5735 */
5736
5737 static const char *
5738 bp_condition_evaluator (struct breakpoint *b)
5739 {
5740 struct bp_location *bl;
5741 char host_evals = 0;
5742 char target_evals = 0;
5743
5744 if (!b)
5745 return NULL;
5746
5747 if (!is_breakpoint (b))
5748 return NULL;
5749
5750 if (gdb_evaluates_breakpoint_condition_p ()
5751 || !target_supports_evaluation_of_breakpoint_conditions ())
5752 return condition_evaluation_host;
5753
5754 for (bl = b->loc; bl; bl = bl->next)
5755 {
5756 if (bl->cond_bytecode)
5757 target_evals++;
5758 else
5759 host_evals++;
5760 }
5761
5762 if (host_evals && target_evals)
5763 return condition_evaluation_both;
5764 else if (target_evals)
5765 return condition_evaluation_target;
5766 else
5767 return condition_evaluation_host;
5768 }
5769
5770 /* Determine the breakpoint location's condition evaluator. This is
5771 similar to bp_condition_evaluator, but for locations. */
5772
5773 static const char *
5774 bp_location_condition_evaluator (struct bp_location *bl)
5775 {
5776 if (bl && !is_breakpoint (bl->owner))
5777 return NULL;
5778
5779 if (gdb_evaluates_breakpoint_condition_p ()
5780 || !target_supports_evaluation_of_breakpoint_conditions ())
5781 return condition_evaluation_host;
5782
5783 if (bl && bl->cond_bytecode)
5784 return condition_evaluation_target;
5785 else
5786 return condition_evaluation_host;
5787 }
5788
5789 /* Print the LOC location out of the list of B->LOC locations. */
5790
5791 static void
5792 print_breakpoint_location (struct breakpoint *b,
5793 struct bp_location *loc)
5794 {
5795 struct ui_out *uiout = current_uiout;
5796
5797 scoped_restore_current_program_space restore_pspace;
5798
5799 if (loc != NULL && loc->shlib_disabled)
5800 loc = NULL;
5801
5802 if (loc != NULL)
5803 set_current_program_space (loc->pspace);
5804
5805 if (b->display_canonical)
5806 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5807 else if (loc && loc->symtab)
5808 {
5809 const struct symbol *sym = loc->symbol;
5810
5811 if (sym)
5812 {
5813 uiout->text ("in ");
5814 uiout->field_string ("func", sym->print_name (),
5815 function_name_style.style ());
5816 uiout->text (" ");
5817 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5818 uiout->text ("at ");
5819 }
5820 uiout->field_string ("file",
5821 symtab_to_filename_for_display (loc->symtab),
5822 file_name_style.style ());
5823 uiout->text (":");
5824
5825 if (uiout->is_mi_like_p ())
5826 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5827
5828 uiout->field_signed ("line", loc->line_number);
5829 }
5830 else if (loc)
5831 {
5832 string_file stb;
5833
5834 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5835 demangle, "");
5836 uiout->field_stream ("at", stb);
5837 }
5838 else
5839 {
5840 uiout->field_string ("pending",
5841 event_location_to_string (b->location.get ()));
5842 /* If extra_string is available, it could be holding a condition
5843 or dprintf arguments. In either case, make sure it is printed,
5844 too, but only for non-MI streams. */
5845 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5846 {
5847 if (b->type == bp_dprintf)
5848 uiout->text (",");
5849 else
5850 uiout->text (" ");
5851 uiout->text (b->extra_string);
5852 }
5853 }
5854
5855 if (loc && is_breakpoint (b)
5856 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5857 && bp_condition_evaluator (b) == condition_evaluation_both)
5858 {
5859 uiout->text (" (");
5860 uiout->field_string ("evaluated-by",
5861 bp_location_condition_evaluator (loc));
5862 uiout->text (")");
5863 }
5864 }
5865
5866 static const char *
5867 bptype_string (enum bptype type)
5868 {
5869 struct ep_type_description
5870 {
5871 enum bptype type;
5872 const char *description;
5873 };
5874 static struct ep_type_description bptypes[] =
5875 {
5876 {bp_none, "?deleted?"},
5877 {bp_breakpoint, "breakpoint"},
5878 {bp_hardware_breakpoint, "hw breakpoint"},
5879 {bp_single_step, "sw single-step"},
5880 {bp_until, "until"},
5881 {bp_finish, "finish"},
5882 {bp_watchpoint, "watchpoint"},
5883 {bp_hardware_watchpoint, "hw watchpoint"},
5884 {bp_read_watchpoint, "read watchpoint"},
5885 {bp_access_watchpoint, "acc watchpoint"},
5886 {bp_longjmp, "longjmp"},
5887 {bp_longjmp_resume, "longjmp resume"},
5888 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5889 {bp_exception, "exception"},
5890 {bp_exception_resume, "exception resume"},
5891 {bp_step_resume, "step resume"},
5892 {bp_hp_step_resume, "high-priority step resume"},
5893 {bp_watchpoint_scope, "watchpoint scope"},
5894 {bp_call_dummy, "call dummy"},
5895 {bp_std_terminate, "std::terminate"},
5896 {bp_shlib_event, "shlib events"},
5897 {bp_thread_event, "thread events"},
5898 {bp_overlay_event, "overlay events"},
5899 {bp_longjmp_master, "longjmp master"},
5900 {bp_std_terminate_master, "std::terminate master"},
5901 {bp_exception_master, "exception master"},
5902 {bp_catchpoint, "catchpoint"},
5903 {bp_tracepoint, "tracepoint"},
5904 {bp_fast_tracepoint, "fast tracepoint"},
5905 {bp_static_tracepoint, "static tracepoint"},
5906 {bp_dprintf, "dprintf"},
5907 {bp_jit_event, "jit events"},
5908 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5909 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5910 };
5911
5912 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5913 || ((int) type != bptypes[(int) type].type))
5914 internal_error (__FILE__, __LINE__,
5915 _("bptypes table does not describe type #%d."),
5916 (int) type);
5917
5918 return bptypes[(int) type].description;
5919 }
5920
5921 /* For MI, output a field named 'thread-groups' with a list as the value.
5922 For CLI, prefix the list with the string 'inf'. */
5923
5924 static void
5925 output_thread_groups (struct ui_out *uiout,
5926 const char *field_name,
5927 const std::vector<int> &inf_nums,
5928 int mi_only)
5929 {
5930 int is_mi = uiout->is_mi_like_p ();
5931
5932 /* For backward compatibility, don't display inferiors in CLI unless
5933 there are several. Always display them for MI. */
5934 if (!is_mi && mi_only)
5935 return;
5936
5937 ui_out_emit_list list_emitter (uiout, field_name);
5938
5939 for (size_t i = 0; i < inf_nums.size (); i++)
5940 {
5941 if (is_mi)
5942 {
5943 char mi_group[10];
5944
5945 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5946 uiout->field_string (NULL, mi_group);
5947 }
5948 else
5949 {
5950 if (i == 0)
5951 uiout->text (" inf ");
5952 else
5953 uiout->text (", ");
5954
5955 uiout->text (plongest (inf_nums[i]));
5956 }
5957 }
5958 }
5959
5960 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5961 instead of going via breakpoint_ops::print_one. This makes "maint
5962 info breakpoints" show the software breakpoint locations of
5963 catchpoints, which are considered internal implementation
5964 detail. */
5965
5966 static void
5967 print_one_breakpoint_location (struct breakpoint *b,
5968 struct bp_location *loc,
5969 int loc_number,
5970 struct bp_location **last_loc,
5971 int allflag, bool raw_loc)
5972 {
5973 struct command_line *l;
5974 static char bpenables[] = "nynny";
5975
5976 struct ui_out *uiout = current_uiout;
5977 int header_of_multiple = 0;
5978 int part_of_multiple = (loc != NULL);
5979 struct value_print_options opts;
5980
5981 get_user_print_options (&opts);
5982
5983 gdb_assert (!loc || loc_number != 0);
5984 /* See comment in print_one_breakpoint concerning treatment of
5985 breakpoints with single disabled location. */
5986 if (loc == NULL
5987 && (b->loc != NULL
5988 && (b->loc->next != NULL || !b->loc->enabled)))
5989 header_of_multiple = 1;
5990 if (loc == NULL)
5991 loc = b->loc;
5992
5993 annotate_record ();
5994
5995 /* 1 */
5996 annotate_field (0);
5997 if (part_of_multiple)
5998 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
5999 else
6000 uiout->field_signed ("number", b->number);
6001
6002 /* 2 */
6003 annotate_field (1);
6004 if (part_of_multiple)
6005 uiout->field_skip ("type");
6006 else
6007 uiout->field_string ("type", bptype_string (b->type));
6008
6009 /* 3 */
6010 annotate_field (2);
6011 if (part_of_multiple)
6012 uiout->field_skip ("disp");
6013 else
6014 uiout->field_string ("disp", bpdisp_text (b->disposition));
6015
6016 /* 4 */
6017 annotate_field (3);
6018 if (part_of_multiple)
6019 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6020 else
6021 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6022
6023 /* 5 and 6 */
6024 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6025 b->ops->print_one (b, last_loc);
6026 else
6027 {
6028 if (is_watchpoint (b))
6029 {
6030 struct watchpoint *w = (struct watchpoint *) b;
6031
6032 /* Field 4, the address, is omitted (which makes the columns
6033 not line up too nicely with the headers, but the effect
6034 is relatively readable). */
6035 if (opts.addressprint)
6036 uiout->field_skip ("addr");
6037 annotate_field (5);
6038 uiout->field_string ("what", w->exp_string);
6039 }
6040 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6041 || is_ada_exception_catchpoint (b))
6042 {
6043 if (opts.addressprint)
6044 {
6045 annotate_field (4);
6046 if (header_of_multiple)
6047 uiout->field_string ("addr", "<MULTIPLE>",
6048 metadata_style.style ());
6049 else if (b->loc == NULL || loc->shlib_disabled)
6050 uiout->field_string ("addr", "<PENDING>",
6051 metadata_style.style ());
6052 else
6053 uiout->field_core_addr ("addr",
6054 loc->gdbarch, loc->address);
6055 }
6056 annotate_field (5);
6057 if (!header_of_multiple)
6058 print_breakpoint_location (b, loc);
6059 if (b->loc)
6060 *last_loc = b->loc;
6061 }
6062 }
6063
6064 if (loc != NULL && !header_of_multiple)
6065 {
6066 std::vector<int> inf_nums;
6067 int mi_only = 1;
6068
6069 for (inferior *inf : all_inferiors ())
6070 {
6071 if (inf->pspace == loc->pspace)
6072 inf_nums.push_back (inf->num);
6073 }
6074
6075 /* For backward compatibility, don't display inferiors in CLI unless
6076 there are several. Always display for MI. */
6077 if (allflag
6078 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6079 && (program_spaces.size () > 1
6080 || number_of_inferiors () > 1)
6081 /* LOC is for existing B, it cannot be in
6082 moribund_locations and thus having NULL OWNER. */
6083 && loc->owner->type != bp_catchpoint))
6084 mi_only = 0;
6085 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6086 }
6087
6088 if (!part_of_multiple)
6089 {
6090 if (b->thread != -1)
6091 {
6092 /* FIXME: This seems to be redundant and lost here; see the
6093 "stop only in" line a little further down. */
6094 uiout->text (" thread ");
6095 uiout->field_signed ("thread", b->thread);
6096 }
6097 else if (b->task != 0)
6098 {
6099 uiout->text (" task ");
6100 uiout->field_signed ("task", b->task);
6101 }
6102 }
6103
6104 uiout->text ("\n");
6105
6106 if (!part_of_multiple)
6107 b->ops->print_one_detail (b, uiout);
6108
6109 if (part_of_multiple && frame_id_p (b->frame_id))
6110 {
6111 annotate_field (6);
6112 uiout->text ("\tstop only in stack frame at ");
6113 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6114 the frame ID. */
6115 uiout->field_core_addr ("frame",
6116 b->gdbarch, b->frame_id.stack_addr);
6117 uiout->text ("\n");
6118 }
6119
6120 if (!part_of_multiple && b->cond_string)
6121 {
6122 annotate_field (7);
6123 if (is_tracepoint (b))
6124 uiout->text ("\ttrace only if ");
6125 else
6126 uiout->text ("\tstop only if ");
6127 uiout->field_string ("cond", b->cond_string);
6128
6129 /* Print whether the target is doing the breakpoint's condition
6130 evaluation. If GDB is doing the evaluation, don't print anything. */
6131 if (is_breakpoint (b)
6132 && breakpoint_condition_evaluation_mode ()
6133 == condition_evaluation_target)
6134 {
6135 uiout->message (" (%pF evals)",
6136 string_field ("evaluated-by",
6137 bp_condition_evaluator (b)));
6138 }
6139 uiout->text ("\n");
6140 }
6141
6142 if (!part_of_multiple && b->thread != -1)
6143 {
6144 /* FIXME should make an annotation for this. */
6145 uiout->text ("\tstop only in thread ");
6146 if (uiout->is_mi_like_p ())
6147 uiout->field_signed ("thread", b->thread);
6148 else
6149 {
6150 struct thread_info *thr = find_thread_global_id (b->thread);
6151
6152 uiout->field_string ("thread", print_thread_id (thr));
6153 }
6154 uiout->text ("\n");
6155 }
6156
6157 if (!part_of_multiple)
6158 {
6159 if (b->hit_count)
6160 {
6161 /* FIXME should make an annotation for this. */
6162 if (is_catchpoint (b))
6163 uiout->text ("\tcatchpoint");
6164 else if (is_tracepoint (b))
6165 uiout->text ("\ttracepoint");
6166 else
6167 uiout->text ("\tbreakpoint");
6168 uiout->text (" already hit ");
6169 uiout->field_signed ("times", b->hit_count);
6170 if (b->hit_count == 1)
6171 uiout->text (" time\n");
6172 else
6173 uiout->text (" times\n");
6174 }
6175 else
6176 {
6177 /* Output the count also if it is zero, but only if this is mi. */
6178 if (uiout->is_mi_like_p ())
6179 uiout->field_signed ("times", b->hit_count);
6180 }
6181 }
6182
6183 if (!part_of_multiple && b->ignore_count)
6184 {
6185 annotate_field (8);
6186 uiout->message ("\tignore next %pF hits\n",
6187 signed_field ("ignore", b->ignore_count));
6188 }
6189
6190 /* Note that an enable count of 1 corresponds to "enable once"
6191 behavior, which is reported by the combination of enablement and
6192 disposition, so we don't need to mention it here. */
6193 if (!part_of_multiple && b->enable_count > 1)
6194 {
6195 annotate_field (8);
6196 uiout->text ("\tdisable after ");
6197 /* Tweak the wording to clarify that ignore and enable counts
6198 are distinct, and have additive effect. */
6199 if (b->ignore_count)
6200 uiout->text ("additional ");
6201 else
6202 uiout->text ("next ");
6203 uiout->field_signed ("enable", b->enable_count);
6204 uiout->text (" hits\n");
6205 }
6206
6207 if (!part_of_multiple && is_tracepoint (b))
6208 {
6209 struct tracepoint *tp = (struct tracepoint *) b;
6210
6211 if (tp->traceframe_usage)
6212 {
6213 uiout->text ("\ttrace buffer usage ");
6214 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6215 uiout->text (" bytes\n");
6216 }
6217 }
6218
6219 l = b->commands ? b->commands.get () : NULL;
6220 if (!part_of_multiple && l)
6221 {
6222 annotate_field (9);
6223 ui_out_emit_tuple tuple_emitter (uiout, "script");
6224 print_command_lines (uiout, l, 4);
6225 }
6226
6227 if (is_tracepoint (b))
6228 {
6229 struct tracepoint *t = (struct tracepoint *) b;
6230
6231 if (!part_of_multiple && t->pass_count)
6232 {
6233 annotate_field (10);
6234 uiout->text ("\tpass count ");
6235 uiout->field_signed ("pass", t->pass_count);
6236 uiout->text (" \n");
6237 }
6238
6239 /* Don't display it when tracepoint or tracepoint location is
6240 pending. */
6241 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6242 {
6243 annotate_field (11);
6244
6245 if (uiout->is_mi_like_p ())
6246 uiout->field_string ("installed",
6247 loc->inserted ? "y" : "n");
6248 else
6249 {
6250 if (loc->inserted)
6251 uiout->text ("\t");
6252 else
6253 uiout->text ("\tnot ");
6254 uiout->text ("installed on target\n");
6255 }
6256 }
6257 }
6258
6259 if (uiout->is_mi_like_p () && !part_of_multiple)
6260 {
6261 if (is_watchpoint (b))
6262 {
6263 struct watchpoint *w = (struct watchpoint *) b;
6264
6265 uiout->field_string ("original-location", w->exp_string);
6266 }
6267 else if (b->location != NULL
6268 && event_location_to_string (b->location.get ()) != NULL)
6269 uiout->field_string ("original-location",
6270 event_location_to_string (b->location.get ()));
6271 }
6272 }
6273
6274 /* See breakpoint.h. */
6275
6276 bool fix_multi_location_breakpoint_output_globally = false;
6277
6278 static void
6279 print_one_breakpoint (struct breakpoint *b,
6280 struct bp_location **last_loc,
6281 int allflag)
6282 {
6283 struct ui_out *uiout = current_uiout;
6284 bool use_fixed_output
6285 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6286 || fix_multi_location_breakpoint_output_globally);
6287
6288 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6289 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6290
6291 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6292 are outside. */
6293 if (!use_fixed_output)
6294 bkpt_tuple_emitter.reset ();
6295
6296 /* If this breakpoint has custom print function,
6297 it's already printed. Otherwise, print individual
6298 locations, if any. */
6299 if (b->ops == NULL
6300 || b->ops->print_one == NULL
6301 || allflag)
6302 {
6303 /* If breakpoint has a single location that is disabled, we
6304 print it as if it had several locations, since otherwise it's
6305 hard to represent "breakpoint enabled, location disabled"
6306 situation.
6307
6308 Note that while hardware watchpoints have several locations
6309 internally, that's not a property exposed to users.
6310
6311 Likewise, while catchpoints may be implemented with
6312 breakpoints (e.g., catch throw), that's not a property
6313 exposed to users. We do however display the internal
6314 breakpoint locations with "maint info breakpoints". */
6315 if (!is_hardware_watchpoint (b)
6316 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6317 || is_ada_exception_catchpoint (b))
6318 && (allflag
6319 || (b->loc && (b->loc->next || !b->loc->enabled))))
6320 {
6321 gdb::optional<ui_out_emit_list> locations_list;
6322
6323 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6324 MI record. For later versions, place breakpoint locations in a
6325 list. */
6326 if (uiout->is_mi_like_p () && use_fixed_output)
6327 locations_list.emplace (uiout, "locations");
6328
6329 int n = 1;
6330 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6331 {
6332 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6333 print_one_breakpoint_location (b, loc, n, last_loc,
6334 allflag, allflag);
6335 }
6336 }
6337 }
6338 }
6339
6340 static int
6341 breakpoint_address_bits (struct breakpoint *b)
6342 {
6343 int print_address_bits = 0;
6344 struct bp_location *loc;
6345
6346 /* Software watchpoints that aren't watching memory don't have an
6347 address to print. */
6348 if (is_no_memory_software_watchpoint (b))
6349 return 0;
6350
6351 for (loc = b->loc; loc; loc = loc->next)
6352 {
6353 int addr_bit;
6354
6355 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6356 if (addr_bit > print_address_bits)
6357 print_address_bits = addr_bit;
6358 }
6359
6360 return print_address_bits;
6361 }
6362
6363 /* See breakpoint.h. */
6364
6365 void
6366 print_breakpoint (breakpoint *b)
6367 {
6368 struct bp_location *dummy_loc = NULL;
6369 print_one_breakpoint (b, &dummy_loc, 0);
6370 }
6371
6372 /* Return true if this breakpoint was set by the user, false if it is
6373 internal or momentary. */
6374
6375 int
6376 user_breakpoint_p (struct breakpoint *b)
6377 {
6378 return b->number > 0;
6379 }
6380
6381 /* See breakpoint.h. */
6382
6383 int
6384 pending_breakpoint_p (struct breakpoint *b)
6385 {
6386 return b->loc == NULL;
6387 }
6388
6389 /* Print information on breakpoints (including watchpoints and tracepoints).
6390
6391 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6392 understood by number_or_range_parser. Only breakpoints included in this
6393 list are then printed.
6394
6395 If SHOW_INTERNAL is true, print internal breakpoints.
6396
6397 If FILTER is non-NULL, call it on each breakpoint and only include the
6398 ones for which it returns true.
6399
6400 Return the total number of breakpoints listed. */
6401
6402 static int
6403 breakpoint_1 (const char *bp_num_list, bool show_internal,
6404 bool (*filter) (const struct breakpoint *))
6405 {
6406 struct breakpoint *b;
6407 struct bp_location *last_loc = NULL;
6408 int nr_printable_breakpoints;
6409 struct value_print_options opts;
6410 int print_address_bits = 0;
6411 int print_type_col_width = 14;
6412 struct ui_out *uiout = current_uiout;
6413
6414 get_user_print_options (&opts);
6415
6416 /* Compute the number of rows in the table, as well as the size
6417 required for address fields. */
6418 nr_printable_breakpoints = 0;
6419 ALL_BREAKPOINTS (b)
6420 {
6421 /* If we have a filter, only list the breakpoints it accepts. */
6422 if (filter && !filter (b))
6423 continue;
6424
6425 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6426 accept. Skip the others. */
6427 if (bp_num_list != NULL && *bp_num_list != '\0')
6428 {
6429 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6430 continue;
6431 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6432 continue;
6433 }
6434
6435 if (show_internal || user_breakpoint_p (b))
6436 {
6437 int addr_bit, type_len;
6438
6439 addr_bit = breakpoint_address_bits (b);
6440 if (addr_bit > print_address_bits)
6441 print_address_bits = addr_bit;
6442
6443 type_len = strlen (bptype_string (b->type));
6444 if (type_len > print_type_col_width)
6445 print_type_col_width = type_len;
6446
6447 nr_printable_breakpoints++;
6448 }
6449 }
6450
6451 {
6452 ui_out_emit_table table_emitter (uiout,
6453 opts.addressprint ? 6 : 5,
6454 nr_printable_breakpoints,
6455 "BreakpointTable");
6456
6457 if (nr_printable_breakpoints > 0)
6458 annotate_breakpoints_headers ();
6459 if (nr_printable_breakpoints > 0)
6460 annotate_field (0);
6461 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6462 if (nr_printable_breakpoints > 0)
6463 annotate_field (1);
6464 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6465 if (nr_printable_breakpoints > 0)
6466 annotate_field (2);
6467 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6468 if (nr_printable_breakpoints > 0)
6469 annotate_field (3);
6470 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6471 if (opts.addressprint)
6472 {
6473 if (nr_printable_breakpoints > 0)
6474 annotate_field (4);
6475 if (print_address_bits <= 32)
6476 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6477 else
6478 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6479 }
6480 if (nr_printable_breakpoints > 0)
6481 annotate_field (5);
6482 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6483 uiout->table_body ();
6484 if (nr_printable_breakpoints > 0)
6485 annotate_breakpoints_table ();
6486
6487 ALL_BREAKPOINTS (b)
6488 {
6489 QUIT;
6490 /* If we have a filter, only list the breakpoints it accepts. */
6491 if (filter && !filter (b))
6492 continue;
6493
6494 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6495 accept. Skip the others. */
6496
6497 if (bp_num_list != NULL && *bp_num_list != '\0')
6498 {
6499 if (show_internal) /* maintenance info breakpoint */
6500 {
6501 if (parse_and_eval_long (bp_num_list) != b->number)
6502 continue;
6503 }
6504 else /* all others */
6505 {
6506 if (!number_is_in_list (bp_num_list, b->number))
6507 continue;
6508 }
6509 }
6510 /* We only print out user settable breakpoints unless the
6511 show_internal is set. */
6512 if (show_internal || user_breakpoint_p (b))
6513 print_one_breakpoint (b, &last_loc, show_internal);
6514 }
6515 }
6516
6517 if (nr_printable_breakpoints == 0)
6518 {
6519 /* If there's a filter, let the caller decide how to report
6520 empty list. */
6521 if (!filter)
6522 {
6523 if (bp_num_list == NULL || *bp_num_list == '\0')
6524 uiout->message ("No breakpoints or watchpoints.\n");
6525 else
6526 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6527 bp_num_list);
6528 }
6529 }
6530 else
6531 {
6532 if (last_loc && !server_command)
6533 set_next_address (last_loc->gdbarch, last_loc->address);
6534 }
6535
6536 /* FIXME? Should this be moved up so that it is only called when
6537 there have been breakpoints? */
6538 annotate_breakpoints_table_end ();
6539
6540 return nr_printable_breakpoints;
6541 }
6542
6543 /* Display the value of default-collect in a way that is generally
6544 compatible with the breakpoint list. */
6545
6546 static void
6547 default_collect_info (void)
6548 {
6549 struct ui_out *uiout = current_uiout;
6550
6551 /* If it has no value (which is frequently the case), say nothing; a
6552 message like "No default-collect." gets in user's face when it's
6553 not wanted. */
6554 if (!*default_collect)
6555 return;
6556
6557 /* The following phrase lines up nicely with per-tracepoint collect
6558 actions. */
6559 uiout->text ("default collect ");
6560 uiout->field_string ("default-collect", default_collect);
6561 uiout->text (" \n");
6562 }
6563
6564 static void
6565 info_breakpoints_command (const char *args, int from_tty)
6566 {
6567 breakpoint_1 (args, false, NULL);
6568
6569 default_collect_info ();
6570 }
6571
6572 static void
6573 info_watchpoints_command (const char *args, int from_tty)
6574 {
6575 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6576 struct ui_out *uiout = current_uiout;
6577
6578 if (num_printed == 0)
6579 {
6580 if (args == NULL || *args == '\0')
6581 uiout->message ("No watchpoints.\n");
6582 else
6583 uiout->message ("No watchpoint matching '%s'.\n", args);
6584 }
6585 }
6586
6587 static void
6588 maintenance_info_breakpoints (const char *args, int from_tty)
6589 {
6590 breakpoint_1 (args, true, NULL);
6591
6592 default_collect_info ();
6593 }
6594
6595 static int
6596 breakpoint_has_pc (struct breakpoint *b,
6597 struct program_space *pspace,
6598 CORE_ADDR pc, struct obj_section *section)
6599 {
6600 struct bp_location *bl = b->loc;
6601
6602 for (; bl; bl = bl->next)
6603 {
6604 if (bl->pspace == pspace
6605 && bl->address == pc
6606 && (!overlay_debugging || bl->section == section))
6607 return 1;
6608 }
6609 return 0;
6610 }
6611
6612 /* Print a message describing any user-breakpoints set at PC. This
6613 concerns with logical breakpoints, so we match program spaces, not
6614 address spaces. */
6615
6616 static void
6617 describe_other_breakpoints (struct gdbarch *gdbarch,
6618 struct program_space *pspace, CORE_ADDR pc,
6619 struct obj_section *section, int thread)
6620 {
6621 int others = 0;
6622 struct breakpoint *b;
6623
6624 ALL_BREAKPOINTS (b)
6625 others += (user_breakpoint_p (b)
6626 && breakpoint_has_pc (b, pspace, pc, section));
6627 if (others > 0)
6628 {
6629 if (others == 1)
6630 printf_filtered (_("Note: breakpoint "));
6631 else /* if (others == ???) */
6632 printf_filtered (_("Note: breakpoints "));
6633 ALL_BREAKPOINTS (b)
6634 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6635 {
6636 others--;
6637 printf_filtered ("%d", b->number);
6638 if (b->thread == -1 && thread != -1)
6639 printf_filtered (" (all threads)");
6640 else if (b->thread != -1)
6641 printf_filtered (" (thread %d)", b->thread);
6642 printf_filtered ("%s%s ",
6643 ((b->enable_state == bp_disabled
6644 || b->enable_state == bp_call_disabled)
6645 ? " (disabled)"
6646 : ""),
6647 (others > 1) ? ","
6648 : ((others == 1) ? " and" : ""));
6649 }
6650 current_uiout->message (_("also set at pc %ps.\n"),
6651 styled_string (address_style.style (),
6652 paddress (gdbarch, pc)));
6653 }
6654 }
6655 \f
6656
6657 /* Return true iff it is meaningful to use the address member of LOC.
6658 For some breakpoint types, the locations' address members are
6659 irrelevant and it makes no sense to attempt to compare them to
6660 other addresses (or use them for any other purpose either).
6661
6662 More specifically, software watchpoints and catchpoints that are
6663 not backed by breakpoints always have a zero valued location
6664 address and we don't want to mark breakpoints of any of these types
6665 to be a duplicate of an actual breakpoint location at address
6666 zero. */
6667
6668 static bool
6669 bl_address_is_meaningful (bp_location *loc)
6670 {
6671 return loc->loc_type != bp_loc_other;
6672 }
6673
6674 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6675 true if LOC1 and LOC2 represent the same watchpoint location. */
6676
6677 static int
6678 watchpoint_locations_match (struct bp_location *loc1,
6679 struct bp_location *loc2)
6680 {
6681 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6682 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6683
6684 /* Both of them must exist. */
6685 gdb_assert (w1 != NULL);
6686 gdb_assert (w2 != NULL);
6687
6688 /* If the target can evaluate the condition expression in hardware,
6689 then we we need to insert both watchpoints even if they are at
6690 the same place. Otherwise the watchpoint will only trigger when
6691 the condition of whichever watchpoint was inserted evaluates to
6692 true, not giving a chance for GDB to check the condition of the
6693 other watchpoint. */
6694 if ((w1->cond_exp
6695 && target_can_accel_watchpoint_condition (loc1->address,
6696 loc1->length,
6697 loc1->watchpoint_type,
6698 w1->cond_exp.get ()))
6699 || (w2->cond_exp
6700 && target_can_accel_watchpoint_condition (loc2->address,
6701 loc2->length,
6702 loc2->watchpoint_type,
6703 w2->cond_exp.get ())))
6704 return 0;
6705
6706 /* Note that this checks the owner's type, not the location's. In
6707 case the target does not support read watchpoints, but does
6708 support access watchpoints, we'll have bp_read_watchpoint
6709 watchpoints with hw_access locations. Those should be considered
6710 duplicates of hw_read locations. The hw_read locations will
6711 become hw_access locations later. */
6712 return (loc1->owner->type == loc2->owner->type
6713 && loc1->pspace->aspace == loc2->pspace->aspace
6714 && loc1->address == loc2->address
6715 && loc1->length == loc2->length);
6716 }
6717
6718 /* See breakpoint.h. */
6719
6720 int
6721 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6722 const address_space *aspace2, CORE_ADDR addr2)
6723 {
6724 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6725 || aspace1 == aspace2)
6726 && addr1 == addr2);
6727 }
6728
6729 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6730 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6731 matches ASPACE2. On targets that have global breakpoints, the address
6732 space doesn't really matter. */
6733
6734 static int
6735 breakpoint_address_match_range (const address_space *aspace1,
6736 CORE_ADDR addr1,
6737 int len1, const address_space *aspace2,
6738 CORE_ADDR addr2)
6739 {
6740 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6741 || aspace1 == aspace2)
6742 && addr2 >= addr1 && addr2 < addr1 + len1);
6743 }
6744
6745 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6746 a ranged breakpoint. In most targets, a match happens only if ASPACE
6747 matches the breakpoint's address space. On targets that have global
6748 breakpoints, the address space doesn't really matter. */
6749
6750 static int
6751 breakpoint_location_address_match (struct bp_location *bl,
6752 const address_space *aspace,
6753 CORE_ADDR addr)
6754 {
6755 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6756 aspace, addr)
6757 || (bl->length
6758 && breakpoint_address_match_range (bl->pspace->aspace,
6759 bl->address, bl->length,
6760 aspace, addr)));
6761 }
6762
6763 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6764 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6765 match happens only if ASPACE matches the breakpoint's address
6766 space. On targets that have global breakpoints, the address space
6767 doesn't really matter. */
6768
6769 static int
6770 breakpoint_location_address_range_overlap (struct bp_location *bl,
6771 const address_space *aspace,
6772 CORE_ADDR addr, int len)
6773 {
6774 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6775 || bl->pspace->aspace == aspace)
6776 {
6777 int bl_len = bl->length != 0 ? bl->length : 1;
6778
6779 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6780 return 1;
6781 }
6782 return 0;
6783 }
6784
6785 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6786 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6787 true, otherwise returns false. */
6788
6789 static int
6790 tracepoint_locations_match (struct bp_location *loc1,
6791 struct bp_location *loc2)
6792 {
6793 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6794 /* Since tracepoint locations are never duplicated with others', tracepoint
6795 locations at the same address of different tracepoints are regarded as
6796 different locations. */
6797 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6798 else
6799 return 0;
6800 }
6801
6802 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6803 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6804 the same location. If SW_HW_BPS_MATCH is true, then software
6805 breakpoint locations and hardware breakpoint locations match,
6806 otherwise they don't. */
6807
6808 static int
6809 breakpoint_locations_match (struct bp_location *loc1,
6810 struct bp_location *loc2,
6811 bool sw_hw_bps_match)
6812 {
6813 int hw_point1, hw_point2;
6814
6815 /* Both of them must not be in moribund_locations. */
6816 gdb_assert (loc1->owner != NULL);
6817 gdb_assert (loc2->owner != NULL);
6818
6819 hw_point1 = is_hardware_watchpoint (loc1->owner);
6820 hw_point2 = is_hardware_watchpoint (loc2->owner);
6821
6822 if (hw_point1 != hw_point2)
6823 return 0;
6824 else if (hw_point1)
6825 return watchpoint_locations_match (loc1, loc2);
6826 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6827 return tracepoint_locations_match (loc1, loc2);
6828 else
6829 /* We compare bp_location.length in order to cover ranged
6830 breakpoints. Keep this in sync with
6831 bp_location_is_less_than. */
6832 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6833 loc2->pspace->aspace, loc2->address)
6834 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6835 && loc1->length == loc2->length);
6836 }
6837
6838 static void
6839 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6840 int bnum, int have_bnum)
6841 {
6842 /* The longest string possibly returned by hex_string_custom
6843 is 50 chars. These must be at least that big for safety. */
6844 char astr1[64];
6845 char astr2[64];
6846
6847 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6848 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6849 if (have_bnum)
6850 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6851 bnum, astr1, astr2);
6852 else
6853 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6854 }
6855
6856 /* Adjust a breakpoint's address to account for architectural
6857 constraints on breakpoint placement. Return the adjusted address.
6858 Note: Very few targets require this kind of adjustment. For most
6859 targets, this function is simply the identity function. */
6860
6861 static CORE_ADDR
6862 adjust_breakpoint_address (struct gdbarch *gdbarch,
6863 CORE_ADDR bpaddr, enum bptype bptype)
6864 {
6865 if (bptype == bp_watchpoint
6866 || bptype == bp_hardware_watchpoint
6867 || bptype == bp_read_watchpoint
6868 || bptype == bp_access_watchpoint
6869 || bptype == bp_catchpoint)
6870 {
6871 /* Watchpoints and the various bp_catch_* eventpoints should not
6872 have their addresses modified. */
6873 return bpaddr;
6874 }
6875 else if (bptype == bp_single_step)
6876 {
6877 /* Single-step breakpoints should not have their addresses
6878 modified. If there's any architectural constrain that
6879 applies to this address, then it should have already been
6880 taken into account when the breakpoint was created in the
6881 first place. If we didn't do this, stepping through e.g.,
6882 Thumb-2 IT blocks would break. */
6883 return bpaddr;
6884 }
6885 else
6886 {
6887 CORE_ADDR adjusted_bpaddr = bpaddr;
6888
6889 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6890 {
6891 /* Some targets have architectural constraints on the placement
6892 of breakpoint instructions. Obtain the adjusted address. */
6893 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6894 }
6895
6896 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6897
6898 /* An adjusted breakpoint address can significantly alter
6899 a user's expectations. Print a warning if an adjustment
6900 is required. */
6901 if (adjusted_bpaddr != bpaddr)
6902 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6903
6904 return adjusted_bpaddr;
6905 }
6906 }
6907
6908 static bp_loc_type
6909 bp_location_from_bp_type (bptype type)
6910 {
6911 switch (type)
6912 {
6913 case bp_breakpoint:
6914 case bp_single_step:
6915 case bp_until:
6916 case bp_finish:
6917 case bp_longjmp:
6918 case bp_longjmp_resume:
6919 case bp_longjmp_call_dummy:
6920 case bp_exception:
6921 case bp_exception_resume:
6922 case bp_step_resume:
6923 case bp_hp_step_resume:
6924 case bp_watchpoint_scope:
6925 case bp_call_dummy:
6926 case bp_std_terminate:
6927 case bp_shlib_event:
6928 case bp_thread_event:
6929 case bp_overlay_event:
6930 case bp_jit_event:
6931 case bp_longjmp_master:
6932 case bp_std_terminate_master:
6933 case bp_exception_master:
6934 case bp_gnu_ifunc_resolver:
6935 case bp_gnu_ifunc_resolver_return:
6936 case bp_dprintf:
6937 return bp_loc_software_breakpoint;
6938 case bp_hardware_breakpoint:
6939 return bp_loc_hardware_breakpoint;
6940 case bp_hardware_watchpoint:
6941 case bp_read_watchpoint:
6942 case bp_access_watchpoint:
6943 return bp_loc_hardware_watchpoint;
6944 case bp_watchpoint:
6945 case bp_catchpoint:
6946 case bp_tracepoint:
6947 case bp_fast_tracepoint:
6948 case bp_static_tracepoint:
6949 return bp_loc_other;
6950 default:
6951 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6952 }
6953 }
6954
6955 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6956 {
6957 this->owner = owner;
6958 this->cond_bytecode = NULL;
6959 this->shlib_disabled = 0;
6960 this->enabled = 1;
6961
6962 this->loc_type = type;
6963
6964 if (this->loc_type == bp_loc_software_breakpoint
6965 || this->loc_type == bp_loc_hardware_breakpoint)
6966 mark_breakpoint_location_modified (this);
6967
6968 this->refc = 1;
6969 }
6970
6971 bp_location::bp_location (breakpoint *owner)
6972 : bp_location::bp_location (owner,
6973 bp_location_from_bp_type (owner->type))
6974 {
6975 }
6976
6977 /* Allocate a struct bp_location. */
6978
6979 static struct bp_location *
6980 allocate_bp_location (struct breakpoint *bpt)
6981 {
6982 return bpt->ops->allocate_location (bpt);
6983 }
6984
6985 static void
6986 free_bp_location (struct bp_location *loc)
6987 {
6988 delete loc;
6989 }
6990
6991 /* Increment reference count. */
6992
6993 static void
6994 incref_bp_location (struct bp_location *bl)
6995 {
6996 ++bl->refc;
6997 }
6998
6999 /* Decrement reference count. If the reference count reaches 0,
7000 destroy the bp_location. Sets *BLP to NULL. */
7001
7002 static void
7003 decref_bp_location (struct bp_location **blp)
7004 {
7005 gdb_assert ((*blp)->refc > 0);
7006
7007 if (--(*blp)->refc == 0)
7008 free_bp_location (*blp);
7009 *blp = NULL;
7010 }
7011
7012 /* Add breakpoint B at the end of the global breakpoint chain. */
7013
7014 static breakpoint *
7015 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7016 {
7017 struct breakpoint *b1;
7018 struct breakpoint *result = b.get ();
7019
7020 /* Add this breakpoint to the end of the chain so that a list of
7021 breakpoints will come out in order of increasing numbers. */
7022
7023 b1 = breakpoint_chain;
7024 if (b1 == 0)
7025 breakpoint_chain = b.release ();
7026 else
7027 {
7028 while (b1->next)
7029 b1 = b1->next;
7030 b1->next = b.release ();
7031 }
7032
7033 return result;
7034 }
7035
7036 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7037
7038 static void
7039 init_raw_breakpoint_without_location (struct breakpoint *b,
7040 struct gdbarch *gdbarch,
7041 enum bptype bptype,
7042 const struct breakpoint_ops *ops)
7043 {
7044 gdb_assert (ops != NULL);
7045
7046 b->ops = ops;
7047 b->type = bptype;
7048 b->gdbarch = gdbarch;
7049 b->language = current_language->la_language;
7050 b->input_radix = input_radix;
7051 b->related_breakpoint = b;
7052 }
7053
7054 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7055 that has type BPTYPE and has no locations as yet. */
7056
7057 static struct breakpoint *
7058 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7059 enum bptype bptype,
7060 const struct breakpoint_ops *ops)
7061 {
7062 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7063
7064 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7065 return add_to_breakpoint_chain (std::move (b));
7066 }
7067
7068 /* Initialize loc->function_name. */
7069
7070 static void
7071 set_breakpoint_location_function (struct bp_location *loc)
7072 {
7073 gdb_assert (loc->owner != NULL);
7074
7075 if (loc->owner->type == bp_breakpoint
7076 || loc->owner->type == bp_hardware_breakpoint
7077 || is_tracepoint (loc->owner))
7078 {
7079 const char *function_name;
7080
7081 if (loc->msymbol != NULL
7082 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7083 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7084 {
7085 struct breakpoint *b = loc->owner;
7086
7087 function_name = loc->msymbol->linkage_name ();
7088
7089 if (b->type == bp_breakpoint && b->loc == loc
7090 && loc->next == NULL && b->related_breakpoint == b)
7091 {
7092 /* Create only the whole new breakpoint of this type but do not
7093 mess more complicated breakpoints with multiple locations. */
7094 b->type = bp_gnu_ifunc_resolver;
7095 /* Remember the resolver's address for use by the return
7096 breakpoint. */
7097 loc->related_address = loc->address;
7098 }
7099 }
7100 else
7101 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7102
7103 if (function_name)
7104 loc->function_name = xstrdup (function_name);
7105 }
7106 }
7107
7108 /* Attempt to determine architecture of location identified by SAL. */
7109 struct gdbarch *
7110 get_sal_arch (struct symtab_and_line sal)
7111 {
7112 if (sal.section)
7113 return sal.section->objfile->arch ();
7114 if (sal.symtab)
7115 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7116
7117 return NULL;
7118 }
7119
7120 /* Low level routine for partially initializing a breakpoint of type
7121 BPTYPE. The newly created breakpoint's address, section, source
7122 file name, and line number are provided by SAL.
7123
7124 It is expected that the caller will complete the initialization of
7125 the newly created breakpoint struct as well as output any status
7126 information regarding the creation of a new breakpoint. */
7127
7128 static void
7129 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7130 struct symtab_and_line sal, enum bptype bptype,
7131 const struct breakpoint_ops *ops)
7132 {
7133 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7134
7135 add_location_to_breakpoint (b, &sal);
7136
7137 if (bptype != bp_catchpoint)
7138 gdb_assert (sal.pspace != NULL);
7139
7140 /* Store the program space that was used to set the breakpoint,
7141 except for ordinary breakpoints, which are independent of the
7142 program space. */
7143 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7144 b->pspace = sal.pspace;
7145 }
7146
7147 /* set_raw_breakpoint is a low level routine for allocating and
7148 partially initializing a breakpoint of type BPTYPE. The newly
7149 created breakpoint's address, section, source file name, and line
7150 number are provided by SAL. The newly created and partially
7151 initialized breakpoint is added to the breakpoint chain and
7152 is also returned as the value of this function.
7153
7154 It is expected that the caller will complete the initialization of
7155 the newly created breakpoint struct as well as output any status
7156 information regarding the creation of a new breakpoint. In
7157 particular, set_raw_breakpoint does NOT set the breakpoint
7158 number! Care should be taken to not allow an error to occur
7159 prior to completing the initialization of the breakpoint. If this
7160 should happen, a bogus breakpoint will be left on the chain. */
7161
7162 struct breakpoint *
7163 set_raw_breakpoint (struct gdbarch *gdbarch,
7164 struct symtab_and_line sal, enum bptype bptype,
7165 const struct breakpoint_ops *ops)
7166 {
7167 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7168
7169 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7170 return add_to_breakpoint_chain (std::move (b));
7171 }
7172
7173 /* Call this routine when stepping and nexting to enable a breakpoint
7174 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7175 initiated the operation. */
7176
7177 void
7178 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7179 {
7180 struct breakpoint *b, *b_tmp;
7181 int thread = tp->global_num;
7182
7183 /* To avoid having to rescan all objfile symbols at every step,
7184 we maintain a list of continually-inserted but always disabled
7185 longjmp "master" breakpoints. Here, we simply create momentary
7186 clones of those and enable them for the requested thread. */
7187 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7188 if (b->pspace == current_program_space
7189 && (b->type == bp_longjmp_master
7190 || b->type == bp_exception_master))
7191 {
7192 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7193 struct breakpoint *clone;
7194
7195 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7196 after their removal. */
7197 clone = momentary_breakpoint_from_master (b, type,
7198 &momentary_breakpoint_ops, 1);
7199 clone->thread = thread;
7200 }
7201
7202 tp->initiating_frame = frame;
7203 }
7204
7205 /* Delete all longjmp breakpoints from THREAD. */
7206 void
7207 delete_longjmp_breakpoint (int thread)
7208 {
7209 struct breakpoint *b, *b_tmp;
7210
7211 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7212 if (b->type == bp_longjmp || b->type == bp_exception)
7213 {
7214 if (b->thread == thread)
7215 delete_breakpoint (b);
7216 }
7217 }
7218
7219 void
7220 delete_longjmp_breakpoint_at_next_stop (int thread)
7221 {
7222 struct breakpoint *b, *b_tmp;
7223
7224 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7225 if (b->type == bp_longjmp || b->type == bp_exception)
7226 {
7227 if (b->thread == thread)
7228 b->disposition = disp_del_at_next_stop;
7229 }
7230 }
7231
7232 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7233 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7234 pointer to any of them. Return NULL if this system cannot place longjmp
7235 breakpoints. */
7236
7237 struct breakpoint *
7238 set_longjmp_breakpoint_for_call_dummy (void)
7239 {
7240 struct breakpoint *b, *retval = NULL;
7241
7242 ALL_BREAKPOINTS (b)
7243 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7244 {
7245 struct breakpoint *new_b;
7246
7247 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7248 &momentary_breakpoint_ops,
7249 1);
7250 new_b->thread = inferior_thread ()->global_num;
7251
7252 /* Link NEW_B into the chain of RETVAL breakpoints. */
7253
7254 gdb_assert (new_b->related_breakpoint == new_b);
7255 if (retval == NULL)
7256 retval = new_b;
7257 new_b->related_breakpoint = retval;
7258 while (retval->related_breakpoint != new_b->related_breakpoint)
7259 retval = retval->related_breakpoint;
7260 retval->related_breakpoint = new_b;
7261 }
7262
7263 return retval;
7264 }
7265
7266 /* Verify all existing dummy frames and their associated breakpoints for
7267 TP. Remove those which can no longer be found in the current frame
7268 stack.
7269
7270 You should call this function only at places where it is safe to currently
7271 unwind the whole stack. Failed stack unwind would discard live dummy
7272 frames. */
7273
7274 void
7275 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7276 {
7277 struct breakpoint *b, *b_tmp;
7278
7279 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7280 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7281 {
7282 struct breakpoint *dummy_b = b->related_breakpoint;
7283
7284 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7285 dummy_b = dummy_b->related_breakpoint;
7286 if (dummy_b->type != bp_call_dummy
7287 || frame_find_by_id (dummy_b->frame_id) != NULL)
7288 continue;
7289
7290 dummy_frame_discard (dummy_b->frame_id, tp);
7291
7292 while (b->related_breakpoint != b)
7293 {
7294 if (b_tmp == b->related_breakpoint)
7295 b_tmp = b->related_breakpoint->next;
7296 delete_breakpoint (b->related_breakpoint);
7297 }
7298 delete_breakpoint (b);
7299 }
7300 }
7301
7302 void
7303 enable_overlay_breakpoints (void)
7304 {
7305 struct breakpoint *b;
7306
7307 ALL_BREAKPOINTS (b)
7308 if (b->type == bp_overlay_event)
7309 {
7310 b->enable_state = bp_enabled;
7311 update_global_location_list (UGLL_MAY_INSERT);
7312 overlay_events_enabled = 1;
7313 }
7314 }
7315
7316 void
7317 disable_overlay_breakpoints (void)
7318 {
7319 struct breakpoint *b;
7320
7321 ALL_BREAKPOINTS (b)
7322 if (b->type == bp_overlay_event)
7323 {
7324 b->enable_state = bp_disabled;
7325 update_global_location_list (UGLL_DONT_INSERT);
7326 overlay_events_enabled = 0;
7327 }
7328 }
7329
7330 /* Set an active std::terminate breakpoint for each std::terminate
7331 master breakpoint. */
7332 void
7333 set_std_terminate_breakpoint (void)
7334 {
7335 struct breakpoint *b, *b_tmp;
7336
7337 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7338 if (b->pspace == current_program_space
7339 && b->type == bp_std_terminate_master)
7340 {
7341 momentary_breakpoint_from_master (b, bp_std_terminate,
7342 &momentary_breakpoint_ops, 1);
7343 }
7344 }
7345
7346 /* Delete all the std::terminate breakpoints. */
7347 void
7348 delete_std_terminate_breakpoint (void)
7349 {
7350 struct breakpoint *b, *b_tmp;
7351
7352 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7353 if (b->type == bp_std_terminate)
7354 delete_breakpoint (b);
7355 }
7356
7357 struct breakpoint *
7358 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7359 {
7360 struct breakpoint *b;
7361
7362 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7363 &internal_breakpoint_ops);
7364
7365 b->enable_state = bp_enabled;
7366 /* location has to be used or breakpoint_re_set will delete me. */
7367 b->location = new_address_location (b->loc->address, NULL, 0);
7368
7369 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7370
7371 return b;
7372 }
7373
7374 struct lang_and_radix
7375 {
7376 enum language lang;
7377 int radix;
7378 };
7379
7380 /* Create a breakpoint for JIT code registration and unregistration. */
7381
7382 struct breakpoint *
7383 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7384 {
7385 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7386 &internal_breakpoint_ops);
7387 }
7388
7389 /* Remove JIT code registration and unregistration breakpoint(s). */
7390
7391 void
7392 remove_jit_event_breakpoints (void)
7393 {
7394 struct breakpoint *b, *b_tmp;
7395
7396 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7397 if (b->type == bp_jit_event
7398 && b->loc->pspace == current_program_space)
7399 delete_breakpoint (b);
7400 }
7401
7402 void
7403 remove_solib_event_breakpoints (void)
7404 {
7405 struct breakpoint *b, *b_tmp;
7406
7407 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7408 if (b->type == bp_shlib_event
7409 && b->loc->pspace == current_program_space)
7410 delete_breakpoint (b);
7411 }
7412
7413 /* See breakpoint.h. */
7414
7415 void
7416 remove_solib_event_breakpoints_at_next_stop (void)
7417 {
7418 struct breakpoint *b, *b_tmp;
7419
7420 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7421 if (b->type == bp_shlib_event
7422 && b->loc->pspace == current_program_space)
7423 b->disposition = disp_del_at_next_stop;
7424 }
7425
7426 /* Helper for create_solib_event_breakpoint /
7427 create_and_insert_solib_event_breakpoint. Allows specifying which
7428 INSERT_MODE to pass through to update_global_location_list. */
7429
7430 static struct breakpoint *
7431 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7432 enum ugll_insert_mode insert_mode)
7433 {
7434 struct breakpoint *b;
7435
7436 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7437 &internal_breakpoint_ops);
7438 update_global_location_list_nothrow (insert_mode);
7439 return b;
7440 }
7441
7442 struct breakpoint *
7443 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7444 {
7445 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7446 }
7447
7448 /* See breakpoint.h. */
7449
7450 struct breakpoint *
7451 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7452 {
7453 struct breakpoint *b;
7454
7455 /* Explicitly tell update_global_location_list to insert
7456 locations. */
7457 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7458 if (!b->loc->inserted)
7459 {
7460 delete_breakpoint (b);
7461 return NULL;
7462 }
7463 return b;
7464 }
7465
7466 /* Disable any breakpoints that are on code in shared libraries. Only
7467 apply to enabled breakpoints, disabled ones can just stay disabled. */
7468
7469 void
7470 disable_breakpoints_in_shlibs (void)
7471 {
7472 struct bp_location *loc, **locp_tmp;
7473
7474 ALL_BP_LOCATIONS (loc, locp_tmp)
7475 {
7476 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7477 struct breakpoint *b = loc->owner;
7478
7479 /* We apply the check to all breakpoints, including disabled for
7480 those with loc->duplicate set. This is so that when breakpoint
7481 becomes enabled, or the duplicate is removed, gdb will try to
7482 insert all breakpoints. If we don't set shlib_disabled here,
7483 we'll try to insert those breakpoints and fail. */
7484 if (((b->type == bp_breakpoint)
7485 || (b->type == bp_jit_event)
7486 || (b->type == bp_hardware_breakpoint)
7487 || (is_tracepoint (b)))
7488 && loc->pspace == current_program_space
7489 && !loc->shlib_disabled
7490 && solib_name_from_address (loc->pspace, loc->address)
7491 )
7492 {
7493 loc->shlib_disabled = 1;
7494 }
7495 }
7496 }
7497
7498 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7499 notification of unloaded_shlib. Only apply to enabled breakpoints,
7500 disabled ones can just stay disabled. */
7501
7502 static void
7503 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7504 {
7505 struct bp_location *loc, **locp_tmp;
7506 int disabled_shlib_breaks = 0;
7507
7508 ALL_BP_LOCATIONS (loc, locp_tmp)
7509 {
7510 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7511 struct breakpoint *b = loc->owner;
7512
7513 if (solib->pspace == loc->pspace
7514 && !loc->shlib_disabled
7515 && (((b->type == bp_breakpoint
7516 || b->type == bp_jit_event
7517 || b->type == bp_hardware_breakpoint)
7518 && (loc->loc_type == bp_loc_hardware_breakpoint
7519 || loc->loc_type == bp_loc_software_breakpoint))
7520 || is_tracepoint (b))
7521 && solib_contains_address_p (solib, loc->address))
7522 {
7523 loc->shlib_disabled = 1;
7524 /* At this point, we cannot rely on remove_breakpoint
7525 succeeding so we must mark the breakpoint as not inserted
7526 to prevent future errors occurring in remove_breakpoints. */
7527 loc->inserted = 0;
7528
7529 /* This may cause duplicate notifications for the same breakpoint. */
7530 gdb::observers::breakpoint_modified.notify (b);
7531
7532 if (!disabled_shlib_breaks)
7533 {
7534 target_terminal::ours_for_output ();
7535 warning (_("Temporarily disabling breakpoints "
7536 "for unloaded shared library \"%s\""),
7537 solib->so_name);
7538 }
7539 disabled_shlib_breaks = 1;
7540 }
7541 }
7542 }
7543
7544 /* Disable any breakpoints and tracepoints in OBJFILE upon
7545 notification of free_objfile. Only apply to enabled breakpoints,
7546 disabled ones can just stay disabled. */
7547
7548 static void
7549 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7550 {
7551 struct breakpoint *b;
7552
7553 if (objfile == NULL)
7554 return;
7555
7556 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7557 managed by the user with add-symbol-file/remove-symbol-file.
7558 Similarly to how breakpoints in shared libraries are handled in
7559 response to "nosharedlibrary", mark breakpoints in such modules
7560 shlib_disabled so they end up uninserted on the next global
7561 location list update. Shared libraries not loaded by the user
7562 aren't handled here -- they're already handled in
7563 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7564 solib_unloaded observer. We skip objfiles that are not
7565 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7566 main objfile). */
7567 if ((objfile->flags & OBJF_SHARED) == 0
7568 || (objfile->flags & OBJF_USERLOADED) == 0)
7569 return;
7570
7571 ALL_BREAKPOINTS (b)
7572 {
7573 struct bp_location *loc;
7574 int bp_modified = 0;
7575
7576 if (!is_breakpoint (b) && !is_tracepoint (b))
7577 continue;
7578
7579 for (loc = b->loc; loc != NULL; loc = loc->next)
7580 {
7581 CORE_ADDR loc_addr = loc->address;
7582
7583 if (loc->loc_type != bp_loc_hardware_breakpoint
7584 && loc->loc_type != bp_loc_software_breakpoint)
7585 continue;
7586
7587 if (loc->shlib_disabled != 0)
7588 continue;
7589
7590 if (objfile->pspace != loc->pspace)
7591 continue;
7592
7593 if (loc->loc_type != bp_loc_hardware_breakpoint
7594 && loc->loc_type != bp_loc_software_breakpoint)
7595 continue;
7596
7597 if (is_addr_in_objfile (loc_addr, objfile))
7598 {
7599 loc->shlib_disabled = 1;
7600 /* At this point, we don't know whether the object was
7601 unmapped from the inferior or not, so leave the
7602 inserted flag alone. We'll handle failure to
7603 uninsert quietly, in case the object was indeed
7604 unmapped. */
7605
7606 mark_breakpoint_location_modified (loc);
7607
7608 bp_modified = 1;
7609 }
7610 }
7611
7612 if (bp_modified)
7613 gdb::observers::breakpoint_modified.notify (b);
7614 }
7615 }
7616
7617 /* FORK & VFORK catchpoints. */
7618
7619 /* An instance of this type is used to represent a fork or vfork
7620 catchpoint. A breakpoint is really of this type iff its ops pointer points
7621 to CATCH_FORK_BREAKPOINT_OPS. */
7622
7623 struct fork_catchpoint : public breakpoint
7624 {
7625 /* Process id of a child process whose forking triggered this
7626 catchpoint. This field is only valid immediately after this
7627 catchpoint has triggered. */
7628 ptid_t forked_inferior_pid;
7629 };
7630
7631 /* Implement the "insert" breakpoint_ops method for fork
7632 catchpoints. */
7633
7634 static int
7635 insert_catch_fork (struct bp_location *bl)
7636 {
7637 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7638 }
7639
7640 /* Implement the "remove" breakpoint_ops method for fork
7641 catchpoints. */
7642
7643 static int
7644 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7645 {
7646 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7647 }
7648
7649 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7650 catchpoints. */
7651
7652 static int
7653 breakpoint_hit_catch_fork (const struct bp_location *bl,
7654 const address_space *aspace, CORE_ADDR bp_addr,
7655 const struct target_waitstatus *ws)
7656 {
7657 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7658
7659 if (ws->kind != TARGET_WAITKIND_FORKED)
7660 return 0;
7661
7662 c->forked_inferior_pid = ws->value.related_pid;
7663 return 1;
7664 }
7665
7666 /* Implement the "print_it" breakpoint_ops method for fork
7667 catchpoints. */
7668
7669 static enum print_stop_action
7670 print_it_catch_fork (bpstat bs)
7671 {
7672 struct ui_out *uiout = current_uiout;
7673 struct breakpoint *b = bs->breakpoint_at;
7674 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7675
7676 annotate_catchpoint (b->number);
7677 maybe_print_thread_hit_breakpoint (uiout);
7678 if (b->disposition == disp_del)
7679 uiout->text ("Temporary catchpoint ");
7680 else
7681 uiout->text ("Catchpoint ");
7682 if (uiout->is_mi_like_p ())
7683 {
7684 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7685 uiout->field_string ("disp", bpdisp_text (b->disposition));
7686 }
7687 uiout->field_signed ("bkptno", b->number);
7688 uiout->text (" (forked process ");
7689 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7690 uiout->text ("), ");
7691 return PRINT_SRC_AND_LOC;
7692 }
7693
7694 /* Implement the "print_one" breakpoint_ops method for fork
7695 catchpoints. */
7696
7697 static void
7698 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7699 {
7700 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7701 struct value_print_options opts;
7702 struct ui_out *uiout = current_uiout;
7703
7704 get_user_print_options (&opts);
7705
7706 /* Field 4, the address, is omitted (which makes the columns not
7707 line up too nicely with the headers, but the effect is relatively
7708 readable). */
7709 if (opts.addressprint)
7710 uiout->field_skip ("addr");
7711 annotate_field (5);
7712 uiout->text ("fork");
7713 if (c->forked_inferior_pid != null_ptid)
7714 {
7715 uiout->text (", process ");
7716 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7717 uiout->spaces (1);
7718 }
7719
7720 if (uiout->is_mi_like_p ())
7721 uiout->field_string ("catch-type", "fork");
7722 }
7723
7724 /* Implement the "print_mention" breakpoint_ops method for fork
7725 catchpoints. */
7726
7727 static void
7728 print_mention_catch_fork (struct breakpoint *b)
7729 {
7730 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7731 }
7732
7733 /* Implement the "print_recreate" breakpoint_ops method for fork
7734 catchpoints. */
7735
7736 static void
7737 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7738 {
7739 fprintf_unfiltered (fp, "catch fork");
7740 print_recreate_thread (b, fp);
7741 }
7742
7743 /* The breakpoint_ops structure to be used in fork catchpoints. */
7744
7745 static struct breakpoint_ops catch_fork_breakpoint_ops;
7746
7747 /* Implement the "insert" breakpoint_ops method for vfork
7748 catchpoints. */
7749
7750 static int
7751 insert_catch_vfork (struct bp_location *bl)
7752 {
7753 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7754 }
7755
7756 /* Implement the "remove" breakpoint_ops method for vfork
7757 catchpoints. */
7758
7759 static int
7760 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7761 {
7762 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7763 }
7764
7765 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7766 catchpoints. */
7767
7768 static int
7769 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7770 const address_space *aspace, CORE_ADDR bp_addr,
7771 const struct target_waitstatus *ws)
7772 {
7773 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7774
7775 if (ws->kind != TARGET_WAITKIND_VFORKED)
7776 return 0;
7777
7778 c->forked_inferior_pid = ws->value.related_pid;
7779 return 1;
7780 }
7781
7782 /* Implement the "print_it" breakpoint_ops method for vfork
7783 catchpoints. */
7784
7785 static enum print_stop_action
7786 print_it_catch_vfork (bpstat bs)
7787 {
7788 struct ui_out *uiout = current_uiout;
7789 struct breakpoint *b = bs->breakpoint_at;
7790 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7791
7792 annotate_catchpoint (b->number);
7793 maybe_print_thread_hit_breakpoint (uiout);
7794 if (b->disposition == disp_del)
7795 uiout->text ("Temporary catchpoint ");
7796 else
7797 uiout->text ("Catchpoint ");
7798 if (uiout->is_mi_like_p ())
7799 {
7800 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7801 uiout->field_string ("disp", bpdisp_text (b->disposition));
7802 }
7803 uiout->field_signed ("bkptno", b->number);
7804 uiout->text (" (vforked process ");
7805 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7806 uiout->text ("), ");
7807 return PRINT_SRC_AND_LOC;
7808 }
7809
7810 /* Implement the "print_one" breakpoint_ops method for vfork
7811 catchpoints. */
7812
7813 static void
7814 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7815 {
7816 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7817 struct value_print_options opts;
7818 struct ui_out *uiout = current_uiout;
7819
7820 get_user_print_options (&opts);
7821 /* Field 4, the address, is omitted (which makes the columns not
7822 line up too nicely with the headers, but the effect is relatively
7823 readable). */
7824 if (opts.addressprint)
7825 uiout->field_skip ("addr");
7826 annotate_field (5);
7827 uiout->text ("vfork");
7828 if (c->forked_inferior_pid != null_ptid)
7829 {
7830 uiout->text (", process ");
7831 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7832 uiout->spaces (1);
7833 }
7834
7835 if (uiout->is_mi_like_p ())
7836 uiout->field_string ("catch-type", "vfork");
7837 }
7838
7839 /* Implement the "print_mention" breakpoint_ops method for vfork
7840 catchpoints. */
7841
7842 static void
7843 print_mention_catch_vfork (struct breakpoint *b)
7844 {
7845 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7846 }
7847
7848 /* Implement the "print_recreate" breakpoint_ops method for vfork
7849 catchpoints. */
7850
7851 static void
7852 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7853 {
7854 fprintf_unfiltered (fp, "catch vfork");
7855 print_recreate_thread (b, fp);
7856 }
7857
7858 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7859
7860 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7861
7862 /* An instance of this type is used to represent an solib catchpoint.
7863 A breakpoint is really of this type iff its ops pointer points to
7864 CATCH_SOLIB_BREAKPOINT_OPS. */
7865
7866 struct solib_catchpoint : public breakpoint
7867 {
7868 ~solib_catchpoint () override;
7869
7870 /* True for "catch load", false for "catch unload". */
7871 unsigned char is_load;
7872
7873 /* Regular expression to match, if any. COMPILED is only valid when
7874 REGEX is non-NULL. */
7875 char *regex;
7876 std::unique_ptr<compiled_regex> compiled;
7877 };
7878
7879 solib_catchpoint::~solib_catchpoint ()
7880 {
7881 xfree (this->regex);
7882 }
7883
7884 static int
7885 insert_catch_solib (struct bp_location *ignore)
7886 {
7887 return 0;
7888 }
7889
7890 static int
7891 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7892 {
7893 return 0;
7894 }
7895
7896 static int
7897 breakpoint_hit_catch_solib (const struct bp_location *bl,
7898 const address_space *aspace,
7899 CORE_ADDR bp_addr,
7900 const struct target_waitstatus *ws)
7901 {
7902 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7903 struct breakpoint *other;
7904
7905 if (ws->kind == TARGET_WAITKIND_LOADED)
7906 return 1;
7907
7908 ALL_BREAKPOINTS (other)
7909 {
7910 struct bp_location *other_bl;
7911
7912 if (other == bl->owner)
7913 continue;
7914
7915 if (other->type != bp_shlib_event)
7916 continue;
7917
7918 if (self->pspace != NULL && other->pspace != self->pspace)
7919 continue;
7920
7921 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7922 {
7923 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7924 return 1;
7925 }
7926 }
7927
7928 return 0;
7929 }
7930
7931 static void
7932 check_status_catch_solib (struct bpstats *bs)
7933 {
7934 struct solib_catchpoint *self
7935 = (struct solib_catchpoint *) bs->breakpoint_at;
7936
7937 if (self->is_load)
7938 {
7939 for (so_list *iter : current_program_space->added_solibs)
7940 {
7941 if (!self->regex
7942 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7943 return;
7944 }
7945 }
7946 else
7947 {
7948 for (const std::string &iter : current_program_space->deleted_solibs)
7949 {
7950 if (!self->regex
7951 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7952 return;
7953 }
7954 }
7955
7956 bs->stop = 0;
7957 bs->print_it = print_it_noop;
7958 }
7959
7960 static enum print_stop_action
7961 print_it_catch_solib (bpstat bs)
7962 {
7963 struct breakpoint *b = bs->breakpoint_at;
7964 struct ui_out *uiout = current_uiout;
7965
7966 annotate_catchpoint (b->number);
7967 maybe_print_thread_hit_breakpoint (uiout);
7968 if (b->disposition == disp_del)
7969 uiout->text ("Temporary catchpoint ");
7970 else
7971 uiout->text ("Catchpoint ");
7972 uiout->field_signed ("bkptno", b->number);
7973 uiout->text ("\n");
7974 if (uiout->is_mi_like_p ())
7975 uiout->field_string ("disp", bpdisp_text (b->disposition));
7976 print_solib_event (1);
7977 return PRINT_SRC_AND_LOC;
7978 }
7979
7980 static void
7981 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7982 {
7983 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7984 struct value_print_options opts;
7985 struct ui_out *uiout = current_uiout;
7986
7987 get_user_print_options (&opts);
7988 /* Field 4, the address, is omitted (which makes the columns not
7989 line up too nicely with the headers, but the effect is relatively
7990 readable). */
7991 if (opts.addressprint)
7992 {
7993 annotate_field (4);
7994 uiout->field_skip ("addr");
7995 }
7996
7997 std::string msg;
7998 annotate_field (5);
7999 if (self->is_load)
8000 {
8001 if (self->regex)
8002 msg = string_printf (_("load of library matching %s"), self->regex);
8003 else
8004 msg = _("load of library");
8005 }
8006 else
8007 {
8008 if (self->regex)
8009 msg = string_printf (_("unload of library matching %s"), self->regex);
8010 else
8011 msg = _("unload of library");
8012 }
8013 uiout->field_string ("what", msg);
8014
8015 if (uiout->is_mi_like_p ())
8016 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8017 }
8018
8019 static void
8020 print_mention_catch_solib (struct breakpoint *b)
8021 {
8022 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8023
8024 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8025 self->is_load ? "load" : "unload");
8026 }
8027
8028 static void
8029 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8030 {
8031 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8032
8033 fprintf_unfiltered (fp, "%s %s",
8034 b->disposition == disp_del ? "tcatch" : "catch",
8035 self->is_load ? "load" : "unload");
8036 if (self->regex)
8037 fprintf_unfiltered (fp, " %s", self->regex);
8038 fprintf_unfiltered (fp, "\n");
8039 }
8040
8041 static struct breakpoint_ops catch_solib_breakpoint_ops;
8042
8043 /* Shared helper function (MI and CLI) for creating and installing
8044 a shared object event catchpoint. If IS_LOAD is non-zero then
8045 the events to be caught are load events, otherwise they are
8046 unload events. If IS_TEMP is non-zero the catchpoint is a
8047 temporary one. If ENABLED is non-zero the catchpoint is
8048 created in an enabled state. */
8049
8050 void
8051 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8052 {
8053 struct gdbarch *gdbarch = get_current_arch ();
8054
8055 if (!arg)
8056 arg = "";
8057 arg = skip_spaces (arg);
8058
8059 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8060
8061 if (*arg != '\0')
8062 {
8063 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8064 _("Invalid regexp")));
8065 c->regex = xstrdup (arg);
8066 }
8067
8068 c->is_load = is_load;
8069 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8070 &catch_solib_breakpoint_ops);
8071
8072 c->enable_state = enabled ? bp_enabled : bp_disabled;
8073
8074 install_breakpoint (0, std::move (c), 1);
8075 }
8076
8077 /* A helper function that does all the work for "catch load" and
8078 "catch unload". */
8079
8080 static void
8081 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8082 struct cmd_list_element *command)
8083 {
8084 int tempflag;
8085 const int enabled = 1;
8086
8087 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8088
8089 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8090 }
8091
8092 static void
8093 catch_load_command_1 (const char *arg, int from_tty,
8094 struct cmd_list_element *command)
8095 {
8096 catch_load_or_unload (arg, from_tty, 1, command);
8097 }
8098
8099 static void
8100 catch_unload_command_1 (const char *arg, int from_tty,
8101 struct cmd_list_element *command)
8102 {
8103 catch_load_or_unload (arg, from_tty, 0, command);
8104 }
8105
8106 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8107 is non-zero, then make the breakpoint temporary. If COND_STRING is
8108 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8109 the breakpoint_ops structure associated to the catchpoint. */
8110
8111 void
8112 init_catchpoint (struct breakpoint *b,
8113 struct gdbarch *gdbarch, int tempflag,
8114 const char *cond_string,
8115 const struct breakpoint_ops *ops)
8116 {
8117 symtab_and_line sal;
8118 sal.pspace = current_program_space;
8119
8120 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8121
8122 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8123 b->disposition = tempflag ? disp_del : disp_donttouch;
8124 }
8125
8126 void
8127 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8128 {
8129 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8130 set_breakpoint_number (internal, b);
8131 if (is_tracepoint (b))
8132 set_tracepoint_count (breakpoint_count);
8133 if (!internal)
8134 mention (b);
8135 gdb::observers::breakpoint_created.notify (b);
8136
8137 if (update_gll)
8138 update_global_location_list (UGLL_MAY_INSERT);
8139 }
8140
8141 static void
8142 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8143 int tempflag, const char *cond_string,
8144 const struct breakpoint_ops *ops)
8145 {
8146 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8147
8148 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8149
8150 c->forked_inferior_pid = null_ptid;
8151
8152 install_breakpoint (0, std::move (c), 1);
8153 }
8154
8155 /* Exec catchpoints. */
8156
8157 /* An instance of this type is used to represent an exec catchpoint.
8158 A breakpoint is really of this type iff its ops pointer points to
8159 CATCH_EXEC_BREAKPOINT_OPS. */
8160
8161 struct exec_catchpoint : public breakpoint
8162 {
8163 ~exec_catchpoint () override;
8164
8165 /* Filename of a program whose exec triggered this catchpoint.
8166 This field is only valid immediately after this catchpoint has
8167 triggered. */
8168 char *exec_pathname;
8169 };
8170
8171 /* Exec catchpoint destructor. */
8172
8173 exec_catchpoint::~exec_catchpoint ()
8174 {
8175 xfree (this->exec_pathname);
8176 }
8177
8178 static int
8179 insert_catch_exec (struct bp_location *bl)
8180 {
8181 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8182 }
8183
8184 static int
8185 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8186 {
8187 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8188 }
8189
8190 static int
8191 breakpoint_hit_catch_exec (const struct bp_location *bl,
8192 const address_space *aspace, CORE_ADDR bp_addr,
8193 const struct target_waitstatus *ws)
8194 {
8195 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8196
8197 if (ws->kind != TARGET_WAITKIND_EXECD)
8198 return 0;
8199
8200 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8201 return 1;
8202 }
8203
8204 static enum print_stop_action
8205 print_it_catch_exec (bpstat bs)
8206 {
8207 struct ui_out *uiout = current_uiout;
8208 struct breakpoint *b = bs->breakpoint_at;
8209 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8210
8211 annotate_catchpoint (b->number);
8212 maybe_print_thread_hit_breakpoint (uiout);
8213 if (b->disposition == disp_del)
8214 uiout->text ("Temporary catchpoint ");
8215 else
8216 uiout->text ("Catchpoint ");
8217 if (uiout->is_mi_like_p ())
8218 {
8219 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8220 uiout->field_string ("disp", bpdisp_text (b->disposition));
8221 }
8222 uiout->field_signed ("bkptno", b->number);
8223 uiout->text (" (exec'd ");
8224 uiout->field_string ("new-exec", c->exec_pathname);
8225 uiout->text ("), ");
8226
8227 return PRINT_SRC_AND_LOC;
8228 }
8229
8230 static void
8231 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8232 {
8233 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8234 struct value_print_options opts;
8235 struct ui_out *uiout = current_uiout;
8236
8237 get_user_print_options (&opts);
8238
8239 /* Field 4, the address, is omitted (which makes the columns
8240 not line up too nicely with the headers, but the effect
8241 is relatively readable). */
8242 if (opts.addressprint)
8243 uiout->field_skip ("addr");
8244 annotate_field (5);
8245 uiout->text ("exec");
8246 if (c->exec_pathname != NULL)
8247 {
8248 uiout->text (", program \"");
8249 uiout->field_string ("what", c->exec_pathname);
8250 uiout->text ("\" ");
8251 }
8252
8253 if (uiout->is_mi_like_p ())
8254 uiout->field_string ("catch-type", "exec");
8255 }
8256
8257 static void
8258 print_mention_catch_exec (struct breakpoint *b)
8259 {
8260 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8261 }
8262
8263 /* Implement the "print_recreate" breakpoint_ops method for exec
8264 catchpoints. */
8265
8266 static void
8267 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8268 {
8269 fprintf_unfiltered (fp, "catch exec");
8270 print_recreate_thread (b, fp);
8271 }
8272
8273 static struct breakpoint_ops catch_exec_breakpoint_ops;
8274
8275 static int
8276 hw_breakpoint_used_count (void)
8277 {
8278 int i = 0;
8279 struct breakpoint *b;
8280 struct bp_location *bl;
8281
8282 ALL_BREAKPOINTS (b)
8283 {
8284 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8285 for (bl = b->loc; bl; bl = bl->next)
8286 {
8287 /* Special types of hardware breakpoints may use more than
8288 one register. */
8289 i += b->ops->resources_needed (bl);
8290 }
8291 }
8292
8293 return i;
8294 }
8295
8296 /* Returns the resources B would use if it were a hardware
8297 watchpoint. */
8298
8299 static int
8300 hw_watchpoint_use_count (struct breakpoint *b)
8301 {
8302 int i = 0;
8303 struct bp_location *bl;
8304
8305 if (!breakpoint_enabled (b))
8306 return 0;
8307
8308 for (bl = b->loc; bl; bl = bl->next)
8309 {
8310 /* Special types of hardware watchpoints may use more than
8311 one register. */
8312 i += b->ops->resources_needed (bl);
8313 }
8314
8315 return i;
8316 }
8317
8318 /* Returns the sum the used resources of all hardware watchpoints of
8319 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8320 the sum of the used resources of all hardware watchpoints of other
8321 types _not_ TYPE. */
8322
8323 static int
8324 hw_watchpoint_used_count_others (struct breakpoint *except,
8325 enum bptype type, int *other_type_used)
8326 {
8327 int i = 0;
8328 struct breakpoint *b;
8329
8330 *other_type_used = 0;
8331 ALL_BREAKPOINTS (b)
8332 {
8333 if (b == except)
8334 continue;
8335 if (!breakpoint_enabled (b))
8336 continue;
8337
8338 if (b->type == type)
8339 i += hw_watchpoint_use_count (b);
8340 else if (is_hardware_watchpoint (b))
8341 *other_type_used = 1;
8342 }
8343
8344 return i;
8345 }
8346
8347 void
8348 disable_watchpoints_before_interactive_call_start (void)
8349 {
8350 struct breakpoint *b;
8351
8352 ALL_BREAKPOINTS (b)
8353 {
8354 if (is_watchpoint (b) && breakpoint_enabled (b))
8355 {
8356 b->enable_state = bp_call_disabled;
8357 update_global_location_list (UGLL_DONT_INSERT);
8358 }
8359 }
8360 }
8361
8362 void
8363 enable_watchpoints_after_interactive_call_stop (void)
8364 {
8365 struct breakpoint *b;
8366
8367 ALL_BREAKPOINTS (b)
8368 {
8369 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8370 {
8371 b->enable_state = bp_enabled;
8372 update_global_location_list (UGLL_MAY_INSERT);
8373 }
8374 }
8375 }
8376
8377 void
8378 disable_breakpoints_before_startup (void)
8379 {
8380 current_program_space->executing_startup = 1;
8381 update_global_location_list (UGLL_DONT_INSERT);
8382 }
8383
8384 void
8385 enable_breakpoints_after_startup (void)
8386 {
8387 current_program_space->executing_startup = 0;
8388 breakpoint_re_set ();
8389 }
8390
8391 /* Create a new single-step breakpoint for thread THREAD, with no
8392 locations. */
8393
8394 static struct breakpoint *
8395 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8396 {
8397 std::unique_ptr<breakpoint> b (new breakpoint ());
8398
8399 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8400 &momentary_breakpoint_ops);
8401
8402 b->disposition = disp_donttouch;
8403 b->frame_id = null_frame_id;
8404
8405 b->thread = thread;
8406 gdb_assert (b->thread != 0);
8407
8408 return add_to_breakpoint_chain (std::move (b));
8409 }
8410
8411 /* Set a momentary breakpoint of type TYPE at address specified by
8412 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8413 frame. */
8414
8415 breakpoint_up
8416 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8417 struct frame_id frame_id, enum bptype type)
8418 {
8419 struct breakpoint *b;
8420
8421 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8422 tail-called one. */
8423 gdb_assert (!frame_id_artificial_p (frame_id));
8424
8425 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8426 b->enable_state = bp_enabled;
8427 b->disposition = disp_donttouch;
8428 b->frame_id = frame_id;
8429
8430 b->thread = inferior_thread ()->global_num;
8431
8432 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8433
8434 return breakpoint_up (b);
8435 }
8436
8437 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8438 The new breakpoint will have type TYPE, use OPS as its
8439 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8440
8441 static struct breakpoint *
8442 momentary_breakpoint_from_master (struct breakpoint *orig,
8443 enum bptype type,
8444 const struct breakpoint_ops *ops,
8445 int loc_enabled)
8446 {
8447 struct breakpoint *copy;
8448
8449 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8450 copy->loc = allocate_bp_location (copy);
8451 set_breakpoint_location_function (copy->loc);
8452
8453 copy->loc->gdbarch = orig->loc->gdbarch;
8454 copy->loc->requested_address = orig->loc->requested_address;
8455 copy->loc->address = orig->loc->address;
8456 copy->loc->section = orig->loc->section;
8457 copy->loc->pspace = orig->loc->pspace;
8458 copy->loc->probe = orig->loc->probe;
8459 copy->loc->line_number = orig->loc->line_number;
8460 copy->loc->symtab = orig->loc->symtab;
8461 copy->loc->enabled = loc_enabled;
8462 copy->frame_id = orig->frame_id;
8463 copy->thread = orig->thread;
8464 copy->pspace = orig->pspace;
8465
8466 copy->enable_state = bp_enabled;
8467 copy->disposition = disp_donttouch;
8468 copy->number = internal_breakpoint_number--;
8469
8470 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8471 return copy;
8472 }
8473
8474 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8475 ORIG is NULL. */
8476
8477 struct breakpoint *
8478 clone_momentary_breakpoint (struct breakpoint *orig)
8479 {
8480 /* If there's nothing to clone, then return nothing. */
8481 if (orig == NULL)
8482 return NULL;
8483
8484 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8485 }
8486
8487 breakpoint_up
8488 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8489 enum bptype type)
8490 {
8491 struct symtab_and_line sal;
8492
8493 sal = find_pc_line (pc, 0);
8494 sal.pc = pc;
8495 sal.section = find_pc_overlay (pc);
8496 sal.explicit_pc = 1;
8497
8498 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8499 }
8500 \f
8501
8502 /* Tell the user we have just set a breakpoint B. */
8503
8504 static void
8505 mention (struct breakpoint *b)
8506 {
8507 b->ops->print_mention (b);
8508 current_uiout->text ("\n");
8509 }
8510 \f
8511
8512 static bool bp_loc_is_permanent (struct bp_location *loc);
8513
8514 /* Handle "set breakpoint auto-hw on".
8515
8516 If the explicitly specified breakpoint type is not hardware
8517 breakpoint, check the memory map to see whether the breakpoint
8518 address is in read-only memory.
8519
8520 - location type is not hardware breakpoint, memory is read-only.
8521 We change the type of the location to hardware breakpoint.
8522
8523 - location type is hardware breakpoint, memory is read-write. This
8524 means we've previously made the location hardware one, but then the
8525 memory map changed, so we undo.
8526 */
8527
8528 static void
8529 handle_automatic_hardware_breakpoints (bp_location *bl)
8530 {
8531 if (automatic_hardware_breakpoints
8532 && bl->owner->type != bp_hardware_breakpoint
8533 && (bl->loc_type == bp_loc_software_breakpoint
8534 || bl->loc_type == bp_loc_hardware_breakpoint))
8535 {
8536 /* When breakpoints are removed, remove_breakpoints will use
8537 location types we've just set here, the only possible problem
8538 is that memory map has changed during running program, but
8539 it's not going to work anyway with current gdb. */
8540 mem_region *mr = lookup_mem_region (bl->address);
8541
8542 if (mr != nullptr)
8543 {
8544 enum bp_loc_type new_type;
8545
8546 if (mr->attrib.mode != MEM_RW)
8547 new_type = bp_loc_hardware_breakpoint;
8548 else
8549 new_type = bp_loc_software_breakpoint;
8550
8551 if (new_type != bl->loc_type)
8552 {
8553 static bool said = false;
8554
8555 bl->loc_type = new_type;
8556 if (!said)
8557 {
8558 fprintf_filtered (gdb_stdout,
8559 _("Note: automatically using "
8560 "hardware breakpoints for "
8561 "read-only addresses.\n"));
8562 said = true;
8563 }
8564 }
8565 }
8566 }
8567 }
8568
8569 static struct bp_location *
8570 add_location_to_breakpoint (struct breakpoint *b,
8571 const struct symtab_and_line *sal)
8572 {
8573 struct bp_location *loc, **tmp;
8574 CORE_ADDR adjusted_address;
8575 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8576
8577 if (loc_gdbarch == NULL)
8578 loc_gdbarch = b->gdbarch;
8579
8580 /* Adjust the breakpoint's address prior to allocating a location.
8581 Once we call allocate_bp_location(), that mostly uninitialized
8582 location will be placed on the location chain. Adjustment of the
8583 breakpoint may cause target_read_memory() to be called and we do
8584 not want its scan of the location chain to find a breakpoint and
8585 location that's only been partially initialized. */
8586 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8587 sal->pc, b->type);
8588
8589 /* Sort the locations by their ADDRESS. */
8590 loc = allocate_bp_location (b);
8591 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8592 tmp = &((*tmp)->next))
8593 ;
8594 loc->next = *tmp;
8595 *tmp = loc;
8596
8597 loc->requested_address = sal->pc;
8598 loc->address = adjusted_address;
8599 loc->pspace = sal->pspace;
8600 loc->probe.prob = sal->prob;
8601 loc->probe.objfile = sal->objfile;
8602 gdb_assert (loc->pspace != NULL);
8603 loc->section = sal->section;
8604 loc->gdbarch = loc_gdbarch;
8605 loc->line_number = sal->line;
8606 loc->symtab = sal->symtab;
8607 loc->symbol = sal->symbol;
8608 loc->msymbol = sal->msymbol;
8609 loc->objfile = sal->objfile;
8610
8611 set_breakpoint_location_function (loc);
8612
8613 /* While by definition, permanent breakpoints are already present in the
8614 code, we don't mark the location as inserted. Normally one would expect
8615 that GDB could rely on that breakpoint instruction to stop the program,
8616 thus removing the need to insert its own breakpoint, except that executing
8617 the breakpoint instruction can kill the target instead of reporting a
8618 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8619 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8620 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8621 breakpoint be inserted normally results in QEMU knowing about the GDB
8622 breakpoint, and thus trap before the breakpoint instruction is executed.
8623 (If GDB later needs to continue execution past the permanent breakpoint,
8624 it manually increments the PC, thus avoiding executing the breakpoint
8625 instruction.) */
8626 if (bp_loc_is_permanent (loc))
8627 loc->permanent = 1;
8628
8629 return loc;
8630 }
8631 \f
8632
8633 /* Return true if LOC is pointing to a permanent breakpoint,
8634 return false otherwise. */
8635
8636 static bool
8637 bp_loc_is_permanent (struct bp_location *loc)
8638 {
8639 gdb_assert (loc != NULL);
8640
8641 /* If we have a non-breakpoint-backed catchpoint or a software
8642 watchpoint, just return 0. We should not attempt to read from
8643 the addresses the locations of these breakpoint types point to.
8644 gdbarch_program_breakpoint_here_p, below, will attempt to read
8645 memory. */
8646 if (!bl_address_is_meaningful (loc))
8647 return false;
8648
8649 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8650 switch_to_program_space_and_thread (loc->pspace);
8651 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8652 }
8653
8654 /* Build a command list for the dprintf corresponding to the current
8655 settings of the dprintf style options. */
8656
8657 static void
8658 update_dprintf_command_list (struct breakpoint *b)
8659 {
8660 char *dprintf_args = b->extra_string;
8661 char *printf_line = NULL;
8662
8663 if (!dprintf_args)
8664 return;
8665
8666 dprintf_args = skip_spaces (dprintf_args);
8667
8668 /* Allow a comma, as it may have terminated a location, but don't
8669 insist on it. */
8670 if (*dprintf_args == ',')
8671 ++dprintf_args;
8672 dprintf_args = skip_spaces (dprintf_args);
8673
8674 if (*dprintf_args != '"')
8675 error (_("Bad format string, missing '\"'."));
8676
8677 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8678 printf_line = xstrprintf ("printf %s", dprintf_args);
8679 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8680 {
8681 if (!dprintf_function)
8682 error (_("No function supplied for dprintf call"));
8683
8684 if (dprintf_channel && strlen (dprintf_channel) > 0)
8685 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8686 dprintf_function,
8687 dprintf_channel,
8688 dprintf_args);
8689 else
8690 printf_line = xstrprintf ("call (void) %s (%s)",
8691 dprintf_function,
8692 dprintf_args);
8693 }
8694 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8695 {
8696 if (target_can_run_breakpoint_commands ())
8697 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8698 else
8699 {
8700 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8701 printf_line = xstrprintf ("printf %s", dprintf_args);
8702 }
8703 }
8704 else
8705 internal_error (__FILE__, __LINE__,
8706 _("Invalid dprintf style."));
8707
8708 gdb_assert (printf_line != NULL);
8709
8710 /* Manufacture a printf sequence. */
8711 struct command_line *printf_cmd_line
8712 = new struct command_line (simple_control, printf_line);
8713 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8714 command_lines_deleter ()));
8715 }
8716
8717 /* Update all dprintf commands, making their command lists reflect
8718 current style settings. */
8719
8720 static void
8721 update_dprintf_commands (const char *args, int from_tty,
8722 struct cmd_list_element *c)
8723 {
8724 struct breakpoint *b;
8725
8726 ALL_BREAKPOINTS (b)
8727 {
8728 if (b->type == bp_dprintf)
8729 update_dprintf_command_list (b);
8730 }
8731 }
8732
8733 /* Create a breakpoint with SAL as location. Use LOCATION
8734 as a description of the location, and COND_STRING
8735 as condition expression. If LOCATION is NULL then create an
8736 "address location" from the address in the SAL. */
8737
8738 static void
8739 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8740 gdb::array_view<const symtab_and_line> sals,
8741 event_location_up &&location,
8742 gdb::unique_xmalloc_ptr<char> filter,
8743 gdb::unique_xmalloc_ptr<char> cond_string,
8744 gdb::unique_xmalloc_ptr<char> extra_string,
8745 enum bptype type, enum bpdisp disposition,
8746 int thread, int task, int ignore_count,
8747 const struct breakpoint_ops *ops, int from_tty,
8748 int enabled, int internal, unsigned flags,
8749 int display_canonical)
8750 {
8751 int i;
8752
8753 if (type == bp_hardware_breakpoint)
8754 {
8755 int target_resources_ok;
8756
8757 i = hw_breakpoint_used_count ();
8758 target_resources_ok =
8759 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8760 i + 1, 0);
8761 if (target_resources_ok == 0)
8762 error (_("No hardware breakpoint support in the target."));
8763 else if (target_resources_ok < 0)
8764 error (_("Hardware breakpoints used exceeds limit."));
8765 }
8766
8767 gdb_assert (!sals.empty ());
8768
8769 for (const auto &sal : sals)
8770 {
8771 struct bp_location *loc;
8772
8773 if (from_tty)
8774 {
8775 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8776 if (!loc_gdbarch)
8777 loc_gdbarch = gdbarch;
8778
8779 describe_other_breakpoints (loc_gdbarch,
8780 sal.pspace, sal.pc, sal.section, thread);
8781 }
8782
8783 if (&sal == &sals[0])
8784 {
8785 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8786 b->thread = thread;
8787 b->task = task;
8788
8789 b->cond_string = cond_string.release ();
8790 b->extra_string = extra_string.release ();
8791 b->ignore_count = ignore_count;
8792 b->enable_state = enabled ? bp_enabled : bp_disabled;
8793 b->disposition = disposition;
8794
8795 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8796 b->loc->inserted = 1;
8797
8798 if (type == bp_static_tracepoint)
8799 {
8800 struct tracepoint *t = (struct tracepoint *) b;
8801 struct static_tracepoint_marker marker;
8802
8803 if (strace_marker_p (b))
8804 {
8805 /* We already know the marker exists, otherwise, we
8806 wouldn't see a sal for it. */
8807 const char *p
8808 = &event_location_to_string (b->location.get ())[3];
8809 const char *endp;
8810
8811 p = skip_spaces (p);
8812
8813 endp = skip_to_space (p);
8814
8815 t->static_trace_marker_id.assign (p, endp - p);
8816
8817 printf_filtered (_("Probed static tracepoint "
8818 "marker \"%s\"\n"),
8819 t->static_trace_marker_id.c_str ());
8820 }
8821 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8822 {
8823 t->static_trace_marker_id = std::move (marker.str_id);
8824
8825 printf_filtered (_("Probed static tracepoint "
8826 "marker \"%s\"\n"),
8827 t->static_trace_marker_id.c_str ());
8828 }
8829 else
8830 warning (_("Couldn't determine the static "
8831 "tracepoint marker to probe"));
8832 }
8833
8834 loc = b->loc;
8835 }
8836 else
8837 {
8838 loc = add_location_to_breakpoint (b, &sal);
8839 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8840 loc->inserted = 1;
8841 }
8842
8843 if (b->cond_string)
8844 {
8845 const char *arg = b->cond_string;
8846
8847 loc->cond = parse_exp_1 (&arg, loc->address,
8848 block_for_pc (loc->address), 0);
8849 if (*arg)
8850 error (_("Garbage '%s' follows condition"), arg);
8851 }
8852
8853 /* Dynamic printf requires and uses additional arguments on the
8854 command line, otherwise it's an error. */
8855 if (type == bp_dprintf)
8856 {
8857 if (b->extra_string)
8858 update_dprintf_command_list (b);
8859 else
8860 error (_("Format string required"));
8861 }
8862 else if (b->extra_string)
8863 error (_("Garbage '%s' at end of command"), b->extra_string);
8864 }
8865
8866 b->display_canonical = display_canonical;
8867 if (location != NULL)
8868 b->location = std::move (location);
8869 else
8870 b->location = new_address_location (b->loc->address, NULL, 0);
8871 b->filter = std::move (filter);
8872 }
8873
8874 static void
8875 create_breakpoint_sal (struct gdbarch *gdbarch,
8876 gdb::array_view<const symtab_and_line> sals,
8877 event_location_up &&location,
8878 gdb::unique_xmalloc_ptr<char> filter,
8879 gdb::unique_xmalloc_ptr<char> cond_string,
8880 gdb::unique_xmalloc_ptr<char> extra_string,
8881 enum bptype type, enum bpdisp disposition,
8882 int thread, int task, int ignore_count,
8883 const struct breakpoint_ops *ops, int from_tty,
8884 int enabled, int internal, unsigned flags,
8885 int display_canonical)
8886 {
8887 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8888
8889 init_breakpoint_sal (b.get (), gdbarch,
8890 sals, std::move (location),
8891 std::move (filter),
8892 std::move (cond_string),
8893 std::move (extra_string),
8894 type, disposition,
8895 thread, task, ignore_count,
8896 ops, from_tty,
8897 enabled, internal, flags,
8898 display_canonical);
8899
8900 install_breakpoint (internal, std::move (b), 0);
8901 }
8902
8903 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8904 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8905 value. COND_STRING, if not NULL, specified the condition to be
8906 used for all breakpoints. Essentially the only case where
8907 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8908 function. In that case, it's still not possible to specify
8909 separate conditions for different overloaded functions, so
8910 we take just a single condition string.
8911
8912 NOTE: If the function succeeds, the caller is expected to cleanup
8913 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8914 array contents). If the function fails (error() is called), the
8915 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8916 COND and SALS arrays and each of those arrays contents. */
8917
8918 static void
8919 create_breakpoints_sal (struct gdbarch *gdbarch,
8920 struct linespec_result *canonical,
8921 gdb::unique_xmalloc_ptr<char> cond_string,
8922 gdb::unique_xmalloc_ptr<char> extra_string,
8923 enum bptype type, enum bpdisp disposition,
8924 int thread, int task, int ignore_count,
8925 const struct breakpoint_ops *ops, int from_tty,
8926 int enabled, int internal, unsigned flags)
8927 {
8928 if (canonical->pre_expanded)
8929 gdb_assert (canonical->lsals.size () == 1);
8930
8931 for (const auto &lsal : canonical->lsals)
8932 {
8933 /* Note that 'location' can be NULL in the case of a plain
8934 'break', without arguments. */
8935 event_location_up location
8936 = (canonical->location != NULL
8937 ? copy_event_location (canonical->location.get ()) : NULL);
8938 gdb::unique_xmalloc_ptr<char> filter_string
8939 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8940
8941 create_breakpoint_sal (gdbarch, lsal.sals,
8942 std::move (location),
8943 std::move (filter_string),
8944 std::move (cond_string),
8945 std::move (extra_string),
8946 type, disposition,
8947 thread, task, ignore_count, ops,
8948 from_tty, enabled, internal, flags,
8949 canonical->special_display);
8950 }
8951 }
8952
8953 /* Parse LOCATION which is assumed to be a SAL specification possibly
8954 followed by conditionals. On return, SALS contains an array of SAL
8955 addresses found. LOCATION points to the end of the SAL (for
8956 linespec locations).
8957
8958 The array and the line spec strings are allocated on the heap, it is
8959 the caller's responsibility to free them. */
8960
8961 static void
8962 parse_breakpoint_sals (const struct event_location *location,
8963 struct linespec_result *canonical)
8964 {
8965 struct symtab_and_line cursal;
8966
8967 if (event_location_type (location) == LINESPEC_LOCATION)
8968 {
8969 const char *spec = get_linespec_location (location)->spec_string;
8970
8971 if (spec == NULL)
8972 {
8973 /* The last displayed codepoint, if it's valid, is our default
8974 breakpoint address. */
8975 if (last_displayed_sal_is_valid ())
8976 {
8977 /* Set sal's pspace, pc, symtab, and line to the values
8978 corresponding to the last call to print_frame_info.
8979 Be sure to reinitialize LINE with NOTCURRENT == 0
8980 as the breakpoint line number is inappropriate otherwise.
8981 find_pc_line would adjust PC, re-set it back. */
8982 symtab_and_line sal = get_last_displayed_sal ();
8983 CORE_ADDR pc = sal.pc;
8984
8985 sal = find_pc_line (pc, 0);
8986
8987 /* "break" without arguments is equivalent to "break *PC"
8988 where PC is the last displayed codepoint's address. So
8989 make sure to set sal.explicit_pc to prevent GDB from
8990 trying to expand the list of sals to include all other
8991 instances with the same symtab and line. */
8992 sal.pc = pc;
8993 sal.explicit_pc = 1;
8994
8995 struct linespec_sals lsal;
8996 lsal.sals = {sal};
8997 lsal.canonical = NULL;
8998
8999 canonical->lsals.push_back (std::move (lsal));
9000 return;
9001 }
9002 else
9003 error (_("No default breakpoint address now."));
9004 }
9005 }
9006
9007 /* Force almost all breakpoints to be in terms of the
9008 current_source_symtab (which is decode_line_1's default).
9009 This should produce the results we want almost all of the
9010 time while leaving default_breakpoint_* alone.
9011
9012 ObjC: However, don't match an Objective-C method name which
9013 may have a '+' or '-' succeeded by a '['. */
9014 cursal = get_current_source_symtab_and_line ();
9015 if (last_displayed_sal_is_valid ())
9016 {
9017 const char *spec = NULL;
9018
9019 if (event_location_type (location) == LINESPEC_LOCATION)
9020 spec = get_linespec_location (location)->spec_string;
9021
9022 if (!cursal.symtab
9023 || (spec != NULL
9024 && strchr ("+-", spec[0]) != NULL
9025 && spec[1] != '['))
9026 {
9027 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9028 get_last_displayed_symtab (),
9029 get_last_displayed_line (),
9030 canonical, NULL, NULL);
9031 return;
9032 }
9033 }
9034
9035 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9036 cursal.symtab, cursal.line, canonical, NULL, NULL);
9037 }
9038
9039
9040 /* Convert each SAL into a real PC. Verify that the PC can be
9041 inserted as a breakpoint. If it can't throw an error. */
9042
9043 static void
9044 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9045 {
9046 for (auto &sal : sals)
9047 resolve_sal_pc (&sal);
9048 }
9049
9050 /* Fast tracepoints may have restrictions on valid locations. For
9051 instance, a fast tracepoint using a jump instead of a trap will
9052 likely have to overwrite more bytes than a trap would, and so can
9053 only be placed where the instruction is longer than the jump, or a
9054 multi-instruction sequence does not have a jump into the middle of
9055 it, etc. */
9056
9057 static void
9058 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9059 gdb::array_view<const symtab_and_line> sals)
9060 {
9061 for (const auto &sal : sals)
9062 {
9063 struct gdbarch *sarch;
9064
9065 sarch = get_sal_arch (sal);
9066 /* We fall back to GDBARCH if there is no architecture
9067 associated with SAL. */
9068 if (sarch == NULL)
9069 sarch = gdbarch;
9070 std::string msg;
9071 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9072 error (_("May not have a fast tracepoint at %s%s"),
9073 paddress (sarch, sal.pc), msg.c_str ());
9074 }
9075 }
9076
9077 /* Given TOK, a string specification of condition and thread, as
9078 accepted by the 'break' command, extract the condition
9079 string and thread number and set *COND_STRING and *THREAD.
9080 PC identifies the context at which the condition should be parsed.
9081 If no condition is found, *COND_STRING is set to NULL.
9082 If no thread is found, *THREAD is set to -1. */
9083
9084 static void
9085 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9086 char **cond_string, int *thread, int *task,
9087 char **rest)
9088 {
9089 *cond_string = NULL;
9090 *thread = -1;
9091 *task = 0;
9092 *rest = NULL;
9093
9094 while (tok && *tok)
9095 {
9096 const char *end_tok;
9097 int toklen;
9098 const char *cond_start = NULL;
9099 const char *cond_end = NULL;
9100
9101 tok = skip_spaces (tok);
9102
9103 if ((*tok == '"' || *tok == ',') && rest)
9104 {
9105 *rest = savestring (tok, strlen (tok));
9106 return;
9107 }
9108
9109 end_tok = skip_to_space (tok);
9110
9111 toklen = end_tok - tok;
9112
9113 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9114 {
9115 tok = cond_start = end_tok + 1;
9116 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9117 cond_end = tok;
9118 *cond_string = savestring (cond_start, cond_end - cond_start);
9119 }
9120 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9121 {
9122 const char *tmptok;
9123 struct thread_info *thr;
9124
9125 tok = end_tok + 1;
9126 thr = parse_thread_id (tok, &tmptok);
9127 if (tok == tmptok)
9128 error (_("Junk after thread keyword."));
9129 *thread = thr->global_num;
9130 tok = tmptok;
9131 }
9132 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9133 {
9134 char *tmptok;
9135
9136 tok = end_tok + 1;
9137 *task = strtol (tok, &tmptok, 0);
9138 if (tok == tmptok)
9139 error (_("Junk after task keyword."));
9140 if (!valid_task_id (*task))
9141 error (_("Unknown task %d."), *task);
9142 tok = tmptok;
9143 }
9144 else if (rest)
9145 {
9146 *rest = savestring (tok, strlen (tok));
9147 return;
9148 }
9149 else
9150 error (_("Junk at end of arguments."));
9151 }
9152 }
9153
9154 /* Decode a static tracepoint marker spec. */
9155
9156 static std::vector<symtab_and_line>
9157 decode_static_tracepoint_spec (const char **arg_p)
9158 {
9159 const char *p = &(*arg_p)[3];
9160 const char *endp;
9161
9162 p = skip_spaces (p);
9163
9164 endp = skip_to_space (p);
9165
9166 std::string marker_str (p, endp - p);
9167
9168 std::vector<static_tracepoint_marker> markers
9169 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9170 if (markers.empty ())
9171 error (_("No known static tracepoint marker named %s"),
9172 marker_str.c_str ());
9173
9174 std::vector<symtab_and_line> sals;
9175 sals.reserve (markers.size ());
9176
9177 for (const static_tracepoint_marker &marker : markers)
9178 {
9179 symtab_and_line sal = find_pc_line (marker.address, 0);
9180 sal.pc = marker.address;
9181 sals.push_back (sal);
9182 }
9183
9184 *arg_p = endp;
9185 return sals;
9186 }
9187
9188 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9189 according to IS_TRACEPOINT. */
9190
9191 static const struct breakpoint_ops *
9192 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9193 bool is_tracepoint)
9194 {
9195 if (is_tracepoint)
9196 {
9197 if (location_type == PROBE_LOCATION)
9198 return &tracepoint_probe_breakpoint_ops;
9199 else
9200 return &tracepoint_breakpoint_ops;
9201 }
9202 else
9203 {
9204 if (location_type == PROBE_LOCATION)
9205 return &bkpt_probe_breakpoint_ops;
9206 else
9207 return &bkpt_breakpoint_ops;
9208 }
9209 }
9210
9211 /* See breakpoint.h. */
9212
9213 const struct breakpoint_ops *
9214 breakpoint_ops_for_event_location (const struct event_location *location,
9215 bool is_tracepoint)
9216 {
9217 if (location != nullptr)
9218 return breakpoint_ops_for_event_location_type
9219 (event_location_type (location), is_tracepoint);
9220 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9221 }
9222
9223 /* See breakpoint.h. */
9224
9225 int
9226 create_breakpoint (struct gdbarch *gdbarch,
9227 const struct event_location *location,
9228 const char *cond_string,
9229 int thread, const char *extra_string,
9230 int parse_extra,
9231 int tempflag, enum bptype type_wanted,
9232 int ignore_count,
9233 enum auto_boolean pending_break_support,
9234 const struct breakpoint_ops *ops,
9235 int from_tty, int enabled, int internal,
9236 unsigned flags)
9237 {
9238 struct linespec_result canonical;
9239 int pending = 0;
9240 int task = 0;
9241 int prev_bkpt_count = breakpoint_count;
9242
9243 gdb_assert (ops != NULL);
9244
9245 /* If extra_string isn't useful, set it to NULL. */
9246 if (extra_string != NULL && *extra_string == '\0')
9247 extra_string = NULL;
9248
9249 try
9250 {
9251 ops->create_sals_from_location (location, &canonical, type_wanted);
9252 }
9253 catch (const gdb_exception_error &e)
9254 {
9255 /* If caller is interested in rc value from parse, set
9256 value. */
9257 if (e.error == NOT_FOUND_ERROR)
9258 {
9259 /* If pending breakpoint support is turned off, throw
9260 error. */
9261
9262 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9263 throw;
9264
9265 exception_print (gdb_stderr, e);
9266
9267 /* If pending breakpoint support is auto query and the user
9268 selects no, then simply return the error code. */
9269 if (pending_break_support == AUTO_BOOLEAN_AUTO
9270 && !nquery (_("Make %s pending on future shared library load? "),
9271 bptype_string (type_wanted)))
9272 return 0;
9273
9274 /* At this point, either the user was queried about setting
9275 a pending breakpoint and selected yes, or pending
9276 breakpoint behavior is on and thus a pending breakpoint
9277 is defaulted on behalf of the user. */
9278 pending = 1;
9279 }
9280 else
9281 throw;
9282 }
9283
9284 if (!pending && canonical.lsals.empty ())
9285 return 0;
9286
9287 /* Resolve all line numbers to PC's and verify that the addresses
9288 are ok for the target. */
9289 if (!pending)
9290 {
9291 for (auto &lsal : canonical.lsals)
9292 breakpoint_sals_to_pc (lsal.sals);
9293 }
9294
9295 /* Fast tracepoints may have additional restrictions on location. */
9296 if (!pending && type_wanted == bp_fast_tracepoint)
9297 {
9298 for (const auto &lsal : canonical.lsals)
9299 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9300 }
9301
9302 /* Verify that condition can be parsed, before setting any
9303 breakpoints. Allocate a separate condition expression for each
9304 breakpoint. */
9305 if (!pending)
9306 {
9307 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9308 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9309
9310 if (parse_extra)
9311 {
9312 char *rest;
9313 char *cond;
9314
9315 const linespec_sals &lsal = canonical.lsals[0];
9316
9317 /* Here we only parse 'arg' to separate condition
9318 from thread number, so parsing in context of first
9319 sal is OK. When setting the breakpoint we'll
9320 re-parse it in context of each sal. */
9321
9322 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9323 &cond, &thread, &task, &rest);
9324 cond_string_copy.reset (cond);
9325 extra_string_copy.reset (rest);
9326 }
9327 else
9328 {
9329 if (type_wanted != bp_dprintf
9330 && extra_string != NULL && *extra_string != '\0')
9331 error (_("Garbage '%s' at end of location"), extra_string);
9332
9333 /* Create a private copy of condition string. */
9334 if (cond_string)
9335 cond_string_copy.reset (xstrdup (cond_string));
9336 /* Create a private copy of any extra string. */
9337 if (extra_string)
9338 extra_string_copy.reset (xstrdup (extra_string));
9339 }
9340
9341 ops->create_breakpoints_sal (gdbarch, &canonical,
9342 std::move (cond_string_copy),
9343 std::move (extra_string_copy),
9344 type_wanted,
9345 tempflag ? disp_del : disp_donttouch,
9346 thread, task, ignore_count, ops,
9347 from_tty, enabled, internal, flags);
9348 }
9349 else
9350 {
9351 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9352
9353 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9354 b->location = copy_event_location (location);
9355
9356 if (parse_extra)
9357 b->cond_string = NULL;
9358 else
9359 {
9360 /* Create a private copy of condition string. */
9361 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9362 b->thread = thread;
9363 }
9364
9365 /* Create a private copy of any extra string. */
9366 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9367 b->ignore_count = ignore_count;
9368 b->disposition = tempflag ? disp_del : disp_donttouch;
9369 b->condition_not_parsed = 1;
9370 b->enable_state = enabled ? bp_enabled : bp_disabled;
9371 if ((type_wanted != bp_breakpoint
9372 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9373 b->pspace = current_program_space;
9374
9375 install_breakpoint (internal, std::move (b), 0);
9376 }
9377
9378 if (canonical.lsals.size () > 1)
9379 {
9380 warning (_("Multiple breakpoints were set.\nUse the "
9381 "\"delete\" command to delete unwanted breakpoints."));
9382 prev_breakpoint_count = prev_bkpt_count;
9383 }
9384
9385 update_global_location_list (UGLL_MAY_INSERT);
9386
9387 return 1;
9388 }
9389
9390 /* Set a breakpoint.
9391 ARG is a string describing breakpoint address,
9392 condition, and thread.
9393 FLAG specifies if a breakpoint is hardware on,
9394 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9395 and BP_TEMPFLAG. */
9396
9397 static void
9398 break_command_1 (const char *arg, int flag, int from_tty)
9399 {
9400 int tempflag = flag & BP_TEMPFLAG;
9401 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9402 ? bp_hardware_breakpoint
9403 : bp_breakpoint);
9404
9405 event_location_up location = string_to_event_location (&arg, current_language);
9406 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9407 (location.get (), false /* is_tracepoint */);
9408
9409 create_breakpoint (get_current_arch (),
9410 location.get (),
9411 NULL, 0, arg, 1 /* parse arg */,
9412 tempflag, type_wanted,
9413 0 /* Ignore count */,
9414 pending_break_support,
9415 ops,
9416 from_tty,
9417 1 /* enabled */,
9418 0 /* internal */,
9419 0);
9420 }
9421
9422 /* Helper function for break_command_1 and disassemble_command. */
9423
9424 void
9425 resolve_sal_pc (struct symtab_and_line *sal)
9426 {
9427 CORE_ADDR pc;
9428
9429 if (sal->pc == 0 && sal->symtab != NULL)
9430 {
9431 if (!find_line_pc (sal->symtab, sal->line, &pc))
9432 error (_("No line %d in file \"%s\"."),
9433 sal->line, symtab_to_filename_for_display (sal->symtab));
9434 sal->pc = pc;
9435
9436 /* If this SAL corresponds to a breakpoint inserted using a line
9437 number, then skip the function prologue if necessary. */
9438 if (sal->explicit_line)
9439 skip_prologue_sal (sal);
9440 }
9441
9442 if (sal->section == 0 && sal->symtab != NULL)
9443 {
9444 const struct blockvector *bv;
9445 const struct block *b;
9446 struct symbol *sym;
9447
9448 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9449 SYMTAB_COMPUNIT (sal->symtab));
9450 if (bv != NULL)
9451 {
9452 sym = block_linkage_function (b);
9453 if (sym != NULL)
9454 {
9455 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9456 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9457 sym);
9458 }
9459 else
9460 {
9461 /* It really is worthwhile to have the section, so we'll
9462 just have to look harder. This case can be executed
9463 if we have line numbers but no functions (as can
9464 happen in assembly source). */
9465
9466 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9467 switch_to_program_space_and_thread (sal->pspace);
9468
9469 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9470 if (msym.minsym)
9471 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9472 }
9473 }
9474 }
9475 }
9476
9477 void
9478 break_command (const char *arg, int from_tty)
9479 {
9480 break_command_1 (arg, 0, from_tty);
9481 }
9482
9483 void
9484 tbreak_command (const char *arg, int from_tty)
9485 {
9486 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9487 }
9488
9489 static void
9490 hbreak_command (const char *arg, int from_tty)
9491 {
9492 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9493 }
9494
9495 static void
9496 thbreak_command (const char *arg, int from_tty)
9497 {
9498 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9499 }
9500
9501 static void
9502 stop_command (const char *arg, int from_tty)
9503 {
9504 printf_filtered (_("Specify the type of breakpoint to set.\n\
9505 Usage: stop in <function | address>\n\
9506 stop at <line>\n"));
9507 }
9508
9509 static void
9510 stopin_command (const char *arg, int from_tty)
9511 {
9512 int badInput = 0;
9513
9514 if (arg == NULL)
9515 badInput = 1;
9516 else if (*arg != '*')
9517 {
9518 const char *argptr = arg;
9519 int hasColon = 0;
9520
9521 /* Look for a ':'. If this is a line number specification, then
9522 say it is bad, otherwise, it should be an address or
9523 function/method name. */
9524 while (*argptr && !hasColon)
9525 {
9526 hasColon = (*argptr == ':');
9527 argptr++;
9528 }
9529
9530 if (hasColon)
9531 badInput = (*argptr != ':'); /* Not a class::method */
9532 else
9533 badInput = isdigit (*arg); /* a simple line number */
9534 }
9535
9536 if (badInput)
9537 printf_filtered (_("Usage: stop in <function | address>\n"));
9538 else
9539 break_command_1 (arg, 0, from_tty);
9540 }
9541
9542 static void
9543 stopat_command (const char *arg, int from_tty)
9544 {
9545 int badInput = 0;
9546
9547 if (arg == NULL || *arg == '*') /* no line number */
9548 badInput = 1;
9549 else
9550 {
9551 const char *argptr = arg;
9552 int hasColon = 0;
9553
9554 /* Look for a ':'. If there is a '::' then get out, otherwise
9555 it is probably a line number. */
9556 while (*argptr && !hasColon)
9557 {
9558 hasColon = (*argptr == ':');
9559 argptr++;
9560 }
9561
9562 if (hasColon)
9563 badInput = (*argptr == ':'); /* we have class::method */
9564 else
9565 badInput = !isdigit (*arg); /* not a line number */
9566 }
9567
9568 if (badInput)
9569 printf_filtered (_("Usage: stop at LINE\n"));
9570 else
9571 break_command_1 (arg, 0, from_tty);
9572 }
9573
9574 /* The dynamic printf command is mostly like a regular breakpoint, but
9575 with a prewired command list consisting of a single output command,
9576 built from extra arguments supplied on the dprintf command
9577 line. */
9578
9579 static void
9580 dprintf_command (const char *arg, int from_tty)
9581 {
9582 event_location_up location = string_to_event_location (&arg, current_language);
9583
9584 /* If non-NULL, ARG should have been advanced past the location;
9585 the next character must be ','. */
9586 if (arg != NULL)
9587 {
9588 if (arg[0] != ',' || arg[1] == '\0')
9589 error (_("Format string required"));
9590 else
9591 {
9592 /* Skip the comma. */
9593 ++arg;
9594 }
9595 }
9596
9597 create_breakpoint (get_current_arch (),
9598 location.get (),
9599 NULL, 0, arg, 1 /* parse arg */,
9600 0, bp_dprintf,
9601 0 /* Ignore count */,
9602 pending_break_support,
9603 &dprintf_breakpoint_ops,
9604 from_tty,
9605 1 /* enabled */,
9606 0 /* internal */,
9607 0);
9608 }
9609
9610 static void
9611 agent_printf_command (const char *arg, int from_tty)
9612 {
9613 error (_("May only run agent-printf on the target"));
9614 }
9615
9616 /* Implement the "breakpoint_hit" breakpoint_ops method for
9617 ranged breakpoints. */
9618
9619 static int
9620 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9621 const address_space *aspace,
9622 CORE_ADDR bp_addr,
9623 const struct target_waitstatus *ws)
9624 {
9625 if (ws->kind != TARGET_WAITKIND_STOPPED
9626 || ws->value.sig != GDB_SIGNAL_TRAP)
9627 return 0;
9628
9629 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9630 bl->length, aspace, bp_addr);
9631 }
9632
9633 /* Implement the "resources_needed" breakpoint_ops method for
9634 ranged breakpoints. */
9635
9636 static int
9637 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9638 {
9639 return target_ranged_break_num_registers ();
9640 }
9641
9642 /* Implement the "print_it" breakpoint_ops method for
9643 ranged breakpoints. */
9644
9645 static enum print_stop_action
9646 print_it_ranged_breakpoint (bpstat bs)
9647 {
9648 struct breakpoint *b = bs->breakpoint_at;
9649 struct bp_location *bl = b->loc;
9650 struct ui_out *uiout = current_uiout;
9651
9652 gdb_assert (b->type == bp_hardware_breakpoint);
9653
9654 /* Ranged breakpoints have only one location. */
9655 gdb_assert (bl && bl->next == NULL);
9656
9657 annotate_breakpoint (b->number);
9658
9659 maybe_print_thread_hit_breakpoint (uiout);
9660
9661 if (b->disposition == disp_del)
9662 uiout->text ("Temporary ranged breakpoint ");
9663 else
9664 uiout->text ("Ranged breakpoint ");
9665 if (uiout->is_mi_like_p ())
9666 {
9667 uiout->field_string ("reason",
9668 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9669 uiout->field_string ("disp", bpdisp_text (b->disposition));
9670 }
9671 uiout->field_signed ("bkptno", b->number);
9672 uiout->text (", ");
9673
9674 return PRINT_SRC_AND_LOC;
9675 }
9676
9677 /* Implement the "print_one" breakpoint_ops method for
9678 ranged breakpoints. */
9679
9680 static void
9681 print_one_ranged_breakpoint (struct breakpoint *b,
9682 struct bp_location **last_loc)
9683 {
9684 struct bp_location *bl = b->loc;
9685 struct value_print_options opts;
9686 struct ui_out *uiout = current_uiout;
9687
9688 /* Ranged breakpoints have only one location. */
9689 gdb_assert (bl && bl->next == NULL);
9690
9691 get_user_print_options (&opts);
9692
9693 if (opts.addressprint)
9694 /* We don't print the address range here, it will be printed later
9695 by print_one_detail_ranged_breakpoint. */
9696 uiout->field_skip ("addr");
9697 annotate_field (5);
9698 print_breakpoint_location (b, bl);
9699 *last_loc = bl;
9700 }
9701
9702 /* Implement the "print_one_detail" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static void
9706 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9707 struct ui_out *uiout)
9708 {
9709 CORE_ADDR address_start, address_end;
9710 struct bp_location *bl = b->loc;
9711 string_file stb;
9712
9713 gdb_assert (bl);
9714
9715 address_start = bl->address;
9716 address_end = address_start + bl->length - 1;
9717
9718 uiout->text ("\taddress range: ");
9719 stb.printf ("[%s, %s]",
9720 print_core_address (bl->gdbarch, address_start),
9721 print_core_address (bl->gdbarch, address_end));
9722 uiout->field_stream ("addr", stb);
9723 uiout->text ("\n");
9724 }
9725
9726 /* Implement the "print_mention" breakpoint_ops method for
9727 ranged breakpoints. */
9728
9729 static void
9730 print_mention_ranged_breakpoint (struct breakpoint *b)
9731 {
9732 struct bp_location *bl = b->loc;
9733 struct ui_out *uiout = current_uiout;
9734
9735 gdb_assert (bl);
9736 gdb_assert (b->type == bp_hardware_breakpoint);
9737
9738 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9739 b->number, paddress (bl->gdbarch, bl->address),
9740 paddress (bl->gdbarch, bl->address + bl->length - 1));
9741 }
9742
9743 /* Implement the "print_recreate" breakpoint_ops method for
9744 ranged breakpoints. */
9745
9746 static void
9747 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9748 {
9749 fprintf_unfiltered (fp, "break-range %s, %s",
9750 event_location_to_string (b->location.get ()),
9751 event_location_to_string (b->location_range_end.get ()));
9752 print_recreate_thread (b, fp);
9753 }
9754
9755 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9756
9757 static struct breakpoint_ops ranged_breakpoint_ops;
9758
9759 /* Find the address where the end of the breakpoint range should be
9760 placed, given the SAL of the end of the range. This is so that if
9761 the user provides a line number, the end of the range is set to the
9762 last instruction of the given line. */
9763
9764 static CORE_ADDR
9765 find_breakpoint_range_end (struct symtab_and_line sal)
9766 {
9767 CORE_ADDR end;
9768
9769 /* If the user provided a PC value, use it. Otherwise,
9770 find the address of the end of the given location. */
9771 if (sal.explicit_pc)
9772 end = sal.pc;
9773 else
9774 {
9775 int ret;
9776 CORE_ADDR start;
9777
9778 ret = find_line_pc_range (sal, &start, &end);
9779 if (!ret)
9780 error (_("Could not find location of the end of the range."));
9781
9782 /* find_line_pc_range returns the start of the next line. */
9783 end--;
9784 }
9785
9786 return end;
9787 }
9788
9789 /* Implement the "break-range" CLI command. */
9790
9791 static void
9792 break_range_command (const char *arg, int from_tty)
9793 {
9794 const char *arg_start;
9795 struct linespec_result canonical_start, canonical_end;
9796 int bp_count, can_use_bp, length;
9797 CORE_ADDR end;
9798 struct breakpoint *b;
9799
9800 /* We don't support software ranged breakpoints. */
9801 if (target_ranged_break_num_registers () < 0)
9802 error (_("This target does not support hardware ranged breakpoints."));
9803
9804 bp_count = hw_breakpoint_used_count ();
9805 bp_count += target_ranged_break_num_registers ();
9806 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9807 bp_count, 0);
9808 if (can_use_bp < 0)
9809 error (_("Hardware breakpoints used exceeds limit."));
9810
9811 arg = skip_spaces (arg);
9812 if (arg == NULL || arg[0] == '\0')
9813 error(_("No address range specified."));
9814
9815 arg_start = arg;
9816 event_location_up start_location = string_to_event_location (&arg,
9817 current_language);
9818 parse_breakpoint_sals (start_location.get (), &canonical_start);
9819
9820 if (arg[0] != ',')
9821 error (_("Too few arguments."));
9822 else if (canonical_start.lsals.empty ())
9823 error (_("Could not find location of the beginning of the range."));
9824
9825 const linespec_sals &lsal_start = canonical_start.lsals[0];
9826
9827 if (canonical_start.lsals.size () > 1
9828 || lsal_start.sals.size () != 1)
9829 error (_("Cannot create a ranged breakpoint with multiple locations."));
9830
9831 const symtab_and_line &sal_start = lsal_start.sals[0];
9832 std::string addr_string_start (arg_start, arg - arg_start);
9833
9834 arg++; /* Skip the comma. */
9835 arg = skip_spaces (arg);
9836
9837 /* Parse the end location. */
9838
9839 arg_start = arg;
9840
9841 /* We call decode_line_full directly here instead of using
9842 parse_breakpoint_sals because we need to specify the start location's
9843 symtab and line as the default symtab and line for the end of the
9844 range. This makes it possible to have ranges like "foo.c:27, +14",
9845 where +14 means 14 lines from the start location. */
9846 event_location_up end_location = string_to_event_location (&arg,
9847 current_language);
9848 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9849 sal_start.symtab, sal_start.line,
9850 &canonical_end, NULL, NULL);
9851
9852 if (canonical_end.lsals.empty ())
9853 error (_("Could not find location of the end of the range."));
9854
9855 const linespec_sals &lsal_end = canonical_end.lsals[0];
9856 if (canonical_end.lsals.size () > 1
9857 || lsal_end.sals.size () != 1)
9858 error (_("Cannot create a ranged breakpoint with multiple locations."));
9859
9860 const symtab_and_line &sal_end = lsal_end.sals[0];
9861
9862 end = find_breakpoint_range_end (sal_end);
9863 if (sal_start.pc > end)
9864 error (_("Invalid address range, end precedes start."));
9865
9866 length = end - sal_start.pc + 1;
9867 if (length < 0)
9868 /* Length overflowed. */
9869 error (_("Address range too large."));
9870 else if (length == 1)
9871 {
9872 /* This range is simple enough to be handled by
9873 the `hbreak' command. */
9874 hbreak_command (&addr_string_start[0], 1);
9875
9876 return;
9877 }
9878
9879 /* Now set up the breakpoint. */
9880 b = set_raw_breakpoint (get_current_arch (), sal_start,
9881 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9882 set_breakpoint_count (breakpoint_count + 1);
9883 b->number = breakpoint_count;
9884 b->disposition = disp_donttouch;
9885 b->location = std::move (start_location);
9886 b->location_range_end = std::move (end_location);
9887 b->loc->length = length;
9888
9889 mention (b);
9890 gdb::observers::breakpoint_created.notify (b);
9891 update_global_location_list (UGLL_MAY_INSERT);
9892 }
9893
9894 /* Return non-zero if EXP is verified as constant. Returned zero
9895 means EXP is variable. Also the constant detection may fail for
9896 some constant expressions and in such case still falsely return
9897 zero. */
9898
9899 static int
9900 watchpoint_exp_is_const (const struct expression *exp)
9901 {
9902 int i = exp->nelts;
9903
9904 while (i > 0)
9905 {
9906 int oplenp, argsp;
9907
9908 /* We are only interested in the descriptor of each element. */
9909 operator_length (exp, i, &oplenp, &argsp);
9910 i -= oplenp;
9911
9912 switch (exp->elts[i].opcode)
9913 {
9914 case BINOP_ADD:
9915 case BINOP_SUB:
9916 case BINOP_MUL:
9917 case BINOP_DIV:
9918 case BINOP_REM:
9919 case BINOP_MOD:
9920 case BINOP_LSH:
9921 case BINOP_RSH:
9922 case BINOP_LOGICAL_AND:
9923 case BINOP_LOGICAL_OR:
9924 case BINOP_BITWISE_AND:
9925 case BINOP_BITWISE_IOR:
9926 case BINOP_BITWISE_XOR:
9927 case BINOP_EQUAL:
9928 case BINOP_NOTEQUAL:
9929 case BINOP_LESS:
9930 case BINOP_GTR:
9931 case BINOP_LEQ:
9932 case BINOP_GEQ:
9933 case BINOP_REPEAT:
9934 case BINOP_COMMA:
9935 case BINOP_EXP:
9936 case BINOP_MIN:
9937 case BINOP_MAX:
9938 case BINOP_INTDIV:
9939 case BINOP_CONCAT:
9940 case TERNOP_COND:
9941 case TERNOP_SLICE:
9942
9943 case OP_LONG:
9944 case OP_FLOAT:
9945 case OP_LAST:
9946 case OP_COMPLEX:
9947 case OP_STRING:
9948 case OP_ARRAY:
9949 case OP_TYPE:
9950 case OP_TYPEOF:
9951 case OP_DECLTYPE:
9952 case OP_TYPEID:
9953 case OP_NAME:
9954 case OP_OBJC_NSSTRING:
9955
9956 case UNOP_NEG:
9957 case UNOP_LOGICAL_NOT:
9958 case UNOP_COMPLEMENT:
9959 case UNOP_ADDR:
9960 case UNOP_HIGH:
9961 case UNOP_CAST:
9962
9963 case UNOP_CAST_TYPE:
9964 case UNOP_REINTERPRET_CAST:
9965 case UNOP_DYNAMIC_CAST:
9966 /* Unary, binary and ternary operators: We have to check
9967 their operands. If they are constant, then so is the
9968 result of that operation. For instance, if A and B are
9969 determined to be constants, then so is "A + B".
9970
9971 UNOP_IND is one exception to the rule above, because the
9972 value of *ADDR is not necessarily a constant, even when
9973 ADDR is. */
9974 break;
9975
9976 case OP_VAR_VALUE:
9977 /* Check whether the associated symbol is a constant.
9978
9979 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9980 possible that a buggy compiler could mark a variable as
9981 constant even when it is not, and TYPE_CONST would return
9982 true in this case, while SYMBOL_CLASS wouldn't.
9983
9984 We also have to check for function symbols because they
9985 are always constant. */
9986 {
9987 struct symbol *s = exp->elts[i + 2].symbol;
9988
9989 if (SYMBOL_CLASS (s) != LOC_BLOCK
9990 && SYMBOL_CLASS (s) != LOC_CONST
9991 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9992 return 0;
9993 break;
9994 }
9995
9996 /* The default action is to return 0 because we are using
9997 the optimistic approach here: If we don't know something,
9998 then it is not a constant. */
9999 default:
10000 return 0;
10001 }
10002 }
10003
10004 return 1;
10005 }
10006
10007 /* Watchpoint destructor. */
10008
10009 watchpoint::~watchpoint ()
10010 {
10011 xfree (this->exp_string);
10012 xfree (this->exp_string_reparse);
10013 }
10014
10015 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10016
10017 static void
10018 re_set_watchpoint (struct breakpoint *b)
10019 {
10020 struct watchpoint *w = (struct watchpoint *) b;
10021
10022 /* Watchpoint can be either on expression using entirely global
10023 variables, or it can be on local variables.
10024
10025 Watchpoints of the first kind are never auto-deleted, and even
10026 persist across program restarts. Since they can use variables
10027 from shared libraries, we need to reparse expression as libraries
10028 are loaded and unloaded.
10029
10030 Watchpoints on local variables can also change meaning as result
10031 of solib event. For example, if a watchpoint uses both a local
10032 and a global variables in expression, it's a local watchpoint,
10033 but unloading of a shared library will make the expression
10034 invalid. This is not a very common use case, but we still
10035 re-evaluate expression, to avoid surprises to the user.
10036
10037 Note that for local watchpoints, we re-evaluate it only if
10038 watchpoints frame id is still valid. If it's not, it means the
10039 watchpoint is out of scope and will be deleted soon. In fact,
10040 I'm not sure we'll ever be called in this case.
10041
10042 If a local watchpoint's frame id is still valid, then
10043 w->exp_valid_block is likewise valid, and we can safely use it.
10044
10045 Don't do anything about disabled watchpoints, since they will be
10046 reevaluated again when enabled. */
10047 update_watchpoint (w, 1 /* reparse */);
10048 }
10049
10050 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10051
10052 static int
10053 insert_watchpoint (struct bp_location *bl)
10054 {
10055 struct watchpoint *w = (struct watchpoint *) bl->owner;
10056 int length = w->exact ? 1 : bl->length;
10057
10058 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10059 w->cond_exp.get ());
10060 }
10061
10062 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10063
10064 static int
10065 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10066 {
10067 struct watchpoint *w = (struct watchpoint *) bl->owner;
10068 int length = w->exact ? 1 : bl->length;
10069
10070 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10071 w->cond_exp.get ());
10072 }
10073
10074 static int
10075 breakpoint_hit_watchpoint (const struct bp_location *bl,
10076 const address_space *aspace, CORE_ADDR bp_addr,
10077 const struct target_waitstatus *ws)
10078 {
10079 struct breakpoint *b = bl->owner;
10080 struct watchpoint *w = (struct watchpoint *) b;
10081
10082 /* Continuable hardware watchpoints are treated as non-existent if the
10083 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10084 some data address). Otherwise gdb won't stop on a break instruction
10085 in the code (not from a breakpoint) when a hardware watchpoint has
10086 been defined. Also skip watchpoints which we know did not trigger
10087 (did not match the data address). */
10088 if (is_hardware_watchpoint (b)
10089 && w->watchpoint_triggered == watch_triggered_no)
10090 return 0;
10091
10092 return 1;
10093 }
10094
10095 static void
10096 check_status_watchpoint (bpstat bs)
10097 {
10098 gdb_assert (is_watchpoint (bs->breakpoint_at));
10099
10100 bpstat_check_watchpoint (bs);
10101 }
10102
10103 /* Implement the "resources_needed" breakpoint_ops method for
10104 hardware watchpoints. */
10105
10106 static int
10107 resources_needed_watchpoint (const struct bp_location *bl)
10108 {
10109 struct watchpoint *w = (struct watchpoint *) bl->owner;
10110 int length = w->exact? 1 : bl->length;
10111
10112 return target_region_ok_for_hw_watchpoint (bl->address, length);
10113 }
10114
10115 /* Implement the "works_in_software_mode" breakpoint_ops method for
10116 hardware watchpoints. */
10117
10118 static int
10119 works_in_software_mode_watchpoint (const struct breakpoint *b)
10120 {
10121 /* Read and access watchpoints only work with hardware support. */
10122 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10123 }
10124
10125 static enum print_stop_action
10126 print_it_watchpoint (bpstat bs)
10127 {
10128 struct breakpoint *b;
10129 enum print_stop_action result;
10130 struct watchpoint *w;
10131 struct ui_out *uiout = current_uiout;
10132
10133 gdb_assert (bs->bp_location_at != NULL);
10134
10135 b = bs->breakpoint_at;
10136 w = (struct watchpoint *) b;
10137
10138 annotate_watchpoint (b->number);
10139 maybe_print_thread_hit_breakpoint (uiout);
10140
10141 string_file stb;
10142
10143 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10144 switch (b->type)
10145 {
10146 case bp_watchpoint:
10147 case bp_hardware_watchpoint:
10148 if (uiout->is_mi_like_p ())
10149 uiout->field_string
10150 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10151 mention (b);
10152 tuple_emitter.emplace (uiout, "value");
10153 uiout->text ("\nOld value = ");
10154 watchpoint_value_print (bs->old_val.get (), &stb);
10155 uiout->field_stream ("old", stb);
10156 uiout->text ("\nNew value = ");
10157 watchpoint_value_print (w->val.get (), &stb);
10158 uiout->field_stream ("new", stb);
10159 uiout->text ("\n");
10160 /* More than one watchpoint may have been triggered. */
10161 result = PRINT_UNKNOWN;
10162 break;
10163
10164 case bp_read_watchpoint:
10165 if (uiout->is_mi_like_p ())
10166 uiout->field_string
10167 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10168 mention (b);
10169 tuple_emitter.emplace (uiout, "value");
10170 uiout->text ("\nValue = ");
10171 watchpoint_value_print (w->val.get (), &stb);
10172 uiout->field_stream ("value", stb);
10173 uiout->text ("\n");
10174 result = PRINT_UNKNOWN;
10175 break;
10176
10177 case bp_access_watchpoint:
10178 if (bs->old_val != NULL)
10179 {
10180 if (uiout->is_mi_like_p ())
10181 uiout->field_string
10182 ("reason",
10183 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10184 mention (b);
10185 tuple_emitter.emplace (uiout, "value");
10186 uiout->text ("\nOld value = ");
10187 watchpoint_value_print (bs->old_val.get (), &stb);
10188 uiout->field_stream ("old", stb);
10189 uiout->text ("\nNew value = ");
10190 }
10191 else
10192 {
10193 mention (b);
10194 if (uiout->is_mi_like_p ())
10195 uiout->field_string
10196 ("reason",
10197 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10198 tuple_emitter.emplace (uiout, "value");
10199 uiout->text ("\nValue = ");
10200 }
10201 watchpoint_value_print (w->val.get (), &stb);
10202 uiout->field_stream ("new", stb);
10203 uiout->text ("\n");
10204 result = PRINT_UNKNOWN;
10205 break;
10206 default:
10207 result = PRINT_UNKNOWN;
10208 }
10209
10210 return result;
10211 }
10212
10213 /* Implement the "print_mention" breakpoint_ops method for hardware
10214 watchpoints. */
10215
10216 static void
10217 print_mention_watchpoint (struct breakpoint *b)
10218 {
10219 struct watchpoint *w = (struct watchpoint *) b;
10220 struct ui_out *uiout = current_uiout;
10221 const char *tuple_name;
10222
10223 switch (b->type)
10224 {
10225 case bp_watchpoint:
10226 uiout->text ("Watchpoint ");
10227 tuple_name = "wpt";
10228 break;
10229 case bp_hardware_watchpoint:
10230 uiout->text ("Hardware watchpoint ");
10231 tuple_name = "wpt";
10232 break;
10233 case bp_read_watchpoint:
10234 uiout->text ("Hardware read watchpoint ");
10235 tuple_name = "hw-rwpt";
10236 break;
10237 case bp_access_watchpoint:
10238 uiout->text ("Hardware access (read/write) watchpoint ");
10239 tuple_name = "hw-awpt";
10240 break;
10241 default:
10242 internal_error (__FILE__, __LINE__,
10243 _("Invalid hardware watchpoint type."));
10244 }
10245
10246 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10247 uiout->field_signed ("number", b->number);
10248 uiout->text (": ");
10249 uiout->field_string ("exp", w->exp_string);
10250 }
10251
10252 /* Implement the "print_recreate" breakpoint_ops method for
10253 watchpoints. */
10254
10255 static void
10256 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10257 {
10258 struct watchpoint *w = (struct watchpoint *) b;
10259
10260 switch (b->type)
10261 {
10262 case bp_watchpoint:
10263 case bp_hardware_watchpoint:
10264 fprintf_unfiltered (fp, "watch");
10265 break;
10266 case bp_read_watchpoint:
10267 fprintf_unfiltered (fp, "rwatch");
10268 break;
10269 case bp_access_watchpoint:
10270 fprintf_unfiltered (fp, "awatch");
10271 break;
10272 default:
10273 internal_error (__FILE__, __LINE__,
10274 _("Invalid watchpoint type."));
10275 }
10276
10277 fprintf_unfiltered (fp, " %s", w->exp_string);
10278 print_recreate_thread (b, fp);
10279 }
10280
10281 /* Implement the "explains_signal" breakpoint_ops method for
10282 watchpoints. */
10283
10284 static int
10285 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10286 {
10287 /* A software watchpoint cannot cause a signal other than
10288 GDB_SIGNAL_TRAP. */
10289 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10290 return 0;
10291
10292 return 1;
10293 }
10294
10295 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10296
10297 static struct breakpoint_ops watchpoint_breakpoint_ops;
10298
10299 /* Implement the "insert" breakpoint_ops method for
10300 masked hardware watchpoints. */
10301
10302 static int
10303 insert_masked_watchpoint (struct bp_location *bl)
10304 {
10305 struct watchpoint *w = (struct watchpoint *) bl->owner;
10306
10307 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10308 bl->watchpoint_type);
10309 }
10310
10311 /* Implement the "remove" breakpoint_ops method for
10312 masked hardware watchpoints. */
10313
10314 static int
10315 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10316 {
10317 struct watchpoint *w = (struct watchpoint *) bl->owner;
10318
10319 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10320 bl->watchpoint_type);
10321 }
10322
10323 /* Implement the "resources_needed" breakpoint_ops method for
10324 masked hardware watchpoints. */
10325
10326 static int
10327 resources_needed_masked_watchpoint (const struct bp_location *bl)
10328 {
10329 struct watchpoint *w = (struct watchpoint *) bl->owner;
10330
10331 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10332 }
10333
10334 /* Implement the "works_in_software_mode" breakpoint_ops method for
10335 masked hardware watchpoints. */
10336
10337 static int
10338 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10339 {
10340 return 0;
10341 }
10342
10343 /* Implement the "print_it" breakpoint_ops method for
10344 masked hardware watchpoints. */
10345
10346 static enum print_stop_action
10347 print_it_masked_watchpoint (bpstat bs)
10348 {
10349 struct breakpoint *b = bs->breakpoint_at;
10350 struct ui_out *uiout = current_uiout;
10351
10352 /* Masked watchpoints have only one location. */
10353 gdb_assert (b->loc && b->loc->next == NULL);
10354
10355 annotate_watchpoint (b->number);
10356 maybe_print_thread_hit_breakpoint (uiout);
10357
10358 switch (b->type)
10359 {
10360 case bp_hardware_watchpoint:
10361 if (uiout->is_mi_like_p ())
10362 uiout->field_string
10363 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10364 break;
10365
10366 case bp_read_watchpoint:
10367 if (uiout->is_mi_like_p ())
10368 uiout->field_string
10369 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10370 break;
10371
10372 case bp_access_watchpoint:
10373 if (uiout->is_mi_like_p ())
10374 uiout->field_string
10375 ("reason",
10376 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10377 break;
10378 default:
10379 internal_error (__FILE__, __LINE__,
10380 _("Invalid hardware watchpoint type."));
10381 }
10382
10383 mention (b);
10384 uiout->text (_("\n\
10385 Check the underlying instruction at PC for the memory\n\
10386 address and value which triggered this watchpoint.\n"));
10387 uiout->text ("\n");
10388
10389 /* More than one watchpoint may have been triggered. */
10390 return PRINT_UNKNOWN;
10391 }
10392
10393 /* Implement the "print_one_detail" breakpoint_ops method for
10394 masked hardware watchpoints. */
10395
10396 static void
10397 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10398 struct ui_out *uiout)
10399 {
10400 struct watchpoint *w = (struct watchpoint *) b;
10401
10402 /* Masked watchpoints have only one location. */
10403 gdb_assert (b->loc && b->loc->next == NULL);
10404
10405 uiout->text ("\tmask ");
10406 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10407 uiout->text ("\n");
10408 }
10409
10410 /* Implement the "print_mention" breakpoint_ops method for
10411 masked hardware watchpoints. */
10412
10413 static void
10414 print_mention_masked_watchpoint (struct breakpoint *b)
10415 {
10416 struct watchpoint *w = (struct watchpoint *) b;
10417 struct ui_out *uiout = current_uiout;
10418 const char *tuple_name;
10419
10420 switch (b->type)
10421 {
10422 case bp_hardware_watchpoint:
10423 uiout->text ("Masked hardware watchpoint ");
10424 tuple_name = "wpt";
10425 break;
10426 case bp_read_watchpoint:
10427 uiout->text ("Masked hardware read watchpoint ");
10428 tuple_name = "hw-rwpt";
10429 break;
10430 case bp_access_watchpoint:
10431 uiout->text ("Masked hardware access (read/write) watchpoint ");
10432 tuple_name = "hw-awpt";
10433 break;
10434 default:
10435 internal_error (__FILE__, __LINE__,
10436 _("Invalid hardware watchpoint type."));
10437 }
10438
10439 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10440 uiout->field_signed ("number", b->number);
10441 uiout->text (": ");
10442 uiout->field_string ("exp", w->exp_string);
10443 }
10444
10445 /* Implement the "print_recreate" breakpoint_ops method for
10446 masked hardware watchpoints. */
10447
10448 static void
10449 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10450 {
10451 struct watchpoint *w = (struct watchpoint *) b;
10452
10453 switch (b->type)
10454 {
10455 case bp_hardware_watchpoint:
10456 fprintf_unfiltered (fp, "watch");
10457 break;
10458 case bp_read_watchpoint:
10459 fprintf_unfiltered (fp, "rwatch");
10460 break;
10461 case bp_access_watchpoint:
10462 fprintf_unfiltered (fp, "awatch");
10463 break;
10464 default:
10465 internal_error (__FILE__, __LINE__,
10466 _("Invalid hardware watchpoint type."));
10467 }
10468
10469 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10470 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10471 print_recreate_thread (b, fp);
10472 }
10473
10474 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10475
10476 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10477
10478 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10479
10480 static bool
10481 is_masked_watchpoint (const struct breakpoint *b)
10482 {
10483 return b->ops == &masked_watchpoint_breakpoint_ops;
10484 }
10485
10486 /* accessflag: hw_write: watch write,
10487 hw_read: watch read,
10488 hw_access: watch access (read or write) */
10489 static void
10490 watch_command_1 (const char *arg, int accessflag, int from_tty,
10491 int just_location, int internal)
10492 {
10493 struct breakpoint *scope_breakpoint = NULL;
10494 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10495 struct value *result;
10496 int saved_bitpos = 0, saved_bitsize = 0;
10497 const char *exp_start = NULL;
10498 const char *exp_end = NULL;
10499 const char *tok, *end_tok;
10500 int toklen = -1;
10501 const char *cond_start = NULL;
10502 const char *cond_end = NULL;
10503 enum bptype bp_type;
10504 int thread = -1;
10505 int pc = 0;
10506 /* Flag to indicate whether we are going to use masks for
10507 the hardware watchpoint. */
10508 int use_mask = 0;
10509 CORE_ADDR mask = 0;
10510
10511 /* Make sure that we actually have parameters to parse. */
10512 if (arg != NULL && arg[0] != '\0')
10513 {
10514 const char *value_start;
10515
10516 exp_end = arg + strlen (arg);
10517
10518 /* Look for "parameter value" pairs at the end
10519 of the arguments string. */
10520 for (tok = exp_end - 1; tok > arg; tok--)
10521 {
10522 /* Skip whitespace at the end of the argument list. */
10523 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10524 tok--;
10525
10526 /* Find the beginning of the last token.
10527 This is the value of the parameter. */
10528 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10529 tok--;
10530 value_start = tok + 1;
10531
10532 /* Skip whitespace. */
10533 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10534 tok--;
10535
10536 end_tok = tok;
10537
10538 /* Find the beginning of the second to last token.
10539 This is the parameter itself. */
10540 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10541 tok--;
10542 tok++;
10543 toklen = end_tok - tok + 1;
10544
10545 if (toklen == 6 && startswith (tok, "thread"))
10546 {
10547 struct thread_info *thr;
10548 /* At this point we've found a "thread" token, which means
10549 the user is trying to set a watchpoint that triggers
10550 only in a specific thread. */
10551 const char *endp;
10552
10553 if (thread != -1)
10554 error(_("You can specify only one thread."));
10555
10556 /* Extract the thread ID from the next token. */
10557 thr = parse_thread_id (value_start, &endp);
10558
10559 /* Check if the user provided a valid thread ID. */
10560 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10561 invalid_thread_id_error (value_start);
10562
10563 thread = thr->global_num;
10564 }
10565 else if (toklen == 4 && startswith (tok, "mask"))
10566 {
10567 /* We've found a "mask" token, which means the user wants to
10568 create a hardware watchpoint that is going to have the mask
10569 facility. */
10570 struct value *mask_value, *mark;
10571
10572 if (use_mask)
10573 error(_("You can specify only one mask."));
10574
10575 use_mask = just_location = 1;
10576
10577 mark = value_mark ();
10578 mask_value = parse_to_comma_and_eval (&value_start);
10579 mask = value_as_address (mask_value);
10580 value_free_to_mark (mark);
10581 }
10582 else
10583 /* We didn't recognize what we found. We should stop here. */
10584 break;
10585
10586 /* Truncate the string and get rid of the "parameter value" pair before
10587 the arguments string is parsed by the parse_exp_1 function. */
10588 exp_end = tok;
10589 }
10590 }
10591 else
10592 exp_end = arg;
10593
10594 /* Parse the rest of the arguments. From here on out, everything
10595 is in terms of a newly allocated string instead of the original
10596 ARG. */
10597 std::string expression (arg, exp_end - arg);
10598 exp_start = arg = expression.c_str ();
10599 innermost_block_tracker tracker;
10600 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10601 exp_end = arg;
10602 /* Remove trailing whitespace from the expression before saving it.
10603 This makes the eventual display of the expression string a bit
10604 prettier. */
10605 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10606 --exp_end;
10607
10608 /* Checking if the expression is not constant. */
10609 if (watchpoint_exp_is_const (exp.get ()))
10610 {
10611 int len;
10612
10613 len = exp_end - exp_start;
10614 while (len > 0 && isspace (exp_start[len - 1]))
10615 len--;
10616 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10617 }
10618
10619 exp_valid_block = tracker.block ();
10620 struct value *mark = value_mark ();
10621 struct value *val_as_value = nullptr;
10622 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10623 just_location);
10624
10625 if (val_as_value != NULL && just_location)
10626 {
10627 saved_bitpos = value_bitpos (val_as_value);
10628 saved_bitsize = value_bitsize (val_as_value);
10629 }
10630
10631 value_ref_ptr val;
10632 if (just_location)
10633 {
10634 int ret;
10635
10636 exp_valid_block = NULL;
10637 val = release_value (value_addr (result));
10638 value_free_to_mark (mark);
10639
10640 if (use_mask)
10641 {
10642 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10643 mask);
10644 if (ret == -1)
10645 error (_("This target does not support masked watchpoints."));
10646 else if (ret == -2)
10647 error (_("Invalid mask or memory region."));
10648 }
10649 }
10650 else if (val_as_value != NULL)
10651 val = release_value (val_as_value);
10652
10653 tok = skip_spaces (arg);
10654 end_tok = skip_to_space (tok);
10655
10656 toklen = end_tok - tok;
10657 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10658 {
10659 tok = cond_start = end_tok + 1;
10660 innermost_block_tracker if_tracker;
10661 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10662
10663 /* The watchpoint expression may not be local, but the condition
10664 may still be. E.g.: `watch global if local > 0'. */
10665 cond_exp_valid_block = if_tracker.block ();
10666
10667 cond_end = tok;
10668 }
10669 if (*tok)
10670 error (_("Junk at end of command."));
10671
10672 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10673
10674 /* Save this because create_internal_breakpoint below invalidates
10675 'wp_frame'. */
10676 frame_id watchpoint_frame = get_frame_id (wp_frame);
10677
10678 /* If the expression is "local", then set up a "watchpoint scope"
10679 breakpoint at the point where we've left the scope of the watchpoint
10680 expression. Create the scope breakpoint before the watchpoint, so
10681 that we will encounter it first in bpstat_stop_status. */
10682 if (exp_valid_block != NULL && wp_frame != NULL)
10683 {
10684 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10685
10686 if (frame_id_p (caller_frame_id))
10687 {
10688 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10689 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10690
10691 scope_breakpoint
10692 = create_internal_breakpoint (caller_arch, caller_pc,
10693 bp_watchpoint_scope,
10694 &momentary_breakpoint_ops);
10695
10696 /* create_internal_breakpoint could invalidate WP_FRAME. */
10697 wp_frame = NULL;
10698
10699 scope_breakpoint->enable_state = bp_enabled;
10700
10701 /* Automatically delete the breakpoint when it hits. */
10702 scope_breakpoint->disposition = disp_del;
10703
10704 /* Only break in the proper frame (help with recursion). */
10705 scope_breakpoint->frame_id = caller_frame_id;
10706
10707 /* Set the address at which we will stop. */
10708 scope_breakpoint->loc->gdbarch = caller_arch;
10709 scope_breakpoint->loc->requested_address = caller_pc;
10710 scope_breakpoint->loc->address
10711 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10712 scope_breakpoint->loc->requested_address,
10713 scope_breakpoint->type);
10714 }
10715 }
10716
10717 /* Now set up the breakpoint. We create all watchpoints as hardware
10718 watchpoints here even if hardware watchpoints are turned off, a call
10719 to update_watchpoint later in this function will cause the type to
10720 drop back to bp_watchpoint (software watchpoint) if required. */
10721
10722 if (accessflag == hw_read)
10723 bp_type = bp_read_watchpoint;
10724 else if (accessflag == hw_access)
10725 bp_type = bp_access_watchpoint;
10726 else
10727 bp_type = bp_hardware_watchpoint;
10728
10729 std::unique_ptr<watchpoint> w (new watchpoint ());
10730
10731 if (use_mask)
10732 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10733 &masked_watchpoint_breakpoint_ops);
10734 else
10735 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10736 &watchpoint_breakpoint_ops);
10737 w->thread = thread;
10738 w->disposition = disp_donttouch;
10739 w->pspace = current_program_space;
10740 w->exp = std::move (exp);
10741 w->exp_valid_block = exp_valid_block;
10742 w->cond_exp_valid_block = cond_exp_valid_block;
10743 if (just_location)
10744 {
10745 struct type *t = value_type (val.get ());
10746 CORE_ADDR addr = value_as_address (val.get ());
10747
10748 w->exp_string_reparse
10749 = current_language->watch_location_expression (t, addr).release ();
10750
10751 w->exp_string = xstrprintf ("-location %.*s",
10752 (int) (exp_end - exp_start), exp_start);
10753 }
10754 else
10755 w->exp_string = savestring (exp_start, exp_end - exp_start);
10756
10757 if (use_mask)
10758 {
10759 w->hw_wp_mask = mask;
10760 }
10761 else
10762 {
10763 w->val = val;
10764 w->val_bitpos = saved_bitpos;
10765 w->val_bitsize = saved_bitsize;
10766 w->val_valid = true;
10767 }
10768
10769 if (cond_start)
10770 w->cond_string = savestring (cond_start, cond_end - cond_start);
10771 else
10772 w->cond_string = 0;
10773
10774 if (frame_id_p (watchpoint_frame))
10775 {
10776 w->watchpoint_frame = watchpoint_frame;
10777 w->watchpoint_thread = inferior_ptid;
10778 }
10779 else
10780 {
10781 w->watchpoint_frame = null_frame_id;
10782 w->watchpoint_thread = null_ptid;
10783 }
10784
10785 if (scope_breakpoint != NULL)
10786 {
10787 /* The scope breakpoint is related to the watchpoint. We will
10788 need to act on them together. */
10789 w->related_breakpoint = scope_breakpoint;
10790 scope_breakpoint->related_breakpoint = w.get ();
10791 }
10792
10793 if (!just_location)
10794 value_free_to_mark (mark);
10795
10796 /* Finally update the new watchpoint. This creates the locations
10797 that should be inserted. */
10798 update_watchpoint (w.get (), 1);
10799
10800 install_breakpoint (internal, std::move (w), 1);
10801 }
10802
10803 /* Return count of debug registers needed to watch the given expression.
10804 If the watchpoint cannot be handled in hardware return zero. */
10805
10806 static int
10807 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10808 {
10809 int found_memory_cnt = 0;
10810
10811 /* Did the user specifically forbid us to use hardware watchpoints? */
10812 if (!can_use_hw_watchpoints)
10813 return 0;
10814
10815 gdb_assert (!vals.empty ());
10816 struct value *head = vals[0].get ();
10817
10818 /* Make sure that the value of the expression depends only upon
10819 memory contents, and values computed from them within GDB. If we
10820 find any register references or function calls, we can't use a
10821 hardware watchpoint.
10822
10823 The idea here is that evaluating an expression generates a series
10824 of values, one holding the value of every subexpression. (The
10825 expression a*b+c has five subexpressions: a, b, a*b, c, and
10826 a*b+c.) GDB's values hold almost enough information to establish
10827 the criteria given above --- they identify memory lvalues,
10828 register lvalues, computed values, etcetera. So we can evaluate
10829 the expression, and then scan the chain of values that leaves
10830 behind to decide whether we can detect any possible change to the
10831 expression's final value using only hardware watchpoints.
10832
10833 However, I don't think that the values returned by inferior
10834 function calls are special in any way. So this function may not
10835 notice that an expression involving an inferior function call
10836 can't be watched with hardware watchpoints. FIXME. */
10837 for (const value_ref_ptr &iter : vals)
10838 {
10839 struct value *v = iter.get ();
10840
10841 if (VALUE_LVAL (v) == lval_memory)
10842 {
10843 if (v != head && value_lazy (v))
10844 /* A lazy memory lvalue in the chain is one that GDB never
10845 needed to fetch; we either just used its address (e.g.,
10846 `a' in `a.b') or we never needed it at all (e.g., `a'
10847 in `a,b'). This doesn't apply to HEAD; if that is
10848 lazy then it was not readable, but watch it anyway. */
10849 ;
10850 else
10851 {
10852 /* Ahh, memory we actually used! Check if we can cover
10853 it with hardware watchpoints. */
10854 struct type *vtype = check_typedef (value_type (v));
10855
10856 /* We only watch structs and arrays if user asked for it
10857 explicitly, never if they just happen to appear in a
10858 middle of some value chain. */
10859 if (v == head
10860 || (vtype->code () != TYPE_CODE_STRUCT
10861 && vtype->code () != TYPE_CODE_ARRAY))
10862 {
10863 CORE_ADDR vaddr = value_address (v);
10864 int len;
10865 int num_regs;
10866
10867 len = (target_exact_watchpoints
10868 && is_scalar_type_recursive (vtype))?
10869 1 : TYPE_LENGTH (value_type (v));
10870
10871 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10872 if (!num_regs)
10873 return 0;
10874 else
10875 found_memory_cnt += num_regs;
10876 }
10877 }
10878 }
10879 else if (VALUE_LVAL (v) != not_lval
10880 && deprecated_value_modifiable (v) == 0)
10881 return 0; /* These are values from the history (e.g., $1). */
10882 else if (VALUE_LVAL (v) == lval_register)
10883 return 0; /* Cannot watch a register with a HW watchpoint. */
10884 }
10885
10886 /* The expression itself looks suitable for using a hardware
10887 watchpoint, but give the target machine a chance to reject it. */
10888 return found_memory_cnt;
10889 }
10890
10891 void
10892 watch_command_wrapper (const char *arg, int from_tty, int internal)
10893 {
10894 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10895 }
10896
10897 /* A helper function that looks for the "-location" argument and then
10898 calls watch_command_1. */
10899
10900 static void
10901 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10902 {
10903 int just_location = 0;
10904
10905 if (arg
10906 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10907 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10908 just_location = 1;
10909
10910 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10911 }
10912
10913 static void
10914 watch_command (const char *arg, int from_tty)
10915 {
10916 watch_maybe_just_location (arg, hw_write, from_tty);
10917 }
10918
10919 void
10920 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10921 {
10922 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10923 }
10924
10925 static void
10926 rwatch_command (const char *arg, int from_tty)
10927 {
10928 watch_maybe_just_location (arg, hw_read, from_tty);
10929 }
10930
10931 void
10932 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10933 {
10934 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10935 }
10936
10937 static void
10938 awatch_command (const char *arg, int from_tty)
10939 {
10940 watch_maybe_just_location (arg, hw_access, from_tty);
10941 }
10942 \f
10943
10944 /* Data for the FSM that manages the until(location)/advance commands
10945 in infcmd.c. Here because it uses the mechanisms of
10946 breakpoints. */
10947
10948 struct until_break_fsm : public thread_fsm
10949 {
10950 /* The thread that was current when the command was executed. */
10951 int thread;
10952
10953 /* The breakpoint set at the destination location. */
10954 breakpoint_up location_breakpoint;
10955
10956 /* Breakpoint set at the return address in the caller frame. May be
10957 NULL. */
10958 breakpoint_up caller_breakpoint;
10959
10960 until_break_fsm (struct interp *cmd_interp, int thread,
10961 breakpoint_up &&location_breakpoint,
10962 breakpoint_up &&caller_breakpoint)
10963 : thread_fsm (cmd_interp),
10964 thread (thread),
10965 location_breakpoint (std::move (location_breakpoint)),
10966 caller_breakpoint (std::move (caller_breakpoint))
10967 {
10968 }
10969
10970 void clean_up (struct thread_info *thread) override;
10971 bool should_stop (struct thread_info *thread) override;
10972 enum async_reply_reason do_async_reply_reason () override;
10973 };
10974
10975 /* Implementation of the 'should_stop' FSM method for the
10976 until(location)/advance commands. */
10977
10978 bool
10979 until_break_fsm::should_stop (struct thread_info *tp)
10980 {
10981 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10982 location_breakpoint.get ()) != NULL
10983 || (caller_breakpoint != NULL
10984 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10985 caller_breakpoint.get ()) != NULL))
10986 set_finished ();
10987
10988 return true;
10989 }
10990
10991 /* Implementation of the 'clean_up' FSM method for the
10992 until(location)/advance commands. */
10993
10994 void
10995 until_break_fsm::clean_up (struct thread_info *)
10996 {
10997 /* Clean up our temporary breakpoints. */
10998 location_breakpoint.reset ();
10999 caller_breakpoint.reset ();
11000 delete_longjmp_breakpoint (thread);
11001 }
11002
11003 /* Implementation of the 'async_reply_reason' FSM method for the
11004 until(location)/advance commands. */
11005
11006 enum async_reply_reason
11007 until_break_fsm::do_async_reply_reason ()
11008 {
11009 return EXEC_ASYNC_LOCATION_REACHED;
11010 }
11011
11012 void
11013 until_break_command (const char *arg, int from_tty, int anywhere)
11014 {
11015 struct frame_info *frame;
11016 struct gdbarch *frame_gdbarch;
11017 struct frame_id stack_frame_id;
11018 struct frame_id caller_frame_id;
11019 int thread;
11020 struct thread_info *tp;
11021
11022 clear_proceed_status (0);
11023
11024 /* Set a breakpoint where the user wants it and at return from
11025 this function. */
11026
11027 event_location_up location = string_to_event_location (&arg, current_language);
11028
11029 std::vector<symtab_and_line> sals
11030 = (last_displayed_sal_is_valid ()
11031 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11032 get_last_displayed_symtab (),
11033 get_last_displayed_line ())
11034 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11035 NULL, NULL, 0));
11036
11037 if (sals.size () != 1)
11038 error (_("Couldn't get information on specified line."));
11039
11040 symtab_and_line &sal = sals[0];
11041
11042 if (*arg)
11043 error (_("Junk at end of arguments."));
11044
11045 resolve_sal_pc (&sal);
11046
11047 tp = inferior_thread ();
11048 thread = tp->global_num;
11049
11050 /* Note linespec handling above invalidates the frame chain.
11051 Installing a breakpoint also invalidates the frame chain (as it
11052 may need to switch threads), so do any frame handling before
11053 that. */
11054
11055 frame = get_selected_frame (NULL);
11056 frame_gdbarch = get_frame_arch (frame);
11057 stack_frame_id = get_stack_frame_id (frame);
11058 caller_frame_id = frame_unwind_caller_id (frame);
11059
11060 /* Keep within the current frame, or in frames called by the current
11061 one. */
11062
11063 breakpoint_up caller_breakpoint;
11064
11065 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11066
11067 if (frame_id_p (caller_frame_id))
11068 {
11069 struct symtab_and_line sal2;
11070 struct gdbarch *caller_gdbarch;
11071
11072 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11073 sal2.pc = frame_unwind_caller_pc (frame);
11074 caller_gdbarch = frame_unwind_caller_arch (frame);
11075 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11076 sal2,
11077 caller_frame_id,
11078 bp_until);
11079
11080 set_longjmp_breakpoint (tp, caller_frame_id);
11081 lj_deleter.emplace (thread);
11082 }
11083
11084 /* set_momentary_breakpoint could invalidate FRAME. */
11085 frame = NULL;
11086
11087 breakpoint_up location_breakpoint;
11088 if (anywhere)
11089 /* If the user told us to continue until a specified location,
11090 we don't specify a frame at which we need to stop. */
11091 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11092 null_frame_id, bp_until);
11093 else
11094 /* Otherwise, specify the selected frame, because we want to stop
11095 only at the very same frame. */
11096 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11097 stack_frame_id, bp_until);
11098
11099 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11100 std::move (location_breakpoint),
11101 std::move (caller_breakpoint));
11102
11103 if (lj_deleter)
11104 lj_deleter->release ();
11105
11106 proceed (-1, GDB_SIGNAL_DEFAULT);
11107 }
11108
11109 /* This function attempts to parse an optional "if <cond>" clause
11110 from the arg string. If one is not found, it returns NULL.
11111
11112 Else, it returns a pointer to the condition string. (It does not
11113 attempt to evaluate the string against a particular block.) And,
11114 it updates arg to point to the first character following the parsed
11115 if clause in the arg string. */
11116
11117 const char *
11118 ep_parse_optional_if_clause (const char **arg)
11119 {
11120 const char *cond_string;
11121
11122 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11123 return NULL;
11124
11125 /* Skip the "if" keyword. */
11126 (*arg) += 2;
11127
11128 /* Skip any extra leading whitespace, and record the start of the
11129 condition string. */
11130 *arg = skip_spaces (*arg);
11131 cond_string = *arg;
11132
11133 /* Assume that the condition occupies the remainder of the arg
11134 string. */
11135 (*arg) += strlen (cond_string);
11136
11137 return cond_string;
11138 }
11139
11140 /* Commands to deal with catching events, such as signals, exceptions,
11141 process start/exit, etc. */
11142
11143 typedef enum
11144 {
11145 catch_fork_temporary, catch_vfork_temporary,
11146 catch_fork_permanent, catch_vfork_permanent
11147 }
11148 catch_fork_kind;
11149
11150 static void
11151 catch_fork_command_1 (const char *arg, int from_tty,
11152 struct cmd_list_element *command)
11153 {
11154 struct gdbarch *gdbarch = get_current_arch ();
11155 const char *cond_string = NULL;
11156 catch_fork_kind fork_kind;
11157 int tempflag;
11158
11159 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11160 tempflag = (fork_kind == catch_fork_temporary
11161 || fork_kind == catch_vfork_temporary);
11162
11163 if (!arg)
11164 arg = "";
11165 arg = skip_spaces (arg);
11166
11167 /* The allowed syntax is:
11168 catch [v]fork
11169 catch [v]fork if <cond>
11170
11171 First, check if there's an if clause. */
11172 cond_string = ep_parse_optional_if_clause (&arg);
11173
11174 if ((*arg != '\0') && !isspace (*arg))
11175 error (_("Junk at end of arguments."));
11176
11177 /* If this target supports it, create a fork or vfork catchpoint
11178 and enable reporting of such events. */
11179 switch (fork_kind)
11180 {
11181 case catch_fork_temporary:
11182 case catch_fork_permanent:
11183 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11184 &catch_fork_breakpoint_ops);
11185 break;
11186 case catch_vfork_temporary:
11187 case catch_vfork_permanent:
11188 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11189 &catch_vfork_breakpoint_ops);
11190 break;
11191 default:
11192 error (_("unsupported or unknown fork kind; cannot catch it"));
11193 break;
11194 }
11195 }
11196
11197 static void
11198 catch_exec_command_1 (const char *arg, int from_tty,
11199 struct cmd_list_element *command)
11200 {
11201 struct gdbarch *gdbarch = get_current_arch ();
11202 int tempflag;
11203 const char *cond_string = NULL;
11204
11205 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11206
11207 if (!arg)
11208 arg = "";
11209 arg = skip_spaces (arg);
11210
11211 /* The allowed syntax is:
11212 catch exec
11213 catch exec if <cond>
11214
11215 First, check if there's an if clause. */
11216 cond_string = ep_parse_optional_if_clause (&arg);
11217
11218 if ((*arg != '\0') && !isspace (*arg))
11219 error (_("Junk at end of arguments."));
11220
11221 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11222 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11223 &catch_exec_breakpoint_ops);
11224 c->exec_pathname = NULL;
11225
11226 install_breakpoint (0, std::move (c), 1);
11227 }
11228
11229 void
11230 init_ada_exception_breakpoint (struct breakpoint *b,
11231 struct gdbarch *gdbarch,
11232 struct symtab_and_line sal,
11233 const char *addr_string,
11234 const struct breakpoint_ops *ops,
11235 int tempflag,
11236 int enabled,
11237 int from_tty)
11238 {
11239 if (from_tty)
11240 {
11241 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11242 if (!loc_gdbarch)
11243 loc_gdbarch = gdbarch;
11244
11245 describe_other_breakpoints (loc_gdbarch,
11246 sal.pspace, sal.pc, sal.section, -1);
11247 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11248 version for exception catchpoints, because two catchpoints
11249 used for different exception names will use the same address.
11250 In this case, a "breakpoint ... also set at..." warning is
11251 unproductive. Besides, the warning phrasing is also a bit
11252 inappropriate, we should use the word catchpoint, and tell
11253 the user what type of catchpoint it is. The above is good
11254 enough for now, though. */
11255 }
11256
11257 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11258
11259 b->enable_state = enabled ? bp_enabled : bp_disabled;
11260 b->disposition = tempflag ? disp_del : disp_donttouch;
11261 b->location = string_to_event_location (&addr_string,
11262 language_def (language_ada));
11263 b->language = language_ada;
11264 }
11265
11266 \f
11267
11268 /* Compare two breakpoints and return a strcmp-like result. */
11269
11270 static int
11271 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11272 {
11273 uintptr_t ua = (uintptr_t) a;
11274 uintptr_t ub = (uintptr_t) b;
11275
11276 if (a->number < b->number)
11277 return -1;
11278 else if (a->number > b->number)
11279 return 1;
11280
11281 /* Now sort by address, in case we see, e..g, two breakpoints with
11282 the number 0. */
11283 if (ua < ub)
11284 return -1;
11285 return ua > ub ? 1 : 0;
11286 }
11287
11288 /* Delete breakpoints by address or line. */
11289
11290 static void
11291 clear_command (const char *arg, int from_tty)
11292 {
11293 struct breakpoint *b;
11294 int default_match;
11295
11296 std::vector<symtab_and_line> decoded_sals;
11297 symtab_and_line last_sal;
11298 gdb::array_view<symtab_and_line> sals;
11299 if (arg)
11300 {
11301 decoded_sals
11302 = decode_line_with_current_source (arg,
11303 (DECODE_LINE_FUNFIRSTLINE
11304 | DECODE_LINE_LIST_MODE));
11305 default_match = 0;
11306 sals = decoded_sals;
11307 }
11308 else
11309 {
11310 /* Set sal's line, symtab, pc, and pspace to the values
11311 corresponding to the last call to print_frame_info. If the
11312 codepoint is not valid, this will set all the fields to 0. */
11313 last_sal = get_last_displayed_sal ();
11314 if (last_sal.symtab == 0)
11315 error (_("No source file specified."));
11316
11317 default_match = 1;
11318 sals = last_sal;
11319 }
11320
11321 /* We don't call resolve_sal_pc here. That's not as bad as it
11322 seems, because all existing breakpoints typically have both
11323 file/line and pc set. So, if clear is given file/line, we can
11324 match this to existing breakpoint without obtaining pc at all.
11325
11326 We only support clearing given the address explicitly
11327 present in breakpoint table. Say, we've set breakpoint
11328 at file:line. There were several PC values for that file:line,
11329 due to optimization, all in one block.
11330
11331 We've picked one PC value. If "clear" is issued with another
11332 PC corresponding to the same file:line, the breakpoint won't
11333 be cleared. We probably can still clear the breakpoint, but
11334 since the other PC value is never presented to user, user
11335 can only find it by guessing, and it does not seem important
11336 to support that. */
11337
11338 /* For each line spec given, delete bps which correspond to it. Do
11339 it in two passes, solely to preserve the current behavior that
11340 from_tty is forced true if we delete more than one
11341 breakpoint. */
11342
11343 std::vector<struct breakpoint *> found;
11344 for (const auto &sal : sals)
11345 {
11346 const char *sal_fullname;
11347
11348 /* If exact pc given, clear bpts at that pc.
11349 If line given (pc == 0), clear all bpts on specified line.
11350 If defaulting, clear all bpts on default line
11351 or at default pc.
11352
11353 defaulting sal.pc != 0 tests to do
11354
11355 0 1 pc
11356 1 1 pc _and_ line
11357 0 0 line
11358 1 0 <can't happen> */
11359
11360 sal_fullname = (sal.symtab == NULL
11361 ? NULL : symtab_to_fullname (sal.symtab));
11362
11363 /* Find all matching breakpoints and add them to 'found'. */
11364 ALL_BREAKPOINTS (b)
11365 {
11366 int match = 0;
11367 /* Are we going to delete b? */
11368 if (b->type != bp_none && !is_watchpoint (b))
11369 {
11370 struct bp_location *loc = b->loc;
11371 for (; loc; loc = loc->next)
11372 {
11373 /* If the user specified file:line, don't allow a PC
11374 match. This matches historical gdb behavior. */
11375 int pc_match = (!sal.explicit_line
11376 && sal.pc
11377 && (loc->pspace == sal.pspace)
11378 && (loc->address == sal.pc)
11379 && (!section_is_overlay (loc->section)
11380 || loc->section == sal.section));
11381 int line_match = 0;
11382
11383 if ((default_match || sal.explicit_line)
11384 && loc->symtab != NULL
11385 && sal_fullname != NULL
11386 && sal.pspace == loc->pspace
11387 && loc->line_number == sal.line
11388 && filename_cmp (symtab_to_fullname (loc->symtab),
11389 sal_fullname) == 0)
11390 line_match = 1;
11391
11392 if (pc_match || line_match)
11393 {
11394 match = 1;
11395 break;
11396 }
11397 }
11398 }
11399
11400 if (match)
11401 found.push_back (b);
11402 }
11403 }
11404
11405 /* Now go thru the 'found' chain and delete them. */
11406 if (found.empty ())
11407 {
11408 if (arg)
11409 error (_("No breakpoint at %s."), arg);
11410 else
11411 error (_("No breakpoint at this line."));
11412 }
11413
11414 /* Remove duplicates from the vec. */
11415 std::sort (found.begin (), found.end (),
11416 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11417 {
11418 return compare_breakpoints (bp_a, bp_b) < 0;
11419 });
11420 found.erase (std::unique (found.begin (), found.end (),
11421 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11422 {
11423 return compare_breakpoints (bp_a, bp_b) == 0;
11424 }),
11425 found.end ());
11426
11427 if (found.size () > 1)
11428 from_tty = 1; /* Always report if deleted more than one. */
11429 if (from_tty)
11430 {
11431 if (found.size () == 1)
11432 printf_unfiltered (_("Deleted breakpoint "));
11433 else
11434 printf_unfiltered (_("Deleted breakpoints "));
11435 }
11436
11437 for (breakpoint *iter : found)
11438 {
11439 if (from_tty)
11440 printf_unfiltered ("%d ", iter->number);
11441 delete_breakpoint (iter);
11442 }
11443 if (from_tty)
11444 putchar_unfiltered ('\n');
11445 }
11446 \f
11447 /* Delete breakpoint in BS if they are `delete' breakpoints and
11448 all breakpoints that are marked for deletion, whether hit or not.
11449 This is called after any breakpoint is hit, or after errors. */
11450
11451 void
11452 breakpoint_auto_delete (bpstat bs)
11453 {
11454 struct breakpoint *b, *b_tmp;
11455
11456 for (; bs; bs = bs->next)
11457 if (bs->breakpoint_at
11458 && bs->breakpoint_at->disposition == disp_del
11459 && bs->stop)
11460 delete_breakpoint (bs->breakpoint_at);
11461
11462 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11463 {
11464 if (b->disposition == disp_del_at_next_stop)
11465 delete_breakpoint (b);
11466 }
11467 }
11468
11469 /* A comparison function for bp_location AP and BP being interfaced to
11470 std::sort. Sort elements primarily by their ADDRESS (no matter what
11471 bl_address_is_meaningful says), secondarily by ordering first
11472 permanent elements and terciarily just ensuring the array is sorted
11473 stable way despite std::sort being an unstable algorithm. */
11474
11475 static int
11476 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11477 {
11478 if (a->address != b->address)
11479 return a->address < b->address;
11480
11481 /* Sort locations at the same address by their pspace number, keeping
11482 locations of the same inferior (in a multi-inferior environment)
11483 grouped. */
11484
11485 if (a->pspace->num != b->pspace->num)
11486 return a->pspace->num < b->pspace->num;
11487
11488 /* Sort permanent breakpoints first. */
11489 if (a->permanent != b->permanent)
11490 return a->permanent > b->permanent;
11491
11492 /* Sort by type in order to make duplicate determination easier.
11493 See update_global_location_list. This is kept in sync with
11494 breakpoint_locations_match. */
11495 if (a->loc_type < b->loc_type)
11496 return true;
11497
11498 /* Likewise, for range-breakpoints, sort by length. */
11499 if (a->loc_type == bp_loc_hardware_breakpoint
11500 && b->loc_type == bp_loc_hardware_breakpoint
11501 && a->length < b->length)
11502 return true;
11503
11504 /* Make the internal GDB representation stable across GDB runs
11505 where A and B memory inside GDB can differ. Breakpoint locations of
11506 the same type at the same address can be sorted in arbitrary order. */
11507
11508 if (a->owner->number != b->owner->number)
11509 return a->owner->number < b->owner->number;
11510
11511 return a < b;
11512 }
11513
11514 /* Set bp_locations_placed_address_before_address_max and
11515 bp_locations_shadow_len_after_address_max according to the current
11516 content of the bp_locations array. */
11517
11518 static void
11519 bp_locations_target_extensions_update (void)
11520 {
11521 struct bp_location *bl, **blp_tmp;
11522
11523 bp_locations_placed_address_before_address_max = 0;
11524 bp_locations_shadow_len_after_address_max = 0;
11525
11526 ALL_BP_LOCATIONS (bl, blp_tmp)
11527 {
11528 CORE_ADDR start, end, addr;
11529
11530 if (!bp_location_has_shadow (bl))
11531 continue;
11532
11533 start = bl->target_info.placed_address;
11534 end = start + bl->target_info.shadow_len;
11535
11536 gdb_assert (bl->address >= start);
11537 addr = bl->address - start;
11538 if (addr > bp_locations_placed_address_before_address_max)
11539 bp_locations_placed_address_before_address_max = addr;
11540
11541 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11542
11543 gdb_assert (bl->address < end);
11544 addr = end - bl->address;
11545 if (addr > bp_locations_shadow_len_after_address_max)
11546 bp_locations_shadow_len_after_address_max = addr;
11547 }
11548 }
11549
11550 /* Download tracepoint locations if they haven't been. */
11551
11552 static void
11553 download_tracepoint_locations (void)
11554 {
11555 struct breakpoint *b;
11556 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11557
11558 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11559
11560 ALL_TRACEPOINTS (b)
11561 {
11562 struct bp_location *bl;
11563 struct tracepoint *t;
11564 int bp_location_downloaded = 0;
11565
11566 if ((b->type == bp_fast_tracepoint
11567 ? !may_insert_fast_tracepoints
11568 : !may_insert_tracepoints))
11569 continue;
11570
11571 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11572 {
11573 if (target_can_download_tracepoint ())
11574 can_download_tracepoint = TRIBOOL_TRUE;
11575 else
11576 can_download_tracepoint = TRIBOOL_FALSE;
11577 }
11578
11579 if (can_download_tracepoint == TRIBOOL_FALSE)
11580 break;
11581
11582 for (bl = b->loc; bl; bl = bl->next)
11583 {
11584 /* In tracepoint, locations are _never_ duplicated, so
11585 should_be_inserted is equivalent to
11586 unduplicated_should_be_inserted. */
11587 if (!should_be_inserted (bl) || bl->inserted)
11588 continue;
11589
11590 switch_to_program_space_and_thread (bl->pspace);
11591
11592 target_download_tracepoint (bl);
11593
11594 bl->inserted = 1;
11595 bp_location_downloaded = 1;
11596 }
11597 t = (struct tracepoint *) b;
11598 t->number_on_target = b->number;
11599 if (bp_location_downloaded)
11600 gdb::observers::breakpoint_modified.notify (b);
11601 }
11602 }
11603
11604 /* Swap the insertion/duplication state between two locations. */
11605
11606 static void
11607 swap_insertion (struct bp_location *left, struct bp_location *right)
11608 {
11609 const int left_inserted = left->inserted;
11610 const int left_duplicate = left->duplicate;
11611 const int left_needs_update = left->needs_update;
11612 const struct bp_target_info left_target_info = left->target_info;
11613
11614 /* Locations of tracepoints can never be duplicated. */
11615 if (is_tracepoint (left->owner))
11616 gdb_assert (!left->duplicate);
11617 if (is_tracepoint (right->owner))
11618 gdb_assert (!right->duplicate);
11619
11620 left->inserted = right->inserted;
11621 left->duplicate = right->duplicate;
11622 left->needs_update = right->needs_update;
11623 left->target_info = right->target_info;
11624 right->inserted = left_inserted;
11625 right->duplicate = left_duplicate;
11626 right->needs_update = left_needs_update;
11627 right->target_info = left_target_info;
11628 }
11629
11630 /* Force the re-insertion of the locations at ADDRESS. This is called
11631 once a new/deleted/modified duplicate location is found and we are evaluating
11632 conditions on the target's side. Such conditions need to be updated on
11633 the target. */
11634
11635 static void
11636 force_breakpoint_reinsertion (struct bp_location *bl)
11637 {
11638 struct bp_location **locp = NULL, **loc2p;
11639 struct bp_location *loc;
11640 CORE_ADDR address = 0;
11641 int pspace_num;
11642
11643 address = bl->address;
11644 pspace_num = bl->pspace->num;
11645
11646 /* This is only meaningful if the target is
11647 evaluating conditions and if the user has
11648 opted for condition evaluation on the target's
11649 side. */
11650 if (gdb_evaluates_breakpoint_condition_p ()
11651 || !target_supports_evaluation_of_breakpoint_conditions ())
11652 return;
11653
11654 /* Flag all breakpoint locations with this address and
11655 the same program space as the location
11656 as "its condition has changed". We need to
11657 update the conditions on the target's side. */
11658 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11659 {
11660 loc = *loc2p;
11661
11662 if (!is_breakpoint (loc->owner)
11663 || pspace_num != loc->pspace->num)
11664 continue;
11665
11666 /* Flag the location appropriately. We use a different state to
11667 let everyone know that we already updated the set of locations
11668 with addr bl->address and program space bl->pspace. This is so
11669 we don't have to keep calling these functions just to mark locations
11670 that have already been marked. */
11671 loc->condition_changed = condition_updated;
11672
11673 /* Free the agent expression bytecode as well. We will compute
11674 it later on. */
11675 loc->cond_bytecode.reset ();
11676 }
11677 }
11678
11679 /* Called whether new breakpoints are created, or existing breakpoints
11680 deleted, to update the global location list and recompute which
11681 locations are duplicate of which.
11682
11683 The INSERT_MODE flag determines whether locations may not, may, or
11684 shall be inserted now. See 'enum ugll_insert_mode' for more
11685 info. */
11686
11687 static void
11688 update_global_location_list (enum ugll_insert_mode insert_mode)
11689 {
11690 struct breakpoint *b;
11691 struct bp_location **locp, *loc;
11692 /* Last breakpoint location address that was marked for update. */
11693 CORE_ADDR last_addr = 0;
11694 /* Last breakpoint location program space that was marked for update. */
11695 int last_pspace_num = -1;
11696
11697 /* Used in the duplicates detection below. When iterating over all
11698 bp_locations, points to the first bp_location of a given address.
11699 Breakpoints and watchpoints of different types are never
11700 duplicates of each other. Keep one pointer for each type of
11701 breakpoint/watchpoint, so we only need to loop over all locations
11702 once. */
11703 struct bp_location *bp_loc_first; /* breakpoint */
11704 struct bp_location *wp_loc_first; /* hardware watchpoint */
11705 struct bp_location *awp_loc_first; /* access watchpoint */
11706 struct bp_location *rwp_loc_first; /* read watchpoint */
11707
11708 /* Saved former bp_locations array which we compare against the newly
11709 built bp_locations from the current state of ALL_BREAKPOINTS. */
11710 struct bp_location **old_locp;
11711 unsigned old_locations_count;
11712 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11713
11714 old_locations_count = bp_locations_count;
11715 bp_locations = NULL;
11716 bp_locations_count = 0;
11717
11718 ALL_BREAKPOINTS (b)
11719 for (loc = b->loc; loc; loc = loc->next)
11720 bp_locations_count++;
11721
11722 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11723 locp = bp_locations;
11724 ALL_BREAKPOINTS (b)
11725 for (loc = b->loc; loc; loc = loc->next)
11726 *locp++ = loc;
11727
11728 /* See if we need to "upgrade" a software breakpoint to a hardware
11729 breakpoint. Do this before deciding whether locations are
11730 duplicates. Also do this before sorting because sorting order
11731 depends on location type. */
11732 for (locp = bp_locations;
11733 locp < bp_locations + bp_locations_count;
11734 locp++)
11735 {
11736 loc = *locp;
11737 if (!loc->inserted && should_be_inserted (loc))
11738 handle_automatic_hardware_breakpoints (loc);
11739 }
11740
11741 std::sort (bp_locations, bp_locations + bp_locations_count,
11742 bp_location_is_less_than);
11743
11744 bp_locations_target_extensions_update ();
11745
11746 /* Identify bp_location instances that are no longer present in the
11747 new list, and therefore should be freed. Note that it's not
11748 necessary that those locations should be removed from inferior --
11749 if there's another location at the same address (previously
11750 marked as duplicate), we don't need to remove/insert the
11751 location.
11752
11753 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11754 and former bp_location array state respectively. */
11755
11756 locp = bp_locations;
11757 for (old_locp = old_locations.get ();
11758 old_locp < old_locations.get () + old_locations_count;
11759 old_locp++)
11760 {
11761 struct bp_location *old_loc = *old_locp;
11762 struct bp_location **loc2p;
11763
11764 /* Tells if 'old_loc' is found among the new locations. If
11765 not, we have to free it. */
11766 int found_object = 0;
11767 /* Tells if the location should remain inserted in the target. */
11768 int keep_in_target = 0;
11769 int removed = 0;
11770
11771 /* Skip LOCP entries which will definitely never be needed.
11772 Stop either at or being the one matching OLD_LOC. */
11773 while (locp < bp_locations + bp_locations_count
11774 && (*locp)->address < old_loc->address)
11775 locp++;
11776
11777 for (loc2p = locp;
11778 (loc2p < bp_locations + bp_locations_count
11779 && (*loc2p)->address == old_loc->address);
11780 loc2p++)
11781 {
11782 /* Check if this is a new/duplicated location or a duplicated
11783 location that had its condition modified. If so, we want to send
11784 its condition to the target if evaluation of conditions is taking
11785 place there. */
11786 if ((*loc2p)->condition_changed == condition_modified
11787 && (last_addr != old_loc->address
11788 || last_pspace_num != old_loc->pspace->num))
11789 {
11790 force_breakpoint_reinsertion (*loc2p);
11791 last_pspace_num = old_loc->pspace->num;
11792 }
11793
11794 if (*loc2p == old_loc)
11795 found_object = 1;
11796 }
11797
11798 /* We have already handled this address, update it so that we don't
11799 have to go through updates again. */
11800 last_addr = old_loc->address;
11801
11802 /* Target-side condition evaluation: Handle deleted locations. */
11803 if (!found_object)
11804 force_breakpoint_reinsertion (old_loc);
11805
11806 /* If this location is no longer present, and inserted, look if
11807 there's maybe a new location at the same address. If so,
11808 mark that one inserted, and don't remove this one. This is
11809 needed so that we don't have a time window where a breakpoint
11810 at certain location is not inserted. */
11811
11812 if (old_loc->inserted)
11813 {
11814 /* If the location is inserted now, we might have to remove
11815 it. */
11816
11817 if (found_object && should_be_inserted (old_loc))
11818 {
11819 /* The location is still present in the location list,
11820 and still should be inserted. Don't do anything. */
11821 keep_in_target = 1;
11822 }
11823 else
11824 {
11825 /* This location still exists, but it won't be kept in the
11826 target since it may have been disabled. We proceed to
11827 remove its target-side condition. */
11828
11829 /* The location is either no longer present, or got
11830 disabled. See if there's another location at the
11831 same address, in which case we don't need to remove
11832 this one from the target. */
11833
11834 /* OLD_LOC comes from existing struct breakpoint. */
11835 if (bl_address_is_meaningful (old_loc))
11836 {
11837 for (loc2p = locp;
11838 (loc2p < bp_locations + bp_locations_count
11839 && (*loc2p)->address == old_loc->address);
11840 loc2p++)
11841 {
11842 struct bp_location *loc2 = *loc2p;
11843
11844 if (loc2 == old_loc)
11845 continue;
11846
11847 if (breakpoint_locations_match (loc2, old_loc))
11848 {
11849 /* Read watchpoint locations are switched to
11850 access watchpoints, if the former are not
11851 supported, but the latter are. */
11852 if (is_hardware_watchpoint (old_loc->owner))
11853 {
11854 gdb_assert (is_hardware_watchpoint (loc2->owner));
11855 loc2->watchpoint_type = old_loc->watchpoint_type;
11856 }
11857
11858 /* loc2 is a duplicated location. We need to check
11859 if it should be inserted in case it will be
11860 unduplicated. */
11861 if (unduplicated_should_be_inserted (loc2))
11862 {
11863 swap_insertion (old_loc, loc2);
11864 keep_in_target = 1;
11865 break;
11866 }
11867 }
11868 }
11869 }
11870 }
11871
11872 if (!keep_in_target)
11873 {
11874 if (remove_breakpoint (old_loc))
11875 {
11876 /* This is just about all we can do. We could keep
11877 this location on the global list, and try to
11878 remove it next time, but there's no particular
11879 reason why we will succeed next time.
11880
11881 Note that at this point, old_loc->owner is still
11882 valid, as delete_breakpoint frees the breakpoint
11883 only after calling us. */
11884 printf_filtered (_("warning: Error removing "
11885 "breakpoint %d\n"),
11886 old_loc->owner->number);
11887 }
11888 removed = 1;
11889 }
11890 }
11891
11892 if (!found_object)
11893 {
11894 if (removed && target_is_non_stop_p ()
11895 && need_moribund_for_location_type (old_loc))
11896 {
11897 /* This location was removed from the target. In
11898 non-stop mode, a race condition is possible where
11899 we've removed a breakpoint, but stop events for that
11900 breakpoint are already queued and will arrive later.
11901 We apply an heuristic to be able to distinguish such
11902 SIGTRAPs from other random SIGTRAPs: we keep this
11903 breakpoint location for a bit, and will retire it
11904 after we see some number of events. The theory here
11905 is that reporting of events should, "on the average",
11906 be fair, so after a while we'll see events from all
11907 threads that have anything of interest, and no longer
11908 need to keep this breakpoint location around. We
11909 don't hold locations forever so to reduce chances of
11910 mistaking a non-breakpoint SIGTRAP for a breakpoint
11911 SIGTRAP.
11912
11913 The heuristic failing can be disastrous on
11914 decr_pc_after_break targets.
11915
11916 On decr_pc_after_break targets, like e.g., x86-linux,
11917 if we fail to recognize a late breakpoint SIGTRAP,
11918 because events_till_retirement has reached 0 too
11919 soon, we'll fail to do the PC adjustment, and report
11920 a random SIGTRAP to the user. When the user resumes
11921 the inferior, it will most likely immediately crash
11922 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11923 corrupted, because of being resumed e.g., in the
11924 middle of a multi-byte instruction, or skipped a
11925 one-byte instruction. This was actually seen happen
11926 on native x86-linux, and should be less rare on
11927 targets that do not support new thread events, like
11928 remote, due to the heuristic depending on
11929 thread_count.
11930
11931 Mistaking a random SIGTRAP for a breakpoint trap
11932 causes similar symptoms (PC adjustment applied when
11933 it shouldn't), but then again, playing with SIGTRAPs
11934 behind the debugger's back is asking for trouble.
11935
11936 Since hardware watchpoint traps are always
11937 distinguishable from other traps, so we don't need to
11938 apply keep hardware watchpoint moribund locations
11939 around. We simply always ignore hardware watchpoint
11940 traps we can no longer explain. */
11941
11942 process_stratum_target *proc_target = nullptr;
11943 for (inferior *inf : all_inferiors ())
11944 if (inf->pspace == old_loc->pspace)
11945 {
11946 proc_target = inf->process_target ();
11947 break;
11948 }
11949 if (proc_target != nullptr)
11950 old_loc->events_till_retirement
11951 = 3 * (thread_count (proc_target) + 1);
11952 else
11953 old_loc->events_till_retirement = 1;
11954 old_loc->owner = NULL;
11955
11956 moribund_locations.push_back (old_loc);
11957 }
11958 else
11959 {
11960 old_loc->owner = NULL;
11961 decref_bp_location (&old_loc);
11962 }
11963 }
11964 }
11965
11966 /* Rescan breakpoints at the same address and section, marking the
11967 first one as "first" and any others as "duplicates". This is so
11968 that the bpt instruction is only inserted once. If we have a
11969 permanent breakpoint at the same place as BPT, make that one the
11970 official one, and the rest as duplicates. Permanent breakpoints
11971 are sorted first for the same address.
11972
11973 Do the same for hardware watchpoints, but also considering the
11974 watchpoint's type (regular/access/read) and length. */
11975
11976 bp_loc_first = NULL;
11977 wp_loc_first = NULL;
11978 awp_loc_first = NULL;
11979 rwp_loc_first = NULL;
11980 ALL_BP_LOCATIONS (loc, locp)
11981 {
11982 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11983 non-NULL. */
11984 struct bp_location **loc_first_p;
11985 b = loc->owner;
11986
11987 if (!unduplicated_should_be_inserted (loc)
11988 || !bl_address_is_meaningful (loc)
11989 /* Don't detect duplicate for tracepoint locations because they are
11990 never duplicated. See the comments in field `duplicate' of
11991 `struct bp_location'. */
11992 || is_tracepoint (b))
11993 {
11994 /* Clear the condition modification flag. */
11995 loc->condition_changed = condition_unchanged;
11996 continue;
11997 }
11998
11999 if (b->type == bp_hardware_watchpoint)
12000 loc_first_p = &wp_loc_first;
12001 else if (b->type == bp_read_watchpoint)
12002 loc_first_p = &rwp_loc_first;
12003 else if (b->type == bp_access_watchpoint)
12004 loc_first_p = &awp_loc_first;
12005 else
12006 loc_first_p = &bp_loc_first;
12007
12008 if (*loc_first_p == NULL
12009 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12010 || !breakpoint_locations_match (loc, *loc_first_p))
12011 {
12012 *loc_first_p = loc;
12013 loc->duplicate = 0;
12014
12015 if (is_breakpoint (loc->owner) && loc->condition_changed)
12016 {
12017 loc->needs_update = 1;
12018 /* Clear the condition modification flag. */
12019 loc->condition_changed = condition_unchanged;
12020 }
12021 continue;
12022 }
12023
12024
12025 /* This and the above ensure the invariant that the first location
12026 is not duplicated, and is the inserted one.
12027 All following are marked as duplicated, and are not inserted. */
12028 if (loc->inserted)
12029 swap_insertion (loc, *loc_first_p);
12030 loc->duplicate = 1;
12031
12032 /* Clear the condition modification flag. */
12033 loc->condition_changed = condition_unchanged;
12034 }
12035
12036 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12037 {
12038 if (insert_mode != UGLL_DONT_INSERT)
12039 insert_breakpoint_locations ();
12040 else
12041 {
12042 /* Even though the caller told us to not insert new
12043 locations, we may still need to update conditions on the
12044 target's side of breakpoints that were already inserted
12045 if the target is evaluating breakpoint conditions. We
12046 only update conditions for locations that are marked
12047 "needs_update". */
12048 update_inserted_breakpoint_locations ();
12049 }
12050 }
12051
12052 if (insert_mode != UGLL_DONT_INSERT)
12053 download_tracepoint_locations ();
12054 }
12055
12056 void
12057 breakpoint_retire_moribund (void)
12058 {
12059 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12060 {
12061 struct bp_location *loc = moribund_locations[ix];
12062 if (--(loc->events_till_retirement) == 0)
12063 {
12064 decref_bp_location (&loc);
12065 unordered_remove (moribund_locations, ix);
12066 --ix;
12067 }
12068 }
12069 }
12070
12071 static void
12072 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12073 {
12074
12075 try
12076 {
12077 update_global_location_list (insert_mode);
12078 }
12079 catch (const gdb_exception_error &e)
12080 {
12081 }
12082 }
12083
12084 /* Clear BKP from a BPS. */
12085
12086 static void
12087 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12088 {
12089 bpstat bs;
12090
12091 for (bs = bps; bs; bs = bs->next)
12092 if (bs->breakpoint_at == bpt)
12093 {
12094 bs->breakpoint_at = NULL;
12095 bs->old_val = NULL;
12096 /* bs->commands will be freed later. */
12097 }
12098 }
12099
12100 /* Callback for iterate_over_threads. */
12101 static int
12102 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12103 {
12104 struct breakpoint *bpt = (struct breakpoint *) data;
12105
12106 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12107 return 0;
12108 }
12109
12110 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12111 callbacks. */
12112
12113 static void
12114 say_where (struct breakpoint *b)
12115 {
12116 struct value_print_options opts;
12117
12118 get_user_print_options (&opts);
12119
12120 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12121 single string. */
12122 if (b->loc == NULL)
12123 {
12124 /* For pending locations, the output differs slightly based
12125 on b->extra_string. If this is non-NULL, it contains either
12126 a condition or dprintf arguments. */
12127 if (b->extra_string == NULL)
12128 {
12129 printf_filtered (_(" (%s) pending."),
12130 event_location_to_string (b->location.get ()));
12131 }
12132 else if (b->type == bp_dprintf)
12133 {
12134 printf_filtered (_(" (%s,%s) pending."),
12135 event_location_to_string (b->location.get ()),
12136 b->extra_string);
12137 }
12138 else
12139 {
12140 printf_filtered (_(" (%s %s) pending."),
12141 event_location_to_string (b->location.get ()),
12142 b->extra_string);
12143 }
12144 }
12145 else
12146 {
12147 if (opts.addressprint || b->loc->symtab == NULL)
12148 printf_filtered (" at %ps",
12149 styled_string (address_style.style (),
12150 paddress (b->loc->gdbarch,
12151 b->loc->address)));
12152 if (b->loc->symtab != NULL)
12153 {
12154 /* If there is a single location, we can print the location
12155 more nicely. */
12156 if (b->loc->next == NULL)
12157 {
12158 const char *filename
12159 = symtab_to_filename_for_display (b->loc->symtab);
12160 printf_filtered (": file %ps, line %d.",
12161 styled_string (file_name_style.style (),
12162 filename),
12163 b->loc->line_number);
12164 }
12165 else
12166 /* This is not ideal, but each location may have a
12167 different file name, and this at least reflects the
12168 real situation somewhat. */
12169 printf_filtered (": %s.",
12170 event_location_to_string (b->location.get ()));
12171 }
12172
12173 if (b->loc->next)
12174 {
12175 struct bp_location *loc = b->loc;
12176 int n = 0;
12177 for (; loc; loc = loc->next)
12178 ++n;
12179 printf_filtered (" (%d locations)", n);
12180 }
12181 }
12182 }
12183
12184 bp_location::~bp_location ()
12185 {
12186 xfree (function_name);
12187 }
12188
12189 /* Destructor for the breakpoint base class. */
12190
12191 breakpoint::~breakpoint ()
12192 {
12193 xfree (this->cond_string);
12194 xfree (this->extra_string);
12195 }
12196
12197 static struct bp_location *
12198 base_breakpoint_allocate_location (struct breakpoint *self)
12199 {
12200 return new bp_location (self);
12201 }
12202
12203 static void
12204 base_breakpoint_re_set (struct breakpoint *b)
12205 {
12206 /* Nothing to re-set. */
12207 }
12208
12209 #define internal_error_pure_virtual_called() \
12210 gdb_assert_not_reached ("pure virtual function called")
12211
12212 static int
12213 base_breakpoint_insert_location (struct bp_location *bl)
12214 {
12215 internal_error_pure_virtual_called ();
12216 }
12217
12218 static int
12219 base_breakpoint_remove_location (struct bp_location *bl,
12220 enum remove_bp_reason reason)
12221 {
12222 internal_error_pure_virtual_called ();
12223 }
12224
12225 static int
12226 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12227 const address_space *aspace,
12228 CORE_ADDR bp_addr,
12229 const struct target_waitstatus *ws)
12230 {
12231 internal_error_pure_virtual_called ();
12232 }
12233
12234 static void
12235 base_breakpoint_check_status (bpstat bs)
12236 {
12237 /* Always stop. */
12238 }
12239
12240 /* A "works_in_software_mode" breakpoint_ops method that just internal
12241 errors. */
12242
12243 static int
12244 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12245 {
12246 internal_error_pure_virtual_called ();
12247 }
12248
12249 /* A "resources_needed" breakpoint_ops method that just internal
12250 errors. */
12251
12252 static int
12253 base_breakpoint_resources_needed (const struct bp_location *bl)
12254 {
12255 internal_error_pure_virtual_called ();
12256 }
12257
12258 static enum print_stop_action
12259 base_breakpoint_print_it (bpstat bs)
12260 {
12261 internal_error_pure_virtual_called ();
12262 }
12263
12264 static void
12265 base_breakpoint_print_one_detail (const struct breakpoint *self,
12266 struct ui_out *uiout)
12267 {
12268 /* nothing */
12269 }
12270
12271 static void
12272 base_breakpoint_print_mention (struct breakpoint *b)
12273 {
12274 internal_error_pure_virtual_called ();
12275 }
12276
12277 static void
12278 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12279 {
12280 internal_error_pure_virtual_called ();
12281 }
12282
12283 static void
12284 base_breakpoint_create_sals_from_location
12285 (const struct event_location *location,
12286 struct linespec_result *canonical,
12287 enum bptype type_wanted)
12288 {
12289 internal_error_pure_virtual_called ();
12290 }
12291
12292 static void
12293 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12294 struct linespec_result *c,
12295 gdb::unique_xmalloc_ptr<char> cond_string,
12296 gdb::unique_xmalloc_ptr<char> extra_string,
12297 enum bptype type_wanted,
12298 enum bpdisp disposition,
12299 int thread,
12300 int task, int ignore_count,
12301 const struct breakpoint_ops *o,
12302 int from_tty, int enabled,
12303 int internal, unsigned flags)
12304 {
12305 internal_error_pure_virtual_called ();
12306 }
12307
12308 static std::vector<symtab_and_line>
12309 base_breakpoint_decode_location (struct breakpoint *b,
12310 const struct event_location *location,
12311 struct program_space *search_pspace)
12312 {
12313 internal_error_pure_virtual_called ();
12314 }
12315
12316 /* The default 'explains_signal' method. */
12317
12318 static int
12319 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12320 {
12321 return 1;
12322 }
12323
12324 /* The default "after_condition_true" method. */
12325
12326 static void
12327 base_breakpoint_after_condition_true (struct bpstats *bs)
12328 {
12329 /* Nothing to do. */
12330 }
12331
12332 struct breakpoint_ops base_breakpoint_ops =
12333 {
12334 base_breakpoint_allocate_location,
12335 base_breakpoint_re_set,
12336 base_breakpoint_insert_location,
12337 base_breakpoint_remove_location,
12338 base_breakpoint_breakpoint_hit,
12339 base_breakpoint_check_status,
12340 base_breakpoint_resources_needed,
12341 base_breakpoint_works_in_software_mode,
12342 base_breakpoint_print_it,
12343 NULL,
12344 base_breakpoint_print_one_detail,
12345 base_breakpoint_print_mention,
12346 base_breakpoint_print_recreate,
12347 base_breakpoint_create_sals_from_location,
12348 base_breakpoint_create_breakpoints_sal,
12349 base_breakpoint_decode_location,
12350 base_breakpoint_explains_signal,
12351 base_breakpoint_after_condition_true,
12352 };
12353
12354 /* Default breakpoint_ops methods. */
12355
12356 static void
12357 bkpt_re_set (struct breakpoint *b)
12358 {
12359 /* FIXME: is this still reachable? */
12360 if (breakpoint_event_location_empty_p (b))
12361 {
12362 /* Anything without a location can't be re-set. */
12363 delete_breakpoint (b);
12364 return;
12365 }
12366
12367 breakpoint_re_set_default (b);
12368 }
12369
12370 static int
12371 bkpt_insert_location (struct bp_location *bl)
12372 {
12373 CORE_ADDR addr = bl->target_info.reqstd_address;
12374
12375 bl->target_info.kind = breakpoint_kind (bl, &addr);
12376 bl->target_info.placed_address = addr;
12377
12378 if (bl->loc_type == bp_loc_hardware_breakpoint)
12379 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12380 else
12381 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12382 }
12383
12384 static int
12385 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12386 {
12387 if (bl->loc_type == bp_loc_hardware_breakpoint)
12388 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12389 else
12390 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12391 }
12392
12393 static int
12394 bkpt_breakpoint_hit (const struct bp_location *bl,
12395 const address_space *aspace, CORE_ADDR bp_addr,
12396 const struct target_waitstatus *ws)
12397 {
12398 if (ws->kind != TARGET_WAITKIND_STOPPED
12399 || ws->value.sig != GDB_SIGNAL_TRAP)
12400 return 0;
12401
12402 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12403 aspace, bp_addr))
12404 return 0;
12405
12406 if (overlay_debugging /* unmapped overlay section */
12407 && section_is_overlay (bl->section)
12408 && !section_is_mapped (bl->section))
12409 return 0;
12410
12411 return 1;
12412 }
12413
12414 static int
12415 dprintf_breakpoint_hit (const struct bp_location *bl,
12416 const address_space *aspace, CORE_ADDR bp_addr,
12417 const struct target_waitstatus *ws)
12418 {
12419 if (dprintf_style == dprintf_style_agent
12420 && target_can_run_breakpoint_commands ())
12421 {
12422 /* An agent-style dprintf never causes a stop. If we see a trap
12423 for this address it must be for a breakpoint that happens to
12424 be set at the same address. */
12425 return 0;
12426 }
12427
12428 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12429 }
12430
12431 static int
12432 bkpt_resources_needed (const struct bp_location *bl)
12433 {
12434 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12435
12436 return 1;
12437 }
12438
12439 static enum print_stop_action
12440 bkpt_print_it (bpstat bs)
12441 {
12442 struct breakpoint *b;
12443 const struct bp_location *bl;
12444 int bp_temp;
12445 struct ui_out *uiout = current_uiout;
12446
12447 gdb_assert (bs->bp_location_at != NULL);
12448
12449 bl = bs->bp_location_at;
12450 b = bs->breakpoint_at;
12451
12452 bp_temp = b->disposition == disp_del;
12453 if (bl->address != bl->requested_address)
12454 breakpoint_adjustment_warning (bl->requested_address,
12455 bl->address,
12456 b->number, 1);
12457 annotate_breakpoint (b->number);
12458 maybe_print_thread_hit_breakpoint (uiout);
12459
12460 if (uiout->is_mi_like_p ())
12461 {
12462 uiout->field_string ("reason",
12463 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12464 uiout->field_string ("disp", bpdisp_text (b->disposition));
12465 }
12466 if (bp_temp)
12467 uiout->message ("Temporary breakpoint %pF, ",
12468 signed_field ("bkptno", b->number));
12469 else
12470 uiout->message ("Breakpoint %pF, ",
12471 signed_field ("bkptno", b->number));
12472
12473 return PRINT_SRC_AND_LOC;
12474 }
12475
12476 static void
12477 bkpt_print_mention (struct breakpoint *b)
12478 {
12479 if (current_uiout->is_mi_like_p ())
12480 return;
12481
12482 switch (b->type)
12483 {
12484 case bp_breakpoint:
12485 case bp_gnu_ifunc_resolver:
12486 if (b->disposition == disp_del)
12487 printf_filtered (_("Temporary breakpoint"));
12488 else
12489 printf_filtered (_("Breakpoint"));
12490 printf_filtered (_(" %d"), b->number);
12491 if (b->type == bp_gnu_ifunc_resolver)
12492 printf_filtered (_(" at gnu-indirect-function resolver"));
12493 break;
12494 case bp_hardware_breakpoint:
12495 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12496 break;
12497 case bp_dprintf:
12498 printf_filtered (_("Dprintf %d"), b->number);
12499 break;
12500 }
12501
12502 say_where (b);
12503 }
12504
12505 static void
12506 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12507 {
12508 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12509 fprintf_unfiltered (fp, "tbreak");
12510 else if (tp->type == bp_breakpoint)
12511 fprintf_unfiltered (fp, "break");
12512 else if (tp->type == bp_hardware_breakpoint
12513 && tp->disposition == disp_del)
12514 fprintf_unfiltered (fp, "thbreak");
12515 else if (tp->type == bp_hardware_breakpoint)
12516 fprintf_unfiltered (fp, "hbreak");
12517 else
12518 internal_error (__FILE__, __LINE__,
12519 _("unhandled breakpoint type %d"), (int) tp->type);
12520
12521 fprintf_unfiltered (fp, " %s",
12522 event_location_to_string (tp->location.get ()));
12523
12524 /* Print out extra_string if this breakpoint is pending. It might
12525 contain, for example, conditions that were set by the user. */
12526 if (tp->loc == NULL && tp->extra_string != NULL)
12527 fprintf_unfiltered (fp, " %s", tp->extra_string);
12528
12529 print_recreate_thread (tp, fp);
12530 }
12531
12532 static void
12533 bkpt_create_sals_from_location (const struct event_location *location,
12534 struct linespec_result *canonical,
12535 enum bptype type_wanted)
12536 {
12537 create_sals_from_location_default (location, canonical, type_wanted);
12538 }
12539
12540 static void
12541 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12542 struct linespec_result *canonical,
12543 gdb::unique_xmalloc_ptr<char> cond_string,
12544 gdb::unique_xmalloc_ptr<char> extra_string,
12545 enum bptype type_wanted,
12546 enum bpdisp disposition,
12547 int thread,
12548 int task, int ignore_count,
12549 const struct breakpoint_ops *ops,
12550 int from_tty, int enabled,
12551 int internal, unsigned flags)
12552 {
12553 create_breakpoints_sal_default (gdbarch, canonical,
12554 std::move (cond_string),
12555 std::move (extra_string),
12556 type_wanted,
12557 disposition, thread, task,
12558 ignore_count, ops, from_tty,
12559 enabled, internal, flags);
12560 }
12561
12562 static std::vector<symtab_and_line>
12563 bkpt_decode_location (struct breakpoint *b,
12564 const struct event_location *location,
12565 struct program_space *search_pspace)
12566 {
12567 return decode_location_default (b, location, search_pspace);
12568 }
12569
12570 /* Virtual table for internal breakpoints. */
12571
12572 static void
12573 internal_bkpt_re_set (struct breakpoint *b)
12574 {
12575 switch (b->type)
12576 {
12577 /* Delete overlay event and longjmp master breakpoints; they
12578 will be reset later by breakpoint_re_set. */
12579 case bp_overlay_event:
12580 case bp_longjmp_master:
12581 case bp_std_terminate_master:
12582 case bp_exception_master:
12583 delete_breakpoint (b);
12584 break;
12585
12586 /* This breakpoint is special, it's set up when the inferior
12587 starts and we really don't want to touch it. */
12588 case bp_shlib_event:
12589
12590 /* Like bp_shlib_event, this breakpoint type is special. Once
12591 it is set up, we do not want to touch it. */
12592 case bp_thread_event:
12593 break;
12594 }
12595 }
12596
12597 static void
12598 internal_bkpt_check_status (bpstat bs)
12599 {
12600 if (bs->breakpoint_at->type == bp_shlib_event)
12601 {
12602 /* If requested, stop when the dynamic linker notifies GDB of
12603 events. This allows the user to get control and place
12604 breakpoints in initializer routines for dynamically loaded
12605 objects (among other things). */
12606 bs->stop = stop_on_solib_events;
12607 bs->print = stop_on_solib_events;
12608 }
12609 else
12610 bs->stop = 0;
12611 }
12612
12613 static enum print_stop_action
12614 internal_bkpt_print_it (bpstat bs)
12615 {
12616 struct breakpoint *b;
12617
12618 b = bs->breakpoint_at;
12619
12620 switch (b->type)
12621 {
12622 case bp_shlib_event:
12623 /* Did we stop because the user set the stop_on_solib_events
12624 variable? (If so, we report this as a generic, "Stopped due
12625 to shlib event" message.) */
12626 print_solib_event (0);
12627 break;
12628
12629 case bp_thread_event:
12630 /* Not sure how we will get here.
12631 GDB should not stop for these breakpoints. */
12632 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12633 break;
12634
12635 case bp_overlay_event:
12636 /* By analogy with the thread event, GDB should not stop for these. */
12637 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12638 break;
12639
12640 case bp_longjmp_master:
12641 /* These should never be enabled. */
12642 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12643 break;
12644
12645 case bp_std_terminate_master:
12646 /* These should never be enabled. */
12647 printf_filtered (_("std::terminate Master Breakpoint: "
12648 "gdb should not stop!\n"));
12649 break;
12650
12651 case bp_exception_master:
12652 /* These should never be enabled. */
12653 printf_filtered (_("Exception Master Breakpoint: "
12654 "gdb should not stop!\n"));
12655 break;
12656 }
12657
12658 return PRINT_NOTHING;
12659 }
12660
12661 static void
12662 internal_bkpt_print_mention (struct breakpoint *b)
12663 {
12664 /* Nothing to mention. These breakpoints are internal. */
12665 }
12666
12667 /* Virtual table for momentary breakpoints */
12668
12669 static void
12670 momentary_bkpt_re_set (struct breakpoint *b)
12671 {
12672 /* Keep temporary breakpoints, which can be encountered when we step
12673 over a dlopen call and solib_add is resetting the breakpoints.
12674 Otherwise these should have been blown away via the cleanup chain
12675 or by breakpoint_init_inferior when we rerun the executable. */
12676 }
12677
12678 static void
12679 momentary_bkpt_check_status (bpstat bs)
12680 {
12681 /* Nothing. The point of these breakpoints is causing a stop. */
12682 }
12683
12684 static enum print_stop_action
12685 momentary_bkpt_print_it (bpstat bs)
12686 {
12687 return PRINT_UNKNOWN;
12688 }
12689
12690 static void
12691 momentary_bkpt_print_mention (struct breakpoint *b)
12692 {
12693 /* Nothing to mention. These breakpoints are internal. */
12694 }
12695
12696 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12697
12698 It gets cleared already on the removal of the first one of such placed
12699 breakpoints. This is OK as they get all removed altogether. */
12700
12701 longjmp_breakpoint::~longjmp_breakpoint ()
12702 {
12703 thread_info *tp = find_thread_global_id (this->thread);
12704
12705 if (tp != NULL)
12706 tp->initiating_frame = null_frame_id;
12707 }
12708
12709 /* Specific methods for probe breakpoints. */
12710
12711 static int
12712 bkpt_probe_insert_location (struct bp_location *bl)
12713 {
12714 int v = bkpt_insert_location (bl);
12715
12716 if (v == 0)
12717 {
12718 /* The insertion was successful, now let's set the probe's semaphore
12719 if needed. */
12720 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12721 }
12722
12723 return v;
12724 }
12725
12726 static int
12727 bkpt_probe_remove_location (struct bp_location *bl,
12728 enum remove_bp_reason reason)
12729 {
12730 /* Let's clear the semaphore before removing the location. */
12731 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12732
12733 return bkpt_remove_location (bl, reason);
12734 }
12735
12736 static void
12737 bkpt_probe_create_sals_from_location (const struct event_location *location,
12738 struct linespec_result *canonical,
12739 enum bptype type_wanted)
12740 {
12741 struct linespec_sals lsal;
12742
12743 lsal.sals = parse_probes (location, NULL, canonical);
12744 lsal.canonical
12745 = xstrdup (event_location_to_string (canonical->location.get ()));
12746 canonical->lsals.push_back (std::move (lsal));
12747 }
12748
12749 static std::vector<symtab_and_line>
12750 bkpt_probe_decode_location (struct breakpoint *b,
12751 const struct event_location *location,
12752 struct program_space *search_pspace)
12753 {
12754 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12755 if (sals.empty ())
12756 error (_("probe not found"));
12757 return sals;
12758 }
12759
12760 /* The breakpoint_ops structure to be used in tracepoints. */
12761
12762 static void
12763 tracepoint_re_set (struct breakpoint *b)
12764 {
12765 breakpoint_re_set_default (b);
12766 }
12767
12768 static int
12769 tracepoint_breakpoint_hit (const struct bp_location *bl,
12770 const address_space *aspace, CORE_ADDR bp_addr,
12771 const struct target_waitstatus *ws)
12772 {
12773 /* By definition, the inferior does not report stops at
12774 tracepoints. */
12775 return 0;
12776 }
12777
12778 static void
12779 tracepoint_print_one_detail (const struct breakpoint *self,
12780 struct ui_out *uiout)
12781 {
12782 struct tracepoint *tp = (struct tracepoint *) self;
12783 if (!tp->static_trace_marker_id.empty ())
12784 {
12785 gdb_assert (self->type == bp_static_tracepoint);
12786
12787 uiout->message ("\tmarker id is %pF\n",
12788 string_field ("static-tracepoint-marker-string-id",
12789 tp->static_trace_marker_id.c_str ()));
12790 }
12791 }
12792
12793 static void
12794 tracepoint_print_mention (struct breakpoint *b)
12795 {
12796 if (current_uiout->is_mi_like_p ())
12797 return;
12798
12799 switch (b->type)
12800 {
12801 case bp_tracepoint:
12802 printf_filtered (_("Tracepoint"));
12803 printf_filtered (_(" %d"), b->number);
12804 break;
12805 case bp_fast_tracepoint:
12806 printf_filtered (_("Fast tracepoint"));
12807 printf_filtered (_(" %d"), b->number);
12808 break;
12809 case bp_static_tracepoint:
12810 printf_filtered (_("Static tracepoint"));
12811 printf_filtered (_(" %d"), b->number);
12812 break;
12813 default:
12814 internal_error (__FILE__, __LINE__,
12815 _("unhandled tracepoint type %d"), (int) b->type);
12816 }
12817
12818 say_where (b);
12819 }
12820
12821 static void
12822 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12823 {
12824 struct tracepoint *tp = (struct tracepoint *) self;
12825
12826 if (self->type == bp_fast_tracepoint)
12827 fprintf_unfiltered (fp, "ftrace");
12828 else if (self->type == bp_static_tracepoint)
12829 fprintf_unfiltered (fp, "strace");
12830 else if (self->type == bp_tracepoint)
12831 fprintf_unfiltered (fp, "trace");
12832 else
12833 internal_error (__FILE__, __LINE__,
12834 _("unhandled tracepoint type %d"), (int) self->type);
12835
12836 fprintf_unfiltered (fp, " %s",
12837 event_location_to_string (self->location.get ()));
12838 print_recreate_thread (self, fp);
12839
12840 if (tp->pass_count)
12841 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12842 }
12843
12844 static void
12845 tracepoint_create_sals_from_location (const struct event_location *location,
12846 struct linespec_result *canonical,
12847 enum bptype type_wanted)
12848 {
12849 create_sals_from_location_default (location, canonical, type_wanted);
12850 }
12851
12852 static void
12853 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12854 struct linespec_result *canonical,
12855 gdb::unique_xmalloc_ptr<char> cond_string,
12856 gdb::unique_xmalloc_ptr<char> extra_string,
12857 enum bptype type_wanted,
12858 enum bpdisp disposition,
12859 int thread,
12860 int task, int ignore_count,
12861 const struct breakpoint_ops *ops,
12862 int from_tty, int enabled,
12863 int internal, unsigned flags)
12864 {
12865 create_breakpoints_sal_default (gdbarch, canonical,
12866 std::move (cond_string),
12867 std::move (extra_string),
12868 type_wanted,
12869 disposition, thread, task,
12870 ignore_count, ops, from_tty,
12871 enabled, internal, flags);
12872 }
12873
12874 static std::vector<symtab_and_line>
12875 tracepoint_decode_location (struct breakpoint *b,
12876 const struct event_location *location,
12877 struct program_space *search_pspace)
12878 {
12879 return decode_location_default (b, location, search_pspace);
12880 }
12881
12882 struct breakpoint_ops tracepoint_breakpoint_ops;
12883
12884 /* Virtual table for tracepoints on static probes. */
12885
12886 static void
12887 tracepoint_probe_create_sals_from_location
12888 (const struct event_location *location,
12889 struct linespec_result *canonical,
12890 enum bptype type_wanted)
12891 {
12892 /* We use the same method for breakpoint on probes. */
12893 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12894 }
12895
12896 static std::vector<symtab_and_line>
12897 tracepoint_probe_decode_location (struct breakpoint *b,
12898 const struct event_location *location,
12899 struct program_space *search_pspace)
12900 {
12901 /* We use the same method for breakpoint on probes. */
12902 return bkpt_probe_decode_location (b, location, search_pspace);
12903 }
12904
12905 /* Dprintf breakpoint_ops methods. */
12906
12907 static void
12908 dprintf_re_set (struct breakpoint *b)
12909 {
12910 breakpoint_re_set_default (b);
12911
12912 /* extra_string should never be non-NULL for dprintf. */
12913 gdb_assert (b->extra_string != NULL);
12914
12915 /* 1 - connect to target 1, that can run breakpoint commands.
12916 2 - create a dprintf, which resolves fine.
12917 3 - disconnect from target 1
12918 4 - connect to target 2, that can NOT run breakpoint commands.
12919
12920 After steps #3/#4, you'll want the dprintf command list to
12921 be updated, because target 1 and 2 may well return different
12922 answers for target_can_run_breakpoint_commands().
12923 Given absence of finer grained resetting, we get to do
12924 it all the time. */
12925 if (b->extra_string != NULL)
12926 update_dprintf_command_list (b);
12927 }
12928
12929 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12930
12931 static void
12932 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12933 {
12934 fprintf_unfiltered (fp, "dprintf %s,%s",
12935 event_location_to_string (tp->location.get ()),
12936 tp->extra_string);
12937 print_recreate_thread (tp, fp);
12938 }
12939
12940 /* Implement the "after_condition_true" breakpoint_ops method for
12941 dprintf.
12942
12943 dprintf's are implemented with regular commands in their command
12944 list, but we run the commands here instead of before presenting the
12945 stop to the user, as dprintf's don't actually cause a stop. This
12946 also makes it so that the commands of multiple dprintfs at the same
12947 address are all handled. */
12948
12949 static void
12950 dprintf_after_condition_true (struct bpstats *bs)
12951 {
12952 struct bpstats tmp_bs;
12953 struct bpstats *tmp_bs_p = &tmp_bs;
12954
12955 /* dprintf's never cause a stop. This wasn't set in the
12956 check_status hook instead because that would make the dprintf's
12957 condition not be evaluated. */
12958 bs->stop = 0;
12959
12960 /* Run the command list here. Take ownership of it instead of
12961 copying. We never want these commands to run later in
12962 bpstat_do_actions, if a breakpoint that causes a stop happens to
12963 be set at same address as this dprintf, or even if running the
12964 commands here throws. */
12965 tmp_bs.commands = bs->commands;
12966 bs->commands = NULL;
12967
12968 bpstat_do_actions_1 (&tmp_bs_p);
12969
12970 /* 'tmp_bs.commands' will usually be NULL by now, but
12971 bpstat_do_actions_1 may return early without processing the whole
12972 list. */
12973 }
12974
12975 /* The breakpoint_ops structure to be used on static tracepoints with
12976 markers (`-m'). */
12977
12978 static void
12979 strace_marker_create_sals_from_location (const struct event_location *location,
12980 struct linespec_result *canonical,
12981 enum bptype type_wanted)
12982 {
12983 struct linespec_sals lsal;
12984 const char *arg_start, *arg;
12985
12986 arg = arg_start = get_linespec_location (location)->spec_string;
12987 lsal.sals = decode_static_tracepoint_spec (&arg);
12988
12989 std::string str (arg_start, arg - arg_start);
12990 const char *ptr = str.c_str ();
12991 canonical->location
12992 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12993
12994 lsal.canonical
12995 = xstrdup (event_location_to_string (canonical->location.get ()));
12996 canonical->lsals.push_back (std::move (lsal));
12997 }
12998
12999 static void
13000 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13001 struct linespec_result *canonical,
13002 gdb::unique_xmalloc_ptr<char> cond_string,
13003 gdb::unique_xmalloc_ptr<char> extra_string,
13004 enum bptype type_wanted,
13005 enum bpdisp disposition,
13006 int thread,
13007 int task, int ignore_count,
13008 const struct breakpoint_ops *ops,
13009 int from_tty, int enabled,
13010 int internal, unsigned flags)
13011 {
13012 const linespec_sals &lsal = canonical->lsals[0];
13013
13014 /* If the user is creating a static tracepoint by marker id
13015 (strace -m MARKER_ID), then store the sals index, so that
13016 breakpoint_re_set can try to match up which of the newly
13017 found markers corresponds to this one, and, don't try to
13018 expand multiple locations for each sal, given than SALS
13019 already should contain all sals for MARKER_ID. */
13020
13021 for (size_t i = 0; i < lsal.sals.size (); i++)
13022 {
13023 event_location_up location
13024 = copy_event_location (canonical->location.get ());
13025
13026 std::unique_ptr<tracepoint> tp (new tracepoint ());
13027 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13028 std::move (location), NULL,
13029 std::move (cond_string),
13030 std::move (extra_string),
13031 type_wanted, disposition,
13032 thread, task, ignore_count, ops,
13033 from_tty, enabled, internal, flags,
13034 canonical->special_display);
13035 /* Given that its possible to have multiple markers with
13036 the same string id, if the user is creating a static
13037 tracepoint by marker id ("strace -m MARKER_ID"), then
13038 store the sals index, so that breakpoint_re_set can
13039 try to match up which of the newly found markers
13040 corresponds to this one */
13041 tp->static_trace_marker_id_idx = i;
13042
13043 install_breakpoint (internal, std::move (tp), 0);
13044 }
13045 }
13046
13047 static std::vector<symtab_and_line>
13048 strace_marker_decode_location (struct breakpoint *b,
13049 const struct event_location *location,
13050 struct program_space *search_pspace)
13051 {
13052 struct tracepoint *tp = (struct tracepoint *) b;
13053 const char *s = get_linespec_location (location)->spec_string;
13054
13055 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13056 if (sals.size () > tp->static_trace_marker_id_idx)
13057 {
13058 sals[0] = sals[tp->static_trace_marker_id_idx];
13059 sals.resize (1);
13060 return sals;
13061 }
13062 else
13063 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13064 }
13065
13066 static struct breakpoint_ops strace_marker_breakpoint_ops;
13067
13068 static int
13069 strace_marker_p (struct breakpoint *b)
13070 {
13071 return b->ops == &strace_marker_breakpoint_ops;
13072 }
13073
13074 /* Delete a breakpoint and clean up all traces of it in the data
13075 structures. */
13076
13077 void
13078 delete_breakpoint (struct breakpoint *bpt)
13079 {
13080 struct breakpoint *b;
13081
13082 gdb_assert (bpt != NULL);
13083
13084 /* Has this bp already been deleted? This can happen because
13085 multiple lists can hold pointers to bp's. bpstat lists are
13086 especial culprits.
13087
13088 One example of this happening is a watchpoint's scope bp. When
13089 the scope bp triggers, we notice that the watchpoint is out of
13090 scope, and delete it. We also delete its scope bp. But the
13091 scope bp is marked "auto-deleting", and is already on a bpstat.
13092 That bpstat is then checked for auto-deleting bp's, which are
13093 deleted.
13094
13095 A real solution to this problem might involve reference counts in
13096 bp's, and/or giving them pointers back to their referencing
13097 bpstat's, and teaching delete_breakpoint to only free a bp's
13098 storage when no more references were extent. A cheaper bandaid
13099 was chosen. */
13100 if (bpt->type == bp_none)
13101 return;
13102
13103 /* At least avoid this stale reference until the reference counting
13104 of breakpoints gets resolved. */
13105 if (bpt->related_breakpoint != bpt)
13106 {
13107 struct breakpoint *related;
13108 struct watchpoint *w;
13109
13110 if (bpt->type == bp_watchpoint_scope)
13111 w = (struct watchpoint *) bpt->related_breakpoint;
13112 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13113 w = (struct watchpoint *) bpt;
13114 else
13115 w = NULL;
13116 if (w != NULL)
13117 watchpoint_del_at_next_stop (w);
13118
13119 /* Unlink bpt from the bpt->related_breakpoint ring. */
13120 for (related = bpt; related->related_breakpoint != bpt;
13121 related = related->related_breakpoint);
13122 related->related_breakpoint = bpt->related_breakpoint;
13123 bpt->related_breakpoint = bpt;
13124 }
13125
13126 /* watch_command_1 creates a watchpoint but only sets its number if
13127 update_watchpoint succeeds in creating its bp_locations. If there's
13128 a problem in that process, we'll be asked to delete the half-created
13129 watchpoint. In that case, don't announce the deletion. */
13130 if (bpt->number)
13131 gdb::observers::breakpoint_deleted.notify (bpt);
13132
13133 if (breakpoint_chain == bpt)
13134 breakpoint_chain = bpt->next;
13135
13136 ALL_BREAKPOINTS (b)
13137 if (b->next == bpt)
13138 {
13139 b->next = bpt->next;
13140 break;
13141 }
13142
13143 /* Be sure no bpstat's are pointing at the breakpoint after it's
13144 been freed. */
13145 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13146 in all threads for now. Note that we cannot just remove bpstats
13147 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13148 commands are associated with the bpstat; if we remove it here,
13149 then the later call to bpstat_do_actions (&stop_bpstat); in
13150 event-top.c won't do anything, and temporary breakpoints with
13151 commands won't work. */
13152
13153 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13154
13155 /* Now that breakpoint is removed from breakpoint list, update the
13156 global location list. This will remove locations that used to
13157 belong to this breakpoint. Do this before freeing the breakpoint
13158 itself, since remove_breakpoint looks at location's owner. It
13159 might be better design to have location completely
13160 self-contained, but it's not the case now. */
13161 update_global_location_list (UGLL_DONT_INSERT);
13162
13163 /* On the chance that someone will soon try again to delete this
13164 same bp, we mark it as deleted before freeing its storage. */
13165 bpt->type = bp_none;
13166 delete bpt;
13167 }
13168
13169 /* Iterator function to call a user-provided callback function once
13170 for each of B and its related breakpoints. */
13171
13172 static void
13173 iterate_over_related_breakpoints (struct breakpoint *b,
13174 gdb::function_view<void (breakpoint *)> function)
13175 {
13176 struct breakpoint *related;
13177
13178 related = b;
13179 do
13180 {
13181 struct breakpoint *next;
13182
13183 /* FUNCTION may delete RELATED. */
13184 next = related->related_breakpoint;
13185
13186 if (next == related)
13187 {
13188 /* RELATED is the last ring entry. */
13189 function (related);
13190
13191 /* FUNCTION may have deleted it, so we'd never reach back to
13192 B. There's nothing left to do anyway, so just break
13193 out. */
13194 break;
13195 }
13196 else
13197 function (related);
13198
13199 related = next;
13200 }
13201 while (related != b);
13202 }
13203
13204 static void
13205 delete_command (const char *arg, int from_tty)
13206 {
13207 struct breakpoint *b, *b_tmp;
13208
13209 dont_repeat ();
13210
13211 if (arg == 0)
13212 {
13213 int breaks_to_delete = 0;
13214
13215 /* Delete all breakpoints if no argument. Do not delete
13216 internal breakpoints, these have to be deleted with an
13217 explicit breakpoint number argument. */
13218 ALL_BREAKPOINTS (b)
13219 if (user_breakpoint_p (b))
13220 {
13221 breaks_to_delete = 1;
13222 break;
13223 }
13224
13225 /* Ask user only if there are some breakpoints to delete. */
13226 if (!from_tty
13227 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13228 {
13229 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13230 if (user_breakpoint_p (b))
13231 delete_breakpoint (b);
13232 }
13233 }
13234 else
13235 map_breakpoint_numbers
13236 (arg, [&] (breakpoint *br)
13237 {
13238 iterate_over_related_breakpoints (br, delete_breakpoint);
13239 });
13240 }
13241
13242 /* Return true if all locations of B bound to PSPACE are pending. If
13243 PSPACE is NULL, all locations of all program spaces are
13244 considered. */
13245
13246 static int
13247 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13248 {
13249 struct bp_location *loc;
13250
13251 for (loc = b->loc; loc != NULL; loc = loc->next)
13252 if ((pspace == NULL
13253 || loc->pspace == pspace)
13254 && !loc->shlib_disabled
13255 && !loc->pspace->executing_startup)
13256 return 0;
13257 return 1;
13258 }
13259
13260 /* Subroutine of update_breakpoint_locations to simplify it.
13261 Return non-zero if multiple fns in list LOC have the same name.
13262 Null names are ignored. */
13263
13264 static int
13265 ambiguous_names_p (struct bp_location *loc)
13266 {
13267 struct bp_location *l;
13268 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13269 xcalloc, xfree);
13270
13271 for (l = loc; l != NULL; l = l->next)
13272 {
13273 const char **slot;
13274 const char *name = l->function_name;
13275
13276 /* Allow for some names to be NULL, ignore them. */
13277 if (name == NULL)
13278 continue;
13279
13280 slot = (const char **) htab_find_slot (htab, (const void *) name,
13281 INSERT);
13282 /* NOTE: We can assume slot != NULL here because xcalloc never
13283 returns NULL. */
13284 if (*slot != NULL)
13285 {
13286 htab_delete (htab);
13287 return 1;
13288 }
13289 *slot = name;
13290 }
13291
13292 htab_delete (htab);
13293 return 0;
13294 }
13295
13296 /* When symbols change, it probably means the sources changed as well,
13297 and it might mean the static tracepoint markers are no longer at
13298 the same address or line numbers they used to be at last we
13299 checked. Losing your static tracepoints whenever you rebuild is
13300 undesirable. This function tries to resync/rematch gdb static
13301 tracepoints with the markers on the target, for static tracepoints
13302 that have not been set by marker id. Static tracepoint that have
13303 been set by marker id are reset by marker id in breakpoint_re_set.
13304 The heuristic is:
13305
13306 1) For a tracepoint set at a specific address, look for a marker at
13307 the old PC. If one is found there, assume to be the same marker.
13308 If the name / string id of the marker found is different from the
13309 previous known name, assume that means the user renamed the marker
13310 in the sources, and output a warning.
13311
13312 2) For a tracepoint set at a given line number, look for a marker
13313 at the new address of the old line number. If one is found there,
13314 assume to be the same marker. If the name / string id of the
13315 marker found is different from the previous known name, assume that
13316 means the user renamed the marker in the sources, and output a
13317 warning.
13318
13319 3) If a marker is no longer found at the same address or line, it
13320 may mean the marker no longer exists. But it may also just mean
13321 the code changed a bit. Maybe the user added a few lines of code
13322 that made the marker move up or down (in line number terms). Ask
13323 the target for info about the marker with the string id as we knew
13324 it. If found, update line number and address in the matching
13325 static tracepoint. This will get confused if there's more than one
13326 marker with the same ID (possible in UST, although unadvised
13327 precisely because it confuses tools). */
13328
13329 static struct symtab_and_line
13330 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13331 {
13332 struct tracepoint *tp = (struct tracepoint *) b;
13333 struct static_tracepoint_marker marker;
13334 CORE_ADDR pc;
13335
13336 pc = sal.pc;
13337 if (sal.line)
13338 find_line_pc (sal.symtab, sal.line, &pc);
13339
13340 if (target_static_tracepoint_marker_at (pc, &marker))
13341 {
13342 if (tp->static_trace_marker_id != marker.str_id)
13343 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13344 b->number, tp->static_trace_marker_id.c_str (),
13345 marker.str_id.c_str ());
13346
13347 tp->static_trace_marker_id = std::move (marker.str_id);
13348
13349 return sal;
13350 }
13351
13352 /* Old marker wasn't found on target at lineno. Try looking it up
13353 by string ID. */
13354 if (!sal.explicit_pc
13355 && sal.line != 0
13356 && sal.symtab != NULL
13357 && !tp->static_trace_marker_id.empty ())
13358 {
13359 std::vector<static_tracepoint_marker> markers
13360 = target_static_tracepoint_markers_by_strid
13361 (tp->static_trace_marker_id.c_str ());
13362
13363 if (!markers.empty ())
13364 {
13365 struct symbol *sym;
13366 struct static_tracepoint_marker *tpmarker;
13367 struct ui_out *uiout = current_uiout;
13368 struct explicit_location explicit_loc;
13369
13370 tpmarker = &markers[0];
13371
13372 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13373
13374 warning (_("marker for static tracepoint %d (%s) not "
13375 "found at previous line number"),
13376 b->number, tp->static_trace_marker_id.c_str ());
13377
13378 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13379 sym = find_pc_sect_function (tpmarker->address, NULL);
13380 uiout->text ("Now in ");
13381 if (sym)
13382 {
13383 uiout->field_string ("func", sym->print_name (),
13384 function_name_style.style ());
13385 uiout->text (" at ");
13386 }
13387 uiout->field_string ("file",
13388 symtab_to_filename_for_display (sal2.symtab),
13389 file_name_style.style ());
13390 uiout->text (":");
13391
13392 if (uiout->is_mi_like_p ())
13393 {
13394 const char *fullname = symtab_to_fullname (sal2.symtab);
13395
13396 uiout->field_string ("fullname", fullname);
13397 }
13398
13399 uiout->field_signed ("line", sal2.line);
13400 uiout->text ("\n");
13401
13402 b->loc->line_number = sal2.line;
13403 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13404
13405 b->location.reset (NULL);
13406 initialize_explicit_location (&explicit_loc);
13407 explicit_loc.source_filename
13408 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13409 explicit_loc.line_offset.offset = b->loc->line_number;
13410 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13411 b->location = new_explicit_location (&explicit_loc);
13412
13413 /* Might be nice to check if function changed, and warn if
13414 so. */
13415 }
13416 }
13417 return sal;
13418 }
13419
13420 /* Returns 1 iff locations A and B are sufficiently same that
13421 we don't need to report breakpoint as changed. */
13422
13423 static int
13424 locations_are_equal (struct bp_location *a, struct bp_location *b)
13425 {
13426 while (a && b)
13427 {
13428 if (a->address != b->address)
13429 return 0;
13430
13431 if (a->shlib_disabled != b->shlib_disabled)
13432 return 0;
13433
13434 if (a->enabled != b->enabled)
13435 return 0;
13436
13437 a = a->next;
13438 b = b->next;
13439 }
13440
13441 if ((a == NULL) != (b == NULL))
13442 return 0;
13443
13444 return 1;
13445 }
13446
13447 /* Split all locations of B that are bound to PSPACE out of B's
13448 location list to a separate list and return that list's head. If
13449 PSPACE is NULL, hoist out all locations of B. */
13450
13451 static struct bp_location *
13452 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13453 {
13454 struct bp_location head;
13455 struct bp_location *i = b->loc;
13456 struct bp_location **i_link = &b->loc;
13457 struct bp_location *hoisted = &head;
13458
13459 if (pspace == NULL)
13460 {
13461 i = b->loc;
13462 b->loc = NULL;
13463 return i;
13464 }
13465
13466 head.next = NULL;
13467
13468 while (i != NULL)
13469 {
13470 if (i->pspace == pspace)
13471 {
13472 *i_link = i->next;
13473 i->next = NULL;
13474 hoisted->next = i;
13475 hoisted = i;
13476 }
13477 else
13478 i_link = &i->next;
13479 i = *i_link;
13480 }
13481
13482 return head.next;
13483 }
13484
13485 /* Create new breakpoint locations for B (a hardware or software
13486 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13487 zero, then B is a ranged breakpoint. Only recreates locations for
13488 FILTER_PSPACE. Locations of other program spaces are left
13489 untouched. */
13490
13491 void
13492 update_breakpoint_locations (struct breakpoint *b,
13493 struct program_space *filter_pspace,
13494 gdb::array_view<const symtab_and_line> sals,
13495 gdb::array_view<const symtab_and_line> sals_end)
13496 {
13497 struct bp_location *existing_locations;
13498
13499 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13500 {
13501 /* Ranged breakpoints have only one start location and one end
13502 location. */
13503 b->enable_state = bp_disabled;
13504 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13505 "multiple locations found\n"),
13506 b->number);
13507 return;
13508 }
13509
13510 /* If there's no new locations, and all existing locations are
13511 pending, don't do anything. This optimizes the common case where
13512 all locations are in the same shared library, that was unloaded.
13513 We'd like to retain the location, so that when the library is
13514 loaded again, we don't loose the enabled/disabled status of the
13515 individual locations. */
13516 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13517 return;
13518
13519 existing_locations = hoist_existing_locations (b, filter_pspace);
13520
13521 for (const auto &sal : sals)
13522 {
13523 struct bp_location *new_loc;
13524
13525 switch_to_program_space_and_thread (sal.pspace);
13526
13527 new_loc = add_location_to_breakpoint (b, &sal);
13528
13529 /* Reparse conditions, they might contain references to the
13530 old symtab. */
13531 if (b->cond_string != NULL)
13532 {
13533 const char *s;
13534
13535 s = b->cond_string;
13536 try
13537 {
13538 new_loc->cond = parse_exp_1 (&s, sal.pc,
13539 block_for_pc (sal.pc),
13540 0);
13541 }
13542 catch (const gdb_exception_error &e)
13543 {
13544 warning (_("failed to reevaluate condition "
13545 "for breakpoint %d: %s"),
13546 b->number, e.what ());
13547 new_loc->enabled = 0;
13548 }
13549 }
13550
13551 if (!sals_end.empty ())
13552 {
13553 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13554
13555 new_loc->length = end - sals[0].pc + 1;
13556 }
13557 }
13558
13559 /* If possible, carry over 'disable' status from existing
13560 breakpoints. */
13561 {
13562 struct bp_location *e = existing_locations;
13563 /* If there are multiple breakpoints with the same function name,
13564 e.g. for inline functions, comparing function names won't work.
13565 Instead compare pc addresses; this is just a heuristic as things
13566 may have moved, but in practice it gives the correct answer
13567 often enough until a better solution is found. */
13568 int have_ambiguous_names = ambiguous_names_p (b->loc);
13569
13570 for (; e; e = e->next)
13571 {
13572 if (!e->enabled && e->function_name)
13573 {
13574 struct bp_location *l = b->loc;
13575 if (have_ambiguous_names)
13576 {
13577 for (; l; l = l->next)
13578 {
13579 /* Ignore software vs hardware location type at
13580 this point, because with "set breakpoint
13581 auto-hw", after a re-set, locations that were
13582 hardware can end up as software, or vice versa.
13583 As mentioned above, this is an heuristic and in
13584 practice should give the correct answer often
13585 enough. */
13586 if (breakpoint_locations_match (e, l, true))
13587 {
13588 l->enabled = 0;
13589 break;
13590 }
13591 }
13592 }
13593 else
13594 {
13595 for (; l; l = l->next)
13596 if (l->function_name
13597 && strcmp (e->function_name, l->function_name) == 0)
13598 {
13599 l->enabled = 0;
13600 break;
13601 }
13602 }
13603 }
13604 }
13605 }
13606
13607 if (!locations_are_equal (existing_locations, b->loc))
13608 gdb::observers::breakpoint_modified.notify (b);
13609 }
13610
13611 /* Find the SaL locations corresponding to the given LOCATION.
13612 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13613
13614 static std::vector<symtab_and_line>
13615 location_to_sals (struct breakpoint *b, struct event_location *location,
13616 struct program_space *search_pspace, int *found)
13617 {
13618 struct gdb_exception exception;
13619
13620 gdb_assert (b->ops != NULL);
13621
13622 std::vector<symtab_and_line> sals;
13623
13624 try
13625 {
13626 sals = b->ops->decode_location (b, location, search_pspace);
13627 }
13628 catch (gdb_exception_error &e)
13629 {
13630 int not_found_and_ok = 0;
13631
13632 /* For pending breakpoints, it's expected that parsing will
13633 fail until the right shared library is loaded. User has
13634 already told to create pending breakpoints and don't need
13635 extra messages. If breakpoint is in bp_shlib_disabled
13636 state, then user already saw the message about that
13637 breakpoint being disabled, and don't want to see more
13638 errors. */
13639 if (e.error == NOT_FOUND_ERROR
13640 && (b->condition_not_parsed
13641 || (b->loc != NULL
13642 && search_pspace != NULL
13643 && b->loc->pspace != search_pspace)
13644 || (b->loc && b->loc->shlib_disabled)
13645 || (b->loc && b->loc->pspace->executing_startup)
13646 || b->enable_state == bp_disabled))
13647 not_found_and_ok = 1;
13648
13649 if (!not_found_and_ok)
13650 {
13651 /* We surely don't want to warn about the same breakpoint
13652 10 times. One solution, implemented here, is disable
13653 the breakpoint on error. Another solution would be to
13654 have separate 'warning emitted' flag. Since this
13655 happens only when a binary has changed, I don't know
13656 which approach is better. */
13657 b->enable_state = bp_disabled;
13658 throw;
13659 }
13660
13661 exception = std::move (e);
13662 }
13663
13664 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13665 {
13666 for (auto &sal : sals)
13667 resolve_sal_pc (&sal);
13668 if (b->condition_not_parsed && b->extra_string != NULL)
13669 {
13670 char *cond_string, *extra_string;
13671 int thread, task;
13672
13673 find_condition_and_thread (b->extra_string, sals[0].pc,
13674 &cond_string, &thread, &task,
13675 &extra_string);
13676 gdb_assert (b->cond_string == NULL);
13677 if (cond_string)
13678 b->cond_string = cond_string;
13679 b->thread = thread;
13680 b->task = task;
13681 if (extra_string)
13682 {
13683 xfree (b->extra_string);
13684 b->extra_string = extra_string;
13685 }
13686 b->condition_not_parsed = 0;
13687 }
13688
13689 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13690 sals[0] = update_static_tracepoint (b, sals[0]);
13691
13692 *found = 1;
13693 }
13694 else
13695 *found = 0;
13696
13697 return sals;
13698 }
13699
13700 /* The default re_set method, for typical hardware or software
13701 breakpoints. Reevaluate the breakpoint and recreate its
13702 locations. */
13703
13704 static void
13705 breakpoint_re_set_default (struct breakpoint *b)
13706 {
13707 struct program_space *filter_pspace = current_program_space;
13708 std::vector<symtab_and_line> expanded, expanded_end;
13709
13710 int found;
13711 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13712 filter_pspace, &found);
13713 if (found)
13714 expanded = std::move (sals);
13715
13716 if (b->location_range_end != NULL)
13717 {
13718 std::vector<symtab_and_line> sals_end
13719 = location_to_sals (b, b->location_range_end.get (),
13720 filter_pspace, &found);
13721 if (found)
13722 expanded_end = std::move (sals_end);
13723 }
13724
13725 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13726 }
13727
13728 /* Default method for creating SALs from an address string. It basically
13729 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13730
13731 static void
13732 create_sals_from_location_default (const struct event_location *location,
13733 struct linespec_result *canonical,
13734 enum bptype type_wanted)
13735 {
13736 parse_breakpoint_sals (location, canonical);
13737 }
13738
13739 /* Call create_breakpoints_sal for the given arguments. This is the default
13740 function for the `create_breakpoints_sal' method of
13741 breakpoint_ops. */
13742
13743 static void
13744 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13745 struct linespec_result *canonical,
13746 gdb::unique_xmalloc_ptr<char> cond_string,
13747 gdb::unique_xmalloc_ptr<char> extra_string,
13748 enum bptype type_wanted,
13749 enum bpdisp disposition,
13750 int thread,
13751 int task, int ignore_count,
13752 const struct breakpoint_ops *ops,
13753 int from_tty, int enabled,
13754 int internal, unsigned flags)
13755 {
13756 create_breakpoints_sal (gdbarch, canonical,
13757 std::move (cond_string),
13758 std::move (extra_string),
13759 type_wanted, disposition,
13760 thread, task, ignore_count, ops, from_tty,
13761 enabled, internal, flags);
13762 }
13763
13764 /* Decode the line represented by S by calling decode_line_full. This is the
13765 default function for the `decode_location' method of breakpoint_ops. */
13766
13767 static std::vector<symtab_and_line>
13768 decode_location_default (struct breakpoint *b,
13769 const struct event_location *location,
13770 struct program_space *search_pspace)
13771 {
13772 struct linespec_result canonical;
13773
13774 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13775 NULL, 0, &canonical, multiple_symbols_all,
13776 b->filter.get ());
13777
13778 /* We should get 0 or 1 resulting SALs. */
13779 gdb_assert (canonical.lsals.size () < 2);
13780
13781 if (!canonical.lsals.empty ())
13782 {
13783 const linespec_sals &lsal = canonical.lsals[0];
13784 return std::move (lsal.sals);
13785 }
13786 return {};
13787 }
13788
13789 /* Reset a breakpoint. */
13790
13791 static void
13792 breakpoint_re_set_one (breakpoint *b)
13793 {
13794 input_radix = b->input_radix;
13795 set_language (b->language);
13796
13797 b->ops->re_set (b);
13798 }
13799
13800 /* Re-set breakpoint locations for the current program space.
13801 Locations bound to other program spaces are left untouched. */
13802
13803 void
13804 breakpoint_re_set (void)
13805 {
13806 struct breakpoint *b, *b_tmp;
13807
13808 {
13809 scoped_restore_current_language save_language;
13810 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13811 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13812
13813 /* breakpoint_re_set_one sets the current_language to the language
13814 of the breakpoint it is resetting (see prepare_re_set_context)
13815 before re-evaluating the breakpoint's location. This change can
13816 unfortunately get undone by accident if the language_mode is set
13817 to auto, and we either switch frames, or more likely in this context,
13818 we select the current frame.
13819
13820 We prevent this by temporarily turning the language_mode to
13821 language_mode_manual. We restore it once all breakpoints
13822 have been reset. */
13823 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13824 language_mode = language_mode_manual;
13825
13826 /* Note: we must not try to insert locations until after all
13827 breakpoints have been re-set. Otherwise, e.g., when re-setting
13828 breakpoint 1, we'd insert the locations of breakpoint 2, which
13829 hadn't been re-set yet, and thus may have stale locations. */
13830
13831 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13832 {
13833 try
13834 {
13835 breakpoint_re_set_one (b);
13836 }
13837 catch (const gdb_exception &ex)
13838 {
13839 exception_fprintf (gdb_stderr, ex,
13840 "Error in re-setting breakpoint %d: ",
13841 b->number);
13842 }
13843 }
13844
13845 jit_breakpoint_re_set ();
13846 }
13847
13848 create_overlay_event_breakpoint ();
13849 create_longjmp_master_breakpoint ();
13850 create_std_terminate_master_breakpoint ();
13851 create_exception_master_breakpoint ();
13852
13853 /* Now we can insert. */
13854 update_global_location_list (UGLL_MAY_INSERT);
13855 }
13856 \f
13857 /* Reset the thread number of this breakpoint:
13858
13859 - If the breakpoint is for all threads, leave it as-is.
13860 - Else, reset it to the current thread for inferior_ptid. */
13861 void
13862 breakpoint_re_set_thread (struct breakpoint *b)
13863 {
13864 if (b->thread != -1)
13865 {
13866 b->thread = inferior_thread ()->global_num;
13867
13868 /* We're being called after following a fork. The new fork is
13869 selected as current, and unless this was a vfork will have a
13870 different program space from the original thread. Reset that
13871 as well. */
13872 b->loc->pspace = current_program_space;
13873 }
13874 }
13875
13876 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13877 If from_tty is nonzero, it prints a message to that effect,
13878 which ends with a period (no newline). */
13879
13880 void
13881 set_ignore_count (int bptnum, int count, int from_tty)
13882 {
13883 struct breakpoint *b;
13884
13885 if (count < 0)
13886 count = 0;
13887
13888 ALL_BREAKPOINTS (b)
13889 if (b->number == bptnum)
13890 {
13891 if (is_tracepoint (b))
13892 {
13893 if (from_tty && count != 0)
13894 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13895 bptnum);
13896 return;
13897 }
13898
13899 b->ignore_count = count;
13900 if (from_tty)
13901 {
13902 if (count == 0)
13903 printf_filtered (_("Will stop next time "
13904 "breakpoint %d is reached."),
13905 bptnum);
13906 else if (count == 1)
13907 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13908 bptnum);
13909 else
13910 printf_filtered (_("Will ignore next %d "
13911 "crossings of breakpoint %d."),
13912 count, bptnum);
13913 }
13914 gdb::observers::breakpoint_modified.notify (b);
13915 return;
13916 }
13917
13918 error (_("No breakpoint number %d."), bptnum);
13919 }
13920
13921 /* Command to set ignore-count of breakpoint N to COUNT. */
13922
13923 static void
13924 ignore_command (const char *args, int from_tty)
13925 {
13926 const char *p = args;
13927 int num;
13928
13929 if (p == 0)
13930 error_no_arg (_("a breakpoint number"));
13931
13932 num = get_number (&p);
13933 if (num == 0)
13934 error (_("bad breakpoint number: '%s'"), args);
13935 if (*p == 0)
13936 error (_("Second argument (specified ignore-count) is missing."));
13937
13938 set_ignore_count (num,
13939 longest_to_int (value_as_long (parse_and_eval (p))),
13940 from_tty);
13941 if (from_tty)
13942 printf_filtered ("\n");
13943 }
13944 \f
13945
13946 /* Call FUNCTION on each of the breakpoints with numbers in the range
13947 defined by BP_NUM_RANGE (an inclusive range). */
13948
13949 static void
13950 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13951 gdb::function_view<void (breakpoint *)> function)
13952 {
13953 if (bp_num_range.first == 0)
13954 {
13955 warning (_("bad breakpoint number at or near '%d'"),
13956 bp_num_range.first);
13957 }
13958 else
13959 {
13960 struct breakpoint *b, *tmp;
13961
13962 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13963 {
13964 bool match = false;
13965
13966 ALL_BREAKPOINTS_SAFE (b, tmp)
13967 if (b->number == i)
13968 {
13969 match = true;
13970 function (b);
13971 break;
13972 }
13973 if (!match)
13974 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13975 }
13976 }
13977 }
13978
13979 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13980 ARGS. */
13981
13982 static void
13983 map_breakpoint_numbers (const char *args,
13984 gdb::function_view<void (breakpoint *)> function)
13985 {
13986 if (args == NULL || *args == '\0')
13987 error_no_arg (_("one or more breakpoint numbers"));
13988
13989 number_or_range_parser parser (args);
13990
13991 while (!parser.finished ())
13992 {
13993 int num = parser.get_number ();
13994 map_breakpoint_number_range (std::make_pair (num, num), function);
13995 }
13996 }
13997
13998 /* Return the breakpoint location structure corresponding to the
13999 BP_NUM and LOC_NUM values. */
14000
14001 static struct bp_location *
14002 find_location_by_number (int bp_num, int loc_num)
14003 {
14004 struct breakpoint *b;
14005
14006 ALL_BREAKPOINTS (b)
14007 if (b->number == bp_num)
14008 {
14009 break;
14010 }
14011
14012 if (!b || b->number != bp_num)
14013 error (_("Bad breakpoint number '%d'"), bp_num);
14014
14015 if (loc_num == 0)
14016 error (_("Bad breakpoint location number '%d'"), loc_num);
14017
14018 int n = 0;
14019 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14020 if (++n == loc_num)
14021 return loc;
14022
14023 error (_("Bad breakpoint location number '%d'"), loc_num);
14024 }
14025
14026 /* Modes of operation for extract_bp_num. */
14027 enum class extract_bp_kind
14028 {
14029 /* Extracting a breakpoint number. */
14030 bp,
14031
14032 /* Extracting a location number. */
14033 loc,
14034 };
14035
14036 /* Extract a breakpoint or location number (as determined by KIND)
14037 from the string starting at START. TRAILER is a character which
14038 can be found after the number. If you don't want a trailer, use
14039 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14040 string. This always returns a positive integer. */
14041
14042 static int
14043 extract_bp_num (extract_bp_kind kind, const char *start,
14044 int trailer, const char **end_out = NULL)
14045 {
14046 const char *end = start;
14047 int num = get_number_trailer (&end, trailer);
14048 if (num < 0)
14049 error (kind == extract_bp_kind::bp
14050 ? _("Negative breakpoint number '%.*s'")
14051 : _("Negative breakpoint location number '%.*s'"),
14052 int (end - start), start);
14053 if (num == 0)
14054 error (kind == extract_bp_kind::bp
14055 ? _("Bad breakpoint number '%.*s'")
14056 : _("Bad breakpoint location number '%.*s'"),
14057 int (end - start), start);
14058
14059 if (end_out != NULL)
14060 *end_out = end;
14061 return num;
14062 }
14063
14064 /* Extract a breakpoint or location range (as determined by KIND) in
14065 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14066 representing the (inclusive) range. The returned pair's elements
14067 are always positive integers. */
14068
14069 static std::pair<int, int>
14070 extract_bp_or_bp_range (extract_bp_kind kind,
14071 const std::string &arg,
14072 std::string::size_type arg_offset)
14073 {
14074 std::pair<int, int> range;
14075 const char *bp_loc = &arg[arg_offset];
14076 std::string::size_type dash = arg.find ('-', arg_offset);
14077 if (dash != std::string::npos)
14078 {
14079 /* bp_loc is a range (x-z). */
14080 if (arg.length () == dash + 1)
14081 error (kind == extract_bp_kind::bp
14082 ? _("Bad breakpoint number at or near: '%s'")
14083 : _("Bad breakpoint location number at or near: '%s'"),
14084 bp_loc);
14085
14086 const char *end;
14087 const char *start_first = bp_loc;
14088 const char *start_second = &arg[dash + 1];
14089 range.first = extract_bp_num (kind, start_first, '-');
14090 range.second = extract_bp_num (kind, start_second, '\0', &end);
14091
14092 if (range.first > range.second)
14093 error (kind == extract_bp_kind::bp
14094 ? _("Inverted breakpoint range at '%.*s'")
14095 : _("Inverted breakpoint location range at '%.*s'"),
14096 int (end - start_first), start_first);
14097 }
14098 else
14099 {
14100 /* bp_loc is a single value. */
14101 range.first = extract_bp_num (kind, bp_loc, '\0');
14102 range.second = range.first;
14103 }
14104 return range;
14105 }
14106
14107 /* Extract the breakpoint/location range specified by ARG. Returns
14108 the breakpoint range in BP_NUM_RANGE, and the location range in
14109 BP_LOC_RANGE.
14110
14111 ARG may be in any of the following forms:
14112
14113 x where 'x' is a breakpoint number.
14114 x-y where 'x' and 'y' specify a breakpoint numbers range.
14115 x.y where 'x' is a breakpoint number and 'y' a location number.
14116 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14117 location number range.
14118 */
14119
14120 static void
14121 extract_bp_number_and_location (const std::string &arg,
14122 std::pair<int, int> &bp_num_range,
14123 std::pair<int, int> &bp_loc_range)
14124 {
14125 std::string::size_type dot = arg.find ('.');
14126
14127 if (dot != std::string::npos)
14128 {
14129 /* Handle 'x.y' and 'x.y-z' cases. */
14130
14131 if (arg.length () == dot + 1 || dot == 0)
14132 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14133
14134 bp_num_range.first
14135 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14136 bp_num_range.second = bp_num_range.first;
14137
14138 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14139 arg, dot + 1);
14140 }
14141 else
14142 {
14143 /* Handle x and x-y cases. */
14144
14145 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14146 bp_loc_range.first = 0;
14147 bp_loc_range.second = 0;
14148 }
14149 }
14150
14151 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14152 specifies whether to enable or disable. */
14153
14154 static void
14155 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14156 {
14157 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14158 if (loc != NULL)
14159 {
14160 if (loc->enabled != enable)
14161 {
14162 loc->enabled = enable;
14163 mark_breakpoint_location_modified (loc);
14164 }
14165 if (target_supports_enable_disable_tracepoint ()
14166 && current_trace_status ()->running && loc->owner
14167 && is_tracepoint (loc->owner))
14168 target_disable_tracepoint (loc);
14169 }
14170 update_global_location_list (UGLL_DONT_INSERT);
14171
14172 gdb::observers::breakpoint_modified.notify (loc->owner);
14173 }
14174
14175 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14176 number of the breakpoint, and BP_LOC_RANGE specifies the
14177 (inclusive) range of location numbers of that breakpoint to
14178 enable/disable. ENABLE specifies whether to enable or disable the
14179 location. */
14180
14181 static void
14182 enable_disable_breakpoint_location_range (int bp_num,
14183 std::pair<int, int> &bp_loc_range,
14184 bool enable)
14185 {
14186 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14187 enable_disable_bp_num_loc (bp_num, i, enable);
14188 }
14189
14190 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14191 If from_tty is nonzero, it prints a message to that effect,
14192 which ends with a period (no newline). */
14193
14194 void
14195 disable_breakpoint (struct breakpoint *bpt)
14196 {
14197 /* Never disable a watchpoint scope breakpoint; we want to
14198 hit them when we leave scope so we can delete both the
14199 watchpoint and its scope breakpoint at that time. */
14200 if (bpt->type == bp_watchpoint_scope)
14201 return;
14202
14203 bpt->enable_state = bp_disabled;
14204
14205 /* Mark breakpoint locations modified. */
14206 mark_breakpoint_modified (bpt);
14207
14208 if (target_supports_enable_disable_tracepoint ()
14209 && current_trace_status ()->running && is_tracepoint (bpt))
14210 {
14211 struct bp_location *location;
14212
14213 for (location = bpt->loc; location; location = location->next)
14214 target_disable_tracepoint (location);
14215 }
14216
14217 update_global_location_list (UGLL_DONT_INSERT);
14218
14219 gdb::observers::breakpoint_modified.notify (bpt);
14220 }
14221
14222 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14223 specified in ARGS. ARGS may be in any of the formats handled by
14224 extract_bp_number_and_location. ENABLE specifies whether to enable
14225 or disable the breakpoints/locations. */
14226
14227 static void
14228 enable_disable_command (const char *args, int from_tty, bool enable)
14229 {
14230 if (args == 0)
14231 {
14232 struct breakpoint *bpt;
14233
14234 ALL_BREAKPOINTS (bpt)
14235 if (user_breakpoint_p (bpt))
14236 {
14237 if (enable)
14238 enable_breakpoint (bpt);
14239 else
14240 disable_breakpoint (bpt);
14241 }
14242 }
14243 else
14244 {
14245 std::string num = extract_arg (&args);
14246
14247 while (!num.empty ())
14248 {
14249 std::pair<int, int> bp_num_range, bp_loc_range;
14250
14251 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14252
14253 if (bp_loc_range.first == bp_loc_range.second
14254 && bp_loc_range.first == 0)
14255 {
14256 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14257 map_breakpoint_number_range (bp_num_range,
14258 enable
14259 ? enable_breakpoint
14260 : disable_breakpoint);
14261 }
14262 else
14263 {
14264 /* Handle breakpoint ids with formats 'x.y' or
14265 'x.y-z'. */
14266 enable_disable_breakpoint_location_range
14267 (bp_num_range.first, bp_loc_range, enable);
14268 }
14269 num = extract_arg (&args);
14270 }
14271 }
14272 }
14273
14274 /* The disable command disables the specified breakpoints/locations
14275 (or all defined breakpoints) so they're no longer effective in
14276 stopping the inferior. ARGS may be in any of the forms defined in
14277 extract_bp_number_and_location. */
14278
14279 static void
14280 disable_command (const char *args, int from_tty)
14281 {
14282 enable_disable_command (args, from_tty, false);
14283 }
14284
14285 static void
14286 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14287 int count)
14288 {
14289 int target_resources_ok;
14290
14291 if (bpt->type == bp_hardware_breakpoint)
14292 {
14293 int i;
14294 i = hw_breakpoint_used_count ();
14295 target_resources_ok =
14296 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14297 i + 1, 0);
14298 if (target_resources_ok == 0)
14299 error (_("No hardware breakpoint support in the target."));
14300 else if (target_resources_ok < 0)
14301 error (_("Hardware breakpoints used exceeds limit."));
14302 }
14303
14304 if (is_watchpoint (bpt))
14305 {
14306 /* Initialize it just to avoid a GCC false warning. */
14307 enum enable_state orig_enable_state = bp_disabled;
14308
14309 try
14310 {
14311 struct watchpoint *w = (struct watchpoint *) bpt;
14312
14313 orig_enable_state = bpt->enable_state;
14314 bpt->enable_state = bp_enabled;
14315 update_watchpoint (w, 1 /* reparse */);
14316 }
14317 catch (const gdb_exception &e)
14318 {
14319 bpt->enable_state = orig_enable_state;
14320 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14321 bpt->number);
14322 return;
14323 }
14324 }
14325
14326 bpt->enable_state = bp_enabled;
14327
14328 /* Mark breakpoint locations modified. */
14329 mark_breakpoint_modified (bpt);
14330
14331 if (target_supports_enable_disable_tracepoint ()
14332 && current_trace_status ()->running && is_tracepoint (bpt))
14333 {
14334 struct bp_location *location;
14335
14336 for (location = bpt->loc; location; location = location->next)
14337 target_enable_tracepoint (location);
14338 }
14339
14340 bpt->disposition = disposition;
14341 bpt->enable_count = count;
14342 update_global_location_list (UGLL_MAY_INSERT);
14343
14344 gdb::observers::breakpoint_modified.notify (bpt);
14345 }
14346
14347
14348 void
14349 enable_breakpoint (struct breakpoint *bpt)
14350 {
14351 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14352 }
14353
14354 /* The enable command enables the specified breakpoints/locations (or
14355 all defined breakpoints) so they once again become (or continue to
14356 be) effective in stopping the inferior. ARGS may be in any of the
14357 forms defined in extract_bp_number_and_location. */
14358
14359 static void
14360 enable_command (const char *args, int from_tty)
14361 {
14362 enable_disable_command (args, from_tty, true);
14363 }
14364
14365 static void
14366 enable_once_command (const char *args, int from_tty)
14367 {
14368 map_breakpoint_numbers
14369 (args, [&] (breakpoint *b)
14370 {
14371 iterate_over_related_breakpoints
14372 (b, [&] (breakpoint *bpt)
14373 {
14374 enable_breakpoint_disp (bpt, disp_disable, 1);
14375 });
14376 });
14377 }
14378
14379 static void
14380 enable_count_command (const char *args, int from_tty)
14381 {
14382 int count;
14383
14384 if (args == NULL)
14385 error_no_arg (_("hit count"));
14386
14387 count = get_number (&args);
14388
14389 map_breakpoint_numbers
14390 (args, [&] (breakpoint *b)
14391 {
14392 iterate_over_related_breakpoints
14393 (b, [&] (breakpoint *bpt)
14394 {
14395 enable_breakpoint_disp (bpt, disp_disable, count);
14396 });
14397 });
14398 }
14399
14400 static void
14401 enable_delete_command (const char *args, int from_tty)
14402 {
14403 map_breakpoint_numbers
14404 (args, [&] (breakpoint *b)
14405 {
14406 iterate_over_related_breakpoints
14407 (b, [&] (breakpoint *bpt)
14408 {
14409 enable_breakpoint_disp (bpt, disp_del, 1);
14410 });
14411 });
14412 }
14413 \f
14414 /* Invalidate last known value of any hardware watchpoint if
14415 the memory which that value represents has been written to by
14416 GDB itself. */
14417
14418 static void
14419 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14420 CORE_ADDR addr, ssize_t len,
14421 const bfd_byte *data)
14422 {
14423 struct breakpoint *bp;
14424
14425 ALL_BREAKPOINTS (bp)
14426 if (bp->enable_state == bp_enabled
14427 && bp->type == bp_hardware_watchpoint)
14428 {
14429 struct watchpoint *wp = (struct watchpoint *) bp;
14430
14431 if (wp->val_valid && wp->val != nullptr)
14432 {
14433 struct bp_location *loc;
14434
14435 for (loc = bp->loc; loc != NULL; loc = loc->next)
14436 if (loc->loc_type == bp_loc_hardware_watchpoint
14437 && loc->address + loc->length > addr
14438 && addr + len > loc->address)
14439 {
14440 wp->val = NULL;
14441 wp->val_valid = false;
14442 }
14443 }
14444 }
14445 }
14446
14447 /* Create and insert a breakpoint for software single step. */
14448
14449 void
14450 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14451 const address_space *aspace,
14452 CORE_ADDR next_pc)
14453 {
14454 struct thread_info *tp = inferior_thread ();
14455 struct symtab_and_line sal;
14456 CORE_ADDR pc = next_pc;
14457
14458 if (tp->control.single_step_breakpoints == NULL)
14459 {
14460 tp->control.single_step_breakpoints
14461 = new_single_step_breakpoint (tp->global_num, gdbarch);
14462 }
14463
14464 sal = find_pc_line (pc, 0);
14465 sal.pc = pc;
14466 sal.section = find_pc_overlay (pc);
14467 sal.explicit_pc = 1;
14468 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14469
14470 update_global_location_list (UGLL_INSERT);
14471 }
14472
14473 /* Insert single step breakpoints according to the current state. */
14474
14475 int
14476 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14477 {
14478 struct regcache *regcache = get_current_regcache ();
14479 std::vector<CORE_ADDR> next_pcs;
14480
14481 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14482
14483 if (!next_pcs.empty ())
14484 {
14485 struct frame_info *frame = get_current_frame ();
14486 const address_space *aspace = get_frame_address_space (frame);
14487
14488 for (CORE_ADDR pc : next_pcs)
14489 insert_single_step_breakpoint (gdbarch, aspace, pc);
14490
14491 return 1;
14492 }
14493 else
14494 return 0;
14495 }
14496
14497 /* See breakpoint.h. */
14498
14499 int
14500 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14501 const address_space *aspace,
14502 CORE_ADDR pc)
14503 {
14504 struct bp_location *loc;
14505
14506 for (loc = bp->loc; loc != NULL; loc = loc->next)
14507 if (loc->inserted
14508 && breakpoint_location_address_match (loc, aspace, pc))
14509 return 1;
14510
14511 return 0;
14512 }
14513
14514 /* Check whether a software single-step breakpoint is inserted at
14515 PC. */
14516
14517 int
14518 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14519 CORE_ADDR pc)
14520 {
14521 struct breakpoint *bpt;
14522
14523 ALL_BREAKPOINTS (bpt)
14524 {
14525 if (bpt->type == bp_single_step
14526 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14527 return 1;
14528 }
14529 return 0;
14530 }
14531
14532 /* Tracepoint-specific operations. */
14533
14534 /* Set tracepoint count to NUM. */
14535 static void
14536 set_tracepoint_count (int num)
14537 {
14538 tracepoint_count = num;
14539 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14540 }
14541
14542 static void
14543 trace_command (const char *arg, int from_tty)
14544 {
14545 event_location_up location = string_to_event_location (&arg,
14546 current_language);
14547 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14548 (location.get (), true /* is_tracepoint */);
14549
14550 create_breakpoint (get_current_arch (),
14551 location.get (),
14552 NULL, 0, arg, 1 /* parse arg */,
14553 0 /* tempflag */,
14554 bp_tracepoint /* type_wanted */,
14555 0 /* Ignore count */,
14556 pending_break_support,
14557 ops,
14558 from_tty,
14559 1 /* enabled */,
14560 0 /* internal */, 0);
14561 }
14562
14563 static void
14564 ftrace_command (const char *arg, int from_tty)
14565 {
14566 event_location_up location = string_to_event_location (&arg,
14567 current_language);
14568 create_breakpoint (get_current_arch (),
14569 location.get (),
14570 NULL, 0, arg, 1 /* parse arg */,
14571 0 /* tempflag */,
14572 bp_fast_tracepoint /* type_wanted */,
14573 0 /* Ignore count */,
14574 pending_break_support,
14575 &tracepoint_breakpoint_ops,
14576 from_tty,
14577 1 /* enabled */,
14578 0 /* internal */, 0);
14579 }
14580
14581 /* strace command implementation. Creates a static tracepoint. */
14582
14583 static void
14584 strace_command (const char *arg, int from_tty)
14585 {
14586 struct breakpoint_ops *ops;
14587 event_location_up location;
14588
14589 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14590 or with a normal static tracepoint. */
14591 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14592 {
14593 ops = &strace_marker_breakpoint_ops;
14594 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14595 }
14596 else
14597 {
14598 ops = &tracepoint_breakpoint_ops;
14599 location = string_to_event_location (&arg, current_language);
14600 }
14601
14602 create_breakpoint (get_current_arch (),
14603 location.get (),
14604 NULL, 0, arg, 1 /* parse arg */,
14605 0 /* tempflag */,
14606 bp_static_tracepoint /* type_wanted */,
14607 0 /* Ignore count */,
14608 pending_break_support,
14609 ops,
14610 from_tty,
14611 1 /* enabled */,
14612 0 /* internal */, 0);
14613 }
14614
14615 /* Set up a fake reader function that gets command lines from a linked
14616 list that was acquired during tracepoint uploading. */
14617
14618 static struct uploaded_tp *this_utp;
14619 static int next_cmd;
14620
14621 static char *
14622 read_uploaded_action (void)
14623 {
14624 char *rslt = nullptr;
14625
14626 if (next_cmd < this_utp->cmd_strings.size ())
14627 {
14628 rslt = this_utp->cmd_strings[next_cmd].get ();
14629 next_cmd++;
14630 }
14631
14632 return rslt;
14633 }
14634
14635 /* Given information about a tracepoint as recorded on a target (which
14636 can be either a live system or a trace file), attempt to create an
14637 equivalent GDB tracepoint. This is not a reliable process, since
14638 the target does not necessarily have all the information used when
14639 the tracepoint was originally defined. */
14640
14641 struct tracepoint *
14642 create_tracepoint_from_upload (struct uploaded_tp *utp)
14643 {
14644 const char *addr_str;
14645 char small_buf[100];
14646 struct tracepoint *tp;
14647
14648 if (utp->at_string)
14649 addr_str = utp->at_string.get ();
14650 else
14651 {
14652 /* In the absence of a source location, fall back to raw
14653 address. Since there is no way to confirm that the address
14654 means the same thing as when the trace was started, warn the
14655 user. */
14656 warning (_("Uploaded tracepoint %d has no "
14657 "source location, using raw address"),
14658 utp->number);
14659 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14660 addr_str = small_buf;
14661 }
14662
14663 /* There's not much we can do with a sequence of bytecodes. */
14664 if (utp->cond && !utp->cond_string)
14665 warning (_("Uploaded tracepoint %d condition "
14666 "has no source form, ignoring it"),
14667 utp->number);
14668
14669 event_location_up location = string_to_event_location (&addr_str,
14670 current_language);
14671 if (!create_breakpoint (get_current_arch (),
14672 location.get (),
14673 utp->cond_string.get (), -1, addr_str,
14674 0 /* parse cond/thread */,
14675 0 /* tempflag */,
14676 utp->type /* type_wanted */,
14677 0 /* Ignore count */,
14678 pending_break_support,
14679 &tracepoint_breakpoint_ops,
14680 0 /* from_tty */,
14681 utp->enabled /* enabled */,
14682 0 /* internal */,
14683 CREATE_BREAKPOINT_FLAGS_INSERTED))
14684 return NULL;
14685
14686 /* Get the tracepoint we just created. */
14687 tp = get_tracepoint (tracepoint_count);
14688 gdb_assert (tp != NULL);
14689
14690 if (utp->pass > 0)
14691 {
14692 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14693 tp->number);
14694
14695 trace_pass_command (small_buf, 0);
14696 }
14697
14698 /* If we have uploaded versions of the original commands, set up a
14699 special-purpose "reader" function and call the usual command line
14700 reader, then pass the result to the breakpoint command-setting
14701 function. */
14702 if (!utp->cmd_strings.empty ())
14703 {
14704 counted_command_line cmd_list;
14705
14706 this_utp = utp;
14707 next_cmd = 0;
14708
14709 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14710
14711 breakpoint_set_commands (tp, std::move (cmd_list));
14712 }
14713 else if (!utp->actions.empty ()
14714 || !utp->step_actions.empty ())
14715 warning (_("Uploaded tracepoint %d actions "
14716 "have no source form, ignoring them"),
14717 utp->number);
14718
14719 /* Copy any status information that might be available. */
14720 tp->hit_count = utp->hit_count;
14721 tp->traceframe_usage = utp->traceframe_usage;
14722
14723 return tp;
14724 }
14725
14726 /* Print information on tracepoint number TPNUM_EXP, or all if
14727 omitted. */
14728
14729 static void
14730 info_tracepoints_command (const char *args, int from_tty)
14731 {
14732 struct ui_out *uiout = current_uiout;
14733 int num_printed;
14734
14735 num_printed = breakpoint_1 (args, false, is_tracepoint);
14736
14737 if (num_printed == 0)
14738 {
14739 if (args == NULL || *args == '\0')
14740 uiout->message ("No tracepoints.\n");
14741 else
14742 uiout->message ("No tracepoint matching '%s'.\n", args);
14743 }
14744
14745 default_collect_info ();
14746 }
14747
14748 /* The 'enable trace' command enables tracepoints.
14749 Not supported by all targets. */
14750 static void
14751 enable_trace_command (const char *args, int from_tty)
14752 {
14753 enable_command (args, from_tty);
14754 }
14755
14756 /* The 'disable trace' command disables tracepoints.
14757 Not supported by all targets. */
14758 static void
14759 disable_trace_command (const char *args, int from_tty)
14760 {
14761 disable_command (args, from_tty);
14762 }
14763
14764 /* Remove a tracepoint (or all if no argument). */
14765 static void
14766 delete_trace_command (const char *arg, int from_tty)
14767 {
14768 struct breakpoint *b, *b_tmp;
14769
14770 dont_repeat ();
14771
14772 if (arg == 0)
14773 {
14774 int breaks_to_delete = 0;
14775
14776 /* Delete all breakpoints if no argument.
14777 Do not delete internal or call-dummy breakpoints, these
14778 have to be deleted with an explicit breakpoint number
14779 argument. */
14780 ALL_TRACEPOINTS (b)
14781 if (is_tracepoint (b) && user_breakpoint_p (b))
14782 {
14783 breaks_to_delete = 1;
14784 break;
14785 }
14786
14787 /* Ask user only if there are some breakpoints to delete. */
14788 if (!from_tty
14789 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14790 {
14791 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14792 if (is_tracepoint (b) && user_breakpoint_p (b))
14793 delete_breakpoint (b);
14794 }
14795 }
14796 else
14797 map_breakpoint_numbers
14798 (arg, [&] (breakpoint *br)
14799 {
14800 iterate_over_related_breakpoints (br, delete_breakpoint);
14801 });
14802 }
14803
14804 /* Helper function for trace_pass_command. */
14805
14806 static void
14807 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14808 {
14809 tp->pass_count = count;
14810 gdb::observers::breakpoint_modified.notify (tp);
14811 if (from_tty)
14812 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14813 tp->number, count);
14814 }
14815
14816 /* Set passcount for tracepoint.
14817
14818 First command argument is passcount, second is tracepoint number.
14819 If tracepoint number omitted, apply to most recently defined.
14820 Also accepts special argument "all". */
14821
14822 static void
14823 trace_pass_command (const char *args, int from_tty)
14824 {
14825 struct tracepoint *t1;
14826 ULONGEST count;
14827
14828 if (args == 0 || *args == 0)
14829 error (_("passcount command requires an "
14830 "argument (count + optional TP num)"));
14831
14832 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14833
14834 args = skip_spaces (args);
14835 if (*args && strncasecmp (args, "all", 3) == 0)
14836 {
14837 struct breakpoint *b;
14838
14839 args += 3; /* Skip special argument "all". */
14840 if (*args)
14841 error (_("Junk at end of arguments."));
14842
14843 ALL_TRACEPOINTS (b)
14844 {
14845 t1 = (struct tracepoint *) b;
14846 trace_pass_set_count (t1, count, from_tty);
14847 }
14848 }
14849 else if (*args == '\0')
14850 {
14851 t1 = get_tracepoint_by_number (&args, NULL);
14852 if (t1)
14853 trace_pass_set_count (t1, count, from_tty);
14854 }
14855 else
14856 {
14857 number_or_range_parser parser (args);
14858 while (!parser.finished ())
14859 {
14860 t1 = get_tracepoint_by_number (&args, &parser);
14861 if (t1)
14862 trace_pass_set_count (t1, count, from_tty);
14863 }
14864 }
14865 }
14866
14867 struct tracepoint *
14868 get_tracepoint (int num)
14869 {
14870 struct breakpoint *t;
14871
14872 ALL_TRACEPOINTS (t)
14873 if (t->number == num)
14874 return (struct tracepoint *) t;
14875
14876 return NULL;
14877 }
14878
14879 /* Find the tracepoint with the given target-side number (which may be
14880 different from the tracepoint number after disconnecting and
14881 reconnecting). */
14882
14883 struct tracepoint *
14884 get_tracepoint_by_number_on_target (int num)
14885 {
14886 struct breakpoint *b;
14887
14888 ALL_TRACEPOINTS (b)
14889 {
14890 struct tracepoint *t = (struct tracepoint *) b;
14891
14892 if (t->number_on_target == num)
14893 return t;
14894 }
14895
14896 return NULL;
14897 }
14898
14899 /* Utility: parse a tracepoint number and look it up in the list.
14900 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14901 If the argument is missing, the most recent tracepoint
14902 (tracepoint_count) is returned. */
14903
14904 struct tracepoint *
14905 get_tracepoint_by_number (const char **arg,
14906 number_or_range_parser *parser)
14907 {
14908 struct breakpoint *t;
14909 int tpnum;
14910 const char *instring = arg == NULL ? NULL : *arg;
14911
14912 if (parser != NULL)
14913 {
14914 gdb_assert (!parser->finished ());
14915 tpnum = parser->get_number ();
14916 }
14917 else if (arg == NULL || *arg == NULL || ! **arg)
14918 tpnum = tracepoint_count;
14919 else
14920 tpnum = get_number (arg);
14921
14922 if (tpnum <= 0)
14923 {
14924 if (instring && *instring)
14925 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14926 instring);
14927 else
14928 printf_filtered (_("No previous tracepoint\n"));
14929 return NULL;
14930 }
14931
14932 ALL_TRACEPOINTS (t)
14933 if (t->number == tpnum)
14934 {
14935 return (struct tracepoint *) t;
14936 }
14937
14938 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14939 return NULL;
14940 }
14941
14942 void
14943 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14944 {
14945 if (b->thread != -1)
14946 fprintf_unfiltered (fp, " thread %d", b->thread);
14947
14948 if (b->task != 0)
14949 fprintf_unfiltered (fp, " task %d", b->task);
14950
14951 fprintf_unfiltered (fp, "\n");
14952 }
14953
14954 /* Save information on user settable breakpoints (watchpoints, etc) to
14955 a new script file named FILENAME. If FILTER is non-NULL, call it
14956 on each breakpoint and only include the ones for which it returns
14957 true. */
14958
14959 static void
14960 save_breakpoints (const char *filename, int from_tty,
14961 bool (*filter) (const struct breakpoint *))
14962 {
14963 struct breakpoint *tp;
14964 int any = 0;
14965 int extra_trace_bits = 0;
14966
14967 if (filename == 0 || *filename == 0)
14968 error (_("Argument required (file name in which to save)"));
14969
14970 /* See if we have anything to save. */
14971 ALL_BREAKPOINTS (tp)
14972 {
14973 /* Skip internal and momentary breakpoints. */
14974 if (!user_breakpoint_p (tp))
14975 continue;
14976
14977 /* If we have a filter, only save the breakpoints it accepts. */
14978 if (filter && !filter (tp))
14979 continue;
14980
14981 any = 1;
14982
14983 if (is_tracepoint (tp))
14984 {
14985 extra_trace_bits = 1;
14986
14987 /* We can stop searching. */
14988 break;
14989 }
14990 }
14991
14992 if (!any)
14993 {
14994 warning (_("Nothing to save."));
14995 return;
14996 }
14997
14998 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14999
15000 stdio_file fp;
15001
15002 if (!fp.open (expanded_filename.get (), "w"))
15003 error (_("Unable to open file '%s' for saving (%s)"),
15004 expanded_filename.get (), safe_strerror (errno));
15005
15006 if (extra_trace_bits)
15007 save_trace_state_variables (&fp);
15008
15009 ALL_BREAKPOINTS (tp)
15010 {
15011 /* Skip internal and momentary breakpoints. */
15012 if (!user_breakpoint_p (tp))
15013 continue;
15014
15015 /* If we have a filter, only save the breakpoints it accepts. */
15016 if (filter && !filter (tp))
15017 continue;
15018
15019 tp->ops->print_recreate (tp, &fp);
15020
15021 /* Note, we can't rely on tp->number for anything, as we can't
15022 assume the recreated breakpoint numbers will match. Use $bpnum
15023 instead. */
15024
15025 if (tp->cond_string)
15026 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15027
15028 if (tp->ignore_count)
15029 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15030
15031 if (tp->type != bp_dprintf && tp->commands)
15032 {
15033 fp.puts (" commands\n");
15034
15035 current_uiout->redirect (&fp);
15036 try
15037 {
15038 print_command_lines (current_uiout, tp->commands.get (), 2);
15039 }
15040 catch (const gdb_exception &ex)
15041 {
15042 current_uiout->redirect (NULL);
15043 throw;
15044 }
15045
15046 current_uiout->redirect (NULL);
15047 fp.puts (" end\n");
15048 }
15049
15050 if (tp->enable_state == bp_disabled)
15051 fp.puts ("disable $bpnum\n");
15052
15053 /* If this is a multi-location breakpoint, check if the locations
15054 should be individually disabled. Watchpoint locations are
15055 special, and not user visible. */
15056 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15057 {
15058 struct bp_location *loc;
15059 int n = 1;
15060
15061 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15062 if (!loc->enabled)
15063 fp.printf ("disable $bpnum.%d\n", n);
15064 }
15065 }
15066
15067 if (extra_trace_bits && *default_collect)
15068 fp.printf ("set default-collect %s\n", default_collect);
15069
15070 if (from_tty)
15071 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15072 }
15073
15074 /* The `save breakpoints' command. */
15075
15076 static void
15077 save_breakpoints_command (const char *args, int from_tty)
15078 {
15079 save_breakpoints (args, from_tty, NULL);
15080 }
15081
15082 /* The `save tracepoints' command. */
15083
15084 static void
15085 save_tracepoints_command (const char *args, int from_tty)
15086 {
15087 save_breakpoints (args, from_tty, is_tracepoint);
15088 }
15089
15090 /* Create a vector of all tracepoints. */
15091
15092 std::vector<breakpoint *>
15093 all_tracepoints (void)
15094 {
15095 std::vector<breakpoint *> tp_vec;
15096 struct breakpoint *tp;
15097
15098 ALL_TRACEPOINTS (tp)
15099 {
15100 tp_vec.push_back (tp);
15101 }
15102
15103 return tp_vec;
15104 }
15105
15106 \f
15107 /* This help string is used to consolidate all the help string for specifying
15108 locations used by several commands. */
15109
15110 #define LOCATION_HELP_STRING \
15111 "Linespecs are colon-separated lists of location parameters, such as\n\
15112 source filename, function name, label name, and line number.\n\
15113 Example: To specify the start of a label named \"the_top\" in the\n\
15114 function \"fact\" in the file \"factorial.c\", use\n\
15115 \"factorial.c:fact:the_top\".\n\
15116 \n\
15117 Address locations begin with \"*\" and specify an exact address in the\n\
15118 program. Example: To specify the fourth byte past the start function\n\
15119 \"main\", use \"*main + 4\".\n\
15120 \n\
15121 Explicit locations are similar to linespecs but use an option/argument\n\
15122 syntax to specify location parameters.\n\
15123 Example: To specify the start of the label named \"the_top\" in the\n\
15124 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15125 -function fact -label the_top\".\n\
15126 \n\
15127 By default, a specified function is matched against the program's\n\
15128 functions in all scopes. For C++, this means in all namespaces and\n\
15129 classes. For Ada, this means in all packages. E.g., in C++,\n\
15130 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15131 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15132 specified name as a complete fully-qualified name instead."
15133
15134 /* This help string is used for the break, hbreak, tbreak and thbreak
15135 commands. It is defined as a macro to prevent duplication.
15136 COMMAND should be a string constant containing the name of the
15137 command. */
15138
15139 #define BREAK_ARGS_HELP(command) \
15140 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15141 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15142 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15143 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15144 `-probe-dtrace' (for a DTrace probe).\n\
15145 LOCATION may be a linespec, address, or explicit location as described\n\
15146 below.\n\
15147 \n\
15148 With no LOCATION, uses current execution address of the selected\n\
15149 stack frame. This is useful for breaking on return to a stack frame.\n\
15150 \n\
15151 THREADNUM is the number from \"info threads\".\n\
15152 CONDITION is a boolean expression.\n\
15153 \n" LOCATION_HELP_STRING "\n\n\
15154 Multiple breakpoints at one place are permitted, and useful if their\n\
15155 conditions are different.\n\
15156 \n\
15157 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15158
15159 /* List of subcommands for "catch". */
15160 static struct cmd_list_element *catch_cmdlist;
15161
15162 /* List of subcommands for "tcatch". */
15163 static struct cmd_list_element *tcatch_cmdlist;
15164
15165 void
15166 add_catch_command (const char *name, const char *docstring,
15167 cmd_const_sfunc_ftype *sfunc,
15168 completer_ftype *completer,
15169 void *user_data_catch,
15170 void *user_data_tcatch)
15171 {
15172 struct cmd_list_element *command;
15173
15174 command = add_cmd (name, class_breakpoint, docstring,
15175 &catch_cmdlist);
15176 set_cmd_sfunc (command, sfunc);
15177 set_cmd_context (command, user_data_catch);
15178 set_cmd_completer (command, completer);
15179
15180 command = add_cmd (name, class_breakpoint, docstring,
15181 &tcatch_cmdlist);
15182 set_cmd_sfunc (command, sfunc);
15183 set_cmd_context (command, user_data_tcatch);
15184 set_cmd_completer (command, completer);
15185 }
15186
15187 struct breakpoint *
15188 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15189 {
15190 struct breakpoint *b, *b_tmp;
15191
15192 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15193 {
15194 if (callback (b))
15195 return b;
15196 }
15197
15198 return NULL;
15199 }
15200
15201 /* Zero if any of the breakpoint's locations could be a location where
15202 functions have been inlined, nonzero otherwise. */
15203
15204 static int
15205 is_non_inline_function (struct breakpoint *b)
15206 {
15207 /* The shared library event breakpoint is set on the address of a
15208 non-inline function. */
15209 if (b->type == bp_shlib_event)
15210 return 1;
15211
15212 return 0;
15213 }
15214
15215 /* Nonzero if the specified PC cannot be a location where functions
15216 have been inlined. */
15217
15218 int
15219 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15220 const struct target_waitstatus *ws)
15221 {
15222 struct breakpoint *b;
15223 struct bp_location *bl;
15224
15225 ALL_BREAKPOINTS (b)
15226 {
15227 if (!is_non_inline_function (b))
15228 continue;
15229
15230 for (bl = b->loc; bl != NULL; bl = bl->next)
15231 {
15232 if (!bl->shlib_disabled
15233 && bpstat_check_location (bl, aspace, pc, ws))
15234 return 1;
15235 }
15236 }
15237
15238 return 0;
15239 }
15240
15241 /* Remove any references to OBJFILE which is going to be freed. */
15242
15243 void
15244 breakpoint_free_objfile (struct objfile *objfile)
15245 {
15246 struct bp_location **locp, *loc;
15247
15248 ALL_BP_LOCATIONS (loc, locp)
15249 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15250 loc->symtab = NULL;
15251 }
15252
15253 void
15254 initialize_breakpoint_ops (void)
15255 {
15256 static int initialized = 0;
15257
15258 struct breakpoint_ops *ops;
15259
15260 if (initialized)
15261 return;
15262 initialized = 1;
15263
15264 /* The breakpoint_ops structure to be inherit by all kinds of
15265 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15266 internal and momentary breakpoints, etc.). */
15267 ops = &bkpt_base_breakpoint_ops;
15268 *ops = base_breakpoint_ops;
15269 ops->re_set = bkpt_re_set;
15270 ops->insert_location = bkpt_insert_location;
15271 ops->remove_location = bkpt_remove_location;
15272 ops->breakpoint_hit = bkpt_breakpoint_hit;
15273 ops->create_sals_from_location = bkpt_create_sals_from_location;
15274 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15275 ops->decode_location = bkpt_decode_location;
15276
15277 /* The breakpoint_ops structure to be used in regular breakpoints. */
15278 ops = &bkpt_breakpoint_ops;
15279 *ops = bkpt_base_breakpoint_ops;
15280 ops->re_set = bkpt_re_set;
15281 ops->resources_needed = bkpt_resources_needed;
15282 ops->print_it = bkpt_print_it;
15283 ops->print_mention = bkpt_print_mention;
15284 ops->print_recreate = bkpt_print_recreate;
15285
15286 /* Ranged breakpoints. */
15287 ops = &ranged_breakpoint_ops;
15288 *ops = bkpt_breakpoint_ops;
15289 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15290 ops->resources_needed = resources_needed_ranged_breakpoint;
15291 ops->print_it = print_it_ranged_breakpoint;
15292 ops->print_one = print_one_ranged_breakpoint;
15293 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15294 ops->print_mention = print_mention_ranged_breakpoint;
15295 ops->print_recreate = print_recreate_ranged_breakpoint;
15296
15297 /* Internal breakpoints. */
15298 ops = &internal_breakpoint_ops;
15299 *ops = bkpt_base_breakpoint_ops;
15300 ops->re_set = internal_bkpt_re_set;
15301 ops->check_status = internal_bkpt_check_status;
15302 ops->print_it = internal_bkpt_print_it;
15303 ops->print_mention = internal_bkpt_print_mention;
15304
15305 /* Momentary breakpoints. */
15306 ops = &momentary_breakpoint_ops;
15307 *ops = bkpt_base_breakpoint_ops;
15308 ops->re_set = momentary_bkpt_re_set;
15309 ops->check_status = momentary_bkpt_check_status;
15310 ops->print_it = momentary_bkpt_print_it;
15311 ops->print_mention = momentary_bkpt_print_mention;
15312
15313 /* Probe breakpoints. */
15314 ops = &bkpt_probe_breakpoint_ops;
15315 *ops = bkpt_breakpoint_ops;
15316 ops->insert_location = bkpt_probe_insert_location;
15317 ops->remove_location = bkpt_probe_remove_location;
15318 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15319 ops->decode_location = bkpt_probe_decode_location;
15320
15321 /* Watchpoints. */
15322 ops = &watchpoint_breakpoint_ops;
15323 *ops = base_breakpoint_ops;
15324 ops->re_set = re_set_watchpoint;
15325 ops->insert_location = insert_watchpoint;
15326 ops->remove_location = remove_watchpoint;
15327 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15328 ops->check_status = check_status_watchpoint;
15329 ops->resources_needed = resources_needed_watchpoint;
15330 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15331 ops->print_it = print_it_watchpoint;
15332 ops->print_mention = print_mention_watchpoint;
15333 ops->print_recreate = print_recreate_watchpoint;
15334 ops->explains_signal = explains_signal_watchpoint;
15335
15336 /* Masked watchpoints. */
15337 ops = &masked_watchpoint_breakpoint_ops;
15338 *ops = watchpoint_breakpoint_ops;
15339 ops->insert_location = insert_masked_watchpoint;
15340 ops->remove_location = remove_masked_watchpoint;
15341 ops->resources_needed = resources_needed_masked_watchpoint;
15342 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15343 ops->print_it = print_it_masked_watchpoint;
15344 ops->print_one_detail = print_one_detail_masked_watchpoint;
15345 ops->print_mention = print_mention_masked_watchpoint;
15346 ops->print_recreate = print_recreate_masked_watchpoint;
15347
15348 /* Tracepoints. */
15349 ops = &tracepoint_breakpoint_ops;
15350 *ops = base_breakpoint_ops;
15351 ops->re_set = tracepoint_re_set;
15352 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15353 ops->print_one_detail = tracepoint_print_one_detail;
15354 ops->print_mention = tracepoint_print_mention;
15355 ops->print_recreate = tracepoint_print_recreate;
15356 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15357 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15358 ops->decode_location = tracepoint_decode_location;
15359
15360 /* Probe tracepoints. */
15361 ops = &tracepoint_probe_breakpoint_ops;
15362 *ops = tracepoint_breakpoint_ops;
15363 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15364 ops->decode_location = tracepoint_probe_decode_location;
15365
15366 /* Static tracepoints with marker (`-m'). */
15367 ops = &strace_marker_breakpoint_ops;
15368 *ops = tracepoint_breakpoint_ops;
15369 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15370 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15371 ops->decode_location = strace_marker_decode_location;
15372
15373 /* Fork catchpoints. */
15374 ops = &catch_fork_breakpoint_ops;
15375 *ops = base_breakpoint_ops;
15376 ops->insert_location = insert_catch_fork;
15377 ops->remove_location = remove_catch_fork;
15378 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15379 ops->print_it = print_it_catch_fork;
15380 ops->print_one = print_one_catch_fork;
15381 ops->print_mention = print_mention_catch_fork;
15382 ops->print_recreate = print_recreate_catch_fork;
15383
15384 /* Vfork catchpoints. */
15385 ops = &catch_vfork_breakpoint_ops;
15386 *ops = base_breakpoint_ops;
15387 ops->insert_location = insert_catch_vfork;
15388 ops->remove_location = remove_catch_vfork;
15389 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15390 ops->print_it = print_it_catch_vfork;
15391 ops->print_one = print_one_catch_vfork;
15392 ops->print_mention = print_mention_catch_vfork;
15393 ops->print_recreate = print_recreate_catch_vfork;
15394
15395 /* Exec catchpoints. */
15396 ops = &catch_exec_breakpoint_ops;
15397 *ops = base_breakpoint_ops;
15398 ops->insert_location = insert_catch_exec;
15399 ops->remove_location = remove_catch_exec;
15400 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15401 ops->print_it = print_it_catch_exec;
15402 ops->print_one = print_one_catch_exec;
15403 ops->print_mention = print_mention_catch_exec;
15404 ops->print_recreate = print_recreate_catch_exec;
15405
15406 /* Solib-related catchpoints. */
15407 ops = &catch_solib_breakpoint_ops;
15408 *ops = base_breakpoint_ops;
15409 ops->insert_location = insert_catch_solib;
15410 ops->remove_location = remove_catch_solib;
15411 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15412 ops->check_status = check_status_catch_solib;
15413 ops->print_it = print_it_catch_solib;
15414 ops->print_one = print_one_catch_solib;
15415 ops->print_mention = print_mention_catch_solib;
15416 ops->print_recreate = print_recreate_catch_solib;
15417
15418 ops = &dprintf_breakpoint_ops;
15419 *ops = bkpt_base_breakpoint_ops;
15420 ops->re_set = dprintf_re_set;
15421 ops->resources_needed = bkpt_resources_needed;
15422 ops->print_it = bkpt_print_it;
15423 ops->print_mention = bkpt_print_mention;
15424 ops->print_recreate = dprintf_print_recreate;
15425 ops->after_condition_true = dprintf_after_condition_true;
15426 ops->breakpoint_hit = dprintf_breakpoint_hit;
15427 }
15428
15429 /* Chain containing all defined "enable breakpoint" subcommands. */
15430
15431 static struct cmd_list_element *enablebreaklist = NULL;
15432
15433 /* See breakpoint.h. */
15434
15435 cmd_list_element *commands_cmd_element = nullptr;
15436
15437 void _initialize_breakpoint ();
15438 void
15439 _initialize_breakpoint ()
15440 {
15441 struct cmd_list_element *c;
15442
15443 initialize_breakpoint_ops ();
15444
15445 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15446 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15447 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15448
15449 breakpoint_chain = 0;
15450 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15451 before a breakpoint is set. */
15452 breakpoint_count = 0;
15453
15454 tracepoint_count = 0;
15455
15456 add_com ("ignore", class_breakpoint, ignore_command, _("\
15457 Set ignore-count of breakpoint number N to COUNT.\n\
15458 Usage is `ignore N COUNT'."));
15459
15460 commands_cmd_element = add_com ("commands", class_breakpoint,
15461 commands_command, _("\
15462 Set commands to be executed when the given breakpoints are hit.\n\
15463 Give a space-separated breakpoint list as argument after \"commands\".\n\
15464 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15465 (e.g. `5-7').\n\
15466 With no argument, the targeted breakpoint is the last one set.\n\
15467 The commands themselves follow starting on the next line.\n\
15468 Type a line containing \"end\" to indicate the end of them.\n\
15469 Give \"silent\" as the first line to make the breakpoint silent;\n\
15470 then no output is printed when it is hit, except what the commands print."));
15471
15472 c = add_com ("condition", class_breakpoint, condition_command, _("\
15473 Specify breakpoint number N to break only if COND is true.\n\
15474 Usage is `condition N COND', where N is an integer and COND is an\n\
15475 expression to be evaluated whenever breakpoint N is reached."));
15476 set_cmd_completer (c, condition_completer);
15477
15478 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15479 Set a temporary breakpoint.\n\
15480 Like \"break\" except the breakpoint is only temporary,\n\
15481 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15482 by using \"enable delete\" on the breakpoint number.\n\
15483 \n"
15484 BREAK_ARGS_HELP ("tbreak")));
15485 set_cmd_completer (c, location_completer);
15486
15487 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15488 Set a hardware assisted breakpoint.\n\
15489 Like \"break\" except the breakpoint requires hardware support,\n\
15490 some target hardware may not have this support.\n\
15491 \n"
15492 BREAK_ARGS_HELP ("hbreak")));
15493 set_cmd_completer (c, location_completer);
15494
15495 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15496 Set a temporary hardware assisted breakpoint.\n\
15497 Like \"hbreak\" except the breakpoint is only temporary,\n\
15498 so it will be deleted when hit.\n\
15499 \n"
15500 BREAK_ARGS_HELP ("thbreak")));
15501 set_cmd_completer (c, location_completer);
15502
15503 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15504 Enable all or some breakpoints.\n\
15505 Usage: enable [BREAKPOINTNUM]...\n\
15506 Give breakpoint numbers (separated by spaces) as arguments.\n\
15507 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15508 This is used to cancel the effect of the \"disable\" command.\n\
15509 With a subcommand you can enable temporarily."),
15510 &enablelist, "enable ", 1, &cmdlist);
15511
15512 add_com_alias ("en", "enable", class_breakpoint, 1);
15513
15514 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15515 Enable all or some breakpoints.\n\
15516 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15517 Give breakpoint numbers (separated by spaces) as arguments.\n\
15518 This is used to cancel the effect of the \"disable\" command.\n\
15519 May be abbreviated to simply \"enable\"."),
15520 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15521
15522 add_cmd ("once", no_class, enable_once_command, _("\
15523 Enable some breakpoints for one hit.\n\
15524 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15525 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15526 &enablebreaklist);
15527
15528 add_cmd ("delete", no_class, enable_delete_command, _("\
15529 Enable some breakpoints and delete when hit.\n\
15530 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15531 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15532 &enablebreaklist);
15533
15534 add_cmd ("count", no_class, enable_count_command, _("\
15535 Enable some breakpoints for COUNT hits.\n\
15536 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15537 If a breakpoint is hit while enabled in this fashion,\n\
15538 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15539 &enablebreaklist);
15540
15541 add_cmd ("delete", no_class, enable_delete_command, _("\
15542 Enable some breakpoints and delete when hit.\n\
15543 Usage: enable delete BREAKPOINTNUM...\n\
15544 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15545 &enablelist);
15546
15547 add_cmd ("once", no_class, enable_once_command, _("\
15548 Enable some breakpoints for one hit.\n\
15549 Usage: enable once BREAKPOINTNUM...\n\
15550 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15551 &enablelist);
15552
15553 add_cmd ("count", no_class, enable_count_command, _("\
15554 Enable some breakpoints for COUNT hits.\n\
15555 Usage: enable count COUNT BREAKPOINTNUM...\n\
15556 If a breakpoint is hit while enabled in this fashion,\n\
15557 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15558 &enablelist);
15559
15560 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15561 Disable all or some breakpoints.\n\
15562 Usage: disable [BREAKPOINTNUM]...\n\
15563 Arguments are breakpoint numbers with spaces in between.\n\
15564 To disable all breakpoints, give no argument.\n\
15565 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15566 &disablelist, "disable ", 1, &cmdlist);
15567 add_com_alias ("dis", "disable", class_breakpoint, 1);
15568 add_com_alias ("disa", "disable", class_breakpoint, 1);
15569
15570 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15571 Disable all or some breakpoints.\n\
15572 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15573 Arguments are breakpoint numbers with spaces in between.\n\
15574 To disable all breakpoints, give no argument.\n\
15575 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15576 This command may be abbreviated \"disable\"."),
15577 &disablelist);
15578
15579 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15580 Delete all or some breakpoints.\n\
15581 Usage: delete [BREAKPOINTNUM]...\n\
15582 Arguments are breakpoint numbers with spaces in between.\n\
15583 To delete all breakpoints, give no argument.\n\
15584 \n\
15585 Also a prefix command for deletion of other GDB objects."),
15586 &deletelist, "delete ", 1, &cmdlist);
15587 add_com_alias ("d", "delete", class_breakpoint, 1);
15588 add_com_alias ("del", "delete", class_breakpoint, 1);
15589
15590 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15591 Delete all or some breakpoints or auto-display expressions.\n\
15592 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15593 Arguments are breakpoint numbers with spaces in between.\n\
15594 To delete all breakpoints, give no argument.\n\
15595 This command may be abbreviated \"delete\"."),
15596 &deletelist);
15597
15598 add_com ("clear", class_breakpoint, clear_command, _("\
15599 Clear breakpoint at specified location.\n\
15600 Argument may be a linespec, explicit, or address location as described below.\n\
15601 \n\
15602 With no argument, clears all breakpoints in the line that the selected frame\n\
15603 is executing in.\n"
15604 "\n" LOCATION_HELP_STRING "\n\n\
15605 See also the \"delete\" command which clears breakpoints by number."));
15606 add_com_alias ("cl", "clear", class_breakpoint, 1);
15607
15608 c = add_com ("break", class_breakpoint, break_command, _("\
15609 Set breakpoint at specified location.\n"
15610 BREAK_ARGS_HELP ("break")));
15611 set_cmd_completer (c, location_completer);
15612
15613 add_com_alias ("b", "break", class_run, 1);
15614 add_com_alias ("br", "break", class_run, 1);
15615 add_com_alias ("bre", "break", class_run, 1);
15616 add_com_alias ("brea", "break", class_run, 1);
15617
15618 if (dbx_commands)
15619 {
15620 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15621 Break in function/address or break at a line in the current file."),
15622 &stoplist, "stop ", 1, &cmdlist);
15623 add_cmd ("in", class_breakpoint, stopin_command,
15624 _("Break in function or address."), &stoplist);
15625 add_cmd ("at", class_breakpoint, stopat_command,
15626 _("Break at a line in the current file."), &stoplist);
15627 add_com ("status", class_info, info_breakpoints_command, _("\
15628 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15629 The \"Type\" column indicates one of:\n\
15630 \tbreakpoint - normal breakpoint\n\
15631 \twatchpoint - watchpoint\n\
15632 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15633 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15634 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15635 address and file/line number respectively.\n\
15636 \n\
15637 Convenience variable \"$_\" and default examine address for \"x\"\n\
15638 are set to the address of the last breakpoint listed unless the command\n\
15639 is prefixed with \"server \".\n\n\
15640 Convenience variable \"$bpnum\" contains the number of the last\n\
15641 breakpoint set."));
15642 }
15643
15644 add_info ("breakpoints", info_breakpoints_command, _("\
15645 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15646 The \"Type\" column indicates one of:\n\
15647 \tbreakpoint - normal breakpoint\n\
15648 \twatchpoint - watchpoint\n\
15649 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15650 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15651 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15652 address and file/line number respectively.\n\
15653 \n\
15654 Convenience variable \"$_\" and default examine address for \"x\"\n\
15655 are set to the address of the last breakpoint listed unless the command\n\
15656 is prefixed with \"server \".\n\n\
15657 Convenience variable \"$bpnum\" contains the number of the last\n\
15658 breakpoint set."));
15659
15660 add_info_alias ("b", "breakpoints", 1);
15661
15662 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15663 Status of all breakpoints, or breakpoint number NUMBER.\n\
15664 The \"Type\" column indicates one of:\n\
15665 \tbreakpoint - normal breakpoint\n\
15666 \twatchpoint - watchpoint\n\
15667 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15668 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15669 \tuntil - internal breakpoint used by the \"until\" command\n\
15670 \tfinish - internal breakpoint used by the \"finish\" command\n\
15671 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15672 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15673 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15674 address and file/line number respectively.\n\
15675 \n\
15676 Convenience variable \"$_\" and default examine address for \"x\"\n\
15677 are set to the address of the last breakpoint listed unless the command\n\
15678 is prefixed with \"server \".\n\n\
15679 Convenience variable \"$bpnum\" contains the number of the last\n\
15680 breakpoint set."),
15681 &maintenanceinfolist);
15682
15683 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15684 Set catchpoints to catch events."),
15685 &catch_cmdlist, "catch ",
15686 0/*allow-unknown*/, &cmdlist);
15687
15688 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15689 Set temporary catchpoints to catch events."),
15690 &tcatch_cmdlist, "tcatch ",
15691 0/*allow-unknown*/, &cmdlist);
15692
15693 add_catch_command ("fork", _("Catch calls to fork."),
15694 catch_fork_command_1,
15695 NULL,
15696 (void *) (uintptr_t) catch_fork_permanent,
15697 (void *) (uintptr_t) catch_fork_temporary);
15698 add_catch_command ("vfork", _("Catch calls to vfork."),
15699 catch_fork_command_1,
15700 NULL,
15701 (void *) (uintptr_t) catch_vfork_permanent,
15702 (void *) (uintptr_t) catch_vfork_temporary);
15703 add_catch_command ("exec", _("Catch calls to exec."),
15704 catch_exec_command_1,
15705 NULL,
15706 CATCH_PERMANENT,
15707 CATCH_TEMPORARY);
15708 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15709 Usage: catch load [REGEX]\n\
15710 If REGEX is given, only stop for libraries matching the regular expression."),
15711 catch_load_command_1,
15712 NULL,
15713 CATCH_PERMANENT,
15714 CATCH_TEMPORARY);
15715 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15716 Usage: catch unload [REGEX]\n\
15717 If REGEX is given, only stop for libraries matching the regular expression."),
15718 catch_unload_command_1,
15719 NULL,
15720 CATCH_PERMANENT,
15721 CATCH_TEMPORARY);
15722
15723 c = add_com ("watch", class_breakpoint, watch_command, _("\
15724 Set a watchpoint for an expression.\n\
15725 Usage: watch [-l|-location] EXPRESSION\n\
15726 A watchpoint stops execution of your program whenever the value of\n\
15727 an expression changes.\n\
15728 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15729 the memory to which it refers."));
15730 set_cmd_completer (c, expression_completer);
15731
15732 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15733 Set a read watchpoint for an expression.\n\
15734 Usage: rwatch [-l|-location] EXPRESSION\n\
15735 A watchpoint stops execution of your program whenever the value of\n\
15736 an expression is read.\n\
15737 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15738 the memory to which it refers."));
15739 set_cmd_completer (c, expression_completer);
15740
15741 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15742 Set a watchpoint for an expression.\n\
15743 Usage: awatch [-l|-location] EXPRESSION\n\
15744 A watchpoint stops execution of your program whenever the value of\n\
15745 an expression is either read or written.\n\
15746 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15747 the memory to which it refers."));
15748 set_cmd_completer (c, expression_completer);
15749
15750 add_info ("watchpoints", info_watchpoints_command, _("\
15751 Status of specified watchpoints (all watchpoints if no argument)."));
15752
15753 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15754 respond to changes - contrary to the description. */
15755 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15756 &can_use_hw_watchpoints, _("\
15757 Set debugger's willingness to use watchpoint hardware."), _("\
15758 Show debugger's willingness to use watchpoint hardware."), _("\
15759 If zero, gdb will not use hardware for new watchpoints, even if\n\
15760 such is available. (However, any hardware watchpoints that were\n\
15761 created before setting this to nonzero, will continue to use watchpoint\n\
15762 hardware.)"),
15763 NULL,
15764 show_can_use_hw_watchpoints,
15765 &setlist, &showlist);
15766
15767 can_use_hw_watchpoints = 1;
15768
15769 /* Tracepoint manipulation commands. */
15770
15771 c = add_com ("trace", class_breakpoint, trace_command, _("\
15772 Set a tracepoint at specified location.\n\
15773 \n"
15774 BREAK_ARGS_HELP ("trace") "\n\
15775 Do \"help tracepoints\" for info on other tracepoint commands."));
15776 set_cmd_completer (c, location_completer);
15777
15778 add_com_alias ("tp", "trace", class_breakpoint, 0);
15779 add_com_alias ("tr", "trace", class_breakpoint, 1);
15780 add_com_alias ("tra", "trace", class_breakpoint, 1);
15781 add_com_alias ("trac", "trace", class_breakpoint, 1);
15782
15783 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15784 Set a fast tracepoint at specified location.\n\
15785 \n"
15786 BREAK_ARGS_HELP ("ftrace") "\n\
15787 Do \"help tracepoints\" for info on other tracepoint commands."));
15788 set_cmd_completer (c, location_completer);
15789
15790 c = add_com ("strace", class_breakpoint, strace_command, _("\
15791 Set a static tracepoint at location or marker.\n\
15792 \n\
15793 strace [LOCATION] [if CONDITION]\n\
15794 LOCATION may be a linespec, explicit, or address location (described below) \n\
15795 or -m MARKER_ID.\n\n\
15796 If a marker id is specified, probe the marker with that name. With\n\
15797 no LOCATION, uses current execution address of the selected stack frame.\n\
15798 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15799 This collects arbitrary user data passed in the probe point call to the\n\
15800 tracing library. You can inspect it when analyzing the trace buffer,\n\
15801 by printing the $_sdata variable like any other convenience variable.\n\
15802 \n\
15803 CONDITION is a boolean expression.\n\
15804 \n" LOCATION_HELP_STRING "\n\n\
15805 Multiple tracepoints at one place are permitted, and useful if their\n\
15806 conditions are different.\n\
15807 \n\
15808 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15809 Do \"help tracepoints\" for info on other tracepoint commands."));
15810 set_cmd_completer (c, location_completer);
15811
15812 add_info ("tracepoints", info_tracepoints_command, _("\
15813 Status of specified tracepoints (all tracepoints if no argument).\n\
15814 Convenience variable \"$tpnum\" contains the number of the\n\
15815 last tracepoint set."));
15816
15817 add_info_alias ("tp", "tracepoints", 1);
15818
15819 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15820 Delete specified tracepoints.\n\
15821 Arguments are tracepoint numbers, separated by spaces.\n\
15822 No argument means delete all tracepoints."),
15823 &deletelist);
15824 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15825
15826 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15827 Disable specified tracepoints.\n\
15828 Arguments are tracepoint numbers, separated by spaces.\n\
15829 No argument means disable all tracepoints."),
15830 &disablelist);
15831 deprecate_cmd (c, "disable");
15832
15833 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15834 Enable specified tracepoints.\n\
15835 Arguments are tracepoint numbers, separated by spaces.\n\
15836 No argument means enable all tracepoints."),
15837 &enablelist);
15838 deprecate_cmd (c, "enable");
15839
15840 add_com ("passcount", class_trace, trace_pass_command, _("\
15841 Set the passcount for a tracepoint.\n\
15842 The trace will end when the tracepoint has been passed 'count' times.\n\
15843 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15844 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15845
15846 add_basic_prefix_cmd ("save", class_breakpoint,
15847 _("Save breakpoint definitions as a script."),
15848 &save_cmdlist, "save ",
15849 0/*allow-unknown*/, &cmdlist);
15850
15851 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15852 Save current breakpoint definitions as a script.\n\
15853 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15854 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15855 session to restore them."),
15856 &save_cmdlist);
15857 set_cmd_completer (c, filename_completer);
15858
15859 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15860 Save current tracepoint definitions as a script.\n\
15861 Use the 'source' command in another debug session to restore them."),
15862 &save_cmdlist);
15863 set_cmd_completer (c, filename_completer);
15864
15865 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15866 deprecate_cmd (c, "save tracepoints");
15867
15868 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
15869 Breakpoint specific settings.\n\
15870 Configure various breakpoint-specific variables such as\n\
15871 pending breakpoint behavior."),
15872 &breakpoint_set_cmdlist, "set breakpoint ",
15873 0/*allow-unknown*/, &setlist);
15874 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
15875 Breakpoint specific settings.\n\
15876 Configure various breakpoint-specific variables such as\n\
15877 pending breakpoint behavior."),
15878 &breakpoint_show_cmdlist, "show breakpoint ",
15879 0/*allow-unknown*/, &showlist);
15880
15881 add_setshow_auto_boolean_cmd ("pending", no_class,
15882 &pending_break_support, _("\
15883 Set debugger's behavior regarding pending breakpoints."), _("\
15884 Show debugger's behavior regarding pending breakpoints."), _("\
15885 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15886 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15887 an error. If auto, an unrecognized breakpoint location results in a\n\
15888 user-query to see if a pending breakpoint should be created."),
15889 NULL,
15890 show_pending_break_support,
15891 &breakpoint_set_cmdlist,
15892 &breakpoint_show_cmdlist);
15893
15894 pending_break_support = AUTO_BOOLEAN_AUTO;
15895
15896 add_setshow_boolean_cmd ("auto-hw", no_class,
15897 &automatic_hardware_breakpoints, _("\
15898 Set automatic usage of hardware breakpoints."), _("\
15899 Show automatic usage of hardware breakpoints."), _("\
15900 If set, the debugger will automatically use hardware breakpoints for\n\
15901 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15902 a warning will be emitted for such breakpoints."),
15903 NULL,
15904 show_automatic_hardware_breakpoints,
15905 &breakpoint_set_cmdlist,
15906 &breakpoint_show_cmdlist);
15907
15908 add_setshow_boolean_cmd ("always-inserted", class_support,
15909 &always_inserted_mode, _("\
15910 Set mode for inserting breakpoints."), _("\
15911 Show mode for inserting breakpoints."), _("\
15912 When this mode is on, breakpoints are inserted immediately as soon as\n\
15913 they're created, kept inserted even when execution stops, and removed\n\
15914 only when the user deletes them. When this mode is off (the default),\n\
15915 breakpoints are inserted only when execution continues, and removed\n\
15916 when execution stops."),
15917 NULL,
15918 &show_always_inserted_mode,
15919 &breakpoint_set_cmdlist,
15920 &breakpoint_show_cmdlist);
15921
15922 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15923 condition_evaluation_enums,
15924 &condition_evaluation_mode_1, _("\
15925 Set mode of breakpoint condition evaluation."), _("\
15926 Show mode of breakpoint condition evaluation."), _("\
15927 When this is set to \"host\", breakpoint conditions will be\n\
15928 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15929 breakpoint conditions will be downloaded to the target (if the target\n\
15930 supports such feature) and conditions will be evaluated on the target's side.\n\
15931 If this is set to \"auto\" (default), this will be automatically set to\n\
15932 \"target\" if it supports condition evaluation, otherwise it will\n\
15933 be set to \"gdb\""),
15934 &set_condition_evaluation_mode,
15935 &show_condition_evaluation_mode,
15936 &breakpoint_set_cmdlist,
15937 &breakpoint_show_cmdlist);
15938
15939 add_com ("break-range", class_breakpoint, break_range_command, _("\
15940 Set a breakpoint for an address range.\n\
15941 break-range START-LOCATION, END-LOCATION\n\
15942 where START-LOCATION and END-LOCATION can be one of the following:\n\
15943 LINENUM, for that line in the current file,\n\
15944 FILE:LINENUM, for that line in that file,\n\
15945 +OFFSET, for that number of lines after the current line\n\
15946 or the start of the range\n\
15947 FUNCTION, for the first line in that function,\n\
15948 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15949 *ADDRESS, for the instruction at that address.\n\
15950 \n\
15951 The breakpoint will stop execution of the inferior whenever it executes\n\
15952 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15953 range (including START-LOCATION and END-LOCATION)."));
15954
15955 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15956 Set a dynamic printf at specified location.\n\
15957 dprintf location,format string,arg1,arg2,...\n\
15958 location may be a linespec, explicit, or address location.\n"
15959 "\n" LOCATION_HELP_STRING));
15960 set_cmd_completer (c, location_completer);
15961
15962 add_setshow_enum_cmd ("dprintf-style", class_support,
15963 dprintf_style_enums, &dprintf_style, _("\
15964 Set the style of usage for dynamic printf."), _("\
15965 Show the style of usage for dynamic printf."), _("\
15966 This setting chooses how GDB will do a dynamic printf.\n\
15967 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15968 console, as with the \"printf\" command.\n\
15969 If the value is \"call\", the print is done by calling a function in your\n\
15970 program; by default printf(), but you can choose a different function or\n\
15971 output stream by setting dprintf-function and dprintf-channel."),
15972 update_dprintf_commands, NULL,
15973 &setlist, &showlist);
15974
15975 dprintf_function = xstrdup ("printf");
15976 add_setshow_string_cmd ("dprintf-function", class_support,
15977 &dprintf_function, _("\
15978 Set the function to use for dynamic printf."), _("\
15979 Show the function to use for dynamic printf."), NULL,
15980 update_dprintf_commands, NULL,
15981 &setlist, &showlist);
15982
15983 dprintf_channel = xstrdup ("");
15984 add_setshow_string_cmd ("dprintf-channel", class_support,
15985 &dprintf_channel, _("\
15986 Set the channel to use for dynamic printf."), _("\
15987 Show the channel to use for dynamic printf."), NULL,
15988 update_dprintf_commands, NULL,
15989 &setlist, &showlist);
15990
15991 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15992 &disconnected_dprintf, _("\
15993 Set whether dprintf continues after GDB disconnects."), _("\
15994 Show whether dprintf continues after GDB disconnects."), _("\
15995 Use this to let dprintf commands continue to hit and produce output\n\
15996 even if GDB disconnects or detaches from the target."),
15997 NULL,
15998 NULL,
15999 &setlist, &showlist);
16000
16001 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16002 Target agent only formatted printing, like the C \"printf\" function.\n\
16003 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
16004 This supports most C printf format specifications, like %s, %d, etc.\n\
16005 This is useful for formatted output in user-defined commands."));
16006
16007 automatic_hardware_breakpoints = true;
16008
16009 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16010 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16011 }
This page took 0.383455 seconds and 5 git commands to generate.