gdb/breakpoint: make a copy of the "commands" command's argument
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Tracepoints set on probes. */
254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
255
256 /* Dynamic printf class type. */
257 struct breakpoint_ops dprintf_breakpoint_ops;
258
259 /* The style in which to perform a dynamic printf. This is a user
260 option because different output options have different tradeoffs;
261 if GDB does the printing, there is better error handling if there
262 is a problem with any of the arguments, but using an inferior
263 function lets you have special-purpose printers and sending of
264 output to the same place as compiled-in print functions. */
265
266 static const char dprintf_style_gdb[] = "gdb";
267 static const char dprintf_style_call[] = "call";
268 static const char dprintf_style_agent[] = "agent";
269 static const char *const dprintf_style_enums[] = {
270 dprintf_style_gdb,
271 dprintf_style_call,
272 dprintf_style_agent,
273 NULL
274 };
275 static const char *dprintf_style = dprintf_style_gdb;
276
277 /* The function to use for dynamic printf if the preferred style is to
278 call into the inferior. The value is simply a string that is
279 copied into the command, so it can be anything that GDB can
280 evaluate to a callable address, not necessarily a function name. */
281
282 static char *dprintf_function;
283
284 /* The channel to use for dynamic printf if the preferred style is to
285 call into the inferior; if a nonempty string, it will be passed to
286 the call as the first argument, with the format string as the
287 second. As with the dprintf function, this can be anything that
288 GDB knows how to evaluate, so in addition to common choices like
289 "stderr", this could be an app-specific expression like
290 "mystreams[curlogger]". */
291
292 static char *dprintf_channel;
293
294 /* True if dprintf commands should continue to operate even if GDB
295 has disconnected. */
296 static bool disconnected_dprintf = true;
297
298 struct command_line *
299 breakpoint_commands (struct breakpoint *b)
300 {
301 return b->commands ? b->commands.get () : NULL;
302 }
303
304 /* Flag indicating that a command has proceeded the inferior past the
305 current breakpoint. */
306
307 static bool breakpoint_proceeded;
308
309 const char *
310 bpdisp_text (enum bpdisp disp)
311 {
312 /* NOTE: the following values are a part of MI protocol and
313 represent values of 'disp' field returned when inferior stops at
314 a breakpoint. */
315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
316
317 return bpdisps[(int) disp];
318 }
319
320 /* Prototypes for exported functions. */
321 /* If FALSE, gdb will not use hardware support for watchpoints, even
322 if such is available. */
323 static int can_use_hw_watchpoints;
324
325 static void
326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c,
328 const char *value)
329 {
330 fprintf_filtered (file,
331 _("Debugger's willingness to use "
332 "watchpoint hardware is %s.\n"),
333 value);
334 }
335
336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
338 for unrecognized breakpoint locations.
339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
340 static enum auto_boolean pending_break_support;
341 static void
342 show_pending_break_support (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c,
344 const char *value)
345 {
346 fprintf_filtered (file,
347 _("Debugger's behavior regarding "
348 "pending breakpoints is %s.\n"),
349 value);
350 }
351
352 /* If true, gdb will automatically use hardware breakpoints for breakpoints
353 set with "break" but falling in read-only memory.
354 If false, gdb will warn about such breakpoints, but won't automatically
355 use hardware breakpoints. */
356 static bool automatic_hardware_breakpoints;
357 static void
358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c,
360 const char *value)
361 {
362 fprintf_filtered (file,
363 _("Automatic usage of hardware breakpoints is %s.\n"),
364 value);
365 }
366
367 /* If on, GDB keeps breakpoints inserted even if the inferior is
368 stopped, and immediately inserts any new breakpoints as soon as
369 they're created. If off (default), GDB keeps breakpoints off of
370 the target as long as possible. That is, it delays inserting
371 breakpoints until the next resume, and removes them again when the
372 target fully stops. This is a bit safer in case GDB crashes while
373 processing user input. */
374 static bool always_inserted_mode = false;
375
376 static void
377 show_always_inserted_mode (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379 {
380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
381 value);
382 }
383
384 /* See breakpoint.h. */
385
386 int
387 breakpoints_should_be_inserted_now (void)
388 {
389 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
390 {
391 /* If breakpoints are global, they should be inserted even if no
392 thread under gdb's control is running, or even if there are
393 no threads under GDB's control yet. */
394 return 1;
395 }
396 else
397 {
398 if (always_inserted_mode)
399 {
400 /* The user wants breakpoints inserted even if all threads
401 are stopped. */
402 return 1;
403 }
404
405 for (inferior *inf : all_inferiors ())
406 if (inf->has_execution ()
407 && threads_are_executing (inf->process_target ()))
408 return 1;
409
410 /* Don't remove breakpoints yet if, even though all threads are
411 stopped, we still have events to process. */
412 for (thread_info *tp : all_non_exited_threads ())
413 if (tp->resumed
414 && tp->suspend.waitstatus_pending_p)
415 return 1;
416 }
417 return 0;
418 }
419
420 static const char condition_evaluation_both[] = "host or target";
421
422 /* Modes for breakpoint condition evaluation. */
423 static const char condition_evaluation_auto[] = "auto";
424 static const char condition_evaluation_host[] = "host";
425 static const char condition_evaluation_target[] = "target";
426 static const char *const condition_evaluation_enums[] = {
427 condition_evaluation_auto,
428 condition_evaluation_host,
429 condition_evaluation_target,
430 NULL
431 };
432
433 /* Global that holds the current mode for breakpoint condition evaluation. */
434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
435
436 /* Global that we use to display information to the user (gets its value from
437 condition_evaluation_mode_1. */
438 static const char *condition_evaluation_mode = condition_evaluation_auto;
439
440 /* Translate a condition evaluation mode MODE into either "host"
441 or "target". This is used mostly to translate from "auto" to the
442 real setting that is being used. It returns the translated
443 evaluation mode. */
444
445 static const char *
446 translate_condition_evaluation_mode (const char *mode)
447 {
448 if (mode == condition_evaluation_auto)
449 {
450 if (target_supports_evaluation_of_breakpoint_conditions ())
451 return condition_evaluation_target;
452 else
453 return condition_evaluation_host;
454 }
455 else
456 return mode;
457 }
458
459 /* Discovers what condition_evaluation_auto translates to. */
460
461 static const char *
462 breakpoint_condition_evaluation_mode (void)
463 {
464 return translate_condition_evaluation_mode (condition_evaluation_mode);
465 }
466
467 /* Return true if GDB should evaluate breakpoint conditions or false
468 otherwise. */
469
470 static int
471 gdb_evaluates_breakpoint_condition_p (void)
472 {
473 const char *mode = breakpoint_condition_evaluation_mode ();
474
475 return (mode == condition_evaluation_host);
476 }
477
478 /* Are we executing breakpoint commands? */
479 static int executing_breakpoint_commands;
480
481 /* Are overlay event breakpoints enabled? */
482 static int overlay_events_enabled;
483
484 /* See description in breakpoint.h. */
485 bool target_exact_watchpoints = false;
486
487 /* Walk the following statement or block through all breakpoints.
488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
489 current breakpoint. */
490
491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
492
493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
494 for (B = breakpoint_chain; \
495 B ? (TMP=B->next, 1): 0; \
496 B = TMP)
497
498 /* Similar iterator for the low-level breakpoints. SAFE variant is
499 not provided so update_global_location_list must not be called
500 while executing the block of ALL_BP_LOCATIONS. */
501
502 #define ALL_BP_LOCATIONS(B,BP_TMP) \
503 for (BP_TMP = bp_locations; \
504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
505 BP_TMP++)
506
507 /* Iterates through locations with address ADDRESS for the currently selected
508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
509 to where the loop should start from.
510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
511 appropriate location to start with. */
512
513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
515 BP_LOCP_TMP = BP_LOCP_START; \
516 BP_LOCP_START \
517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
518 && (*BP_LOCP_TMP)->address == ADDRESS); \
519 BP_LOCP_TMP++)
520
521 /* Iterator for tracepoints only. */
522
523 #define ALL_TRACEPOINTS(B) \
524 for (B = breakpoint_chain; B; B = B->next) \
525 if (is_tracepoint (B))
526
527 /* Chains of all breakpoints defined. */
528
529 static struct breakpoint *breakpoint_chain;
530
531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
532
533 static struct bp_location **bp_locations;
534
535 /* Number of elements of BP_LOCATIONS. */
536
537 static unsigned bp_locations_count;
538
539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
540 ADDRESS for the current elements of BP_LOCATIONS which get a valid
541 result from bp_location_has_shadow. You can use it for roughly
542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
543 an address you need to read. */
544
545 static CORE_ADDR bp_locations_placed_address_before_address_max;
546
547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
549 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
550 You can use it for roughly limiting the subrange of BP_LOCATIONS to
551 scan for shadow bytes for an address you need to read. */
552
553 static CORE_ADDR bp_locations_shadow_len_after_address_max;
554
555 /* The locations that no longer correspond to any breakpoint, unlinked
556 from the bp_locations array, but for which a hit may still be
557 reported by a target. */
558 static std::vector<bp_location *> moribund_locations;
559
560 /* Number of last breakpoint made. */
561
562 static int breakpoint_count;
563
564 /* The value of `breakpoint_count' before the last command that
565 created breakpoints. If the last (break-like) command created more
566 than one breakpoint, then the difference between BREAKPOINT_COUNT
567 and PREV_BREAKPOINT_COUNT is more than one. */
568 static int prev_breakpoint_count;
569
570 /* Number of last tracepoint made. */
571
572 static int tracepoint_count;
573
574 static struct cmd_list_element *breakpoint_set_cmdlist;
575 static struct cmd_list_element *breakpoint_show_cmdlist;
576 struct cmd_list_element *save_cmdlist;
577
578 /* See declaration at breakpoint.h. */
579
580 struct breakpoint *
581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
582 void *user_data)
583 {
584 struct breakpoint *b = NULL;
585
586 ALL_BREAKPOINTS (b)
587 {
588 if (func (b, user_data) != 0)
589 break;
590 }
591
592 return b;
593 }
594
595 /* Return whether a breakpoint is an active enabled breakpoint. */
596 static int
597 breakpoint_enabled (struct breakpoint *b)
598 {
599 return (b->enable_state == bp_enabled);
600 }
601
602 /* Set breakpoint count to NUM. */
603
604 static void
605 set_breakpoint_count (int num)
606 {
607 prev_breakpoint_count = breakpoint_count;
608 breakpoint_count = num;
609 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
610 }
611
612 /* Used by `start_rbreak_breakpoints' below, to record the current
613 breakpoint count before "rbreak" creates any breakpoint. */
614 static int rbreak_start_breakpoint_count;
615
616 /* Called at the start an "rbreak" command to record the first
617 breakpoint made. */
618
619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
620 {
621 rbreak_start_breakpoint_count = breakpoint_count;
622 }
623
624 /* Called at the end of an "rbreak" command to record the last
625 breakpoint made. */
626
627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
628 {
629 prev_breakpoint_count = rbreak_start_breakpoint_count;
630 }
631
632 /* Used in run_command to zero the hit count when a new run starts. */
633
634 void
635 clear_breakpoint_hit_counts (void)
636 {
637 struct breakpoint *b;
638
639 ALL_BREAKPOINTS (b)
640 b->hit_count = 0;
641 }
642
643 \f
644 /* Return the breakpoint with the specified number, or NULL
645 if the number does not refer to an existing breakpoint. */
646
647 struct breakpoint *
648 get_breakpoint (int num)
649 {
650 struct breakpoint *b;
651
652 ALL_BREAKPOINTS (b)
653 if (b->number == num)
654 return b;
655
656 return NULL;
657 }
658
659 \f
660
661 /* Mark locations as "conditions have changed" in case the target supports
662 evaluating conditions on its side. */
663
664 static void
665 mark_breakpoint_modified (struct breakpoint *b)
666 {
667 struct bp_location *loc;
668
669 /* This is only meaningful if the target is
670 evaluating conditions and if the user has
671 opted for condition evaluation on the target's
672 side. */
673 if (gdb_evaluates_breakpoint_condition_p ()
674 || !target_supports_evaluation_of_breakpoint_conditions ())
675 return;
676
677 if (!is_breakpoint (b))
678 return;
679
680 for (loc = b->loc; loc; loc = loc->next)
681 loc->condition_changed = condition_modified;
682 }
683
684 /* Mark location as "conditions have changed" in case the target supports
685 evaluating conditions on its side. */
686
687 static void
688 mark_breakpoint_location_modified (struct bp_location *loc)
689 {
690 /* This is only meaningful if the target is
691 evaluating conditions and if the user has
692 opted for condition evaluation on the target's
693 side. */
694 if (gdb_evaluates_breakpoint_condition_p ()
695 || !target_supports_evaluation_of_breakpoint_conditions ())
696
697 return;
698
699 if (!is_breakpoint (loc->owner))
700 return;
701
702 loc->condition_changed = condition_modified;
703 }
704
705 /* Sets the condition-evaluation mode using the static global
706 condition_evaluation_mode. */
707
708 static void
709 set_condition_evaluation_mode (const char *args, int from_tty,
710 struct cmd_list_element *c)
711 {
712 const char *old_mode, *new_mode;
713
714 if ((condition_evaluation_mode_1 == condition_evaluation_target)
715 && !target_supports_evaluation_of_breakpoint_conditions ())
716 {
717 condition_evaluation_mode_1 = condition_evaluation_mode;
718 warning (_("Target does not support breakpoint condition evaluation.\n"
719 "Using host evaluation mode instead."));
720 return;
721 }
722
723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
725
726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
727 settings was "auto". */
728 condition_evaluation_mode = condition_evaluation_mode_1;
729
730 /* Only update the mode if the user picked a different one. */
731 if (new_mode != old_mode)
732 {
733 struct bp_location *loc, **loc_tmp;
734 /* If the user switched to a different evaluation mode, we
735 need to synch the changes with the target as follows:
736
737 "host" -> "target": Send all (valid) conditions to the target.
738 "target" -> "host": Remove all the conditions from the target.
739 */
740
741 if (new_mode == condition_evaluation_target)
742 {
743 /* Mark everything modified and synch conditions with the
744 target. */
745 ALL_BP_LOCATIONS (loc, loc_tmp)
746 mark_breakpoint_location_modified (loc);
747 }
748 else
749 {
750 /* Manually mark non-duplicate locations to synch conditions
751 with the target. We do this to remove all the conditions the
752 target knows about. */
753 ALL_BP_LOCATIONS (loc, loc_tmp)
754 if (is_breakpoint (loc->owner) && loc->inserted)
755 loc->needs_update = 1;
756 }
757
758 /* Do the update. */
759 update_global_location_list (UGLL_MAY_INSERT);
760 }
761
762 return;
763 }
764
765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
766 what "auto" is translating to. */
767
768 static void
769 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 if (condition_evaluation_mode == condition_evaluation_auto)
773 fprintf_filtered (file,
774 _("Breakpoint condition evaluation "
775 "mode is %s (currently %s).\n"),
776 value,
777 breakpoint_condition_evaluation_mode ());
778 else
779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
780 value);
781 }
782
783 /* A comparison function for bp_location AP and BP that is used by
784 bsearch. This comparison function only cares about addresses, unlike
785 the more general bp_location_is_less_than function. */
786
787 static int
788 bp_locations_compare_addrs (const void *ap, const void *bp)
789 {
790 const struct bp_location *a = *(const struct bp_location **) ap;
791 const struct bp_location *b = *(const struct bp_location **) bp;
792
793 if (a->address == b->address)
794 return 0;
795 else
796 return ((a->address > b->address) - (a->address < b->address));
797 }
798
799 /* Helper function to skip all bp_locations with addresses
800 less than ADDRESS. It returns the first bp_location that
801 is greater than or equal to ADDRESS. If none is found, just
802 return NULL. */
803
804 static struct bp_location **
805 get_first_locp_gte_addr (CORE_ADDR address)
806 {
807 struct bp_location dummy_loc;
808 struct bp_location *dummy_locp = &dummy_loc;
809 struct bp_location **locp_found = NULL;
810
811 /* Initialize the dummy location's address field. */
812 dummy_loc.address = address;
813
814 /* Find a close match to the first location at ADDRESS. */
815 locp_found = ((struct bp_location **)
816 bsearch (&dummy_locp, bp_locations, bp_locations_count,
817 sizeof (struct bp_location **),
818 bp_locations_compare_addrs));
819
820 /* Nothing was found, nothing left to do. */
821 if (locp_found == NULL)
822 return NULL;
823
824 /* We may have found a location that is at ADDRESS but is not the first in the
825 location's list. Go backwards (if possible) and locate the first one. */
826 while ((locp_found - 1) >= bp_locations
827 && (*(locp_found - 1))->address == address)
828 locp_found--;
829
830 return locp_found;
831 }
832
833 void
834 set_breakpoint_condition (struct breakpoint *b, const char *exp,
835 int from_tty)
836 {
837 if (*exp == 0)
838 {
839 xfree (b->cond_string);
840 b->cond_string = nullptr;
841
842 if (is_watchpoint (b))
843 static_cast<watchpoint *> (b)->cond_exp.reset ();
844 else
845 {
846 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
847 {
848 loc->cond.reset ();
849
850 /* No need to free the condition agent expression
851 bytecode (if we have one). We will handle this
852 when we go through update_global_location_list. */
853 }
854 }
855
856 if (from_tty)
857 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
858 }
859 else
860 {
861 if (is_watchpoint (b))
862 {
863 innermost_block_tracker tracker;
864 const char *arg = exp;
865 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
866 if (*arg != 0)
867 error (_("Junk at end of expression"));
868 watchpoint *w = static_cast<watchpoint *> (b);
869 w->cond_exp = std::move (new_exp);
870 w->cond_exp_valid_block = tracker.block ();
871 }
872 else
873 {
874 /* Parse and set condition expressions. We make two passes.
875 In the first, we parse the condition string to see if it
876 is valid in all locations. If so, the condition would be
877 accepted. So we go ahead and set the locations'
878 conditions. In case a failing case is found, we throw
879 the error and the condition string will be rejected.
880 This two-pass approach is taken to avoid setting the
881 state of locations in case of a reject. */
882 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
883 {
884 const char *arg = exp;
885 parse_exp_1 (&arg, loc->address,
886 block_for_pc (loc->address), 0);
887 if (*arg != 0)
888 error (_("Junk at end of expression"));
889 }
890
891 /* If we reach here, the condition is valid at all locations. */
892 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
893 {
894 const char *arg = exp;
895 loc->cond =
896 parse_exp_1 (&arg, loc->address,
897 block_for_pc (loc->address), 0);
898 }
899 }
900
901 /* We know that the new condition parsed successfully. The
902 condition string of the breakpoint can be safely updated. */
903 xfree (b->cond_string);
904 b->cond_string = xstrdup (exp);
905 b->condition_not_parsed = 0;
906 }
907 mark_breakpoint_modified (b);
908
909 gdb::observers::breakpoint_modified.notify (b);
910 }
911
912 /* Completion for the "condition" command. */
913
914 static void
915 condition_completer (struct cmd_list_element *cmd,
916 completion_tracker &tracker,
917 const char *text, const char *word)
918 {
919 const char *space;
920
921 text = skip_spaces (text);
922 space = skip_to_space (text);
923 if (*space == '\0')
924 {
925 int len;
926 struct breakpoint *b;
927
928 if (text[0] == '$')
929 {
930 /* We don't support completion of history indices. */
931 if (!isdigit (text[1]))
932 complete_internalvar (tracker, &text[1]);
933 return;
934 }
935
936 /* We're completing the breakpoint number. */
937 len = strlen (text);
938
939 ALL_BREAKPOINTS (b)
940 {
941 char number[50];
942
943 xsnprintf (number, sizeof (number), "%d", b->number);
944
945 if (strncmp (number, text, len) == 0)
946 tracker.add_completion (make_unique_xstrdup (number));
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 /* See breakpoint.h. */
1051
1052 bool
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_list_1 == nullptr);
1130 c2 = while_stepping->body_list_0.get ();
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 std::vector<breakpoint *>
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 std::vector<breakpoint *> found;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 found.push_back (b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 counted_command_line &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 static void
1219 commands_command_1 (const char *arg, int from_tty,
1220 struct command_line *control)
1221 {
1222 counted_command_line cmd;
1223 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1224 NULL after the call to read_command_lines if the user provides an empty
1225 list of command by just typing "end". */
1226 bool cmd_read = false;
1227
1228 std::string new_arg;
1229
1230 if (arg == NULL || !*arg)
1231 {
1232 /* Argument not explicitly given. Synthesize it. */
1233 if (breakpoint_count - prev_breakpoint_count > 1)
1234 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1235 breakpoint_count);
1236 else if (breakpoint_count > 0)
1237 new_arg = string_printf ("%d", breakpoint_count);
1238 }
1239 else
1240 {
1241 /* Create a copy of ARG. This is needed because the "commands"
1242 command may be coming from a script. In that case, the read
1243 line buffer is going to be overwritten in the lambda of
1244 'map_breakpoint_numbers' below when reading the next line
1245 before we are are done parsing the breakpoint numbers. */
1246 new_arg = arg;
1247 }
1248 arg = new_arg.c_str ();
1249
1250 map_breakpoint_numbers
1251 (arg, [&] (breakpoint *b)
1252 {
1253 if (!cmd_read)
1254 {
1255 gdb_assert (cmd == NULL);
1256 if (control != NULL)
1257 cmd = control->body_list_0;
1258 else
1259 {
1260 std::string str
1261 = string_printf (_("Type commands for breakpoint(s) "
1262 "%s, one per line."),
1263 arg);
1264
1265 auto do_validate = [=] (const char *line)
1266 {
1267 validate_actionline (line, b);
1268 };
1269 gdb::function_view<void (const char *)> validator;
1270 if (is_tracepoint (b))
1271 validator = do_validate;
1272
1273 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1274 }
1275 cmd_read = true;
1276 }
1277
1278 /* If a breakpoint was on the list more than once, we don't need to
1279 do anything. */
1280 if (b->commands != cmd)
1281 {
1282 validate_commands_for_breakpoint (b, cmd.get ());
1283 b->commands = cmd;
1284 gdb::observers::breakpoint_modified.notify (b);
1285 }
1286 });
1287 }
1288
1289 static void
1290 commands_command (const char *arg, int from_tty)
1291 {
1292 commands_command_1 (arg, from_tty, NULL);
1293 }
1294
1295 /* Like commands_command, but instead of reading the commands from
1296 input stream, takes them from an already parsed command structure.
1297
1298 This is used by cli-script.c to DTRT with breakpoint commands
1299 that are part of if and while bodies. */
1300 enum command_control_type
1301 commands_from_control_command (const char *arg, struct command_line *cmd)
1302 {
1303 commands_command_1 (arg, 0, cmd);
1304 return simple_control;
1305 }
1306
1307 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1308
1309 static int
1310 bp_location_has_shadow (struct bp_location *bl)
1311 {
1312 if (bl->loc_type != bp_loc_software_breakpoint)
1313 return 0;
1314 if (!bl->inserted)
1315 return 0;
1316 if (bl->target_info.shadow_len == 0)
1317 /* BL isn't valid, or doesn't shadow memory. */
1318 return 0;
1319 return 1;
1320 }
1321
1322 /* Update BUF, which is LEN bytes read from the target address
1323 MEMADDR, by replacing a memory breakpoint with its shadowed
1324 contents.
1325
1326 If READBUF is not NULL, this buffer must not overlap with the of
1327 the breakpoint location's shadow_contents buffer. Otherwise, a
1328 failed assertion internal error will be raised. */
1329
1330 static void
1331 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1332 const gdb_byte *writebuf_org,
1333 ULONGEST memaddr, LONGEST len,
1334 struct bp_target_info *target_info,
1335 struct gdbarch *gdbarch)
1336 {
1337 /* Now do full processing of the found relevant range of elements. */
1338 CORE_ADDR bp_addr = 0;
1339 int bp_size = 0;
1340 int bptoffset = 0;
1341
1342 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1343 current_program_space->aspace, 0))
1344 {
1345 /* The breakpoint is inserted in a different address space. */
1346 return;
1347 }
1348
1349 /* Addresses and length of the part of the breakpoint that
1350 we need to copy. */
1351 bp_addr = target_info->placed_address;
1352 bp_size = target_info->shadow_len;
1353
1354 if (bp_addr + bp_size <= memaddr)
1355 {
1356 /* The breakpoint is entirely before the chunk of memory we are
1357 reading. */
1358 return;
1359 }
1360
1361 if (bp_addr >= memaddr + len)
1362 {
1363 /* The breakpoint is entirely after the chunk of memory we are
1364 reading. */
1365 return;
1366 }
1367
1368 /* Offset within shadow_contents. */
1369 if (bp_addr < memaddr)
1370 {
1371 /* Only copy the second part of the breakpoint. */
1372 bp_size -= memaddr - bp_addr;
1373 bptoffset = memaddr - bp_addr;
1374 bp_addr = memaddr;
1375 }
1376
1377 if (bp_addr + bp_size > memaddr + len)
1378 {
1379 /* Only copy the first part of the breakpoint. */
1380 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1381 }
1382
1383 if (readbuf != NULL)
1384 {
1385 /* Verify that the readbuf buffer does not overlap with the
1386 shadow_contents buffer. */
1387 gdb_assert (target_info->shadow_contents >= readbuf + len
1388 || readbuf >= (target_info->shadow_contents
1389 + target_info->shadow_len));
1390
1391 /* Update the read buffer with this inserted breakpoint's
1392 shadow. */
1393 memcpy (readbuf + bp_addr - memaddr,
1394 target_info->shadow_contents + bptoffset, bp_size);
1395 }
1396 else
1397 {
1398 const unsigned char *bp;
1399 CORE_ADDR addr = target_info->reqstd_address;
1400 int placed_size;
1401
1402 /* Update the shadow with what we want to write to memory. */
1403 memcpy (target_info->shadow_contents + bptoffset,
1404 writebuf_org + bp_addr - memaddr, bp_size);
1405
1406 /* Determine appropriate breakpoint contents and size for this
1407 address. */
1408 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1409
1410 /* Update the final write buffer with this inserted
1411 breakpoint's INSN. */
1412 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1413 }
1414 }
1415
1416 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1417 by replacing any memory breakpoints with their shadowed contents.
1418
1419 If READBUF is not NULL, this buffer must not overlap with any of
1420 the breakpoint location's shadow_contents buffers. Otherwise,
1421 a failed assertion internal error will be raised.
1422
1423 The range of shadowed area by each bp_location is:
1424 bl->address - bp_locations_placed_address_before_address_max
1425 up to bl->address + bp_locations_shadow_len_after_address_max
1426 The range we were requested to resolve shadows for is:
1427 memaddr ... memaddr + len
1428 Thus the safe cutoff boundaries for performance optimization are
1429 memaddr + len <= (bl->address
1430 - bp_locations_placed_address_before_address_max)
1431 and:
1432 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1433
1434 void
1435 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1436 const gdb_byte *writebuf_org,
1437 ULONGEST memaddr, LONGEST len)
1438 {
1439 /* Left boundary, right boundary and median element of our binary
1440 search. */
1441 unsigned bc_l, bc_r, bc;
1442
1443 /* Find BC_L which is a leftmost element which may affect BUF
1444 content. It is safe to report lower value but a failure to
1445 report higher one. */
1446
1447 bc_l = 0;
1448 bc_r = bp_locations_count;
1449 while (bc_l + 1 < bc_r)
1450 {
1451 struct bp_location *bl;
1452
1453 bc = (bc_l + bc_r) / 2;
1454 bl = bp_locations[bc];
1455
1456 /* Check first BL->ADDRESS will not overflow due to the added
1457 constant. Then advance the left boundary only if we are sure
1458 the BC element can in no way affect the BUF content (MEMADDR
1459 to MEMADDR + LEN range).
1460
1461 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1462 offset so that we cannot miss a breakpoint with its shadow
1463 range tail still reaching MEMADDR. */
1464
1465 if ((bl->address + bp_locations_shadow_len_after_address_max
1466 >= bl->address)
1467 && (bl->address + bp_locations_shadow_len_after_address_max
1468 <= memaddr))
1469 bc_l = bc;
1470 else
1471 bc_r = bc;
1472 }
1473
1474 /* Due to the binary search above, we need to make sure we pick the
1475 first location that's at BC_L's address. E.g., if there are
1476 multiple locations at the same address, BC_L may end up pointing
1477 at a duplicate location, and miss the "master"/"inserted"
1478 location. Say, given locations L1, L2 and L3 at addresses A and
1479 B:
1480
1481 L1@A, L2@A, L3@B, ...
1482
1483 BC_L could end up pointing at location L2, while the "master"
1484 location could be L1. Since the `loc->inserted' flag is only set
1485 on "master" locations, we'd forget to restore the shadow of L1
1486 and L2. */
1487 while (bc_l > 0
1488 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1489 bc_l--;
1490
1491 /* Now do full processing of the found relevant range of elements. */
1492
1493 for (bc = bc_l; bc < bp_locations_count; bc++)
1494 {
1495 struct bp_location *bl = bp_locations[bc];
1496
1497 /* bp_location array has BL->OWNER always non-NULL. */
1498 if (bl->owner->type == bp_none)
1499 warning (_("reading through apparently deleted breakpoint #%d?"),
1500 bl->owner->number);
1501
1502 /* Performance optimization: any further element can no longer affect BUF
1503 content. */
1504
1505 if (bl->address >= bp_locations_placed_address_before_address_max
1506 && memaddr + len <= (bl->address
1507 - bp_locations_placed_address_before_address_max))
1508 break;
1509
1510 if (!bp_location_has_shadow (bl))
1511 continue;
1512
1513 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1514 memaddr, len, &bl->target_info, bl->gdbarch);
1515 }
1516 }
1517
1518 /* See breakpoint.h. */
1519
1520 bool
1521 is_breakpoint (const struct breakpoint *bpt)
1522 {
1523 return (bpt->type == bp_breakpoint
1524 || bpt->type == bp_hardware_breakpoint
1525 || bpt->type == bp_dprintf);
1526 }
1527
1528 /* Return true if BPT is of any hardware watchpoint kind. */
1529
1530 static bool
1531 is_hardware_watchpoint (const struct breakpoint *bpt)
1532 {
1533 return (bpt->type == bp_hardware_watchpoint
1534 || bpt->type == bp_read_watchpoint
1535 || bpt->type == bp_access_watchpoint);
1536 }
1537
1538 /* See breakpoint.h. */
1539
1540 bool
1541 is_watchpoint (const struct breakpoint *bpt)
1542 {
1543 return (is_hardware_watchpoint (bpt)
1544 || bpt->type == bp_watchpoint);
1545 }
1546
1547 /* Returns true if the current thread and its running state are safe
1548 to evaluate or update watchpoint B. Watchpoints on local
1549 expressions need to be evaluated in the context of the thread that
1550 was current when the watchpoint was created, and, that thread needs
1551 to be stopped to be able to select the correct frame context.
1552 Watchpoints on global expressions can be evaluated on any thread,
1553 and in any state. It is presently left to the target allowing
1554 memory accesses when threads are running. */
1555
1556 static int
1557 watchpoint_in_thread_scope (struct watchpoint *b)
1558 {
1559 return (b->pspace == current_program_space
1560 && (b->watchpoint_thread == null_ptid
1561 || (inferior_ptid == b->watchpoint_thread
1562 && !inferior_thread ()->executing)));
1563 }
1564
1565 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1566 associated bp_watchpoint_scope breakpoint. */
1567
1568 static void
1569 watchpoint_del_at_next_stop (struct watchpoint *w)
1570 {
1571 if (w->related_breakpoint != w)
1572 {
1573 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1574 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1575 w->related_breakpoint->disposition = disp_del_at_next_stop;
1576 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1577 w->related_breakpoint = w;
1578 }
1579 w->disposition = disp_del_at_next_stop;
1580 }
1581
1582 /* Extract a bitfield value from value VAL using the bit parameters contained in
1583 watchpoint W. */
1584
1585 static struct value *
1586 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1587 {
1588 struct value *bit_val;
1589
1590 if (val == NULL)
1591 return NULL;
1592
1593 bit_val = allocate_value (value_type (val));
1594
1595 unpack_value_bitfield (bit_val,
1596 w->val_bitpos,
1597 w->val_bitsize,
1598 value_contents_for_printing (val),
1599 value_offset (val),
1600 val);
1601
1602 return bit_val;
1603 }
1604
1605 /* Allocate a dummy location and add it to B, which must be a software
1606 watchpoint. This is required because even if a software watchpoint
1607 is not watching any memory, bpstat_stop_status requires a location
1608 to be able to report stops. */
1609
1610 static void
1611 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1612 struct program_space *pspace)
1613 {
1614 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1615
1616 b->loc = allocate_bp_location (b);
1617 b->loc->pspace = pspace;
1618 b->loc->address = -1;
1619 b->loc->length = -1;
1620 }
1621
1622 /* Returns true if B is a software watchpoint that is not watching any
1623 memory (e.g., "watch $pc"). */
1624
1625 static bool
1626 is_no_memory_software_watchpoint (struct breakpoint *b)
1627 {
1628 return (b->type == bp_watchpoint
1629 && b->loc != NULL
1630 && b->loc->next == NULL
1631 && b->loc->address == -1
1632 && b->loc->length == -1);
1633 }
1634
1635 /* Assuming that B is a watchpoint:
1636 - Reparse watchpoint expression, if REPARSE is non-zero
1637 - Evaluate expression and store the result in B->val
1638 - Evaluate the condition if there is one, and store the result
1639 in b->loc->cond.
1640 - Update the list of values that must be watched in B->loc.
1641
1642 If the watchpoint disposition is disp_del_at_next_stop, then do
1643 nothing. If this is local watchpoint that is out of scope, delete
1644 it.
1645
1646 Even with `set breakpoint always-inserted on' the watchpoints are
1647 removed + inserted on each stop here. Normal breakpoints must
1648 never be removed because they might be missed by a running thread
1649 when debugging in non-stop mode. On the other hand, hardware
1650 watchpoints (is_hardware_watchpoint; processed here) are specific
1651 to each LWP since they are stored in each LWP's hardware debug
1652 registers. Therefore, such LWP must be stopped first in order to
1653 be able to modify its hardware watchpoints.
1654
1655 Hardware watchpoints must be reset exactly once after being
1656 presented to the user. It cannot be done sooner, because it would
1657 reset the data used to present the watchpoint hit to the user. And
1658 it must not be done later because it could display the same single
1659 watchpoint hit during multiple GDB stops. Note that the latter is
1660 relevant only to the hardware watchpoint types bp_read_watchpoint
1661 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1662 not user-visible - its hit is suppressed if the memory content has
1663 not changed.
1664
1665 The following constraints influence the location where we can reset
1666 hardware watchpoints:
1667
1668 * target_stopped_by_watchpoint and target_stopped_data_address are
1669 called several times when GDB stops.
1670
1671 [linux]
1672 * Multiple hardware watchpoints can be hit at the same time,
1673 causing GDB to stop. GDB only presents one hardware watchpoint
1674 hit at a time as the reason for stopping, and all the other hits
1675 are presented later, one after the other, each time the user
1676 requests the execution to be resumed. Execution is not resumed
1677 for the threads still having pending hit event stored in
1678 LWP_INFO->STATUS. While the watchpoint is already removed from
1679 the inferior on the first stop the thread hit event is kept being
1680 reported from its cached value by linux_nat_stopped_data_address
1681 until the real thread resume happens after the watchpoint gets
1682 presented and thus its LWP_INFO->STATUS gets reset.
1683
1684 Therefore the hardware watchpoint hit can get safely reset on the
1685 watchpoint removal from inferior. */
1686
1687 static void
1688 update_watchpoint (struct watchpoint *b, int reparse)
1689 {
1690 int within_current_scope;
1691 struct frame_id saved_frame_id;
1692 int frame_saved;
1693
1694 /* If this is a local watchpoint, we only want to check if the
1695 watchpoint frame is in scope if the current thread is the thread
1696 that was used to create the watchpoint. */
1697 if (!watchpoint_in_thread_scope (b))
1698 return;
1699
1700 if (b->disposition == disp_del_at_next_stop)
1701 return;
1702
1703 frame_saved = 0;
1704
1705 /* Determine if the watchpoint is within scope. */
1706 if (b->exp_valid_block == NULL)
1707 within_current_scope = 1;
1708 else
1709 {
1710 struct frame_info *fi = get_current_frame ();
1711 struct gdbarch *frame_arch = get_frame_arch (fi);
1712 CORE_ADDR frame_pc = get_frame_pc (fi);
1713
1714 /* If we're at a point where the stack has been destroyed
1715 (e.g. in a function epilogue), unwinding may not work
1716 properly. Do not attempt to recreate locations at this
1717 point. See similar comments in watchpoint_check. */
1718 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1719 return;
1720
1721 /* Save the current frame's ID so we can restore it after
1722 evaluating the watchpoint expression on its own frame. */
1723 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1724 took a frame parameter, so that we didn't have to change the
1725 selected frame. */
1726 frame_saved = 1;
1727 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1728
1729 fi = frame_find_by_id (b->watchpoint_frame);
1730 within_current_scope = (fi != NULL);
1731 if (within_current_scope)
1732 select_frame (fi);
1733 }
1734
1735 /* We don't free locations. They are stored in the bp_location array
1736 and update_global_location_list will eventually delete them and
1737 remove breakpoints if needed. */
1738 b->loc = NULL;
1739
1740 if (within_current_scope && reparse)
1741 {
1742 const char *s;
1743
1744 b->exp.reset ();
1745 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1746 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1747 /* If the meaning of expression itself changed, the old value is
1748 no longer relevant. We don't want to report a watchpoint hit
1749 to the user when the old value and the new value may actually
1750 be completely different objects. */
1751 b->val = NULL;
1752 b->val_valid = false;
1753
1754 /* Note that unlike with breakpoints, the watchpoint's condition
1755 expression is stored in the breakpoint object, not in the
1756 locations (re)created below. */
1757 if (b->cond_string != NULL)
1758 {
1759 b->cond_exp.reset ();
1760
1761 s = b->cond_string;
1762 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1763 }
1764 }
1765
1766 /* If we failed to parse the expression, for example because
1767 it refers to a global variable in a not-yet-loaded shared library,
1768 don't try to insert watchpoint. We don't automatically delete
1769 such watchpoint, though, since failure to parse expression
1770 is different from out-of-scope watchpoint. */
1771 if (!target_has_execution)
1772 {
1773 /* Without execution, memory can't change. No use to try and
1774 set watchpoint locations. The watchpoint will be reset when
1775 the target gains execution, through breakpoint_re_set. */
1776 if (!can_use_hw_watchpoints)
1777 {
1778 if (b->ops->works_in_software_mode (b))
1779 b->type = bp_watchpoint;
1780 else
1781 error (_("Can't set read/access watchpoint when "
1782 "hardware watchpoints are disabled."));
1783 }
1784 }
1785 else if (within_current_scope && b->exp)
1786 {
1787 int pc = 0;
1788 std::vector<value_ref_ptr> val_chain;
1789 struct value *v, *result;
1790 struct program_space *frame_pspace;
1791
1792 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1793
1794 /* Avoid setting b->val if it's already set. The meaning of
1795 b->val is 'the last value' user saw, and we should update
1796 it only if we reported that last value to user. As it
1797 happens, the code that reports it updates b->val directly.
1798 We don't keep track of the memory value for masked
1799 watchpoints. */
1800 if (!b->val_valid && !is_masked_watchpoint (b))
1801 {
1802 if (b->val_bitsize != 0)
1803 v = extract_bitfield_from_watchpoint_value (b, v);
1804 b->val = release_value (v);
1805 b->val_valid = true;
1806 }
1807
1808 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1809
1810 /* Look at each value on the value chain. */
1811 gdb_assert (!val_chain.empty ());
1812 for (const value_ref_ptr &iter : val_chain)
1813 {
1814 v = iter.get ();
1815
1816 /* If it's a memory location, and GDB actually needed
1817 its contents to evaluate the expression, then we
1818 must watch it. If the first value returned is
1819 still lazy, that means an error occurred reading it;
1820 watch it anyway in case it becomes readable. */
1821 if (VALUE_LVAL (v) == lval_memory
1822 && (v == val_chain[0] || ! value_lazy (v)))
1823 {
1824 struct type *vtype = check_typedef (value_type (v));
1825
1826 /* We only watch structs and arrays if user asked
1827 for it explicitly, never if they just happen to
1828 appear in the middle of some value chain. */
1829 if (v == result
1830 || (vtype->code () != TYPE_CODE_STRUCT
1831 && vtype->code () != TYPE_CODE_ARRAY))
1832 {
1833 CORE_ADDR addr;
1834 enum target_hw_bp_type type;
1835 struct bp_location *loc, **tmp;
1836 int bitpos = 0, bitsize = 0;
1837
1838 if (value_bitsize (v) != 0)
1839 {
1840 /* Extract the bit parameters out from the bitfield
1841 sub-expression. */
1842 bitpos = value_bitpos (v);
1843 bitsize = value_bitsize (v);
1844 }
1845 else if (v == result && b->val_bitsize != 0)
1846 {
1847 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1848 lvalue whose bit parameters are saved in the fields
1849 VAL_BITPOS and VAL_BITSIZE. */
1850 bitpos = b->val_bitpos;
1851 bitsize = b->val_bitsize;
1852 }
1853
1854 addr = value_address (v);
1855 if (bitsize != 0)
1856 {
1857 /* Skip the bytes that don't contain the bitfield. */
1858 addr += bitpos / 8;
1859 }
1860
1861 type = hw_write;
1862 if (b->type == bp_read_watchpoint)
1863 type = hw_read;
1864 else if (b->type == bp_access_watchpoint)
1865 type = hw_access;
1866
1867 loc = allocate_bp_location (b);
1868 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1869 ;
1870 *tmp = loc;
1871 loc->gdbarch = get_type_arch (value_type (v));
1872
1873 loc->pspace = frame_pspace;
1874 loc->address = address_significant (loc->gdbarch, addr);
1875
1876 if (bitsize != 0)
1877 {
1878 /* Just cover the bytes that make up the bitfield. */
1879 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1880 }
1881 else
1882 loc->length = TYPE_LENGTH (value_type (v));
1883
1884 loc->watchpoint_type = type;
1885 }
1886 }
1887 }
1888
1889 /* Change the type of breakpoint between hardware assisted or
1890 an ordinary watchpoint depending on the hardware support
1891 and free hardware slots. REPARSE is set when the inferior
1892 is started. */
1893 if (reparse)
1894 {
1895 int reg_cnt;
1896 enum bp_loc_type loc_type;
1897 struct bp_location *bl;
1898
1899 reg_cnt = can_use_hardware_watchpoint (val_chain);
1900
1901 if (reg_cnt)
1902 {
1903 int i, target_resources_ok, other_type_used;
1904 enum bptype type;
1905
1906 /* Use an exact watchpoint when there's only one memory region to be
1907 watched, and only one debug register is needed to watch it. */
1908 b->exact = target_exact_watchpoints && reg_cnt == 1;
1909
1910 /* We need to determine how many resources are already
1911 used for all other hardware watchpoints plus this one
1912 to see if we still have enough resources to also fit
1913 this watchpoint in as well. */
1914
1915 /* If this is a software watchpoint, we try to turn it
1916 to a hardware one -- count resources as if B was of
1917 hardware watchpoint type. */
1918 type = b->type;
1919 if (type == bp_watchpoint)
1920 type = bp_hardware_watchpoint;
1921
1922 /* This watchpoint may or may not have been placed on
1923 the list yet at this point (it won't be in the list
1924 if we're trying to create it for the first time,
1925 through watch_command), so always account for it
1926 manually. */
1927
1928 /* Count resources used by all watchpoints except B. */
1929 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1930
1931 /* Add in the resources needed for B. */
1932 i += hw_watchpoint_use_count (b);
1933
1934 target_resources_ok
1935 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1936 if (target_resources_ok <= 0)
1937 {
1938 int sw_mode = b->ops->works_in_software_mode (b);
1939
1940 if (target_resources_ok == 0 && !sw_mode)
1941 error (_("Target does not support this type of "
1942 "hardware watchpoint."));
1943 else if (target_resources_ok < 0 && !sw_mode)
1944 error (_("There are not enough available hardware "
1945 "resources for this watchpoint."));
1946
1947 /* Downgrade to software watchpoint. */
1948 b->type = bp_watchpoint;
1949 }
1950 else
1951 {
1952 /* If this was a software watchpoint, we've just
1953 found we have enough resources to turn it to a
1954 hardware watchpoint. Otherwise, this is a
1955 nop. */
1956 b->type = type;
1957 }
1958 }
1959 else if (!b->ops->works_in_software_mode (b))
1960 {
1961 if (!can_use_hw_watchpoints)
1962 error (_("Can't set read/access watchpoint when "
1963 "hardware watchpoints are disabled."));
1964 else
1965 error (_("Expression cannot be implemented with "
1966 "read/access watchpoint."));
1967 }
1968 else
1969 b->type = bp_watchpoint;
1970
1971 loc_type = (b->type == bp_watchpoint? bp_loc_other
1972 : bp_loc_hardware_watchpoint);
1973 for (bl = b->loc; bl; bl = bl->next)
1974 bl->loc_type = loc_type;
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2049 paddress (bl->gdbarch, bl->address));
2050 return 0;
2051 }
2052
2053 /* Don't insert watchpoints if we're trying to step past the
2054 instruction that triggered one. */
2055 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2056 && stepping_past_nonsteppable_watchpoint ())
2057 {
2058 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address), bl->length);
2061 return 0;
2062 }
2063
2064 return 1;
2065 }
2066
2067 /* Same as should_be_inserted but does the check assuming
2068 that the location is not duplicated. */
2069
2070 static int
2071 unduplicated_should_be_inserted (struct bp_location *bl)
2072 {
2073 int result;
2074 const int save_duplicate = bl->duplicate;
2075
2076 bl->duplicate = 0;
2077 result = should_be_inserted (bl);
2078 bl->duplicate = save_duplicate;
2079 return result;
2080 }
2081
2082 /* Parses a conditional described by an expression COND into an
2083 agent expression bytecode suitable for evaluation
2084 by the bytecode interpreter. Return NULL if there was
2085 any error during parsing. */
2086
2087 static agent_expr_up
2088 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2089 {
2090 if (cond == NULL)
2091 return NULL;
2092
2093 agent_expr_up aexpr;
2094
2095 /* We don't want to stop processing, so catch any errors
2096 that may show up. */
2097 try
2098 {
2099 aexpr = gen_eval_for_expr (scope, cond);
2100 }
2101
2102 catch (const gdb_exception_error &ex)
2103 {
2104 /* If we got here, it means the condition could not be parsed to a valid
2105 bytecode expression and thus can't be evaluated on the target's side.
2106 It's no use iterating through the conditions. */
2107 }
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent
2140 expression bytecode. If any of these happen, then it's no use to
2141 send conditions to the target since this location will always
2142 trigger and generate a response back to GDB. Note we consider
2143 all locations at the same address irrespective of type, i.e.,
2144 even if the locations aren't considered duplicates (e.g.,
2145 software breakpoint and hardware breakpoint at the same
2146 address). */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a
2196 condition list for this location's address. If we have software
2197 and hardware locations at the same address, they aren't
2198 considered duplicates, but we still marge all the conditions
2199 anyway, as it's simpler, and doesn't really make a practical
2200 difference. */
2201 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2202 {
2203 loc = (*loc2p);
2204 if (loc->cond
2205 && is_breakpoint (loc->owner)
2206 && loc->pspace->num == bl->pspace->num
2207 && loc->owner->enable_state == bp_enabled
2208 && loc->enabled)
2209 {
2210 /* Add the condition to the vector. This will be used later
2211 to send the conditions to the target. */
2212 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2213 }
2214 }
2215
2216 return;
2217 }
2218
2219 /* Parses a command described by string CMD into an agent expression
2220 bytecode suitable for evaluation by the bytecode interpreter.
2221 Return NULL if there was any error during parsing. */
2222
2223 static agent_expr_up
2224 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2225 {
2226 const char *cmdrest;
2227 const char *format_start, *format_end;
2228 struct gdbarch *gdbarch = get_current_arch ();
2229
2230 if (cmd == NULL)
2231 return NULL;
2232
2233 cmdrest = cmd;
2234
2235 if (*cmdrest == ',')
2236 ++cmdrest;
2237 cmdrest = skip_spaces (cmdrest);
2238
2239 if (*cmdrest++ != '"')
2240 error (_("No format string following the location"));
2241
2242 format_start = cmdrest;
2243
2244 format_pieces fpieces (&cmdrest);
2245
2246 format_end = cmdrest;
2247
2248 if (*cmdrest++ != '"')
2249 error (_("Bad format string, non-terminated '\"'."));
2250
2251 cmdrest = skip_spaces (cmdrest);
2252
2253 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2254 error (_("Invalid argument syntax"));
2255
2256 if (*cmdrest == ',')
2257 cmdrest++;
2258 cmdrest = skip_spaces (cmdrest);
2259
2260 /* For each argument, make an expression. */
2261
2262 std::vector<struct expression *> argvec;
2263 while (*cmdrest != '\0')
2264 {
2265 const char *cmd1;
2266
2267 cmd1 = cmdrest;
2268 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2269 argvec.push_back (expr.release ());
2270 cmdrest = cmd1;
2271 if (*cmdrest == ',')
2272 ++cmdrest;
2273 }
2274
2275 agent_expr_up aexpr;
2276
2277 /* We don't want to stop processing, so catch any errors
2278 that may show up. */
2279 try
2280 {
2281 aexpr = gen_printf (scope, gdbarch, 0, 0,
2282 format_start, format_end - format_start,
2283 argvec.size (), argvec.data ());
2284 }
2285 catch (const gdb_exception_error &ex)
2286 {
2287 /* If we got here, it means the command could not be parsed to a valid
2288 bytecode expression and thus can't be evaluated on the target's side.
2289 It's no use iterating through the other commands. */
2290 }
2291
2292 /* We have a valid agent expression, return it. */
2293 return aexpr;
2294 }
2295
2296 /* Based on location BL, create a list of breakpoint commands to be
2297 passed on to the target. If we have duplicated locations with
2298 different commands, we will add any such to the list. */
2299
2300 static void
2301 build_target_command_list (struct bp_location *bl)
2302 {
2303 struct bp_location **locp = NULL, **loc2p;
2304 int null_command_or_parse_error = 0;
2305 int modified = bl->needs_update;
2306 struct bp_location *loc;
2307
2308 /* Clear commands left over from a previous insert. */
2309 bl->target_info.tcommands.clear ();
2310
2311 if (!target_can_run_breakpoint_commands ())
2312 return;
2313
2314 /* For now, limit to agent-style dprintf breakpoints. */
2315 if (dprintf_style != dprintf_style_agent)
2316 return;
2317
2318 /* For now, if we have any location at the same address that isn't a
2319 dprintf, don't install the target-side commands, as that would
2320 make the breakpoint not be reported to the core, and we'd lose
2321 control. */
2322 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2323 {
2324 loc = (*loc2p);
2325 if (is_breakpoint (loc->owner)
2326 && loc->pspace->num == bl->pspace->num
2327 && loc->owner->type != bp_dprintf)
2328 return;
2329 }
2330
2331 /* Do a first pass to check for locations with no assigned
2332 conditions or conditions that fail to parse to a valid agent expression
2333 bytecode. If any of these happen, then it's no use to send conditions
2334 to the target since this location will always trigger and generate a
2335 response back to GDB. */
2336 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2337 {
2338 loc = (*loc2p);
2339 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2340 {
2341 if (modified)
2342 {
2343 /* Re-parse the commands since something changed. In that
2344 case we already freed the command bytecodes (see
2345 force_breakpoint_reinsertion). We just
2346 need to parse the command to bytecodes again. */
2347 loc->cmd_bytecode
2348 = parse_cmd_to_aexpr (bl->address,
2349 loc->owner->extra_string);
2350 }
2351
2352 /* If we have a NULL bytecode expression, it means something
2353 went wrong or we have a null command expression. */
2354 if (!loc->cmd_bytecode)
2355 {
2356 null_command_or_parse_error = 1;
2357 break;
2358 }
2359 }
2360 }
2361
2362 /* If anything failed, then we're not doing target-side commands,
2363 and so clean up. */
2364 if (null_command_or_parse_error)
2365 {
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num)
2371 {
2372 /* Only go as far as the first NULL bytecode is
2373 located. */
2374 if (loc->cmd_bytecode == NULL)
2375 return;
2376
2377 loc->cmd_bytecode.reset ();
2378 }
2379 }
2380 }
2381
2382 /* No NULL commands or failed bytecode generation. Build a command
2383 list for all duplicate locations at this location's address.
2384 Note that here we must care for whether the breakpoint location
2385 types are considered duplicates, otherwise, say, if we have a
2386 software and hardware location at the same address, the target
2387 could end up running the commands twice. For the moment, we only
2388 support targets-side commands with dprintf, but it doesn't hurt
2389 to be pedantically correct in case that changes. */
2390 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2391 {
2392 loc = (*loc2p);
2393 if (breakpoint_locations_match (bl, loc)
2394 && loc->owner->extra_string
2395 && is_breakpoint (loc->owner)
2396 && loc->pspace->num == bl->pspace->num
2397 && loc->owner->enable_state == bp_enabled
2398 && loc->enabled)
2399 {
2400 /* Add the command to the vector. This will be used later
2401 to send the commands to the target. */
2402 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2403 }
2404 }
2405
2406 bl->target_info.persist = 0;
2407 /* Maybe flag this location as persistent. */
2408 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2409 bl->target_info.persist = 1;
2410 }
2411
2412 /* Return the kind of breakpoint on address *ADDR. Get the kind
2413 of breakpoint according to ADDR except single-step breakpoint.
2414 Get the kind of single-step breakpoint according to the current
2415 registers state. */
2416
2417 static int
2418 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2419 {
2420 if (bl->owner->type == bp_single_step)
2421 {
2422 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2423 struct regcache *regcache;
2424
2425 regcache = get_thread_regcache (thr);
2426
2427 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2428 regcache, addr);
2429 }
2430 else
2431 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2432 }
2433
2434 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2435 location. Any error messages are printed to TMP_ERROR_STREAM; and
2436 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2437 Returns 0 for success, 1 if the bp_location type is not supported or
2438 -1 for failure.
2439
2440 NOTE drow/2003-09-09: This routine could be broken down to an
2441 object-style method for each breakpoint or catchpoint type. */
2442 static int
2443 insert_bp_location (struct bp_location *bl,
2444 struct ui_file *tmp_error_stream,
2445 int *disabled_breaks,
2446 int *hw_breakpoint_error,
2447 int *hw_bp_error_explained_already)
2448 {
2449 gdb_exception bp_excpt;
2450
2451 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2452 return 0;
2453
2454 /* Note we don't initialize bl->target_info, as that wipes out
2455 the breakpoint location's shadow_contents if the breakpoint
2456 is still inserted at that location. This in turn breaks
2457 target_read_memory which depends on these buffers when
2458 a memory read is requested at the breakpoint location:
2459 Once the target_info has been wiped, we fail to see that
2460 we have a breakpoint inserted at that address and thus
2461 read the breakpoint instead of returning the data saved in
2462 the breakpoint location's shadow contents. */
2463 bl->target_info.reqstd_address = bl->address;
2464 bl->target_info.placed_address_space = bl->pspace->aspace;
2465 bl->target_info.length = bl->length;
2466
2467 /* When working with target-side conditions, we must pass all the conditions
2468 for the same breakpoint address down to the target since GDB will not
2469 insert those locations. With a list of breakpoint conditions, the target
2470 can decide when to stop and notify GDB. */
2471
2472 if (is_breakpoint (bl->owner))
2473 {
2474 build_target_condition_list (bl);
2475 build_target_command_list (bl);
2476 /* Reset the modification marker. */
2477 bl->needs_update = 0;
2478 }
2479
2480 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2481 set at a read-only address, then a breakpoint location will have
2482 been changed to hardware breakpoint before we get here. If it is
2483 "off" however, error out before actually trying to insert the
2484 breakpoint, with a nicer error message. */
2485 if (bl->loc_type == bp_loc_software_breakpoint
2486 && !automatic_hardware_breakpoints)
2487 {
2488 mem_region *mr = lookup_mem_region (bl->address);
2489
2490 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2491 {
2492 fprintf_unfiltered (tmp_error_stream,
2493 _("Cannot insert breakpoint %d.\n"
2494 "Cannot set software breakpoint "
2495 "at read-only address %s\n"),
2496 bl->owner->number,
2497 paddress (bl->gdbarch, bl->address));
2498 return 1;
2499 }
2500 }
2501
2502 if (bl->loc_type == bp_loc_software_breakpoint
2503 || bl->loc_type == bp_loc_hardware_breakpoint)
2504 {
2505 /* First check to see if we have to handle an overlay. */
2506 if (overlay_debugging == ovly_off
2507 || bl->section == NULL
2508 || !(section_is_overlay (bl->section)))
2509 {
2510 /* No overlay handling: just set the breakpoint. */
2511 try
2512 {
2513 int val;
2514
2515 val = bl->owner->ops->insert_location (bl);
2516 if (val)
2517 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2518 }
2519 catch (gdb_exception &e)
2520 {
2521 bp_excpt = std::move (e);
2522 }
2523 }
2524 else
2525 {
2526 /* This breakpoint is in an overlay section.
2527 Shall we set a breakpoint at the LMA? */
2528 if (!overlay_events_enabled)
2529 {
2530 /* Yes -- overlay event support is not active,
2531 so we must try to set a breakpoint at the LMA.
2532 This will not work for a hardware breakpoint. */
2533 if (bl->loc_type == bp_loc_hardware_breakpoint)
2534 warning (_("hardware breakpoint %d not supported in overlay!"),
2535 bl->owner->number);
2536 else
2537 {
2538 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2539 bl->section);
2540 /* Set a software (trap) breakpoint at the LMA. */
2541 bl->overlay_target_info = bl->target_info;
2542 bl->overlay_target_info.reqstd_address = addr;
2543
2544 /* No overlay handling: just set the breakpoint. */
2545 try
2546 {
2547 int val;
2548
2549 bl->overlay_target_info.kind
2550 = breakpoint_kind (bl, &addr);
2551 bl->overlay_target_info.placed_address = addr;
2552 val = target_insert_breakpoint (bl->gdbarch,
2553 &bl->overlay_target_info);
2554 if (val)
2555 bp_excpt
2556 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2557 }
2558 catch (gdb_exception &e)
2559 {
2560 bp_excpt = std::move (e);
2561 }
2562
2563 if (bp_excpt.reason != 0)
2564 fprintf_unfiltered (tmp_error_stream,
2565 "Overlay breakpoint %d "
2566 "failed: in ROM?\n",
2567 bl->owner->number);
2568 }
2569 }
2570 /* Shall we set a breakpoint at the VMA? */
2571 if (section_is_mapped (bl->section))
2572 {
2573 /* Yes. This overlay section is mapped into memory. */
2574 try
2575 {
2576 int val;
2577
2578 val = bl->owner->ops->insert_location (bl);
2579 if (val)
2580 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2581 }
2582 catch (gdb_exception &e)
2583 {
2584 bp_excpt = std::move (e);
2585 }
2586 }
2587 else
2588 {
2589 /* No. This breakpoint will not be inserted.
2590 No error, but do not mark the bp as 'inserted'. */
2591 return 0;
2592 }
2593 }
2594
2595 if (bp_excpt.reason != 0)
2596 {
2597 /* Can't set the breakpoint. */
2598
2599 /* In some cases, we might not be able to insert a
2600 breakpoint in a shared library that has already been
2601 removed, but we have not yet processed the shlib unload
2602 event. Unfortunately, some targets that implement
2603 breakpoint insertion themselves can't tell why the
2604 breakpoint insertion failed (e.g., the remote target
2605 doesn't define error codes), so we must treat generic
2606 errors as memory errors. */
2607 if (bp_excpt.reason == RETURN_ERROR
2608 && (bp_excpt.error == GENERIC_ERROR
2609 || bp_excpt.error == MEMORY_ERROR)
2610 && bl->loc_type == bp_loc_software_breakpoint
2611 && (solib_name_from_address (bl->pspace, bl->address)
2612 || shared_objfile_contains_address_p (bl->pspace,
2613 bl->address)))
2614 {
2615 /* See also: disable_breakpoints_in_shlibs. */
2616 bl->shlib_disabled = 1;
2617 gdb::observers::breakpoint_modified.notify (bl->owner);
2618 if (!*disabled_breaks)
2619 {
2620 fprintf_unfiltered (tmp_error_stream,
2621 "Cannot insert breakpoint %d.\n",
2622 bl->owner->number);
2623 fprintf_unfiltered (tmp_error_stream,
2624 "Temporarily disabling shared "
2625 "library breakpoints:\n");
2626 }
2627 *disabled_breaks = 1;
2628 fprintf_unfiltered (tmp_error_stream,
2629 "breakpoint #%d\n", bl->owner->number);
2630 return 0;
2631 }
2632 else
2633 {
2634 if (bl->loc_type == bp_loc_hardware_breakpoint)
2635 {
2636 *hw_breakpoint_error = 1;
2637 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert hardware breakpoint %d%s",
2640 bl->owner->number,
2641 bp_excpt.message ? ":" : ".\n");
2642 if (bp_excpt.message != NULL)
2643 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2644 bp_excpt.what ());
2645 }
2646 else
2647 {
2648 if (bp_excpt.message == NULL)
2649 {
2650 std::string message
2651 = memory_error_message (TARGET_XFER_E_IO,
2652 bl->gdbarch, bl->address);
2653
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n"
2656 "%s\n",
2657 bl->owner->number, message.c_str ());
2658 }
2659 else
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d: %s\n",
2663 bl->owner->number,
2664 bp_excpt.what ());
2665 }
2666 }
2667 return 1;
2668
2669 }
2670 }
2671 else
2672 bl->inserted = 1;
2673
2674 return 0;
2675 }
2676
2677 else if (bl->loc_type == bp_loc_hardware_watchpoint
2678 /* NOTE drow/2003-09-08: This state only exists for removing
2679 watchpoints. It's not clear that it's necessary... */
2680 && bl->owner->disposition != disp_del_at_next_stop)
2681 {
2682 int val;
2683
2684 gdb_assert (bl->owner->ops != NULL
2685 && bl->owner->ops->insert_location != NULL);
2686
2687 val = bl->owner->ops->insert_location (bl);
2688
2689 /* If trying to set a read-watchpoint, and it turns out it's not
2690 supported, try emulating one with an access watchpoint. */
2691 if (val == 1 && bl->watchpoint_type == hw_read)
2692 {
2693 struct bp_location *loc, **loc_temp;
2694
2695 /* But don't try to insert it, if there's already another
2696 hw_access location that would be considered a duplicate
2697 of this one. */
2698 ALL_BP_LOCATIONS (loc, loc_temp)
2699 if (loc != bl
2700 && loc->watchpoint_type == hw_access
2701 && watchpoint_locations_match (bl, loc))
2702 {
2703 bl->duplicate = 1;
2704 bl->inserted = 1;
2705 bl->target_info = loc->target_info;
2706 bl->watchpoint_type = hw_access;
2707 val = 0;
2708 break;
2709 }
2710
2711 if (val == 1)
2712 {
2713 bl->watchpoint_type = hw_access;
2714 val = bl->owner->ops->insert_location (bl);
2715
2716 if (val)
2717 /* Back to the original value. */
2718 bl->watchpoint_type = hw_read;
2719 }
2720 }
2721
2722 bl->inserted = (val == 0);
2723 }
2724
2725 else if (bl->owner->type == bp_catchpoint)
2726 {
2727 int val;
2728
2729 gdb_assert (bl->owner->ops != NULL
2730 && bl->owner->ops->insert_location != NULL);
2731
2732 val = bl->owner->ops->insert_location (bl);
2733 if (val)
2734 {
2735 bl->owner->enable_state = bp_disabled;
2736
2737 if (val == 1)
2738 warning (_("\
2739 Error inserting catchpoint %d: Your system does not support this type\n\
2740 of catchpoint."), bl->owner->number);
2741 else
2742 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2743 }
2744
2745 bl->inserted = (val == 0);
2746
2747 /* We've already printed an error message if there was a problem
2748 inserting this catchpoint, and we've disabled the catchpoint,
2749 so just return success. */
2750 return 0;
2751 }
2752
2753 return 0;
2754 }
2755
2756 /* This function is called when program space PSPACE is about to be
2757 deleted. It takes care of updating breakpoints to not reference
2758 PSPACE anymore. */
2759
2760 void
2761 breakpoint_program_space_exit (struct program_space *pspace)
2762 {
2763 struct breakpoint *b, *b_temp;
2764 struct bp_location *loc, **loc_temp;
2765
2766 /* Remove any breakpoint that was set through this program space. */
2767 ALL_BREAKPOINTS_SAFE (b, b_temp)
2768 {
2769 if (b->pspace == pspace)
2770 delete_breakpoint (b);
2771 }
2772
2773 /* Breakpoints set through other program spaces could have locations
2774 bound to PSPACE as well. Remove those. */
2775 ALL_BP_LOCATIONS (loc, loc_temp)
2776 {
2777 struct bp_location *tmp;
2778
2779 if (loc->pspace == pspace)
2780 {
2781 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2782 if (loc->owner->loc == loc)
2783 loc->owner->loc = loc->next;
2784 else
2785 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2786 if (tmp->next == loc)
2787 {
2788 tmp->next = loc->next;
2789 break;
2790 }
2791 }
2792 }
2793
2794 /* Now update the global location list to permanently delete the
2795 removed locations above. */
2796 update_global_location_list (UGLL_DONT_INSERT);
2797 }
2798
2799 /* Make sure all breakpoints are inserted in inferior.
2800 Throws exception on any error.
2801 A breakpoint that is already inserted won't be inserted
2802 again, so calling this function twice is safe. */
2803 void
2804 insert_breakpoints (void)
2805 {
2806 struct breakpoint *bpt;
2807
2808 ALL_BREAKPOINTS (bpt)
2809 if (is_hardware_watchpoint (bpt))
2810 {
2811 struct watchpoint *w = (struct watchpoint *) bpt;
2812
2813 update_watchpoint (w, 0 /* don't reparse. */);
2814 }
2815
2816 /* Updating watchpoints creates new locations, so update the global
2817 location list. Explicitly tell ugll to insert locations and
2818 ignore breakpoints_always_inserted_mode. Also,
2819 update_global_location_list tries to "upgrade" software
2820 breakpoints to hardware breakpoints to handle "set breakpoint
2821 auto-hw", so we need to call it even if we don't have new
2822 locations. */
2823 update_global_location_list (UGLL_INSERT);
2824 }
2825
2826 /* Invoke CALLBACK for each of bp_location. */
2827
2828 void
2829 iterate_over_bp_locations (walk_bp_location_callback callback)
2830 {
2831 struct bp_location *loc, **loc_tmp;
2832
2833 ALL_BP_LOCATIONS (loc, loc_tmp)
2834 {
2835 callback (loc, NULL);
2836 }
2837 }
2838
2839 /* This is used when we need to synch breakpoint conditions between GDB and the
2840 target. It is the case with deleting and disabling of breakpoints when using
2841 always-inserted mode. */
2842
2843 static void
2844 update_inserted_breakpoint_locations (void)
2845 {
2846 struct bp_location *bl, **blp_tmp;
2847 int error_flag = 0;
2848 int val = 0;
2849 int disabled_breaks = 0;
2850 int hw_breakpoint_error = 0;
2851 int hw_bp_details_reported = 0;
2852
2853 string_file tmp_error_stream;
2854
2855 /* Explicitly mark the warning -- this will only be printed if
2856 there was an error. */
2857 tmp_error_stream.puts ("Warning:\n");
2858
2859 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2860
2861 ALL_BP_LOCATIONS (bl, blp_tmp)
2862 {
2863 /* We only want to update software breakpoints and hardware
2864 breakpoints. */
2865 if (!is_breakpoint (bl->owner))
2866 continue;
2867
2868 /* We only want to update locations that are already inserted
2869 and need updating. This is to avoid unwanted insertion during
2870 deletion of breakpoints. */
2871 if (!bl->inserted || !bl->needs_update)
2872 continue;
2873
2874 switch_to_program_space_and_thread (bl->pspace);
2875
2876 /* For targets that support global breakpoints, there's no need
2877 to select an inferior to insert breakpoint to. In fact, even
2878 if we aren't attached to any process yet, we should still
2879 insert breakpoints. */
2880 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2881 && (inferior_ptid == null_ptid || !target_has_execution))
2882 continue;
2883
2884 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2885 &hw_breakpoint_error, &hw_bp_details_reported);
2886 if (val)
2887 error_flag = val;
2888 }
2889
2890 if (error_flag)
2891 {
2892 target_terminal::ours_for_output ();
2893 error_stream (tmp_error_stream);
2894 }
2895 }
2896
2897 /* Used when starting or continuing the program. */
2898
2899 static void
2900 insert_breakpoint_locations (void)
2901 {
2902 struct breakpoint *bpt;
2903 struct bp_location *bl, **blp_tmp;
2904 int error_flag = 0;
2905 int val = 0;
2906 int disabled_breaks = 0;
2907 int hw_breakpoint_error = 0;
2908 int hw_bp_error_explained_already = 0;
2909
2910 string_file tmp_error_stream;
2911
2912 /* Explicitly mark the warning -- this will only be printed if
2913 there was an error. */
2914 tmp_error_stream.puts ("Warning:\n");
2915
2916 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2917
2918 ALL_BP_LOCATIONS (bl, blp_tmp)
2919 {
2920 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2921 continue;
2922
2923 /* There is no point inserting thread-specific breakpoints if
2924 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2925 has BL->OWNER always non-NULL. */
2926 if (bl->owner->thread != -1
2927 && !valid_global_thread_id (bl->owner->thread))
2928 continue;
2929
2930 switch_to_program_space_and_thread (bl->pspace);
2931
2932 /* For targets that support global breakpoints, there's no need
2933 to select an inferior to insert breakpoint to. In fact, even
2934 if we aren't attached to any process yet, we should still
2935 insert breakpoints. */
2936 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2937 && (inferior_ptid == null_ptid || !target_has_execution))
2938 continue;
2939
2940 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2941 &hw_breakpoint_error, &hw_bp_error_explained_already);
2942 if (val)
2943 error_flag = val;
2944 }
2945
2946 /* If we failed to insert all locations of a watchpoint, remove
2947 them, as half-inserted watchpoint is of limited use. */
2948 ALL_BREAKPOINTS (bpt)
2949 {
2950 int some_failed = 0;
2951 struct bp_location *loc;
2952
2953 if (!is_hardware_watchpoint (bpt))
2954 continue;
2955
2956 if (!breakpoint_enabled (bpt))
2957 continue;
2958
2959 if (bpt->disposition == disp_del_at_next_stop)
2960 continue;
2961
2962 for (loc = bpt->loc; loc; loc = loc->next)
2963 if (!loc->inserted && should_be_inserted (loc))
2964 {
2965 some_failed = 1;
2966 break;
2967 }
2968 if (some_failed)
2969 {
2970 for (loc = bpt->loc; loc; loc = loc->next)
2971 if (loc->inserted)
2972 remove_breakpoint (loc);
2973
2974 hw_breakpoint_error = 1;
2975 tmp_error_stream.printf ("Could not insert "
2976 "hardware watchpoint %d.\n",
2977 bpt->number);
2978 error_flag = -1;
2979 }
2980 }
2981
2982 if (error_flag)
2983 {
2984 /* If a hardware breakpoint or watchpoint was inserted, add a
2985 message about possibly exhausted resources. */
2986 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2987 {
2988 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2989 You may have requested too many hardware breakpoints/watchpoints.\n");
2990 }
2991 target_terminal::ours_for_output ();
2992 error_stream (tmp_error_stream);
2993 }
2994 }
2995
2996 /* Used when the program stops.
2997 Returns zero if successful, or non-zero if there was a problem
2998 removing a breakpoint location. */
2999
3000 int
3001 remove_breakpoints (void)
3002 {
3003 struct bp_location *bl, **blp_tmp;
3004 int val = 0;
3005
3006 ALL_BP_LOCATIONS (bl, blp_tmp)
3007 {
3008 if (bl->inserted && !is_tracepoint (bl->owner))
3009 val |= remove_breakpoint (bl);
3010 }
3011 return val;
3012 }
3013
3014 /* When a thread exits, remove breakpoints that are related to
3015 that thread. */
3016
3017 static void
3018 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3019 {
3020 struct breakpoint *b, *b_tmp;
3021
3022 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3023 {
3024 if (b->thread == tp->global_num && user_breakpoint_p (b))
3025 {
3026 b->disposition = disp_del_at_next_stop;
3027
3028 printf_filtered (_("\
3029 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3030 b->number, print_thread_id (tp));
3031
3032 /* Hide it from the user. */
3033 b->number = 0;
3034 }
3035 }
3036 }
3037
3038 /* See breakpoint.h. */
3039
3040 void
3041 remove_breakpoints_inf (inferior *inf)
3042 {
3043 struct bp_location *bl, **blp_tmp;
3044 int val;
3045
3046 ALL_BP_LOCATIONS (bl, blp_tmp)
3047 {
3048 if (bl->pspace != inf->pspace)
3049 continue;
3050
3051 if (bl->inserted && !bl->target_info.persist)
3052 {
3053 val = remove_breakpoint (bl);
3054 if (val != 0)
3055 return;
3056 }
3057 }
3058 }
3059
3060 static int internal_breakpoint_number = -1;
3061
3062 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3063 If INTERNAL is non-zero, the breakpoint number will be populated
3064 from internal_breakpoint_number and that variable decremented.
3065 Otherwise the breakpoint number will be populated from
3066 breakpoint_count and that value incremented. Internal breakpoints
3067 do not set the internal var bpnum. */
3068 static void
3069 set_breakpoint_number (int internal, struct breakpoint *b)
3070 {
3071 if (internal)
3072 b->number = internal_breakpoint_number--;
3073 else
3074 {
3075 set_breakpoint_count (breakpoint_count + 1);
3076 b->number = breakpoint_count;
3077 }
3078 }
3079
3080 static struct breakpoint *
3081 create_internal_breakpoint (struct gdbarch *gdbarch,
3082 CORE_ADDR address, enum bptype type,
3083 const struct breakpoint_ops *ops)
3084 {
3085 symtab_and_line sal;
3086 sal.pc = address;
3087 sal.section = find_pc_overlay (sal.pc);
3088 sal.pspace = current_program_space;
3089
3090 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3091 b->number = internal_breakpoint_number--;
3092 b->disposition = disp_donttouch;
3093
3094 return b;
3095 }
3096
3097 static const char *const longjmp_names[] =
3098 {
3099 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3100 };
3101 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3102
3103 /* Per-objfile data private to breakpoint.c. */
3104 struct breakpoint_objfile_data
3105 {
3106 /* Minimal symbol for "_ovly_debug_event" (if any). */
3107 struct bound_minimal_symbol overlay_msym {};
3108
3109 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3110 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3111
3112 /* True if we have looked for longjmp probes. */
3113 int longjmp_searched = 0;
3114
3115 /* SystemTap probe points for longjmp (if any). These are non-owning
3116 references. */
3117 std::vector<probe *> longjmp_probes;
3118
3119 /* Minimal symbol for "std::terminate()" (if any). */
3120 struct bound_minimal_symbol terminate_msym {};
3121
3122 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3123 struct bound_minimal_symbol exception_msym {};
3124
3125 /* True if we have looked for exception probes. */
3126 int exception_searched = 0;
3127
3128 /* SystemTap probe points for unwinding (if any). These are non-owning
3129 references. */
3130 std::vector<probe *> exception_probes;
3131 };
3132
3133 static const struct objfile_key<breakpoint_objfile_data>
3134 breakpoint_objfile_key;
3135
3136 /* Minimal symbol not found sentinel. */
3137 static struct minimal_symbol msym_not_found;
3138
3139 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3140
3141 static int
3142 msym_not_found_p (const struct minimal_symbol *msym)
3143 {
3144 return msym == &msym_not_found;
3145 }
3146
3147 /* Return per-objfile data needed by breakpoint.c.
3148 Allocate the data if necessary. */
3149
3150 static struct breakpoint_objfile_data *
3151 get_breakpoint_objfile_data (struct objfile *objfile)
3152 {
3153 struct breakpoint_objfile_data *bp_objfile_data;
3154
3155 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3156 if (bp_objfile_data == NULL)
3157 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3158 return bp_objfile_data;
3159 }
3160
3161 static void
3162 create_overlay_event_breakpoint (void)
3163 {
3164 const char *const func_name = "_ovly_debug_event";
3165
3166 for (objfile *objfile : current_program_space->objfiles ())
3167 {
3168 struct breakpoint *b;
3169 struct breakpoint_objfile_data *bp_objfile_data;
3170 CORE_ADDR addr;
3171 struct explicit_location explicit_loc;
3172
3173 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3174
3175 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3176 continue;
3177
3178 if (bp_objfile_data->overlay_msym.minsym == NULL)
3179 {
3180 struct bound_minimal_symbol m;
3181
3182 m = lookup_minimal_symbol_text (func_name, objfile);
3183 if (m.minsym == NULL)
3184 {
3185 /* Avoid future lookups in this objfile. */
3186 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3187 continue;
3188 }
3189 bp_objfile_data->overlay_msym = m;
3190 }
3191
3192 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3193 b = create_internal_breakpoint (objfile->arch (), addr,
3194 bp_overlay_event,
3195 &internal_breakpoint_ops);
3196 initialize_explicit_location (&explicit_loc);
3197 explicit_loc.function_name = ASTRDUP (func_name);
3198 b->location = new_explicit_location (&explicit_loc);
3199
3200 if (overlay_debugging == ovly_auto)
3201 {
3202 b->enable_state = bp_enabled;
3203 overlay_events_enabled = 1;
3204 }
3205 else
3206 {
3207 b->enable_state = bp_disabled;
3208 overlay_events_enabled = 0;
3209 }
3210 }
3211 }
3212
3213 static void
3214 create_longjmp_master_breakpoint (void)
3215 {
3216 scoped_restore_current_program_space restore_pspace;
3217
3218 for (struct program_space *pspace : program_spaces)
3219 {
3220 set_current_program_space (pspace);
3221
3222 for (objfile *objfile : current_program_space->objfiles ())
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = objfile->arch ();
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 std::vector<probe *> ret
3235 = find_probes_in_objfile (objfile, "libc", "longjmp");
3236
3237 if (!ret.empty ())
3238 {
3239 /* We are only interested in checking one element. */
3240 probe *p = ret[0];
3241
3242 if (!p->can_evaluate_arguments ())
3243 {
3244 /* We cannot use the probe interface here,
3245 because it does not know how to evaluate
3246 arguments. */
3247 ret.clear ();
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (!bp_objfile_data->longjmp_probes.empty ())
3255 {
3256 for (probe *p : bp_objfile_data->longjmp_probes)
3257 {
3258 struct breakpoint *b;
3259
3260 b = create_internal_breakpoint (gdbarch,
3261 p->get_relocated_address (objfile),
3262 bp_longjmp_master,
3263 &internal_breakpoint_ops);
3264 b->location = new_probe_location ("-probe-stap libc:longjmp");
3265 b->enable_state = bp_disabled;
3266 }
3267
3268 continue;
3269 }
3270
3271 if (!gdbarch_get_longjmp_target_p (gdbarch))
3272 continue;
3273
3274 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3275 {
3276 struct breakpoint *b;
3277 const char *func_name;
3278 CORE_ADDR addr;
3279 struct explicit_location explicit_loc;
3280
3281 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3282 continue;
3283
3284 func_name = longjmp_names[i];
3285 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3286 {
3287 struct bound_minimal_symbol m;
3288
3289 m = lookup_minimal_symbol_text (func_name, objfile);
3290 if (m.minsym == NULL)
3291 {
3292 /* Prevent future lookups in this objfile. */
3293 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3294 continue;
3295 }
3296 bp_objfile_data->longjmp_msym[i] = m;
3297 }
3298
3299 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3300 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3301 &internal_breakpoint_ops);
3302 initialize_explicit_location (&explicit_loc);
3303 explicit_loc.function_name = ASTRDUP (func_name);
3304 b->location = new_explicit_location (&explicit_loc);
3305 b->enable_state = bp_disabled;
3306 }
3307 }
3308 }
3309 }
3310
3311 /* Create a master std::terminate breakpoint. */
3312 static void
3313 create_std_terminate_master_breakpoint (void)
3314 {
3315 const char *const func_name = "std::terminate()";
3316
3317 scoped_restore_current_program_space restore_pspace;
3318
3319 for (struct program_space *pspace : program_spaces)
3320 {
3321 CORE_ADDR addr;
3322
3323 set_current_program_space (pspace);
3324
3325 for (objfile *objfile : current_program_space->objfiles ())
3326 {
3327 struct breakpoint *b;
3328 struct breakpoint_objfile_data *bp_objfile_data;
3329 struct explicit_location explicit_loc;
3330
3331 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3332
3333 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3334 continue;
3335
3336 if (bp_objfile_data->terminate_msym.minsym == NULL)
3337 {
3338 struct bound_minimal_symbol m;
3339
3340 m = lookup_minimal_symbol (func_name, NULL, objfile);
3341 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3342 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3343 {
3344 /* Prevent future lookups in this objfile. */
3345 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3346 continue;
3347 }
3348 bp_objfile_data->terminate_msym = m;
3349 }
3350
3351 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3352 b = create_internal_breakpoint (objfile->arch (), addr,
3353 bp_std_terminate_master,
3354 &internal_breakpoint_ops);
3355 initialize_explicit_location (&explicit_loc);
3356 explicit_loc.function_name = ASTRDUP (func_name);
3357 b->location = new_explicit_location (&explicit_loc);
3358 b->enable_state = bp_disabled;
3359 }
3360 }
3361 }
3362
3363 /* Install a master breakpoint on the unwinder's debug hook. */
3364
3365 static void
3366 create_exception_master_breakpoint (void)
3367 {
3368 const char *const func_name = "_Unwind_DebugHook";
3369
3370 for (objfile *objfile : current_program_space->objfiles ())
3371 {
3372 struct breakpoint *b;
3373 struct gdbarch *gdbarch;
3374 struct breakpoint_objfile_data *bp_objfile_data;
3375 CORE_ADDR addr;
3376 struct explicit_location explicit_loc;
3377
3378 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3379
3380 /* We prefer the SystemTap probe point if it exists. */
3381 if (!bp_objfile_data->exception_searched)
3382 {
3383 std::vector<probe *> ret
3384 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3385
3386 if (!ret.empty ())
3387 {
3388 /* We are only interested in checking one element. */
3389 probe *p = ret[0];
3390
3391 if (!p->can_evaluate_arguments ())
3392 {
3393 /* We cannot use the probe interface here, because it does
3394 not know how to evaluate arguments. */
3395 ret.clear ();
3396 }
3397 }
3398 bp_objfile_data->exception_probes = ret;
3399 bp_objfile_data->exception_searched = 1;
3400 }
3401
3402 if (!bp_objfile_data->exception_probes.empty ())
3403 {
3404 gdbarch = objfile->arch ();
3405
3406 for (probe *p : bp_objfile_data->exception_probes)
3407 {
3408 b = create_internal_breakpoint (gdbarch,
3409 p->get_relocated_address (objfile),
3410 bp_exception_master,
3411 &internal_breakpoint_ops);
3412 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3413 b->enable_state = bp_disabled;
3414 }
3415
3416 continue;
3417 }
3418
3419 /* Otherwise, try the hook function. */
3420
3421 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3422 continue;
3423
3424 gdbarch = objfile->arch ();
3425
3426 if (bp_objfile_data->exception_msym.minsym == NULL)
3427 {
3428 struct bound_minimal_symbol debug_hook;
3429
3430 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3431 if (debug_hook.minsym == NULL)
3432 {
3433 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3434 continue;
3435 }
3436
3437 bp_objfile_data->exception_msym = debug_hook;
3438 }
3439
3440 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3441 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3442 current_top_target ());
3443 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3444 &internal_breakpoint_ops);
3445 initialize_explicit_location (&explicit_loc);
3446 explicit_loc.function_name = ASTRDUP (func_name);
3447 b->location = new_explicit_location (&explicit_loc);
3448 b->enable_state = bp_disabled;
3449 }
3450 }
3451
3452 /* Does B have a location spec? */
3453
3454 static int
3455 breakpoint_event_location_empty_p (const struct breakpoint *b)
3456 {
3457 return b->location != NULL && event_location_empty_p (b->location.get ());
3458 }
3459
3460 void
3461 update_breakpoints_after_exec (void)
3462 {
3463 struct breakpoint *b, *b_tmp;
3464 struct bp_location *bploc, **bplocp_tmp;
3465
3466 /* We're about to delete breakpoints from GDB's lists. If the
3467 INSERTED flag is true, GDB will try to lift the breakpoints by
3468 writing the breakpoints' "shadow contents" back into memory. The
3469 "shadow contents" are NOT valid after an exec, so GDB should not
3470 do that. Instead, the target is responsible from marking
3471 breakpoints out as soon as it detects an exec. We don't do that
3472 here instead, because there may be other attempts to delete
3473 breakpoints after detecting an exec and before reaching here. */
3474 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3475 if (bploc->pspace == current_program_space)
3476 gdb_assert (!bploc->inserted);
3477
3478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3479 {
3480 if (b->pspace != current_program_space)
3481 continue;
3482
3483 /* Solib breakpoints must be explicitly reset after an exec(). */
3484 if (b->type == bp_shlib_event)
3485 {
3486 delete_breakpoint (b);
3487 continue;
3488 }
3489
3490 /* JIT breakpoints must be explicitly reset after an exec(). */
3491 if (b->type == bp_jit_event)
3492 {
3493 delete_breakpoint (b);
3494 continue;
3495 }
3496
3497 /* Thread event breakpoints must be set anew after an exec(),
3498 as must overlay event and longjmp master breakpoints. */
3499 if (b->type == bp_thread_event || b->type == bp_overlay_event
3500 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3501 || b->type == bp_exception_master)
3502 {
3503 delete_breakpoint (b);
3504 continue;
3505 }
3506
3507 /* Step-resume breakpoints are meaningless after an exec(). */
3508 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513
3514 /* Just like single-step breakpoints. */
3515 if (b->type == bp_single_step)
3516 {
3517 delete_breakpoint (b);
3518 continue;
3519 }
3520
3521 /* Longjmp and longjmp-resume breakpoints are also meaningless
3522 after an exec. */
3523 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3524 || b->type == bp_longjmp_call_dummy
3525 || b->type == bp_exception || b->type == bp_exception_resume)
3526 {
3527 delete_breakpoint (b);
3528 continue;
3529 }
3530
3531 if (b->type == bp_catchpoint)
3532 {
3533 /* For now, none of the bp_catchpoint breakpoints need to
3534 do anything at this point. In the future, if some of
3535 the catchpoints need to something, we will need to add
3536 a new method, and call this method from here. */
3537 continue;
3538 }
3539
3540 /* bp_finish is a special case. The only way we ought to be able
3541 to see one of these when an exec() has happened, is if the user
3542 caught a vfork, and then said "finish". Ordinarily a finish just
3543 carries them to the call-site of the current callee, by setting
3544 a temporary bp there and resuming. But in this case, the finish
3545 will carry them entirely through the vfork & exec.
3546
3547 We don't want to allow a bp_finish to remain inserted now. But
3548 we can't safely delete it, 'cause finish_command has a handle to
3549 the bp on a bpstat, and will later want to delete it. There's a
3550 chance (and I've seen it happen) that if we delete the bp_finish
3551 here, that its storage will get reused by the time finish_command
3552 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3553 We really must allow finish_command to delete a bp_finish.
3554
3555 In the absence of a general solution for the "how do we know
3556 it's safe to delete something others may have handles to?"
3557 problem, what we'll do here is just uninsert the bp_finish, and
3558 let finish_command delete it.
3559
3560 (We know the bp_finish is "doomed" in the sense that it's
3561 momentary, and will be deleted as soon as finish_command sees
3562 the inferior stopped. So it doesn't matter that the bp's
3563 address is probably bogus in the new a.out, unlike e.g., the
3564 solib breakpoints.) */
3565
3566 if (b->type == bp_finish)
3567 {
3568 continue;
3569 }
3570
3571 /* Without a symbolic address, we have little hope of the
3572 pre-exec() address meaning the same thing in the post-exec()
3573 a.out. */
3574 if (breakpoint_event_location_empty_p (b))
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579 }
3580 }
3581
3582 int
3583 detach_breakpoints (ptid_t ptid)
3584 {
3585 struct bp_location *bl, **blp_tmp;
3586 int val = 0;
3587 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3588 struct inferior *inf = current_inferior ();
3589
3590 if (ptid.pid () == inferior_ptid.pid ())
3591 error (_("Cannot detach breakpoints of inferior_ptid"));
3592
3593 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3594 inferior_ptid = ptid;
3595 ALL_BP_LOCATIONS (bl, blp_tmp)
3596 {
3597 if (bl->pspace != inf->pspace)
3598 continue;
3599
3600 /* This function must physically remove breakpoints locations
3601 from the specified ptid, without modifying the breakpoint
3602 package's state. Locations of type bp_loc_other are only
3603 maintained at GDB side. So, there is no need to remove
3604 these bp_loc_other locations. Moreover, removing these
3605 would modify the breakpoint package's state. */
3606 if (bl->loc_type == bp_loc_other)
3607 continue;
3608
3609 if (bl->inserted)
3610 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3611 }
3612
3613 return val;
3614 }
3615
3616 /* Remove the breakpoint location BL from the current address space.
3617 Note that this is used to detach breakpoints from a child fork.
3618 When we get here, the child isn't in the inferior list, and neither
3619 do we have objects to represent its address space --- we should
3620 *not* look at bl->pspace->aspace here. */
3621
3622 static int
3623 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3624 {
3625 int val;
3626
3627 /* BL is never in moribund_locations by our callers. */
3628 gdb_assert (bl->owner != NULL);
3629
3630 /* The type of none suggests that owner is actually deleted.
3631 This should not ever happen. */
3632 gdb_assert (bl->owner->type != bp_none);
3633
3634 if (bl->loc_type == bp_loc_software_breakpoint
3635 || bl->loc_type == bp_loc_hardware_breakpoint)
3636 {
3637 /* "Normal" instruction breakpoint: either the standard
3638 trap-instruction bp (bp_breakpoint), or a
3639 bp_hardware_breakpoint. */
3640
3641 /* First check to see if we have to handle an overlay. */
3642 if (overlay_debugging == ovly_off
3643 || bl->section == NULL
3644 || !(section_is_overlay (bl->section)))
3645 {
3646 /* No overlay handling: just remove the breakpoint. */
3647
3648 /* If we're trying to uninsert a memory breakpoint that we
3649 know is set in a dynamic object that is marked
3650 shlib_disabled, then either the dynamic object was
3651 removed with "remove-symbol-file" or with
3652 "nosharedlibrary". In the former case, we don't know
3653 whether another dynamic object might have loaded over the
3654 breakpoint's address -- the user might well let us know
3655 about it next with add-symbol-file (the whole point of
3656 add-symbol-file is letting the user manually maintain a
3657 list of dynamically loaded objects). If we have the
3658 breakpoint's shadow memory, that is, this is a software
3659 breakpoint managed by GDB, check whether the breakpoint
3660 is still inserted in memory, to avoid overwriting wrong
3661 code with stale saved shadow contents. Note that HW
3662 breakpoints don't have shadow memory, as they're
3663 implemented using a mechanism that is not dependent on
3664 being able to modify the target's memory, and as such
3665 they should always be removed. */
3666 if (bl->shlib_disabled
3667 && bl->target_info.shadow_len != 0
3668 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3669 val = 0;
3670 else
3671 val = bl->owner->ops->remove_location (bl, reason);
3672 }
3673 else
3674 {
3675 /* This breakpoint is in an overlay section.
3676 Did we set a breakpoint at the LMA? */
3677 if (!overlay_events_enabled)
3678 {
3679 /* Yes -- overlay event support is not active, so we
3680 should have set a breakpoint at the LMA. Remove it.
3681 */
3682 /* Ignore any failures: if the LMA is in ROM, we will
3683 have already warned when we failed to insert it. */
3684 if (bl->loc_type == bp_loc_hardware_breakpoint)
3685 target_remove_hw_breakpoint (bl->gdbarch,
3686 &bl->overlay_target_info);
3687 else
3688 target_remove_breakpoint (bl->gdbarch,
3689 &bl->overlay_target_info,
3690 reason);
3691 }
3692 /* Did we set a breakpoint at the VMA?
3693 If so, we will have marked the breakpoint 'inserted'. */
3694 if (bl->inserted)
3695 {
3696 /* Yes -- remove it. Previously we did not bother to
3697 remove the breakpoint if the section had been
3698 unmapped, but let's not rely on that being safe. We
3699 don't know what the overlay manager might do. */
3700
3701 /* However, we should remove *software* breakpoints only
3702 if the section is still mapped, or else we overwrite
3703 wrong code with the saved shadow contents. */
3704 if (bl->loc_type == bp_loc_hardware_breakpoint
3705 || section_is_mapped (bl->section))
3706 val = bl->owner->ops->remove_location (bl, reason);
3707 else
3708 val = 0;
3709 }
3710 else
3711 {
3712 /* No -- not inserted, so no need to remove. No error. */
3713 val = 0;
3714 }
3715 }
3716
3717 /* In some cases, we might not be able to remove a breakpoint in
3718 a shared library that has already been removed, but we have
3719 not yet processed the shlib unload event. Similarly for an
3720 unloaded add-symbol-file object - the user might not yet have
3721 had the chance to remove-symbol-file it. shlib_disabled will
3722 be set if the library/object has already been removed, but
3723 the breakpoint hasn't been uninserted yet, e.g., after
3724 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3725 always-inserted mode. */
3726 if (val
3727 && (bl->loc_type == bp_loc_software_breakpoint
3728 && (bl->shlib_disabled
3729 || solib_name_from_address (bl->pspace, bl->address)
3730 || shared_objfile_contains_address_p (bl->pspace,
3731 bl->address))))
3732 val = 0;
3733
3734 if (val)
3735 return val;
3736 bl->inserted = (reason == DETACH_BREAKPOINT);
3737 }
3738 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3739 {
3740 gdb_assert (bl->owner->ops != NULL
3741 && bl->owner->ops->remove_location != NULL);
3742
3743 bl->inserted = (reason == DETACH_BREAKPOINT);
3744 bl->owner->ops->remove_location (bl, reason);
3745
3746 /* Failure to remove any of the hardware watchpoints comes here. */
3747 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3748 warning (_("Could not remove hardware watchpoint %d."),
3749 bl->owner->number);
3750 }
3751 else if (bl->owner->type == bp_catchpoint
3752 && breakpoint_enabled (bl->owner)
3753 && !bl->duplicate)
3754 {
3755 gdb_assert (bl->owner->ops != NULL
3756 && bl->owner->ops->remove_location != NULL);
3757
3758 val = bl->owner->ops->remove_location (bl, reason);
3759 if (val)
3760 return val;
3761
3762 bl->inserted = (reason == DETACH_BREAKPOINT);
3763 }
3764
3765 return 0;
3766 }
3767
3768 static int
3769 remove_breakpoint (struct bp_location *bl)
3770 {
3771 /* BL is never in moribund_locations by our callers. */
3772 gdb_assert (bl->owner != NULL);
3773
3774 /* The type of none suggests that owner is actually deleted.
3775 This should not ever happen. */
3776 gdb_assert (bl->owner->type != bp_none);
3777
3778 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3779
3780 switch_to_program_space_and_thread (bl->pspace);
3781
3782 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3783 }
3784
3785 /* Clear the "inserted" flag in all breakpoints. */
3786
3787 void
3788 mark_breakpoints_out (void)
3789 {
3790 struct bp_location *bl, **blp_tmp;
3791
3792 ALL_BP_LOCATIONS (bl, blp_tmp)
3793 if (bl->pspace == current_program_space)
3794 bl->inserted = 0;
3795 }
3796
3797 /* Clear the "inserted" flag in all breakpoints and delete any
3798 breakpoints which should go away between runs of the program.
3799
3800 Plus other such housekeeping that has to be done for breakpoints
3801 between runs.
3802
3803 Note: this function gets called at the end of a run (by
3804 generic_mourn_inferior) and when a run begins (by
3805 init_wait_for_inferior). */
3806
3807
3808
3809 void
3810 breakpoint_init_inferior (enum inf_context context)
3811 {
3812 struct breakpoint *b, *b_tmp;
3813 struct program_space *pspace = current_program_space;
3814
3815 /* If breakpoint locations are shared across processes, then there's
3816 nothing to do. */
3817 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3818 return;
3819
3820 mark_breakpoints_out ();
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 case bp_single_step:
3861
3862 /* Also remove single-step breakpoints. */
3863
3864 delete_breakpoint (b);
3865 break;
3866
3867 case bp_watchpoint:
3868 case bp_hardware_watchpoint:
3869 case bp_read_watchpoint:
3870 case bp_access_watchpoint:
3871 {
3872 struct watchpoint *w = (struct watchpoint *) b;
3873
3874 /* Likewise for watchpoints on local expressions. */
3875 if (w->exp_valid_block != NULL)
3876 delete_breakpoint (b);
3877 else
3878 {
3879 /* Get rid of existing locations, which are no longer
3880 valid. New ones will be created in
3881 update_watchpoint, when the inferior is restarted.
3882 The next update_global_location_list call will
3883 garbage collect them. */
3884 b->loc = NULL;
3885
3886 if (context == inf_starting)
3887 {
3888 /* Reset val field to force reread of starting value in
3889 insert_breakpoints. */
3890 w->val.reset (nullptr);
3891 w->val_valid = false;
3892 }
3893 }
3894 }
3895 break;
3896 default:
3897 break;
3898 }
3899 }
3900
3901 /* Get rid of the moribund locations. */
3902 for (bp_location *bl : moribund_locations)
3903 decref_bp_location (&bl);
3904 moribund_locations.clear ();
3905 }
3906
3907 /* These functions concern about actual breakpoints inserted in the
3908 target --- to e.g. check if we need to do decr_pc adjustment or if
3909 we need to hop over the bkpt --- so we check for address space
3910 match, not program space. */
3911
3912 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3913 exists at PC. It returns ordinary_breakpoint_here if it's an
3914 ordinary breakpoint, or permanent_breakpoint_here if it's a
3915 permanent breakpoint.
3916 - When continuing from a location with an ordinary breakpoint, we
3917 actually single step once before calling insert_breakpoints.
3918 - When continuing from a location with a permanent breakpoint, we
3919 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3920 the target, to advance the PC past the breakpoint. */
3921
3922 enum breakpoint_here
3923 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3924 {
3925 struct bp_location *bl, **blp_tmp;
3926 int any_breakpoint_here = 0;
3927
3928 ALL_BP_LOCATIONS (bl, blp_tmp)
3929 {
3930 if (bl->loc_type != bp_loc_software_breakpoint
3931 && bl->loc_type != bp_loc_hardware_breakpoint)
3932 continue;
3933
3934 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3935 if ((breakpoint_enabled (bl->owner)
3936 || bl->permanent)
3937 && breakpoint_location_address_match (bl, aspace, pc))
3938 {
3939 if (overlay_debugging
3940 && section_is_overlay (bl->section)
3941 && !section_is_mapped (bl->section))
3942 continue; /* unmapped overlay -- can't be a match */
3943 else if (bl->permanent)
3944 return permanent_breakpoint_here;
3945 else
3946 any_breakpoint_here = 1;
3947 }
3948 }
3949
3950 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3951 }
3952
3953 /* See breakpoint.h. */
3954
3955 int
3956 breakpoint_in_range_p (const address_space *aspace,
3957 CORE_ADDR addr, ULONGEST len)
3958 {
3959 struct bp_location *bl, **blp_tmp;
3960
3961 ALL_BP_LOCATIONS (bl, blp_tmp)
3962 {
3963 if (bl->loc_type != bp_loc_software_breakpoint
3964 && bl->loc_type != bp_loc_hardware_breakpoint)
3965 continue;
3966
3967 if ((breakpoint_enabled (bl->owner)
3968 || bl->permanent)
3969 && breakpoint_location_address_range_overlap (bl, aspace,
3970 addr, len))
3971 {
3972 if (overlay_debugging
3973 && section_is_overlay (bl->section)
3974 && !section_is_mapped (bl->section))
3975 {
3976 /* Unmapped overlay -- can't be a match. */
3977 continue;
3978 }
3979
3980 return 1;
3981 }
3982 }
3983
3984 return 0;
3985 }
3986
3987 /* Return true if there's a moribund breakpoint at PC. */
3988
3989 int
3990 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3991 {
3992 for (bp_location *loc : moribund_locations)
3993 if (breakpoint_location_address_match (loc, aspace, pc))
3994 return 1;
3995
3996 return 0;
3997 }
3998
3999 /* Returns non-zero iff BL is inserted at PC, in address space
4000 ASPACE. */
4001
4002 static int
4003 bp_location_inserted_here_p (struct bp_location *bl,
4004 const address_space *aspace, CORE_ADDR pc)
4005 {
4006 if (bl->inserted
4007 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4008 aspace, pc))
4009 {
4010 if (overlay_debugging
4011 && section_is_overlay (bl->section)
4012 && !section_is_mapped (bl->section))
4013 return 0; /* unmapped overlay -- can't be a match */
4014 else
4015 return 1;
4016 }
4017 return 0;
4018 }
4019
4020 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4021
4022 int
4023 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4024 {
4025 struct bp_location **blp, **blp_tmp = NULL;
4026
4027 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4028 {
4029 struct bp_location *bl = *blp;
4030
4031 if (bl->loc_type != bp_loc_software_breakpoint
4032 && bl->loc_type != bp_loc_hardware_breakpoint)
4033 continue;
4034
4035 if (bp_location_inserted_here_p (bl, aspace, pc))
4036 return 1;
4037 }
4038 return 0;
4039 }
4040
4041 /* This function returns non-zero iff there is a software breakpoint
4042 inserted at PC. */
4043
4044 int
4045 software_breakpoint_inserted_here_p (const address_space *aspace,
4046 CORE_ADDR pc)
4047 {
4048 struct bp_location **blp, **blp_tmp = NULL;
4049
4050 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4051 {
4052 struct bp_location *bl = *blp;
4053
4054 if (bl->loc_type != bp_loc_software_breakpoint)
4055 continue;
4056
4057 if (bp_location_inserted_here_p (bl, aspace, pc))
4058 return 1;
4059 }
4060
4061 return 0;
4062 }
4063
4064 /* See breakpoint.h. */
4065
4066 int
4067 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4068 CORE_ADDR pc)
4069 {
4070 struct bp_location **blp, **blp_tmp = NULL;
4071
4072 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4073 {
4074 struct bp_location *bl = *blp;
4075
4076 if (bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082
4083 return 0;
4084 }
4085
4086 int
4087 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4088 CORE_ADDR addr, ULONGEST len)
4089 {
4090 struct breakpoint *bpt;
4091
4092 ALL_BREAKPOINTS (bpt)
4093 {
4094 struct bp_location *loc;
4095
4096 if (bpt->type != bp_hardware_watchpoint
4097 && bpt->type != bp_access_watchpoint)
4098 continue;
4099
4100 if (!breakpoint_enabled (bpt))
4101 continue;
4102
4103 for (loc = bpt->loc; loc; loc = loc->next)
4104 if (loc->pspace->aspace == aspace && loc->inserted)
4105 {
4106 CORE_ADDR l, h;
4107
4108 /* Check for intersection. */
4109 l = std::max<CORE_ADDR> (loc->address, addr);
4110 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4111 if (l < h)
4112 return 1;
4113 }
4114 }
4115 return 0;
4116 }
4117
4118 /* See breakpoint.h. */
4119
4120 bool
4121 is_catchpoint (struct breakpoint *b)
4122 {
4123 return (b->type == bp_catchpoint);
4124 }
4125
4126 /* Frees any storage that is part of a bpstat. Does not walk the
4127 'next' chain. */
4128
4129 bpstats::~bpstats ()
4130 {
4131 if (bp_location_at != NULL)
4132 decref_bp_location (&bp_location_at);
4133 }
4134
4135 /* Clear a bpstat so that it says we are not at any breakpoint.
4136 Also free any storage that is part of a bpstat. */
4137
4138 void
4139 bpstat_clear (bpstat *bsp)
4140 {
4141 bpstat p;
4142 bpstat q;
4143
4144 if (bsp == 0)
4145 return;
4146 p = *bsp;
4147 while (p != NULL)
4148 {
4149 q = p->next;
4150 delete p;
4151 p = q;
4152 }
4153 *bsp = NULL;
4154 }
4155
4156 bpstats::bpstats (const bpstats &other)
4157 : next (NULL),
4158 bp_location_at (other.bp_location_at),
4159 breakpoint_at (other.breakpoint_at),
4160 commands (other.commands),
4161 print (other.print),
4162 stop (other.stop),
4163 print_it (other.print_it)
4164 {
4165 if (other.old_val != NULL)
4166 old_val = release_value (value_copy (other.old_val.get ()));
4167 incref_bp_location (bp_location_at);
4168 }
4169
4170 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4171 is part of the bpstat is copied as well. */
4172
4173 bpstat
4174 bpstat_copy (bpstat bs)
4175 {
4176 bpstat p = NULL;
4177 bpstat tmp;
4178 bpstat retval = NULL;
4179
4180 if (bs == NULL)
4181 return bs;
4182
4183 for (; bs != NULL; bs = bs->next)
4184 {
4185 tmp = new bpstats (*bs);
4186
4187 if (p == NULL)
4188 /* This is the first thing in the chain. */
4189 retval = tmp;
4190 else
4191 p->next = tmp;
4192 p = tmp;
4193 }
4194 p->next = NULL;
4195 return retval;
4196 }
4197
4198 /* Find the bpstat associated with this breakpoint. */
4199
4200 bpstat
4201 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4202 {
4203 if (bsp == NULL)
4204 return NULL;
4205
4206 for (; bsp != NULL; bsp = bsp->next)
4207 {
4208 if (bsp->breakpoint_at == breakpoint)
4209 return bsp;
4210 }
4211 return NULL;
4212 }
4213
4214 /* See breakpoint.h. */
4215
4216 bool
4217 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4218 {
4219 for (; bsp != NULL; bsp = bsp->next)
4220 {
4221 if (bsp->breakpoint_at == NULL)
4222 {
4223 /* A moribund location can never explain a signal other than
4224 GDB_SIGNAL_TRAP. */
4225 if (sig == GDB_SIGNAL_TRAP)
4226 return true;
4227 }
4228 else
4229 {
4230 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4231 sig))
4232 return true;
4233 }
4234 }
4235
4236 return false;
4237 }
4238
4239 /* Put in *NUM the breakpoint number of the first breakpoint we are
4240 stopped at. *BSP upon return is a bpstat which points to the
4241 remaining breakpoints stopped at (but which is not guaranteed to be
4242 good for anything but further calls to bpstat_num).
4243
4244 Return 0 if passed a bpstat which does not indicate any breakpoints.
4245 Return -1 if stopped at a breakpoint that has been deleted since
4246 we set it.
4247 Return 1 otherwise. */
4248
4249 int
4250 bpstat_num (bpstat *bsp, int *num)
4251 {
4252 struct breakpoint *b;
4253
4254 if ((*bsp) == NULL)
4255 return 0; /* No more breakpoint values */
4256
4257 /* We assume we'll never have several bpstats that correspond to a
4258 single breakpoint -- otherwise, this function might return the
4259 same number more than once and this will look ugly. */
4260 b = (*bsp)->breakpoint_at;
4261 *bsp = (*bsp)->next;
4262 if (b == NULL)
4263 return -1; /* breakpoint that's been deleted since */
4264
4265 *num = b->number; /* We have its number */
4266 return 1;
4267 }
4268
4269 /* See breakpoint.h. */
4270
4271 void
4272 bpstat_clear_actions (void)
4273 {
4274 bpstat bs;
4275
4276 if (inferior_ptid == null_ptid)
4277 return;
4278
4279 thread_info *tp = inferior_thread ();
4280 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4281 {
4282 bs->commands = NULL;
4283 bs->old_val.reset (nullptr);
4284 }
4285 }
4286
4287 /* Called when a command is about to proceed the inferior. */
4288
4289 static void
4290 breakpoint_about_to_proceed (void)
4291 {
4292 if (inferior_ptid != null_ptid)
4293 {
4294 struct thread_info *tp = inferior_thread ();
4295
4296 /* Allow inferior function calls in breakpoint commands to not
4297 interrupt the command list. When the call finishes
4298 successfully, the inferior will be standing at the same
4299 breakpoint as if nothing happened. */
4300 if (tp->control.in_infcall)
4301 return;
4302 }
4303
4304 breakpoint_proceeded = 1;
4305 }
4306
4307 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4308 or its equivalent. */
4309
4310 static int
4311 command_line_is_silent (struct command_line *cmd)
4312 {
4313 return cmd && (strcmp ("silent", cmd->line) == 0);
4314 }
4315
4316 /* Execute all the commands associated with all the breakpoints at
4317 this location. Any of these commands could cause the process to
4318 proceed beyond this point, etc. We look out for such changes by
4319 checking the global "breakpoint_proceeded" after each command.
4320
4321 Returns true if a breakpoint command resumed the inferior. In that
4322 case, it is the caller's responsibility to recall it again with the
4323 bpstat of the current thread. */
4324
4325 static int
4326 bpstat_do_actions_1 (bpstat *bsp)
4327 {
4328 bpstat bs;
4329 int again = 0;
4330
4331 /* Avoid endless recursion if a `source' command is contained
4332 in bs->commands. */
4333 if (executing_breakpoint_commands)
4334 return 0;
4335
4336 scoped_restore save_executing
4337 = make_scoped_restore (&executing_breakpoint_commands, 1);
4338
4339 scoped_restore preventer = prevent_dont_repeat ();
4340
4341 /* This pointer will iterate over the list of bpstat's. */
4342 bs = *bsp;
4343
4344 breakpoint_proceeded = 0;
4345 for (; bs != NULL; bs = bs->next)
4346 {
4347 struct command_line *cmd = NULL;
4348
4349 /* Take ownership of the BSP's command tree, if it has one.
4350
4351 The command tree could legitimately contain commands like
4352 'step' and 'next', which call clear_proceed_status, which
4353 frees stop_bpstat's command tree. To make sure this doesn't
4354 free the tree we're executing out from under us, we need to
4355 take ownership of the tree ourselves. Since a given bpstat's
4356 commands are only executed once, we don't need to copy it; we
4357 can clear the pointer in the bpstat, and make sure we free
4358 the tree when we're done. */
4359 counted_command_line ccmd = bs->commands;
4360 bs->commands = NULL;
4361 if (ccmd != NULL)
4362 cmd = ccmd.get ();
4363 if (command_line_is_silent (cmd))
4364 {
4365 /* The action has been already done by bpstat_stop_status. */
4366 cmd = cmd->next;
4367 }
4368
4369 while (cmd != NULL)
4370 {
4371 execute_control_command (cmd);
4372
4373 if (breakpoint_proceeded)
4374 break;
4375 else
4376 cmd = cmd->next;
4377 }
4378
4379 if (breakpoint_proceeded)
4380 {
4381 if (current_ui->async)
4382 /* If we are in async mode, then the target might be still
4383 running, not stopped at any breakpoint, so nothing for
4384 us to do here -- just return to the event loop. */
4385 ;
4386 else
4387 /* In sync mode, when execute_control_command returns
4388 we're already standing on the next breakpoint.
4389 Breakpoint commands for that stop were not run, since
4390 execute_command does not run breakpoint commands --
4391 only command_line_handler does, but that one is not
4392 involved in execution of breakpoint commands. So, we
4393 can now execute breakpoint commands. It should be
4394 noted that making execute_command do bpstat actions is
4395 not an option -- in this case we'll have recursive
4396 invocation of bpstat for each breakpoint with a
4397 command, and can easily blow up GDB stack. Instead, we
4398 return true, which will trigger the caller to recall us
4399 with the new stop_bpstat. */
4400 again = 1;
4401 break;
4402 }
4403 }
4404 return again;
4405 }
4406
4407 /* Helper for bpstat_do_actions. Get the current thread, if there's
4408 one, is alive and has execution. Return NULL otherwise. */
4409
4410 static thread_info *
4411 get_bpstat_thread ()
4412 {
4413 if (inferior_ptid == null_ptid || !target_has_execution)
4414 return NULL;
4415
4416 thread_info *tp = inferior_thread ();
4417 if (tp->state == THREAD_EXITED || tp->executing)
4418 return NULL;
4419 return tp;
4420 }
4421
4422 void
4423 bpstat_do_actions (void)
4424 {
4425 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4426 thread_info *tp;
4427
4428 /* Do any commands attached to breakpoint we are stopped at. */
4429 while ((tp = get_bpstat_thread ()) != NULL)
4430 {
4431 /* Since in sync mode, bpstat_do_actions may resume the
4432 inferior, and only return when it is stopped at the next
4433 breakpoint, we keep doing breakpoint actions until it returns
4434 false to indicate the inferior was not resumed. */
4435 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4436 break;
4437 }
4438
4439 cleanup_if_error.release ();
4440 }
4441
4442 /* Print out the (old or new) value associated with a watchpoint. */
4443
4444 static void
4445 watchpoint_value_print (struct value *val, struct ui_file *stream)
4446 {
4447 if (val == NULL)
4448 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4449 else
4450 {
4451 struct value_print_options opts;
4452 get_user_print_options (&opts);
4453 value_print (val, stream, &opts);
4454 }
4455 }
4456
4457 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4458 debugging multiple threads. */
4459
4460 void
4461 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4462 {
4463 if (uiout->is_mi_like_p ())
4464 return;
4465
4466 uiout->text ("\n");
4467
4468 if (show_thread_that_caused_stop ())
4469 {
4470 const char *name;
4471 struct thread_info *thr = inferior_thread ();
4472
4473 uiout->text ("Thread ");
4474 uiout->field_string ("thread-id", print_thread_id (thr));
4475
4476 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4477 if (name != NULL)
4478 {
4479 uiout->text (" \"");
4480 uiout->field_string ("name", name);
4481 uiout->text ("\"");
4482 }
4483
4484 uiout->text (" hit ");
4485 }
4486 }
4487
4488 /* Generic routine for printing messages indicating why we
4489 stopped. The behavior of this function depends on the value
4490 'print_it' in the bpstat structure. Under some circumstances we
4491 may decide not to print anything here and delegate the task to
4492 normal_stop(). */
4493
4494 static enum print_stop_action
4495 print_bp_stop_message (bpstat bs)
4496 {
4497 switch (bs->print_it)
4498 {
4499 case print_it_noop:
4500 /* Nothing should be printed for this bpstat entry. */
4501 return PRINT_UNKNOWN;
4502 break;
4503
4504 case print_it_done:
4505 /* We still want to print the frame, but we already printed the
4506 relevant messages. */
4507 return PRINT_SRC_AND_LOC;
4508 break;
4509
4510 case print_it_normal:
4511 {
4512 struct breakpoint *b = bs->breakpoint_at;
4513
4514 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4515 which has since been deleted. */
4516 if (b == NULL)
4517 return PRINT_UNKNOWN;
4518
4519 /* Normal case. Call the breakpoint's print_it method. */
4520 return b->ops->print_it (bs);
4521 }
4522 break;
4523
4524 default:
4525 internal_error (__FILE__, __LINE__,
4526 _("print_bp_stop_message: unrecognized enum value"));
4527 break;
4528 }
4529 }
4530
4531 /* A helper function that prints a shared library stopped event. */
4532
4533 static void
4534 print_solib_event (int is_catchpoint)
4535 {
4536 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4537 bool any_added = !current_program_space->added_solibs.empty ();
4538
4539 if (!is_catchpoint)
4540 {
4541 if (any_added || any_deleted)
4542 current_uiout->text (_("Stopped due to shared library event:\n"));
4543 else
4544 current_uiout->text (_("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (current_uiout->is_mi_like_p ())
4549 current_uiout->field_string ("reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 current_uiout->text (_(" Inferior unloaded "));
4555 ui_out_emit_list list_emitter (current_uiout, "removed");
4556 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4557 {
4558 const std::string &name = current_program_space->deleted_solibs[ix];
4559
4560 if (ix > 0)
4561 current_uiout->text (" ");
4562 current_uiout->field_string ("library", name);
4563 current_uiout->text ("\n");
4564 }
4565 }
4566
4567 if (any_added)
4568 {
4569 current_uiout->text (_(" Inferior loaded "));
4570 ui_out_emit_list list_emitter (current_uiout, "added");
4571 bool first = true;
4572 for (so_list *iter : current_program_space->added_solibs)
4573 {
4574 if (!first)
4575 current_uiout->text (" ");
4576 first = false;
4577 current_uiout->field_string ("library", iter->so_name);
4578 current_uiout->text ("\n");
4579 }
4580 }
4581 }
4582
4583 /* Print a message indicating what happened. This is called from
4584 normal_stop(). The input to this routine is the head of the bpstat
4585 list - a list of the eventpoints that caused this stop. KIND is
4586 the target_waitkind for the stopping event. This
4587 routine calls the generic print routine for printing a message
4588 about reasons for stopping. This will print (for example) the
4589 "Breakpoint n," part of the output. The return value of this
4590 routine is one of:
4591
4592 PRINT_UNKNOWN: Means we printed nothing.
4593 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4594 code to print the location. An example is
4595 "Breakpoint 1, " which should be followed by
4596 the location.
4597 PRINT_SRC_ONLY: Means we printed something, but there is no need
4598 to also print the location part of the message.
4599 An example is the catch/throw messages, which
4600 don't require a location appended to the end.
4601 PRINT_NOTHING: We have done some printing and we don't need any
4602 further info to be printed. */
4603
4604 enum print_stop_action
4605 bpstat_print (bpstat bs, int kind)
4606 {
4607 enum print_stop_action val;
4608
4609 /* Maybe another breakpoint in the chain caused us to stop.
4610 (Currently all watchpoints go on the bpstat whether hit or not.
4611 That probably could (should) be changed, provided care is taken
4612 with respect to bpstat_explains_signal). */
4613 for (; bs; bs = bs->next)
4614 {
4615 val = print_bp_stop_message (bs);
4616 if (val == PRINT_SRC_ONLY
4617 || val == PRINT_SRC_AND_LOC
4618 || val == PRINT_NOTHING)
4619 return val;
4620 }
4621
4622 /* If we had hit a shared library event breakpoint,
4623 print_bp_stop_message would print out this message. If we hit an
4624 OS-level shared library event, do the same thing. */
4625 if (kind == TARGET_WAITKIND_LOADED)
4626 {
4627 print_solib_event (0);
4628 return PRINT_NOTHING;
4629 }
4630
4631 /* We reached the end of the chain, or we got a null BS to start
4632 with and nothing was printed. */
4633 return PRINT_UNKNOWN;
4634 }
4635
4636 /* Evaluate the boolean expression EXP and return the result. */
4637
4638 static bool
4639 breakpoint_cond_eval (expression *exp)
4640 {
4641 struct value *mark = value_mark ();
4642 bool res = value_true (evaluate_expression (exp));
4643
4644 value_free_to_mark (mark);
4645 return res;
4646 }
4647
4648 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4649
4650 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4651 : next (NULL),
4652 bp_location_at (bl),
4653 breakpoint_at (bl->owner),
4654 commands (NULL),
4655 print (0),
4656 stop (0),
4657 print_it (print_it_normal)
4658 {
4659 incref_bp_location (bl);
4660 **bs_link_pointer = this;
4661 *bs_link_pointer = &next;
4662 }
4663
4664 bpstats::bpstats ()
4665 : next (NULL),
4666 bp_location_at (NULL),
4667 breakpoint_at (NULL),
4668 commands (NULL),
4669 print (0),
4670 stop (0),
4671 print_it (print_it_normal)
4672 {
4673 }
4674 \f
4675 /* The target has stopped with waitstatus WS. Check if any hardware
4676 watchpoints have triggered, according to the target. */
4677
4678 int
4679 watchpoints_triggered (struct target_waitstatus *ws)
4680 {
4681 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4682 CORE_ADDR addr;
4683 struct breakpoint *b;
4684
4685 if (!stopped_by_watchpoint)
4686 {
4687 /* We were not stopped by a watchpoint. Mark all watchpoints
4688 as not triggered. */
4689 ALL_BREAKPOINTS (b)
4690 if (is_hardware_watchpoint (b))
4691 {
4692 struct watchpoint *w = (struct watchpoint *) b;
4693
4694 w->watchpoint_triggered = watch_triggered_no;
4695 }
4696
4697 return 0;
4698 }
4699
4700 if (!target_stopped_data_address (current_top_target (), &addr))
4701 {
4702 /* We were stopped by a watchpoint, but we don't know where.
4703 Mark all watchpoints as unknown. */
4704 ALL_BREAKPOINTS (b)
4705 if (is_hardware_watchpoint (b))
4706 {
4707 struct watchpoint *w = (struct watchpoint *) b;
4708
4709 w->watchpoint_triggered = watch_triggered_unknown;
4710 }
4711
4712 return 1;
4713 }
4714
4715 /* The target could report the data address. Mark watchpoints
4716 affected by this data address as triggered, and all others as not
4717 triggered. */
4718
4719 ALL_BREAKPOINTS (b)
4720 if (is_hardware_watchpoint (b))
4721 {
4722 struct watchpoint *w = (struct watchpoint *) b;
4723 struct bp_location *loc;
4724
4725 w->watchpoint_triggered = watch_triggered_no;
4726 for (loc = b->loc; loc; loc = loc->next)
4727 {
4728 if (is_masked_watchpoint (b))
4729 {
4730 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4731 CORE_ADDR start = loc->address & w->hw_wp_mask;
4732
4733 if (newaddr == start)
4734 {
4735 w->watchpoint_triggered = watch_triggered_yes;
4736 break;
4737 }
4738 }
4739 /* Exact match not required. Within range is sufficient. */
4740 else if (target_watchpoint_addr_within_range (current_top_target (),
4741 addr, loc->address,
4742 loc->length))
4743 {
4744 w->watchpoint_triggered = watch_triggered_yes;
4745 break;
4746 }
4747 }
4748 }
4749
4750 return 1;
4751 }
4752
4753 /* Possible return values for watchpoint_check. */
4754 enum wp_check_result
4755 {
4756 /* The watchpoint has been deleted. */
4757 WP_DELETED = 1,
4758
4759 /* The value has changed. */
4760 WP_VALUE_CHANGED = 2,
4761
4762 /* The value has not changed. */
4763 WP_VALUE_NOT_CHANGED = 3,
4764
4765 /* Ignore this watchpoint, no matter if the value changed or not. */
4766 WP_IGNORE = 4,
4767 };
4768
4769 #define BP_TEMPFLAG 1
4770 #define BP_HARDWAREFLAG 2
4771
4772 /* Evaluate watchpoint condition expression and check if its value
4773 changed. */
4774
4775 static wp_check_result
4776 watchpoint_check (bpstat bs)
4777 {
4778 struct watchpoint *b;
4779 struct frame_info *fr;
4780 int within_current_scope;
4781
4782 /* BS is built from an existing struct breakpoint. */
4783 gdb_assert (bs->breakpoint_at != NULL);
4784 b = (struct watchpoint *) bs->breakpoint_at;
4785
4786 /* If this is a local watchpoint, we only want to check if the
4787 watchpoint frame is in scope if the current thread is the thread
4788 that was used to create the watchpoint. */
4789 if (!watchpoint_in_thread_scope (b))
4790 return WP_IGNORE;
4791
4792 if (b->exp_valid_block == NULL)
4793 within_current_scope = 1;
4794 else
4795 {
4796 struct frame_info *frame = get_current_frame ();
4797 struct gdbarch *frame_arch = get_frame_arch (frame);
4798 CORE_ADDR frame_pc = get_frame_pc (frame);
4799
4800 /* stack_frame_destroyed_p() returns a non-zero value if we're
4801 still in the function but the stack frame has already been
4802 invalidated. Since we can't rely on the values of local
4803 variables after the stack has been destroyed, we are treating
4804 the watchpoint in that state as `not changed' without further
4805 checking. Don't mark watchpoints as changed if the current
4806 frame is in an epilogue - even if they are in some other
4807 frame, our view of the stack is likely to be wrong and
4808 frame_find_by_id could error out. */
4809 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4810 return WP_IGNORE;
4811
4812 fr = frame_find_by_id (b->watchpoint_frame);
4813 within_current_scope = (fr != NULL);
4814
4815 /* If we've gotten confused in the unwinder, we might have
4816 returned a frame that can't describe this variable. */
4817 if (within_current_scope)
4818 {
4819 struct symbol *function;
4820
4821 function = get_frame_function (fr);
4822 if (function == NULL
4823 || !contained_in (b->exp_valid_block,
4824 SYMBOL_BLOCK_VALUE (function)))
4825 within_current_scope = 0;
4826 }
4827
4828 if (within_current_scope)
4829 /* If we end up stopping, the current frame will get selected
4830 in normal_stop. So this call to select_frame won't affect
4831 the user. */
4832 select_frame (fr);
4833 }
4834
4835 if (within_current_scope)
4836 {
4837 /* We use value_{,free_to_}mark because it could be a *long*
4838 time before we return to the command level and call
4839 free_all_values. We can't call free_all_values because we
4840 might be in the middle of evaluating a function call. */
4841
4842 int pc = 0;
4843 struct value *mark;
4844 struct value *new_val;
4845
4846 if (is_masked_watchpoint (b))
4847 /* Since we don't know the exact trigger address (from
4848 stopped_data_address), just tell the user we've triggered
4849 a mask watchpoint. */
4850 return WP_VALUE_CHANGED;
4851
4852 mark = value_mark ();
4853 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4854
4855 if (b->val_bitsize != 0)
4856 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4857
4858 /* We use value_equal_contents instead of value_equal because
4859 the latter coerces an array to a pointer, thus comparing just
4860 the address of the array instead of its contents. This is
4861 not what we want. */
4862 if ((b->val != NULL) != (new_val != NULL)
4863 || (b->val != NULL && !value_equal_contents (b->val.get (),
4864 new_val)))
4865 {
4866 bs->old_val = b->val;
4867 b->val = release_value (new_val);
4868 b->val_valid = true;
4869 if (new_val != NULL)
4870 value_free_to_mark (mark);
4871 return WP_VALUE_CHANGED;
4872 }
4873 else
4874 {
4875 /* Nothing changed. */
4876 value_free_to_mark (mark);
4877 return WP_VALUE_NOT_CHANGED;
4878 }
4879 }
4880 else
4881 {
4882 /* This seems like the only logical thing to do because
4883 if we temporarily ignored the watchpoint, then when
4884 we reenter the block in which it is valid it contains
4885 garbage (in the case of a function, it may have two
4886 garbage values, one before and one after the prologue).
4887 So we can't even detect the first assignment to it and
4888 watch after that (since the garbage may or may not equal
4889 the first value assigned). */
4890 /* We print all the stop information in
4891 breakpoint_ops->print_it, but in this case, by the time we
4892 call breakpoint_ops->print_it this bp will be deleted
4893 already. So we have no choice but print the information
4894 here. */
4895
4896 SWITCH_THRU_ALL_UIS ()
4897 {
4898 struct ui_out *uiout = current_uiout;
4899
4900 if (uiout->is_mi_like_p ())
4901 uiout->field_string
4902 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4903 uiout->message ("\nWatchpoint %pF deleted because the program has "
4904 "left the block in\n"
4905 "which its expression is valid.\n",
4906 signed_field ("wpnum", b->number));
4907 }
4908
4909 /* Make sure the watchpoint's commands aren't executed. */
4910 b->commands = NULL;
4911 watchpoint_del_at_next_stop (b);
4912
4913 return WP_DELETED;
4914 }
4915 }
4916
4917 /* Return true if it looks like target has stopped due to hitting
4918 breakpoint location BL. This function does not check if we should
4919 stop, only if BL explains the stop. */
4920
4921 static int
4922 bpstat_check_location (const struct bp_location *bl,
4923 const address_space *aspace, CORE_ADDR bp_addr,
4924 const struct target_waitstatus *ws)
4925 {
4926 struct breakpoint *b = bl->owner;
4927
4928 /* BL is from an existing breakpoint. */
4929 gdb_assert (b != NULL);
4930
4931 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4932 }
4933
4934 /* Determine if the watched values have actually changed, and we
4935 should stop. If not, set BS->stop to 0. */
4936
4937 static void
4938 bpstat_check_watchpoint (bpstat bs)
4939 {
4940 const struct bp_location *bl;
4941 struct watchpoint *b;
4942
4943 /* BS is built for existing struct breakpoint. */
4944 bl = bs->bp_location_at;
4945 gdb_assert (bl != NULL);
4946 b = (struct watchpoint *) bs->breakpoint_at;
4947 gdb_assert (b != NULL);
4948
4949 {
4950 int must_check_value = 0;
4951
4952 if (b->type == bp_watchpoint)
4953 /* For a software watchpoint, we must always check the
4954 watched value. */
4955 must_check_value = 1;
4956 else if (b->watchpoint_triggered == watch_triggered_yes)
4957 /* We have a hardware watchpoint (read, write, or access)
4958 and the target earlier reported an address watched by
4959 this watchpoint. */
4960 must_check_value = 1;
4961 else if (b->watchpoint_triggered == watch_triggered_unknown
4962 && b->type == bp_hardware_watchpoint)
4963 /* We were stopped by a hardware watchpoint, but the target could
4964 not report the data address. We must check the watchpoint's
4965 value. Access and read watchpoints are out of luck; without
4966 a data address, we can't figure it out. */
4967 must_check_value = 1;
4968
4969 if (must_check_value)
4970 {
4971 wp_check_result e;
4972
4973 try
4974 {
4975 e = watchpoint_check (bs);
4976 }
4977 catch (const gdb_exception &ex)
4978 {
4979 exception_fprintf (gdb_stderr, ex,
4980 "Error evaluating expression "
4981 "for watchpoint %d\n",
4982 b->number);
4983
4984 SWITCH_THRU_ALL_UIS ()
4985 {
4986 printf_filtered (_("Watchpoint %d deleted.\n"),
4987 b->number);
4988 }
4989 watchpoint_del_at_next_stop (b);
4990 e = WP_DELETED;
4991 }
4992
4993 switch (e)
4994 {
4995 case WP_DELETED:
4996 /* We've already printed what needs to be printed. */
4997 bs->print_it = print_it_done;
4998 /* Stop. */
4999 break;
5000 case WP_IGNORE:
5001 bs->print_it = print_it_noop;
5002 bs->stop = 0;
5003 break;
5004 case WP_VALUE_CHANGED:
5005 if (b->type == bp_read_watchpoint)
5006 {
5007 /* There are two cases to consider here:
5008
5009 1. We're watching the triggered memory for reads.
5010 In that case, trust the target, and always report
5011 the watchpoint hit to the user. Even though
5012 reads don't cause value changes, the value may
5013 have changed since the last time it was read, and
5014 since we're not trapping writes, we will not see
5015 those, and as such we should ignore our notion of
5016 old value.
5017
5018 2. We're watching the triggered memory for both
5019 reads and writes. There are two ways this may
5020 happen:
5021
5022 2.1. This is a target that can't break on data
5023 reads only, but can break on accesses (reads or
5024 writes), such as e.g., x86. We detect this case
5025 at the time we try to insert read watchpoints.
5026
5027 2.2. Otherwise, the target supports read
5028 watchpoints, but, the user set an access or write
5029 watchpoint watching the same memory as this read
5030 watchpoint.
5031
5032 If we're watching memory writes as well as reads,
5033 ignore watchpoint hits when we find that the
5034 value hasn't changed, as reads don't cause
5035 changes. This still gives false positives when
5036 the program writes the same value to memory as
5037 what there was already in memory (we will confuse
5038 it for a read), but it's much better than
5039 nothing. */
5040
5041 int other_write_watchpoint = 0;
5042
5043 if (bl->watchpoint_type == hw_read)
5044 {
5045 struct breakpoint *other_b;
5046
5047 ALL_BREAKPOINTS (other_b)
5048 if (other_b->type == bp_hardware_watchpoint
5049 || other_b->type == bp_access_watchpoint)
5050 {
5051 struct watchpoint *other_w =
5052 (struct watchpoint *) other_b;
5053
5054 if (other_w->watchpoint_triggered
5055 == watch_triggered_yes)
5056 {
5057 other_write_watchpoint = 1;
5058 break;
5059 }
5060 }
5061 }
5062
5063 if (other_write_watchpoint
5064 || bl->watchpoint_type == hw_access)
5065 {
5066 /* We're watching the same memory for writes,
5067 and the value changed since the last time we
5068 updated it, so this trap must be for a write.
5069 Ignore it. */
5070 bs->print_it = print_it_noop;
5071 bs->stop = 0;
5072 }
5073 }
5074 break;
5075 case WP_VALUE_NOT_CHANGED:
5076 if (b->type == bp_hardware_watchpoint
5077 || b->type == bp_watchpoint)
5078 {
5079 /* Don't stop: write watchpoints shouldn't fire if
5080 the value hasn't changed. */
5081 bs->print_it = print_it_noop;
5082 bs->stop = 0;
5083 }
5084 /* Stop. */
5085 break;
5086 default:
5087 /* Can't happen. */
5088 break;
5089 }
5090 }
5091 else /* must_check_value == 0 */
5092 {
5093 /* This is a case where some watchpoint(s) triggered, but
5094 not at the address of this watchpoint, or else no
5095 watchpoint triggered after all. So don't print
5096 anything for this watchpoint. */
5097 bs->print_it = print_it_noop;
5098 bs->stop = 0;
5099 }
5100 }
5101 }
5102
5103 /* For breakpoints that are currently marked as telling gdb to stop,
5104 check conditions (condition proper, frame, thread and ignore count)
5105 of breakpoint referred to by BS. If we should not stop for this
5106 breakpoint, set BS->stop to 0. */
5107
5108 static void
5109 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5110 {
5111 const struct bp_location *bl;
5112 struct breakpoint *b;
5113 /* Assume stop. */
5114 bool condition_result = true;
5115 struct expression *cond;
5116
5117 gdb_assert (bs->stop);
5118
5119 /* BS is built for existing struct breakpoint. */
5120 bl = bs->bp_location_at;
5121 gdb_assert (bl != NULL);
5122 b = bs->breakpoint_at;
5123 gdb_assert (b != NULL);
5124
5125 /* Even if the target evaluated the condition on its end and notified GDB, we
5126 need to do so again since GDB does not know if we stopped due to a
5127 breakpoint or a single step breakpoint. */
5128
5129 if (frame_id_p (b->frame_id)
5130 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5131 {
5132 bs->stop = 0;
5133 return;
5134 }
5135
5136 /* If this is a thread/task-specific breakpoint, don't waste cpu
5137 evaluating the condition if this isn't the specified
5138 thread/task. */
5139 if ((b->thread != -1 && b->thread != thread->global_num)
5140 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5141 {
5142 bs->stop = 0;
5143 return;
5144 }
5145
5146 /* Evaluate extension language breakpoints that have a "stop" method
5147 implemented. */
5148 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5149
5150 if (is_watchpoint (b))
5151 {
5152 struct watchpoint *w = (struct watchpoint *) b;
5153
5154 cond = w->cond_exp.get ();
5155 }
5156 else
5157 cond = bl->cond.get ();
5158
5159 if (cond && b->disposition != disp_del_at_next_stop)
5160 {
5161 int within_current_scope = 1;
5162 struct watchpoint * w;
5163
5164 /* We use value_mark and value_free_to_mark because it could
5165 be a long time before we return to the command level and
5166 call free_all_values. We can't call free_all_values
5167 because we might be in the middle of evaluating a
5168 function call. */
5169 struct value *mark = value_mark ();
5170
5171 if (is_watchpoint (b))
5172 w = (struct watchpoint *) b;
5173 else
5174 w = NULL;
5175
5176 /* Need to select the frame, with all that implies so that
5177 the conditions will have the right context. Because we
5178 use the frame, we will not see an inlined function's
5179 variables when we arrive at a breakpoint at the start
5180 of the inlined function; the current frame will be the
5181 call site. */
5182 if (w == NULL || w->cond_exp_valid_block == NULL)
5183 select_frame (get_current_frame ());
5184 else
5185 {
5186 struct frame_info *frame;
5187
5188 /* For local watchpoint expressions, which particular
5189 instance of a local is being watched matters, so we
5190 keep track of the frame to evaluate the expression
5191 in. To evaluate the condition however, it doesn't
5192 really matter which instantiation of the function
5193 where the condition makes sense triggers the
5194 watchpoint. This allows an expression like "watch
5195 global if q > 10" set in `func', catch writes to
5196 global on all threads that call `func', or catch
5197 writes on all recursive calls of `func' by a single
5198 thread. We simply always evaluate the condition in
5199 the innermost frame that's executing where it makes
5200 sense to evaluate the condition. It seems
5201 intuitive. */
5202 frame = block_innermost_frame (w->cond_exp_valid_block);
5203 if (frame != NULL)
5204 select_frame (frame);
5205 else
5206 within_current_scope = 0;
5207 }
5208 if (within_current_scope)
5209 {
5210 try
5211 {
5212 condition_result = breakpoint_cond_eval (cond);
5213 }
5214 catch (const gdb_exception &ex)
5215 {
5216 exception_fprintf (gdb_stderr, ex,
5217 "Error in testing breakpoint condition:\n");
5218 }
5219 }
5220 else
5221 {
5222 warning (_("Watchpoint condition cannot be tested "
5223 "in the current scope"));
5224 /* If we failed to set the right context for this
5225 watchpoint, unconditionally report it. */
5226 }
5227 /* FIXME-someday, should give breakpoint #. */
5228 value_free_to_mark (mark);
5229 }
5230
5231 if (cond && !condition_result)
5232 {
5233 bs->stop = 0;
5234 }
5235 else if (b->ignore_count > 0)
5236 {
5237 b->ignore_count--;
5238 bs->stop = 0;
5239 /* Increase the hit count even though we don't stop. */
5240 ++(b->hit_count);
5241 gdb::observers::breakpoint_modified.notify (b);
5242 }
5243 }
5244
5245 /* Returns true if we need to track moribund locations of LOC's type
5246 on the current target. */
5247
5248 static int
5249 need_moribund_for_location_type (struct bp_location *loc)
5250 {
5251 return ((loc->loc_type == bp_loc_software_breakpoint
5252 && !target_supports_stopped_by_sw_breakpoint ())
5253 || (loc->loc_type == bp_loc_hardware_breakpoint
5254 && !target_supports_stopped_by_hw_breakpoint ()));
5255 }
5256
5257 /* See breakpoint.h. */
5258
5259 bpstat
5260 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5261 const struct target_waitstatus *ws)
5262 {
5263 struct breakpoint *b;
5264 bpstat bs_head = NULL, *bs_link = &bs_head;
5265
5266 ALL_BREAKPOINTS (b)
5267 {
5268 if (!breakpoint_enabled (b))
5269 continue;
5270
5271 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5272 {
5273 /* For hardware watchpoints, we look only at the first
5274 location. The watchpoint_check function will work on the
5275 entire expression, not the individual locations. For
5276 read watchpoints, the watchpoints_triggered function has
5277 checked all locations already. */
5278 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5279 break;
5280
5281 if (!bl->enabled || bl->shlib_disabled)
5282 continue;
5283
5284 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5285 continue;
5286
5287 /* Come here if it's a watchpoint, or if the break address
5288 matches. */
5289
5290 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5291 explain stop. */
5292
5293 /* Assume we stop. Should we find a watchpoint that is not
5294 actually triggered, or if the condition of the breakpoint
5295 evaluates as false, we'll reset 'stop' to 0. */
5296 bs->stop = 1;
5297 bs->print = 1;
5298
5299 /* If this is a scope breakpoint, mark the associated
5300 watchpoint as triggered so that we will handle the
5301 out-of-scope event. We'll get to the watchpoint next
5302 iteration. */
5303 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5304 {
5305 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5306
5307 w->watchpoint_triggered = watch_triggered_yes;
5308 }
5309 }
5310 }
5311
5312 /* Check if a moribund breakpoint explains the stop. */
5313 if (!target_supports_stopped_by_sw_breakpoint ()
5314 || !target_supports_stopped_by_hw_breakpoint ())
5315 {
5316 for (bp_location *loc : moribund_locations)
5317 {
5318 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5319 && need_moribund_for_location_type (loc))
5320 {
5321 bpstat bs = new bpstats (loc, &bs_link);
5322 /* For hits of moribund locations, we should just proceed. */
5323 bs->stop = 0;
5324 bs->print = 0;
5325 bs->print_it = print_it_noop;
5326 }
5327 }
5328 }
5329
5330 return bs_head;
5331 }
5332
5333 /* See breakpoint.h. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, thread_info *thread,
5338 const struct target_waitstatus *ws,
5339 bpstat stop_chain)
5340 {
5341 struct breakpoint *b = NULL;
5342 /* First item of allocated bpstat's. */
5343 bpstat bs_head = stop_chain;
5344 bpstat bs;
5345 int need_remove_insert;
5346 int removed_any;
5347
5348 /* First, build the bpstat chain with locations that explain a
5349 target stop, while being careful to not set the target running,
5350 as that may invalidate locations (in particular watchpoint
5351 locations are recreated). Resuming will happen here with
5352 breakpoint conditions or watchpoint expressions that include
5353 inferior function calls. */
5354 if (bs_head == NULL)
5355 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5356
5357 /* A bit of special processing for shlib breakpoints. We need to
5358 process solib loading here, so that the lists of loaded and
5359 unloaded libraries are correct before we handle "catch load" and
5360 "catch unload". */
5361 for (bs = bs_head; bs != NULL; bs = bs->next)
5362 {
5363 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5364 {
5365 handle_solib_event ();
5366 break;
5367 }
5368 }
5369
5370 /* Now go through the locations that caused the target to stop, and
5371 check whether we're interested in reporting this stop to higher
5372 layers, or whether we should resume the target transparently. */
5373
5374 removed_any = 0;
5375
5376 for (bs = bs_head; bs != NULL; bs = bs->next)
5377 {
5378 if (!bs->stop)
5379 continue;
5380
5381 b = bs->breakpoint_at;
5382 b->ops->check_status (bs);
5383 if (bs->stop)
5384 {
5385 bpstat_check_breakpoint_conditions (bs, thread);
5386
5387 if (bs->stop)
5388 {
5389 ++(b->hit_count);
5390 gdb::observers::breakpoint_modified.notify (b);
5391
5392 /* We will stop here. */
5393 if (b->disposition == disp_disable)
5394 {
5395 --(b->enable_count);
5396 if (b->enable_count <= 0)
5397 b->enable_state = bp_disabled;
5398 removed_any = 1;
5399 }
5400 if (b->silent)
5401 bs->print = 0;
5402 bs->commands = b->commands;
5403 if (command_line_is_silent (bs->commands
5404 ? bs->commands.get () : NULL))
5405 bs->print = 0;
5406
5407 b->ops->after_condition_true (bs);
5408 }
5409
5410 }
5411
5412 /* Print nothing for this entry if we don't stop or don't
5413 print. */
5414 if (!bs->stop || !bs->print)
5415 bs->print_it = print_it_noop;
5416 }
5417
5418 /* If we aren't stopping, the value of some hardware watchpoint may
5419 not have changed, but the intermediate memory locations we are
5420 watching may have. Don't bother if we're stopping; this will get
5421 done later. */
5422 need_remove_insert = 0;
5423 if (! bpstat_causes_stop (bs_head))
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 if (!bs->stop
5426 && bs->breakpoint_at
5427 && is_hardware_watchpoint (bs->breakpoint_at))
5428 {
5429 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5430
5431 update_watchpoint (w, 0 /* don't reparse. */);
5432 need_remove_insert = 1;
5433 }
5434
5435 if (need_remove_insert)
5436 update_global_location_list (UGLL_MAY_INSERT);
5437 else if (removed_any)
5438 update_global_location_list (UGLL_DONT_INSERT);
5439
5440 return bs_head;
5441 }
5442
5443 static void
5444 handle_jit_event (void)
5445 {
5446 struct frame_info *frame;
5447 struct gdbarch *gdbarch;
5448
5449 infrun_debug_printf ("handling bp_jit_event");
5450
5451 /* Switch terminal for any messages produced by
5452 breakpoint_re_set. */
5453 target_terminal::ours_for_output ();
5454
5455 frame = get_current_frame ();
5456 gdbarch = get_frame_arch (frame);
5457 objfile *jiter = symbol_objfile (get_frame_function (frame));
5458
5459 jit_event_handler (gdbarch, jiter);
5460
5461 target_terminal::inferior ();
5462 }
5463
5464 /* Prepare WHAT final decision for infrun. */
5465
5466 /* Decide what infrun needs to do with this bpstat. */
5467
5468 struct bpstat_what
5469 bpstat_what (bpstat bs_head)
5470 {
5471 struct bpstat_what retval;
5472 bpstat bs;
5473
5474 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5475 retval.call_dummy = STOP_NONE;
5476 retval.is_longjmp = false;
5477
5478 for (bs = bs_head; bs != NULL; bs = bs->next)
5479 {
5480 /* Extract this BS's action. After processing each BS, we check
5481 if its action overrides all we've seem so far. */
5482 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5483 enum bptype bptype;
5484
5485 if (bs->breakpoint_at == NULL)
5486 {
5487 /* I suspect this can happen if it was a momentary
5488 breakpoint which has since been deleted. */
5489 bptype = bp_none;
5490 }
5491 else
5492 bptype = bs->breakpoint_at->type;
5493
5494 switch (bptype)
5495 {
5496 case bp_none:
5497 break;
5498 case bp_breakpoint:
5499 case bp_hardware_breakpoint:
5500 case bp_single_step:
5501 case bp_until:
5502 case bp_finish:
5503 case bp_shlib_event:
5504 if (bs->stop)
5505 {
5506 if (bs->print)
5507 this_action = BPSTAT_WHAT_STOP_NOISY;
5508 else
5509 this_action = BPSTAT_WHAT_STOP_SILENT;
5510 }
5511 else
5512 this_action = BPSTAT_WHAT_SINGLE;
5513 break;
5514 case bp_watchpoint:
5515 case bp_hardware_watchpoint:
5516 case bp_read_watchpoint:
5517 case bp_access_watchpoint:
5518 if (bs->stop)
5519 {
5520 if (bs->print)
5521 this_action = BPSTAT_WHAT_STOP_NOISY;
5522 else
5523 this_action = BPSTAT_WHAT_STOP_SILENT;
5524 }
5525 else
5526 {
5527 /* There was a watchpoint, but we're not stopping.
5528 This requires no further action. */
5529 }
5530 break;
5531 case bp_longjmp:
5532 case bp_longjmp_call_dummy:
5533 case bp_exception:
5534 if (bs->stop)
5535 {
5536 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5537 retval.is_longjmp = bptype != bp_exception;
5538 }
5539 else
5540 this_action = BPSTAT_WHAT_SINGLE;
5541 break;
5542 case bp_longjmp_resume:
5543 case bp_exception_resume:
5544 if (bs->stop)
5545 {
5546 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5547 retval.is_longjmp = bptype == bp_longjmp_resume;
5548 }
5549 else
5550 this_action = BPSTAT_WHAT_SINGLE;
5551 break;
5552 case bp_step_resume:
5553 if (bs->stop)
5554 this_action = BPSTAT_WHAT_STEP_RESUME;
5555 else
5556 {
5557 /* It is for the wrong frame. */
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 }
5560 break;
5561 case bp_hp_step_resume:
5562 if (bs->stop)
5563 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5564 else
5565 {
5566 /* It is for the wrong frame. */
5567 this_action = BPSTAT_WHAT_SINGLE;
5568 }
5569 break;
5570 case bp_watchpoint_scope:
5571 case bp_thread_event:
5572 case bp_overlay_event:
5573 case bp_longjmp_master:
5574 case bp_std_terminate_master:
5575 case bp_exception_master:
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 break;
5578 case bp_catchpoint:
5579 if (bs->stop)
5580 {
5581 if (bs->print)
5582 this_action = BPSTAT_WHAT_STOP_NOISY;
5583 else
5584 this_action = BPSTAT_WHAT_STOP_SILENT;
5585 }
5586 else
5587 {
5588 /* Some catchpoints are implemented with breakpoints.
5589 For those, we need to step over the breakpoint. */
5590 if (bs->bp_location_at->loc_type != bp_loc_other)
5591 this_action = BPSTAT_WHAT_SINGLE;
5592 }
5593 break;
5594 case bp_jit_event:
5595 this_action = BPSTAT_WHAT_SINGLE;
5596 break;
5597 case bp_call_dummy:
5598 /* Make sure the action is stop (silent or noisy),
5599 so infrun.c pops the dummy frame. */
5600 retval.call_dummy = STOP_STACK_DUMMY;
5601 this_action = BPSTAT_WHAT_STOP_SILENT;
5602 break;
5603 case bp_std_terminate:
5604 /* Make sure the action is stop (silent or noisy),
5605 so infrun.c pops the dummy frame. */
5606 retval.call_dummy = STOP_STD_TERMINATE;
5607 this_action = BPSTAT_WHAT_STOP_SILENT;
5608 break;
5609 case bp_tracepoint:
5610 case bp_fast_tracepoint:
5611 case bp_static_tracepoint:
5612 /* Tracepoint hits should not be reported back to GDB, and
5613 if one got through somehow, it should have been filtered
5614 out already. */
5615 internal_error (__FILE__, __LINE__,
5616 _("bpstat_what: tracepoint encountered"));
5617 break;
5618 case bp_gnu_ifunc_resolver:
5619 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_gnu_ifunc_resolver_return:
5623 /* The breakpoint will be removed, execution will restart from the
5624 PC of the former breakpoint. */
5625 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5626 break;
5627
5628 case bp_dprintf:
5629 if (bs->stop)
5630 this_action = BPSTAT_WHAT_STOP_SILENT;
5631 else
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 break;
5634
5635 default:
5636 internal_error (__FILE__, __LINE__,
5637 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5638 }
5639
5640 retval.main_action = std::max (retval.main_action, this_action);
5641 }
5642
5643 return retval;
5644 }
5645
5646 void
5647 bpstat_run_callbacks (bpstat bs_head)
5648 {
5649 bpstat bs;
5650
5651 for (bs = bs_head; bs != NULL; bs = bs->next)
5652 {
5653 struct breakpoint *b = bs->breakpoint_at;
5654
5655 if (b == NULL)
5656 continue;
5657 switch (b->type)
5658 {
5659 case bp_jit_event:
5660 handle_jit_event ();
5661 break;
5662 case bp_gnu_ifunc_resolver:
5663 gnu_ifunc_resolver_stop (b);
5664 break;
5665 case bp_gnu_ifunc_resolver_return:
5666 gnu_ifunc_resolver_return_stop (b);
5667 break;
5668 }
5669 }
5670 }
5671
5672 /* See breakpoint.h. */
5673
5674 bool
5675 bpstat_should_step ()
5676 {
5677 struct breakpoint *b;
5678
5679 ALL_BREAKPOINTS (b)
5680 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5681 return true;
5682 return false;
5683 }
5684
5685 /* See breakpoint.h. */
5686
5687 bool
5688 bpstat_causes_stop (bpstat bs)
5689 {
5690 for (; bs != NULL; bs = bs->next)
5691 if (bs->stop)
5692 return true;
5693
5694 return false;
5695 }
5696
5697 \f
5698
5699 /* Compute a string of spaces suitable to indent the next line
5700 so it starts at the position corresponding to the table column
5701 named COL_NAME in the currently active table of UIOUT. */
5702
5703 static char *
5704 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5705 {
5706 static char wrap_indent[80];
5707 int i, total_width, width, align;
5708 const char *text;
5709
5710 total_width = 0;
5711 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5712 {
5713 if (strcmp (text, col_name) == 0)
5714 {
5715 gdb_assert (total_width < sizeof wrap_indent);
5716 memset (wrap_indent, ' ', total_width);
5717 wrap_indent[total_width] = 0;
5718
5719 return wrap_indent;
5720 }
5721
5722 total_width += width + 1;
5723 }
5724
5725 return NULL;
5726 }
5727
5728 /* Determine if the locations of this breakpoint will have their conditions
5729 evaluated by the target, host or a mix of both. Returns the following:
5730
5731 "host": Host evals condition.
5732 "host or target": Host or Target evals condition.
5733 "target": Target evals condition.
5734 */
5735
5736 static const char *
5737 bp_condition_evaluator (struct breakpoint *b)
5738 {
5739 struct bp_location *bl;
5740 char host_evals = 0;
5741 char target_evals = 0;
5742
5743 if (!b)
5744 return NULL;
5745
5746 if (!is_breakpoint (b))
5747 return NULL;
5748
5749 if (gdb_evaluates_breakpoint_condition_p ()
5750 || !target_supports_evaluation_of_breakpoint_conditions ())
5751 return condition_evaluation_host;
5752
5753 for (bl = b->loc; bl; bl = bl->next)
5754 {
5755 if (bl->cond_bytecode)
5756 target_evals++;
5757 else
5758 host_evals++;
5759 }
5760
5761 if (host_evals && target_evals)
5762 return condition_evaluation_both;
5763 else if (target_evals)
5764 return condition_evaluation_target;
5765 else
5766 return condition_evaluation_host;
5767 }
5768
5769 /* Determine the breakpoint location's condition evaluator. This is
5770 similar to bp_condition_evaluator, but for locations. */
5771
5772 static const char *
5773 bp_location_condition_evaluator (struct bp_location *bl)
5774 {
5775 if (bl && !is_breakpoint (bl->owner))
5776 return NULL;
5777
5778 if (gdb_evaluates_breakpoint_condition_p ()
5779 || !target_supports_evaluation_of_breakpoint_conditions ())
5780 return condition_evaluation_host;
5781
5782 if (bl && bl->cond_bytecode)
5783 return condition_evaluation_target;
5784 else
5785 return condition_evaluation_host;
5786 }
5787
5788 /* Print the LOC location out of the list of B->LOC locations. */
5789
5790 static void
5791 print_breakpoint_location (struct breakpoint *b,
5792 struct bp_location *loc)
5793 {
5794 struct ui_out *uiout = current_uiout;
5795
5796 scoped_restore_current_program_space restore_pspace;
5797
5798 if (loc != NULL && loc->shlib_disabled)
5799 loc = NULL;
5800
5801 if (loc != NULL)
5802 set_current_program_space (loc->pspace);
5803
5804 if (b->display_canonical)
5805 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5806 else if (loc && loc->symtab)
5807 {
5808 const struct symbol *sym = loc->symbol;
5809
5810 if (sym)
5811 {
5812 uiout->text ("in ");
5813 uiout->field_string ("func", sym->print_name (),
5814 function_name_style.style ());
5815 uiout->text (" ");
5816 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5817 uiout->text ("at ");
5818 }
5819 uiout->field_string ("file",
5820 symtab_to_filename_for_display (loc->symtab),
5821 file_name_style.style ());
5822 uiout->text (":");
5823
5824 if (uiout->is_mi_like_p ())
5825 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5826
5827 uiout->field_signed ("line", loc->line_number);
5828 }
5829 else if (loc)
5830 {
5831 string_file stb;
5832
5833 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5834 demangle, "");
5835 uiout->field_stream ("at", stb);
5836 }
5837 else
5838 {
5839 uiout->field_string ("pending",
5840 event_location_to_string (b->location.get ()));
5841 /* If extra_string is available, it could be holding a condition
5842 or dprintf arguments. In either case, make sure it is printed,
5843 too, but only for non-MI streams. */
5844 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5845 {
5846 if (b->type == bp_dprintf)
5847 uiout->text (",");
5848 else
5849 uiout->text (" ");
5850 uiout->text (b->extra_string);
5851 }
5852 }
5853
5854 if (loc && is_breakpoint (b)
5855 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5856 && bp_condition_evaluator (b) == condition_evaluation_both)
5857 {
5858 uiout->text (" (");
5859 uiout->field_string ("evaluated-by",
5860 bp_location_condition_evaluator (loc));
5861 uiout->text (")");
5862 }
5863 }
5864
5865 static const char *
5866 bptype_string (enum bptype type)
5867 {
5868 struct ep_type_description
5869 {
5870 enum bptype type;
5871 const char *description;
5872 };
5873 static struct ep_type_description bptypes[] =
5874 {
5875 {bp_none, "?deleted?"},
5876 {bp_breakpoint, "breakpoint"},
5877 {bp_hardware_breakpoint, "hw breakpoint"},
5878 {bp_single_step, "sw single-step"},
5879 {bp_until, "until"},
5880 {bp_finish, "finish"},
5881 {bp_watchpoint, "watchpoint"},
5882 {bp_hardware_watchpoint, "hw watchpoint"},
5883 {bp_read_watchpoint, "read watchpoint"},
5884 {bp_access_watchpoint, "acc watchpoint"},
5885 {bp_longjmp, "longjmp"},
5886 {bp_longjmp_resume, "longjmp resume"},
5887 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5888 {bp_exception, "exception"},
5889 {bp_exception_resume, "exception resume"},
5890 {bp_step_resume, "step resume"},
5891 {bp_hp_step_resume, "high-priority step resume"},
5892 {bp_watchpoint_scope, "watchpoint scope"},
5893 {bp_call_dummy, "call dummy"},
5894 {bp_std_terminate, "std::terminate"},
5895 {bp_shlib_event, "shlib events"},
5896 {bp_thread_event, "thread events"},
5897 {bp_overlay_event, "overlay events"},
5898 {bp_longjmp_master, "longjmp master"},
5899 {bp_std_terminate_master, "std::terminate master"},
5900 {bp_exception_master, "exception master"},
5901 {bp_catchpoint, "catchpoint"},
5902 {bp_tracepoint, "tracepoint"},
5903 {bp_fast_tracepoint, "fast tracepoint"},
5904 {bp_static_tracepoint, "static tracepoint"},
5905 {bp_dprintf, "dprintf"},
5906 {bp_jit_event, "jit events"},
5907 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5908 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5909 };
5910
5911 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5912 || ((int) type != bptypes[(int) type].type))
5913 internal_error (__FILE__, __LINE__,
5914 _("bptypes table does not describe type #%d."),
5915 (int) type);
5916
5917 return bptypes[(int) type].description;
5918 }
5919
5920 /* For MI, output a field named 'thread-groups' with a list as the value.
5921 For CLI, prefix the list with the string 'inf'. */
5922
5923 static void
5924 output_thread_groups (struct ui_out *uiout,
5925 const char *field_name,
5926 const std::vector<int> &inf_nums,
5927 int mi_only)
5928 {
5929 int is_mi = uiout->is_mi_like_p ();
5930
5931 /* For backward compatibility, don't display inferiors in CLI unless
5932 there are several. Always display them for MI. */
5933 if (!is_mi && mi_only)
5934 return;
5935
5936 ui_out_emit_list list_emitter (uiout, field_name);
5937
5938 for (size_t i = 0; i < inf_nums.size (); i++)
5939 {
5940 if (is_mi)
5941 {
5942 char mi_group[10];
5943
5944 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5945 uiout->field_string (NULL, mi_group);
5946 }
5947 else
5948 {
5949 if (i == 0)
5950 uiout->text (" inf ");
5951 else
5952 uiout->text (", ");
5953
5954 uiout->text (plongest (inf_nums[i]));
5955 }
5956 }
5957 }
5958
5959 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5960 instead of going via breakpoint_ops::print_one. This makes "maint
5961 info breakpoints" show the software breakpoint locations of
5962 catchpoints, which are considered internal implementation
5963 detail. */
5964
5965 static void
5966 print_one_breakpoint_location (struct breakpoint *b,
5967 struct bp_location *loc,
5968 int loc_number,
5969 struct bp_location **last_loc,
5970 int allflag, bool raw_loc)
5971 {
5972 struct command_line *l;
5973 static char bpenables[] = "nynny";
5974
5975 struct ui_out *uiout = current_uiout;
5976 int header_of_multiple = 0;
5977 int part_of_multiple = (loc != NULL);
5978 struct value_print_options opts;
5979
5980 get_user_print_options (&opts);
5981
5982 gdb_assert (!loc || loc_number != 0);
5983 /* See comment in print_one_breakpoint concerning treatment of
5984 breakpoints with single disabled location. */
5985 if (loc == NULL
5986 && (b->loc != NULL
5987 && (b->loc->next != NULL || !b->loc->enabled)))
5988 header_of_multiple = 1;
5989 if (loc == NULL)
5990 loc = b->loc;
5991
5992 annotate_record ();
5993
5994 /* 1 */
5995 annotate_field (0);
5996 if (part_of_multiple)
5997 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
5998 else
5999 uiout->field_signed ("number", b->number);
6000
6001 /* 2 */
6002 annotate_field (1);
6003 if (part_of_multiple)
6004 uiout->field_skip ("type");
6005 else
6006 uiout->field_string ("type", bptype_string (b->type));
6007
6008 /* 3 */
6009 annotate_field (2);
6010 if (part_of_multiple)
6011 uiout->field_skip ("disp");
6012 else
6013 uiout->field_string ("disp", bpdisp_text (b->disposition));
6014
6015 /* 4 */
6016 annotate_field (3);
6017 if (part_of_multiple)
6018 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6019 else
6020 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6021
6022 /* 5 and 6 */
6023 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6024 b->ops->print_one (b, last_loc);
6025 else
6026 {
6027 if (is_watchpoint (b))
6028 {
6029 struct watchpoint *w = (struct watchpoint *) b;
6030
6031 /* Field 4, the address, is omitted (which makes the columns
6032 not line up too nicely with the headers, but the effect
6033 is relatively readable). */
6034 if (opts.addressprint)
6035 uiout->field_skip ("addr");
6036 annotate_field (5);
6037 uiout->field_string ("what", w->exp_string);
6038 }
6039 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6040 || is_ada_exception_catchpoint (b))
6041 {
6042 if (opts.addressprint)
6043 {
6044 annotate_field (4);
6045 if (header_of_multiple)
6046 uiout->field_string ("addr", "<MULTIPLE>",
6047 metadata_style.style ());
6048 else if (b->loc == NULL || loc->shlib_disabled)
6049 uiout->field_string ("addr", "<PENDING>",
6050 metadata_style.style ());
6051 else
6052 uiout->field_core_addr ("addr",
6053 loc->gdbarch, loc->address);
6054 }
6055 annotate_field (5);
6056 if (!header_of_multiple)
6057 print_breakpoint_location (b, loc);
6058 if (b->loc)
6059 *last_loc = b->loc;
6060 }
6061 }
6062
6063 if (loc != NULL && !header_of_multiple)
6064 {
6065 std::vector<int> inf_nums;
6066 int mi_only = 1;
6067
6068 for (inferior *inf : all_inferiors ())
6069 {
6070 if (inf->pspace == loc->pspace)
6071 inf_nums.push_back (inf->num);
6072 }
6073
6074 /* For backward compatibility, don't display inferiors in CLI unless
6075 there are several. Always display for MI. */
6076 if (allflag
6077 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6078 && (program_spaces.size () > 1
6079 || number_of_inferiors () > 1)
6080 /* LOC is for existing B, it cannot be in
6081 moribund_locations and thus having NULL OWNER. */
6082 && loc->owner->type != bp_catchpoint))
6083 mi_only = 0;
6084 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6085 }
6086
6087 if (!part_of_multiple)
6088 {
6089 if (b->thread != -1)
6090 {
6091 /* FIXME: This seems to be redundant and lost here; see the
6092 "stop only in" line a little further down. */
6093 uiout->text (" thread ");
6094 uiout->field_signed ("thread", b->thread);
6095 }
6096 else if (b->task != 0)
6097 {
6098 uiout->text (" task ");
6099 uiout->field_signed ("task", b->task);
6100 }
6101 }
6102
6103 uiout->text ("\n");
6104
6105 if (!part_of_multiple)
6106 b->ops->print_one_detail (b, uiout);
6107
6108 if (part_of_multiple && frame_id_p (b->frame_id))
6109 {
6110 annotate_field (6);
6111 uiout->text ("\tstop only in stack frame at ");
6112 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6113 the frame ID. */
6114 uiout->field_core_addr ("frame",
6115 b->gdbarch, b->frame_id.stack_addr);
6116 uiout->text ("\n");
6117 }
6118
6119 if (!part_of_multiple && b->cond_string)
6120 {
6121 annotate_field (7);
6122 if (is_tracepoint (b))
6123 uiout->text ("\ttrace only if ");
6124 else
6125 uiout->text ("\tstop only if ");
6126 uiout->field_string ("cond", b->cond_string);
6127
6128 /* Print whether the target is doing the breakpoint's condition
6129 evaluation. If GDB is doing the evaluation, don't print anything. */
6130 if (is_breakpoint (b)
6131 && breakpoint_condition_evaluation_mode ()
6132 == condition_evaluation_target)
6133 {
6134 uiout->message (" (%pF evals)",
6135 string_field ("evaluated-by",
6136 bp_condition_evaluator (b)));
6137 }
6138 uiout->text ("\n");
6139 }
6140
6141 if (!part_of_multiple && b->thread != -1)
6142 {
6143 /* FIXME should make an annotation for this. */
6144 uiout->text ("\tstop only in thread ");
6145 if (uiout->is_mi_like_p ())
6146 uiout->field_signed ("thread", b->thread);
6147 else
6148 {
6149 struct thread_info *thr = find_thread_global_id (b->thread);
6150
6151 uiout->field_string ("thread", print_thread_id (thr));
6152 }
6153 uiout->text ("\n");
6154 }
6155
6156 if (!part_of_multiple)
6157 {
6158 if (b->hit_count)
6159 {
6160 /* FIXME should make an annotation for this. */
6161 if (is_catchpoint (b))
6162 uiout->text ("\tcatchpoint");
6163 else if (is_tracepoint (b))
6164 uiout->text ("\ttracepoint");
6165 else
6166 uiout->text ("\tbreakpoint");
6167 uiout->text (" already hit ");
6168 uiout->field_signed ("times", b->hit_count);
6169 if (b->hit_count == 1)
6170 uiout->text (" time\n");
6171 else
6172 uiout->text (" times\n");
6173 }
6174 else
6175 {
6176 /* Output the count also if it is zero, but only if this is mi. */
6177 if (uiout->is_mi_like_p ())
6178 uiout->field_signed ("times", b->hit_count);
6179 }
6180 }
6181
6182 if (!part_of_multiple && b->ignore_count)
6183 {
6184 annotate_field (8);
6185 uiout->message ("\tignore next %pF hits\n",
6186 signed_field ("ignore", b->ignore_count));
6187 }
6188
6189 /* Note that an enable count of 1 corresponds to "enable once"
6190 behavior, which is reported by the combination of enablement and
6191 disposition, so we don't need to mention it here. */
6192 if (!part_of_multiple && b->enable_count > 1)
6193 {
6194 annotate_field (8);
6195 uiout->text ("\tdisable after ");
6196 /* Tweak the wording to clarify that ignore and enable counts
6197 are distinct, and have additive effect. */
6198 if (b->ignore_count)
6199 uiout->text ("additional ");
6200 else
6201 uiout->text ("next ");
6202 uiout->field_signed ("enable", b->enable_count);
6203 uiout->text (" hits\n");
6204 }
6205
6206 if (!part_of_multiple && is_tracepoint (b))
6207 {
6208 struct tracepoint *tp = (struct tracepoint *) b;
6209
6210 if (tp->traceframe_usage)
6211 {
6212 uiout->text ("\ttrace buffer usage ");
6213 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6214 uiout->text (" bytes\n");
6215 }
6216 }
6217
6218 l = b->commands ? b->commands.get () : NULL;
6219 if (!part_of_multiple && l)
6220 {
6221 annotate_field (9);
6222 ui_out_emit_tuple tuple_emitter (uiout, "script");
6223 print_command_lines (uiout, l, 4);
6224 }
6225
6226 if (is_tracepoint (b))
6227 {
6228 struct tracepoint *t = (struct tracepoint *) b;
6229
6230 if (!part_of_multiple && t->pass_count)
6231 {
6232 annotate_field (10);
6233 uiout->text ("\tpass count ");
6234 uiout->field_signed ("pass", t->pass_count);
6235 uiout->text (" \n");
6236 }
6237
6238 /* Don't display it when tracepoint or tracepoint location is
6239 pending. */
6240 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6241 {
6242 annotate_field (11);
6243
6244 if (uiout->is_mi_like_p ())
6245 uiout->field_string ("installed",
6246 loc->inserted ? "y" : "n");
6247 else
6248 {
6249 if (loc->inserted)
6250 uiout->text ("\t");
6251 else
6252 uiout->text ("\tnot ");
6253 uiout->text ("installed on target\n");
6254 }
6255 }
6256 }
6257
6258 if (uiout->is_mi_like_p () && !part_of_multiple)
6259 {
6260 if (is_watchpoint (b))
6261 {
6262 struct watchpoint *w = (struct watchpoint *) b;
6263
6264 uiout->field_string ("original-location", w->exp_string);
6265 }
6266 else if (b->location != NULL
6267 && event_location_to_string (b->location.get ()) != NULL)
6268 uiout->field_string ("original-location",
6269 event_location_to_string (b->location.get ()));
6270 }
6271 }
6272
6273 /* See breakpoint.h. */
6274
6275 bool fix_multi_location_breakpoint_output_globally = false;
6276
6277 static void
6278 print_one_breakpoint (struct breakpoint *b,
6279 struct bp_location **last_loc,
6280 int allflag)
6281 {
6282 struct ui_out *uiout = current_uiout;
6283 bool use_fixed_output
6284 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6285 || fix_multi_location_breakpoint_output_globally);
6286
6287 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6288 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6289
6290 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6291 are outside. */
6292 if (!use_fixed_output)
6293 bkpt_tuple_emitter.reset ();
6294
6295 /* If this breakpoint has custom print function,
6296 it's already printed. Otherwise, print individual
6297 locations, if any. */
6298 if (b->ops == NULL
6299 || b->ops->print_one == NULL
6300 || allflag)
6301 {
6302 /* If breakpoint has a single location that is disabled, we
6303 print it as if it had several locations, since otherwise it's
6304 hard to represent "breakpoint enabled, location disabled"
6305 situation.
6306
6307 Note that while hardware watchpoints have several locations
6308 internally, that's not a property exposed to users.
6309
6310 Likewise, while catchpoints may be implemented with
6311 breakpoints (e.g., catch throw), that's not a property
6312 exposed to users. We do however display the internal
6313 breakpoint locations with "maint info breakpoints". */
6314 if (!is_hardware_watchpoint (b)
6315 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6316 || is_ada_exception_catchpoint (b))
6317 && (allflag
6318 || (b->loc && (b->loc->next || !b->loc->enabled))))
6319 {
6320 gdb::optional<ui_out_emit_list> locations_list;
6321
6322 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6323 MI record. For later versions, place breakpoint locations in a
6324 list. */
6325 if (uiout->is_mi_like_p () && use_fixed_output)
6326 locations_list.emplace (uiout, "locations");
6327
6328 int n = 1;
6329 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6330 {
6331 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6332 print_one_breakpoint_location (b, loc, n, last_loc,
6333 allflag, allflag);
6334 }
6335 }
6336 }
6337 }
6338
6339 static int
6340 breakpoint_address_bits (struct breakpoint *b)
6341 {
6342 int print_address_bits = 0;
6343 struct bp_location *loc;
6344
6345 /* Software watchpoints that aren't watching memory don't have an
6346 address to print. */
6347 if (is_no_memory_software_watchpoint (b))
6348 return 0;
6349
6350 for (loc = b->loc; loc; loc = loc->next)
6351 {
6352 int addr_bit;
6353
6354 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6355 if (addr_bit > print_address_bits)
6356 print_address_bits = addr_bit;
6357 }
6358
6359 return print_address_bits;
6360 }
6361
6362 /* See breakpoint.h. */
6363
6364 void
6365 print_breakpoint (breakpoint *b)
6366 {
6367 struct bp_location *dummy_loc = NULL;
6368 print_one_breakpoint (b, &dummy_loc, 0);
6369 }
6370
6371 /* Return true if this breakpoint was set by the user, false if it is
6372 internal or momentary. */
6373
6374 int
6375 user_breakpoint_p (struct breakpoint *b)
6376 {
6377 return b->number > 0;
6378 }
6379
6380 /* See breakpoint.h. */
6381
6382 int
6383 pending_breakpoint_p (struct breakpoint *b)
6384 {
6385 return b->loc == NULL;
6386 }
6387
6388 /* Print information on breakpoints (including watchpoints and tracepoints).
6389
6390 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6391 understood by number_or_range_parser. Only breakpoints included in this
6392 list are then printed.
6393
6394 If SHOW_INTERNAL is true, print internal breakpoints.
6395
6396 If FILTER is non-NULL, call it on each breakpoint and only include the
6397 ones for which it returns true.
6398
6399 Return the total number of breakpoints listed. */
6400
6401 static int
6402 breakpoint_1 (const char *bp_num_list, bool show_internal,
6403 bool (*filter) (const struct breakpoint *))
6404 {
6405 struct breakpoint *b;
6406 struct bp_location *last_loc = NULL;
6407 int nr_printable_breakpoints;
6408 struct value_print_options opts;
6409 int print_address_bits = 0;
6410 int print_type_col_width = 14;
6411 struct ui_out *uiout = current_uiout;
6412
6413 get_user_print_options (&opts);
6414
6415 /* Compute the number of rows in the table, as well as the size
6416 required for address fields. */
6417 nr_printable_breakpoints = 0;
6418 ALL_BREAKPOINTS (b)
6419 {
6420 /* If we have a filter, only list the breakpoints it accepts. */
6421 if (filter && !filter (b))
6422 continue;
6423
6424 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6425 accept. Skip the others. */
6426 if (bp_num_list != NULL && *bp_num_list != '\0')
6427 {
6428 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6429 continue;
6430 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6431 continue;
6432 }
6433
6434 if (show_internal || user_breakpoint_p (b))
6435 {
6436 int addr_bit, type_len;
6437
6438 addr_bit = breakpoint_address_bits (b);
6439 if (addr_bit > print_address_bits)
6440 print_address_bits = addr_bit;
6441
6442 type_len = strlen (bptype_string (b->type));
6443 if (type_len > print_type_col_width)
6444 print_type_col_width = type_len;
6445
6446 nr_printable_breakpoints++;
6447 }
6448 }
6449
6450 {
6451 ui_out_emit_table table_emitter (uiout,
6452 opts.addressprint ? 6 : 5,
6453 nr_printable_breakpoints,
6454 "BreakpointTable");
6455
6456 if (nr_printable_breakpoints > 0)
6457 annotate_breakpoints_headers ();
6458 if (nr_printable_breakpoints > 0)
6459 annotate_field (0);
6460 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6461 if (nr_printable_breakpoints > 0)
6462 annotate_field (1);
6463 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6464 if (nr_printable_breakpoints > 0)
6465 annotate_field (2);
6466 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6467 if (nr_printable_breakpoints > 0)
6468 annotate_field (3);
6469 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6470 if (opts.addressprint)
6471 {
6472 if (nr_printable_breakpoints > 0)
6473 annotate_field (4);
6474 if (print_address_bits <= 32)
6475 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6476 else
6477 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6478 }
6479 if (nr_printable_breakpoints > 0)
6480 annotate_field (5);
6481 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6482 uiout->table_body ();
6483 if (nr_printable_breakpoints > 0)
6484 annotate_breakpoints_table ();
6485
6486 ALL_BREAKPOINTS (b)
6487 {
6488 QUIT;
6489 /* If we have a filter, only list the breakpoints it accepts. */
6490 if (filter && !filter (b))
6491 continue;
6492
6493 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6494 accept. Skip the others. */
6495
6496 if (bp_num_list != NULL && *bp_num_list != '\0')
6497 {
6498 if (show_internal) /* maintenance info breakpoint */
6499 {
6500 if (parse_and_eval_long (bp_num_list) != b->number)
6501 continue;
6502 }
6503 else /* all others */
6504 {
6505 if (!number_is_in_list (bp_num_list, b->number))
6506 continue;
6507 }
6508 }
6509 /* We only print out user settable breakpoints unless the
6510 show_internal is set. */
6511 if (show_internal || user_breakpoint_p (b))
6512 print_one_breakpoint (b, &last_loc, show_internal);
6513 }
6514 }
6515
6516 if (nr_printable_breakpoints == 0)
6517 {
6518 /* If there's a filter, let the caller decide how to report
6519 empty list. */
6520 if (!filter)
6521 {
6522 if (bp_num_list == NULL || *bp_num_list == '\0')
6523 uiout->message ("No breakpoints or watchpoints.\n");
6524 else
6525 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6526 bp_num_list);
6527 }
6528 }
6529 else
6530 {
6531 if (last_loc && !server_command)
6532 set_next_address (last_loc->gdbarch, last_loc->address);
6533 }
6534
6535 /* FIXME? Should this be moved up so that it is only called when
6536 there have been breakpoints? */
6537 annotate_breakpoints_table_end ();
6538
6539 return nr_printable_breakpoints;
6540 }
6541
6542 /* Display the value of default-collect in a way that is generally
6543 compatible with the breakpoint list. */
6544
6545 static void
6546 default_collect_info (void)
6547 {
6548 struct ui_out *uiout = current_uiout;
6549
6550 /* If it has no value (which is frequently the case), say nothing; a
6551 message like "No default-collect." gets in user's face when it's
6552 not wanted. */
6553 if (!*default_collect)
6554 return;
6555
6556 /* The following phrase lines up nicely with per-tracepoint collect
6557 actions. */
6558 uiout->text ("default collect ");
6559 uiout->field_string ("default-collect", default_collect);
6560 uiout->text (" \n");
6561 }
6562
6563 static void
6564 info_breakpoints_command (const char *args, int from_tty)
6565 {
6566 breakpoint_1 (args, false, NULL);
6567
6568 default_collect_info ();
6569 }
6570
6571 static void
6572 info_watchpoints_command (const char *args, int from_tty)
6573 {
6574 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6575 struct ui_out *uiout = current_uiout;
6576
6577 if (num_printed == 0)
6578 {
6579 if (args == NULL || *args == '\0')
6580 uiout->message ("No watchpoints.\n");
6581 else
6582 uiout->message ("No watchpoint matching '%s'.\n", args);
6583 }
6584 }
6585
6586 static void
6587 maintenance_info_breakpoints (const char *args, int from_tty)
6588 {
6589 breakpoint_1 (args, true, NULL);
6590
6591 default_collect_info ();
6592 }
6593
6594 static int
6595 breakpoint_has_pc (struct breakpoint *b,
6596 struct program_space *pspace,
6597 CORE_ADDR pc, struct obj_section *section)
6598 {
6599 struct bp_location *bl = b->loc;
6600
6601 for (; bl; bl = bl->next)
6602 {
6603 if (bl->pspace == pspace
6604 && bl->address == pc
6605 && (!overlay_debugging || bl->section == section))
6606 return 1;
6607 }
6608 return 0;
6609 }
6610
6611 /* Print a message describing any user-breakpoints set at PC. This
6612 concerns with logical breakpoints, so we match program spaces, not
6613 address spaces. */
6614
6615 static void
6616 describe_other_breakpoints (struct gdbarch *gdbarch,
6617 struct program_space *pspace, CORE_ADDR pc,
6618 struct obj_section *section, int thread)
6619 {
6620 int others = 0;
6621 struct breakpoint *b;
6622
6623 ALL_BREAKPOINTS (b)
6624 others += (user_breakpoint_p (b)
6625 && breakpoint_has_pc (b, pspace, pc, section));
6626 if (others > 0)
6627 {
6628 if (others == 1)
6629 printf_filtered (_("Note: breakpoint "));
6630 else /* if (others == ???) */
6631 printf_filtered (_("Note: breakpoints "));
6632 ALL_BREAKPOINTS (b)
6633 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6634 {
6635 others--;
6636 printf_filtered ("%d", b->number);
6637 if (b->thread == -1 && thread != -1)
6638 printf_filtered (" (all threads)");
6639 else if (b->thread != -1)
6640 printf_filtered (" (thread %d)", b->thread);
6641 printf_filtered ("%s%s ",
6642 ((b->enable_state == bp_disabled
6643 || b->enable_state == bp_call_disabled)
6644 ? " (disabled)"
6645 : ""),
6646 (others > 1) ? ","
6647 : ((others == 1) ? " and" : ""));
6648 }
6649 current_uiout->message (_("also set at pc %ps.\n"),
6650 styled_string (address_style.style (),
6651 paddress (gdbarch, pc)));
6652 }
6653 }
6654 \f
6655
6656 /* Return true iff it is meaningful to use the address member of LOC.
6657 For some breakpoint types, the locations' address members are
6658 irrelevant and it makes no sense to attempt to compare them to
6659 other addresses (or use them for any other purpose either).
6660
6661 More specifically, software watchpoints and catchpoints that are
6662 not backed by breakpoints always have a zero valued location
6663 address and we don't want to mark breakpoints of any of these types
6664 to be a duplicate of an actual breakpoint location at address
6665 zero. */
6666
6667 static bool
6668 bl_address_is_meaningful (bp_location *loc)
6669 {
6670 return loc->loc_type != bp_loc_other;
6671 }
6672
6673 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6674 true if LOC1 and LOC2 represent the same watchpoint location. */
6675
6676 static int
6677 watchpoint_locations_match (struct bp_location *loc1,
6678 struct bp_location *loc2)
6679 {
6680 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6681 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6682
6683 /* Both of them must exist. */
6684 gdb_assert (w1 != NULL);
6685 gdb_assert (w2 != NULL);
6686
6687 /* If the target can evaluate the condition expression in hardware,
6688 then we we need to insert both watchpoints even if they are at
6689 the same place. Otherwise the watchpoint will only trigger when
6690 the condition of whichever watchpoint was inserted evaluates to
6691 true, not giving a chance for GDB to check the condition of the
6692 other watchpoint. */
6693 if ((w1->cond_exp
6694 && target_can_accel_watchpoint_condition (loc1->address,
6695 loc1->length,
6696 loc1->watchpoint_type,
6697 w1->cond_exp.get ()))
6698 || (w2->cond_exp
6699 && target_can_accel_watchpoint_condition (loc2->address,
6700 loc2->length,
6701 loc2->watchpoint_type,
6702 w2->cond_exp.get ())))
6703 return 0;
6704
6705 /* Note that this checks the owner's type, not the location's. In
6706 case the target does not support read watchpoints, but does
6707 support access watchpoints, we'll have bp_read_watchpoint
6708 watchpoints with hw_access locations. Those should be considered
6709 duplicates of hw_read locations. The hw_read locations will
6710 become hw_access locations later. */
6711 return (loc1->owner->type == loc2->owner->type
6712 && loc1->pspace->aspace == loc2->pspace->aspace
6713 && loc1->address == loc2->address
6714 && loc1->length == loc2->length);
6715 }
6716
6717 /* See breakpoint.h. */
6718
6719 int
6720 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6721 const address_space *aspace2, CORE_ADDR addr2)
6722 {
6723 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6724 || aspace1 == aspace2)
6725 && addr1 == addr2);
6726 }
6727
6728 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6729 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6730 matches ASPACE2. On targets that have global breakpoints, the address
6731 space doesn't really matter. */
6732
6733 static int
6734 breakpoint_address_match_range (const address_space *aspace1,
6735 CORE_ADDR addr1,
6736 int len1, const address_space *aspace2,
6737 CORE_ADDR addr2)
6738 {
6739 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6740 || aspace1 == aspace2)
6741 && addr2 >= addr1 && addr2 < addr1 + len1);
6742 }
6743
6744 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6745 a ranged breakpoint. In most targets, a match happens only if ASPACE
6746 matches the breakpoint's address space. On targets that have global
6747 breakpoints, the address space doesn't really matter. */
6748
6749 static int
6750 breakpoint_location_address_match (struct bp_location *bl,
6751 const address_space *aspace,
6752 CORE_ADDR addr)
6753 {
6754 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6755 aspace, addr)
6756 || (bl->length
6757 && breakpoint_address_match_range (bl->pspace->aspace,
6758 bl->address, bl->length,
6759 aspace, addr)));
6760 }
6761
6762 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6763 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6764 match happens only if ASPACE matches the breakpoint's address
6765 space. On targets that have global breakpoints, the address space
6766 doesn't really matter. */
6767
6768 static int
6769 breakpoint_location_address_range_overlap (struct bp_location *bl,
6770 const address_space *aspace,
6771 CORE_ADDR addr, int len)
6772 {
6773 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6774 || bl->pspace->aspace == aspace)
6775 {
6776 int bl_len = bl->length != 0 ? bl->length : 1;
6777
6778 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6779 return 1;
6780 }
6781 return 0;
6782 }
6783
6784 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6785 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6786 true, otherwise returns false. */
6787
6788 static int
6789 tracepoint_locations_match (struct bp_location *loc1,
6790 struct bp_location *loc2)
6791 {
6792 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6793 /* Since tracepoint locations are never duplicated with others', tracepoint
6794 locations at the same address of different tracepoints are regarded as
6795 different locations. */
6796 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6797 else
6798 return 0;
6799 }
6800
6801 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6802 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6803 the same location. If SW_HW_BPS_MATCH is true, then software
6804 breakpoint locations and hardware breakpoint locations match,
6805 otherwise they don't. */
6806
6807 static int
6808 breakpoint_locations_match (struct bp_location *loc1,
6809 struct bp_location *loc2,
6810 bool sw_hw_bps_match)
6811 {
6812 int hw_point1, hw_point2;
6813
6814 /* Both of them must not be in moribund_locations. */
6815 gdb_assert (loc1->owner != NULL);
6816 gdb_assert (loc2->owner != NULL);
6817
6818 hw_point1 = is_hardware_watchpoint (loc1->owner);
6819 hw_point2 = is_hardware_watchpoint (loc2->owner);
6820
6821 if (hw_point1 != hw_point2)
6822 return 0;
6823 else if (hw_point1)
6824 return watchpoint_locations_match (loc1, loc2);
6825 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6826 return tracepoint_locations_match (loc1, loc2);
6827 else
6828 /* We compare bp_location.length in order to cover ranged
6829 breakpoints. Keep this in sync with
6830 bp_location_is_less_than. */
6831 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6832 loc2->pspace->aspace, loc2->address)
6833 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6834 && loc1->length == loc2->length);
6835 }
6836
6837 static void
6838 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6839 int bnum, int have_bnum)
6840 {
6841 /* The longest string possibly returned by hex_string_custom
6842 is 50 chars. These must be at least that big for safety. */
6843 char astr1[64];
6844 char astr2[64];
6845
6846 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6847 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6848 if (have_bnum)
6849 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6850 bnum, astr1, astr2);
6851 else
6852 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6853 }
6854
6855 /* Adjust a breakpoint's address to account for architectural
6856 constraints on breakpoint placement. Return the adjusted address.
6857 Note: Very few targets require this kind of adjustment. For most
6858 targets, this function is simply the identity function. */
6859
6860 static CORE_ADDR
6861 adjust_breakpoint_address (struct gdbarch *gdbarch,
6862 CORE_ADDR bpaddr, enum bptype bptype)
6863 {
6864 if (bptype == bp_watchpoint
6865 || bptype == bp_hardware_watchpoint
6866 || bptype == bp_read_watchpoint
6867 || bptype == bp_access_watchpoint
6868 || bptype == bp_catchpoint)
6869 {
6870 /* Watchpoints and the various bp_catch_* eventpoints should not
6871 have their addresses modified. */
6872 return bpaddr;
6873 }
6874 else if (bptype == bp_single_step)
6875 {
6876 /* Single-step breakpoints should not have their addresses
6877 modified. If there's any architectural constrain that
6878 applies to this address, then it should have already been
6879 taken into account when the breakpoint was created in the
6880 first place. If we didn't do this, stepping through e.g.,
6881 Thumb-2 IT blocks would break. */
6882 return bpaddr;
6883 }
6884 else
6885 {
6886 CORE_ADDR adjusted_bpaddr = bpaddr;
6887
6888 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6889 {
6890 /* Some targets have architectural constraints on the placement
6891 of breakpoint instructions. Obtain the adjusted address. */
6892 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6893 }
6894
6895 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6896
6897 /* An adjusted breakpoint address can significantly alter
6898 a user's expectations. Print a warning if an adjustment
6899 is required. */
6900 if (adjusted_bpaddr != bpaddr)
6901 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6902
6903 return adjusted_bpaddr;
6904 }
6905 }
6906
6907 static bp_loc_type
6908 bp_location_from_bp_type (bptype type)
6909 {
6910 switch (type)
6911 {
6912 case bp_breakpoint:
6913 case bp_single_step:
6914 case bp_until:
6915 case bp_finish:
6916 case bp_longjmp:
6917 case bp_longjmp_resume:
6918 case bp_longjmp_call_dummy:
6919 case bp_exception:
6920 case bp_exception_resume:
6921 case bp_step_resume:
6922 case bp_hp_step_resume:
6923 case bp_watchpoint_scope:
6924 case bp_call_dummy:
6925 case bp_std_terminate:
6926 case bp_shlib_event:
6927 case bp_thread_event:
6928 case bp_overlay_event:
6929 case bp_jit_event:
6930 case bp_longjmp_master:
6931 case bp_std_terminate_master:
6932 case bp_exception_master:
6933 case bp_gnu_ifunc_resolver:
6934 case bp_gnu_ifunc_resolver_return:
6935 case bp_dprintf:
6936 return bp_loc_software_breakpoint;
6937 case bp_hardware_breakpoint:
6938 return bp_loc_hardware_breakpoint;
6939 case bp_hardware_watchpoint:
6940 case bp_read_watchpoint:
6941 case bp_access_watchpoint:
6942 return bp_loc_hardware_watchpoint;
6943 case bp_watchpoint:
6944 case bp_catchpoint:
6945 case bp_tracepoint:
6946 case bp_fast_tracepoint:
6947 case bp_static_tracepoint:
6948 return bp_loc_other;
6949 default:
6950 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6951 }
6952 }
6953
6954 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6955 {
6956 this->owner = owner;
6957 this->cond_bytecode = NULL;
6958 this->shlib_disabled = 0;
6959 this->enabled = 1;
6960
6961 this->loc_type = type;
6962
6963 if (this->loc_type == bp_loc_software_breakpoint
6964 || this->loc_type == bp_loc_hardware_breakpoint)
6965 mark_breakpoint_location_modified (this);
6966
6967 this->refc = 1;
6968 }
6969
6970 bp_location::bp_location (breakpoint *owner)
6971 : bp_location::bp_location (owner,
6972 bp_location_from_bp_type (owner->type))
6973 {
6974 }
6975
6976 /* Allocate a struct bp_location. */
6977
6978 static struct bp_location *
6979 allocate_bp_location (struct breakpoint *bpt)
6980 {
6981 return bpt->ops->allocate_location (bpt);
6982 }
6983
6984 static void
6985 free_bp_location (struct bp_location *loc)
6986 {
6987 delete loc;
6988 }
6989
6990 /* Increment reference count. */
6991
6992 static void
6993 incref_bp_location (struct bp_location *bl)
6994 {
6995 ++bl->refc;
6996 }
6997
6998 /* Decrement reference count. If the reference count reaches 0,
6999 destroy the bp_location. Sets *BLP to NULL. */
7000
7001 static void
7002 decref_bp_location (struct bp_location **blp)
7003 {
7004 gdb_assert ((*blp)->refc > 0);
7005
7006 if (--(*blp)->refc == 0)
7007 free_bp_location (*blp);
7008 *blp = NULL;
7009 }
7010
7011 /* Add breakpoint B at the end of the global breakpoint chain. */
7012
7013 static breakpoint *
7014 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7015 {
7016 struct breakpoint *b1;
7017 struct breakpoint *result = b.get ();
7018
7019 /* Add this breakpoint to the end of the chain so that a list of
7020 breakpoints will come out in order of increasing numbers. */
7021
7022 b1 = breakpoint_chain;
7023 if (b1 == 0)
7024 breakpoint_chain = b.release ();
7025 else
7026 {
7027 while (b1->next)
7028 b1 = b1->next;
7029 b1->next = b.release ();
7030 }
7031
7032 return result;
7033 }
7034
7035 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7036
7037 static void
7038 init_raw_breakpoint_without_location (struct breakpoint *b,
7039 struct gdbarch *gdbarch,
7040 enum bptype bptype,
7041 const struct breakpoint_ops *ops)
7042 {
7043 gdb_assert (ops != NULL);
7044
7045 b->ops = ops;
7046 b->type = bptype;
7047 b->gdbarch = gdbarch;
7048 b->language = current_language->la_language;
7049 b->input_radix = input_radix;
7050 b->related_breakpoint = b;
7051 }
7052
7053 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7054 that has type BPTYPE and has no locations as yet. */
7055
7056 static struct breakpoint *
7057 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7058 enum bptype bptype,
7059 const struct breakpoint_ops *ops)
7060 {
7061 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7062
7063 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7064 return add_to_breakpoint_chain (std::move (b));
7065 }
7066
7067 /* Initialize loc->function_name. */
7068
7069 static void
7070 set_breakpoint_location_function (struct bp_location *loc)
7071 {
7072 gdb_assert (loc->owner != NULL);
7073
7074 if (loc->owner->type == bp_breakpoint
7075 || loc->owner->type == bp_hardware_breakpoint
7076 || is_tracepoint (loc->owner))
7077 {
7078 const char *function_name;
7079
7080 if (loc->msymbol != NULL
7081 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7082 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7083 {
7084 struct breakpoint *b = loc->owner;
7085
7086 function_name = loc->msymbol->linkage_name ();
7087
7088 if (b->type == bp_breakpoint && b->loc == loc
7089 && loc->next == NULL && b->related_breakpoint == b)
7090 {
7091 /* Create only the whole new breakpoint of this type but do not
7092 mess more complicated breakpoints with multiple locations. */
7093 b->type = bp_gnu_ifunc_resolver;
7094 /* Remember the resolver's address for use by the return
7095 breakpoint. */
7096 loc->related_address = loc->address;
7097 }
7098 }
7099 else
7100 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7101
7102 if (function_name)
7103 loc->function_name = xstrdup (function_name);
7104 }
7105 }
7106
7107 /* Attempt to determine architecture of location identified by SAL. */
7108 struct gdbarch *
7109 get_sal_arch (struct symtab_and_line sal)
7110 {
7111 if (sal.section)
7112 return sal.section->objfile->arch ();
7113 if (sal.symtab)
7114 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7115
7116 return NULL;
7117 }
7118
7119 /* Low level routine for partially initializing a breakpoint of type
7120 BPTYPE. The newly created breakpoint's address, section, source
7121 file name, and line number are provided by SAL.
7122
7123 It is expected that the caller will complete the initialization of
7124 the newly created breakpoint struct as well as output any status
7125 information regarding the creation of a new breakpoint. */
7126
7127 static void
7128 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7129 struct symtab_and_line sal, enum bptype bptype,
7130 const struct breakpoint_ops *ops)
7131 {
7132 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7133
7134 add_location_to_breakpoint (b, &sal);
7135
7136 if (bptype != bp_catchpoint)
7137 gdb_assert (sal.pspace != NULL);
7138
7139 /* Store the program space that was used to set the breakpoint,
7140 except for ordinary breakpoints, which are independent of the
7141 program space. */
7142 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7143 b->pspace = sal.pspace;
7144 }
7145
7146 /* set_raw_breakpoint is a low level routine for allocating and
7147 partially initializing a breakpoint of type BPTYPE. The newly
7148 created breakpoint's address, section, source file name, and line
7149 number are provided by SAL. The newly created and partially
7150 initialized breakpoint is added to the breakpoint chain and
7151 is also returned as the value of this function.
7152
7153 It is expected that the caller will complete the initialization of
7154 the newly created breakpoint struct as well as output any status
7155 information regarding the creation of a new breakpoint. In
7156 particular, set_raw_breakpoint does NOT set the breakpoint
7157 number! Care should be taken to not allow an error to occur
7158 prior to completing the initialization of the breakpoint. If this
7159 should happen, a bogus breakpoint will be left on the chain. */
7160
7161 struct breakpoint *
7162 set_raw_breakpoint (struct gdbarch *gdbarch,
7163 struct symtab_and_line sal, enum bptype bptype,
7164 const struct breakpoint_ops *ops)
7165 {
7166 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7167
7168 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7169 return add_to_breakpoint_chain (std::move (b));
7170 }
7171
7172 /* Call this routine when stepping and nexting to enable a breakpoint
7173 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7174 initiated the operation. */
7175
7176 void
7177 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7178 {
7179 struct breakpoint *b, *b_tmp;
7180 int thread = tp->global_num;
7181
7182 /* To avoid having to rescan all objfile symbols at every step,
7183 we maintain a list of continually-inserted but always disabled
7184 longjmp "master" breakpoints. Here, we simply create momentary
7185 clones of those and enable them for the requested thread. */
7186 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7187 if (b->pspace == current_program_space
7188 && (b->type == bp_longjmp_master
7189 || b->type == bp_exception_master))
7190 {
7191 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7192 struct breakpoint *clone;
7193
7194 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7195 after their removal. */
7196 clone = momentary_breakpoint_from_master (b, type,
7197 &momentary_breakpoint_ops, 1);
7198 clone->thread = thread;
7199 }
7200
7201 tp->initiating_frame = frame;
7202 }
7203
7204 /* Delete all longjmp breakpoints from THREAD. */
7205 void
7206 delete_longjmp_breakpoint (int thread)
7207 {
7208 struct breakpoint *b, *b_tmp;
7209
7210 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7211 if (b->type == bp_longjmp || b->type == bp_exception)
7212 {
7213 if (b->thread == thread)
7214 delete_breakpoint (b);
7215 }
7216 }
7217
7218 void
7219 delete_longjmp_breakpoint_at_next_stop (int thread)
7220 {
7221 struct breakpoint *b, *b_tmp;
7222
7223 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7224 if (b->type == bp_longjmp || b->type == bp_exception)
7225 {
7226 if (b->thread == thread)
7227 b->disposition = disp_del_at_next_stop;
7228 }
7229 }
7230
7231 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7232 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7233 pointer to any of them. Return NULL if this system cannot place longjmp
7234 breakpoints. */
7235
7236 struct breakpoint *
7237 set_longjmp_breakpoint_for_call_dummy (void)
7238 {
7239 struct breakpoint *b, *retval = NULL;
7240
7241 ALL_BREAKPOINTS (b)
7242 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7243 {
7244 struct breakpoint *new_b;
7245
7246 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7247 &momentary_breakpoint_ops,
7248 1);
7249 new_b->thread = inferior_thread ()->global_num;
7250
7251 /* Link NEW_B into the chain of RETVAL breakpoints. */
7252
7253 gdb_assert (new_b->related_breakpoint == new_b);
7254 if (retval == NULL)
7255 retval = new_b;
7256 new_b->related_breakpoint = retval;
7257 while (retval->related_breakpoint != new_b->related_breakpoint)
7258 retval = retval->related_breakpoint;
7259 retval->related_breakpoint = new_b;
7260 }
7261
7262 return retval;
7263 }
7264
7265 /* Verify all existing dummy frames and their associated breakpoints for
7266 TP. Remove those which can no longer be found in the current frame
7267 stack.
7268
7269 You should call this function only at places where it is safe to currently
7270 unwind the whole stack. Failed stack unwind would discard live dummy
7271 frames. */
7272
7273 void
7274 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7275 {
7276 struct breakpoint *b, *b_tmp;
7277
7278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7279 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7280 {
7281 struct breakpoint *dummy_b = b->related_breakpoint;
7282
7283 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7284 dummy_b = dummy_b->related_breakpoint;
7285 if (dummy_b->type != bp_call_dummy
7286 || frame_find_by_id (dummy_b->frame_id) != NULL)
7287 continue;
7288
7289 dummy_frame_discard (dummy_b->frame_id, tp);
7290
7291 while (b->related_breakpoint != b)
7292 {
7293 if (b_tmp == b->related_breakpoint)
7294 b_tmp = b->related_breakpoint->next;
7295 delete_breakpoint (b->related_breakpoint);
7296 }
7297 delete_breakpoint (b);
7298 }
7299 }
7300
7301 void
7302 enable_overlay_breakpoints (void)
7303 {
7304 struct breakpoint *b;
7305
7306 ALL_BREAKPOINTS (b)
7307 if (b->type == bp_overlay_event)
7308 {
7309 b->enable_state = bp_enabled;
7310 update_global_location_list (UGLL_MAY_INSERT);
7311 overlay_events_enabled = 1;
7312 }
7313 }
7314
7315 void
7316 disable_overlay_breakpoints (void)
7317 {
7318 struct breakpoint *b;
7319
7320 ALL_BREAKPOINTS (b)
7321 if (b->type == bp_overlay_event)
7322 {
7323 b->enable_state = bp_disabled;
7324 update_global_location_list (UGLL_DONT_INSERT);
7325 overlay_events_enabled = 0;
7326 }
7327 }
7328
7329 /* Set an active std::terminate breakpoint for each std::terminate
7330 master breakpoint. */
7331 void
7332 set_std_terminate_breakpoint (void)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->pspace == current_program_space
7338 && b->type == bp_std_terminate_master)
7339 {
7340 momentary_breakpoint_from_master (b, bp_std_terminate,
7341 &momentary_breakpoint_ops, 1);
7342 }
7343 }
7344
7345 /* Delete all the std::terminate breakpoints. */
7346 void
7347 delete_std_terminate_breakpoint (void)
7348 {
7349 struct breakpoint *b, *b_tmp;
7350
7351 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7352 if (b->type == bp_std_terminate)
7353 delete_breakpoint (b);
7354 }
7355
7356 struct breakpoint *
7357 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7358 {
7359 struct breakpoint *b;
7360
7361 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7362 &internal_breakpoint_ops);
7363
7364 b->enable_state = bp_enabled;
7365 /* location has to be used or breakpoint_re_set will delete me. */
7366 b->location = new_address_location (b->loc->address, NULL, 0);
7367
7368 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7369
7370 return b;
7371 }
7372
7373 struct lang_and_radix
7374 {
7375 enum language lang;
7376 int radix;
7377 };
7378
7379 /* Create a breakpoint for JIT code registration and unregistration. */
7380
7381 struct breakpoint *
7382 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7383 {
7384 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7385 &internal_breakpoint_ops);
7386 }
7387
7388 /* Remove JIT code registration and unregistration breakpoint(s). */
7389
7390 void
7391 remove_jit_event_breakpoints (void)
7392 {
7393 struct breakpoint *b, *b_tmp;
7394
7395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7396 if (b->type == bp_jit_event
7397 && b->loc->pspace == current_program_space)
7398 delete_breakpoint (b);
7399 }
7400
7401 void
7402 remove_solib_event_breakpoints (void)
7403 {
7404 struct breakpoint *b, *b_tmp;
7405
7406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7407 if (b->type == bp_shlib_event
7408 && b->loc->pspace == current_program_space)
7409 delete_breakpoint (b);
7410 }
7411
7412 /* See breakpoint.h. */
7413
7414 void
7415 remove_solib_event_breakpoints_at_next_stop (void)
7416 {
7417 struct breakpoint *b, *b_tmp;
7418
7419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7420 if (b->type == bp_shlib_event
7421 && b->loc->pspace == current_program_space)
7422 b->disposition = disp_del_at_next_stop;
7423 }
7424
7425 /* Helper for create_solib_event_breakpoint /
7426 create_and_insert_solib_event_breakpoint. Allows specifying which
7427 INSERT_MODE to pass through to update_global_location_list. */
7428
7429 static struct breakpoint *
7430 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7431 enum ugll_insert_mode insert_mode)
7432 {
7433 struct breakpoint *b;
7434
7435 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7436 &internal_breakpoint_ops);
7437 update_global_location_list_nothrow (insert_mode);
7438 return b;
7439 }
7440
7441 struct breakpoint *
7442 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7443 {
7444 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7445 }
7446
7447 /* See breakpoint.h. */
7448
7449 struct breakpoint *
7450 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7451 {
7452 struct breakpoint *b;
7453
7454 /* Explicitly tell update_global_location_list to insert
7455 locations. */
7456 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7457 if (!b->loc->inserted)
7458 {
7459 delete_breakpoint (b);
7460 return NULL;
7461 }
7462 return b;
7463 }
7464
7465 /* Disable any breakpoints that are on code in shared libraries. Only
7466 apply to enabled breakpoints, disabled ones can just stay disabled. */
7467
7468 void
7469 disable_breakpoints_in_shlibs (void)
7470 {
7471 struct bp_location *loc, **locp_tmp;
7472
7473 ALL_BP_LOCATIONS (loc, locp_tmp)
7474 {
7475 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7476 struct breakpoint *b = loc->owner;
7477
7478 /* We apply the check to all breakpoints, including disabled for
7479 those with loc->duplicate set. This is so that when breakpoint
7480 becomes enabled, or the duplicate is removed, gdb will try to
7481 insert all breakpoints. If we don't set shlib_disabled here,
7482 we'll try to insert those breakpoints and fail. */
7483 if (((b->type == bp_breakpoint)
7484 || (b->type == bp_jit_event)
7485 || (b->type == bp_hardware_breakpoint)
7486 || (is_tracepoint (b)))
7487 && loc->pspace == current_program_space
7488 && !loc->shlib_disabled
7489 && solib_name_from_address (loc->pspace, loc->address)
7490 )
7491 {
7492 loc->shlib_disabled = 1;
7493 }
7494 }
7495 }
7496
7497 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7498 notification of unloaded_shlib. Only apply to enabled breakpoints,
7499 disabled ones can just stay disabled. */
7500
7501 static void
7502 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7503 {
7504 struct bp_location *loc, **locp_tmp;
7505 int disabled_shlib_breaks = 0;
7506
7507 ALL_BP_LOCATIONS (loc, locp_tmp)
7508 {
7509 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7510 struct breakpoint *b = loc->owner;
7511
7512 if (solib->pspace == loc->pspace
7513 && !loc->shlib_disabled
7514 && (((b->type == bp_breakpoint
7515 || b->type == bp_jit_event
7516 || b->type == bp_hardware_breakpoint)
7517 && (loc->loc_type == bp_loc_hardware_breakpoint
7518 || loc->loc_type == bp_loc_software_breakpoint))
7519 || is_tracepoint (b))
7520 && solib_contains_address_p (solib, loc->address))
7521 {
7522 loc->shlib_disabled = 1;
7523 /* At this point, we cannot rely on remove_breakpoint
7524 succeeding so we must mark the breakpoint as not inserted
7525 to prevent future errors occurring in remove_breakpoints. */
7526 loc->inserted = 0;
7527
7528 /* This may cause duplicate notifications for the same breakpoint. */
7529 gdb::observers::breakpoint_modified.notify (b);
7530
7531 if (!disabled_shlib_breaks)
7532 {
7533 target_terminal::ours_for_output ();
7534 warning (_("Temporarily disabling breakpoints "
7535 "for unloaded shared library \"%s\""),
7536 solib->so_name);
7537 }
7538 disabled_shlib_breaks = 1;
7539 }
7540 }
7541 }
7542
7543 /* Disable any breakpoints and tracepoints in OBJFILE upon
7544 notification of free_objfile. Only apply to enabled breakpoints,
7545 disabled ones can just stay disabled. */
7546
7547 static void
7548 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7549 {
7550 struct breakpoint *b;
7551
7552 if (objfile == NULL)
7553 return;
7554
7555 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7556 managed by the user with add-symbol-file/remove-symbol-file.
7557 Similarly to how breakpoints in shared libraries are handled in
7558 response to "nosharedlibrary", mark breakpoints in such modules
7559 shlib_disabled so they end up uninserted on the next global
7560 location list update. Shared libraries not loaded by the user
7561 aren't handled here -- they're already handled in
7562 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7563 solib_unloaded observer. We skip objfiles that are not
7564 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7565 main objfile). */
7566 if ((objfile->flags & OBJF_SHARED) == 0
7567 || (objfile->flags & OBJF_USERLOADED) == 0)
7568 return;
7569
7570 ALL_BREAKPOINTS (b)
7571 {
7572 struct bp_location *loc;
7573 int bp_modified = 0;
7574
7575 if (!is_breakpoint (b) && !is_tracepoint (b))
7576 continue;
7577
7578 for (loc = b->loc; loc != NULL; loc = loc->next)
7579 {
7580 CORE_ADDR loc_addr = loc->address;
7581
7582 if (loc->loc_type != bp_loc_hardware_breakpoint
7583 && loc->loc_type != bp_loc_software_breakpoint)
7584 continue;
7585
7586 if (loc->shlib_disabled != 0)
7587 continue;
7588
7589 if (objfile->pspace != loc->pspace)
7590 continue;
7591
7592 if (loc->loc_type != bp_loc_hardware_breakpoint
7593 && loc->loc_type != bp_loc_software_breakpoint)
7594 continue;
7595
7596 if (is_addr_in_objfile (loc_addr, objfile))
7597 {
7598 loc->shlib_disabled = 1;
7599 /* At this point, we don't know whether the object was
7600 unmapped from the inferior or not, so leave the
7601 inserted flag alone. We'll handle failure to
7602 uninsert quietly, in case the object was indeed
7603 unmapped. */
7604
7605 mark_breakpoint_location_modified (loc);
7606
7607 bp_modified = 1;
7608 }
7609 }
7610
7611 if (bp_modified)
7612 gdb::observers::breakpoint_modified.notify (b);
7613 }
7614 }
7615
7616 /* FORK & VFORK catchpoints. */
7617
7618 /* An instance of this type is used to represent a fork or vfork
7619 catchpoint. A breakpoint is really of this type iff its ops pointer points
7620 to CATCH_FORK_BREAKPOINT_OPS. */
7621
7622 struct fork_catchpoint : public breakpoint
7623 {
7624 /* Process id of a child process whose forking triggered this
7625 catchpoint. This field is only valid immediately after this
7626 catchpoint has triggered. */
7627 ptid_t forked_inferior_pid;
7628 };
7629
7630 /* Implement the "insert" breakpoint_ops method for fork
7631 catchpoints. */
7632
7633 static int
7634 insert_catch_fork (struct bp_location *bl)
7635 {
7636 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7637 }
7638
7639 /* Implement the "remove" breakpoint_ops method for fork
7640 catchpoints. */
7641
7642 static int
7643 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7644 {
7645 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7646 }
7647
7648 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7649 catchpoints. */
7650
7651 static int
7652 breakpoint_hit_catch_fork (const struct bp_location *bl,
7653 const address_space *aspace, CORE_ADDR bp_addr,
7654 const struct target_waitstatus *ws)
7655 {
7656 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7657
7658 if (ws->kind != TARGET_WAITKIND_FORKED)
7659 return 0;
7660
7661 c->forked_inferior_pid = ws->value.related_pid;
7662 return 1;
7663 }
7664
7665 /* Implement the "print_it" breakpoint_ops method for fork
7666 catchpoints. */
7667
7668 static enum print_stop_action
7669 print_it_catch_fork (bpstat bs)
7670 {
7671 struct ui_out *uiout = current_uiout;
7672 struct breakpoint *b = bs->breakpoint_at;
7673 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7674
7675 annotate_catchpoint (b->number);
7676 maybe_print_thread_hit_breakpoint (uiout);
7677 if (b->disposition == disp_del)
7678 uiout->text ("Temporary catchpoint ");
7679 else
7680 uiout->text ("Catchpoint ");
7681 if (uiout->is_mi_like_p ())
7682 {
7683 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7684 uiout->field_string ("disp", bpdisp_text (b->disposition));
7685 }
7686 uiout->field_signed ("bkptno", b->number);
7687 uiout->text (" (forked process ");
7688 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7689 uiout->text ("), ");
7690 return PRINT_SRC_AND_LOC;
7691 }
7692
7693 /* Implement the "print_one" breakpoint_ops method for fork
7694 catchpoints. */
7695
7696 static void
7697 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7698 {
7699 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7700 struct value_print_options opts;
7701 struct ui_out *uiout = current_uiout;
7702
7703 get_user_print_options (&opts);
7704
7705 /* Field 4, the address, is omitted (which makes the columns not
7706 line up too nicely with the headers, but the effect is relatively
7707 readable). */
7708 if (opts.addressprint)
7709 uiout->field_skip ("addr");
7710 annotate_field (5);
7711 uiout->text ("fork");
7712 if (c->forked_inferior_pid != null_ptid)
7713 {
7714 uiout->text (", process ");
7715 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7716 uiout->spaces (1);
7717 }
7718
7719 if (uiout->is_mi_like_p ())
7720 uiout->field_string ("catch-type", "fork");
7721 }
7722
7723 /* Implement the "print_mention" breakpoint_ops method for fork
7724 catchpoints. */
7725
7726 static void
7727 print_mention_catch_fork (struct breakpoint *b)
7728 {
7729 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7730 }
7731
7732 /* Implement the "print_recreate" breakpoint_ops method for fork
7733 catchpoints. */
7734
7735 static void
7736 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7737 {
7738 fprintf_unfiltered (fp, "catch fork");
7739 print_recreate_thread (b, fp);
7740 }
7741
7742 /* The breakpoint_ops structure to be used in fork catchpoints. */
7743
7744 static struct breakpoint_ops catch_fork_breakpoint_ops;
7745
7746 /* Implement the "insert" breakpoint_ops method for vfork
7747 catchpoints. */
7748
7749 static int
7750 insert_catch_vfork (struct bp_location *bl)
7751 {
7752 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7753 }
7754
7755 /* Implement the "remove" breakpoint_ops method for vfork
7756 catchpoints. */
7757
7758 static int
7759 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7760 {
7761 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7762 }
7763
7764 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7765 catchpoints. */
7766
7767 static int
7768 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7769 const address_space *aspace, CORE_ADDR bp_addr,
7770 const struct target_waitstatus *ws)
7771 {
7772 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7773
7774 if (ws->kind != TARGET_WAITKIND_VFORKED)
7775 return 0;
7776
7777 c->forked_inferior_pid = ws->value.related_pid;
7778 return 1;
7779 }
7780
7781 /* Implement the "print_it" breakpoint_ops method for vfork
7782 catchpoints. */
7783
7784 static enum print_stop_action
7785 print_it_catch_vfork (bpstat bs)
7786 {
7787 struct ui_out *uiout = current_uiout;
7788 struct breakpoint *b = bs->breakpoint_at;
7789 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7790
7791 annotate_catchpoint (b->number);
7792 maybe_print_thread_hit_breakpoint (uiout);
7793 if (b->disposition == disp_del)
7794 uiout->text ("Temporary catchpoint ");
7795 else
7796 uiout->text ("Catchpoint ");
7797 if (uiout->is_mi_like_p ())
7798 {
7799 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7800 uiout->field_string ("disp", bpdisp_text (b->disposition));
7801 }
7802 uiout->field_signed ("bkptno", b->number);
7803 uiout->text (" (vforked process ");
7804 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7805 uiout->text ("), ");
7806 return PRINT_SRC_AND_LOC;
7807 }
7808
7809 /* Implement the "print_one" breakpoint_ops method for vfork
7810 catchpoints. */
7811
7812 static void
7813 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7814 {
7815 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7816 struct value_print_options opts;
7817 struct ui_out *uiout = current_uiout;
7818
7819 get_user_print_options (&opts);
7820 /* Field 4, the address, is omitted (which makes the columns not
7821 line up too nicely with the headers, but the effect is relatively
7822 readable). */
7823 if (opts.addressprint)
7824 uiout->field_skip ("addr");
7825 annotate_field (5);
7826 uiout->text ("vfork");
7827 if (c->forked_inferior_pid != null_ptid)
7828 {
7829 uiout->text (", process ");
7830 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7831 uiout->spaces (1);
7832 }
7833
7834 if (uiout->is_mi_like_p ())
7835 uiout->field_string ("catch-type", "vfork");
7836 }
7837
7838 /* Implement the "print_mention" breakpoint_ops method for vfork
7839 catchpoints. */
7840
7841 static void
7842 print_mention_catch_vfork (struct breakpoint *b)
7843 {
7844 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7845 }
7846
7847 /* Implement the "print_recreate" breakpoint_ops method for vfork
7848 catchpoints. */
7849
7850 static void
7851 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7852 {
7853 fprintf_unfiltered (fp, "catch vfork");
7854 print_recreate_thread (b, fp);
7855 }
7856
7857 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7858
7859 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7860
7861 /* An instance of this type is used to represent an solib catchpoint.
7862 A breakpoint is really of this type iff its ops pointer points to
7863 CATCH_SOLIB_BREAKPOINT_OPS. */
7864
7865 struct solib_catchpoint : public breakpoint
7866 {
7867 ~solib_catchpoint () override;
7868
7869 /* True for "catch load", false for "catch unload". */
7870 unsigned char is_load;
7871
7872 /* Regular expression to match, if any. COMPILED is only valid when
7873 REGEX is non-NULL. */
7874 char *regex;
7875 std::unique_ptr<compiled_regex> compiled;
7876 };
7877
7878 solib_catchpoint::~solib_catchpoint ()
7879 {
7880 xfree (this->regex);
7881 }
7882
7883 static int
7884 insert_catch_solib (struct bp_location *ignore)
7885 {
7886 return 0;
7887 }
7888
7889 static int
7890 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7891 {
7892 return 0;
7893 }
7894
7895 static int
7896 breakpoint_hit_catch_solib (const struct bp_location *bl,
7897 const address_space *aspace,
7898 CORE_ADDR bp_addr,
7899 const struct target_waitstatus *ws)
7900 {
7901 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7902 struct breakpoint *other;
7903
7904 if (ws->kind == TARGET_WAITKIND_LOADED)
7905 return 1;
7906
7907 ALL_BREAKPOINTS (other)
7908 {
7909 struct bp_location *other_bl;
7910
7911 if (other == bl->owner)
7912 continue;
7913
7914 if (other->type != bp_shlib_event)
7915 continue;
7916
7917 if (self->pspace != NULL && other->pspace != self->pspace)
7918 continue;
7919
7920 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7921 {
7922 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7923 return 1;
7924 }
7925 }
7926
7927 return 0;
7928 }
7929
7930 static void
7931 check_status_catch_solib (struct bpstats *bs)
7932 {
7933 struct solib_catchpoint *self
7934 = (struct solib_catchpoint *) bs->breakpoint_at;
7935
7936 if (self->is_load)
7937 {
7938 for (so_list *iter : current_program_space->added_solibs)
7939 {
7940 if (!self->regex
7941 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7942 return;
7943 }
7944 }
7945 else
7946 {
7947 for (const std::string &iter : current_program_space->deleted_solibs)
7948 {
7949 if (!self->regex
7950 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7951 return;
7952 }
7953 }
7954
7955 bs->stop = 0;
7956 bs->print_it = print_it_noop;
7957 }
7958
7959 static enum print_stop_action
7960 print_it_catch_solib (bpstat bs)
7961 {
7962 struct breakpoint *b = bs->breakpoint_at;
7963 struct ui_out *uiout = current_uiout;
7964
7965 annotate_catchpoint (b->number);
7966 maybe_print_thread_hit_breakpoint (uiout);
7967 if (b->disposition == disp_del)
7968 uiout->text ("Temporary catchpoint ");
7969 else
7970 uiout->text ("Catchpoint ");
7971 uiout->field_signed ("bkptno", b->number);
7972 uiout->text ("\n");
7973 if (uiout->is_mi_like_p ())
7974 uiout->field_string ("disp", bpdisp_text (b->disposition));
7975 print_solib_event (1);
7976 return PRINT_SRC_AND_LOC;
7977 }
7978
7979 static void
7980 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7981 {
7982 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7983 struct value_print_options opts;
7984 struct ui_out *uiout = current_uiout;
7985
7986 get_user_print_options (&opts);
7987 /* Field 4, the address, is omitted (which makes the columns not
7988 line up too nicely with the headers, but the effect is relatively
7989 readable). */
7990 if (opts.addressprint)
7991 {
7992 annotate_field (4);
7993 uiout->field_skip ("addr");
7994 }
7995
7996 std::string msg;
7997 annotate_field (5);
7998 if (self->is_load)
7999 {
8000 if (self->regex)
8001 msg = string_printf (_("load of library matching %s"), self->regex);
8002 else
8003 msg = _("load of library");
8004 }
8005 else
8006 {
8007 if (self->regex)
8008 msg = string_printf (_("unload of library matching %s"), self->regex);
8009 else
8010 msg = _("unload of library");
8011 }
8012 uiout->field_string ("what", msg);
8013
8014 if (uiout->is_mi_like_p ())
8015 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8016 }
8017
8018 static void
8019 print_mention_catch_solib (struct breakpoint *b)
8020 {
8021 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8022
8023 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8024 self->is_load ? "load" : "unload");
8025 }
8026
8027 static void
8028 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8029 {
8030 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8031
8032 fprintf_unfiltered (fp, "%s %s",
8033 b->disposition == disp_del ? "tcatch" : "catch",
8034 self->is_load ? "load" : "unload");
8035 if (self->regex)
8036 fprintf_unfiltered (fp, " %s", self->regex);
8037 fprintf_unfiltered (fp, "\n");
8038 }
8039
8040 static struct breakpoint_ops catch_solib_breakpoint_ops;
8041
8042 /* Shared helper function (MI and CLI) for creating and installing
8043 a shared object event catchpoint. If IS_LOAD is non-zero then
8044 the events to be caught are load events, otherwise they are
8045 unload events. If IS_TEMP is non-zero the catchpoint is a
8046 temporary one. If ENABLED is non-zero the catchpoint is
8047 created in an enabled state. */
8048
8049 void
8050 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8051 {
8052 struct gdbarch *gdbarch = get_current_arch ();
8053
8054 if (!arg)
8055 arg = "";
8056 arg = skip_spaces (arg);
8057
8058 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8059
8060 if (*arg != '\0')
8061 {
8062 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8063 _("Invalid regexp")));
8064 c->regex = xstrdup (arg);
8065 }
8066
8067 c->is_load = is_load;
8068 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8069 &catch_solib_breakpoint_ops);
8070
8071 c->enable_state = enabled ? bp_enabled : bp_disabled;
8072
8073 install_breakpoint (0, std::move (c), 1);
8074 }
8075
8076 /* A helper function that does all the work for "catch load" and
8077 "catch unload". */
8078
8079 static void
8080 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8081 struct cmd_list_element *command)
8082 {
8083 int tempflag;
8084 const int enabled = 1;
8085
8086 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8087
8088 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8089 }
8090
8091 static void
8092 catch_load_command_1 (const char *arg, int from_tty,
8093 struct cmd_list_element *command)
8094 {
8095 catch_load_or_unload (arg, from_tty, 1, command);
8096 }
8097
8098 static void
8099 catch_unload_command_1 (const char *arg, int from_tty,
8100 struct cmd_list_element *command)
8101 {
8102 catch_load_or_unload (arg, from_tty, 0, command);
8103 }
8104
8105 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8106 is non-zero, then make the breakpoint temporary. If COND_STRING is
8107 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8108 the breakpoint_ops structure associated to the catchpoint. */
8109
8110 void
8111 init_catchpoint (struct breakpoint *b,
8112 struct gdbarch *gdbarch, int tempflag,
8113 const char *cond_string,
8114 const struct breakpoint_ops *ops)
8115 {
8116 symtab_and_line sal;
8117 sal.pspace = current_program_space;
8118
8119 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8120
8121 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8122 b->disposition = tempflag ? disp_del : disp_donttouch;
8123 }
8124
8125 void
8126 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8127 {
8128 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8129 set_breakpoint_number (internal, b);
8130 if (is_tracepoint (b))
8131 set_tracepoint_count (breakpoint_count);
8132 if (!internal)
8133 mention (b);
8134 gdb::observers::breakpoint_created.notify (b);
8135
8136 if (update_gll)
8137 update_global_location_list (UGLL_MAY_INSERT);
8138 }
8139
8140 static void
8141 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8142 int tempflag, const char *cond_string,
8143 const struct breakpoint_ops *ops)
8144 {
8145 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8146
8147 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8148
8149 c->forked_inferior_pid = null_ptid;
8150
8151 install_breakpoint (0, std::move (c), 1);
8152 }
8153
8154 /* Exec catchpoints. */
8155
8156 /* An instance of this type is used to represent an exec catchpoint.
8157 A breakpoint is really of this type iff its ops pointer points to
8158 CATCH_EXEC_BREAKPOINT_OPS. */
8159
8160 struct exec_catchpoint : public breakpoint
8161 {
8162 ~exec_catchpoint () override;
8163
8164 /* Filename of a program whose exec triggered this catchpoint.
8165 This field is only valid immediately after this catchpoint has
8166 triggered. */
8167 char *exec_pathname;
8168 };
8169
8170 /* Exec catchpoint destructor. */
8171
8172 exec_catchpoint::~exec_catchpoint ()
8173 {
8174 xfree (this->exec_pathname);
8175 }
8176
8177 static int
8178 insert_catch_exec (struct bp_location *bl)
8179 {
8180 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8181 }
8182
8183 static int
8184 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8185 {
8186 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8187 }
8188
8189 static int
8190 breakpoint_hit_catch_exec (const struct bp_location *bl,
8191 const address_space *aspace, CORE_ADDR bp_addr,
8192 const struct target_waitstatus *ws)
8193 {
8194 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8195
8196 if (ws->kind != TARGET_WAITKIND_EXECD)
8197 return 0;
8198
8199 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8200 return 1;
8201 }
8202
8203 static enum print_stop_action
8204 print_it_catch_exec (bpstat bs)
8205 {
8206 struct ui_out *uiout = current_uiout;
8207 struct breakpoint *b = bs->breakpoint_at;
8208 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8209
8210 annotate_catchpoint (b->number);
8211 maybe_print_thread_hit_breakpoint (uiout);
8212 if (b->disposition == disp_del)
8213 uiout->text ("Temporary catchpoint ");
8214 else
8215 uiout->text ("Catchpoint ");
8216 if (uiout->is_mi_like_p ())
8217 {
8218 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8219 uiout->field_string ("disp", bpdisp_text (b->disposition));
8220 }
8221 uiout->field_signed ("bkptno", b->number);
8222 uiout->text (" (exec'd ");
8223 uiout->field_string ("new-exec", c->exec_pathname);
8224 uiout->text ("), ");
8225
8226 return PRINT_SRC_AND_LOC;
8227 }
8228
8229 static void
8230 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8231 {
8232 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8233 struct value_print_options opts;
8234 struct ui_out *uiout = current_uiout;
8235
8236 get_user_print_options (&opts);
8237
8238 /* Field 4, the address, is omitted (which makes the columns
8239 not line up too nicely with the headers, but the effect
8240 is relatively readable). */
8241 if (opts.addressprint)
8242 uiout->field_skip ("addr");
8243 annotate_field (5);
8244 uiout->text ("exec");
8245 if (c->exec_pathname != NULL)
8246 {
8247 uiout->text (", program \"");
8248 uiout->field_string ("what", c->exec_pathname);
8249 uiout->text ("\" ");
8250 }
8251
8252 if (uiout->is_mi_like_p ())
8253 uiout->field_string ("catch-type", "exec");
8254 }
8255
8256 static void
8257 print_mention_catch_exec (struct breakpoint *b)
8258 {
8259 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8260 }
8261
8262 /* Implement the "print_recreate" breakpoint_ops method for exec
8263 catchpoints. */
8264
8265 static void
8266 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8267 {
8268 fprintf_unfiltered (fp, "catch exec");
8269 print_recreate_thread (b, fp);
8270 }
8271
8272 static struct breakpoint_ops catch_exec_breakpoint_ops;
8273
8274 static int
8275 hw_breakpoint_used_count (void)
8276 {
8277 int i = 0;
8278 struct breakpoint *b;
8279 struct bp_location *bl;
8280
8281 ALL_BREAKPOINTS (b)
8282 {
8283 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8284 for (bl = b->loc; bl; bl = bl->next)
8285 {
8286 /* Special types of hardware breakpoints may use more than
8287 one register. */
8288 i += b->ops->resources_needed (bl);
8289 }
8290 }
8291
8292 return i;
8293 }
8294
8295 /* Returns the resources B would use if it were a hardware
8296 watchpoint. */
8297
8298 static int
8299 hw_watchpoint_use_count (struct breakpoint *b)
8300 {
8301 int i = 0;
8302 struct bp_location *bl;
8303
8304 if (!breakpoint_enabled (b))
8305 return 0;
8306
8307 for (bl = b->loc; bl; bl = bl->next)
8308 {
8309 /* Special types of hardware watchpoints may use more than
8310 one register. */
8311 i += b->ops->resources_needed (bl);
8312 }
8313
8314 return i;
8315 }
8316
8317 /* Returns the sum the used resources of all hardware watchpoints of
8318 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8319 the sum of the used resources of all hardware watchpoints of other
8320 types _not_ TYPE. */
8321
8322 static int
8323 hw_watchpoint_used_count_others (struct breakpoint *except,
8324 enum bptype type, int *other_type_used)
8325 {
8326 int i = 0;
8327 struct breakpoint *b;
8328
8329 *other_type_used = 0;
8330 ALL_BREAKPOINTS (b)
8331 {
8332 if (b == except)
8333 continue;
8334 if (!breakpoint_enabled (b))
8335 continue;
8336
8337 if (b->type == type)
8338 i += hw_watchpoint_use_count (b);
8339 else if (is_hardware_watchpoint (b))
8340 *other_type_used = 1;
8341 }
8342
8343 return i;
8344 }
8345
8346 void
8347 disable_watchpoints_before_interactive_call_start (void)
8348 {
8349 struct breakpoint *b;
8350
8351 ALL_BREAKPOINTS (b)
8352 {
8353 if (is_watchpoint (b) && breakpoint_enabled (b))
8354 {
8355 b->enable_state = bp_call_disabled;
8356 update_global_location_list (UGLL_DONT_INSERT);
8357 }
8358 }
8359 }
8360
8361 void
8362 enable_watchpoints_after_interactive_call_stop (void)
8363 {
8364 struct breakpoint *b;
8365
8366 ALL_BREAKPOINTS (b)
8367 {
8368 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8369 {
8370 b->enable_state = bp_enabled;
8371 update_global_location_list (UGLL_MAY_INSERT);
8372 }
8373 }
8374 }
8375
8376 void
8377 disable_breakpoints_before_startup (void)
8378 {
8379 current_program_space->executing_startup = 1;
8380 update_global_location_list (UGLL_DONT_INSERT);
8381 }
8382
8383 void
8384 enable_breakpoints_after_startup (void)
8385 {
8386 current_program_space->executing_startup = 0;
8387 breakpoint_re_set ();
8388 }
8389
8390 /* Create a new single-step breakpoint for thread THREAD, with no
8391 locations. */
8392
8393 static struct breakpoint *
8394 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8395 {
8396 std::unique_ptr<breakpoint> b (new breakpoint ());
8397
8398 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8399 &momentary_breakpoint_ops);
8400
8401 b->disposition = disp_donttouch;
8402 b->frame_id = null_frame_id;
8403
8404 b->thread = thread;
8405 gdb_assert (b->thread != 0);
8406
8407 return add_to_breakpoint_chain (std::move (b));
8408 }
8409
8410 /* Set a momentary breakpoint of type TYPE at address specified by
8411 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8412 frame. */
8413
8414 breakpoint_up
8415 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8416 struct frame_id frame_id, enum bptype type)
8417 {
8418 struct breakpoint *b;
8419
8420 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8421 tail-called one. */
8422 gdb_assert (!frame_id_artificial_p (frame_id));
8423
8424 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8425 b->enable_state = bp_enabled;
8426 b->disposition = disp_donttouch;
8427 b->frame_id = frame_id;
8428
8429 b->thread = inferior_thread ()->global_num;
8430
8431 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8432
8433 return breakpoint_up (b);
8434 }
8435
8436 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8437 The new breakpoint will have type TYPE, use OPS as its
8438 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8439
8440 static struct breakpoint *
8441 momentary_breakpoint_from_master (struct breakpoint *orig,
8442 enum bptype type,
8443 const struct breakpoint_ops *ops,
8444 int loc_enabled)
8445 {
8446 struct breakpoint *copy;
8447
8448 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8449 copy->loc = allocate_bp_location (copy);
8450 set_breakpoint_location_function (copy->loc);
8451
8452 copy->loc->gdbarch = orig->loc->gdbarch;
8453 copy->loc->requested_address = orig->loc->requested_address;
8454 copy->loc->address = orig->loc->address;
8455 copy->loc->section = orig->loc->section;
8456 copy->loc->pspace = orig->loc->pspace;
8457 copy->loc->probe = orig->loc->probe;
8458 copy->loc->line_number = orig->loc->line_number;
8459 copy->loc->symtab = orig->loc->symtab;
8460 copy->loc->enabled = loc_enabled;
8461 copy->frame_id = orig->frame_id;
8462 copy->thread = orig->thread;
8463 copy->pspace = orig->pspace;
8464
8465 copy->enable_state = bp_enabled;
8466 copy->disposition = disp_donttouch;
8467 copy->number = internal_breakpoint_number--;
8468
8469 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8470 return copy;
8471 }
8472
8473 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8474 ORIG is NULL. */
8475
8476 struct breakpoint *
8477 clone_momentary_breakpoint (struct breakpoint *orig)
8478 {
8479 /* If there's nothing to clone, then return nothing. */
8480 if (orig == NULL)
8481 return NULL;
8482
8483 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8484 }
8485
8486 breakpoint_up
8487 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8488 enum bptype type)
8489 {
8490 struct symtab_and_line sal;
8491
8492 sal = find_pc_line (pc, 0);
8493 sal.pc = pc;
8494 sal.section = find_pc_overlay (pc);
8495 sal.explicit_pc = 1;
8496
8497 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8498 }
8499 \f
8500
8501 /* Tell the user we have just set a breakpoint B. */
8502
8503 static void
8504 mention (struct breakpoint *b)
8505 {
8506 b->ops->print_mention (b);
8507 current_uiout->text ("\n");
8508 }
8509 \f
8510
8511 static bool bp_loc_is_permanent (struct bp_location *loc);
8512
8513 /* Handle "set breakpoint auto-hw on".
8514
8515 If the explicitly specified breakpoint type is not hardware
8516 breakpoint, check the memory map to see whether the breakpoint
8517 address is in read-only memory.
8518
8519 - location type is not hardware breakpoint, memory is read-only.
8520 We change the type of the location to hardware breakpoint.
8521
8522 - location type is hardware breakpoint, memory is read-write. This
8523 means we've previously made the location hardware one, but then the
8524 memory map changed, so we undo.
8525 */
8526
8527 static void
8528 handle_automatic_hardware_breakpoints (bp_location *bl)
8529 {
8530 if (automatic_hardware_breakpoints
8531 && bl->owner->type != bp_hardware_breakpoint
8532 && (bl->loc_type == bp_loc_software_breakpoint
8533 || bl->loc_type == bp_loc_hardware_breakpoint))
8534 {
8535 /* When breakpoints are removed, remove_breakpoints will use
8536 location types we've just set here, the only possible problem
8537 is that memory map has changed during running program, but
8538 it's not going to work anyway with current gdb. */
8539 mem_region *mr = lookup_mem_region (bl->address);
8540
8541 if (mr != nullptr)
8542 {
8543 enum bp_loc_type new_type;
8544
8545 if (mr->attrib.mode != MEM_RW)
8546 new_type = bp_loc_hardware_breakpoint;
8547 else
8548 new_type = bp_loc_software_breakpoint;
8549
8550 if (new_type != bl->loc_type)
8551 {
8552 static bool said = false;
8553
8554 bl->loc_type = new_type;
8555 if (!said)
8556 {
8557 fprintf_filtered (gdb_stdout,
8558 _("Note: automatically using "
8559 "hardware breakpoints for "
8560 "read-only addresses.\n"));
8561 said = true;
8562 }
8563 }
8564 }
8565 }
8566 }
8567
8568 static struct bp_location *
8569 add_location_to_breakpoint (struct breakpoint *b,
8570 const struct symtab_and_line *sal)
8571 {
8572 struct bp_location *loc, **tmp;
8573 CORE_ADDR adjusted_address;
8574 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8575
8576 if (loc_gdbarch == NULL)
8577 loc_gdbarch = b->gdbarch;
8578
8579 /* Adjust the breakpoint's address prior to allocating a location.
8580 Once we call allocate_bp_location(), that mostly uninitialized
8581 location will be placed on the location chain. Adjustment of the
8582 breakpoint may cause target_read_memory() to be called and we do
8583 not want its scan of the location chain to find a breakpoint and
8584 location that's only been partially initialized. */
8585 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8586 sal->pc, b->type);
8587
8588 /* Sort the locations by their ADDRESS. */
8589 loc = allocate_bp_location (b);
8590 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8591 tmp = &((*tmp)->next))
8592 ;
8593 loc->next = *tmp;
8594 *tmp = loc;
8595
8596 loc->requested_address = sal->pc;
8597 loc->address = adjusted_address;
8598 loc->pspace = sal->pspace;
8599 loc->probe.prob = sal->prob;
8600 loc->probe.objfile = sal->objfile;
8601 gdb_assert (loc->pspace != NULL);
8602 loc->section = sal->section;
8603 loc->gdbarch = loc_gdbarch;
8604 loc->line_number = sal->line;
8605 loc->symtab = sal->symtab;
8606 loc->symbol = sal->symbol;
8607 loc->msymbol = sal->msymbol;
8608 loc->objfile = sal->objfile;
8609
8610 set_breakpoint_location_function (loc);
8611
8612 /* While by definition, permanent breakpoints are already present in the
8613 code, we don't mark the location as inserted. Normally one would expect
8614 that GDB could rely on that breakpoint instruction to stop the program,
8615 thus removing the need to insert its own breakpoint, except that executing
8616 the breakpoint instruction can kill the target instead of reporting a
8617 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8618 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8619 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8620 breakpoint be inserted normally results in QEMU knowing about the GDB
8621 breakpoint, and thus trap before the breakpoint instruction is executed.
8622 (If GDB later needs to continue execution past the permanent breakpoint,
8623 it manually increments the PC, thus avoiding executing the breakpoint
8624 instruction.) */
8625 if (bp_loc_is_permanent (loc))
8626 loc->permanent = 1;
8627
8628 return loc;
8629 }
8630 \f
8631
8632 /* Return true if LOC is pointing to a permanent breakpoint,
8633 return false otherwise. */
8634
8635 static bool
8636 bp_loc_is_permanent (struct bp_location *loc)
8637 {
8638 gdb_assert (loc != NULL);
8639
8640 /* If we have a non-breakpoint-backed catchpoint or a software
8641 watchpoint, just return 0. We should not attempt to read from
8642 the addresses the locations of these breakpoint types point to.
8643 gdbarch_program_breakpoint_here_p, below, will attempt to read
8644 memory. */
8645 if (!bl_address_is_meaningful (loc))
8646 return false;
8647
8648 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8649 switch_to_program_space_and_thread (loc->pspace);
8650 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8651 }
8652
8653 /* Build a command list for the dprintf corresponding to the current
8654 settings of the dprintf style options. */
8655
8656 static void
8657 update_dprintf_command_list (struct breakpoint *b)
8658 {
8659 char *dprintf_args = b->extra_string;
8660 char *printf_line = NULL;
8661
8662 if (!dprintf_args)
8663 return;
8664
8665 dprintf_args = skip_spaces (dprintf_args);
8666
8667 /* Allow a comma, as it may have terminated a location, but don't
8668 insist on it. */
8669 if (*dprintf_args == ',')
8670 ++dprintf_args;
8671 dprintf_args = skip_spaces (dprintf_args);
8672
8673 if (*dprintf_args != '"')
8674 error (_("Bad format string, missing '\"'."));
8675
8676 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8677 printf_line = xstrprintf ("printf %s", dprintf_args);
8678 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8679 {
8680 if (!dprintf_function)
8681 error (_("No function supplied for dprintf call"));
8682
8683 if (dprintf_channel && strlen (dprintf_channel) > 0)
8684 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8685 dprintf_function,
8686 dprintf_channel,
8687 dprintf_args);
8688 else
8689 printf_line = xstrprintf ("call (void) %s (%s)",
8690 dprintf_function,
8691 dprintf_args);
8692 }
8693 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8694 {
8695 if (target_can_run_breakpoint_commands ())
8696 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8697 else
8698 {
8699 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8700 printf_line = xstrprintf ("printf %s", dprintf_args);
8701 }
8702 }
8703 else
8704 internal_error (__FILE__, __LINE__,
8705 _("Invalid dprintf style."));
8706
8707 gdb_assert (printf_line != NULL);
8708
8709 /* Manufacture a printf sequence. */
8710 struct command_line *printf_cmd_line
8711 = new struct command_line (simple_control, printf_line);
8712 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8713 command_lines_deleter ()));
8714 }
8715
8716 /* Update all dprintf commands, making their command lists reflect
8717 current style settings. */
8718
8719 static void
8720 update_dprintf_commands (const char *args, int from_tty,
8721 struct cmd_list_element *c)
8722 {
8723 struct breakpoint *b;
8724
8725 ALL_BREAKPOINTS (b)
8726 {
8727 if (b->type == bp_dprintf)
8728 update_dprintf_command_list (b);
8729 }
8730 }
8731
8732 /* Create a breakpoint with SAL as location. Use LOCATION
8733 as a description of the location, and COND_STRING
8734 as condition expression. If LOCATION is NULL then create an
8735 "address location" from the address in the SAL. */
8736
8737 static void
8738 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8739 gdb::array_view<const symtab_and_line> sals,
8740 event_location_up &&location,
8741 gdb::unique_xmalloc_ptr<char> filter,
8742 gdb::unique_xmalloc_ptr<char> cond_string,
8743 gdb::unique_xmalloc_ptr<char> extra_string,
8744 enum bptype type, enum bpdisp disposition,
8745 int thread, int task, int ignore_count,
8746 const struct breakpoint_ops *ops, int from_tty,
8747 int enabled, int internal, unsigned flags,
8748 int display_canonical)
8749 {
8750 int i;
8751
8752 if (type == bp_hardware_breakpoint)
8753 {
8754 int target_resources_ok;
8755
8756 i = hw_breakpoint_used_count ();
8757 target_resources_ok =
8758 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8759 i + 1, 0);
8760 if (target_resources_ok == 0)
8761 error (_("No hardware breakpoint support in the target."));
8762 else if (target_resources_ok < 0)
8763 error (_("Hardware breakpoints used exceeds limit."));
8764 }
8765
8766 gdb_assert (!sals.empty ());
8767
8768 for (const auto &sal : sals)
8769 {
8770 struct bp_location *loc;
8771
8772 if (from_tty)
8773 {
8774 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8775 if (!loc_gdbarch)
8776 loc_gdbarch = gdbarch;
8777
8778 describe_other_breakpoints (loc_gdbarch,
8779 sal.pspace, sal.pc, sal.section, thread);
8780 }
8781
8782 if (&sal == &sals[0])
8783 {
8784 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8785 b->thread = thread;
8786 b->task = task;
8787
8788 b->cond_string = cond_string.release ();
8789 b->extra_string = extra_string.release ();
8790 b->ignore_count = ignore_count;
8791 b->enable_state = enabled ? bp_enabled : bp_disabled;
8792 b->disposition = disposition;
8793
8794 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8795 b->loc->inserted = 1;
8796
8797 if (type == bp_static_tracepoint)
8798 {
8799 struct tracepoint *t = (struct tracepoint *) b;
8800 struct static_tracepoint_marker marker;
8801
8802 if (strace_marker_p (b))
8803 {
8804 /* We already know the marker exists, otherwise, we
8805 wouldn't see a sal for it. */
8806 const char *p
8807 = &event_location_to_string (b->location.get ())[3];
8808 const char *endp;
8809
8810 p = skip_spaces (p);
8811
8812 endp = skip_to_space (p);
8813
8814 t->static_trace_marker_id.assign (p, endp - p);
8815
8816 printf_filtered (_("Probed static tracepoint "
8817 "marker \"%s\"\n"),
8818 t->static_trace_marker_id.c_str ());
8819 }
8820 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8821 {
8822 t->static_trace_marker_id = std::move (marker.str_id);
8823
8824 printf_filtered (_("Probed static tracepoint "
8825 "marker \"%s\"\n"),
8826 t->static_trace_marker_id.c_str ());
8827 }
8828 else
8829 warning (_("Couldn't determine the static "
8830 "tracepoint marker to probe"));
8831 }
8832
8833 loc = b->loc;
8834 }
8835 else
8836 {
8837 loc = add_location_to_breakpoint (b, &sal);
8838 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8839 loc->inserted = 1;
8840 }
8841
8842 if (b->cond_string)
8843 {
8844 const char *arg = b->cond_string;
8845
8846 loc->cond = parse_exp_1 (&arg, loc->address,
8847 block_for_pc (loc->address), 0);
8848 if (*arg)
8849 error (_("Garbage '%s' follows condition"), arg);
8850 }
8851
8852 /* Dynamic printf requires and uses additional arguments on the
8853 command line, otherwise it's an error. */
8854 if (type == bp_dprintf)
8855 {
8856 if (b->extra_string)
8857 update_dprintf_command_list (b);
8858 else
8859 error (_("Format string required"));
8860 }
8861 else if (b->extra_string)
8862 error (_("Garbage '%s' at end of command"), b->extra_string);
8863 }
8864
8865 b->display_canonical = display_canonical;
8866 if (location != NULL)
8867 b->location = std::move (location);
8868 else
8869 b->location = new_address_location (b->loc->address, NULL, 0);
8870 b->filter = std::move (filter);
8871 }
8872
8873 static void
8874 create_breakpoint_sal (struct gdbarch *gdbarch,
8875 gdb::array_view<const symtab_and_line> sals,
8876 event_location_up &&location,
8877 gdb::unique_xmalloc_ptr<char> filter,
8878 gdb::unique_xmalloc_ptr<char> cond_string,
8879 gdb::unique_xmalloc_ptr<char> extra_string,
8880 enum bptype type, enum bpdisp disposition,
8881 int thread, int task, int ignore_count,
8882 const struct breakpoint_ops *ops, int from_tty,
8883 int enabled, int internal, unsigned flags,
8884 int display_canonical)
8885 {
8886 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8887
8888 init_breakpoint_sal (b.get (), gdbarch,
8889 sals, std::move (location),
8890 std::move (filter),
8891 std::move (cond_string),
8892 std::move (extra_string),
8893 type, disposition,
8894 thread, task, ignore_count,
8895 ops, from_tty,
8896 enabled, internal, flags,
8897 display_canonical);
8898
8899 install_breakpoint (internal, std::move (b), 0);
8900 }
8901
8902 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8903 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8904 value. COND_STRING, if not NULL, specified the condition to be
8905 used for all breakpoints. Essentially the only case where
8906 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8907 function. In that case, it's still not possible to specify
8908 separate conditions for different overloaded functions, so
8909 we take just a single condition string.
8910
8911 NOTE: If the function succeeds, the caller is expected to cleanup
8912 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8913 array contents). If the function fails (error() is called), the
8914 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8915 COND and SALS arrays and each of those arrays contents. */
8916
8917 static void
8918 create_breakpoints_sal (struct gdbarch *gdbarch,
8919 struct linespec_result *canonical,
8920 gdb::unique_xmalloc_ptr<char> cond_string,
8921 gdb::unique_xmalloc_ptr<char> extra_string,
8922 enum bptype type, enum bpdisp disposition,
8923 int thread, int task, int ignore_count,
8924 const struct breakpoint_ops *ops, int from_tty,
8925 int enabled, int internal, unsigned flags)
8926 {
8927 if (canonical->pre_expanded)
8928 gdb_assert (canonical->lsals.size () == 1);
8929
8930 for (const auto &lsal : canonical->lsals)
8931 {
8932 /* Note that 'location' can be NULL in the case of a plain
8933 'break', without arguments. */
8934 event_location_up location
8935 = (canonical->location != NULL
8936 ? copy_event_location (canonical->location.get ()) : NULL);
8937 gdb::unique_xmalloc_ptr<char> filter_string
8938 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8939
8940 create_breakpoint_sal (gdbarch, lsal.sals,
8941 std::move (location),
8942 std::move (filter_string),
8943 std::move (cond_string),
8944 std::move (extra_string),
8945 type, disposition,
8946 thread, task, ignore_count, ops,
8947 from_tty, enabled, internal, flags,
8948 canonical->special_display);
8949 }
8950 }
8951
8952 /* Parse LOCATION which is assumed to be a SAL specification possibly
8953 followed by conditionals. On return, SALS contains an array of SAL
8954 addresses found. LOCATION points to the end of the SAL (for
8955 linespec locations).
8956
8957 The array and the line spec strings are allocated on the heap, it is
8958 the caller's responsibility to free them. */
8959
8960 static void
8961 parse_breakpoint_sals (struct event_location *location,
8962 struct linespec_result *canonical)
8963 {
8964 struct symtab_and_line cursal;
8965
8966 if (event_location_type (location) == LINESPEC_LOCATION)
8967 {
8968 const char *spec = get_linespec_location (location)->spec_string;
8969
8970 if (spec == NULL)
8971 {
8972 /* The last displayed codepoint, if it's valid, is our default
8973 breakpoint address. */
8974 if (last_displayed_sal_is_valid ())
8975 {
8976 /* Set sal's pspace, pc, symtab, and line to the values
8977 corresponding to the last call to print_frame_info.
8978 Be sure to reinitialize LINE with NOTCURRENT == 0
8979 as the breakpoint line number is inappropriate otherwise.
8980 find_pc_line would adjust PC, re-set it back. */
8981 symtab_and_line sal = get_last_displayed_sal ();
8982 CORE_ADDR pc = sal.pc;
8983
8984 sal = find_pc_line (pc, 0);
8985
8986 /* "break" without arguments is equivalent to "break *PC"
8987 where PC is the last displayed codepoint's address. So
8988 make sure to set sal.explicit_pc to prevent GDB from
8989 trying to expand the list of sals to include all other
8990 instances with the same symtab and line. */
8991 sal.pc = pc;
8992 sal.explicit_pc = 1;
8993
8994 struct linespec_sals lsal;
8995 lsal.sals = {sal};
8996 lsal.canonical = NULL;
8997
8998 canonical->lsals.push_back (std::move (lsal));
8999 return;
9000 }
9001 else
9002 error (_("No default breakpoint address now."));
9003 }
9004 }
9005
9006 /* Force almost all breakpoints to be in terms of the
9007 current_source_symtab (which is decode_line_1's default).
9008 This should produce the results we want almost all of the
9009 time while leaving default_breakpoint_* alone.
9010
9011 ObjC: However, don't match an Objective-C method name which
9012 may have a '+' or '-' succeeded by a '['. */
9013 cursal = get_current_source_symtab_and_line ();
9014 if (last_displayed_sal_is_valid ())
9015 {
9016 const char *spec = NULL;
9017
9018 if (event_location_type (location) == LINESPEC_LOCATION)
9019 spec = get_linespec_location (location)->spec_string;
9020
9021 if (!cursal.symtab
9022 || (spec != NULL
9023 && strchr ("+-", spec[0]) != NULL
9024 && spec[1] != '['))
9025 {
9026 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9027 get_last_displayed_symtab (),
9028 get_last_displayed_line (),
9029 canonical, NULL, NULL);
9030 return;
9031 }
9032 }
9033
9034 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9035 cursal.symtab, cursal.line, canonical, NULL, NULL);
9036 }
9037
9038
9039 /* Convert each SAL into a real PC. Verify that the PC can be
9040 inserted as a breakpoint. If it can't throw an error. */
9041
9042 static void
9043 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9044 {
9045 for (auto &sal : sals)
9046 resolve_sal_pc (&sal);
9047 }
9048
9049 /* Fast tracepoints may have restrictions on valid locations. For
9050 instance, a fast tracepoint using a jump instead of a trap will
9051 likely have to overwrite more bytes than a trap would, and so can
9052 only be placed where the instruction is longer than the jump, or a
9053 multi-instruction sequence does not have a jump into the middle of
9054 it, etc. */
9055
9056 static void
9057 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9058 gdb::array_view<const symtab_and_line> sals)
9059 {
9060 for (const auto &sal : sals)
9061 {
9062 struct gdbarch *sarch;
9063
9064 sarch = get_sal_arch (sal);
9065 /* We fall back to GDBARCH if there is no architecture
9066 associated with SAL. */
9067 if (sarch == NULL)
9068 sarch = gdbarch;
9069 std::string msg;
9070 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9071 error (_("May not have a fast tracepoint at %s%s"),
9072 paddress (sarch, sal.pc), msg.c_str ());
9073 }
9074 }
9075
9076 /* Given TOK, a string specification of condition and thread, as
9077 accepted by the 'break' command, extract the condition
9078 string and thread number and set *COND_STRING and *THREAD.
9079 PC identifies the context at which the condition should be parsed.
9080 If no condition is found, *COND_STRING is set to NULL.
9081 If no thread is found, *THREAD is set to -1. */
9082
9083 static void
9084 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9085 char **cond_string, int *thread, int *task,
9086 char **rest)
9087 {
9088 *cond_string = NULL;
9089 *thread = -1;
9090 *task = 0;
9091 *rest = NULL;
9092
9093 while (tok && *tok)
9094 {
9095 const char *end_tok;
9096 int toklen;
9097 const char *cond_start = NULL;
9098 const char *cond_end = NULL;
9099
9100 tok = skip_spaces (tok);
9101
9102 if ((*tok == '"' || *tok == ',') && rest)
9103 {
9104 *rest = savestring (tok, strlen (tok));
9105 return;
9106 }
9107
9108 end_tok = skip_to_space (tok);
9109
9110 toklen = end_tok - tok;
9111
9112 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9113 {
9114 tok = cond_start = end_tok + 1;
9115 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9116 cond_end = tok;
9117 *cond_string = savestring (cond_start, cond_end - cond_start);
9118 }
9119 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9120 {
9121 const char *tmptok;
9122 struct thread_info *thr;
9123
9124 tok = end_tok + 1;
9125 thr = parse_thread_id (tok, &tmptok);
9126 if (tok == tmptok)
9127 error (_("Junk after thread keyword."));
9128 *thread = thr->global_num;
9129 tok = tmptok;
9130 }
9131 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9132 {
9133 char *tmptok;
9134
9135 tok = end_tok + 1;
9136 *task = strtol (tok, &tmptok, 0);
9137 if (tok == tmptok)
9138 error (_("Junk after task keyword."));
9139 if (!valid_task_id (*task))
9140 error (_("Unknown task %d."), *task);
9141 tok = tmptok;
9142 }
9143 else if (rest)
9144 {
9145 *rest = savestring (tok, strlen (tok));
9146 return;
9147 }
9148 else
9149 error (_("Junk at end of arguments."));
9150 }
9151 }
9152
9153 /* Decode a static tracepoint marker spec. */
9154
9155 static std::vector<symtab_and_line>
9156 decode_static_tracepoint_spec (const char **arg_p)
9157 {
9158 const char *p = &(*arg_p)[3];
9159 const char *endp;
9160
9161 p = skip_spaces (p);
9162
9163 endp = skip_to_space (p);
9164
9165 std::string marker_str (p, endp - p);
9166
9167 std::vector<static_tracepoint_marker> markers
9168 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9169 if (markers.empty ())
9170 error (_("No known static tracepoint marker named %s"),
9171 marker_str.c_str ());
9172
9173 std::vector<symtab_and_line> sals;
9174 sals.reserve (markers.size ());
9175
9176 for (const static_tracepoint_marker &marker : markers)
9177 {
9178 symtab_and_line sal = find_pc_line (marker.address, 0);
9179 sal.pc = marker.address;
9180 sals.push_back (sal);
9181 }
9182
9183 *arg_p = endp;
9184 return sals;
9185 }
9186
9187 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9188 according to IS_TRACEPOINT. */
9189
9190 static const struct breakpoint_ops *
9191 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9192 bool is_tracepoint)
9193 {
9194 if (is_tracepoint)
9195 {
9196 if (location_type == PROBE_LOCATION)
9197 return &tracepoint_probe_breakpoint_ops;
9198 else
9199 return &tracepoint_breakpoint_ops;
9200 }
9201 else
9202 {
9203 if (location_type == PROBE_LOCATION)
9204 return &bkpt_probe_breakpoint_ops;
9205 else
9206 return &bkpt_breakpoint_ops;
9207 }
9208 }
9209
9210 /* See breakpoint.h. */
9211
9212 const struct breakpoint_ops *
9213 breakpoint_ops_for_event_location (const struct event_location *location,
9214 bool is_tracepoint)
9215 {
9216 if (location != nullptr)
9217 return breakpoint_ops_for_event_location_type
9218 (event_location_type (location), is_tracepoint);
9219 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9220 }
9221
9222 /* See breakpoint.h. */
9223
9224 int
9225 create_breakpoint (struct gdbarch *gdbarch,
9226 struct event_location *location,
9227 const char *cond_string,
9228 int thread, const char *extra_string,
9229 int parse_extra,
9230 int tempflag, enum bptype type_wanted,
9231 int ignore_count,
9232 enum auto_boolean pending_break_support,
9233 const struct breakpoint_ops *ops,
9234 int from_tty, int enabled, int internal,
9235 unsigned flags)
9236 {
9237 struct linespec_result canonical;
9238 int pending = 0;
9239 int task = 0;
9240 int prev_bkpt_count = breakpoint_count;
9241
9242 gdb_assert (ops != NULL);
9243
9244 /* If extra_string isn't useful, set it to NULL. */
9245 if (extra_string != NULL && *extra_string == '\0')
9246 extra_string = NULL;
9247
9248 try
9249 {
9250 ops->create_sals_from_location (location, &canonical, type_wanted);
9251 }
9252 catch (const gdb_exception_error &e)
9253 {
9254 /* If caller is interested in rc value from parse, set
9255 value. */
9256 if (e.error == NOT_FOUND_ERROR)
9257 {
9258 /* If pending breakpoint support is turned off, throw
9259 error. */
9260
9261 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9262 throw;
9263
9264 exception_print (gdb_stderr, e);
9265
9266 /* If pending breakpoint support is auto query and the user
9267 selects no, then simply return the error code. */
9268 if (pending_break_support == AUTO_BOOLEAN_AUTO
9269 && !nquery (_("Make %s pending on future shared library load? "),
9270 bptype_string (type_wanted)))
9271 return 0;
9272
9273 /* At this point, either the user was queried about setting
9274 a pending breakpoint and selected yes, or pending
9275 breakpoint behavior is on and thus a pending breakpoint
9276 is defaulted on behalf of the user. */
9277 pending = 1;
9278 }
9279 else
9280 throw;
9281 }
9282
9283 if (!pending && canonical.lsals.empty ())
9284 return 0;
9285
9286 /* Resolve all line numbers to PC's and verify that the addresses
9287 are ok for the target. */
9288 if (!pending)
9289 {
9290 for (auto &lsal : canonical.lsals)
9291 breakpoint_sals_to_pc (lsal.sals);
9292 }
9293
9294 /* Fast tracepoints may have additional restrictions on location. */
9295 if (!pending && type_wanted == bp_fast_tracepoint)
9296 {
9297 for (const auto &lsal : canonical.lsals)
9298 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9299 }
9300
9301 /* Verify that condition can be parsed, before setting any
9302 breakpoints. Allocate a separate condition expression for each
9303 breakpoint. */
9304 if (!pending)
9305 {
9306 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9307 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9308
9309 if (parse_extra)
9310 {
9311 char *rest;
9312 char *cond;
9313
9314 const linespec_sals &lsal = canonical.lsals[0];
9315
9316 /* Here we only parse 'arg' to separate condition
9317 from thread number, so parsing in context of first
9318 sal is OK. When setting the breakpoint we'll
9319 re-parse it in context of each sal. */
9320
9321 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9322 &cond, &thread, &task, &rest);
9323 cond_string_copy.reset (cond);
9324 extra_string_copy.reset (rest);
9325 }
9326 else
9327 {
9328 if (type_wanted != bp_dprintf
9329 && extra_string != NULL && *extra_string != '\0')
9330 error (_("Garbage '%s' at end of location"), extra_string);
9331
9332 /* Create a private copy of condition string. */
9333 if (cond_string)
9334 cond_string_copy.reset (xstrdup (cond_string));
9335 /* Create a private copy of any extra string. */
9336 if (extra_string)
9337 extra_string_copy.reset (xstrdup (extra_string));
9338 }
9339
9340 ops->create_breakpoints_sal (gdbarch, &canonical,
9341 std::move (cond_string_copy),
9342 std::move (extra_string_copy),
9343 type_wanted,
9344 tempflag ? disp_del : disp_donttouch,
9345 thread, task, ignore_count, ops,
9346 from_tty, enabled, internal, flags);
9347 }
9348 else
9349 {
9350 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9351
9352 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9353 b->location = copy_event_location (location);
9354
9355 if (parse_extra)
9356 b->cond_string = NULL;
9357 else
9358 {
9359 /* Create a private copy of condition string. */
9360 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9361 b->thread = thread;
9362 }
9363
9364 /* Create a private copy of any extra string. */
9365 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9366 b->ignore_count = ignore_count;
9367 b->disposition = tempflag ? disp_del : disp_donttouch;
9368 b->condition_not_parsed = 1;
9369 b->enable_state = enabled ? bp_enabled : bp_disabled;
9370 if ((type_wanted != bp_breakpoint
9371 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9372 b->pspace = current_program_space;
9373
9374 install_breakpoint (internal, std::move (b), 0);
9375 }
9376
9377 if (canonical.lsals.size () > 1)
9378 {
9379 warning (_("Multiple breakpoints were set.\nUse the "
9380 "\"delete\" command to delete unwanted breakpoints."));
9381 prev_breakpoint_count = prev_bkpt_count;
9382 }
9383
9384 update_global_location_list (UGLL_MAY_INSERT);
9385
9386 return 1;
9387 }
9388
9389 /* Set a breakpoint.
9390 ARG is a string describing breakpoint address,
9391 condition, and thread.
9392 FLAG specifies if a breakpoint is hardware on,
9393 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9394 and BP_TEMPFLAG. */
9395
9396 static void
9397 break_command_1 (const char *arg, int flag, int from_tty)
9398 {
9399 int tempflag = flag & BP_TEMPFLAG;
9400 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9401 ? bp_hardware_breakpoint
9402 : bp_breakpoint);
9403
9404 event_location_up location = string_to_event_location (&arg, current_language);
9405 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9406 (location.get (), false /* is_tracepoint */);
9407
9408 create_breakpoint (get_current_arch (),
9409 location.get (),
9410 NULL, 0, arg, 1 /* parse arg */,
9411 tempflag, type_wanted,
9412 0 /* Ignore count */,
9413 pending_break_support,
9414 ops,
9415 from_tty,
9416 1 /* enabled */,
9417 0 /* internal */,
9418 0);
9419 }
9420
9421 /* Helper function for break_command_1 and disassemble_command. */
9422
9423 void
9424 resolve_sal_pc (struct symtab_and_line *sal)
9425 {
9426 CORE_ADDR pc;
9427
9428 if (sal->pc == 0 && sal->symtab != NULL)
9429 {
9430 if (!find_line_pc (sal->symtab, sal->line, &pc))
9431 error (_("No line %d in file \"%s\"."),
9432 sal->line, symtab_to_filename_for_display (sal->symtab));
9433 sal->pc = pc;
9434
9435 /* If this SAL corresponds to a breakpoint inserted using a line
9436 number, then skip the function prologue if necessary. */
9437 if (sal->explicit_line)
9438 skip_prologue_sal (sal);
9439 }
9440
9441 if (sal->section == 0 && sal->symtab != NULL)
9442 {
9443 const struct blockvector *bv;
9444 const struct block *b;
9445 struct symbol *sym;
9446
9447 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9448 SYMTAB_COMPUNIT (sal->symtab));
9449 if (bv != NULL)
9450 {
9451 sym = block_linkage_function (b);
9452 if (sym != NULL)
9453 {
9454 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9455 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9456 sym);
9457 }
9458 else
9459 {
9460 /* It really is worthwhile to have the section, so we'll
9461 just have to look harder. This case can be executed
9462 if we have line numbers but no functions (as can
9463 happen in assembly source). */
9464
9465 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9466 switch_to_program_space_and_thread (sal->pspace);
9467
9468 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9469 if (msym.minsym)
9470 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9471 }
9472 }
9473 }
9474 }
9475
9476 void
9477 break_command (const char *arg, int from_tty)
9478 {
9479 break_command_1 (arg, 0, from_tty);
9480 }
9481
9482 void
9483 tbreak_command (const char *arg, int from_tty)
9484 {
9485 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9486 }
9487
9488 static void
9489 hbreak_command (const char *arg, int from_tty)
9490 {
9491 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9492 }
9493
9494 static void
9495 thbreak_command (const char *arg, int from_tty)
9496 {
9497 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9498 }
9499
9500 static void
9501 stop_command (const char *arg, int from_tty)
9502 {
9503 printf_filtered (_("Specify the type of breakpoint to set.\n\
9504 Usage: stop in <function | address>\n\
9505 stop at <line>\n"));
9506 }
9507
9508 static void
9509 stopin_command (const char *arg, int from_tty)
9510 {
9511 int badInput = 0;
9512
9513 if (arg == NULL)
9514 badInput = 1;
9515 else if (*arg != '*')
9516 {
9517 const char *argptr = arg;
9518 int hasColon = 0;
9519
9520 /* Look for a ':'. If this is a line number specification, then
9521 say it is bad, otherwise, it should be an address or
9522 function/method name. */
9523 while (*argptr && !hasColon)
9524 {
9525 hasColon = (*argptr == ':');
9526 argptr++;
9527 }
9528
9529 if (hasColon)
9530 badInput = (*argptr != ':'); /* Not a class::method */
9531 else
9532 badInput = isdigit (*arg); /* a simple line number */
9533 }
9534
9535 if (badInput)
9536 printf_filtered (_("Usage: stop in <function | address>\n"));
9537 else
9538 break_command_1 (arg, 0, from_tty);
9539 }
9540
9541 static void
9542 stopat_command (const char *arg, int from_tty)
9543 {
9544 int badInput = 0;
9545
9546 if (arg == NULL || *arg == '*') /* no line number */
9547 badInput = 1;
9548 else
9549 {
9550 const char *argptr = arg;
9551 int hasColon = 0;
9552
9553 /* Look for a ':'. If there is a '::' then get out, otherwise
9554 it is probably a line number. */
9555 while (*argptr && !hasColon)
9556 {
9557 hasColon = (*argptr == ':');
9558 argptr++;
9559 }
9560
9561 if (hasColon)
9562 badInput = (*argptr == ':'); /* we have class::method */
9563 else
9564 badInput = !isdigit (*arg); /* not a line number */
9565 }
9566
9567 if (badInput)
9568 printf_filtered (_("Usage: stop at LINE\n"));
9569 else
9570 break_command_1 (arg, 0, from_tty);
9571 }
9572
9573 /* The dynamic printf command is mostly like a regular breakpoint, but
9574 with a prewired command list consisting of a single output command,
9575 built from extra arguments supplied on the dprintf command
9576 line. */
9577
9578 static void
9579 dprintf_command (const char *arg, int from_tty)
9580 {
9581 event_location_up location = string_to_event_location (&arg, current_language);
9582
9583 /* If non-NULL, ARG should have been advanced past the location;
9584 the next character must be ','. */
9585 if (arg != NULL)
9586 {
9587 if (arg[0] != ',' || arg[1] == '\0')
9588 error (_("Format string required"));
9589 else
9590 {
9591 /* Skip the comma. */
9592 ++arg;
9593 }
9594 }
9595
9596 create_breakpoint (get_current_arch (),
9597 location.get (),
9598 NULL, 0, arg, 1 /* parse arg */,
9599 0, bp_dprintf,
9600 0 /* Ignore count */,
9601 pending_break_support,
9602 &dprintf_breakpoint_ops,
9603 from_tty,
9604 1 /* enabled */,
9605 0 /* internal */,
9606 0);
9607 }
9608
9609 static void
9610 agent_printf_command (const char *arg, int from_tty)
9611 {
9612 error (_("May only run agent-printf on the target"));
9613 }
9614
9615 /* Implement the "breakpoint_hit" breakpoint_ops method for
9616 ranged breakpoints. */
9617
9618 static int
9619 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9620 const address_space *aspace,
9621 CORE_ADDR bp_addr,
9622 const struct target_waitstatus *ws)
9623 {
9624 if (ws->kind != TARGET_WAITKIND_STOPPED
9625 || ws->value.sig != GDB_SIGNAL_TRAP)
9626 return 0;
9627
9628 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9629 bl->length, aspace, bp_addr);
9630 }
9631
9632 /* Implement the "resources_needed" breakpoint_ops method for
9633 ranged breakpoints. */
9634
9635 static int
9636 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9637 {
9638 return target_ranged_break_num_registers ();
9639 }
9640
9641 /* Implement the "print_it" breakpoint_ops method for
9642 ranged breakpoints. */
9643
9644 static enum print_stop_action
9645 print_it_ranged_breakpoint (bpstat bs)
9646 {
9647 struct breakpoint *b = bs->breakpoint_at;
9648 struct bp_location *bl = b->loc;
9649 struct ui_out *uiout = current_uiout;
9650
9651 gdb_assert (b->type == bp_hardware_breakpoint);
9652
9653 /* Ranged breakpoints have only one location. */
9654 gdb_assert (bl && bl->next == NULL);
9655
9656 annotate_breakpoint (b->number);
9657
9658 maybe_print_thread_hit_breakpoint (uiout);
9659
9660 if (b->disposition == disp_del)
9661 uiout->text ("Temporary ranged breakpoint ");
9662 else
9663 uiout->text ("Ranged breakpoint ");
9664 if (uiout->is_mi_like_p ())
9665 {
9666 uiout->field_string ("reason",
9667 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9668 uiout->field_string ("disp", bpdisp_text (b->disposition));
9669 }
9670 uiout->field_signed ("bkptno", b->number);
9671 uiout->text (", ");
9672
9673 return PRINT_SRC_AND_LOC;
9674 }
9675
9676 /* Implement the "print_one" breakpoint_ops method for
9677 ranged breakpoints. */
9678
9679 static void
9680 print_one_ranged_breakpoint (struct breakpoint *b,
9681 struct bp_location **last_loc)
9682 {
9683 struct bp_location *bl = b->loc;
9684 struct value_print_options opts;
9685 struct ui_out *uiout = current_uiout;
9686
9687 /* Ranged breakpoints have only one location. */
9688 gdb_assert (bl && bl->next == NULL);
9689
9690 get_user_print_options (&opts);
9691
9692 if (opts.addressprint)
9693 /* We don't print the address range here, it will be printed later
9694 by print_one_detail_ranged_breakpoint. */
9695 uiout->field_skip ("addr");
9696 annotate_field (5);
9697 print_breakpoint_location (b, bl);
9698 *last_loc = bl;
9699 }
9700
9701 /* Implement the "print_one_detail" breakpoint_ops method for
9702 ranged breakpoints. */
9703
9704 static void
9705 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9706 struct ui_out *uiout)
9707 {
9708 CORE_ADDR address_start, address_end;
9709 struct bp_location *bl = b->loc;
9710 string_file stb;
9711
9712 gdb_assert (bl);
9713
9714 address_start = bl->address;
9715 address_end = address_start + bl->length - 1;
9716
9717 uiout->text ("\taddress range: ");
9718 stb.printf ("[%s, %s]",
9719 print_core_address (bl->gdbarch, address_start),
9720 print_core_address (bl->gdbarch, address_end));
9721 uiout->field_stream ("addr", stb);
9722 uiout->text ("\n");
9723 }
9724
9725 /* Implement the "print_mention" breakpoint_ops method for
9726 ranged breakpoints. */
9727
9728 static void
9729 print_mention_ranged_breakpoint (struct breakpoint *b)
9730 {
9731 struct bp_location *bl = b->loc;
9732 struct ui_out *uiout = current_uiout;
9733
9734 gdb_assert (bl);
9735 gdb_assert (b->type == bp_hardware_breakpoint);
9736
9737 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9738 b->number, paddress (bl->gdbarch, bl->address),
9739 paddress (bl->gdbarch, bl->address + bl->length - 1));
9740 }
9741
9742 /* Implement the "print_recreate" breakpoint_ops method for
9743 ranged breakpoints. */
9744
9745 static void
9746 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9747 {
9748 fprintf_unfiltered (fp, "break-range %s, %s",
9749 event_location_to_string (b->location.get ()),
9750 event_location_to_string (b->location_range_end.get ()));
9751 print_recreate_thread (b, fp);
9752 }
9753
9754 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9755
9756 static struct breakpoint_ops ranged_breakpoint_ops;
9757
9758 /* Find the address where the end of the breakpoint range should be
9759 placed, given the SAL of the end of the range. This is so that if
9760 the user provides a line number, the end of the range is set to the
9761 last instruction of the given line. */
9762
9763 static CORE_ADDR
9764 find_breakpoint_range_end (struct symtab_and_line sal)
9765 {
9766 CORE_ADDR end;
9767
9768 /* If the user provided a PC value, use it. Otherwise,
9769 find the address of the end of the given location. */
9770 if (sal.explicit_pc)
9771 end = sal.pc;
9772 else
9773 {
9774 int ret;
9775 CORE_ADDR start;
9776
9777 ret = find_line_pc_range (sal, &start, &end);
9778 if (!ret)
9779 error (_("Could not find location of the end of the range."));
9780
9781 /* find_line_pc_range returns the start of the next line. */
9782 end--;
9783 }
9784
9785 return end;
9786 }
9787
9788 /* Implement the "break-range" CLI command. */
9789
9790 static void
9791 break_range_command (const char *arg, int from_tty)
9792 {
9793 const char *arg_start;
9794 struct linespec_result canonical_start, canonical_end;
9795 int bp_count, can_use_bp, length;
9796 CORE_ADDR end;
9797 struct breakpoint *b;
9798
9799 /* We don't support software ranged breakpoints. */
9800 if (target_ranged_break_num_registers () < 0)
9801 error (_("This target does not support hardware ranged breakpoints."));
9802
9803 bp_count = hw_breakpoint_used_count ();
9804 bp_count += target_ranged_break_num_registers ();
9805 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9806 bp_count, 0);
9807 if (can_use_bp < 0)
9808 error (_("Hardware breakpoints used exceeds limit."));
9809
9810 arg = skip_spaces (arg);
9811 if (arg == NULL || arg[0] == '\0')
9812 error(_("No address range specified."));
9813
9814 arg_start = arg;
9815 event_location_up start_location = string_to_event_location (&arg,
9816 current_language);
9817 parse_breakpoint_sals (start_location.get (), &canonical_start);
9818
9819 if (arg[0] != ',')
9820 error (_("Too few arguments."));
9821 else if (canonical_start.lsals.empty ())
9822 error (_("Could not find location of the beginning of the range."));
9823
9824 const linespec_sals &lsal_start = canonical_start.lsals[0];
9825
9826 if (canonical_start.lsals.size () > 1
9827 || lsal_start.sals.size () != 1)
9828 error (_("Cannot create a ranged breakpoint with multiple locations."));
9829
9830 const symtab_and_line &sal_start = lsal_start.sals[0];
9831 std::string addr_string_start (arg_start, arg - arg_start);
9832
9833 arg++; /* Skip the comma. */
9834 arg = skip_spaces (arg);
9835
9836 /* Parse the end location. */
9837
9838 arg_start = arg;
9839
9840 /* We call decode_line_full directly here instead of using
9841 parse_breakpoint_sals because we need to specify the start location's
9842 symtab and line as the default symtab and line for the end of the
9843 range. This makes it possible to have ranges like "foo.c:27, +14",
9844 where +14 means 14 lines from the start location. */
9845 event_location_up end_location = string_to_event_location (&arg,
9846 current_language);
9847 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9848 sal_start.symtab, sal_start.line,
9849 &canonical_end, NULL, NULL);
9850
9851 if (canonical_end.lsals.empty ())
9852 error (_("Could not find location of the end of the range."));
9853
9854 const linespec_sals &lsal_end = canonical_end.lsals[0];
9855 if (canonical_end.lsals.size () > 1
9856 || lsal_end.sals.size () != 1)
9857 error (_("Cannot create a ranged breakpoint with multiple locations."));
9858
9859 const symtab_and_line &sal_end = lsal_end.sals[0];
9860
9861 end = find_breakpoint_range_end (sal_end);
9862 if (sal_start.pc > end)
9863 error (_("Invalid address range, end precedes start."));
9864
9865 length = end - sal_start.pc + 1;
9866 if (length < 0)
9867 /* Length overflowed. */
9868 error (_("Address range too large."));
9869 else if (length == 1)
9870 {
9871 /* This range is simple enough to be handled by
9872 the `hbreak' command. */
9873 hbreak_command (&addr_string_start[0], 1);
9874
9875 return;
9876 }
9877
9878 /* Now set up the breakpoint. */
9879 b = set_raw_breakpoint (get_current_arch (), sal_start,
9880 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9881 set_breakpoint_count (breakpoint_count + 1);
9882 b->number = breakpoint_count;
9883 b->disposition = disp_donttouch;
9884 b->location = std::move (start_location);
9885 b->location_range_end = std::move (end_location);
9886 b->loc->length = length;
9887
9888 mention (b);
9889 gdb::observers::breakpoint_created.notify (b);
9890 update_global_location_list (UGLL_MAY_INSERT);
9891 }
9892
9893 /* Return non-zero if EXP is verified as constant. Returned zero
9894 means EXP is variable. Also the constant detection may fail for
9895 some constant expressions and in such case still falsely return
9896 zero. */
9897
9898 static int
9899 watchpoint_exp_is_const (const struct expression *exp)
9900 {
9901 int i = exp->nelts;
9902
9903 while (i > 0)
9904 {
9905 int oplenp, argsp;
9906
9907 /* We are only interested in the descriptor of each element. */
9908 operator_length (exp, i, &oplenp, &argsp);
9909 i -= oplenp;
9910
9911 switch (exp->elts[i].opcode)
9912 {
9913 case BINOP_ADD:
9914 case BINOP_SUB:
9915 case BINOP_MUL:
9916 case BINOP_DIV:
9917 case BINOP_REM:
9918 case BINOP_MOD:
9919 case BINOP_LSH:
9920 case BINOP_RSH:
9921 case BINOP_LOGICAL_AND:
9922 case BINOP_LOGICAL_OR:
9923 case BINOP_BITWISE_AND:
9924 case BINOP_BITWISE_IOR:
9925 case BINOP_BITWISE_XOR:
9926 case BINOP_EQUAL:
9927 case BINOP_NOTEQUAL:
9928 case BINOP_LESS:
9929 case BINOP_GTR:
9930 case BINOP_LEQ:
9931 case BINOP_GEQ:
9932 case BINOP_REPEAT:
9933 case BINOP_COMMA:
9934 case BINOP_EXP:
9935 case BINOP_MIN:
9936 case BINOP_MAX:
9937 case BINOP_INTDIV:
9938 case BINOP_CONCAT:
9939 case TERNOP_COND:
9940 case TERNOP_SLICE:
9941
9942 case OP_LONG:
9943 case OP_FLOAT:
9944 case OP_LAST:
9945 case OP_COMPLEX:
9946 case OP_STRING:
9947 case OP_ARRAY:
9948 case OP_TYPE:
9949 case OP_TYPEOF:
9950 case OP_DECLTYPE:
9951 case OP_TYPEID:
9952 case OP_NAME:
9953 case OP_OBJC_NSSTRING:
9954
9955 case UNOP_NEG:
9956 case UNOP_LOGICAL_NOT:
9957 case UNOP_COMPLEMENT:
9958 case UNOP_ADDR:
9959 case UNOP_HIGH:
9960 case UNOP_CAST:
9961
9962 case UNOP_CAST_TYPE:
9963 case UNOP_REINTERPRET_CAST:
9964 case UNOP_DYNAMIC_CAST:
9965 /* Unary, binary and ternary operators: We have to check
9966 their operands. If they are constant, then so is the
9967 result of that operation. For instance, if A and B are
9968 determined to be constants, then so is "A + B".
9969
9970 UNOP_IND is one exception to the rule above, because the
9971 value of *ADDR is not necessarily a constant, even when
9972 ADDR is. */
9973 break;
9974
9975 case OP_VAR_VALUE:
9976 /* Check whether the associated symbol is a constant.
9977
9978 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9979 possible that a buggy compiler could mark a variable as
9980 constant even when it is not, and TYPE_CONST would return
9981 true in this case, while SYMBOL_CLASS wouldn't.
9982
9983 We also have to check for function symbols because they
9984 are always constant. */
9985 {
9986 struct symbol *s = exp->elts[i + 2].symbol;
9987
9988 if (SYMBOL_CLASS (s) != LOC_BLOCK
9989 && SYMBOL_CLASS (s) != LOC_CONST
9990 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9991 return 0;
9992 break;
9993 }
9994
9995 /* The default action is to return 0 because we are using
9996 the optimistic approach here: If we don't know something,
9997 then it is not a constant. */
9998 default:
9999 return 0;
10000 }
10001 }
10002
10003 return 1;
10004 }
10005
10006 /* Watchpoint destructor. */
10007
10008 watchpoint::~watchpoint ()
10009 {
10010 xfree (this->exp_string);
10011 xfree (this->exp_string_reparse);
10012 }
10013
10014 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10015
10016 static void
10017 re_set_watchpoint (struct breakpoint *b)
10018 {
10019 struct watchpoint *w = (struct watchpoint *) b;
10020
10021 /* Watchpoint can be either on expression using entirely global
10022 variables, or it can be on local variables.
10023
10024 Watchpoints of the first kind are never auto-deleted, and even
10025 persist across program restarts. Since they can use variables
10026 from shared libraries, we need to reparse expression as libraries
10027 are loaded and unloaded.
10028
10029 Watchpoints on local variables can also change meaning as result
10030 of solib event. For example, if a watchpoint uses both a local
10031 and a global variables in expression, it's a local watchpoint,
10032 but unloading of a shared library will make the expression
10033 invalid. This is not a very common use case, but we still
10034 re-evaluate expression, to avoid surprises to the user.
10035
10036 Note that for local watchpoints, we re-evaluate it only if
10037 watchpoints frame id is still valid. If it's not, it means the
10038 watchpoint is out of scope and will be deleted soon. In fact,
10039 I'm not sure we'll ever be called in this case.
10040
10041 If a local watchpoint's frame id is still valid, then
10042 w->exp_valid_block is likewise valid, and we can safely use it.
10043
10044 Don't do anything about disabled watchpoints, since they will be
10045 reevaluated again when enabled. */
10046 update_watchpoint (w, 1 /* reparse */);
10047 }
10048
10049 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10050
10051 static int
10052 insert_watchpoint (struct bp_location *bl)
10053 {
10054 struct watchpoint *w = (struct watchpoint *) bl->owner;
10055 int length = w->exact ? 1 : bl->length;
10056
10057 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10058 w->cond_exp.get ());
10059 }
10060
10061 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10062
10063 static int
10064 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10065 {
10066 struct watchpoint *w = (struct watchpoint *) bl->owner;
10067 int length = w->exact ? 1 : bl->length;
10068
10069 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10070 w->cond_exp.get ());
10071 }
10072
10073 static int
10074 breakpoint_hit_watchpoint (const struct bp_location *bl,
10075 const address_space *aspace, CORE_ADDR bp_addr,
10076 const struct target_waitstatus *ws)
10077 {
10078 struct breakpoint *b = bl->owner;
10079 struct watchpoint *w = (struct watchpoint *) b;
10080
10081 /* Continuable hardware watchpoints are treated as non-existent if the
10082 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10083 some data address). Otherwise gdb won't stop on a break instruction
10084 in the code (not from a breakpoint) when a hardware watchpoint has
10085 been defined. Also skip watchpoints which we know did not trigger
10086 (did not match the data address). */
10087 if (is_hardware_watchpoint (b)
10088 && w->watchpoint_triggered == watch_triggered_no)
10089 return 0;
10090
10091 return 1;
10092 }
10093
10094 static void
10095 check_status_watchpoint (bpstat bs)
10096 {
10097 gdb_assert (is_watchpoint (bs->breakpoint_at));
10098
10099 bpstat_check_watchpoint (bs);
10100 }
10101
10102 /* Implement the "resources_needed" breakpoint_ops method for
10103 hardware watchpoints. */
10104
10105 static int
10106 resources_needed_watchpoint (const struct bp_location *bl)
10107 {
10108 struct watchpoint *w = (struct watchpoint *) bl->owner;
10109 int length = w->exact? 1 : bl->length;
10110
10111 return target_region_ok_for_hw_watchpoint (bl->address, length);
10112 }
10113
10114 /* Implement the "works_in_software_mode" breakpoint_ops method for
10115 hardware watchpoints. */
10116
10117 static int
10118 works_in_software_mode_watchpoint (const struct breakpoint *b)
10119 {
10120 /* Read and access watchpoints only work with hardware support. */
10121 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10122 }
10123
10124 static enum print_stop_action
10125 print_it_watchpoint (bpstat bs)
10126 {
10127 struct breakpoint *b;
10128 enum print_stop_action result;
10129 struct watchpoint *w;
10130 struct ui_out *uiout = current_uiout;
10131
10132 gdb_assert (bs->bp_location_at != NULL);
10133
10134 b = bs->breakpoint_at;
10135 w = (struct watchpoint *) b;
10136
10137 annotate_watchpoint (b->number);
10138 maybe_print_thread_hit_breakpoint (uiout);
10139
10140 string_file stb;
10141
10142 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10143 switch (b->type)
10144 {
10145 case bp_watchpoint:
10146 case bp_hardware_watchpoint:
10147 if (uiout->is_mi_like_p ())
10148 uiout->field_string
10149 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10150 mention (b);
10151 tuple_emitter.emplace (uiout, "value");
10152 uiout->text ("\nOld value = ");
10153 watchpoint_value_print (bs->old_val.get (), &stb);
10154 uiout->field_stream ("old", stb);
10155 uiout->text ("\nNew value = ");
10156 watchpoint_value_print (w->val.get (), &stb);
10157 uiout->field_stream ("new", stb);
10158 uiout->text ("\n");
10159 /* More than one watchpoint may have been triggered. */
10160 result = PRINT_UNKNOWN;
10161 break;
10162
10163 case bp_read_watchpoint:
10164 if (uiout->is_mi_like_p ())
10165 uiout->field_string
10166 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10167 mention (b);
10168 tuple_emitter.emplace (uiout, "value");
10169 uiout->text ("\nValue = ");
10170 watchpoint_value_print (w->val.get (), &stb);
10171 uiout->field_stream ("value", stb);
10172 uiout->text ("\n");
10173 result = PRINT_UNKNOWN;
10174 break;
10175
10176 case bp_access_watchpoint:
10177 if (bs->old_val != NULL)
10178 {
10179 if (uiout->is_mi_like_p ())
10180 uiout->field_string
10181 ("reason",
10182 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10183 mention (b);
10184 tuple_emitter.emplace (uiout, "value");
10185 uiout->text ("\nOld value = ");
10186 watchpoint_value_print (bs->old_val.get (), &stb);
10187 uiout->field_stream ("old", stb);
10188 uiout->text ("\nNew value = ");
10189 }
10190 else
10191 {
10192 mention (b);
10193 if (uiout->is_mi_like_p ())
10194 uiout->field_string
10195 ("reason",
10196 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10197 tuple_emitter.emplace (uiout, "value");
10198 uiout->text ("\nValue = ");
10199 }
10200 watchpoint_value_print (w->val.get (), &stb);
10201 uiout->field_stream ("new", stb);
10202 uiout->text ("\n");
10203 result = PRINT_UNKNOWN;
10204 break;
10205 default:
10206 result = PRINT_UNKNOWN;
10207 }
10208
10209 return result;
10210 }
10211
10212 /* Implement the "print_mention" breakpoint_ops method for hardware
10213 watchpoints. */
10214
10215 static void
10216 print_mention_watchpoint (struct breakpoint *b)
10217 {
10218 struct watchpoint *w = (struct watchpoint *) b;
10219 struct ui_out *uiout = current_uiout;
10220 const char *tuple_name;
10221
10222 switch (b->type)
10223 {
10224 case bp_watchpoint:
10225 uiout->text ("Watchpoint ");
10226 tuple_name = "wpt";
10227 break;
10228 case bp_hardware_watchpoint:
10229 uiout->text ("Hardware watchpoint ");
10230 tuple_name = "wpt";
10231 break;
10232 case bp_read_watchpoint:
10233 uiout->text ("Hardware read watchpoint ");
10234 tuple_name = "hw-rwpt";
10235 break;
10236 case bp_access_watchpoint:
10237 uiout->text ("Hardware access (read/write) watchpoint ");
10238 tuple_name = "hw-awpt";
10239 break;
10240 default:
10241 internal_error (__FILE__, __LINE__,
10242 _("Invalid hardware watchpoint type."));
10243 }
10244
10245 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10246 uiout->field_signed ("number", b->number);
10247 uiout->text (": ");
10248 uiout->field_string ("exp", w->exp_string);
10249 }
10250
10251 /* Implement the "print_recreate" breakpoint_ops method for
10252 watchpoints. */
10253
10254 static void
10255 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10256 {
10257 struct watchpoint *w = (struct watchpoint *) b;
10258
10259 switch (b->type)
10260 {
10261 case bp_watchpoint:
10262 case bp_hardware_watchpoint:
10263 fprintf_unfiltered (fp, "watch");
10264 break;
10265 case bp_read_watchpoint:
10266 fprintf_unfiltered (fp, "rwatch");
10267 break;
10268 case bp_access_watchpoint:
10269 fprintf_unfiltered (fp, "awatch");
10270 break;
10271 default:
10272 internal_error (__FILE__, __LINE__,
10273 _("Invalid watchpoint type."));
10274 }
10275
10276 fprintf_unfiltered (fp, " %s", w->exp_string);
10277 print_recreate_thread (b, fp);
10278 }
10279
10280 /* Implement the "explains_signal" breakpoint_ops method for
10281 watchpoints. */
10282
10283 static int
10284 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10285 {
10286 /* A software watchpoint cannot cause a signal other than
10287 GDB_SIGNAL_TRAP. */
10288 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10289 return 0;
10290
10291 return 1;
10292 }
10293
10294 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10295
10296 static struct breakpoint_ops watchpoint_breakpoint_ops;
10297
10298 /* Implement the "insert" breakpoint_ops method for
10299 masked hardware watchpoints. */
10300
10301 static int
10302 insert_masked_watchpoint (struct bp_location *bl)
10303 {
10304 struct watchpoint *w = (struct watchpoint *) bl->owner;
10305
10306 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10307 bl->watchpoint_type);
10308 }
10309
10310 /* Implement the "remove" breakpoint_ops method for
10311 masked hardware watchpoints. */
10312
10313 static int
10314 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10315 {
10316 struct watchpoint *w = (struct watchpoint *) bl->owner;
10317
10318 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10319 bl->watchpoint_type);
10320 }
10321
10322 /* Implement the "resources_needed" breakpoint_ops method for
10323 masked hardware watchpoints. */
10324
10325 static int
10326 resources_needed_masked_watchpoint (const struct bp_location *bl)
10327 {
10328 struct watchpoint *w = (struct watchpoint *) bl->owner;
10329
10330 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10331 }
10332
10333 /* Implement the "works_in_software_mode" breakpoint_ops method for
10334 masked hardware watchpoints. */
10335
10336 static int
10337 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10338 {
10339 return 0;
10340 }
10341
10342 /* Implement the "print_it" breakpoint_ops method for
10343 masked hardware watchpoints. */
10344
10345 static enum print_stop_action
10346 print_it_masked_watchpoint (bpstat bs)
10347 {
10348 struct breakpoint *b = bs->breakpoint_at;
10349 struct ui_out *uiout = current_uiout;
10350
10351 /* Masked watchpoints have only one location. */
10352 gdb_assert (b->loc && b->loc->next == NULL);
10353
10354 annotate_watchpoint (b->number);
10355 maybe_print_thread_hit_breakpoint (uiout);
10356
10357 switch (b->type)
10358 {
10359 case bp_hardware_watchpoint:
10360 if (uiout->is_mi_like_p ())
10361 uiout->field_string
10362 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10363 break;
10364
10365 case bp_read_watchpoint:
10366 if (uiout->is_mi_like_p ())
10367 uiout->field_string
10368 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10369 break;
10370
10371 case bp_access_watchpoint:
10372 if (uiout->is_mi_like_p ())
10373 uiout->field_string
10374 ("reason",
10375 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10376 break;
10377 default:
10378 internal_error (__FILE__, __LINE__,
10379 _("Invalid hardware watchpoint type."));
10380 }
10381
10382 mention (b);
10383 uiout->text (_("\n\
10384 Check the underlying instruction at PC for the memory\n\
10385 address and value which triggered this watchpoint.\n"));
10386 uiout->text ("\n");
10387
10388 /* More than one watchpoint may have been triggered. */
10389 return PRINT_UNKNOWN;
10390 }
10391
10392 /* Implement the "print_one_detail" breakpoint_ops method for
10393 masked hardware watchpoints. */
10394
10395 static void
10396 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10397 struct ui_out *uiout)
10398 {
10399 struct watchpoint *w = (struct watchpoint *) b;
10400
10401 /* Masked watchpoints have only one location. */
10402 gdb_assert (b->loc && b->loc->next == NULL);
10403
10404 uiout->text ("\tmask ");
10405 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10406 uiout->text ("\n");
10407 }
10408
10409 /* Implement the "print_mention" breakpoint_ops method for
10410 masked hardware watchpoints. */
10411
10412 static void
10413 print_mention_masked_watchpoint (struct breakpoint *b)
10414 {
10415 struct watchpoint *w = (struct watchpoint *) b;
10416 struct ui_out *uiout = current_uiout;
10417 const char *tuple_name;
10418
10419 switch (b->type)
10420 {
10421 case bp_hardware_watchpoint:
10422 uiout->text ("Masked hardware watchpoint ");
10423 tuple_name = "wpt";
10424 break;
10425 case bp_read_watchpoint:
10426 uiout->text ("Masked hardware read watchpoint ");
10427 tuple_name = "hw-rwpt";
10428 break;
10429 case bp_access_watchpoint:
10430 uiout->text ("Masked hardware access (read/write) watchpoint ");
10431 tuple_name = "hw-awpt";
10432 break;
10433 default:
10434 internal_error (__FILE__, __LINE__,
10435 _("Invalid hardware watchpoint type."));
10436 }
10437
10438 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10439 uiout->field_signed ("number", b->number);
10440 uiout->text (": ");
10441 uiout->field_string ("exp", w->exp_string);
10442 }
10443
10444 /* Implement the "print_recreate" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static void
10448 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) b;
10451
10452 switch (b->type)
10453 {
10454 case bp_hardware_watchpoint:
10455 fprintf_unfiltered (fp, "watch");
10456 break;
10457 case bp_read_watchpoint:
10458 fprintf_unfiltered (fp, "rwatch");
10459 break;
10460 case bp_access_watchpoint:
10461 fprintf_unfiltered (fp, "awatch");
10462 break;
10463 default:
10464 internal_error (__FILE__, __LINE__,
10465 _("Invalid hardware watchpoint type."));
10466 }
10467
10468 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10469 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10470 print_recreate_thread (b, fp);
10471 }
10472
10473 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10474
10475 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10476
10477 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10478
10479 static bool
10480 is_masked_watchpoint (const struct breakpoint *b)
10481 {
10482 return b->ops == &masked_watchpoint_breakpoint_ops;
10483 }
10484
10485 /* accessflag: hw_write: watch write,
10486 hw_read: watch read,
10487 hw_access: watch access (read or write) */
10488 static void
10489 watch_command_1 (const char *arg, int accessflag, int from_tty,
10490 int just_location, int internal)
10491 {
10492 struct breakpoint *scope_breakpoint = NULL;
10493 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10494 struct value *result;
10495 int saved_bitpos = 0, saved_bitsize = 0;
10496 const char *exp_start = NULL;
10497 const char *exp_end = NULL;
10498 const char *tok, *end_tok;
10499 int toklen = -1;
10500 const char *cond_start = NULL;
10501 const char *cond_end = NULL;
10502 enum bptype bp_type;
10503 int thread = -1;
10504 int pc = 0;
10505 /* Flag to indicate whether we are going to use masks for
10506 the hardware watchpoint. */
10507 int use_mask = 0;
10508 CORE_ADDR mask = 0;
10509
10510 /* Make sure that we actually have parameters to parse. */
10511 if (arg != NULL && arg[0] != '\0')
10512 {
10513 const char *value_start;
10514
10515 exp_end = arg + strlen (arg);
10516
10517 /* Look for "parameter value" pairs at the end
10518 of the arguments string. */
10519 for (tok = exp_end - 1; tok > arg; tok--)
10520 {
10521 /* Skip whitespace at the end of the argument list. */
10522 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10523 tok--;
10524
10525 /* Find the beginning of the last token.
10526 This is the value of the parameter. */
10527 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10528 tok--;
10529 value_start = tok + 1;
10530
10531 /* Skip whitespace. */
10532 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10533 tok--;
10534
10535 end_tok = tok;
10536
10537 /* Find the beginning of the second to last token.
10538 This is the parameter itself. */
10539 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10540 tok--;
10541 tok++;
10542 toklen = end_tok - tok + 1;
10543
10544 if (toklen == 6 && startswith (tok, "thread"))
10545 {
10546 struct thread_info *thr;
10547 /* At this point we've found a "thread" token, which means
10548 the user is trying to set a watchpoint that triggers
10549 only in a specific thread. */
10550 const char *endp;
10551
10552 if (thread != -1)
10553 error(_("You can specify only one thread."));
10554
10555 /* Extract the thread ID from the next token. */
10556 thr = parse_thread_id (value_start, &endp);
10557
10558 /* Check if the user provided a valid thread ID. */
10559 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10560 invalid_thread_id_error (value_start);
10561
10562 thread = thr->global_num;
10563 }
10564 else if (toklen == 4 && startswith (tok, "mask"))
10565 {
10566 /* We've found a "mask" token, which means the user wants to
10567 create a hardware watchpoint that is going to have the mask
10568 facility. */
10569 struct value *mask_value, *mark;
10570
10571 if (use_mask)
10572 error(_("You can specify only one mask."));
10573
10574 use_mask = just_location = 1;
10575
10576 mark = value_mark ();
10577 mask_value = parse_to_comma_and_eval (&value_start);
10578 mask = value_as_address (mask_value);
10579 value_free_to_mark (mark);
10580 }
10581 else
10582 /* We didn't recognize what we found. We should stop here. */
10583 break;
10584
10585 /* Truncate the string and get rid of the "parameter value" pair before
10586 the arguments string is parsed by the parse_exp_1 function. */
10587 exp_end = tok;
10588 }
10589 }
10590 else
10591 exp_end = arg;
10592
10593 /* Parse the rest of the arguments. From here on out, everything
10594 is in terms of a newly allocated string instead of the original
10595 ARG. */
10596 std::string expression (arg, exp_end - arg);
10597 exp_start = arg = expression.c_str ();
10598 innermost_block_tracker tracker;
10599 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10600 exp_end = arg;
10601 /* Remove trailing whitespace from the expression before saving it.
10602 This makes the eventual display of the expression string a bit
10603 prettier. */
10604 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10605 --exp_end;
10606
10607 /* Checking if the expression is not constant. */
10608 if (watchpoint_exp_is_const (exp.get ()))
10609 {
10610 int len;
10611
10612 len = exp_end - exp_start;
10613 while (len > 0 && isspace (exp_start[len - 1]))
10614 len--;
10615 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10616 }
10617
10618 exp_valid_block = tracker.block ();
10619 struct value *mark = value_mark ();
10620 struct value *val_as_value = nullptr;
10621 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10622 just_location);
10623
10624 if (val_as_value != NULL && just_location)
10625 {
10626 saved_bitpos = value_bitpos (val_as_value);
10627 saved_bitsize = value_bitsize (val_as_value);
10628 }
10629
10630 value_ref_ptr val;
10631 if (just_location)
10632 {
10633 int ret;
10634
10635 exp_valid_block = NULL;
10636 val = release_value (value_addr (result));
10637 value_free_to_mark (mark);
10638
10639 if (use_mask)
10640 {
10641 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10642 mask);
10643 if (ret == -1)
10644 error (_("This target does not support masked watchpoints."));
10645 else if (ret == -2)
10646 error (_("Invalid mask or memory region."));
10647 }
10648 }
10649 else if (val_as_value != NULL)
10650 val = release_value (val_as_value);
10651
10652 tok = skip_spaces (arg);
10653 end_tok = skip_to_space (tok);
10654
10655 toklen = end_tok - tok;
10656 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10657 {
10658 tok = cond_start = end_tok + 1;
10659 innermost_block_tracker if_tracker;
10660 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10661
10662 /* The watchpoint expression may not be local, but the condition
10663 may still be. E.g.: `watch global if local > 0'. */
10664 cond_exp_valid_block = if_tracker.block ();
10665
10666 cond_end = tok;
10667 }
10668 if (*tok)
10669 error (_("Junk at end of command."));
10670
10671 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10672
10673 /* Save this because create_internal_breakpoint below invalidates
10674 'wp_frame'. */
10675 frame_id watchpoint_frame = get_frame_id (wp_frame);
10676
10677 /* If the expression is "local", then set up a "watchpoint scope"
10678 breakpoint at the point where we've left the scope of the watchpoint
10679 expression. Create the scope breakpoint before the watchpoint, so
10680 that we will encounter it first in bpstat_stop_status. */
10681 if (exp_valid_block != NULL && wp_frame != NULL)
10682 {
10683 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10684
10685 if (frame_id_p (caller_frame_id))
10686 {
10687 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10688 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10689
10690 scope_breakpoint
10691 = create_internal_breakpoint (caller_arch, caller_pc,
10692 bp_watchpoint_scope,
10693 &momentary_breakpoint_ops);
10694
10695 /* create_internal_breakpoint could invalidate WP_FRAME. */
10696 wp_frame = NULL;
10697
10698 scope_breakpoint->enable_state = bp_enabled;
10699
10700 /* Automatically delete the breakpoint when it hits. */
10701 scope_breakpoint->disposition = disp_del;
10702
10703 /* Only break in the proper frame (help with recursion). */
10704 scope_breakpoint->frame_id = caller_frame_id;
10705
10706 /* Set the address at which we will stop. */
10707 scope_breakpoint->loc->gdbarch = caller_arch;
10708 scope_breakpoint->loc->requested_address = caller_pc;
10709 scope_breakpoint->loc->address
10710 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10711 scope_breakpoint->loc->requested_address,
10712 scope_breakpoint->type);
10713 }
10714 }
10715
10716 /* Now set up the breakpoint. We create all watchpoints as hardware
10717 watchpoints here even if hardware watchpoints are turned off, a call
10718 to update_watchpoint later in this function will cause the type to
10719 drop back to bp_watchpoint (software watchpoint) if required. */
10720
10721 if (accessflag == hw_read)
10722 bp_type = bp_read_watchpoint;
10723 else if (accessflag == hw_access)
10724 bp_type = bp_access_watchpoint;
10725 else
10726 bp_type = bp_hardware_watchpoint;
10727
10728 std::unique_ptr<watchpoint> w (new watchpoint ());
10729
10730 if (use_mask)
10731 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10732 &masked_watchpoint_breakpoint_ops);
10733 else
10734 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10735 &watchpoint_breakpoint_ops);
10736 w->thread = thread;
10737 w->disposition = disp_donttouch;
10738 w->pspace = current_program_space;
10739 w->exp = std::move (exp);
10740 w->exp_valid_block = exp_valid_block;
10741 w->cond_exp_valid_block = cond_exp_valid_block;
10742 if (just_location)
10743 {
10744 struct type *t = value_type (val.get ());
10745 CORE_ADDR addr = value_as_address (val.get ());
10746
10747 w->exp_string_reparse
10748 = current_language->watch_location_expression (t, addr).release ();
10749
10750 w->exp_string = xstrprintf ("-location %.*s",
10751 (int) (exp_end - exp_start), exp_start);
10752 }
10753 else
10754 w->exp_string = savestring (exp_start, exp_end - exp_start);
10755
10756 if (use_mask)
10757 {
10758 w->hw_wp_mask = mask;
10759 }
10760 else
10761 {
10762 w->val = val;
10763 w->val_bitpos = saved_bitpos;
10764 w->val_bitsize = saved_bitsize;
10765 w->val_valid = true;
10766 }
10767
10768 if (cond_start)
10769 w->cond_string = savestring (cond_start, cond_end - cond_start);
10770 else
10771 w->cond_string = 0;
10772
10773 if (frame_id_p (watchpoint_frame))
10774 {
10775 w->watchpoint_frame = watchpoint_frame;
10776 w->watchpoint_thread = inferior_ptid;
10777 }
10778 else
10779 {
10780 w->watchpoint_frame = null_frame_id;
10781 w->watchpoint_thread = null_ptid;
10782 }
10783
10784 if (scope_breakpoint != NULL)
10785 {
10786 /* The scope breakpoint is related to the watchpoint. We will
10787 need to act on them together. */
10788 w->related_breakpoint = scope_breakpoint;
10789 scope_breakpoint->related_breakpoint = w.get ();
10790 }
10791
10792 if (!just_location)
10793 value_free_to_mark (mark);
10794
10795 /* Finally update the new watchpoint. This creates the locations
10796 that should be inserted. */
10797 update_watchpoint (w.get (), 1);
10798
10799 install_breakpoint (internal, std::move (w), 1);
10800 }
10801
10802 /* Return count of debug registers needed to watch the given expression.
10803 If the watchpoint cannot be handled in hardware return zero. */
10804
10805 static int
10806 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10807 {
10808 int found_memory_cnt = 0;
10809
10810 /* Did the user specifically forbid us to use hardware watchpoints? */
10811 if (!can_use_hw_watchpoints)
10812 return 0;
10813
10814 gdb_assert (!vals.empty ());
10815 struct value *head = vals[0].get ();
10816
10817 /* Make sure that the value of the expression depends only upon
10818 memory contents, and values computed from them within GDB. If we
10819 find any register references or function calls, we can't use a
10820 hardware watchpoint.
10821
10822 The idea here is that evaluating an expression generates a series
10823 of values, one holding the value of every subexpression. (The
10824 expression a*b+c has five subexpressions: a, b, a*b, c, and
10825 a*b+c.) GDB's values hold almost enough information to establish
10826 the criteria given above --- they identify memory lvalues,
10827 register lvalues, computed values, etcetera. So we can evaluate
10828 the expression, and then scan the chain of values that leaves
10829 behind to decide whether we can detect any possible change to the
10830 expression's final value using only hardware watchpoints.
10831
10832 However, I don't think that the values returned by inferior
10833 function calls are special in any way. So this function may not
10834 notice that an expression involving an inferior function call
10835 can't be watched with hardware watchpoints. FIXME. */
10836 for (const value_ref_ptr &iter : vals)
10837 {
10838 struct value *v = iter.get ();
10839
10840 if (VALUE_LVAL (v) == lval_memory)
10841 {
10842 if (v != head && value_lazy (v))
10843 /* A lazy memory lvalue in the chain is one that GDB never
10844 needed to fetch; we either just used its address (e.g.,
10845 `a' in `a.b') or we never needed it at all (e.g., `a'
10846 in `a,b'). This doesn't apply to HEAD; if that is
10847 lazy then it was not readable, but watch it anyway. */
10848 ;
10849 else
10850 {
10851 /* Ahh, memory we actually used! Check if we can cover
10852 it with hardware watchpoints. */
10853 struct type *vtype = check_typedef (value_type (v));
10854
10855 /* We only watch structs and arrays if user asked for it
10856 explicitly, never if they just happen to appear in a
10857 middle of some value chain. */
10858 if (v == head
10859 || (vtype->code () != TYPE_CODE_STRUCT
10860 && vtype->code () != TYPE_CODE_ARRAY))
10861 {
10862 CORE_ADDR vaddr = value_address (v);
10863 int len;
10864 int num_regs;
10865
10866 len = (target_exact_watchpoints
10867 && is_scalar_type_recursive (vtype))?
10868 1 : TYPE_LENGTH (value_type (v));
10869
10870 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10871 if (!num_regs)
10872 return 0;
10873 else
10874 found_memory_cnt += num_regs;
10875 }
10876 }
10877 }
10878 else if (VALUE_LVAL (v) != not_lval
10879 && deprecated_value_modifiable (v) == 0)
10880 return 0; /* These are values from the history (e.g., $1). */
10881 else if (VALUE_LVAL (v) == lval_register)
10882 return 0; /* Cannot watch a register with a HW watchpoint. */
10883 }
10884
10885 /* The expression itself looks suitable for using a hardware
10886 watchpoint, but give the target machine a chance to reject it. */
10887 return found_memory_cnt;
10888 }
10889
10890 void
10891 watch_command_wrapper (const char *arg, int from_tty, int internal)
10892 {
10893 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10894 }
10895
10896 /* A helper function that looks for the "-location" argument and then
10897 calls watch_command_1. */
10898
10899 static void
10900 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10901 {
10902 int just_location = 0;
10903
10904 if (arg
10905 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10906 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10907 just_location = 1;
10908
10909 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10910 }
10911
10912 static void
10913 watch_command (const char *arg, int from_tty)
10914 {
10915 watch_maybe_just_location (arg, hw_write, from_tty);
10916 }
10917
10918 void
10919 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10920 {
10921 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10922 }
10923
10924 static void
10925 rwatch_command (const char *arg, int from_tty)
10926 {
10927 watch_maybe_just_location (arg, hw_read, from_tty);
10928 }
10929
10930 void
10931 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10932 {
10933 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10934 }
10935
10936 static void
10937 awatch_command (const char *arg, int from_tty)
10938 {
10939 watch_maybe_just_location (arg, hw_access, from_tty);
10940 }
10941 \f
10942
10943 /* Data for the FSM that manages the until(location)/advance commands
10944 in infcmd.c. Here because it uses the mechanisms of
10945 breakpoints. */
10946
10947 struct until_break_fsm : public thread_fsm
10948 {
10949 /* The thread that was current when the command was executed. */
10950 int thread;
10951
10952 /* The breakpoint set at the return address in the caller frame,
10953 plus breakpoints at all the destination locations. */
10954 std::vector<breakpoint_up> breakpoints;
10955
10956 until_break_fsm (struct interp *cmd_interp, int thread,
10957 std::vector<breakpoint_up> &&breakpoints)
10958 : thread_fsm (cmd_interp),
10959 thread (thread),
10960 breakpoints (std::move (breakpoints))
10961 {
10962 }
10963
10964 void clean_up (struct thread_info *thread) override;
10965 bool should_stop (struct thread_info *thread) override;
10966 enum async_reply_reason do_async_reply_reason () override;
10967 };
10968
10969 /* Implementation of the 'should_stop' FSM method for the
10970 until(location)/advance commands. */
10971
10972 bool
10973 until_break_fsm::should_stop (struct thread_info *tp)
10974 {
10975 for (const breakpoint_up &bp : breakpoints)
10976 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10977 bp.get ()) != NULL)
10978 {
10979 set_finished ();
10980 break;
10981 }
10982
10983 return true;
10984 }
10985
10986 /* Implementation of the 'clean_up' FSM method for the
10987 until(location)/advance commands. */
10988
10989 void
10990 until_break_fsm::clean_up (struct thread_info *)
10991 {
10992 /* Clean up our temporary breakpoints. */
10993 breakpoints.clear ();
10994 delete_longjmp_breakpoint (thread);
10995 }
10996
10997 /* Implementation of the 'async_reply_reason' FSM method for the
10998 until(location)/advance commands. */
10999
11000 enum async_reply_reason
11001 until_break_fsm::do_async_reply_reason ()
11002 {
11003 return EXEC_ASYNC_LOCATION_REACHED;
11004 }
11005
11006 void
11007 until_break_command (const char *arg, int from_tty, int anywhere)
11008 {
11009 struct frame_info *frame;
11010 struct gdbarch *frame_gdbarch;
11011 struct frame_id stack_frame_id;
11012 struct frame_id caller_frame_id;
11013 int thread;
11014 struct thread_info *tp;
11015
11016 clear_proceed_status (0);
11017
11018 /* Set a breakpoint where the user wants it and at return from
11019 this function. */
11020
11021 event_location_up location = string_to_event_location (&arg, current_language);
11022
11023 std::vector<symtab_and_line> sals
11024 = (last_displayed_sal_is_valid ()
11025 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11026 get_last_displayed_symtab (),
11027 get_last_displayed_line ())
11028 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11029 NULL, NULL, 0));
11030
11031 if (sals.empty ())
11032 error (_("Couldn't get information on specified line."));
11033
11034 if (*arg)
11035 error (_("Junk at end of arguments."));
11036
11037 tp = inferior_thread ();
11038 thread = tp->global_num;
11039
11040 /* Note linespec handling above invalidates the frame chain.
11041 Installing a breakpoint also invalidates the frame chain (as it
11042 may need to switch threads), so do any frame handling before
11043 that. */
11044
11045 frame = get_selected_frame (NULL);
11046 frame_gdbarch = get_frame_arch (frame);
11047 stack_frame_id = get_stack_frame_id (frame);
11048 caller_frame_id = frame_unwind_caller_id (frame);
11049
11050 /* Keep within the current frame, or in frames called by the current
11051 one. */
11052
11053 std::vector<breakpoint_up> breakpoints;
11054
11055 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11056
11057 if (frame_id_p (caller_frame_id))
11058 {
11059 struct symtab_and_line sal2;
11060 struct gdbarch *caller_gdbarch;
11061
11062 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11063 sal2.pc = frame_unwind_caller_pc (frame);
11064 caller_gdbarch = frame_unwind_caller_arch (frame);
11065
11066 breakpoint_up caller_breakpoint
11067 = set_momentary_breakpoint (caller_gdbarch, sal2,
11068 caller_frame_id, bp_until);
11069 breakpoints.emplace_back (std::move (caller_breakpoint));
11070
11071 set_longjmp_breakpoint (tp, caller_frame_id);
11072 lj_deleter.emplace (thread);
11073 }
11074
11075 /* set_momentary_breakpoint could invalidate FRAME. */
11076 frame = NULL;
11077
11078 /* If the user told us to continue until a specified location, we
11079 don't specify a frame at which we need to stop. Otherwise,
11080 specify the selected frame, because we want to stop only at the
11081 very same frame. */
11082 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11083
11084 for (symtab_and_line &sal : sals)
11085 {
11086 resolve_sal_pc (&sal);
11087
11088 breakpoint_up location_breakpoint
11089 = set_momentary_breakpoint (frame_gdbarch, sal,
11090 stop_frame_id, bp_until);
11091 breakpoints.emplace_back (std::move (location_breakpoint));
11092 }
11093
11094 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11095 std::move (breakpoints));
11096
11097 if (lj_deleter)
11098 lj_deleter->release ();
11099
11100 proceed (-1, GDB_SIGNAL_DEFAULT);
11101 }
11102
11103 /* This function attempts to parse an optional "if <cond>" clause
11104 from the arg string. If one is not found, it returns NULL.
11105
11106 Else, it returns a pointer to the condition string. (It does not
11107 attempt to evaluate the string against a particular block.) And,
11108 it updates arg to point to the first character following the parsed
11109 if clause in the arg string. */
11110
11111 const char *
11112 ep_parse_optional_if_clause (const char **arg)
11113 {
11114 const char *cond_string;
11115
11116 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11117 return NULL;
11118
11119 /* Skip the "if" keyword. */
11120 (*arg) += 2;
11121
11122 /* Skip any extra leading whitespace, and record the start of the
11123 condition string. */
11124 *arg = skip_spaces (*arg);
11125 cond_string = *arg;
11126
11127 /* Assume that the condition occupies the remainder of the arg
11128 string. */
11129 (*arg) += strlen (cond_string);
11130
11131 return cond_string;
11132 }
11133
11134 /* Commands to deal with catching events, such as signals, exceptions,
11135 process start/exit, etc. */
11136
11137 typedef enum
11138 {
11139 catch_fork_temporary, catch_vfork_temporary,
11140 catch_fork_permanent, catch_vfork_permanent
11141 }
11142 catch_fork_kind;
11143
11144 static void
11145 catch_fork_command_1 (const char *arg, int from_tty,
11146 struct cmd_list_element *command)
11147 {
11148 struct gdbarch *gdbarch = get_current_arch ();
11149 const char *cond_string = NULL;
11150 catch_fork_kind fork_kind;
11151 int tempflag;
11152
11153 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11154 tempflag = (fork_kind == catch_fork_temporary
11155 || fork_kind == catch_vfork_temporary);
11156
11157 if (!arg)
11158 arg = "";
11159 arg = skip_spaces (arg);
11160
11161 /* The allowed syntax is:
11162 catch [v]fork
11163 catch [v]fork if <cond>
11164
11165 First, check if there's an if clause. */
11166 cond_string = ep_parse_optional_if_clause (&arg);
11167
11168 if ((*arg != '\0') && !isspace (*arg))
11169 error (_("Junk at end of arguments."));
11170
11171 /* If this target supports it, create a fork or vfork catchpoint
11172 and enable reporting of such events. */
11173 switch (fork_kind)
11174 {
11175 case catch_fork_temporary:
11176 case catch_fork_permanent:
11177 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11178 &catch_fork_breakpoint_ops);
11179 break;
11180 case catch_vfork_temporary:
11181 case catch_vfork_permanent:
11182 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11183 &catch_vfork_breakpoint_ops);
11184 break;
11185 default:
11186 error (_("unsupported or unknown fork kind; cannot catch it"));
11187 break;
11188 }
11189 }
11190
11191 static void
11192 catch_exec_command_1 (const char *arg, int from_tty,
11193 struct cmd_list_element *command)
11194 {
11195 struct gdbarch *gdbarch = get_current_arch ();
11196 int tempflag;
11197 const char *cond_string = NULL;
11198
11199 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11200
11201 if (!arg)
11202 arg = "";
11203 arg = skip_spaces (arg);
11204
11205 /* The allowed syntax is:
11206 catch exec
11207 catch exec if <cond>
11208
11209 First, check if there's an if clause. */
11210 cond_string = ep_parse_optional_if_clause (&arg);
11211
11212 if ((*arg != '\0') && !isspace (*arg))
11213 error (_("Junk at end of arguments."));
11214
11215 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11216 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11217 &catch_exec_breakpoint_ops);
11218 c->exec_pathname = NULL;
11219
11220 install_breakpoint (0, std::move (c), 1);
11221 }
11222
11223 void
11224 init_ada_exception_breakpoint (struct breakpoint *b,
11225 struct gdbarch *gdbarch,
11226 struct symtab_and_line sal,
11227 const char *addr_string,
11228 const struct breakpoint_ops *ops,
11229 int tempflag,
11230 int enabled,
11231 int from_tty)
11232 {
11233 if (from_tty)
11234 {
11235 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11236 if (!loc_gdbarch)
11237 loc_gdbarch = gdbarch;
11238
11239 describe_other_breakpoints (loc_gdbarch,
11240 sal.pspace, sal.pc, sal.section, -1);
11241 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11242 version for exception catchpoints, because two catchpoints
11243 used for different exception names will use the same address.
11244 In this case, a "breakpoint ... also set at..." warning is
11245 unproductive. Besides, the warning phrasing is also a bit
11246 inappropriate, we should use the word catchpoint, and tell
11247 the user what type of catchpoint it is. The above is good
11248 enough for now, though. */
11249 }
11250
11251 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11252
11253 b->enable_state = enabled ? bp_enabled : bp_disabled;
11254 b->disposition = tempflag ? disp_del : disp_donttouch;
11255 b->location = string_to_event_location (&addr_string,
11256 language_def (language_ada));
11257 b->language = language_ada;
11258 }
11259
11260 \f
11261
11262 /* Compare two breakpoints and return a strcmp-like result. */
11263
11264 static int
11265 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11266 {
11267 uintptr_t ua = (uintptr_t) a;
11268 uintptr_t ub = (uintptr_t) b;
11269
11270 if (a->number < b->number)
11271 return -1;
11272 else if (a->number > b->number)
11273 return 1;
11274
11275 /* Now sort by address, in case we see, e..g, two breakpoints with
11276 the number 0. */
11277 if (ua < ub)
11278 return -1;
11279 return ua > ub ? 1 : 0;
11280 }
11281
11282 /* Delete breakpoints by address or line. */
11283
11284 static void
11285 clear_command (const char *arg, int from_tty)
11286 {
11287 struct breakpoint *b;
11288 int default_match;
11289
11290 std::vector<symtab_and_line> decoded_sals;
11291 symtab_and_line last_sal;
11292 gdb::array_view<symtab_and_line> sals;
11293 if (arg)
11294 {
11295 decoded_sals
11296 = decode_line_with_current_source (arg,
11297 (DECODE_LINE_FUNFIRSTLINE
11298 | DECODE_LINE_LIST_MODE));
11299 default_match = 0;
11300 sals = decoded_sals;
11301 }
11302 else
11303 {
11304 /* Set sal's line, symtab, pc, and pspace to the values
11305 corresponding to the last call to print_frame_info. If the
11306 codepoint is not valid, this will set all the fields to 0. */
11307 last_sal = get_last_displayed_sal ();
11308 if (last_sal.symtab == 0)
11309 error (_("No source file specified."));
11310
11311 default_match = 1;
11312 sals = last_sal;
11313 }
11314
11315 /* We don't call resolve_sal_pc here. That's not as bad as it
11316 seems, because all existing breakpoints typically have both
11317 file/line and pc set. So, if clear is given file/line, we can
11318 match this to existing breakpoint without obtaining pc at all.
11319
11320 We only support clearing given the address explicitly
11321 present in breakpoint table. Say, we've set breakpoint
11322 at file:line. There were several PC values for that file:line,
11323 due to optimization, all in one block.
11324
11325 We've picked one PC value. If "clear" is issued with another
11326 PC corresponding to the same file:line, the breakpoint won't
11327 be cleared. We probably can still clear the breakpoint, but
11328 since the other PC value is never presented to user, user
11329 can only find it by guessing, and it does not seem important
11330 to support that. */
11331
11332 /* For each line spec given, delete bps which correspond to it. Do
11333 it in two passes, solely to preserve the current behavior that
11334 from_tty is forced true if we delete more than one
11335 breakpoint. */
11336
11337 std::vector<struct breakpoint *> found;
11338 for (const auto &sal : sals)
11339 {
11340 const char *sal_fullname;
11341
11342 /* If exact pc given, clear bpts at that pc.
11343 If line given (pc == 0), clear all bpts on specified line.
11344 If defaulting, clear all bpts on default line
11345 or at default pc.
11346
11347 defaulting sal.pc != 0 tests to do
11348
11349 0 1 pc
11350 1 1 pc _and_ line
11351 0 0 line
11352 1 0 <can't happen> */
11353
11354 sal_fullname = (sal.symtab == NULL
11355 ? NULL : symtab_to_fullname (sal.symtab));
11356
11357 /* Find all matching breakpoints and add them to 'found'. */
11358 ALL_BREAKPOINTS (b)
11359 {
11360 int match = 0;
11361 /* Are we going to delete b? */
11362 if (b->type != bp_none && !is_watchpoint (b))
11363 {
11364 struct bp_location *loc = b->loc;
11365 for (; loc; loc = loc->next)
11366 {
11367 /* If the user specified file:line, don't allow a PC
11368 match. This matches historical gdb behavior. */
11369 int pc_match = (!sal.explicit_line
11370 && sal.pc
11371 && (loc->pspace == sal.pspace)
11372 && (loc->address == sal.pc)
11373 && (!section_is_overlay (loc->section)
11374 || loc->section == sal.section));
11375 int line_match = 0;
11376
11377 if ((default_match || sal.explicit_line)
11378 && loc->symtab != NULL
11379 && sal_fullname != NULL
11380 && sal.pspace == loc->pspace
11381 && loc->line_number == sal.line
11382 && filename_cmp (symtab_to_fullname (loc->symtab),
11383 sal_fullname) == 0)
11384 line_match = 1;
11385
11386 if (pc_match || line_match)
11387 {
11388 match = 1;
11389 break;
11390 }
11391 }
11392 }
11393
11394 if (match)
11395 found.push_back (b);
11396 }
11397 }
11398
11399 /* Now go thru the 'found' chain and delete them. */
11400 if (found.empty ())
11401 {
11402 if (arg)
11403 error (_("No breakpoint at %s."), arg);
11404 else
11405 error (_("No breakpoint at this line."));
11406 }
11407
11408 /* Remove duplicates from the vec. */
11409 std::sort (found.begin (), found.end (),
11410 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11411 {
11412 return compare_breakpoints (bp_a, bp_b) < 0;
11413 });
11414 found.erase (std::unique (found.begin (), found.end (),
11415 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11416 {
11417 return compare_breakpoints (bp_a, bp_b) == 0;
11418 }),
11419 found.end ());
11420
11421 if (found.size () > 1)
11422 from_tty = 1; /* Always report if deleted more than one. */
11423 if (from_tty)
11424 {
11425 if (found.size () == 1)
11426 printf_unfiltered (_("Deleted breakpoint "));
11427 else
11428 printf_unfiltered (_("Deleted breakpoints "));
11429 }
11430
11431 for (breakpoint *iter : found)
11432 {
11433 if (from_tty)
11434 printf_unfiltered ("%d ", iter->number);
11435 delete_breakpoint (iter);
11436 }
11437 if (from_tty)
11438 putchar_unfiltered ('\n');
11439 }
11440 \f
11441 /* Delete breakpoint in BS if they are `delete' breakpoints and
11442 all breakpoints that are marked for deletion, whether hit or not.
11443 This is called after any breakpoint is hit, or after errors. */
11444
11445 void
11446 breakpoint_auto_delete (bpstat bs)
11447 {
11448 struct breakpoint *b, *b_tmp;
11449
11450 for (; bs; bs = bs->next)
11451 if (bs->breakpoint_at
11452 && bs->breakpoint_at->disposition == disp_del
11453 && bs->stop)
11454 delete_breakpoint (bs->breakpoint_at);
11455
11456 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11457 {
11458 if (b->disposition == disp_del_at_next_stop)
11459 delete_breakpoint (b);
11460 }
11461 }
11462
11463 /* A comparison function for bp_location AP and BP being interfaced to
11464 std::sort. Sort elements primarily by their ADDRESS (no matter what
11465 bl_address_is_meaningful says), secondarily by ordering first
11466 permanent elements and terciarily just ensuring the array is sorted
11467 stable way despite std::sort being an unstable algorithm. */
11468
11469 static int
11470 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11471 {
11472 if (a->address != b->address)
11473 return a->address < b->address;
11474
11475 /* Sort locations at the same address by their pspace number, keeping
11476 locations of the same inferior (in a multi-inferior environment)
11477 grouped. */
11478
11479 if (a->pspace->num != b->pspace->num)
11480 return a->pspace->num < b->pspace->num;
11481
11482 /* Sort permanent breakpoints first. */
11483 if (a->permanent != b->permanent)
11484 return a->permanent > b->permanent;
11485
11486 /* Sort by type in order to make duplicate determination easier.
11487 See update_global_location_list. This is kept in sync with
11488 breakpoint_locations_match. */
11489 if (a->loc_type < b->loc_type)
11490 return true;
11491
11492 /* Likewise, for range-breakpoints, sort by length. */
11493 if (a->loc_type == bp_loc_hardware_breakpoint
11494 && b->loc_type == bp_loc_hardware_breakpoint
11495 && a->length < b->length)
11496 return true;
11497
11498 /* Make the internal GDB representation stable across GDB runs
11499 where A and B memory inside GDB can differ. Breakpoint locations of
11500 the same type at the same address can be sorted in arbitrary order. */
11501
11502 if (a->owner->number != b->owner->number)
11503 return a->owner->number < b->owner->number;
11504
11505 return a < b;
11506 }
11507
11508 /* Set bp_locations_placed_address_before_address_max and
11509 bp_locations_shadow_len_after_address_max according to the current
11510 content of the bp_locations array. */
11511
11512 static void
11513 bp_locations_target_extensions_update (void)
11514 {
11515 struct bp_location *bl, **blp_tmp;
11516
11517 bp_locations_placed_address_before_address_max = 0;
11518 bp_locations_shadow_len_after_address_max = 0;
11519
11520 ALL_BP_LOCATIONS (bl, blp_tmp)
11521 {
11522 CORE_ADDR start, end, addr;
11523
11524 if (!bp_location_has_shadow (bl))
11525 continue;
11526
11527 start = bl->target_info.placed_address;
11528 end = start + bl->target_info.shadow_len;
11529
11530 gdb_assert (bl->address >= start);
11531 addr = bl->address - start;
11532 if (addr > bp_locations_placed_address_before_address_max)
11533 bp_locations_placed_address_before_address_max = addr;
11534
11535 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11536
11537 gdb_assert (bl->address < end);
11538 addr = end - bl->address;
11539 if (addr > bp_locations_shadow_len_after_address_max)
11540 bp_locations_shadow_len_after_address_max = addr;
11541 }
11542 }
11543
11544 /* Download tracepoint locations if they haven't been. */
11545
11546 static void
11547 download_tracepoint_locations (void)
11548 {
11549 struct breakpoint *b;
11550 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11551
11552 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11553
11554 ALL_TRACEPOINTS (b)
11555 {
11556 struct bp_location *bl;
11557 struct tracepoint *t;
11558 int bp_location_downloaded = 0;
11559
11560 if ((b->type == bp_fast_tracepoint
11561 ? !may_insert_fast_tracepoints
11562 : !may_insert_tracepoints))
11563 continue;
11564
11565 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11566 {
11567 if (target_can_download_tracepoint ())
11568 can_download_tracepoint = TRIBOOL_TRUE;
11569 else
11570 can_download_tracepoint = TRIBOOL_FALSE;
11571 }
11572
11573 if (can_download_tracepoint == TRIBOOL_FALSE)
11574 break;
11575
11576 for (bl = b->loc; bl; bl = bl->next)
11577 {
11578 /* In tracepoint, locations are _never_ duplicated, so
11579 should_be_inserted is equivalent to
11580 unduplicated_should_be_inserted. */
11581 if (!should_be_inserted (bl) || bl->inserted)
11582 continue;
11583
11584 switch_to_program_space_and_thread (bl->pspace);
11585
11586 target_download_tracepoint (bl);
11587
11588 bl->inserted = 1;
11589 bp_location_downloaded = 1;
11590 }
11591 t = (struct tracepoint *) b;
11592 t->number_on_target = b->number;
11593 if (bp_location_downloaded)
11594 gdb::observers::breakpoint_modified.notify (b);
11595 }
11596 }
11597
11598 /* Swap the insertion/duplication state between two locations. */
11599
11600 static void
11601 swap_insertion (struct bp_location *left, struct bp_location *right)
11602 {
11603 const int left_inserted = left->inserted;
11604 const int left_duplicate = left->duplicate;
11605 const int left_needs_update = left->needs_update;
11606 const struct bp_target_info left_target_info = left->target_info;
11607
11608 /* Locations of tracepoints can never be duplicated. */
11609 if (is_tracepoint (left->owner))
11610 gdb_assert (!left->duplicate);
11611 if (is_tracepoint (right->owner))
11612 gdb_assert (!right->duplicate);
11613
11614 left->inserted = right->inserted;
11615 left->duplicate = right->duplicate;
11616 left->needs_update = right->needs_update;
11617 left->target_info = right->target_info;
11618 right->inserted = left_inserted;
11619 right->duplicate = left_duplicate;
11620 right->needs_update = left_needs_update;
11621 right->target_info = left_target_info;
11622 }
11623
11624 /* Force the re-insertion of the locations at ADDRESS. This is called
11625 once a new/deleted/modified duplicate location is found and we are evaluating
11626 conditions on the target's side. Such conditions need to be updated on
11627 the target. */
11628
11629 static void
11630 force_breakpoint_reinsertion (struct bp_location *bl)
11631 {
11632 struct bp_location **locp = NULL, **loc2p;
11633 struct bp_location *loc;
11634 CORE_ADDR address = 0;
11635 int pspace_num;
11636
11637 address = bl->address;
11638 pspace_num = bl->pspace->num;
11639
11640 /* This is only meaningful if the target is
11641 evaluating conditions and if the user has
11642 opted for condition evaluation on the target's
11643 side. */
11644 if (gdb_evaluates_breakpoint_condition_p ()
11645 || !target_supports_evaluation_of_breakpoint_conditions ())
11646 return;
11647
11648 /* Flag all breakpoint locations with this address and
11649 the same program space as the location
11650 as "its condition has changed". We need to
11651 update the conditions on the target's side. */
11652 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11653 {
11654 loc = *loc2p;
11655
11656 if (!is_breakpoint (loc->owner)
11657 || pspace_num != loc->pspace->num)
11658 continue;
11659
11660 /* Flag the location appropriately. We use a different state to
11661 let everyone know that we already updated the set of locations
11662 with addr bl->address and program space bl->pspace. This is so
11663 we don't have to keep calling these functions just to mark locations
11664 that have already been marked. */
11665 loc->condition_changed = condition_updated;
11666
11667 /* Free the agent expression bytecode as well. We will compute
11668 it later on. */
11669 loc->cond_bytecode.reset ();
11670 }
11671 }
11672
11673 /* Called whether new breakpoints are created, or existing breakpoints
11674 deleted, to update the global location list and recompute which
11675 locations are duplicate of which.
11676
11677 The INSERT_MODE flag determines whether locations may not, may, or
11678 shall be inserted now. See 'enum ugll_insert_mode' for more
11679 info. */
11680
11681 static void
11682 update_global_location_list (enum ugll_insert_mode insert_mode)
11683 {
11684 struct breakpoint *b;
11685 struct bp_location **locp, *loc;
11686 /* Last breakpoint location address that was marked for update. */
11687 CORE_ADDR last_addr = 0;
11688 /* Last breakpoint location program space that was marked for update. */
11689 int last_pspace_num = -1;
11690
11691 /* Used in the duplicates detection below. When iterating over all
11692 bp_locations, points to the first bp_location of a given address.
11693 Breakpoints and watchpoints of different types are never
11694 duplicates of each other. Keep one pointer for each type of
11695 breakpoint/watchpoint, so we only need to loop over all locations
11696 once. */
11697 struct bp_location *bp_loc_first; /* breakpoint */
11698 struct bp_location *wp_loc_first; /* hardware watchpoint */
11699 struct bp_location *awp_loc_first; /* access watchpoint */
11700 struct bp_location *rwp_loc_first; /* read watchpoint */
11701
11702 /* Saved former bp_locations array which we compare against the newly
11703 built bp_locations from the current state of ALL_BREAKPOINTS. */
11704 struct bp_location **old_locp;
11705 unsigned old_locations_count;
11706 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11707
11708 old_locations_count = bp_locations_count;
11709 bp_locations = NULL;
11710 bp_locations_count = 0;
11711
11712 ALL_BREAKPOINTS (b)
11713 for (loc = b->loc; loc; loc = loc->next)
11714 bp_locations_count++;
11715
11716 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11717 locp = bp_locations;
11718 ALL_BREAKPOINTS (b)
11719 for (loc = b->loc; loc; loc = loc->next)
11720 *locp++ = loc;
11721
11722 /* See if we need to "upgrade" a software breakpoint to a hardware
11723 breakpoint. Do this before deciding whether locations are
11724 duplicates. Also do this before sorting because sorting order
11725 depends on location type. */
11726 for (locp = bp_locations;
11727 locp < bp_locations + bp_locations_count;
11728 locp++)
11729 {
11730 loc = *locp;
11731 if (!loc->inserted && should_be_inserted (loc))
11732 handle_automatic_hardware_breakpoints (loc);
11733 }
11734
11735 std::sort (bp_locations, bp_locations + bp_locations_count,
11736 bp_location_is_less_than);
11737
11738 bp_locations_target_extensions_update ();
11739
11740 /* Identify bp_location instances that are no longer present in the
11741 new list, and therefore should be freed. Note that it's not
11742 necessary that those locations should be removed from inferior --
11743 if there's another location at the same address (previously
11744 marked as duplicate), we don't need to remove/insert the
11745 location.
11746
11747 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11748 and former bp_location array state respectively. */
11749
11750 locp = bp_locations;
11751 for (old_locp = old_locations.get ();
11752 old_locp < old_locations.get () + old_locations_count;
11753 old_locp++)
11754 {
11755 struct bp_location *old_loc = *old_locp;
11756 struct bp_location **loc2p;
11757
11758 /* Tells if 'old_loc' is found among the new locations. If
11759 not, we have to free it. */
11760 int found_object = 0;
11761 /* Tells if the location should remain inserted in the target. */
11762 int keep_in_target = 0;
11763 int removed = 0;
11764
11765 /* Skip LOCP entries which will definitely never be needed.
11766 Stop either at or being the one matching OLD_LOC. */
11767 while (locp < bp_locations + bp_locations_count
11768 && (*locp)->address < old_loc->address)
11769 locp++;
11770
11771 for (loc2p = locp;
11772 (loc2p < bp_locations + bp_locations_count
11773 && (*loc2p)->address == old_loc->address);
11774 loc2p++)
11775 {
11776 /* Check if this is a new/duplicated location or a duplicated
11777 location that had its condition modified. If so, we want to send
11778 its condition to the target if evaluation of conditions is taking
11779 place there. */
11780 if ((*loc2p)->condition_changed == condition_modified
11781 && (last_addr != old_loc->address
11782 || last_pspace_num != old_loc->pspace->num))
11783 {
11784 force_breakpoint_reinsertion (*loc2p);
11785 last_pspace_num = old_loc->pspace->num;
11786 }
11787
11788 if (*loc2p == old_loc)
11789 found_object = 1;
11790 }
11791
11792 /* We have already handled this address, update it so that we don't
11793 have to go through updates again. */
11794 last_addr = old_loc->address;
11795
11796 /* Target-side condition evaluation: Handle deleted locations. */
11797 if (!found_object)
11798 force_breakpoint_reinsertion (old_loc);
11799
11800 /* If this location is no longer present, and inserted, look if
11801 there's maybe a new location at the same address. If so,
11802 mark that one inserted, and don't remove this one. This is
11803 needed so that we don't have a time window where a breakpoint
11804 at certain location is not inserted. */
11805
11806 if (old_loc->inserted)
11807 {
11808 /* If the location is inserted now, we might have to remove
11809 it. */
11810
11811 if (found_object && should_be_inserted (old_loc))
11812 {
11813 /* The location is still present in the location list,
11814 and still should be inserted. Don't do anything. */
11815 keep_in_target = 1;
11816 }
11817 else
11818 {
11819 /* This location still exists, but it won't be kept in the
11820 target since it may have been disabled. We proceed to
11821 remove its target-side condition. */
11822
11823 /* The location is either no longer present, or got
11824 disabled. See if there's another location at the
11825 same address, in which case we don't need to remove
11826 this one from the target. */
11827
11828 /* OLD_LOC comes from existing struct breakpoint. */
11829 if (bl_address_is_meaningful (old_loc))
11830 {
11831 for (loc2p = locp;
11832 (loc2p < bp_locations + bp_locations_count
11833 && (*loc2p)->address == old_loc->address);
11834 loc2p++)
11835 {
11836 struct bp_location *loc2 = *loc2p;
11837
11838 if (loc2 == old_loc)
11839 continue;
11840
11841 if (breakpoint_locations_match (loc2, old_loc))
11842 {
11843 /* Read watchpoint locations are switched to
11844 access watchpoints, if the former are not
11845 supported, but the latter are. */
11846 if (is_hardware_watchpoint (old_loc->owner))
11847 {
11848 gdb_assert (is_hardware_watchpoint (loc2->owner));
11849 loc2->watchpoint_type = old_loc->watchpoint_type;
11850 }
11851
11852 /* loc2 is a duplicated location. We need to check
11853 if it should be inserted in case it will be
11854 unduplicated. */
11855 if (unduplicated_should_be_inserted (loc2))
11856 {
11857 swap_insertion (old_loc, loc2);
11858 keep_in_target = 1;
11859 break;
11860 }
11861 }
11862 }
11863 }
11864 }
11865
11866 if (!keep_in_target)
11867 {
11868 if (remove_breakpoint (old_loc))
11869 {
11870 /* This is just about all we can do. We could keep
11871 this location on the global list, and try to
11872 remove it next time, but there's no particular
11873 reason why we will succeed next time.
11874
11875 Note that at this point, old_loc->owner is still
11876 valid, as delete_breakpoint frees the breakpoint
11877 only after calling us. */
11878 printf_filtered (_("warning: Error removing "
11879 "breakpoint %d\n"),
11880 old_loc->owner->number);
11881 }
11882 removed = 1;
11883 }
11884 }
11885
11886 if (!found_object)
11887 {
11888 if (removed && target_is_non_stop_p ()
11889 && need_moribund_for_location_type (old_loc))
11890 {
11891 /* This location was removed from the target. In
11892 non-stop mode, a race condition is possible where
11893 we've removed a breakpoint, but stop events for that
11894 breakpoint are already queued and will arrive later.
11895 We apply an heuristic to be able to distinguish such
11896 SIGTRAPs from other random SIGTRAPs: we keep this
11897 breakpoint location for a bit, and will retire it
11898 after we see some number of events. The theory here
11899 is that reporting of events should, "on the average",
11900 be fair, so after a while we'll see events from all
11901 threads that have anything of interest, and no longer
11902 need to keep this breakpoint location around. We
11903 don't hold locations forever so to reduce chances of
11904 mistaking a non-breakpoint SIGTRAP for a breakpoint
11905 SIGTRAP.
11906
11907 The heuristic failing can be disastrous on
11908 decr_pc_after_break targets.
11909
11910 On decr_pc_after_break targets, like e.g., x86-linux,
11911 if we fail to recognize a late breakpoint SIGTRAP,
11912 because events_till_retirement has reached 0 too
11913 soon, we'll fail to do the PC adjustment, and report
11914 a random SIGTRAP to the user. When the user resumes
11915 the inferior, it will most likely immediately crash
11916 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11917 corrupted, because of being resumed e.g., in the
11918 middle of a multi-byte instruction, or skipped a
11919 one-byte instruction. This was actually seen happen
11920 on native x86-linux, and should be less rare on
11921 targets that do not support new thread events, like
11922 remote, due to the heuristic depending on
11923 thread_count.
11924
11925 Mistaking a random SIGTRAP for a breakpoint trap
11926 causes similar symptoms (PC adjustment applied when
11927 it shouldn't), but then again, playing with SIGTRAPs
11928 behind the debugger's back is asking for trouble.
11929
11930 Since hardware watchpoint traps are always
11931 distinguishable from other traps, so we don't need to
11932 apply keep hardware watchpoint moribund locations
11933 around. We simply always ignore hardware watchpoint
11934 traps we can no longer explain. */
11935
11936 process_stratum_target *proc_target = nullptr;
11937 for (inferior *inf : all_inferiors ())
11938 if (inf->pspace == old_loc->pspace)
11939 {
11940 proc_target = inf->process_target ();
11941 break;
11942 }
11943 if (proc_target != nullptr)
11944 old_loc->events_till_retirement
11945 = 3 * (thread_count (proc_target) + 1);
11946 else
11947 old_loc->events_till_retirement = 1;
11948 old_loc->owner = NULL;
11949
11950 moribund_locations.push_back (old_loc);
11951 }
11952 else
11953 {
11954 old_loc->owner = NULL;
11955 decref_bp_location (&old_loc);
11956 }
11957 }
11958 }
11959
11960 /* Rescan breakpoints at the same address and section, marking the
11961 first one as "first" and any others as "duplicates". This is so
11962 that the bpt instruction is only inserted once. If we have a
11963 permanent breakpoint at the same place as BPT, make that one the
11964 official one, and the rest as duplicates. Permanent breakpoints
11965 are sorted first for the same address.
11966
11967 Do the same for hardware watchpoints, but also considering the
11968 watchpoint's type (regular/access/read) and length. */
11969
11970 bp_loc_first = NULL;
11971 wp_loc_first = NULL;
11972 awp_loc_first = NULL;
11973 rwp_loc_first = NULL;
11974 ALL_BP_LOCATIONS (loc, locp)
11975 {
11976 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11977 non-NULL. */
11978 struct bp_location **loc_first_p;
11979 b = loc->owner;
11980
11981 if (!unduplicated_should_be_inserted (loc)
11982 || !bl_address_is_meaningful (loc)
11983 /* Don't detect duplicate for tracepoint locations because they are
11984 never duplicated. See the comments in field `duplicate' of
11985 `struct bp_location'. */
11986 || is_tracepoint (b))
11987 {
11988 /* Clear the condition modification flag. */
11989 loc->condition_changed = condition_unchanged;
11990 continue;
11991 }
11992
11993 if (b->type == bp_hardware_watchpoint)
11994 loc_first_p = &wp_loc_first;
11995 else if (b->type == bp_read_watchpoint)
11996 loc_first_p = &rwp_loc_first;
11997 else if (b->type == bp_access_watchpoint)
11998 loc_first_p = &awp_loc_first;
11999 else
12000 loc_first_p = &bp_loc_first;
12001
12002 if (*loc_first_p == NULL
12003 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12004 || !breakpoint_locations_match (loc, *loc_first_p))
12005 {
12006 *loc_first_p = loc;
12007 loc->duplicate = 0;
12008
12009 if (is_breakpoint (loc->owner) && loc->condition_changed)
12010 {
12011 loc->needs_update = 1;
12012 /* Clear the condition modification flag. */
12013 loc->condition_changed = condition_unchanged;
12014 }
12015 continue;
12016 }
12017
12018
12019 /* This and the above ensure the invariant that the first location
12020 is not duplicated, and is the inserted one.
12021 All following are marked as duplicated, and are not inserted. */
12022 if (loc->inserted)
12023 swap_insertion (loc, *loc_first_p);
12024 loc->duplicate = 1;
12025
12026 /* Clear the condition modification flag. */
12027 loc->condition_changed = condition_unchanged;
12028 }
12029
12030 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12031 {
12032 if (insert_mode != UGLL_DONT_INSERT)
12033 insert_breakpoint_locations ();
12034 else
12035 {
12036 /* Even though the caller told us to not insert new
12037 locations, we may still need to update conditions on the
12038 target's side of breakpoints that were already inserted
12039 if the target is evaluating breakpoint conditions. We
12040 only update conditions for locations that are marked
12041 "needs_update". */
12042 update_inserted_breakpoint_locations ();
12043 }
12044 }
12045
12046 if (insert_mode != UGLL_DONT_INSERT)
12047 download_tracepoint_locations ();
12048 }
12049
12050 void
12051 breakpoint_retire_moribund (void)
12052 {
12053 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12054 {
12055 struct bp_location *loc = moribund_locations[ix];
12056 if (--(loc->events_till_retirement) == 0)
12057 {
12058 decref_bp_location (&loc);
12059 unordered_remove (moribund_locations, ix);
12060 --ix;
12061 }
12062 }
12063 }
12064
12065 static void
12066 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12067 {
12068
12069 try
12070 {
12071 update_global_location_list (insert_mode);
12072 }
12073 catch (const gdb_exception_error &e)
12074 {
12075 }
12076 }
12077
12078 /* Clear BKP from a BPS. */
12079
12080 static void
12081 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12082 {
12083 bpstat bs;
12084
12085 for (bs = bps; bs; bs = bs->next)
12086 if (bs->breakpoint_at == bpt)
12087 {
12088 bs->breakpoint_at = NULL;
12089 bs->old_val = NULL;
12090 /* bs->commands will be freed later. */
12091 }
12092 }
12093
12094 /* Callback for iterate_over_threads. */
12095 static int
12096 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12097 {
12098 struct breakpoint *bpt = (struct breakpoint *) data;
12099
12100 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12101 return 0;
12102 }
12103
12104 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12105 callbacks. */
12106
12107 static void
12108 say_where (struct breakpoint *b)
12109 {
12110 struct value_print_options opts;
12111
12112 get_user_print_options (&opts);
12113
12114 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12115 single string. */
12116 if (b->loc == NULL)
12117 {
12118 /* For pending locations, the output differs slightly based
12119 on b->extra_string. If this is non-NULL, it contains either
12120 a condition or dprintf arguments. */
12121 if (b->extra_string == NULL)
12122 {
12123 printf_filtered (_(" (%s) pending."),
12124 event_location_to_string (b->location.get ()));
12125 }
12126 else if (b->type == bp_dprintf)
12127 {
12128 printf_filtered (_(" (%s,%s) pending."),
12129 event_location_to_string (b->location.get ()),
12130 b->extra_string);
12131 }
12132 else
12133 {
12134 printf_filtered (_(" (%s %s) pending."),
12135 event_location_to_string (b->location.get ()),
12136 b->extra_string);
12137 }
12138 }
12139 else
12140 {
12141 if (opts.addressprint || b->loc->symtab == NULL)
12142 printf_filtered (" at %ps",
12143 styled_string (address_style.style (),
12144 paddress (b->loc->gdbarch,
12145 b->loc->address)));
12146 if (b->loc->symtab != NULL)
12147 {
12148 /* If there is a single location, we can print the location
12149 more nicely. */
12150 if (b->loc->next == NULL)
12151 {
12152 const char *filename
12153 = symtab_to_filename_for_display (b->loc->symtab);
12154 printf_filtered (": file %ps, line %d.",
12155 styled_string (file_name_style.style (),
12156 filename),
12157 b->loc->line_number);
12158 }
12159 else
12160 /* This is not ideal, but each location may have a
12161 different file name, and this at least reflects the
12162 real situation somewhat. */
12163 printf_filtered (": %s.",
12164 event_location_to_string (b->location.get ()));
12165 }
12166
12167 if (b->loc->next)
12168 {
12169 struct bp_location *loc = b->loc;
12170 int n = 0;
12171 for (; loc; loc = loc->next)
12172 ++n;
12173 printf_filtered (" (%d locations)", n);
12174 }
12175 }
12176 }
12177
12178 bp_location::~bp_location ()
12179 {
12180 xfree (function_name);
12181 }
12182
12183 /* Destructor for the breakpoint base class. */
12184
12185 breakpoint::~breakpoint ()
12186 {
12187 xfree (this->cond_string);
12188 xfree (this->extra_string);
12189 }
12190
12191 static struct bp_location *
12192 base_breakpoint_allocate_location (struct breakpoint *self)
12193 {
12194 return new bp_location (self);
12195 }
12196
12197 static void
12198 base_breakpoint_re_set (struct breakpoint *b)
12199 {
12200 /* Nothing to re-set. */
12201 }
12202
12203 #define internal_error_pure_virtual_called() \
12204 gdb_assert_not_reached ("pure virtual function called")
12205
12206 static int
12207 base_breakpoint_insert_location (struct bp_location *bl)
12208 {
12209 internal_error_pure_virtual_called ();
12210 }
12211
12212 static int
12213 base_breakpoint_remove_location (struct bp_location *bl,
12214 enum remove_bp_reason reason)
12215 {
12216 internal_error_pure_virtual_called ();
12217 }
12218
12219 static int
12220 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12221 const address_space *aspace,
12222 CORE_ADDR bp_addr,
12223 const struct target_waitstatus *ws)
12224 {
12225 internal_error_pure_virtual_called ();
12226 }
12227
12228 static void
12229 base_breakpoint_check_status (bpstat bs)
12230 {
12231 /* Always stop. */
12232 }
12233
12234 /* A "works_in_software_mode" breakpoint_ops method that just internal
12235 errors. */
12236
12237 static int
12238 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12239 {
12240 internal_error_pure_virtual_called ();
12241 }
12242
12243 /* A "resources_needed" breakpoint_ops method that just internal
12244 errors. */
12245
12246 static int
12247 base_breakpoint_resources_needed (const struct bp_location *bl)
12248 {
12249 internal_error_pure_virtual_called ();
12250 }
12251
12252 static enum print_stop_action
12253 base_breakpoint_print_it (bpstat bs)
12254 {
12255 internal_error_pure_virtual_called ();
12256 }
12257
12258 static void
12259 base_breakpoint_print_one_detail (const struct breakpoint *self,
12260 struct ui_out *uiout)
12261 {
12262 /* nothing */
12263 }
12264
12265 static void
12266 base_breakpoint_print_mention (struct breakpoint *b)
12267 {
12268 internal_error_pure_virtual_called ();
12269 }
12270
12271 static void
12272 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12273 {
12274 internal_error_pure_virtual_called ();
12275 }
12276
12277 static void
12278 base_breakpoint_create_sals_from_location
12279 (struct event_location *location,
12280 struct linespec_result *canonical,
12281 enum bptype type_wanted)
12282 {
12283 internal_error_pure_virtual_called ();
12284 }
12285
12286 static void
12287 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12288 struct linespec_result *c,
12289 gdb::unique_xmalloc_ptr<char> cond_string,
12290 gdb::unique_xmalloc_ptr<char> extra_string,
12291 enum bptype type_wanted,
12292 enum bpdisp disposition,
12293 int thread,
12294 int task, int ignore_count,
12295 const struct breakpoint_ops *o,
12296 int from_tty, int enabled,
12297 int internal, unsigned flags)
12298 {
12299 internal_error_pure_virtual_called ();
12300 }
12301
12302 static std::vector<symtab_and_line>
12303 base_breakpoint_decode_location (struct breakpoint *b,
12304 struct event_location *location,
12305 struct program_space *search_pspace)
12306 {
12307 internal_error_pure_virtual_called ();
12308 }
12309
12310 /* The default 'explains_signal' method. */
12311
12312 static int
12313 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12314 {
12315 return 1;
12316 }
12317
12318 /* The default "after_condition_true" method. */
12319
12320 static void
12321 base_breakpoint_after_condition_true (struct bpstats *bs)
12322 {
12323 /* Nothing to do. */
12324 }
12325
12326 struct breakpoint_ops base_breakpoint_ops =
12327 {
12328 base_breakpoint_allocate_location,
12329 base_breakpoint_re_set,
12330 base_breakpoint_insert_location,
12331 base_breakpoint_remove_location,
12332 base_breakpoint_breakpoint_hit,
12333 base_breakpoint_check_status,
12334 base_breakpoint_resources_needed,
12335 base_breakpoint_works_in_software_mode,
12336 base_breakpoint_print_it,
12337 NULL,
12338 base_breakpoint_print_one_detail,
12339 base_breakpoint_print_mention,
12340 base_breakpoint_print_recreate,
12341 base_breakpoint_create_sals_from_location,
12342 base_breakpoint_create_breakpoints_sal,
12343 base_breakpoint_decode_location,
12344 base_breakpoint_explains_signal,
12345 base_breakpoint_after_condition_true,
12346 };
12347
12348 /* Default breakpoint_ops methods. */
12349
12350 static void
12351 bkpt_re_set (struct breakpoint *b)
12352 {
12353 /* FIXME: is this still reachable? */
12354 if (breakpoint_event_location_empty_p (b))
12355 {
12356 /* Anything without a location can't be re-set. */
12357 delete_breakpoint (b);
12358 return;
12359 }
12360
12361 breakpoint_re_set_default (b);
12362 }
12363
12364 static int
12365 bkpt_insert_location (struct bp_location *bl)
12366 {
12367 CORE_ADDR addr = bl->target_info.reqstd_address;
12368
12369 bl->target_info.kind = breakpoint_kind (bl, &addr);
12370 bl->target_info.placed_address = addr;
12371
12372 if (bl->loc_type == bp_loc_hardware_breakpoint)
12373 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12374 else
12375 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12376 }
12377
12378 static int
12379 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12380 {
12381 if (bl->loc_type == bp_loc_hardware_breakpoint)
12382 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12383 else
12384 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12385 }
12386
12387 static int
12388 bkpt_breakpoint_hit (const struct bp_location *bl,
12389 const address_space *aspace, CORE_ADDR bp_addr,
12390 const struct target_waitstatus *ws)
12391 {
12392 if (ws->kind != TARGET_WAITKIND_STOPPED
12393 || ws->value.sig != GDB_SIGNAL_TRAP)
12394 return 0;
12395
12396 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12397 aspace, bp_addr))
12398 return 0;
12399
12400 if (overlay_debugging /* unmapped overlay section */
12401 && section_is_overlay (bl->section)
12402 && !section_is_mapped (bl->section))
12403 return 0;
12404
12405 return 1;
12406 }
12407
12408 static int
12409 dprintf_breakpoint_hit (const struct bp_location *bl,
12410 const address_space *aspace, CORE_ADDR bp_addr,
12411 const struct target_waitstatus *ws)
12412 {
12413 if (dprintf_style == dprintf_style_agent
12414 && target_can_run_breakpoint_commands ())
12415 {
12416 /* An agent-style dprintf never causes a stop. If we see a trap
12417 for this address it must be for a breakpoint that happens to
12418 be set at the same address. */
12419 return 0;
12420 }
12421
12422 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12423 }
12424
12425 static int
12426 bkpt_resources_needed (const struct bp_location *bl)
12427 {
12428 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12429
12430 return 1;
12431 }
12432
12433 static enum print_stop_action
12434 bkpt_print_it (bpstat bs)
12435 {
12436 struct breakpoint *b;
12437 const struct bp_location *bl;
12438 int bp_temp;
12439 struct ui_out *uiout = current_uiout;
12440
12441 gdb_assert (bs->bp_location_at != NULL);
12442
12443 bl = bs->bp_location_at;
12444 b = bs->breakpoint_at;
12445
12446 bp_temp = b->disposition == disp_del;
12447 if (bl->address != bl->requested_address)
12448 breakpoint_adjustment_warning (bl->requested_address,
12449 bl->address,
12450 b->number, 1);
12451 annotate_breakpoint (b->number);
12452 maybe_print_thread_hit_breakpoint (uiout);
12453
12454 if (uiout->is_mi_like_p ())
12455 {
12456 uiout->field_string ("reason",
12457 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12458 uiout->field_string ("disp", bpdisp_text (b->disposition));
12459 }
12460 if (bp_temp)
12461 uiout->message ("Temporary breakpoint %pF, ",
12462 signed_field ("bkptno", b->number));
12463 else
12464 uiout->message ("Breakpoint %pF, ",
12465 signed_field ("bkptno", b->number));
12466
12467 return PRINT_SRC_AND_LOC;
12468 }
12469
12470 static void
12471 bkpt_print_mention (struct breakpoint *b)
12472 {
12473 if (current_uiout->is_mi_like_p ())
12474 return;
12475
12476 switch (b->type)
12477 {
12478 case bp_breakpoint:
12479 case bp_gnu_ifunc_resolver:
12480 if (b->disposition == disp_del)
12481 printf_filtered (_("Temporary breakpoint"));
12482 else
12483 printf_filtered (_("Breakpoint"));
12484 printf_filtered (_(" %d"), b->number);
12485 if (b->type == bp_gnu_ifunc_resolver)
12486 printf_filtered (_(" at gnu-indirect-function resolver"));
12487 break;
12488 case bp_hardware_breakpoint:
12489 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12490 break;
12491 case bp_dprintf:
12492 printf_filtered (_("Dprintf %d"), b->number);
12493 break;
12494 }
12495
12496 say_where (b);
12497 }
12498
12499 static void
12500 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12501 {
12502 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12503 fprintf_unfiltered (fp, "tbreak");
12504 else if (tp->type == bp_breakpoint)
12505 fprintf_unfiltered (fp, "break");
12506 else if (tp->type == bp_hardware_breakpoint
12507 && tp->disposition == disp_del)
12508 fprintf_unfiltered (fp, "thbreak");
12509 else if (tp->type == bp_hardware_breakpoint)
12510 fprintf_unfiltered (fp, "hbreak");
12511 else
12512 internal_error (__FILE__, __LINE__,
12513 _("unhandled breakpoint type %d"), (int) tp->type);
12514
12515 fprintf_unfiltered (fp, " %s",
12516 event_location_to_string (tp->location.get ()));
12517
12518 /* Print out extra_string if this breakpoint is pending. It might
12519 contain, for example, conditions that were set by the user. */
12520 if (tp->loc == NULL && tp->extra_string != NULL)
12521 fprintf_unfiltered (fp, " %s", tp->extra_string);
12522
12523 print_recreate_thread (tp, fp);
12524 }
12525
12526 static void
12527 bkpt_create_sals_from_location (struct event_location *location,
12528 struct linespec_result *canonical,
12529 enum bptype type_wanted)
12530 {
12531 create_sals_from_location_default (location, canonical, type_wanted);
12532 }
12533
12534 static void
12535 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12536 struct linespec_result *canonical,
12537 gdb::unique_xmalloc_ptr<char> cond_string,
12538 gdb::unique_xmalloc_ptr<char> extra_string,
12539 enum bptype type_wanted,
12540 enum bpdisp disposition,
12541 int thread,
12542 int task, int ignore_count,
12543 const struct breakpoint_ops *ops,
12544 int from_tty, int enabled,
12545 int internal, unsigned flags)
12546 {
12547 create_breakpoints_sal_default (gdbarch, canonical,
12548 std::move (cond_string),
12549 std::move (extra_string),
12550 type_wanted,
12551 disposition, thread, task,
12552 ignore_count, ops, from_tty,
12553 enabled, internal, flags);
12554 }
12555
12556 static std::vector<symtab_and_line>
12557 bkpt_decode_location (struct breakpoint *b,
12558 struct event_location *location,
12559 struct program_space *search_pspace)
12560 {
12561 return decode_location_default (b, location, search_pspace);
12562 }
12563
12564 /* Virtual table for internal breakpoints. */
12565
12566 static void
12567 internal_bkpt_re_set (struct breakpoint *b)
12568 {
12569 switch (b->type)
12570 {
12571 /* Delete overlay event and longjmp master breakpoints; they
12572 will be reset later by breakpoint_re_set. */
12573 case bp_overlay_event:
12574 case bp_longjmp_master:
12575 case bp_std_terminate_master:
12576 case bp_exception_master:
12577 delete_breakpoint (b);
12578 break;
12579
12580 /* This breakpoint is special, it's set up when the inferior
12581 starts and we really don't want to touch it. */
12582 case bp_shlib_event:
12583
12584 /* Like bp_shlib_event, this breakpoint type is special. Once
12585 it is set up, we do not want to touch it. */
12586 case bp_thread_event:
12587 break;
12588 }
12589 }
12590
12591 static void
12592 internal_bkpt_check_status (bpstat bs)
12593 {
12594 if (bs->breakpoint_at->type == bp_shlib_event)
12595 {
12596 /* If requested, stop when the dynamic linker notifies GDB of
12597 events. This allows the user to get control and place
12598 breakpoints in initializer routines for dynamically loaded
12599 objects (among other things). */
12600 bs->stop = stop_on_solib_events;
12601 bs->print = stop_on_solib_events;
12602 }
12603 else
12604 bs->stop = 0;
12605 }
12606
12607 static enum print_stop_action
12608 internal_bkpt_print_it (bpstat bs)
12609 {
12610 struct breakpoint *b;
12611
12612 b = bs->breakpoint_at;
12613
12614 switch (b->type)
12615 {
12616 case bp_shlib_event:
12617 /* Did we stop because the user set the stop_on_solib_events
12618 variable? (If so, we report this as a generic, "Stopped due
12619 to shlib event" message.) */
12620 print_solib_event (0);
12621 break;
12622
12623 case bp_thread_event:
12624 /* Not sure how we will get here.
12625 GDB should not stop for these breakpoints. */
12626 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12627 break;
12628
12629 case bp_overlay_event:
12630 /* By analogy with the thread event, GDB should not stop for these. */
12631 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12632 break;
12633
12634 case bp_longjmp_master:
12635 /* These should never be enabled. */
12636 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12637 break;
12638
12639 case bp_std_terminate_master:
12640 /* These should never be enabled. */
12641 printf_filtered (_("std::terminate Master Breakpoint: "
12642 "gdb should not stop!\n"));
12643 break;
12644
12645 case bp_exception_master:
12646 /* These should never be enabled. */
12647 printf_filtered (_("Exception Master Breakpoint: "
12648 "gdb should not stop!\n"));
12649 break;
12650 }
12651
12652 return PRINT_NOTHING;
12653 }
12654
12655 static void
12656 internal_bkpt_print_mention (struct breakpoint *b)
12657 {
12658 /* Nothing to mention. These breakpoints are internal. */
12659 }
12660
12661 /* Virtual table for momentary breakpoints */
12662
12663 static void
12664 momentary_bkpt_re_set (struct breakpoint *b)
12665 {
12666 /* Keep temporary breakpoints, which can be encountered when we step
12667 over a dlopen call and solib_add is resetting the breakpoints.
12668 Otherwise these should have been blown away via the cleanup chain
12669 or by breakpoint_init_inferior when we rerun the executable. */
12670 }
12671
12672 static void
12673 momentary_bkpt_check_status (bpstat bs)
12674 {
12675 /* Nothing. The point of these breakpoints is causing a stop. */
12676 }
12677
12678 static enum print_stop_action
12679 momentary_bkpt_print_it (bpstat bs)
12680 {
12681 return PRINT_UNKNOWN;
12682 }
12683
12684 static void
12685 momentary_bkpt_print_mention (struct breakpoint *b)
12686 {
12687 /* Nothing to mention. These breakpoints are internal. */
12688 }
12689
12690 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12691
12692 It gets cleared already on the removal of the first one of such placed
12693 breakpoints. This is OK as they get all removed altogether. */
12694
12695 longjmp_breakpoint::~longjmp_breakpoint ()
12696 {
12697 thread_info *tp = find_thread_global_id (this->thread);
12698
12699 if (tp != NULL)
12700 tp->initiating_frame = null_frame_id;
12701 }
12702
12703 /* Specific methods for probe breakpoints. */
12704
12705 static int
12706 bkpt_probe_insert_location (struct bp_location *bl)
12707 {
12708 int v = bkpt_insert_location (bl);
12709
12710 if (v == 0)
12711 {
12712 /* The insertion was successful, now let's set the probe's semaphore
12713 if needed. */
12714 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12715 }
12716
12717 return v;
12718 }
12719
12720 static int
12721 bkpt_probe_remove_location (struct bp_location *bl,
12722 enum remove_bp_reason reason)
12723 {
12724 /* Let's clear the semaphore before removing the location. */
12725 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12726
12727 return bkpt_remove_location (bl, reason);
12728 }
12729
12730 static void
12731 bkpt_probe_create_sals_from_location (struct event_location *location,
12732 struct linespec_result *canonical,
12733 enum bptype type_wanted)
12734 {
12735 struct linespec_sals lsal;
12736
12737 lsal.sals = parse_probes (location, NULL, canonical);
12738 lsal.canonical
12739 = xstrdup (event_location_to_string (canonical->location.get ()));
12740 canonical->lsals.push_back (std::move (lsal));
12741 }
12742
12743 static std::vector<symtab_and_line>
12744 bkpt_probe_decode_location (struct breakpoint *b,
12745 struct event_location *location,
12746 struct program_space *search_pspace)
12747 {
12748 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12749 if (sals.empty ())
12750 error (_("probe not found"));
12751 return sals;
12752 }
12753
12754 /* The breakpoint_ops structure to be used in tracepoints. */
12755
12756 static void
12757 tracepoint_re_set (struct breakpoint *b)
12758 {
12759 breakpoint_re_set_default (b);
12760 }
12761
12762 static int
12763 tracepoint_breakpoint_hit (const struct bp_location *bl,
12764 const address_space *aspace, CORE_ADDR bp_addr,
12765 const struct target_waitstatus *ws)
12766 {
12767 /* By definition, the inferior does not report stops at
12768 tracepoints. */
12769 return 0;
12770 }
12771
12772 static void
12773 tracepoint_print_one_detail (const struct breakpoint *self,
12774 struct ui_out *uiout)
12775 {
12776 struct tracepoint *tp = (struct tracepoint *) self;
12777 if (!tp->static_trace_marker_id.empty ())
12778 {
12779 gdb_assert (self->type == bp_static_tracepoint);
12780
12781 uiout->message ("\tmarker id is %pF\n",
12782 string_field ("static-tracepoint-marker-string-id",
12783 tp->static_trace_marker_id.c_str ()));
12784 }
12785 }
12786
12787 static void
12788 tracepoint_print_mention (struct breakpoint *b)
12789 {
12790 if (current_uiout->is_mi_like_p ())
12791 return;
12792
12793 switch (b->type)
12794 {
12795 case bp_tracepoint:
12796 printf_filtered (_("Tracepoint"));
12797 printf_filtered (_(" %d"), b->number);
12798 break;
12799 case bp_fast_tracepoint:
12800 printf_filtered (_("Fast tracepoint"));
12801 printf_filtered (_(" %d"), b->number);
12802 break;
12803 case bp_static_tracepoint:
12804 printf_filtered (_("Static tracepoint"));
12805 printf_filtered (_(" %d"), b->number);
12806 break;
12807 default:
12808 internal_error (__FILE__, __LINE__,
12809 _("unhandled tracepoint type %d"), (int) b->type);
12810 }
12811
12812 say_where (b);
12813 }
12814
12815 static void
12816 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12817 {
12818 struct tracepoint *tp = (struct tracepoint *) self;
12819
12820 if (self->type == bp_fast_tracepoint)
12821 fprintf_unfiltered (fp, "ftrace");
12822 else if (self->type == bp_static_tracepoint)
12823 fprintf_unfiltered (fp, "strace");
12824 else if (self->type == bp_tracepoint)
12825 fprintf_unfiltered (fp, "trace");
12826 else
12827 internal_error (__FILE__, __LINE__,
12828 _("unhandled tracepoint type %d"), (int) self->type);
12829
12830 fprintf_unfiltered (fp, " %s",
12831 event_location_to_string (self->location.get ()));
12832 print_recreate_thread (self, fp);
12833
12834 if (tp->pass_count)
12835 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12836 }
12837
12838 static void
12839 tracepoint_create_sals_from_location (struct event_location *location,
12840 struct linespec_result *canonical,
12841 enum bptype type_wanted)
12842 {
12843 create_sals_from_location_default (location, canonical, type_wanted);
12844 }
12845
12846 static void
12847 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12848 struct linespec_result *canonical,
12849 gdb::unique_xmalloc_ptr<char> cond_string,
12850 gdb::unique_xmalloc_ptr<char> extra_string,
12851 enum bptype type_wanted,
12852 enum bpdisp disposition,
12853 int thread,
12854 int task, int ignore_count,
12855 const struct breakpoint_ops *ops,
12856 int from_tty, int enabled,
12857 int internal, unsigned flags)
12858 {
12859 create_breakpoints_sal_default (gdbarch, canonical,
12860 std::move (cond_string),
12861 std::move (extra_string),
12862 type_wanted,
12863 disposition, thread, task,
12864 ignore_count, ops, from_tty,
12865 enabled, internal, flags);
12866 }
12867
12868 static std::vector<symtab_and_line>
12869 tracepoint_decode_location (struct breakpoint *b,
12870 struct event_location *location,
12871 struct program_space *search_pspace)
12872 {
12873 return decode_location_default (b, location, search_pspace);
12874 }
12875
12876 struct breakpoint_ops tracepoint_breakpoint_ops;
12877
12878 /* Virtual table for tracepoints on static probes. */
12879
12880 static void
12881 tracepoint_probe_create_sals_from_location
12882 (struct event_location *location,
12883 struct linespec_result *canonical,
12884 enum bptype type_wanted)
12885 {
12886 /* We use the same method for breakpoint on probes. */
12887 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12888 }
12889
12890 static std::vector<symtab_and_line>
12891 tracepoint_probe_decode_location (struct breakpoint *b,
12892 struct event_location *location,
12893 struct program_space *search_pspace)
12894 {
12895 /* We use the same method for breakpoint on probes. */
12896 return bkpt_probe_decode_location (b, location, search_pspace);
12897 }
12898
12899 /* Dprintf breakpoint_ops methods. */
12900
12901 static void
12902 dprintf_re_set (struct breakpoint *b)
12903 {
12904 breakpoint_re_set_default (b);
12905
12906 /* extra_string should never be non-NULL for dprintf. */
12907 gdb_assert (b->extra_string != NULL);
12908
12909 /* 1 - connect to target 1, that can run breakpoint commands.
12910 2 - create a dprintf, which resolves fine.
12911 3 - disconnect from target 1
12912 4 - connect to target 2, that can NOT run breakpoint commands.
12913
12914 After steps #3/#4, you'll want the dprintf command list to
12915 be updated, because target 1 and 2 may well return different
12916 answers for target_can_run_breakpoint_commands().
12917 Given absence of finer grained resetting, we get to do
12918 it all the time. */
12919 if (b->extra_string != NULL)
12920 update_dprintf_command_list (b);
12921 }
12922
12923 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12924
12925 static void
12926 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12927 {
12928 fprintf_unfiltered (fp, "dprintf %s,%s",
12929 event_location_to_string (tp->location.get ()),
12930 tp->extra_string);
12931 print_recreate_thread (tp, fp);
12932 }
12933
12934 /* Implement the "after_condition_true" breakpoint_ops method for
12935 dprintf.
12936
12937 dprintf's are implemented with regular commands in their command
12938 list, but we run the commands here instead of before presenting the
12939 stop to the user, as dprintf's don't actually cause a stop. This
12940 also makes it so that the commands of multiple dprintfs at the same
12941 address are all handled. */
12942
12943 static void
12944 dprintf_after_condition_true (struct bpstats *bs)
12945 {
12946 struct bpstats tmp_bs;
12947 struct bpstats *tmp_bs_p = &tmp_bs;
12948
12949 /* dprintf's never cause a stop. This wasn't set in the
12950 check_status hook instead because that would make the dprintf's
12951 condition not be evaluated. */
12952 bs->stop = 0;
12953
12954 /* Run the command list here. Take ownership of it instead of
12955 copying. We never want these commands to run later in
12956 bpstat_do_actions, if a breakpoint that causes a stop happens to
12957 be set at same address as this dprintf, or even if running the
12958 commands here throws. */
12959 tmp_bs.commands = bs->commands;
12960 bs->commands = NULL;
12961
12962 bpstat_do_actions_1 (&tmp_bs_p);
12963
12964 /* 'tmp_bs.commands' will usually be NULL by now, but
12965 bpstat_do_actions_1 may return early without processing the whole
12966 list. */
12967 }
12968
12969 /* The breakpoint_ops structure to be used on static tracepoints with
12970 markers (`-m'). */
12971
12972 static void
12973 strace_marker_create_sals_from_location (struct event_location *location,
12974 struct linespec_result *canonical,
12975 enum bptype type_wanted)
12976 {
12977 struct linespec_sals lsal;
12978 const char *arg_start, *arg;
12979
12980 arg = arg_start = get_linespec_location (location)->spec_string;
12981 lsal.sals = decode_static_tracepoint_spec (&arg);
12982
12983 std::string str (arg_start, arg - arg_start);
12984 const char *ptr = str.c_str ();
12985 canonical->location
12986 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12987
12988 lsal.canonical
12989 = xstrdup (event_location_to_string (canonical->location.get ()));
12990 canonical->lsals.push_back (std::move (lsal));
12991 }
12992
12993 static void
12994 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12995 struct linespec_result *canonical,
12996 gdb::unique_xmalloc_ptr<char> cond_string,
12997 gdb::unique_xmalloc_ptr<char> extra_string,
12998 enum bptype type_wanted,
12999 enum bpdisp disposition,
13000 int thread,
13001 int task, int ignore_count,
13002 const struct breakpoint_ops *ops,
13003 int from_tty, int enabled,
13004 int internal, unsigned flags)
13005 {
13006 const linespec_sals &lsal = canonical->lsals[0];
13007
13008 /* If the user is creating a static tracepoint by marker id
13009 (strace -m MARKER_ID), then store the sals index, so that
13010 breakpoint_re_set can try to match up which of the newly
13011 found markers corresponds to this one, and, don't try to
13012 expand multiple locations for each sal, given than SALS
13013 already should contain all sals for MARKER_ID. */
13014
13015 for (size_t i = 0; i < lsal.sals.size (); i++)
13016 {
13017 event_location_up location
13018 = copy_event_location (canonical->location.get ());
13019
13020 std::unique_ptr<tracepoint> tp (new tracepoint ());
13021 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13022 std::move (location), NULL,
13023 std::move (cond_string),
13024 std::move (extra_string),
13025 type_wanted, disposition,
13026 thread, task, ignore_count, ops,
13027 from_tty, enabled, internal, flags,
13028 canonical->special_display);
13029 /* Given that its possible to have multiple markers with
13030 the same string id, if the user is creating a static
13031 tracepoint by marker id ("strace -m MARKER_ID"), then
13032 store the sals index, so that breakpoint_re_set can
13033 try to match up which of the newly found markers
13034 corresponds to this one */
13035 tp->static_trace_marker_id_idx = i;
13036
13037 install_breakpoint (internal, std::move (tp), 0);
13038 }
13039 }
13040
13041 static std::vector<symtab_and_line>
13042 strace_marker_decode_location (struct breakpoint *b,
13043 struct event_location *location,
13044 struct program_space *search_pspace)
13045 {
13046 struct tracepoint *tp = (struct tracepoint *) b;
13047 const char *s = get_linespec_location (location)->spec_string;
13048
13049 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13050 if (sals.size () > tp->static_trace_marker_id_idx)
13051 {
13052 sals[0] = sals[tp->static_trace_marker_id_idx];
13053 sals.resize (1);
13054 return sals;
13055 }
13056 else
13057 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13058 }
13059
13060 static struct breakpoint_ops strace_marker_breakpoint_ops;
13061
13062 static int
13063 strace_marker_p (struct breakpoint *b)
13064 {
13065 return b->ops == &strace_marker_breakpoint_ops;
13066 }
13067
13068 /* Delete a breakpoint and clean up all traces of it in the data
13069 structures. */
13070
13071 void
13072 delete_breakpoint (struct breakpoint *bpt)
13073 {
13074 struct breakpoint *b;
13075
13076 gdb_assert (bpt != NULL);
13077
13078 /* Has this bp already been deleted? This can happen because
13079 multiple lists can hold pointers to bp's. bpstat lists are
13080 especial culprits.
13081
13082 One example of this happening is a watchpoint's scope bp. When
13083 the scope bp triggers, we notice that the watchpoint is out of
13084 scope, and delete it. We also delete its scope bp. But the
13085 scope bp is marked "auto-deleting", and is already on a bpstat.
13086 That bpstat is then checked for auto-deleting bp's, which are
13087 deleted.
13088
13089 A real solution to this problem might involve reference counts in
13090 bp's, and/or giving them pointers back to their referencing
13091 bpstat's, and teaching delete_breakpoint to only free a bp's
13092 storage when no more references were extent. A cheaper bandaid
13093 was chosen. */
13094 if (bpt->type == bp_none)
13095 return;
13096
13097 /* At least avoid this stale reference until the reference counting
13098 of breakpoints gets resolved. */
13099 if (bpt->related_breakpoint != bpt)
13100 {
13101 struct breakpoint *related;
13102 struct watchpoint *w;
13103
13104 if (bpt->type == bp_watchpoint_scope)
13105 w = (struct watchpoint *) bpt->related_breakpoint;
13106 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13107 w = (struct watchpoint *) bpt;
13108 else
13109 w = NULL;
13110 if (w != NULL)
13111 watchpoint_del_at_next_stop (w);
13112
13113 /* Unlink bpt from the bpt->related_breakpoint ring. */
13114 for (related = bpt; related->related_breakpoint != bpt;
13115 related = related->related_breakpoint);
13116 related->related_breakpoint = bpt->related_breakpoint;
13117 bpt->related_breakpoint = bpt;
13118 }
13119
13120 /* watch_command_1 creates a watchpoint but only sets its number if
13121 update_watchpoint succeeds in creating its bp_locations. If there's
13122 a problem in that process, we'll be asked to delete the half-created
13123 watchpoint. In that case, don't announce the deletion. */
13124 if (bpt->number)
13125 gdb::observers::breakpoint_deleted.notify (bpt);
13126
13127 if (breakpoint_chain == bpt)
13128 breakpoint_chain = bpt->next;
13129
13130 ALL_BREAKPOINTS (b)
13131 if (b->next == bpt)
13132 {
13133 b->next = bpt->next;
13134 break;
13135 }
13136
13137 /* Be sure no bpstat's are pointing at the breakpoint after it's
13138 been freed. */
13139 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13140 in all threads for now. Note that we cannot just remove bpstats
13141 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13142 commands are associated with the bpstat; if we remove it here,
13143 then the later call to bpstat_do_actions (&stop_bpstat); in
13144 event-top.c won't do anything, and temporary breakpoints with
13145 commands won't work. */
13146
13147 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13148
13149 /* Now that breakpoint is removed from breakpoint list, update the
13150 global location list. This will remove locations that used to
13151 belong to this breakpoint. Do this before freeing the breakpoint
13152 itself, since remove_breakpoint looks at location's owner. It
13153 might be better design to have location completely
13154 self-contained, but it's not the case now. */
13155 update_global_location_list (UGLL_DONT_INSERT);
13156
13157 /* On the chance that someone will soon try again to delete this
13158 same bp, we mark it as deleted before freeing its storage. */
13159 bpt->type = bp_none;
13160 delete bpt;
13161 }
13162
13163 /* Iterator function to call a user-provided callback function once
13164 for each of B and its related breakpoints. */
13165
13166 static void
13167 iterate_over_related_breakpoints (struct breakpoint *b,
13168 gdb::function_view<void (breakpoint *)> function)
13169 {
13170 struct breakpoint *related;
13171
13172 related = b;
13173 do
13174 {
13175 struct breakpoint *next;
13176
13177 /* FUNCTION may delete RELATED. */
13178 next = related->related_breakpoint;
13179
13180 if (next == related)
13181 {
13182 /* RELATED is the last ring entry. */
13183 function (related);
13184
13185 /* FUNCTION may have deleted it, so we'd never reach back to
13186 B. There's nothing left to do anyway, so just break
13187 out. */
13188 break;
13189 }
13190 else
13191 function (related);
13192
13193 related = next;
13194 }
13195 while (related != b);
13196 }
13197
13198 static void
13199 delete_command (const char *arg, int from_tty)
13200 {
13201 struct breakpoint *b, *b_tmp;
13202
13203 dont_repeat ();
13204
13205 if (arg == 0)
13206 {
13207 int breaks_to_delete = 0;
13208
13209 /* Delete all breakpoints if no argument. Do not delete
13210 internal breakpoints, these have to be deleted with an
13211 explicit breakpoint number argument. */
13212 ALL_BREAKPOINTS (b)
13213 if (user_breakpoint_p (b))
13214 {
13215 breaks_to_delete = 1;
13216 break;
13217 }
13218
13219 /* Ask user only if there are some breakpoints to delete. */
13220 if (!from_tty
13221 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13222 {
13223 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13224 if (user_breakpoint_p (b))
13225 delete_breakpoint (b);
13226 }
13227 }
13228 else
13229 map_breakpoint_numbers
13230 (arg, [&] (breakpoint *br)
13231 {
13232 iterate_over_related_breakpoints (br, delete_breakpoint);
13233 });
13234 }
13235
13236 /* Return true if all locations of B bound to PSPACE are pending. If
13237 PSPACE is NULL, all locations of all program spaces are
13238 considered. */
13239
13240 static int
13241 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13242 {
13243 struct bp_location *loc;
13244
13245 for (loc = b->loc; loc != NULL; loc = loc->next)
13246 if ((pspace == NULL
13247 || loc->pspace == pspace)
13248 && !loc->shlib_disabled
13249 && !loc->pspace->executing_startup)
13250 return 0;
13251 return 1;
13252 }
13253
13254 /* Subroutine of update_breakpoint_locations to simplify it.
13255 Return non-zero if multiple fns in list LOC have the same name.
13256 Null names are ignored. */
13257
13258 static int
13259 ambiguous_names_p (struct bp_location *loc)
13260 {
13261 struct bp_location *l;
13262 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13263 xcalloc, xfree);
13264
13265 for (l = loc; l != NULL; l = l->next)
13266 {
13267 const char **slot;
13268 const char *name = l->function_name;
13269
13270 /* Allow for some names to be NULL, ignore them. */
13271 if (name == NULL)
13272 continue;
13273
13274 slot = (const char **) htab_find_slot (htab, (const void *) name,
13275 INSERT);
13276 /* NOTE: We can assume slot != NULL here because xcalloc never
13277 returns NULL. */
13278 if (*slot != NULL)
13279 {
13280 htab_delete (htab);
13281 return 1;
13282 }
13283 *slot = name;
13284 }
13285
13286 htab_delete (htab);
13287 return 0;
13288 }
13289
13290 /* When symbols change, it probably means the sources changed as well,
13291 and it might mean the static tracepoint markers are no longer at
13292 the same address or line numbers they used to be at last we
13293 checked. Losing your static tracepoints whenever you rebuild is
13294 undesirable. This function tries to resync/rematch gdb static
13295 tracepoints with the markers on the target, for static tracepoints
13296 that have not been set by marker id. Static tracepoint that have
13297 been set by marker id are reset by marker id in breakpoint_re_set.
13298 The heuristic is:
13299
13300 1) For a tracepoint set at a specific address, look for a marker at
13301 the old PC. If one is found there, assume to be the same marker.
13302 If the name / string id of the marker found is different from the
13303 previous known name, assume that means the user renamed the marker
13304 in the sources, and output a warning.
13305
13306 2) For a tracepoint set at a given line number, look for a marker
13307 at the new address of the old line number. If one is found there,
13308 assume to be the same marker. If the name / string id of the
13309 marker found is different from the previous known name, assume that
13310 means the user renamed the marker in the sources, and output a
13311 warning.
13312
13313 3) If a marker is no longer found at the same address or line, it
13314 may mean the marker no longer exists. But it may also just mean
13315 the code changed a bit. Maybe the user added a few lines of code
13316 that made the marker move up or down (in line number terms). Ask
13317 the target for info about the marker with the string id as we knew
13318 it. If found, update line number and address in the matching
13319 static tracepoint. This will get confused if there's more than one
13320 marker with the same ID (possible in UST, although unadvised
13321 precisely because it confuses tools). */
13322
13323 static struct symtab_and_line
13324 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13325 {
13326 struct tracepoint *tp = (struct tracepoint *) b;
13327 struct static_tracepoint_marker marker;
13328 CORE_ADDR pc;
13329
13330 pc = sal.pc;
13331 if (sal.line)
13332 find_line_pc (sal.symtab, sal.line, &pc);
13333
13334 if (target_static_tracepoint_marker_at (pc, &marker))
13335 {
13336 if (tp->static_trace_marker_id != marker.str_id)
13337 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13338 b->number, tp->static_trace_marker_id.c_str (),
13339 marker.str_id.c_str ());
13340
13341 tp->static_trace_marker_id = std::move (marker.str_id);
13342
13343 return sal;
13344 }
13345
13346 /* Old marker wasn't found on target at lineno. Try looking it up
13347 by string ID. */
13348 if (!sal.explicit_pc
13349 && sal.line != 0
13350 && sal.symtab != NULL
13351 && !tp->static_trace_marker_id.empty ())
13352 {
13353 std::vector<static_tracepoint_marker> markers
13354 = target_static_tracepoint_markers_by_strid
13355 (tp->static_trace_marker_id.c_str ());
13356
13357 if (!markers.empty ())
13358 {
13359 struct symbol *sym;
13360 struct static_tracepoint_marker *tpmarker;
13361 struct ui_out *uiout = current_uiout;
13362 struct explicit_location explicit_loc;
13363
13364 tpmarker = &markers[0];
13365
13366 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13367
13368 warning (_("marker for static tracepoint %d (%s) not "
13369 "found at previous line number"),
13370 b->number, tp->static_trace_marker_id.c_str ());
13371
13372 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13373 sym = find_pc_sect_function (tpmarker->address, NULL);
13374 uiout->text ("Now in ");
13375 if (sym)
13376 {
13377 uiout->field_string ("func", sym->print_name (),
13378 function_name_style.style ());
13379 uiout->text (" at ");
13380 }
13381 uiout->field_string ("file",
13382 symtab_to_filename_for_display (sal2.symtab),
13383 file_name_style.style ());
13384 uiout->text (":");
13385
13386 if (uiout->is_mi_like_p ())
13387 {
13388 const char *fullname = symtab_to_fullname (sal2.symtab);
13389
13390 uiout->field_string ("fullname", fullname);
13391 }
13392
13393 uiout->field_signed ("line", sal2.line);
13394 uiout->text ("\n");
13395
13396 b->loc->line_number = sal2.line;
13397 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13398
13399 b->location.reset (NULL);
13400 initialize_explicit_location (&explicit_loc);
13401 explicit_loc.source_filename
13402 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13403 explicit_loc.line_offset.offset = b->loc->line_number;
13404 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13405 b->location = new_explicit_location (&explicit_loc);
13406
13407 /* Might be nice to check if function changed, and warn if
13408 so. */
13409 }
13410 }
13411 return sal;
13412 }
13413
13414 /* Returns 1 iff locations A and B are sufficiently same that
13415 we don't need to report breakpoint as changed. */
13416
13417 static int
13418 locations_are_equal (struct bp_location *a, struct bp_location *b)
13419 {
13420 while (a && b)
13421 {
13422 if (a->address != b->address)
13423 return 0;
13424
13425 if (a->shlib_disabled != b->shlib_disabled)
13426 return 0;
13427
13428 if (a->enabled != b->enabled)
13429 return 0;
13430
13431 a = a->next;
13432 b = b->next;
13433 }
13434
13435 if ((a == NULL) != (b == NULL))
13436 return 0;
13437
13438 return 1;
13439 }
13440
13441 /* Split all locations of B that are bound to PSPACE out of B's
13442 location list to a separate list and return that list's head. If
13443 PSPACE is NULL, hoist out all locations of B. */
13444
13445 static struct bp_location *
13446 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13447 {
13448 struct bp_location head;
13449 struct bp_location *i = b->loc;
13450 struct bp_location **i_link = &b->loc;
13451 struct bp_location *hoisted = &head;
13452
13453 if (pspace == NULL)
13454 {
13455 i = b->loc;
13456 b->loc = NULL;
13457 return i;
13458 }
13459
13460 head.next = NULL;
13461
13462 while (i != NULL)
13463 {
13464 if (i->pspace == pspace)
13465 {
13466 *i_link = i->next;
13467 i->next = NULL;
13468 hoisted->next = i;
13469 hoisted = i;
13470 }
13471 else
13472 i_link = &i->next;
13473 i = *i_link;
13474 }
13475
13476 return head.next;
13477 }
13478
13479 /* Create new breakpoint locations for B (a hardware or software
13480 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13481 zero, then B is a ranged breakpoint. Only recreates locations for
13482 FILTER_PSPACE. Locations of other program spaces are left
13483 untouched. */
13484
13485 void
13486 update_breakpoint_locations (struct breakpoint *b,
13487 struct program_space *filter_pspace,
13488 gdb::array_view<const symtab_and_line> sals,
13489 gdb::array_view<const symtab_and_line> sals_end)
13490 {
13491 struct bp_location *existing_locations;
13492
13493 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13494 {
13495 /* Ranged breakpoints have only one start location and one end
13496 location. */
13497 b->enable_state = bp_disabled;
13498 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13499 "multiple locations found\n"),
13500 b->number);
13501 return;
13502 }
13503
13504 /* If there's no new locations, and all existing locations are
13505 pending, don't do anything. This optimizes the common case where
13506 all locations are in the same shared library, that was unloaded.
13507 We'd like to retain the location, so that when the library is
13508 loaded again, we don't loose the enabled/disabled status of the
13509 individual locations. */
13510 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13511 return;
13512
13513 existing_locations = hoist_existing_locations (b, filter_pspace);
13514
13515 for (const auto &sal : sals)
13516 {
13517 struct bp_location *new_loc;
13518
13519 switch_to_program_space_and_thread (sal.pspace);
13520
13521 new_loc = add_location_to_breakpoint (b, &sal);
13522
13523 /* Reparse conditions, they might contain references to the
13524 old symtab. */
13525 if (b->cond_string != NULL)
13526 {
13527 const char *s;
13528
13529 s = b->cond_string;
13530 try
13531 {
13532 new_loc->cond = parse_exp_1 (&s, sal.pc,
13533 block_for_pc (sal.pc),
13534 0);
13535 }
13536 catch (const gdb_exception_error &e)
13537 {
13538 warning (_("failed to reevaluate condition "
13539 "for breakpoint %d: %s"),
13540 b->number, e.what ());
13541 new_loc->enabled = 0;
13542 }
13543 }
13544
13545 if (!sals_end.empty ())
13546 {
13547 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13548
13549 new_loc->length = end - sals[0].pc + 1;
13550 }
13551 }
13552
13553 /* If possible, carry over 'disable' status from existing
13554 breakpoints. */
13555 {
13556 struct bp_location *e = existing_locations;
13557 /* If there are multiple breakpoints with the same function name,
13558 e.g. for inline functions, comparing function names won't work.
13559 Instead compare pc addresses; this is just a heuristic as things
13560 may have moved, but in practice it gives the correct answer
13561 often enough until a better solution is found. */
13562 int have_ambiguous_names = ambiguous_names_p (b->loc);
13563
13564 for (; e; e = e->next)
13565 {
13566 if (!e->enabled && e->function_name)
13567 {
13568 struct bp_location *l = b->loc;
13569 if (have_ambiguous_names)
13570 {
13571 for (; l; l = l->next)
13572 {
13573 /* Ignore software vs hardware location type at
13574 this point, because with "set breakpoint
13575 auto-hw", after a re-set, locations that were
13576 hardware can end up as software, or vice versa.
13577 As mentioned above, this is an heuristic and in
13578 practice should give the correct answer often
13579 enough. */
13580 if (breakpoint_locations_match (e, l, true))
13581 {
13582 l->enabled = 0;
13583 break;
13584 }
13585 }
13586 }
13587 else
13588 {
13589 for (; l; l = l->next)
13590 if (l->function_name
13591 && strcmp (e->function_name, l->function_name) == 0)
13592 {
13593 l->enabled = 0;
13594 break;
13595 }
13596 }
13597 }
13598 }
13599 }
13600
13601 if (!locations_are_equal (existing_locations, b->loc))
13602 gdb::observers::breakpoint_modified.notify (b);
13603 }
13604
13605 /* Find the SaL locations corresponding to the given LOCATION.
13606 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13607
13608 static std::vector<symtab_and_line>
13609 location_to_sals (struct breakpoint *b, struct event_location *location,
13610 struct program_space *search_pspace, int *found)
13611 {
13612 struct gdb_exception exception;
13613
13614 gdb_assert (b->ops != NULL);
13615
13616 std::vector<symtab_and_line> sals;
13617
13618 try
13619 {
13620 sals = b->ops->decode_location (b, location, search_pspace);
13621 }
13622 catch (gdb_exception_error &e)
13623 {
13624 int not_found_and_ok = 0;
13625
13626 /* For pending breakpoints, it's expected that parsing will
13627 fail until the right shared library is loaded. User has
13628 already told to create pending breakpoints and don't need
13629 extra messages. If breakpoint is in bp_shlib_disabled
13630 state, then user already saw the message about that
13631 breakpoint being disabled, and don't want to see more
13632 errors. */
13633 if (e.error == NOT_FOUND_ERROR
13634 && (b->condition_not_parsed
13635 || (b->loc != NULL
13636 && search_pspace != NULL
13637 && b->loc->pspace != search_pspace)
13638 || (b->loc && b->loc->shlib_disabled)
13639 || (b->loc && b->loc->pspace->executing_startup)
13640 || b->enable_state == bp_disabled))
13641 not_found_and_ok = 1;
13642
13643 if (!not_found_and_ok)
13644 {
13645 /* We surely don't want to warn about the same breakpoint
13646 10 times. One solution, implemented here, is disable
13647 the breakpoint on error. Another solution would be to
13648 have separate 'warning emitted' flag. Since this
13649 happens only when a binary has changed, I don't know
13650 which approach is better. */
13651 b->enable_state = bp_disabled;
13652 throw;
13653 }
13654
13655 exception = std::move (e);
13656 }
13657
13658 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13659 {
13660 for (auto &sal : sals)
13661 resolve_sal_pc (&sal);
13662 if (b->condition_not_parsed && b->extra_string != NULL)
13663 {
13664 char *cond_string, *extra_string;
13665 int thread, task;
13666
13667 find_condition_and_thread (b->extra_string, sals[0].pc,
13668 &cond_string, &thread, &task,
13669 &extra_string);
13670 gdb_assert (b->cond_string == NULL);
13671 if (cond_string)
13672 b->cond_string = cond_string;
13673 b->thread = thread;
13674 b->task = task;
13675 if (extra_string)
13676 {
13677 xfree (b->extra_string);
13678 b->extra_string = extra_string;
13679 }
13680 b->condition_not_parsed = 0;
13681 }
13682
13683 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13684 sals[0] = update_static_tracepoint (b, sals[0]);
13685
13686 *found = 1;
13687 }
13688 else
13689 *found = 0;
13690
13691 return sals;
13692 }
13693
13694 /* The default re_set method, for typical hardware or software
13695 breakpoints. Reevaluate the breakpoint and recreate its
13696 locations. */
13697
13698 static void
13699 breakpoint_re_set_default (struct breakpoint *b)
13700 {
13701 struct program_space *filter_pspace = current_program_space;
13702 std::vector<symtab_and_line> expanded, expanded_end;
13703
13704 int found;
13705 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13706 filter_pspace, &found);
13707 if (found)
13708 expanded = std::move (sals);
13709
13710 if (b->location_range_end != NULL)
13711 {
13712 std::vector<symtab_and_line> sals_end
13713 = location_to_sals (b, b->location_range_end.get (),
13714 filter_pspace, &found);
13715 if (found)
13716 expanded_end = std::move (sals_end);
13717 }
13718
13719 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13720 }
13721
13722 /* Default method for creating SALs from an address string. It basically
13723 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13724
13725 static void
13726 create_sals_from_location_default (struct event_location *location,
13727 struct linespec_result *canonical,
13728 enum bptype type_wanted)
13729 {
13730 parse_breakpoint_sals (location, canonical);
13731 }
13732
13733 /* Call create_breakpoints_sal for the given arguments. This is the default
13734 function for the `create_breakpoints_sal' method of
13735 breakpoint_ops. */
13736
13737 static void
13738 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13739 struct linespec_result *canonical,
13740 gdb::unique_xmalloc_ptr<char> cond_string,
13741 gdb::unique_xmalloc_ptr<char> extra_string,
13742 enum bptype type_wanted,
13743 enum bpdisp disposition,
13744 int thread,
13745 int task, int ignore_count,
13746 const struct breakpoint_ops *ops,
13747 int from_tty, int enabled,
13748 int internal, unsigned flags)
13749 {
13750 create_breakpoints_sal (gdbarch, canonical,
13751 std::move (cond_string),
13752 std::move (extra_string),
13753 type_wanted, disposition,
13754 thread, task, ignore_count, ops, from_tty,
13755 enabled, internal, flags);
13756 }
13757
13758 /* Decode the line represented by S by calling decode_line_full. This is the
13759 default function for the `decode_location' method of breakpoint_ops. */
13760
13761 static std::vector<symtab_and_line>
13762 decode_location_default (struct breakpoint *b,
13763 struct event_location *location,
13764 struct program_space *search_pspace)
13765 {
13766 struct linespec_result canonical;
13767
13768 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13769 NULL, 0, &canonical, multiple_symbols_all,
13770 b->filter.get ());
13771
13772 /* We should get 0 or 1 resulting SALs. */
13773 gdb_assert (canonical.lsals.size () < 2);
13774
13775 if (!canonical.lsals.empty ())
13776 {
13777 const linespec_sals &lsal = canonical.lsals[0];
13778 return std::move (lsal.sals);
13779 }
13780 return {};
13781 }
13782
13783 /* Reset a breakpoint. */
13784
13785 static void
13786 breakpoint_re_set_one (breakpoint *b)
13787 {
13788 input_radix = b->input_radix;
13789 set_language (b->language);
13790
13791 b->ops->re_set (b);
13792 }
13793
13794 /* Re-set breakpoint locations for the current program space.
13795 Locations bound to other program spaces are left untouched. */
13796
13797 void
13798 breakpoint_re_set (void)
13799 {
13800 struct breakpoint *b, *b_tmp;
13801
13802 {
13803 scoped_restore_current_language save_language;
13804 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13805 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13806
13807 /* breakpoint_re_set_one sets the current_language to the language
13808 of the breakpoint it is resetting (see prepare_re_set_context)
13809 before re-evaluating the breakpoint's location. This change can
13810 unfortunately get undone by accident if the language_mode is set
13811 to auto, and we either switch frames, or more likely in this context,
13812 we select the current frame.
13813
13814 We prevent this by temporarily turning the language_mode to
13815 language_mode_manual. We restore it once all breakpoints
13816 have been reset. */
13817 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13818 language_mode = language_mode_manual;
13819
13820 /* Note: we must not try to insert locations until after all
13821 breakpoints have been re-set. Otherwise, e.g., when re-setting
13822 breakpoint 1, we'd insert the locations of breakpoint 2, which
13823 hadn't been re-set yet, and thus may have stale locations. */
13824
13825 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13826 {
13827 try
13828 {
13829 breakpoint_re_set_one (b);
13830 }
13831 catch (const gdb_exception &ex)
13832 {
13833 exception_fprintf (gdb_stderr, ex,
13834 "Error in re-setting breakpoint %d: ",
13835 b->number);
13836 }
13837 }
13838
13839 jit_breakpoint_re_set ();
13840 }
13841
13842 create_overlay_event_breakpoint ();
13843 create_longjmp_master_breakpoint ();
13844 create_std_terminate_master_breakpoint ();
13845 create_exception_master_breakpoint ();
13846
13847 /* Now we can insert. */
13848 update_global_location_list (UGLL_MAY_INSERT);
13849 }
13850 \f
13851 /* Reset the thread number of this breakpoint:
13852
13853 - If the breakpoint is for all threads, leave it as-is.
13854 - Else, reset it to the current thread for inferior_ptid. */
13855 void
13856 breakpoint_re_set_thread (struct breakpoint *b)
13857 {
13858 if (b->thread != -1)
13859 {
13860 b->thread = inferior_thread ()->global_num;
13861
13862 /* We're being called after following a fork. The new fork is
13863 selected as current, and unless this was a vfork will have a
13864 different program space from the original thread. Reset that
13865 as well. */
13866 b->loc->pspace = current_program_space;
13867 }
13868 }
13869
13870 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13871 If from_tty is nonzero, it prints a message to that effect,
13872 which ends with a period (no newline). */
13873
13874 void
13875 set_ignore_count (int bptnum, int count, int from_tty)
13876 {
13877 struct breakpoint *b;
13878
13879 if (count < 0)
13880 count = 0;
13881
13882 ALL_BREAKPOINTS (b)
13883 if (b->number == bptnum)
13884 {
13885 if (is_tracepoint (b))
13886 {
13887 if (from_tty && count != 0)
13888 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13889 bptnum);
13890 return;
13891 }
13892
13893 b->ignore_count = count;
13894 if (from_tty)
13895 {
13896 if (count == 0)
13897 printf_filtered (_("Will stop next time "
13898 "breakpoint %d is reached."),
13899 bptnum);
13900 else if (count == 1)
13901 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13902 bptnum);
13903 else
13904 printf_filtered (_("Will ignore next %d "
13905 "crossings of breakpoint %d."),
13906 count, bptnum);
13907 }
13908 gdb::observers::breakpoint_modified.notify (b);
13909 return;
13910 }
13911
13912 error (_("No breakpoint number %d."), bptnum);
13913 }
13914
13915 /* Command to set ignore-count of breakpoint N to COUNT. */
13916
13917 static void
13918 ignore_command (const char *args, int from_tty)
13919 {
13920 const char *p = args;
13921 int num;
13922
13923 if (p == 0)
13924 error_no_arg (_("a breakpoint number"));
13925
13926 num = get_number (&p);
13927 if (num == 0)
13928 error (_("bad breakpoint number: '%s'"), args);
13929 if (*p == 0)
13930 error (_("Second argument (specified ignore-count) is missing."));
13931
13932 set_ignore_count (num,
13933 longest_to_int (value_as_long (parse_and_eval (p))),
13934 from_tty);
13935 if (from_tty)
13936 printf_filtered ("\n");
13937 }
13938 \f
13939
13940 /* Call FUNCTION on each of the breakpoints with numbers in the range
13941 defined by BP_NUM_RANGE (an inclusive range). */
13942
13943 static void
13944 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13945 gdb::function_view<void (breakpoint *)> function)
13946 {
13947 if (bp_num_range.first == 0)
13948 {
13949 warning (_("bad breakpoint number at or near '%d'"),
13950 bp_num_range.first);
13951 }
13952 else
13953 {
13954 struct breakpoint *b, *tmp;
13955
13956 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13957 {
13958 bool match = false;
13959
13960 ALL_BREAKPOINTS_SAFE (b, tmp)
13961 if (b->number == i)
13962 {
13963 match = true;
13964 function (b);
13965 break;
13966 }
13967 if (!match)
13968 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13969 }
13970 }
13971 }
13972
13973 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13974 ARGS. */
13975
13976 static void
13977 map_breakpoint_numbers (const char *args,
13978 gdb::function_view<void (breakpoint *)> function)
13979 {
13980 if (args == NULL || *args == '\0')
13981 error_no_arg (_("one or more breakpoint numbers"));
13982
13983 number_or_range_parser parser (args);
13984
13985 while (!parser.finished ())
13986 {
13987 int num = parser.get_number ();
13988 map_breakpoint_number_range (std::make_pair (num, num), function);
13989 }
13990 }
13991
13992 /* Return the breakpoint location structure corresponding to the
13993 BP_NUM and LOC_NUM values. */
13994
13995 static struct bp_location *
13996 find_location_by_number (int bp_num, int loc_num)
13997 {
13998 struct breakpoint *b;
13999
14000 ALL_BREAKPOINTS (b)
14001 if (b->number == bp_num)
14002 {
14003 break;
14004 }
14005
14006 if (!b || b->number != bp_num)
14007 error (_("Bad breakpoint number '%d'"), bp_num);
14008
14009 if (loc_num == 0)
14010 error (_("Bad breakpoint location number '%d'"), loc_num);
14011
14012 int n = 0;
14013 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14014 if (++n == loc_num)
14015 return loc;
14016
14017 error (_("Bad breakpoint location number '%d'"), loc_num);
14018 }
14019
14020 /* Modes of operation for extract_bp_num. */
14021 enum class extract_bp_kind
14022 {
14023 /* Extracting a breakpoint number. */
14024 bp,
14025
14026 /* Extracting a location number. */
14027 loc,
14028 };
14029
14030 /* Extract a breakpoint or location number (as determined by KIND)
14031 from the string starting at START. TRAILER is a character which
14032 can be found after the number. If you don't want a trailer, use
14033 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14034 string. This always returns a positive integer. */
14035
14036 static int
14037 extract_bp_num (extract_bp_kind kind, const char *start,
14038 int trailer, const char **end_out = NULL)
14039 {
14040 const char *end = start;
14041 int num = get_number_trailer (&end, trailer);
14042 if (num < 0)
14043 error (kind == extract_bp_kind::bp
14044 ? _("Negative breakpoint number '%.*s'")
14045 : _("Negative breakpoint location number '%.*s'"),
14046 int (end - start), start);
14047 if (num == 0)
14048 error (kind == extract_bp_kind::bp
14049 ? _("Bad breakpoint number '%.*s'")
14050 : _("Bad breakpoint location number '%.*s'"),
14051 int (end - start), start);
14052
14053 if (end_out != NULL)
14054 *end_out = end;
14055 return num;
14056 }
14057
14058 /* Extract a breakpoint or location range (as determined by KIND) in
14059 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14060 representing the (inclusive) range. The returned pair's elements
14061 are always positive integers. */
14062
14063 static std::pair<int, int>
14064 extract_bp_or_bp_range (extract_bp_kind kind,
14065 const std::string &arg,
14066 std::string::size_type arg_offset)
14067 {
14068 std::pair<int, int> range;
14069 const char *bp_loc = &arg[arg_offset];
14070 std::string::size_type dash = arg.find ('-', arg_offset);
14071 if (dash != std::string::npos)
14072 {
14073 /* bp_loc is a range (x-z). */
14074 if (arg.length () == dash + 1)
14075 error (kind == extract_bp_kind::bp
14076 ? _("Bad breakpoint number at or near: '%s'")
14077 : _("Bad breakpoint location number at or near: '%s'"),
14078 bp_loc);
14079
14080 const char *end;
14081 const char *start_first = bp_loc;
14082 const char *start_second = &arg[dash + 1];
14083 range.first = extract_bp_num (kind, start_first, '-');
14084 range.second = extract_bp_num (kind, start_second, '\0', &end);
14085
14086 if (range.first > range.second)
14087 error (kind == extract_bp_kind::bp
14088 ? _("Inverted breakpoint range at '%.*s'")
14089 : _("Inverted breakpoint location range at '%.*s'"),
14090 int (end - start_first), start_first);
14091 }
14092 else
14093 {
14094 /* bp_loc is a single value. */
14095 range.first = extract_bp_num (kind, bp_loc, '\0');
14096 range.second = range.first;
14097 }
14098 return range;
14099 }
14100
14101 /* Extract the breakpoint/location range specified by ARG. Returns
14102 the breakpoint range in BP_NUM_RANGE, and the location range in
14103 BP_LOC_RANGE.
14104
14105 ARG may be in any of the following forms:
14106
14107 x where 'x' is a breakpoint number.
14108 x-y where 'x' and 'y' specify a breakpoint numbers range.
14109 x.y where 'x' is a breakpoint number and 'y' a location number.
14110 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14111 location number range.
14112 */
14113
14114 static void
14115 extract_bp_number_and_location (const std::string &arg,
14116 std::pair<int, int> &bp_num_range,
14117 std::pair<int, int> &bp_loc_range)
14118 {
14119 std::string::size_type dot = arg.find ('.');
14120
14121 if (dot != std::string::npos)
14122 {
14123 /* Handle 'x.y' and 'x.y-z' cases. */
14124
14125 if (arg.length () == dot + 1 || dot == 0)
14126 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14127
14128 bp_num_range.first
14129 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14130 bp_num_range.second = bp_num_range.first;
14131
14132 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14133 arg, dot + 1);
14134 }
14135 else
14136 {
14137 /* Handle x and x-y cases. */
14138
14139 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14140 bp_loc_range.first = 0;
14141 bp_loc_range.second = 0;
14142 }
14143 }
14144
14145 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14146 specifies whether to enable or disable. */
14147
14148 static void
14149 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14150 {
14151 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14152 if (loc != NULL)
14153 {
14154 if (loc->enabled != enable)
14155 {
14156 loc->enabled = enable;
14157 mark_breakpoint_location_modified (loc);
14158 }
14159 if (target_supports_enable_disable_tracepoint ()
14160 && current_trace_status ()->running && loc->owner
14161 && is_tracepoint (loc->owner))
14162 target_disable_tracepoint (loc);
14163 }
14164 update_global_location_list (UGLL_DONT_INSERT);
14165
14166 gdb::observers::breakpoint_modified.notify (loc->owner);
14167 }
14168
14169 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14170 number of the breakpoint, and BP_LOC_RANGE specifies the
14171 (inclusive) range of location numbers of that breakpoint to
14172 enable/disable. ENABLE specifies whether to enable or disable the
14173 location. */
14174
14175 static void
14176 enable_disable_breakpoint_location_range (int bp_num,
14177 std::pair<int, int> &bp_loc_range,
14178 bool enable)
14179 {
14180 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14181 enable_disable_bp_num_loc (bp_num, i, enable);
14182 }
14183
14184 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14185 If from_tty is nonzero, it prints a message to that effect,
14186 which ends with a period (no newline). */
14187
14188 void
14189 disable_breakpoint (struct breakpoint *bpt)
14190 {
14191 /* Never disable a watchpoint scope breakpoint; we want to
14192 hit them when we leave scope so we can delete both the
14193 watchpoint and its scope breakpoint at that time. */
14194 if (bpt->type == bp_watchpoint_scope)
14195 return;
14196
14197 bpt->enable_state = bp_disabled;
14198
14199 /* Mark breakpoint locations modified. */
14200 mark_breakpoint_modified (bpt);
14201
14202 if (target_supports_enable_disable_tracepoint ()
14203 && current_trace_status ()->running && is_tracepoint (bpt))
14204 {
14205 struct bp_location *location;
14206
14207 for (location = bpt->loc; location; location = location->next)
14208 target_disable_tracepoint (location);
14209 }
14210
14211 update_global_location_list (UGLL_DONT_INSERT);
14212
14213 gdb::observers::breakpoint_modified.notify (bpt);
14214 }
14215
14216 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14217 specified in ARGS. ARGS may be in any of the formats handled by
14218 extract_bp_number_and_location. ENABLE specifies whether to enable
14219 or disable the breakpoints/locations. */
14220
14221 static void
14222 enable_disable_command (const char *args, int from_tty, bool enable)
14223 {
14224 if (args == 0)
14225 {
14226 struct breakpoint *bpt;
14227
14228 ALL_BREAKPOINTS (bpt)
14229 if (user_breakpoint_p (bpt))
14230 {
14231 if (enable)
14232 enable_breakpoint (bpt);
14233 else
14234 disable_breakpoint (bpt);
14235 }
14236 }
14237 else
14238 {
14239 std::string num = extract_arg (&args);
14240
14241 while (!num.empty ())
14242 {
14243 std::pair<int, int> bp_num_range, bp_loc_range;
14244
14245 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14246
14247 if (bp_loc_range.first == bp_loc_range.second
14248 && bp_loc_range.first == 0)
14249 {
14250 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14251 map_breakpoint_number_range (bp_num_range,
14252 enable
14253 ? enable_breakpoint
14254 : disable_breakpoint);
14255 }
14256 else
14257 {
14258 /* Handle breakpoint ids with formats 'x.y' or
14259 'x.y-z'. */
14260 enable_disable_breakpoint_location_range
14261 (bp_num_range.first, bp_loc_range, enable);
14262 }
14263 num = extract_arg (&args);
14264 }
14265 }
14266 }
14267
14268 /* The disable command disables the specified breakpoints/locations
14269 (or all defined breakpoints) so they're no longer effective in
14270 stopping the inferior. ARGS may be in any of the forms defined in
14271 extract_bp_number_and_location. */
14272
14273 static void
14274 disable_command (const char *args, int from_tty)
14275 {
14276 enable_disable_command (args, from_tty, false);
14277 }
14278
14279 static void
14280 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14281 int count)
14282 {
14283 int target_resources_ok;
14284
14285 if (bpt->type == bp_hardware_breakpoint)
14286 {
14287 int i;
14288 i = hw_breakpoint_used_count ();
14289 target_resources_ok =
14290 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14291 i + 1, 0);
14292 if (target_resources_ok == 0)
14293 error (_("No hardware breakpoint support in the target."));
14294 else if (target_resources_ok < 0)
14295 error (_("Hardware breakpoints used exceeds limit."));
14296 }
14297
14298 if (is_watchpoint (bpt))
14299 {
14300 /* Initialize it just to avoid a GCC false warning. */
14301 enum enable_state orig_enable_state = bp_disabled;
14302
14303 try
14304 {
14305 struct watchpoint *w = (struct watchpoint *) bpt;
14306
14307 orig_enable_state = bpt->enable_state;
14308 bpt->enable_state = bp_enabled;
14309 update_watchpoint (w, 1 /* reparse */);
14310 }
14311 catch (const gdb_exception &e)
14312 {
14313 bpt->enable_state = orig_enable_state;
14314 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14315 bpt->number);
14316 return;
14317 }
14318 }
14319
14320 bpt->enable_state = bp_enabled;
14321
14322 /* Mark breakpoint locations modified. */
14323 mark_breakpoint_modified (bpt);
14324
14325 if (target_supports_enable_disable_tracepoint ()
14326 && current_trace_status ()->running && is_tracepoint (bpt))
14327 {
14328 struct bp_location *location;
14329
14330 for (location = bpt->loc; location; location = location->next)
14331 target_enable_tracepoint (location);
14332 }
14333
14334 bpt->disposition = disposition;
14335 bpt->enable_count = count;
14336 update_global_location_list (UGLL_MAY_INSERT);
14337
14338 gdb::observers::breakpoint_modified.notify (bpt);
14339 }
14340
14341
14342 void
14343 enable_breakpoint (struct breakpoint *bpt)
14344 {
14345 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14346 }
14347
14348 /* The enable command enables the specified breakpoints/locations (or
14349 all defined breakpoints) so they once again become (or continue to
14350 be) effective in stopping the inferior. ARGS may be in any of the
14351 forms defined in extract_bp_number_and_location. */
14352
14353 static void
14354 enable_command (const char *args, int from_tty)
14355 {
14356 enable_disable_command (args, from_tty, true);
14357 }
14358
14359 static void
14360 enable_once_command (const char *args, int from_tty)
14361 {
14362 map_breakpoint_numbers
14363 (args, [&] (breakpoint *b)
14364 {
14365 iterate_over_related_breakpoints
14366 (b, [&] (breakpoint *bpt)
14367 {
14368 enable_breakpoint_disp (bpt, disp_disable, 1);
14369 });
14370 });
14371 }
14372
14373 static void
14374 enable_count_command (const char *args, int from_tty)
14375 {
14376 int count;
14377
14378 if (args == NULL)
14379 error_no_arg (_("hit count"));
14380
14381 count = get_number (&args);
14382
14383 map_breakpoint_numbers
14384 (args, [&] (breakpoint *b)
14385 {
14386 iterate_over_related_breakpoints
14387 (b, [&] (breakpoint *bpt)
14388 {
14389 enable_breakpoint_disp (bpt, disp_disable, count);
14390 });
14391 });
14392 }
14393
14394 static void
14395 enable_delete_command (const char *args, int from_tty)
14396 {
14397 map_breakpoint_numbers
14398 (args, [&] (breakpoint *b)
14399 {
14400 iterate_over_related_breakpoints
14401 (b, [&] (breakpoint *bpt)
14402 {
14403 enable_breakpoint_disp (bpt, disp_del, 1);
14404 });
14405 });
14406 }
14407 \f
14408 /* Invalidate last known value of any hardware watchpoint if
14409 the memory which that value represents has been written to by
14410 GDB itself. */
14411
14412 static void
14413 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14414 CORE_ADDR addr, ssize_t len,
14415 const bfd_byte *data)
14416 {
14417 struct breakpoint *bp;
14418
14419 ALL_BREAKPOINTS (bp)
14420 if (bp->enable_state == bp_enabled
14421 && bp->type == bp_hardware_watchpoint)
14422 {
14423 struct watchpoint *wp = (struct watchpoint *) bp;
14424
14425 if (wp->val_valid && wp->val != nullptr)
14426 {
14427 struct bp_location *loc;
14428
14429 for (loc = bp->loc; loc != NULL; loc = loc->next)
14430 if (loc->loc_type == bp_loc_hardware_watchpoint
14431 && loc->address + loc->length > addr
14432 && addr + len > loc->address)
14433 {
14434 wp->val = NULL;
14435 wp->val_valid = false;
14436 }
14437 }
14438 }
14439 }
14440
14441 /* Create and insert a breakpoint for software single step. */
14442
14443 void
14444 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14445 const address_space *aspace,
14446 CORE_ADDR next_pc)
14447 {
14448 struct thread_info *tp = inferior_thread ();
14449 struct symtab_and_line sal;
14450 CORE_ADDR pc = next_pc;
14451
14452 if (tp->control.single_step_breakpoints == NULL)
14453 {
14454 tp->control.single_step_breakpoints
14455 = new_single_step_breakpoint (tp->global_num, gdbarch);
14456 }
14457
14458 sal = find_pc_line (pc, 0);
14459 sal.pc = pc;
14460 sal.section = find_pc_overlay (pc);
14461 sal.explicit_pc = 1;
14462 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14463
14464 update_global_location_list (UGLL_INSERT);
14465 }
14466
14467 /* Insert single step breakpoints according to the current state. */
14468
14469 int
14470 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14471 {
14472 struct regcache *regcache = get_current_regcache ();
14473 std::vector<CORE_ADDR> next_pcs;
14474
14475 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14476
14477 if (!next_pcs.empty ())
14478 {
14479 struct frame_info *frame = get_current_frame ();
14480 const address_space *aspace = get_frame_address_space (frame);
14481
14482 for (CORE_ADDR pc : next_pcs)
14483 insert_single_step_breakpoint (gdbarch, aspace, pc);
14484
14485 return 1;
14486 }
14487 else
14488 return 0;
14489 }
14490
14491 /* See breakpoint.h. */
14492
14493 int
14494 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14495 const address_space *aspace,
14496 CORE_ADDR pc)
14497 {
14498 struct bp_location *loc;
14499
14500 for (loc = bp->loc; loc != NULL; loc = loc->next)
14501 if (loc->inserted
14502 && breakpoint_location_address_match (loc, aspace, pc))
14503 return 1;
14504
14505 return 0;
14506 }
14507
14508 /* Check whether a software single-step breakpoint is inserted at
14509 PC. */
14510
14511 int
14512 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14513 CORE_ADDR pc)
14514 {
14515 struct breakpoint *bpt;
14516
14517 ALL_BREAKPOINTS (bpt)
14518 {
14519 if (bpt->type == bp_single_step
14520 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14521 return 1;
14522 }
14523 return 0;
14524 }
14525
14526 /* Tracepoint-specific operations. */
14527
14528 /* Set tracepoint count to NUM. */
14529 static void
14530 set_tracepoint_count (int num)
14531 {
14532 tracepoint_count = num;
14533 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14534 }
14535
14536 static void
14537 trace_command (const char *arg, int from_tty)
14538 {
14539 event_location_up location = string_to_event_location (&arg,
14540 current_language);
14541 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14542 (location.get (), true /* is_tracepoint */);
14543
14544 create_breakpoint (get_current_arch (),
14545 location.get (),
14546 NULL, 0, arg, 1 /* parse arg */,
14547 0 /* tempflag */,
14548 bp_tracepoint /* type_wanted */,
14549 0 /* Ignore count */,
14550 pending_break_support,
14551 ops,
14552 from_tty,
14553 1 /* enabled */,
14554 0 /* internal */, 0);
14555 }
14556
14557 static void
14558 ftrace_command (const char *arg, int from_tty)
14559 {
14560 event_location_up location = string_to_event_location (&arg,
14561 current_language);
14562 create_breakpoint (get_current_arch (),
14563 location.get (),
14564 NULL, 0, arg, 1 /* parse arg */,
14565 0 /* tempflag */,
14566 bp_fast_tracepoint /* type_wanted */,
14567 0 /* Ignore count */,
14568 pending_break_support,
14569 &tracepoint_breakpoint_ops,
14570 from_tty,
14571 1 /* enabled */,
14572 0 /* internal */, 0);
14573 }
14574
14575 /* strace command implementation. Creates a static tracepoint. */
14576
14577 static void
14578 strace_command (const char *arg, int from_tty)
14579 {
14580 struct breakpoint_ops *ops;
14581 event_location_up location;
14582
14583 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14584 or with a normal static tracepoint. */
14585 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14586 {
14587 ops = &strace_marker_breakpoint_ops;
14588 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14589 }
14590 else
14591 {
14592 ops = &tracepoint_breakpoint_ops;
14593 location = string_to_event_location (&arg, current_language);
14594 }
14595
14596 create_breakpoint (get_current_arch (),
14597 location.get (),
14598 NULL, 0, arg, 1 /* parse arg */,
14599 0 /* tempflag */,
14600 bp_static_tracepoint /* type_wanted */,
14601 0 /* Ignore count */,
14602 pending_break_support,
14603 ops,
14604 from_tty,
14605 1 /* enabled */,
14606 0 /* internal */, 0);
14607 }
14608
14609 /* Set up a fake reader function that gets command lines from a linked
14610 list that was acquired during tracepoint uploading. */
14611
14612 static struct uploaded_tp *this_utp;
14613 static int next_cmd;
14614
14615 static char *
14616 read_uploaded_action (void)
14617 {
14618 char *rslt = nullptr;
14619
14620 if (next_cmd < this_utp->cmd_strings.size ())
14621 {
14622 rslt = this_utp->cmd_strings[next_cmd].get ();
14623 next_cmd++;
14624 }
14625
14626 return rslt;
14627 }
14628
14629 /* Given information about a tracepoint as recorded on a target (which
14630 can be either a live system or a trace file), attempt to create an
14631 equivalent GDB tracepoint. This is not a reliable process, since
14632 the target does not necessarily have all the information used when
14633 the tracepoint was originally defined. */
14634
14635 struct tracepoint *
14636 create_tracepoint_from_upload (struct uploaded_tp *utp)
14637 {
14638 const char *addr_str;
14639 char small_buf[100];
14640 struct tracepoint *tp;
14641
14642 if (utp->at_string)
14643 addr_str = utp->at_string.get ();
14644 else
14645 {
14646 /* In the absence of a source location, fall back to raw
14647 address. Since there is no way to confirm that the address
14648 means the same thing as when the trace was started, warn the
14649 user. */
14650 warning (_("Uploaded tracepoint %d has no "
14651 "source location, using raw address"),
14652 utp->number);
14653 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14654 addr_str = small_buf;
14655 }
14656
14657 /* There's not much we can do with a sequence of bytecodes. */
14658 if (utp->cond && !utp->cond_string)
14659 warning (_("Uploaded tracepoint %d condition "
14660 "has no source form, ignoring it"),
14661 utp->number);
14662
14663 event_location_up location = string_to_event_location (&addr_str,
14664 current_language);
14665 if (!create_breakpoint (get_current_arch (),
14666 location.get (),
14667 utp->cond_string.get (), -1, addr_str,
14668 0 /* parse cond/thread */,
14669 0 /* tempflag */,
14670 utp->type /* type_wanted */,
14671 0 /* Ignore count */,
14672 pending_break_support,
14673 &tracepoint_breakpoint_ops,
14674 0 /* from_tty */,
14675 utp->enabled /* enabled */,
14676 0 /* internal */,
14677 CREATE_BREAKPOINT_FLAGS_INSERTED))
14678 return NULL;
14679
14680 /* Get the tracepoint we just created. */
14681 tp = get_tracepoint (tracepoint_count);
14682 gdb_assert (tp != NULL);
14683
14684 if (utp->pass > 0)
14685 {
14686 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14687 tp->number);
14688
14689 trace_pass_command (small_buf, 0);
14690 }
14691
14692 /* If we have uploaded versions of the original commands, set up a
14693 special-purpose "reader" function and call the usual command line
14694 reader, then pass the result to the breakpoint command-setting
14695 function. */
14696 if (!utp->cmd_strings.empty ())
14697 {
14698 counted_command_line cmd_list;
14699
14700 this_utp = utp;
14701 next_cmd = 0;
14702
14703 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14704
14705 breakpoint_set_commands (tp, std::move (cmd_list));
14706 }
14707 else if (!utp->actions.empty ()
14708 || !utp->step_actions.empty ())
14709 warning (_("Uploaded tracepoint %d actions "
14710 "have no source form, ignoring them"),
14711 utp->number);
14712
14713 /* Copy any status information that might be available. */
14714 tp->hit_count = utp->hit_count;
14715 tp->traceframe_usage = utp->traceframe_usage;
14716
14717 return tp;
14718 }
14719
14720 /* Print information on tracepoint number TPNUM_EXP, or all if
14721 omitted. */
14722
14723 static void
14724 info_tracepoints_command (const char *args, int from_tty)
14725 {
14726 struct ui_out *uiout = current_uiout;
14727 int num_printed;
14728
14729 num_printed = breakpoint_1 (args, false, is_tracepoint);
14730
14731 if (num_printed == 0)
14732 {
14733 if (args == NULL || *args == '\0')
14734 uiout->message ("No tracepoints.\n");
14735 else
14736 uiout->message ("No tracepoint matching '%s'.\n", args);
14737 }
14738
14739 default_collect_info ();
14740 }
14741
14742 /* The 'enable trace' command enables tracepoints.
14743 Not supported by all targets. */
14744 static void
14745 enable_trace_command (const char *args, int from_tty)
14746 {
14747 enable_command (args, from_tty);
14748 }
14749
14750 /* The 'disable trace' command disables tracepoints.
14751 Not supported by all targets. */
14752 static void
14753 disable_trace_command (const char *args, int from_tty)
14754 {
14755 disable_command (args, from_tty);
14756 }
14757
14758 /* Remove a tracepoint (or all if no argument). */
14759 static void
14760 delete_trace_command (const char *arg, int from_tty)
14761 {
14762 struct breakpoint *b, *b_tmp;
14763
14764 dont_repeat ();
14765
14766 if (arg == 0)
14767 {
14768 int breaks_to_delete = 0;
14769
14770 /* Delete all breakpoints if no argument.
14771 Do not delete internal or call-dummy breakpoints, these
14772 have to be deleted with an explicit breakpoint number
14773 argument. */
14774 ALL_TRACEPOINTS (b)
14775 if (is_tracepoint (b) && user_breakpoint_p (b))
14776 {
14777 breaks_to_delete = 1;
14778 break;
14779 }
14780
14781 /* Ask user only if there are some breakpoints to delete. */
14782 if (!from_tty
14783 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14784 {
14785 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14786 if (is_tracepoint (b) && user_breakpoint_p (b))
14787 delete_breakpoint (b);
14788 }
14789 }
14790 else
14791 map_breakpoint_numbers
14792 (arg, [&] (breakpoint *br)
14793 {
14794 iterate_over_related_breakpoints (br, delete_breakpoint);
14795 });
14796 }
14797
14798 /* Helper function for trace_pass_command. */
14799
14800 static void
14801 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14802 {
14803 tp->pass_count = count;
14804 gdb::observers::breakpoint_modified.notify (tp);
14805 if (from_tty)
14806 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14807 tp->number, count);
14808 }
14809
14810 /* Set passcount for tracepoint.
14811
14812 First command argument is passcount, second is tracepoint number.
14813 If tracepoint number omitted, apply to most recently defined.
14814 Also accepts special argument "all". */
14815
14816 static void
14817 trace_pass_command (const char *args, int from_tty)
14818 {
14819 struct tracepoint *t1;
14820 ULONGEST count;
14821
14822 if (args == 0 || *args == 0)
14823 error (_("passcount command requires an "
14824 "argument (count + optional TP num)"));
14825
14826 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14827
14828 args = skip_spaces (args);
14829 if (*args && strncasecmp (args, "all", 3) == 0)
14830 {
14831 struct breakpoint *b;
14832
14833 args += 3; /* Skip special argument "all". */
14834 if (*args)
14835 error (_("Junk at end of arguments."));
14836
14837 ALL_TRACEPOINTS (b)
14838 {
14839 t1 = (struct tracepoint *) b;
14840 trace_pass_set_count (t1, count, from_tty);
14841 }
14842 }
14843 else if (*args == '\0')
14844 {
14845 t1 = get_tracepoint_by_number (&args, NULL);
14846 if (t1)
14847 trace_pass_set_count (t1, count, from_tty);
14848 }
14849 else
14850 {
14851 number_or_range_parser parser (args);
14852 while (!parser.finished ())
14853 {
14854 t1 = get_tracepoint_by_number (&args, &parser);
14855 if (t1)
14856 trace_pass_set_count (t1, count, from_tty);
14857 }
14858 }
14859 }
14860
14861 struct tracepoint *
14862 get_tracepoint (int num)
14863 {
14864 struct breakpoint *t;
14865
14866 ALL_TRACEPOINTS (t)
14867 if (t->number == num)
14868 return (struct tracepoint *) t;
14869
14870 return NULL;
14871 }
14872
14873 /* Find the tracepoint with the given target-side number (which may be
14874 different from the tracepoint number after disconnecting and
14875 reconnecting). */
14876
14877 struct tracepoint *
14878 get_tracepoint_by_number_on_target (int num)
14879 {
14880 struct breakpoint *b;
14881
14882 ALL_TRACEPOINTS (b)
14883 {
14884 struct tracepoint *t = (struct tracepoint *) b;
14885
14886 if (t->number_on_target == num)
14887 return t;
14888 }
14889
14890 return NULL;
14891 }
14892
14893 /* Utility: parse a tracepoint number and look it up in the list.
14894 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14895 If the argument is missing, the most recent tracepoint
14896 (tracepoint_count) is returned. */
14897
14898 struct tracepoint *
14899 get_tracepoint_by_number (const char **arg,
14900 number_or_range_parser *parser)
14901 {
14902 struct breakpoint *t;
14903 int tpnum;
14904 const char *instring = arg == NULL ? NULL : *arg;
14905
14906 if (parser != NULL)
14907 {
14908 gdb_assert (!parser->finished ());
14909 tpnum = parser->get_number ();
14910 }
14911 else if (arg == NULL || *arg == NULL || ! **arg)
14912 tpnum = tracepoint_count;
14913 else
14914 tpnum = get_number (arg);
14915
14916 if (tpnum <= 0)
14917 {
14918 if (instring && *instring)
14919 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14920 instring);
14921 else
14922 printf_filtered (_("No previous tracepoint\n"));
14923 return NULL;
14924 }
14925
14926 ALL_TRACEPOINTS (t)
14927 if (t->number == tpnum)
14928 {
14929 return (struct tracepoint *) t;
14930 }
14931
14932 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14933 return NULL;
14934 }
14935
14936 void
14937 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14938 {
14939 if (b->thread != -1)
14940 fprintf_unfiltered (fp, " thread %d", b->thread);
14941
14942 if (b->task != 0)
14943 fprintf_unfiltered (fp, " task %d", b->task);
14944
14945 fprintf_unfiltered (fp, "\n");
14946 }
14947
14948 /* Save information on user settable breakpoints (watchpoints, etc) to
14949 a new script file named FILENAME. If FILTER is non-NULL, call it
14950 on each breakpoint and only include the ones for which it returns
14951 true. */
14952
14953 static void
14954 save_breakpoints (const char *filename, int from_tty,
14955 bool (*filter) (const struct breakpoint *))
14956 {
14957 struct breakpoint *tp;
14958 int any = 0;
14959 int extra_trace_bits = 0;
14960
14961 if (filename == 0 || *filename == 0)
14962 error (_("Argument required (file name in which to save)"));
14963
14964 /* See if we have anything to save. */
14965 ALL_BREAKPOINTS (tp)
14966 {
14967 /* Skip internal and momentary breakpoints. */
14968 if (!user_breakpoint_p (tp))
14969 continue;
14970
14971 /* If we have a filter, only save the breakpoints it accepts. */
14972 if (filter && !filter (tp))
14973 continue;
14974
14975 any = 1;
14976
14977 if (is_tracepoint (tp))
14978 {
14979 extra_trace_bits = 1;
14980
14981 /* We can stop searching. */
14982 break;
14983 }
14984 }
14985
14986 if (!any)
14987 {
14988 warning (_("Nothing to save."));
14989 return;
14990 }
14991
14992 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14993
14994 stdio_file fp;
14995
14996 if (!fp.open (expanded_filename.get (), "w"))
14997 error (_("Unable to open file '%s' for saving (%s)"),
14998 expanded_filename.get (), safe_strerror (errno));
14999
15000 if (extra_trace_bits)
15001 save_trace_state_variables (&fp);
15002
15003 ALL_BREAKPOINTS (tp)
15004 {
15005 /* Skip internal and momentary breakpoints. */
15006 if (!user_breakpoint_p (tp))
15007 continue;
15008
15009 /* If we have a filter, only save the breakpoints it accepts. */
15010 if (filter && !filter (tp))
15011 continue;
15012
15013 tp->ops->print_recreate (tp, &fp);
15014
15015 /* Note, we can't rely on tp->number for anything, as we can't
15016 assume the recreated breakpoint numbers will match. Use $bpnum
15017 instead. */
15018
15019 if (tp->cond_string)
15020 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15021
15022 if (tp->ignore_count)
15023 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15024
15025 if (tp->type != bp_dprintf && tp->commands)
15026 {
15027 fp.puts (" commands\n");
15028
15029 current_uiout->redirect (&fp);
15030 try
15031 {
15032 print_command_lines (current_uiout, tp->commands.get (), 2);
15033 }
15034 catch (const gdb_exception &ex)
15035 {
15036 current_uiout->redirect (NULL);
15037 throw;
15038 }
15039
15040 current_uiout->redirect (NULL);
15041 fp.puts (" end\n");
15042 }
15043
15044 if (tp->enable_state == bp_disabled)
15045 fp.puts ("disable $bpnum\n");
15046
15047 /* If this is a multi-location breakpoint, check if the locations
15048 should be individually disabled. Watchpoint locations are
15049 special, and not user visible. */
15050 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15051 {
15052 struct bp_location *loc;
15053 int n = 1;
15054
15055 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15056 if (!loc->enabled)
15057 fp.printf ("disable $bpnum.%d\n", n);
15058 }
15059 }
15060
15061 if (extra_trace_bits && *default_collect)
15062 fp.printf ("set default-collect %s\n", default_collect);
15063
15064 if (from_tty)
15065 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15066 }
15067
15068 /* The `save breakpoints' command. */
15069
15070 static void
15071 save_breakpoints_command (const char *args, int from_tty)
15072 {
15073 save_breakpoints (args, from_tty, NULL);
15074 }
15075
15076 /* The `save tracepoints' command. */
15077
15078 static void
15079 save_tracepoints_command (const char *args, int from_tty)
15080 {
15081 save_breakpoints (args, from_tty, is_tracepoint);
15082 }
15083
15084 /* Create a vector of all tracepoints. */
15085
15086 std::vector<breakpoint *>
15087 all_tracepoints (void)
15088 {
15089 std::vector<breakpoint *> tp_vec;
15090 struct breakpoint *tp;
15091
15092 ALL_TRACEPOINTS (tp)
15093 {
15094 tp_vec.push_back (tp);
15095 }
15096
15097 return tp_vec;
15098 }
15099
15100 \f
15101 /* This help string is used to consolidate all the help string for specifying
15102 locations used by several commands. */
15103
15104 #define LOCATION_HELP_STRING \
15105 "Linespecs are colon-separated lists of location parameters, such as\n\
15106 source filename, function name, label name, and line number.\n\
15107 Example: To specify the start of a label named \"the_top\" in the\n\
15108 function \"fact\" in the file \"factorial.c\", use\n\
15109 \"factorial.c:fact:the_top\".\n\
15110 \n\
15111 Address locations begin with \"*\" and specify an exact address in the\n\
15112 program. Example: To specify the fourth byte past the start function\n\
15113 \"main\", use \"*main + 4\".\n\
15114 \n\
15115 Explicit locations are similar to linespecs but use an option/argument\n\
15116 syntax to specify location parameters.\n\
15117 Example: To specify the start of the label named \"the_top\" in the\n\
15118 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15119 -function fact -label the_top\".\n\
15120 \n\
15121 By default, a specified function is matched against the program's\n\
15122 functions in all scopes. For C++, this means in all namespaces and\n\
15123 classes. For Ada, this means in all packages. E.g., in C++,\n\
15124 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15125 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15126 specified name as a complete fully-qualified name instead."
15127
15128 /* This help string is used for the break, hbreak, tbreak and thbreak
15129 commands. It is defined as a macro to prevent duplication.
15130 COMMAND should be a string constant containing the name of the
15131 command. */
15132
15133 #define BREAK_ARGS_HELP(command) \
15134 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15135 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15136 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15137 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15138 `-probe-dtrace' (for a DTrace probe).\n\
15139 LOCATION may be a linespec, address, or explicit location as described\n\
15140 below.\n\
15141 \n\
15142 With no LOCATION, uses current execution address of the selected\n\
15143 stack frame. This is useful for breaking on return to a stack frame.\n\
15144 \n\
15145 THREADNUM is the number from \"info threads\".\n\
15146 CONDITION is a boolean expression.\n\
15147 \n" LOCATION_HELP_STRING "\n\n\
15148 Multiple breakpoints at one place are permitted, and useful if their\n\
15149 conditions are different.\n\
15150 \n\
15151 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15152
15153 /* List of subcommands for "catch". */
15154 static struct cmd_list_element *catch_cmdlist;
15155
15156 /* List of subcommands for "tcatch". */
15157 static struct cmd_list_element *tcatch_cmdlist;
15158
15159 void
15160 add_catch_command (const char *name, const char *docstring,
15161 cmd_const_sfunc_ftype *sfunc,
15162 completer_ftype *completer,
15163 void *user_data_catch,
15164 void *user_data_tcatch)
15165 {
15166 struct cmd_list_element *command;
15167
15168 command = add_cmd (name, class_breakpoint, docstring,
15169 &catch_cmdlist);
15170 set_cmd_sfunc (command, sfunc);
15171 set_cmd_context (command, user_data_catch);
15172 set_cmd_completer (command, completer);
15173
15174 command = add_cmd (name, class_breakpoint, docstring,
15175 &tcatch_cmdlist);
15176 set_cmd_sfunc (command, sfunc);
15177 set_cmd_context (command, user_data_tcatch);
15178 set_cmd_completer (command, completer);
15179 }
15180
15181 struct breakpoint *
15182 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15183 {
15184 struct breakpoint *b, *b_tmp;
15185
15186 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15187 {
15188 if (callback (b))
15189 return b;
15190 }
15191
15192 return NULL;
15193 }
15194
15195 /* Zero if any of the breakpoint's locations could be a location where
15196 functions have been inlined, nonzero otherwise. */
15197
15198 static int
15199 is_non_inline_function (struct breakpoint *b)
15200 {
15201 /* The shared library event breakpoint is set on the address of a
15202 non-inline function. */
15203 if (b->type == bp_shlib_event)
15204 return 1;
15205
15206 return 0;
15207 }
15208
15209 /* Nonzero if the specified PC cannot be a location where functions
15210 have been inlined. */
15211
15212 int
15213 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15214 const struct target_waitstatus *ws)
15215 {
15216 struct breakpoint *b;
15217 struct bp_location *bl;
15218
15219 ALL_BREAKPOINTS (b)
15220 {
15221 if (!is_non_inline_function (b))
15222 continue;
15223
15224 for (bl = b->loc; bl != NULL; bl = bl->next)
15225 {
15226 if (!bl->shlib_disabled
15227 && bpstat_check_location (bl, aspace, pc, ws))
15228 return 1;
15229 }
15230 }
15231
15232 return 0;
15233 }
15234
15235 /* Remove any references to OBJFILE which is going to be freed. */
15236
15237 void
15238 breakpoint_free_objfile (struct objfile *objfile)
15239 {
15240 struct bp_location **locp, *loc;
15241
15242 ALL_BP_LOCATIONS (loc, locp)
15243 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15244 loc->symtab = NULL;
15245 }
15246
15247 void
15248 initialize_breakpoint_ops (void)
15249 {
15250 static int initialized = 0;
15251
15252 struct breakpoint_ops *ops;
15253
15254 if (initialized)
15255 return;
15256 initialized = 1;
15257
15258 /* The breakpoint_ops structure to be inherit by all kinds of
15259 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15260 internal and momentary breakpoints, etc.). */
15261 ops = &bkpt_base_breakpoint_ops;
15262 *ops = base_breakpoint_ops;
15263 ops->re_set = bkpt_re_set;
15264 ops->insert_location = bkpt_insert_location;
15265 ops->remove_location = bkpt_remove_location;
15266 ops->breakpoint_hit = bkpt_breakpoint_hit;
15267 ops->create_sals_from_location = bkpt_create_sals_from_location;
15268 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15269 ops->decode_location = bkpt_decode_location;
15270
15271 /* The breakpoint_ops structure to be used in regular breakpoints. */
15272 ops = &bkpt_breakpoint_ops;
15273 *ops = bkpt_base_breakpoint_ops;
15274 ops->re_set = bkpt_re_set;
15275 ops->resources_needed = bkpt_resources_needed;
15276 ops->print_it = bkpt_print_it;
15277 ops->print_mention = bkpt_print_mention;
15278 ops->print_recreate = bkpt_print_recreate;
15279
15280 /* Ranged breakpoints. */
15281 ops = &ranged_breakpoint_ops;
15282 *ops = bkpt_breakpoint_ops;
15283 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15284 ops->resources_needed = resources_needed_ranged_breakpoint;
15285 ops->print_it = print_it_ranged_breakpoint;
15286 ops->print_one = print_one_ranged_breakpoint;
15287 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15288 ops->print_mention = print_mention_ranged_breakpoint;
15289 ops->print_recreate = print_recreate_ranged_breakpoint;
15290
15291 /* Internal breakpoints. */
15292 ops = &internal_breakpoint_ops;
15293 *ops = bkpt_base_breakpoint_ops;
15294 ops->re_set = internal_bkpt_re_set;
15295 ops->check_status = internal_bkpt_check_status;
15296 ops->print_it = internal_bkpt_print_it;
15297 ops->print_mention = internal_bkpt_print_mention;
15298
15299 /* Momentary breakpoints. */
15300 ops = &momentary_breakpoint_ops;
15301 *ops = bkpt_base_breakpoint_ops;
15302 ops->re_set = momentary_bkpt_re_set;
15303 ops->check_status = momentary_bkpt_check_status;
15304 ops->print_it = momentary_bkpt_print_it;
15305 ops->print_mention = momentary_bkpt_print_mention;
15306
15307 /* Probe breakpoints. */
15308 ops = &bkpt_probe_breakpoint_ops;
15309 *ops = bkpt_breakpoint_ops;
15310 ops->insert_location = bkpt_probe_insert_location;
15311 ops->remove_location = bkpt_probe_remove_location;
15312 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15313 ops->decode_location = bkpt_probe_decode_location;
15314
15315 /* Watchpoints. */
15316 ops = &watchpoint_breakpoint_ops;
15317 *ops = base_breakpoint_ops;
15318 ops->re_set = re_set_watchpoint;
15319 ops->insert_location = insert_watchpoint;
15320 ops->remove_location = remove_watchpoint;
15321 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15322 ops->check_status = check_status_watchpoint;
15323 ops->resources_needed = resources_needed_watchpoint;
15324 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15325 ops->print_it = print_it_watchpoint;
15326 ops->print_mention = print_mention_watchpoint;
15327 ops->print_recreate = print_recreate_watchpoint;
15328 ops->explains_signal = explains_signal_watchpoint;
15329
15330 /* Masked watchpoints. */
15331 ops = &masked_watchpoint_breakpoint_ops;
15332 *ops = watchpoint_breakpoint_ops;
15333 ops->insert_location = insert_masked_watchpoint;
15334 ops->remove_location = remove_masked_watchpoint;
15335 ops->resources_needed = resources_needed_masked_watchpoint;
15336 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15337 ops->print_it = print_it_masked_watchpoint;
15338 ops->print_one_detail = print_one_detail_masked_watchpoint;
15339 ops->print_mention = print_mention_masked_watchpoint;
15340 ops->print_recreate = print_recreate_masked_watchpoint;
15341
15342 /* Tracepoints. */
15343 ops = &tracepoint_breakpoint_ops;
15344 *ops = base_breakpoint_ops;
15345 ops->re_set = tracepoint_re_set;
15346 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15347 ops->print_one_detail = tracepoint_print_one_detail;
15348 ops->print_mention = tracepoint_print_mention;
15349 ops->print_recreate = tracepoint_print_recreate;
15350 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15351 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15352 ops->decode_location = tracepoint_decode_location;
15353
15354 /* Probe tracepoints. */
15355 ops = &tracepoint_probe_breakpoint_ops;
15356 *ops = tracepoint_breakpoint_ops;
15357 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15358 ops->decode_location = tracepoint_probe_decode_location;
15359
15360 /* Static tracepoints with marker (`-m'). */
15361 ops = &strace_marker_breakpoint_ops;
15362 *ops = tracepoint_breakpoint_ops;
15363 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15364 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15365 ops->decode_location = strace_marker_decode_location;
15366
15367 /* Fork catchpoints. */
15368 ops = &catch_fork_breakpoint_ops;
15369 *ops = base_breakpoint_ops;
15370 ops->insert_location = insert_catch_fork;
15371 ops->remove_location = remove_catch_fork;
15372 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15373 ops->print_it = print_it_catch_fork;
15374 ops->print_one = print_one_catch_fork;
15375 ops->print_mention = print_mention_catch_fork;
15376 ops->print_recreate = print_recreate_catch_fork;
15377
15378 /* Vfork catchpoints. */
15379 ops = &catch_vfork_breakpoint_ops;
15380 *ops = base_breakpoint_ops;
15381 ops->insert_location = insert_catch_vfork;
15382 ops->remove_location = remove_catch_vfork;
15383 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15384 ops->print_it = print_it_catch_vfork;
15385 ops->print_one = print_one_catch_vfork;
15386 ops->print_mention = print_mention_catch_vfork;
15387 ops->print_recreate = print_recreate_catch_vfork;
15388
15389 /* Exec catchpoints. */
15390 ops = &catch_exec_breakpoint_ops;
15391 *ops = base_breakpoint_ops;
15392 ops->insert_location = insert_catch_exec;
15393 ops->remove_location = remove_catch_exec;
15394 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15395 ops->print_it = print_it_catch_exec;
15396 ops->print_one = print_one_catch_exec;
15397 ops->print_mention = print_mention_catch_exec;
15398 ops->print_recreate = print_recreate_catch_exec;
15399
15400 /* Solib-related catchpoints. */
15401 ops = &catch_solib_breakpoint_ops;
15402 *ops = base_breakpoint_ops;
15403 ops->insert_location = insert_catch_solib;
15404 ops->remove_location = remove_catch_solib;
15405 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15406 ops->check_status = check_status_catch_solib;
15407 ops->print_it = print_it_catch_solib;
15408 ops->print_one = print_one_catch_solib;
15409 ops->print_mention = print_mention_catch_solib;
15410 ops->print_recreate = print_recreate_catch_solib;
15411
15412 ops = &dprintf_breakpoint_ops;
15413 *ops = bkpt_base_breakpoint_ops;
15414 ops->re_set = dprintf_re_set;
15415 ops->resources_needed = bkpt_resources_needed;
15416 ops->print_it = bkpt_print_it;
15417 ops->print_mention = bkpt_print_mention;
15418 ops->print_recreate = dprintf_print_recreate;
15419 ops->after_condition_true = dprintf_after_condition_true;
15420 ops->breakpoint_hit = dprintf_breakpoint_hit;
15421 }
15422
15423 /* Chain containing all defined "enable breakpoint" subcommands. */
15424
15425 static struct cmd_list_element *enablebreaklist = NULL;
15426
15427 /* See breakpoint.h. */
15428
15429 cmd_list_element *commands_cmd_element = nullptr;
15430
15431 void _initialize_breakpoint ();
15432 void
15433 _initialize_breakpoint ()
15434 {
15435 struct cmd_list_element *c;
15436
15437 initialize_breakpoint_ops ();
15438
15439 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15440 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15441 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15442
15443 breakpoint_chain = 0;
15444 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15445 before a breakpoint is set. */
15446 breakpoint_count = 0;
15447
15448 tracepoint_count = 0;
15449
15450 add_com ("ignore", class_breakpoint, ignore_command, _("\
15451 Set ignore-count of breakpoint number N to COUNT.\n\
15452 Usage is `ignore N COUNT'."));
15453
15454 commands_cmd_element = add_com ("commands", class_breakpoint,
15455 commands_command, _("\
15456 Set commands to be executed when the given breakpoints are hit.\n\
15457 Give a space-separated breakpoint list as argument after \"commands\".\n\
15458 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15459 (e.g. `5-7').\n\
15460 With no argument, the targeted breakpoint is the last one set.\n\
15461 The commands themselves follow starting on the next line.\n\
15462 Type a line containing \"end\" to indicate the end of them.\n\
15463 Give \"silent\" as the first line to make the breakpoint silent;\n\
15464 then no output is printed when it is hit, except what the commands print."));
15465
15466 c = add_com ("condition", class_breakpoint, condition_command, _("\
15467 Specify breakpoint number N to break only if COND is true.\n\
15468 Usage is `condition N COND', where N is an integer and COND is an\n\
15469 expression to be evaluated whenever breakpoint N is reached."));
15470 set_cmd_completer (c, condition_completer);
15471
15472 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15473 Set a temporary breakpoint.\n\
15474 Like \"break\" except the breakpoint is only temporary,\n\
15475 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15476 by using \"enable delete\" on the breakpoint number.\n\
15477 \n"
15478 BREAK_ARGS_HELP ("tbreak")));
15479 set_cmd_completer (c, location_completer);
15480
15481 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15482 Set a hardware assisted breakpoint.\n\
15483 Like \"break\" except the breakpoint requires hardware support,\n\
15484 some target hardware may not have this support.\n\
15485 \n"
15486 BREAK_ARGS_HELP ("hbreak")));
15487 set_cmd_completer (c, location_completer);
15488
15489 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15490 Set a temporary hardware assisted breakpoint.\n\
15491 Like \"hbreak\" except the breakpoint is only temporary,\n\
15492 so it will be deleted when hit.\n\
15493 \n"
15494 BREAK_ARGS_HELP ("thbreak")));
15495 set_cmd_completer (c, location_completer);
15496
15497 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15498 Enable all or some breakpoints.\n\
15499 Usage: enable [BREAKPOINTNUM]...\n\
15500 Give breakpoint numbers (separated by spaces) as arguments.\n\
15501 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15502 This is used to cancel the effect of the \"disable\" command.\n\
15503 With a subcommand you can enable temporarily."),
15504 &enablelist, "enable ", 1, &cmdlist);
15505
15506 add_com_alias ("en", "enable", class_breakpoint, 1);
15507
15508 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15509 Enable all or some breakpoints.\n\
15510 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15511 Give breakpoint numbers (separated by spaces) as arguments.\n\
15512 This is used to cancel the effect of the \"disable\" command.\n\
15513 May be abbreviated to simply \"enable\"."),
15514 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15515
15516 add_cmd ("once", no_class, enable_once_command, _("\
15517 Enable some breakpoints for one hit.\n\
15518 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15519 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15520 &enablebreaklist);
15521
15522 add_cmd ("delete", no_class, enable_delete_command, _("\
15523 Enable some breakpoints and delete when hit.\n\
15524 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15525 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15526 &enablebreaklist);
15527
15528 add_cmd ("count", no_class, enable_count_command, _("\
15529 Enable some breakpoints for COUNT hits.\n\
15530 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15531 If a breakpoint is hit while enabled in this fashion,\n\
15532 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15533 &enablebreaklist);
15534
15535 add_cmd ("delete", no_class, enable_delete_command, _("\
15536 Enable some breakpoints and delete when hit.\n\
15537 Usage: enable delete BREAKPOINTNUM...\n\
15538 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15539 &enablelist);
15540
15541 add_cmd ("once", no_class, enable_once_command, _("\
15542 Enable some breakpoints for one hit.\n\
15543 Usage: enable once BREAKPOINTNUM...\n\
15544 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15545 &enablelist);
15546
15547 add_cmd ("count", no_class, enable_count_command, _("\
15548 Enable some breakpoints for COUNT hits.\n\
15549 Usage: enable count COUNT BREAKPOINTNUM...\n\
15550 If a breakpoint is hit while enabled in this fashion,\n\
15551 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15552 &enablelist);
15553
15554 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15555 Disable all or some breakpoints.\n\
15556 Usage: disable [BREAKPOINTNUM]...\n\
15557 Arguments are breakpoint numbers with spaces in between.\n\
15558 To disable all breakpoints, give no argument.\n\
15559 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15560 &disablelist, "disable ", 1, &cmdlist);
15561 add_com_alias ("dis", "disable", class_breakpoint, 1);
15562 add_com_alias ("disa", "disable", class_breakpoint, 1);
15563
15564 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15565 Disable all or some breakpoints.\n\
15566 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15567 Arguments are breakpoint numbers with spaces in between.\n\
15568 To disable all breakpoints, give no argument.\n\
15569 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15570 This command may be abbreviated \"disable\"."),
15571 &disablelist);
15572
15573 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15574 Delete all or some breakpoints.\n\
15575 Usage: delete [BREAKPOINTNUM]...\n\
15576 Arguments are breakpoint numbers with spaces in between.\n\
15577 To delete all breakpoints, give no argument.\n\
15578 \n\
15579 Also a prefix command for deletion of other GDB objects."),
15580 &deletelist, "delete ", 1, &cmdlist);
15581 add_com_alias ("d", "delete", class_breakpoint, 1);
15582 add_com_alias ("del", "delete", class_breakpoint, 1);
15583
15584 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15585 Delete all or some breakpoints or auto-display expressions.\n\
15586 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15587 Arguments are breakpoint numbers with spaces in between.\n\
15588 To delete all breakpoints, give no argument.\n\
15589 This command may be abbreviated \"delete\"."),
15590 &deletelist);
15591
15592 add_com ("clear", class_breakpoint, clear_command, _("\
15593 Clear breakpoint at specified location.\n\
15594 Argument may be a linespec, explicit, or address location as described below.\n\
15595 \n\
15596 With no argument, clears all breakpoints in the line that the selected frame\n\
15597 is executing in.\n"
15598 "\n" LOCATION_HELP_STRING "\n\n\
15599 See also the \"delete\" command which clears breakpoints by number."));
15600 add_com_alias ("cl", "clear", class_breakpoint, 1);
15601
15602 c = add_com ("break", class_breakpoint, break_command, _("\
15603 Set breakpoint at specified location.\n"
15604 BREAK_ARGS_HELP ("break")));
15605 set_cmd_completer (c, location_completer);
15606
15607 add_com_alias ("b", "break", class_run, 1);
15608 add_com_alias ("br", "break", class_run, 1);
15609 add_com_alias ("bre", "break", class_run, 1);
15610 add_com_alias ("brea", "break", class_run, 1);
15611
15612 if (dbx_commands)
15613 {
15614 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15615 Break in function/address or break at a line in the current file."),
15616 &stoplist, "stop ", 1, &cmdlist);
15617 add_cmd ("in", class_breakpoint, stopin_command,
15618 _("Break in function or address."), &stoplist);
15619 add_cmd ("at", class_breakpoint, stopat_command,
15620 _("Break at a line in the current file."), &stoplist);
15621 add_com ("status", class_info, info_breakpoints_command, _("\
15622 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15623 The \"Type\" column indicates one of:\n\
15624 \tbreakpoint - normal breakpoint\n\
15625 \twatchpoint - watchpoint\n\
15626 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15627 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15628 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15629 address and file/line number respectively.\n\
15630 \n\
15631 Convenience variable \"$_\" and default examine address for \"x\"\n\
15632 are set to the address of the last breakpoint listed unless the command\n\
15633 is prefixed with \"server \".\n\n\
15634 Convenience variable \"$bpnum\" contains the number of the last\n\
15635 breakpoint set."));
15636 }
15637
15638 add_info ("breakpoints", info_breakpoints_command, _("\
15639 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15640 The \"Type\" column indicates one of:\n\
15641 \tbreakpoint - normal breakpoint\n\
15642 \twatchpoint - watchpoint\n\
15643 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15644 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15645 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15646 address and file/line number respectively.\n\
15647 \n\
15648 Convenience variable \"$_\" and default examine address for \"x\"\n\
15649 are set to the address of the last breakpoint listed unless the command\n\
15650 is prefixed with \"server \".\n\n\
15651 Convenience variable \"$bpnum\" contains the number of the last\n\
15652 breakpoint set."));
15653
15654 add_info_alias ("b", "breakpoints", 1);
15655
15656 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15657 Status of all breakpoints, or breakpoint number NUMBER.\n\
15658 The \"Type\" column indicates one of:\n\
15659 \tbreakpoint - normal breakpoint\n\
15660 \twatchpoint - watchpoint\n\
15661 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15662 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15663 \tuntil - internal breakpoint used by the \"until\" command\n\
15664 \tfinish - internal breakpoint used by the \"finish\" command\n\
15665 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15666 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15667 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15668 address and file/line number respectively.\n\
15669 \n\
15670 Convenience variable \"$_\" and default examine address for \"x\"\n\
15671 are set to the address of the last breakpoint listed unless the command\n\
15672 is prefixed with \"server \".\n\n\
15673 Convenience variable \"$bpnum\" contains the number of the last\n\
15674 breakpoint set."),
15675 &maintenanceinfolist);
15676
15677 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15678 Set catchpoints to catch events."),
15679 &catch_cmdlist, "catch ",
15680 0/*allow-unknown*/, &cmdlist);
15681
15682 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15683 Set temporary catchpoints to catch events."),
15684 &tcatch_cmdlist, "tcatch ",
15685 0/*allow-unknown*/, &cmdlist);
15686
15687 add_catch_command ("fork", _("Catch calls to fork."),
15688 catch_fork_command_1,
15689 NULL,
15690 (void *) (uintptr_t) catch_fork_permanent,
15691 (void *) (uintptr_t) catch_fork_temporary);
15692 add_catch_command ("vfork", _("Catch calls to vfork."),
15693 catch_fork_command_1,
15694 NULL,
15695 (void *) (uintptr_t) catch_vfork_permanent,
15696 (void *) (uintptr_t) catch_vfork_temporary);
15697 add_catch_command ("exec", _("Catch calls to exec."),
15698 catch_exec_command_1,
15699 NULL,
15700 CATCH_PERMANENT,
15701 CATCH_TEMPORARY);
15702 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15703 Usage: catch load [REGEX]\n\
15704 If REGEX is given, only stop for libraries matching the regular expression."),
15705 catch_load_command_1,
15706 NULL,
15707 CATCH_PERMANENT,
15708 CATCH_TEMPORARY);
15709 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15710 Usage: catch unload [REGEX]\n\
15711 If REGEX is given, only stop for libraries matching the regular expression."),
15712 catch_unload_command_1,
15713 NULL,
15714 CATCH_PERMANENT,
15715 CATCH_TEMPORARY);
15716
15717 c = add_com ("watch", class_breakpoint, watch_command, _("\
15718 Set a watchpoint for an expression.\n\
15719 Usage: watch [-l|-location] EXPRESSION\n\
15720 A watchpoint stops execution of your program whenever the value of\n\
15721 an expression changes.\n\
15722 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15723 the memory to which it refers."));
15724 set_cmd_completer (c, expression_completer);
15725
15726 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15727 Set a read watchpoint for an expression.\n\
15728 Usage: rwatch [-l|-location] EXPRESSION\n\
15729 A watchpoint stops execution of your program whenever the value of\n\
15730 an expression is read.\n\
15731 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15732 the memory to which it refers."));
15733 set_cmd_completer (c, expression_completer);
15734
15735 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15736 Set a watchpoint for an expression.\n\
15737 Usage: awatch [-l|-location] EXPRESSION\n\
15738 A watchpoint stops execution of your program whenever the value of\n\
15739 an expression is either read or written.\n\
15740 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15741 the memory to which it refers."));
15742 set_cmd_completer (c, expression_completer);
15743
15744 add_info ("watchpoints", info_watchpoints_command, _("\
15745 Status of specified watchpoints (all watchpoints if no argument)."));
15746
15747 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15748 respond to changes - contrary to the description. */
15749 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15750 &can_use_hw_watchpoints, _("\
15751 Set debugger's willingness to use watchpoint hardware."), _("\
15752 Show debugger's willingness to use watchpoint hardware."), _("\
15753 If zero, gdb will not use hardware for new watchpoints, even if\n\
15754 such is available. (However, any hardware watchpoints that were\n\
15755 created before setting this to nonzero, will continue to use watchpoint\n\
15756 hardware.)"),
15757 NULL,
15758 show_can_use_hw_watchpoints,
15759 &setlist, &showlist);
15760
15761 can_use_hw_watchpoints = 1;
15762
15763 /* Tracepoint manipulation commands. */
15764
15765 c = add_com ("trace", class_breakpoint, trace_command, _("\
15766 Set a tracepoint at specified location.\n\
15767 \n"
15768 BREAK_ARGS_HELP ("trace") "\n\
15769 Do \"help tracepoints\" for info on other tracepoint commands."));
15770 set_cmd_completer (c, location_completer);
15771
15772 add_com_alias ("tp", "trace", class_breakpoint, 0);
15773 add_com_alias ("tr", "trace", class_breakpoint, 1);
15774 add_com_alias ("tra", "trace", class_breakpoint, 1);
15775 add_com_alias ("trac", "trace", class_breakpoint, 1);
15776
15777 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15778 Set a fast tracepoint at specified location.\n\
15779 \n"
15780 BREAK_ARGS_HELP ("ftrace") "\n\
15781 Do \"help tracepoints\" for info on other tracepoint commands."));
15782 set_cmd_completer (c, location_completer);
15783
15784 c = add_com ("strace", class_breakpoint, strace_command, _("\
15785 Set a static tracepoint at location or marker.\n\
15786 \n\
15787 strace [LOCATION] [if CONDITION]\n\
15788 LOCATION may be a linespec, explicit, or address location (described below) \n\
15789 or -m MARKER_ID.\n\n\
15790 If a marker id is specified, probe the marker with that name. With\n\
15791 no LOCATION, uses current execution address of the selected stack frame.\n\
15792 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15793 This collects arbitrary user data passed in the probe point call to the\n\
15794 tracing library. You can inspect it when analyzing the trace buffer,\n\
15795 by printing the $_sdata variable like any other convenience variable.\n\
15796 \n\
15797 CONDITION is a boolean expression.\n\
15798 \n" LOCATION_HELP_STRING "\n\n\
15799 Multiple tracepoints at one place are permitted, and useful if their\n\
15800 conditions are different.\n\
15801 \n\
15802 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15803 Do \"help tracepoints\" for info on other tracepoint commands."));
15804 set_cmd_completer (c, location_completer);
15805
15806 add_info ("tracepoints", info_tracepoints_command, _("\
15807 Status of specified tracepoints (all tracepoints if no argument).\n\
15808 Convenience variable \"$tpnum\" contains the number of the\n\
15809 last tracepoint set."));
15810
15811 add_info_alias ("tp", "tracepoints", 1);
15812
15813 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15814 Delete specified tracepoints.\n\
15815 Arguments are tracepoint numbers, separated by spaces.\n\
15816 No argument means delete all tracepoints."),
15817 &deletelist);
15818 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15819
15820 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15821 Disable specified tracepoints.\n\
15822 Arguments are tracepoint numbers, separated by spaces.\n\
15823 No argument means disable all tracepoints."),
15824 &disablelist);
15825 deprecate_cmd (c, "disable");
15826
15827 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15828 Enable specified tracepoints.\n\
15829 Arguments are tracepoint numbers, separated by spaces.\n\
15830 No argument means enable all tracepoints."),
15831 &enablelist);
15832 deprecate_cmd (c, "enable");
15833
15834 add_com ("passcount", class_trace, trace_pass_command, _("\
15835 Set the passcount for a tracepoint.\n\
15836 The trace will end when the tracepoint has been passed 'count' times.\n\
15837 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15838 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15839
15840 add_basic_prefix_cmd ("save", class_breakpoint,
15841 _("Save breakpoint definitions as a script."),
15842 &save_cmdlist, "save ",
15843 0/*allow-unknown*/, &cmdlist);
15844
15845 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15846 Save current breakpoint definitions as a script.\n\
15847 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15848 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15849 session to restore them."),
15850 &save_cmdlist);
15851 set_cmd_completer (c, filename_completer);
15852
15853 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15854 Save current tracepoint definitions as a script.\n\
15855 Use the 'source' command in another debug session to restore them."),
15856 &save_cmdlist);
15857 set_cmd_completer (c, filename_completer);
15858
15859 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15860 deprecate_cmd (c, "save tracepoints");
15861
15862 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
15863 Breakpoint specific settings.\n\
15864 Configure various breakpoint-specific variables such as\n\
15865 pending breakpoint behavior."),
15866 &breakpoint_set_cmdlist, "set breakpoint ",
15867 0/*allow-unknown*/, &setlist);
15868 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
15869 Breakpoint specific settings.\n\
15870 Configure various breakpoint-specific variables such as\n\
15871 pending breakpoint behavior."),
15872 &breakpoint_show_cmdlist, "show breakpoint ",
15873 0/*allow-unknown*/, &showlist);
15874
15875 add_setshow_auto_boolean_cmd ("pending", no_class,
15876 &pending_break_support, _("\
15877 Set debugger's behavior regarding pending breakpoints."), _("\
15878 Show debugger's behavior regarding pending breakpoints."), _("\
15879 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15880 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15881 an error. If auto, an unrecognized breakpoint location results in a\n\
15882 user-query to see if a pending breakpoint should be created."),
15883 NULL,
15884 show_pending_break_support,
15885 &breakpoint_set_cmdlist,
15886 &breakpoint_show_cmdlist);
15887
15888 pending_break_support = AUTO_BOOLEAN_AUTO;
15889
15890 add_setshow_boolean_cmd ("auto-hw", no_class,
15891 &automatic_hardware_breakpoints, _("\
15892 Set automatic usage of hardware breakpoints."), _("\
15893 Show automatic usage of hardware breakpoints."), _("\
15894 If set, the debugger will automatically use hardware breakpoints for\n\
15895 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15896 a warning will be emitted for such breakpoints."),
15897 NULL,
15898 show_automatic_hardware_breakpoints,
15899 &breakpoint_set_cmdlist,
15900 &breakpoint_show_cmdlist);
15901
15902 add_setshow_boolean_cmd ("always-inserted", class_support,
15903 &always_inserted_mode, _("\
15904 Set mode for inserting breakpoints."), _("\
15905 Show mode for inserting breakpoints."), _("\
15906 When this mode is on, breakpoints are inserted immediately as soon as\n\
15907 they're created, kept inserted even when execution stops, and removed\n\
15908 only when the user deletes them. When this mode is off (the default),\n\
15909 breakpoints are inserted only when execution continues, and removed\n\
15910 when execution stops."),
15911 NULL,
15912 &show_always_inserted_mode,
15913 &breakpoint_set_cmdlist,
15914 &breakpoint_show_cmdlist);
15915
15916 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15917 condition_evaluation_enums,
15918 &condition_evaluation_mode_1, _("\
15919 Set mode of breakpoint condition evaluation."), _("\
15920 Show mode of breakpoint condition evaluation."), _("\
15921 When this is set to \"host\", breakpoint conditions will be\n\
15922 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15923 breakpoint conditions will be downloaded to the target (if the target\n\
15924 supports such feature) and conditions will be evaluated on the target's side.\n\
15925 If this is set to \"auto\" (default), this will be automatically set to\n\
15926 \"target\" if it supports condition evaluation, otherwise it will\n\
15927 be set to \"host\"."),
15928 &set_condition_evaluation_mode,
15929 &show_condition_evaluation_mode,
15930 &breakpoint_set_cmdlist,
15931 &breakpoint_show_cmdlist);
15932
15933 add_com ("break-range", class_breakpoint, break_range_command, _("\
15934 Set a breakpoint for an address range.\n\
15935 break-range START-LOCATION, END-LOCATION\n\
15936 where START-LOCATION and END-LOCATION can be one of the following:\n\
15937 LINENUM, for that line in the current file,\n\
15938 FILE:LINENUM, for that line in that file,\n\
15939 +OFFSET, for that number of lines after the current line\n\
15940 or the start of the range\n\
15941 FUNCTION, for the first line in that function,\n\
15942 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15943 *ADDRESS, for the instruction at that address.\n\
15944 \n\
15945 The breakpoint will stop execution of the inferior whenever it executes\n\
15946 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15947 range (including START-LOCATION and END-LOCATION)."));
15948
15949 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15950 Set a dynamic printf at specified location.\n\
15951 dprintf location,format string,arg1,arg2,...\n\
15952 location may be a linespec, explicit, or address location.\n"
15953 "\n" LOCATION_HELP_STRING));
15954 set_cmd_completer (c, location_completer);
15955
15956 add_setshow_enum_cmd ("dprintf-style", class_support,
15957 dprintf_style_enums, &dprintf_style, _("\
15958 Set the style of usage for dynamic printf."), _("\
15959 Show the style of usage for dynamic printf."), _("\
15960 This setting chooses how GDB will do a dynamic printf.\n\
15961 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15962 console, as with the \"printf\" command.\n\
15963 If the value is \"call\", the print is done by calling a function in your\n\
15964 program; by default printf(), but you can choose a different function or\n\
15965 output stream by setting dprintf-function and dprintf-channel."),
15966 update_dprintf_commands, NULL,
15967 &setlist, &showlist);
15968
15969 dprintf_function = xstrdup ("printf");
15970 add_setshow_string_cmd ("dprintf-function", class_support,
15971 &dprintf_function, _("\
15972 Set the function to use for dynamic printf."), _("\
15973 Show the function to use for dynamic printf."), NULL,
15974 update_dprintf_commands, NULL,
15975 &setlist, &showlist);
15976
15977 dprintf_channel = xstrdup ("");
15978 add_setshow_string_cmd ("dprintf-channel", class_support,
15979 &dprintf_channel, _("\
15980 Set the channel to use for dynamic printf."), _("\
15981 Show the channel to use for dynamic printf."), NULL,
15982 update_dprintf_commands, NULL,
15983 &setlist, &showlist);
15984
15985 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15986 &disconnected_dprintf, _("\
15987 Set whether dprintf continues after GDB disconnects."), _("\
15988 Show whether dprintf continues after GDB disconnects."), _("\
15989 Use this to let dprintf commands continue to hit and produce output\n\
15990 even if GDB disconnects or detaches from the target."),
15991 NULL,
15992 NULL,
15993 &setlist, &showlist);
15994
15995 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15996 Target agent only formatted printing, like the C \"printf\" function.\n\
15997 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15998 This supports most C printf format specifications, like %s, %d, etc.\n\
15999 This is useful for formatted output in user-defined commands."));
16000
16001 automatic_hardware_breakpoints = true;
16002
16003 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16004 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16005 }
This page took 0.333097 seconds and 5 git commands to generate.