Move type stack handling to a new class
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "common/array-view.h"
86 #include "common/gdb_optional.h"
87
88 /* Enums for exception-handling support. */
89 enum exception_event_kind
90 {
91 EX_EVENT_THROW,
92 EX_EVENT_RETHROW,
93 EX_EVENT_CATCH
94 };
95
96 /* Prototypes for local functions. */
97
98 static void map_breakpoint_numbers (const char *,
99 gdb::function_view<void (breakpoint *)>);
100
101 static void breakpoint_re_set_default (struct breakpoint *);
102
103 static void
104 create_sals_from_location_default (const struct event_location *location,
105 struct linespec_result *canonical,
106 enum bptype type_wanted);
107
108 static void create_breakpoints_sal_default (struct gdbarch *,
109 struct linespec_result *,
110 gdb::unique_xmalloc_ptr<char>,
111 gdb::unique_xmalloc_ptr<char>,
112 enum bptype,
113 enum bpdisp, int, int,
114 int,
115 const struct breakpoint_ops *,
116 int, int, int, unsigned);
117
118 static std::vector<symtab_and_line> decode_location_default
119 (struct breakpoint *b, const struct event_location *location,
120 struct program_space *search_pspace);
121
122 static int can_use_hardware_watchpoint
123 (const std::vector<value_ref_ptr> &vals);
124
125 static void mention (struct breakpoint *);
126
127 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
128 enum bptype,
129 const struct breakpoint_ops *);
130 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
131 const struct symtab_and_line *);
132
133 /* This function is used in gdbtk sources and thus can not be made
134 static. */
135 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
136 struct symtab_and_line,
137 enum bptype,
138 const struct breakpoint_ops *);
139
140 static struct breakpoint *
141 momentary_breakpoint_from_master (struct breakpoint *orig,
142 enum bptype type,
143 const struct breakpoint_ops *ops,
144 int loc_enabled);
145
146 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
147
148 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
149 CORE_ADDR bpaddr,
150 enum bptype bptype);
151
152 static void describe_other_breakpoints (struct gdbarch *,
153 struct program_space *, CORE_ADDR,
154 struct obj_section *, int);
155
156 static int watchpoint_locations_match (struct bp_location *loc1,
157 struct bp_location *loc2);
158
159 static int breakpoint_location_address_match (struct bp_location *bl,
160 const struct address_space *aspace,
161 CORE_ADDR addr);
162
163 static int breakpoint_location_address_range_overlap (struct bp_location *,
164 const address_space *,
165 CORE_ADDR, int);
166
167 static int remove_breakpoint (struct bp_location *);
168 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
169
170 static enum print_stop_action print_bp_stop_message (bpstat bs);
171
172 static int hw_breakpoint_used_count (void);
173
174 static int hw_watchpoint_use_count (struct breakpoint *);
175
176 static int hw_watchpoint_used_count_others (struct breakpoint *except,
177 enum bptype type,
178 int *other_type_used);
179
180 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
181 int count);
182
183 static void free_bp_location (struct bp_location *loc);
184 static void incref_bp_location (struct bp_location *loc);
185 static void decref_bp_location (struct bp_location **loc);
186
187 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
188
189 /* update_global_location_list's modes of operation wrt to whether to
190 insert locations now. */
191 enum ugll_insert_mode
192 {
193 /* Don't insert any breakpoint locations into the inferior, only
194 remove already-inserted locations that no longer should be
195 inserted. Functions that delete a breakpoint or breakpoints
196 should specify this mode, so that deleting a breakpoint doesn't
197 have the side effect of inserting the locations of other
198 breakpoints that are marked not-inserted, but should_be_inserted
199 returns true on them.
200
201 This behavior is useful is situations close to tear-down -- e.g.,
202 after an exec, while the target still has execution, but
203 breakpoint shadows of the previous executable image should *NOT*
204 be restored to the new image; or before detaching, where the
205 target still has execution and wants to delete breakpoints from
206 GDB's lists, and all breakpoints had already been removed from
207 the inferior. */
208 UGLL_DONT_INSERT,
209
210 /* May insert breakpoints iff breakpoints_should_be_inserted_now
211 claims breakpoints should be inserted now. */
212 UGLL_MAY_INSERT,
213
214 /* Insert locations now, irrespective of
215 breakpoints_should_be_inserted_now. E.g., say all threads are
216 stopped right now, and the user did "continue". We need to
217 insert breakpoints _before_ resuming the target, but
218 UGLL_MAY_INSERT wouldn't insert them, because
219 breakpoints_should_be_inserted_now returns false at that point,
220 as no thread is running yet. */
221 UGLL_INSERT
222 };
223
224 static void update_global_location_list (enum ugll_insert_mode);
225
226 static void update_global_location_list_nothrow (enum ugll_insert_mode);
227
228 static int is_hardware_watchpoint (const struct breakpoint *bpt);
229
230 static void insert_breakpoint_locations (void);
231
232 static void trace_pass_command (const char *, int);
233
234 static void set_tracepoint_count (int num);
235
236 static int is_masked_watchpoint (const struct breakpoint *b);
237
238 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
239
240 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
241 otherwise. */
242
243 static int strace_marker_p (struct breakpoint *b);
244
245 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
246 that are implemented on top of software or hardware breakpoints
247 (user breakpoints, internal and momentary breakpoints, etc.). */
248 static struct breakpoint_ops bkpt_base_breakpoint_ops;
249
250 /* Internal breakpoints class type. */
251 static struct breakpoint_ops internal_breakpoint_ops;
252
253 /* Momentary breakpoints class type. */
254 static struct breakpoint_ops momentary_breakpoint_ops;
255
256 /* The breakpoint_ops structure to be used in regular user created
257 breakpoints. */
258 struct breakpoint_ops bkpt_breakpoint_ops;
259
260 /* Breakpoints set on probes. */
261 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
262
263 /* Dynamic printf class type. */
264 struct breakpoint_ops dprintf_breakpoint_ops;
265
266 /* The style in which to perform a dynamic printf. This is a user
267 option because different output options have different tradeoffs;
268 if GDB does the printing, there is better error handling if there
269 is a problem with any of the arguments, but using an inferior
270 function lets you have special-purpose printers and sending of
271 output to the same place as compiled-in print functions. */
272
273 static const char dprintf_style_gdb[] = "gdb";
274 static const char dprintf_style_call[] = "call";
275 static const char dprintf_style_agent[] = "agent";
276 static const char *const dprintf_style_enums[] = {
277 dprintf_style_gdb,
278 dprintf_style_call,
279 dprintf_style_agent,
280 NULL
281 };
282 static const char *dprintf_style = dprintf_style_gdb;
283
284 /* The function to use for dynamic printf if the preferred style is to
285 call into the inferior. The value is simply a string that is
286 copied into the command, so it can be anything that GDB can
287 evaluate to a callable address, not necessarily a function name. */
288
289 static char *dprintf_function;
290
291 /* The channel to use for dynamic printf if the preferred style is to
292 call into the inferior; if a nonempty string, it will be passed to
293 the call as the first argument, with the format string as the
294 second. As with the dprintf function, this can be anything that
295 GDB knows how to evaluate, so in addition to common choices like
296 "stderr", this could be an app-specific expression like
297 "mystreams[curlogger]". */
298
299 static char *dprintf_channel;
300
301 /* True if dprintf commands should continue to operate even if GDB
302 has disconnected. */
303 static int disconnected_dprintf = 1;
304
305 struct command_line *
306 breakpoint_commands (struct breakpoint *b)
307 {
308 return b->commands ? b->commands.get () : NULL;
309 }
310
311 /* Flag indicating that a command has proceeded the inferior past the
312 current breakpoint. */
313
314 static int breakpoint_proceeded;
315
316 const char *
317 bpdisp_text (enum bpdisp disp)
318 {
319 /* NOTE: the following values are a part of MI protocol and
320 represent values of 'disp' field returned when inferior stops at
321 a breakpoint. */
322 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
323
324 return bpdisps[(int) disp];
325 }
326
327 /* Prototypes for exported functions. */
328 /* If FALSE, gdb will not use hardware support for watchpoints, even
329 if such is available. */
330 static int can_use_hw_watchpoints;
331
332 static void
333 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
334 struct cmd_list_element *c,
335 const char *value)
336 {
337 fprintf_filtered (file,
338 _("Debugger's willingness to use "
339 "watchpoint hardware is %s.\n"),
340 value);
341 }
342
343 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
344 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
345 for unrecognized breakpoint locations.
346 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
347 static enum auto_boolean pending_break_support;
348 static void
349 show_pending_break_support (struct ui_file *file, int from_tty,
350 struct cmd_list_element *c,
351 const char *value)
352 {
353 fprintf_filtered (file,
354 _("Debugger's behavior regarding "
355 "pending breakpoints is %s.\n"),
356 value);
357 }
358
359 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
360 set with "break" but falling in read-only memory.
361 If 0, gdb will warn about such breakpoints, but won't automatically
362 use hardware breakpoints. */
363 static int automatic_hardware_breakpoints;
364 static void
365 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c,
367 const char *value)
368 {
369 fprintf_filtered (file,
370 _("Automatic usage of hardware breakpoints is %s.\n"),
371 value);
372 }
373
374 /* If on, GDB keeps breakpoints inserted even if the inferior is
375 stopped, and immediately inserts any new breakpoints as soon as
376 they're created. If off (default), GDB keeps breakpoints off of
377 the target as long as possible. That is, it delays inserting
378 breakpoints until the next resume, and removes them again when the
379 target fully stops. This is a bit safer in case GDB crashes while
380 processing user input. */
381 static int always_inserted_mode = 0;
382
383 static void
384 show_always_inserted_mode (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
388 value);
389 }
390
391 /* See breakpoint.h. */
392
393 int
394 breakpoints_should_be_inserted_now (void)
395 {
396 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
397 {
398 /* If breakpoints are global, they should be inserted even if no
399 thread under gdb's control is running, or even if there are
400 no threads under GDB's control yet. */
401 return 1;
402 }
403 else if (target_has_execution)
404 {
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 for (thread_info *tp : all_non_exited_threads ())
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 int
1051 is_tracepoint (const struct breakpoint *b)
1052 {
1053 return is_tracepoint_type (b->type);
1054 }
1055
1056 /* Factory function to create an appropriate instance of breakpoint given
1057 TYPE. */
1058
1059 static std::unique_ptr<breakpoint>
1060 new_breakpoint_from_type (bptype type)
1061 {
1062 breakpoint *b;
1063
1064 if (is_tracepoint_type (type))
1065 b = new tracepoint ();
1066 else if (is_longjmp_type (type))
1067 b = new longjmp_breakpoint ();
1068 else
1069 b = new breakpoint ();
1070
1071 return std::unique_ptr<breakpoint> (b);
1072 }
1073
1074 /* A helper function that validates that COMMANDS are valid for a
1075 breakpoint. This function will throw an exception if a problem is
1076 found. */
1077
1078 static void
1079 validate_commands_for_breakpoint (struct breakpoint *b,
1080 struct command_line *commands)
1081 {
1082 if (is_tracepoint (b))
1083 {
1084 struct tracepoint *t = (struct tracepoint *) b;
1085 struct command_line *c;
1086 struct command_line *while_stepping = 0;
1087
1088 /* Reset the while-stepping step count. The previous commands
1089 might have included a while-stepping action, while the new
1090 ones might not. */
1091 t->step_count = 0;
1092
1093 /* We need to verify that each top-level element of commands is
1094 valid for tracepoints, that there's at most one
1095 while-stepping element, and that the while-stepping's body
1096 has valid tracing commands excluding nested while-stepping.
1097 We also need to validate the tracepoint action line in the
1098 context of the tracepoint --- validate_actionline actually
1099 has side effects, like setting the tracepoint's
1100 while-stepping STEP_COUNT, in addition to checking if the
1101 collect/teval actions parse and make sense in the
1102 tracepoint's context. */
1103 for (c = commands; c; c = c->next)
1104 {
1105 if (c->control_type == while_stepping_control)
1106 {
1107 if (b->type == bp_fast_tracepoint)
1108 error (_("The 'while-stepping' command "
1109 "cannot be used for fast tracepoint"));
1110 else if (b->type == bp_static_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for static tracepoint"));
1113
1114 if (while_stepping)
1115 error (_("The 'while-stepping' command "
1116 "can be used only once"));
1117 else
1118 while_stepping = c;
1119 }
1120
1121 validate_actionline (c->line, b);
1122 }
1123 if (while_stepping)
1124 {
1125 struct command_line *c2;
1126
1127 gdb_assert (while_stepping->body_list_1 == nullptr);
1128 c2 = while_stepping->body_list_0.get ();
1129 for (; c2; c2 = c2->next)
1130 {
1131 if (c2->control_type == while_stepping_control)
1132 error (_("The 'while-stepping' command cannot be nested"));
1133 }
1134 }
1135 }
1136 else
1137 {
1138 check_no_tracepoint_commands (commands);
1139 }
1140 }
1141
1142 /* Return a vector of all the static tracepoints set at ADDR. The
1143 caller is responsible for releasing the vector. */
1144
1145 std::vector<breakpoint *>
1146 static_tracepoints_here (CORE_ADDR addr)
1147 {
1148 struct breakpoint *b;
1149 std::vector<breakpoint *> found;
1150 struct bp_location *loc;
1151
1152 ALL_BREAKPOINTS (b)
1153 if (b->type == bp_static_tracepoint)
1154 {
1155 for (loc = b->loc; loc; loc = loc->next)
1156 if (loc->address == addr)
1157 found.push_back (b);
1158 }
1159
1160 return found;
1161 }
1162
1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1164 validate that only allowed commands are included. */
1165
1166 void
1167 breakpoint_set_commands (struct breakpoint *b,
1168 counted_command_line &&commands)
1169 {
1170 validate_commands_for_breakpoint (b, commands.get ());
1171
1172 b->commands = std::move (commands);
1173 gdb::observers::breakpoint_modified.notify (b);
1174 }
1175
1176 /* Set the internal `silent' flag on the breakpoint. Note that this
1177 is not the same as the "silent" that may appear in the breakpoint's
1178 commands. */
1179
1180 void
1181 breakpoint_set_silent (struct breakpoint *b, int silent)
1182 {
1183 int old_silent = b->silent;
1184
1185 b->silent = silent;
1186 if (old_silent != silent)
1187 gdb::observers::breakpoint_modified.notify (b);
1188 }
1189
1190 /* Set the thread for this breakpoint. If THREAD is -1, make the
1191 breakpoint work for any thread. */
1192
1193 void
1194 breakpoint_set_thread (struct breakpoint *b, int thread)
1195 {
1196 int old_thread = b->thread;
1197
1198 b->thread = thread;
1199 if (old_thread != thread)
1200 gdb::observers::breakpoint_modified.notify (b);
1201 }
1202
1203 /* Set the task for this breakpoint. If TASK is 0, make the
1204 breakpoint work for any task. */
1205
1206 void
1207 breakpoint_set_task (struct breakpoint *b, int task)
1208 {
1209 int old_task = b->task;
1210
1211 b->task = task;
1212 if (old_task != task)
1213 gdb::observers::breakpoint_modified.notify (b);
1214 }
1215
1216 static void
1217 commands_command_1 (const char *arg, int from_tty,
1218 struct command_line *control)
1219 {
1220 counted_command_line cmd;
1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1222 NULL after the call to read_command_lines if the user provides an empty
1223 list of command by just typing "end". */
1224 bool cmd_read = false;
1225
1226 std::string new_arg;
1227
1228 if (arg == NULL || !*arg)
1229 {
1230 if (breakpoint_count - prev_breakpoint_count > 1)
1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1232 breakpoint_count);
1233 else if (breakpoint_count > 0)
1234 new_arg = string_printf ("%d", breakpoint_count);
1235 arg = new_arg.c_str ();
1236 }
1237
1238 map_breakpoint_numbers
1239 (arg, [&] (breakpoint *b)
1240 {
1241 if (!cmd_read)
1242 {
1243 gdb_assert (cmd == NULL);
1244 if (control != NULL)
1245 cmd = control->body_list_0;
1246 else
1247 {
1248 std::string str
1249 = string_printf (_("Type commands for breakpoint(s) "
1250 "%s, one per line."),
1251 arg);
1252
1253 auto do_validate = [=] (const char *line)
1254 {
1255 validate_actionline (line, b);
1256 };
1257 gdb::function_view<void (const char *)> validator;
1258 if (is_tracepoint (b))
1259 validator = do_validate;
1260
1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1262 }
1263 cmd_read = true;
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (b->watchpoint_thread == null_ptid
1553 || (inferior_ptid == b->watchpoint_thread
1554 && !inferior_thread ()->executing)));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 std::vector<value_ref_ptr> val_chain;
1781 struct value *v, *result;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 v = extract_bitfield_from_watchpoint_value (b, v);
1796 b->val = release_value (v);
1797 b->val_valid = 1;
1798 }
1799
1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1801
1802 /* Look at each value on the value chain. */
1803 gdb_assert (!val_chain.empty ());
1804 for (const value_ref_ptr &iter : val_chain)
1805 {
1806 v = iter.get ();
1807
1808 /* If it's a memory location, and GDB actually needed
1809 its contents to evaluate the expression, then we
1810 must watch it. If the first value returned is
1811 still lazy, that means an error occurred reading it;
1812 watch it anyway in case it becomes readable. */
1813 if (VALUE_LVAL (v) == lval_memory
1814 && (v == val_chain[0] || ! value_lazy (v)))
1815 {
1816 struct type *vtype = check_typedef (value_type (v));
1817
1818 /* We only watch structs and arrays if user asked
1819 for it explicitly, never if they just happen to
1820 appear in the middle of some value chain. */
1821 if (v == result
1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1824 {
1825 CORE_ADDR addr;
1826 enum target_hw_bp_type type;
1827 struct bp_location *loc, **tmp;
1828 int bitpos = 0, bitsize = 0;
1829
1830 if (value_bitsize (v) != 0)
1831 {
1832 /* Extract the bit parameters out from the bitfield
1833 sub-expression. */
1834 bitpos = value_bitpos (v);
1835 bitsize = value_bitsize (v);
1836 }
1837 else if (v == result && b->val_bitsize != 0)
1838 {
1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1840 lvalue whose bit parameters are saved in the fields
1841 VAL_BITPOS and VAL_BITSIZE. */
1842 bitpos = b->val_bitpos;
1843 bitsize = b->val_bitsize;
1844 }
1845
1846 addr = value_address (v);
1847 if (bitsize != 0)
1848 {
1849 /* Skip the bytes that don't contain the bitfield. */
1850 addr += bitpos / 8;
1851 }
1852
1853 type = hw_write;
1854 if (b->type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (b);
1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = address_significant (loc->gdbarch, addr);
1867
1868 if (bitsize != 0)
1869 {
1870 /* Just cover the bytes that make up the bitfield. */
1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1872 }
1873 else
1874 loc->length = TYPE_LENGTH (value_type (v));
1875
1876 loc->watchpoint_type = type;
1877 }
1878 }
1879 }
1880
1881 /* Change the type of breakpoint between hardware assisted or
1882 an ordinary watchpoint depending on the hardware support
1883 and free hardware slots. REPARSE is set when the inferior
1884 is started. */
1885 if (reparse)
1886 {
1887 int reg_cnt;
1888 enum bp_loc_type loc_type;
1889 struct bp_location *bl;
1890
1891 reg_cnt = can_use_hardware_watchpoint (val_chain);
1892
1893 if (reg_cnt)
1894 {
1895 int i, target_resources_ok, other_type_used;
1896 enum bptype type;
1897
1898 /* Use an exact watchpoint when there's only one memory region to be
1899 watched, and only one debug register is needed to watch it. */
1900 b->exact = target_exact_watchpoints && reg_cnt == 1;
1901
1902 /* We need to determine how many resources are already
1903 used for all other hardware watchpoints plus this one
1904 to see if we still have enough resources to also fit
1905 this watchpoint in as well. */
1906
1907 /* If this is a software watchpoint, we try to turn it
1908 to a hardware one -- count resources as if B was of
1909 hardware watchpoint type. */
1910 type = b->type;
1911 if (type == bp_watchpoint)
1912 type = bp_hardware_watchpoint;
1913
1914 /* This watchpoint may or may not have been placed on
1915 the list yet at this point (it won't be in the list
1916 if we're trying to create it for the first time,
1917 through watch_command), so always account for it
1918 manually. */
1919
1920 /* Count resources used by all watchpoints except B. */
1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1922
1923 /* Add in the resources needed for B. */
1924 i += hw_watchpoint_use_count (b);
1925
1926 target_resources_ok
1927 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1928 if (target_resources_ok <= 0)
1929 {
1930 int sw_mode = b->ops->works_in_software_mode (b);
1931
1932 if (target_resources_ok == 0 && !sw_mode)
1933 error (_("Target does not support this type of "
1934 "hardware watchpoint."));
1935 else if (target_resources_ok < 0 && !sw_mode)
1936 error (_("There are not enough available hardware "
1937 "resources for this watchpoint."));
1938
1939 /* Downgrade to software watchpoint. */
1940 b->type = bp_watchpoint;
1941 }
1942 else
1943 {
1944 /* If this was a software watchpoint, we've just
1945 found we have enough resources to turn it to a
1946 hardware watchpoint. Otherwise, this is a
1947 nop. */
1948 b->type = type;
1949 }
1950 }
1951 else if (!b->ops->works_in_software_mode (b))
1952 {
1953 if (!can_use_hw_watchpoints)
1954 error (_("Can't set read/access watchpoint when "
1955 "hardware watchpoints are disabled."));
1956 else
1957 error (_("Expression cannot be implemented with "
1958 "read/access watchpoint."));
1959 }
1960 else
1961 b->type = bp_watchpoint;
1962
1963 loc_type = (b->type == bp_watchpoint? bp_loc_other
1964 : bp_loc_hardware_watchpoint);
1965 for (bl = b->loc; bl; bl = bl->next)
1966 bl->loc_type = loc_type;
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->type == bp_watchpoint && b->loc == NULL)
1974 software_watchpoint_add_no_memory_location (b, frame_pspace);
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 /* Don't insert a breakpoint if we're trying to step past its
2023 location, except if the breakpoint is a single-step breakpoint,
2024 and the breakpoint's thread is the thread which is stepping past
2025 a breakpoint. */
2026 if ((bl->loc_type == bp_loc_software_breakpoint
2027 || bl->loc_type == bp_loc_hardware_breakpoint)
2028 && stepping_past_instruction_at (bl->pspace->aspace,
2029 bl->address)
2030 /* The single-step breakpoint may be inserted at the location
2031 we're trying to step if the instruction branches to itself.
2032 However, the instruction won't be executed at all and it may
2033 break the semantics of the instruction, for example, the
2034 instruction is a conditional branch or updates some flags.
2035 We can't fix it unless GDB is able to emulate the instruction
2036 or switch to displaced stepping. */
2037 && !(bl->owner->type == bp_single_step
2038 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2039 {
2040 if (debug_infrun)
2041 {
2042 fprintf_unfiltered (gdb_stdlog,
2043 "infrun: skipping breakpoint: "
2044 "stepping past insn at: %s\n",
2045 paddress (bl->gdbarch, bl->address));
2046 }
2047 return 0;
2048 }
2049
2050 /* Don't insert watchpoints if we're trying to step past the
2051 instruction that triggered one. */
2052 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2053 && stepping_past_nonsteppable_watchpoint ())
2054 {
2055 if (debug_infrun)
2056 {
2057 fprintf_unfiltered (gdb_stdlog,
2058 "infrun: stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address),
2061 bl->length);
2062 }
2063 return 0;
2064 }
2065
2066 return 1;
2067 }
2068
2069 /* Same as should_be_inserted but does the check assuming
2070 that the location is not duplicated. */
2071
2072 static int
2073 unduplicated_should_be_inserted (struct bp_location *bl)
2074 {
2075 int result;
2076 const int save_duplicate = bl->duplicate;
2077
2078 bl->duplicate = 0;
2079 result = should_be_inserted (bl);
2080 bl->duplicate = save_duplicate;
2081 return result;
2082 }
2083
2084 /* Parses a conditional described by an expression COND into an
2085 agent expression bytecode suitable for evaluation
2086 by the bytecode interpreter. Return NULL if there was
2087 any error during parsing. */
2088
2089 static agent_expr_up
2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2091 {
2092 if (cond == NULL)
2093 return NULL;
2094
2095 agent_expr_up aexpr;
2096
2097 /* We don't want to stop processing, so catch any errors
2098 that may show up. */
2099 TRY
2100 {
2101 aexpr = gen_eval_for_expr (scope, cond);
2102 }
2103
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 /* If we got here, it means the condition could not be parsed to a valid
2107 bytecode expression and thus can't be evaluated on the target's side.
2108 It's no use iterating through the conditions. */
2109 }
2110 END_CATCH
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 TRY
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 CATCH (ex, RETURN_MASK_ERROR)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286 END_CATCH
2287
2288 /* We have a valid agent expression, return it. */
2289 return aexpr;
2290 }
2291
2292 /* Based on location BL, create a list of breakpoint commands to be
2293 passed on to the target. If we have duplicated locations with
2294 different commands, we will add any such to the list. */
2295
2296 static void
2297 build_target_command_list (struct bp_location *bl)
2298 {
2299 struct bp_location **locp = NULL, **loc2p;
2300 int null_command_or_parse_error = 0;
2301 int modified = bl->needs_update;
2302 struct bp_location *loc;
2303
2304 /* Clear commands left over from a previous insert. */
2305 bl->target_info.tcommands.clear ();
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* For now, limit to agent-style dprintf breakpoints. */
2311 if (dprintf_style != dprintf_style_agent)
2312 return;
2313
2314 /* For now, if we have any duplicate location that isn't a dprintf,
2315 don't install the target-side commands, as that would make the
2316 breakpoint not be reported to the core, and we'd lose
2317 control. */
2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2319 {
2320 loc = (*loc2p);
2321 if (is_breakpoint (loc->owner)
2322 && loc->pspace->num == bl->pspace->num
2323 && loc->owner->type != bp_dprintf)
2324 return;
2325 }
2326
2327 /* Do a first pass to check for locations with no assigned
2328 conditions or conditions that fail to parse to a valid agent expression
2329 bytecode. If any of these happen, then it's no use to send conditions
2330 to the target since this location will always trigger and generate a
2331 response back to GDB. */
2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2333 {
2334 loc = (*loc2p);
2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2336 {
2337 if (modified)
2338 {
2339 /* Re-parse the commands since something changed. In that
2340 case we already freed the command bytecodes (see
2341 force_breakpoint_reinsertion). We just
2342 need to parse the command to bytecodes again. */
2343 loc->cmd_bytecode
2344 = parse_cmd_to_aexpr (bl->address,
2345 loc->owner->extra_string);
2346 }
2347
2348 /* If we have a NULL bytecode expression, it means something
2349 went wrong or we have a null command expression. */
2350 if (!loc->cmd_bytecode)
2351 {
2352 null_command_or_parse_error = 1;
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* If anything failed, then we're not doing target-side commands,
2359 and so clean up. */
2360 if (null_command_or_parse_error)
2361 {
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (is_breakpoint (loc->owner)
2366 && loc->pspace->num == bl->pspace->num)
2367 {
2368 /* Only go as far as the first NULL bytecode is
2369 located. */
2370 if (loc->cmd_bytecode == NULL)
2371 return;
2372
2373 loc->cmd_bytecode.reset ();
2374 }
2375 }
2376 }
2377
2378 /* No NULL commands or failed bytecode generation. Build a command list
2379 for this location's address. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (loc->owner->extra_string
2384 && is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num
2386 && loc->owner->enable_state == bp_enabled
2387 && loc->enabled)
2388 {
2389 /* Add the command to the vector. This will be used later
2390 to send the commands to the target. */
2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2392 }
2393 }
2394
2395 bl->target_info.persist = 0;
2396 /* Maybe flag this location as persistent. */
2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2398 bl->target_info.persist = 1;
2399 }
2400
2401 /* Return the kind of breakpoint on address *ADDR. Get the kind
2402 of breakpoint according to ADDR except single-step breakpoint.
2403 Get the kind of single-step breakpoint according to the current
2404 registers state. */
2405
2406 static int
2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2408 {
2409 if (bl->owner->type == bp_single_step)
2410 {
2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2412 struct regcache *regcache;
2413
2414 regcache = get_thread_regcache (thr);
2415
2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2417 regcache, addr);
2418 }
2419 else
2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2421 }
2422
2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2424 location. Any error messages are printed to TMP_ERROR_STREAM; and
2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2426 Returns 0 for success, 1 if the bp_location type is not supported or
2427 -1 for failure.
2428
2429 NOTE drow/2003-09-09: This routine could be broken down to an
2430 object-style method for each breakpoint or catchpoint type. */
2431 static int
2432 insert_bp_location (struct bp_location *bl,
2433 struct ui_file *tmp_error_stream,
2434 int *disabled_breaks,
2435 int *hw_breakpoint_error,
2436 int *hw_bp_error_explained_already)
2437 {
2438 gdb_exception bp_excpt = exception_none;
2439
2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2441 return 0;
2442
2443 /* Note we don't initialize bl->target_info, as that wipes out
2444 the breakpoint location's shadow_contents if the breakpoint
2445 is still inserted at that location. This in turn breaks
2446 target_read_memory which depends on these buffers when
2447 a memory read is requested at the breakpoint location:
2448 Once the target_info has been wiped, we fail to see that
2449 we have a breakpoint inserted at that address and thus
2450 read the breakpoint instead of returning the data saved in
2451 the breakpoint location's shadow contents. */
2452 bl->target_info.reqstd_address = bl->address;
2453 bl->target_info.placed_address_space = bl->pspace->aspace;
2454 bl->target_info.length = bl->length;
2455
2456 /* When working with target-side conditions, we must pass all the conditions
2457 for the same breakpoint address down to the target since GDB will not
2458 insert those locations. With a list of breakpoint conditions, the target
2459 can decide when to stop and notify GDB. */
2460
2461 if (is_breakpoint (bl->owner))
2462 {
2463 build_target_condition_list (bl);
2464 build_target_command_list (bl);
2465 /* Reset the modification marker. */
2466 bl->needs_update = 0;
2467 }
2468
2469 if (bl->loc_type == bp_loc_software_breakpoint
2470 || bl->loc_type == bp_loc_hardware_breakpoint)
2471 {
2472 if (bl->owner->type != bp_hardware_breakpoint)
2473 {
2474 /* If the explicitly specified breakpoint type
2475 is not hardware breakpoint, check the memory map to see
2476 if the breakpoint address is in read only memory or not.
2477
2478 Two important cases are:
2479 - location type is not hardware breakpoint, memory
2480 is readonly. We change the type of the location to
2481 hardware breakpoint.
2482 - location type is hardware breakpoint, memory is
2483 read-write. This means we've previously made the
2484 location hardware one, but then the memory map changed,
2485 so we undo.
2486
2487 When breakpoints are removed, remove_breakpoints will use
2488 location types we've just set here, the only possible
2489 problem is that memory map has changed during running
2490 program, but it's not going to work anyway with current
2491 gdb. */
2492 struct mem_region *mr
2493 = lookup_mem_region (bl->target_info.reqstd_address);
2494
2495 if (mr)
2496 {
2497 if (automatic_hardware_breakpoints)
2498 {
2499 enum bp_loc_type new_type;
2500
2501 if (mr->attrib.mode != MEM_RW)
2502 new_type = bp_loc_hardware_breakpoint;
2503 else
2504 new_type = bp_loc_software_breakpoint;
2505
2506 if (new_type != bl->loc_type)
2507 {
2508 static int said = 0;
2509
2510 bl->loc_type = new_type;
2511 if (!said)
2512 {
2513 fprintf_filtered (gdb_stdout,
2514 _("Note: automatically using "
2515 "hardware breakpoints for "
2516 "read-only addresses.\n"));
2517 said = 1;
2518 }
2519 }
2520 }
2521 else if (bl->loc_type == bp_loc_software_breakpoint
2522 && mr->attrib.mode != MEM_RW)
2523 {
2524 fprintf_unfiltered (tmp_error_stream,
2525 _("Cannot insert breakpoint %d.\n"
2526 "Cannot set software breakpoint "
2527 "at read-only address %s\n"),
2528 bl->owner->number,
2529 paddress (bl->gdbarch, bl->address));
2530 return 1;
2531 }
2532 }
2533 }
2534
2535 /* First check to see if we have to handle an overlay. */
2536 if (overlay_debugging == ovly_off
2537 || bl->section == NULL
2538 || !(section_is_overlay (bl->section)))
2539 {
2540 /* No overlay handling: just set the breakpoint. */
2541 TRY
2542 {
2543 int val;
2544
2545 val = bl->owner->ops->insert_location (bl);
2546 if (val)
2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2548 }
2549 CATCH (e, RETURN_MASK_ALL)
2550 {
2551 bp_excpt = e;
2552 }
2553 END_CATCH
2554 }
2555 else
2556 {
2557 /* This breakpoint is in an overlay section.
2558 Shall we set a breakpoint at the LMA? */
2559 if (!overlay_events_enabled)
2560 {
2561 /* Yes -- overlay event support is not active,
2562 so we must try to set a breakpoint at the LMA.
2563 This will not work for a hardware breakpoint. */
2564 if (bl->loc_type == bp_loc_hardware_breakpoint)
2565 warning (_("hardware breakpoint %d not supported in overlay!"),
2566 bl->owner->number);
2567 else
2568 {
2569 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2570 bl->section);
2571 /* Set a software (trap) breakpoint at the LMA. */
2572 bl->overlay_target_info = bl->target_info;
2573 bl->overlay_target_info.reqstd_address = addr;
2574
2575 /* No overlay handling: just set the breakpoint. */
2576 TRY
2577 {
2578 int val;
2579
2580 bl->overlay_target_info.kind
2581 = breakpoint_kind (bl, &addr);
2582 bl->overlay_target_info.placed_address = addr;
2583 val = target_insert_breakpoint (bl->gdbarch,
2584 &bl->overlay_target_info);
2585 if (val)
2586 bp_excpt
2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2588 }
2589 CATCH (e, RETURN_MASK_ALL)
2590 {
2591 bp_excpt = e;
2592 }
2593 END_CATCH
2594
2595 if (bp_excpt.reason != 0)
2596 fprintf_unfiltered (tmp_error_stream,
2597 "Overlay breakpoint %d "
2598 "failed: in ROM?\n",
2599 bl->owner->number);
2600 }
2601 }
2602 /* Shall we set a breakpoint at the VMA? */
2603 if (section_is_mapped (bl->section))
2604 {
2605 /* Yes. This overlay section is mapped into memory. */
2606 TRY
2607 {
2608 int val;
2609
2610 val = bl->owner->ops->insert_location (bl);
2611 if (val)
2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2613 }
2614 CATCH (e, RETURN_MASK_ALL)
2615 {
2616 bp_excpt = e;
2617 }
2618 END_CATCH
2619 }
2620 else
2621 {
2622 /* No. This breakpoint will not be inserted.
2623 No error, but do not mark the bp as 'inserted'. */
2624 return 0;
2625 }
2626 }
2627
2628 if (bp_excpt.reason != 0)
2629 {
2630 /* Can't set the breakpoint. */
2631
2632 /* In some cases, we might not be able to insert a
2633 breakpoint in a shared library that has already been
2634 removed, but we have not yet processed the shlib unload
2635 event. Unfortunately, some targets that implement
2636 breakpoint insertion themselves can't tell why the
2637 breakpoint insertion failed (e.g., the remote target
2638 doesn't define error codes), so we must treat generic
2639 errors as memory errors. */
2640 if (bp_excpt.reason == RETURN_ERROR
2641 && (bp_excpt.error == GENERIC_ERROR
2642 || bp_excpt.error == MEMORY_ERROR)
2643 && bl->loc_type == bp_loc_software_breakpoint
2644 && (solib_name_from_address (bl->pspace, bl->address)
2645 || shared_objfile_contains_address_p (bl->pspace,
2646 bl->address)))
2647 {
2648 /* See also: disable_breakpoints_in_shlibs. */
2649 bl->shlib_disabled = 1;
2650 gdb::observers::breakpoint_modified.notify (bl->owner);
2651 if (!*disabled_breaks)
2652 {
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Cannot insert breakpoint %d.\n",
2655 bl->owner->number);
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Temporarily disabling shared "
2658 "library breakpoints:\n");
2659 }
2660 *disabled_breaks = 1;
2661 fprintf_unfiltered (tmp_error_stream,
2662 "breakpoint #%d\n", bl->owner->number);
2663 return 0;
2664 }
2665 else
2666 {
2667 if (bl->loc_type == bp_loc_hardware_breakpoint)
2668 {
2669 *hw_breakpoint_error = 1;
2670 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2671 fprintf_unfiltered (tmp_error_stream,
2672 "Cannot insert hardware breakpoint %d%s",
2673 bl->owner->number,
2674 bp_excpt.message ? ":" : ".\n");
2675 if (bp_excpt.message != NULL)
2676 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2677 bp_excpt.message);
2678 }
2679 else
2680 {
2681 if (bp_excpt.message == NULL)
2682 {
2683 std::string message
2684 = memory_error_message (TARGET_XFER_E_IO,
2685 bl->gdbarch, bl->address);
2686
2687 fprintf_unfiltered (tmp_error_stream,
2688 "Cannot insert breakpoint %d.\n"
2689 "%s\n",
2690 bl->owner->number, message.c_str ());
2691 }
2692 else
2693 {
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d: %s\n",
2696 bl->owner->number,
2697 bp_excpt.message);
2698 }
2699 }
2700 return 1;
2701
2702 }
2703 }
2704 else
2705 bl->inserted = 1;
2706
2707 return 0;
2708 }
2709
2710 else if (bl->loc_type == bp_loc_hardware_watchpoint
2711 /* NOTE drow/2003-09-08: This state only exists for removing
2712 watchpoints. It's not clear that it's necessary... */
2713 && bl->owner->disposition != disp_del_at_next_stop)
2714 {
2715 int val;
2716
2717 gdb_assert (bl->owner->ops != NULL
2718 && bl->owner->ops->insert_location != NULL);
2719
2720 val = bl->owner->ops->insert_location (bl);
2721
2722 /* If trying to set a read-watchpoint, and it turns out it's not
2723 supported, try emulating one with an access watchpoint. */
2724 if (val == 1 && bl->watchpoint_type == hw_read)
2725 {
2726 struct bp_location *loc, **loc_temp;
2727
2728 /* But don't try to insert it, if there's already another
2729 hw_access location that would be considered a duplicate
2730 of this one. */
2731 ALL_BP_LOCATIONS (loc, loc_temp)
2732 if (loc != bl
2733 && loc->watchpoint_type == hw_access
2734 && watchpoint_locations_match (bl, loc))
2735 {
2736 bl->duplicate = 1;
2737 bl->inserted = 1;
2738 bl->target_info = loc->target_info;
2739 bl->watchpoint_type = hw_access;
2740 val = 0;
2741 break;
2742 }
2743
2744 if (val == 1)
2745 {
2746 bl->watchpoint_type = hw_access;
2747 val = bl->owner->ops->insert_location (bl);
2748
2749 if (val)
2750 /* Back to the original value. */
2751 bl->watchpoint_type = hw_read;
2752 }
2753 }
2754
2755 bl->inserted = (val == 0);
2756 }
2757
2758 else if (bl->owner->type == bp_catchpoint)
2759 {
2760 int val;
2761
2762 gdb_assert (bl->owner->ops != NULL
2763 && bl->owner->ops->insert_location != NULL);
2764
2765 val = bl->owner->ops->insert_location (bl);
2766 if (val)
2767 {
2768 bl->owner->enable_state = bp_disabled;
2769
2770 if (val == 1)
2771 warning (_("\
2772 Error inserting catchpoint %d: Your system does not support this type\n\
2773 of catchpoint."), bl->owner->number);
2774 else
2775 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2776 }
2777
2778 bl->inserted = (val == 0);
2779
2780 /* We've already printed an error message if there was a problem
2781 inserting this catchpoint, and we've disabled the catchpoint,
2782 so just return success. */
2783 return 0;
2784 }
2785
2786 return 0;
2787 }
2788
2789 /* This function is called when program space PSPACE is about to be
2790 deleted. It takes care of updating breakpoints to not reference
2791 PSPACE anymore. */
2792
2793 void
2794 breakpoint_program_space_exit (struct program_space *pspace)
2795 {
2796 struct breakpoint *b, *b_temp;
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* Remove any breakpoint that was set through this program space. */
2800 ALL_BREAKPOINTS_SAFE (b, b_temp)
2801 {
2802 if (b->pspace == pspace)
2803 delete_breakpoint (b);
2804 }
2805
2806 /* Breakpoints set through other program spaces could have locations
2807 bound to PSPACE as well. Remove those. */
2808 ALL_BP_LOCATIONS (loc, loc_temp)
2809 {
2810 struct bp_location *tmp;
2811
2812 if (loc->pspace == pspace)
2813 {
2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2815 if (loc->owner->loc == loc)
2816 loc->owner->loc = loc->next;
2817 else
2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2819 if (tmp->next == loc)
2820 {
2821 tmp->next = loc->next;
2822 break;
2823 }
2824 }
2825 }
2826
2827 /* Now update the global location list to permanently delete the
2828 removed locations above. */
2829 update_global_location_list (UGLL_DONT_INSERT);
2830 }
2831
2832 /* Make sure all breakpoints are inserted in inferior.
2833 Throws exception on any error.
2834 A breakpoint that is already inserted won't be inserted
2835 again, so calling this function twice is safe. */
2836 void
2837 insert_breakpoints (void)
2838 {
2839 struct breakpoint *bpt;
2840
2841 ALL_BREAKPOINTS (bpt)
2842 if (is_hardware_watchpoint (bpt))
2843 {
2844 struct watchpoint *w = (struct watchpoint *) bpt;
2845
2846 update_watchpoint (w, 0 /* don't reparse. */);
2847 }
2848
2849 /* Updating watchpoints creates new locations, so update the global
2850 location list. Explicitly tell ugll to insert locations and
2851 ignore breakpoints_always_inserted_mode. */
2852 update_global_location_list (UGLL_INSERT);
2853 }
2854
2855 /* Invoke CALLBACK for each of bp_location. */
2856
2857 void
2858 iterate_over_bp_locations (walk_bp_location_callback callback)
2859 {
2860 struct bp_location *loc, **loc_tmp;
2861
2862 ALL_BP_LOCATIONS (loc, loc_tmp)
2863 {
2864 callback (loc, NULL);
2865 }
2866 }
2867
2868 /* This is used when we need to synch breakpoint conditions between GDB and the
2869 target. It is the case with deleting and disabling of breakpoints when using
2870 always-inserted mode. */
2871
2872 static void
2873 update_inserted_breakpoint_locations (void)
2874 {
2875 struct bp_location *bl, **blp_tmp;
2876 int error_flag = 0;
2877 int val = 0;
2878 int disabled_breaks = 0;
2879 int hw_breakpoint_error = 0;
2880 int hw_bp_details_reported = 0;
2881
2882 string_file tmp_error_stream;
2883
2884 /* Explicitly mark the warning -- this will only be printed if
2885 there was an error. */
2886 tmp_error_stream.puts ("Warning:\n");
2887
2888 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2889
2890 ALL_BP_LOCATIONS (bl, blp_tmp)
2891 {
2892 /* We only want to update software breakpoints and hardware
2893 breakpoints. */
2894 if (!is_breakpoint (bl->owner))
2895 continue;
2896
2897 /* We only want to update locations that are already inserted
2898 and need updating. This is to avoid unwanted insertion during
2899 deletion of breakpoints. */
2900 if (!bl->inserted || !bl->needs_update)
2901 continue;
2902
2903 switch_to_program_space_and_thread (bl->pspace);
2904
2905 /* For targets that support global breakpoints, there's no need
2906 to select an inferior to insert breakpoint to. In fact, even
2907 if we aren't attached to any process yet, we should still
2908 insert breakpoints. */
2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2910 && inferior_ptid == null_ptid)
2911 continue;
2912
2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2914 &hw_breakpoint_error, &hw_bp_details_reported);
2915 if (val)
2916 error_flag = val;
2917 }
2918
2919 if (error_flag)
2920 {
2921 target_terminal::ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924 }
2925
2926 /* Used when starting or continuing the program. */
2927
2928 static void
2929 insert_breakpoint_locations (void)
2930 {
2931 struct breakpoint *bpt;
2932 struct bp_location *bl, **blp_tmp;
2933 int error_flag = 0;
2934 int val = 0;
2935 int disabled_breaks = 0;
2936 int hw_breakpoint_error = 0;
2937 int hw_bp_error_explained_already = 0;
2938
2939 string_file tmp_error_stream;
2940
2941 /* Explicitly mark the warning -- this will only be printed if
2942 there was an error. */
2943 tmp_error_stream.puts ("Warning:\n");
2944
2945 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2946
2947 ALL_BP_LOCATIONS (bl, blp_tmp)
2948 {
2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2950 continue;
2951
2952 /* There is no point inserting thread-specific breakpoints if
2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2954 has BL->OWNER always non-NULL. */
2955 if (bl->owner->thread != -1
2956 && !valid_global_thread_id (bl->owner->thread))
2957 continue;
2958
2959 switch_to_program_space_and_thread (bl->pspace);
2960
2961 /* For targets that support global breakpoints, there's no need
2962 to select an inferior to insert breakpoint to. In fact, even
2963 if we aren't attached to any process yet, we should still
2964 insert breakpoints. */
2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2966 && inferior_ptid == null_ptid)
2967 continue;
2968
2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2970 &hw_breakpoint_error, &hw_bp_error_explained_already);
2971 if (val)
2972 error_flag = val;
2973 }
2974
2975 /* If we failed to insert all locations of a watchpoint, remove
2976 them, as half-inserted watchpoint is of limited use. */
2977 ALL_BREAKPOINTS (bpt)
2978 {
2979 int some_failed = 0;
2980 struct bp_location *loc;
2981
2982 if (!is_hardware_watchpoint (bpt))
2983 continue;
2984
2985 if (!breakpoint_enabled (bpt))
2986 continue;
2987
2988 if (bpt->disposition == disp_del_at_next_stop)
2989 continue;
2990
2991 for (loc = bpt->loc; loc; loc = loc->next)
2992 if (!loc->inserted && should_be_inserted (loc))
2993 {
2994 some_failed = 1;
2995 break;
2996 }
2997 if (some_failed)
2998 {
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (loc->inserted)
3001 remove_breakpoint (loc);
3002
3003 hw_breakpoint_error = 1;
3004 tmp_error_stream.printf ("Could not insert "
3005 "hardware watchpoint %d.\n",
3006 bpt->number);
3007 error_flag = -1;
3008 }
3009 }
3010
3011 if (error_flag)
3012 {
3013 /* If a hardware breakpoint or watchpoint was inserted, add a
3014 message about possibly exhausted resources. */
3015 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3016 {
3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3018 You may have requested too many hardware breakpoints/watchpoints.\n");
3019 }
3020 target_terminal::ours_for_output ();
3021 error_stream (tmp_error_stream);
3022 }
3023 }
3024
3025 /* Used when the program stops.
3026 Returns zero if successful, or non-zero if there was a problem
3027 removing a breakpoint location. */
3028
3029 int
3030 remove_breakpoints (void)
3031 {
3032 struct bp_location *bl, **blp_tmp;
3033 int val = 0;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (bl->inserted && !is_tracepoint (bl->owner))
3038 val |= remove_breakpoint (bl);
3039 }
3040 return val;
3041 }
3042
3043 /* When a thread exits, remove breakpoints that are related to
3044 that thread. */
3045
3046 static void
3047 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3048 {
3049 struct breakpoint *b, *b_tmp;
3050
3051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3052 {
3053 if (b->thread == tp->global_num && user_breakpoint_p (b))
3054 {
3055 b->disposition = disp_del_at_next_stop;
3056
3057 printf_filtered (_("\
3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3059 b->number, print_thread_id (tp));
3060
3061 /* Hide it from the user. */
3062 b->number = 0;
3063 }
3064 }
3065 }
3066
3067 /* Remove breakpoints of inferior INF. */
3068
3069 int
3070 remove_breakpoints_inf (inferior *inf)
3071 {
3072 struct bp_location *bl, **blp_tmp;
3073 int val;
3074
3075 ALL_BP_LOCATIONS (bl, blp_tmp)
3076 {
3077 if (bl->pspace != inf->pspace)
3078 continue;
3079
3080 if (bl->inserted && !bl->target_info.persist)
3081 {
3082 val = remove_breakpoint (bl);
3083 if (val != 0)
3084 return val;
3085 }
3086 }
3087 return 0;
3088 }
3089
3090 static int internal_breakpoint_number = -1;
3091
3092 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3093 If INTERNAL is non-zero, the breakpoint number will be populated
3094 from internal_breakpoint_number and that variable decremented.
3095 Otherwise the breakpoint number will be populated from
3096 breakpoint_count and that value incremented. Internal breakpoints
3097 do not set the internal var bpnum. */
3098 static void
3099 set_breakpoint_number (int internal, struct breakpoint *b)
3100 {
3101 if (internal)
3102 b->number = internal_breakpoint_number--;
3103 else
3104 {
3105 set_breakpoint_count (breakpoint_count + 1);
3106 b->number = breakpoint_count;
3107 }
3108 }
3109
3110 static struct breakpoint *
3111 create_internal_breakpoint (struct gdbarch *gdbarch,
3112 CORE_ADDR address, enum bptype type,
3113 const struct breakpoint_ops *ops)
3114 {
3115 symtab_and_line sal;
3116 sal.pc = address;
3117 sal.section = find_pc_overlay (sal.pc);
3118 sal.pspace = current_program_space;
3119
3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3121 b->number = internal_breakpoint_number--;
3122 b->disposition = disp_donttouch;
3123
3124 return b;
3125 }
3126
3127 static const char *const longjmp_names[] =
3128 {
3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3130 };
3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3132
3133 /* Per-objfile data private to breakpoint.c. */
3134 struct breakpoint_objfile_data
3135 {
3136 /* Minimal symbol for "_ovly_debug_event" (if any). */
3137 struct bound_minimal_symbol overlay_msym {};
3138
3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3141
3142 /* True if we have looked for longjmp probes. */
3143 int longjmp_searched = 0;
3144
3145 /* SystemTap probe points for longjmp (if any). These are non-owning
3146 references. */
3147 std::vector<probe *> longjmp_probes;
3148
3149 /* Minimal symbol for "std::terminate()" (if any). */
3150 struct bound_minimal_symbol terminate_msym {};
3151
3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3153 struct bound_minimal_symbol exception_msym {};
3154
3155 /* True if we have looked for exception probes. */
3156 int exception_searched = 0;
3157
3158 /* SystemTap probe points for unwinding (if any). These are non-owning
3159 references. */
3160 std::vector<probe *> exception_probes;
3161 };
3162
3163 static const struct objfile_data *breakpoint_objfile_key;
3164
3165 /* Minimal symbol not found sentinel. */
3166 static struct minimal_symbol msym_not_found;
3167
3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3169
3170 static int
3171 msym_not_found_p (const struct minimal_symbol *msym)
3172 {
3173 return msym == &msym_not_found;
3174 }
3175
3176 /* Return per-objfile data needed by breakpoint.c.
3177 Allocate the data if necessary. */
3178
3179 static struct breakpoint_objfile_data *
3180 get_breakpoint_objfile_data (struct objfile *objfile)
3181 {
3182 struct breakpoint_objfile_data *bp_objfile_data;
3183
3184 bp_objfile_data = ((struct breakpoint_objfile_data *)
3185 objfile_data (objfile, breakpoint_objfile_key));
3186 if (bp_objfile_data == NULL)
3187 {
3188 bp_objfile_data = new breakpoint_objfile_data ();
3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3190 }
3191 return bp_objfile_data;
3192 }
3193
3194 static void
3195 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3196 {
3197 struct breakpoint_objfile_data *bp_objfile_data
3198 = (struct breakpoint_objfile_data *) data;
3199
3200 delete bp_objfile_data;
3201 }
3202
3203 static void
3204 create_overlay_event_breakpoint (void)
3205 {
3206 const char *const func_name = "_ovly_debug_event";
3207
3208 for (objfile *objfile : current_program_space->objfiles ())
3209 {
3210 struct breakpoint *b;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212 CORE_ADDR addr;
3213 struct explicit_location explicit_loc;
3214
3215 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3216
3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3218 continue;
3219
3220 if (bp_objfile_data->overlay_msym.minsym == NULL)
3221 {
3222 struct bound_minimal_symbol m;
3223
3224 m = lookup_minimal_symbol_text (func_name, objfile);
3225 if (m.minsym == NULL)
3226 {
3227 /* Avoid future lookups in this objfile. */
3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3229 continue;
3230 }
3231 bp_objfile_data->overlay_msym = m;
3232 }
3233
3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3236 bp_overlay_event,
3237 &internal_breakpoint_ops);
3238 initialize_explicit_location (&explicit_loc);
3239 explicit_loc.function_name = ASTRDUP (func_name);
3240 b->location = new_explicit_location (&explicit_loc);
3241
3242 if (overlay_debugging == ovly_auto)
3243 {
3244 b->enable_state = bp_enabled;
3245 overlay_events_enabled = 1;
3246 }
3247 else
3248 {
3249 b->enable_state = bp_disabled;
3250 overlay_events_enabled = 0;
3251 }
3252 }
3253 }
3254
3255 static void
3256 create_longjmp_master_breakpoint (void)
3257 {
3258 struct program_space *pspace;
3259
3260 scoped_restore_current_program_space restore_pspace;
3261
3262 ALL_PSPACES (pspace)
3263 {
3264 set_current_program_space (pspace);
3265
3266 for (objfile *objfile : current_program_space->objfiles ())
3267 {
3268 int i;
3269 struct gdbarch *gdbarch;
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 gdbarch = get_objfile_arch (objfile);
3273
3274 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3275
3276 if (!bp_objfile_data->longjmp_searched)
3277 {
3278 std::vector<probe *> ret
3279 = find_probes_in_objfile (objfile, "libc", "longjmp");
3280
3281 if (!ret.empty ())
3282 {
3283 /* We are only interested in checking one element. */
3284 probe *p = ret[0];
3285
3286 if (!p->can_evaluate_arguments ())
3287 {
3288 /* We cannot use the probe interface here, because it does
3289 not know how to evaluate arguments. */
3290 ret.clear ();
3291 }
3292 }
3293 bp_objfile_data->longjmp_probes = ret;
3294 bp_objfile_data->longjmp_searched = 1;
3295 }
3296
3297 if (!bp_objfile_data->longjmp_probes.empty ())
3298 {
3299 for (probe *p : bp_objfile_data->longjmp_probes)
3300 {
3301 struct breakpoint *b;
3302
3303 b = create_internal_breakpoint (gdbarch,
3304 p->get_relocated_address (objfile),
3305 bp_longjmp_master,
3306 &internal_breakpoint_ops);
3307 b->location = new_probe_location ("-probe-stap libc:longjmp");
3308 b->enable_state = bp_disabled;
3309 }
3310
3311 continue;
3312 }
3313
3314 if (!gdbarch_get_longjmp_target_p (gdbarch))
3315 continue;
3316
3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3318 {
3319 struct breakpoint *b;
3320 const char *func_name;
3321 CORE_ADDR addr;
3322 struct explicit_location explicit_loc;
3323
3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3325 continue;
3326
3327 func_name = longjmp_names[i];
3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3329 {
3330 struct bound_minimal_symbol m;
3331
3332 m = lookup_minimal_symbol_text (func_name, objfile);
3333 if (m.minsym == NULL)
3334 {
3335 /* Prevent future lookups in this objfile. */
3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3337 continue;
3338 }
3339 bp_objfile_data->longjmp_msym[i] = m;
3340 }
3341
3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Create a master std::terminate breakpoint. */
3355 static void
3356 create_std_terminate_master_breakpoint (void)
3357 {
3358 struct program_space *pspace;
3359 const char *const func_name = "std::terminate()";
3360
3361 scoped_restore_current_program_space restore_pspace;
3362
3363 ALL_PSPACES (pspace)
3364 {
3365 CORE_ADDR addr;
3366
3367 set_current_program_space (pspace);
3368
3369 for (objfile *objfile : current_program_space->objfiles ())
3370 {
3371 struct breakpoint *b;
3372 struct breakpoint_objfile_data *bp_objfile_data;
3373 struct explicit_location explicit_loc;
3374
3375 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3376
3377 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3378 continue;
3379
3380 if (bp_objfile_data->terminate_msym.minsym == NULL)
3381 {
3382 struct bound_minimal_symbol m;
3383
3384 m = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3386 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3387 {
3388 /* Prevent future lookups in this objfile. */
3389 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3390 continue;
3391 }
3392 bp_objfile_data->terminate_msym = m;
3393 }
3394
3395 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3396 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3397 bp_std_terminate_master,
3398 &internal_breakpoint_ops);
3399 initialize_explicit_location (&explicit_loc);
3400 explicit_loc.function_name = ASTRDUP (func_name);
3401 b->location = new_explicit_location (&explicit_loc);
3402 b->enable_state = bp_disabled;
3403 }
3404 }
3405 }
3406
3407 /* Install a master breakpoint on the unwinder's debug hook. */
3408
3409 static void
3410 create_exception_master_breakpoint (void)
3411 {
3412 const char *const func_name = "_Unwind_DebugHook";
3413
3414 for (objfile *objfile : current_program_space->objfiles ())
3415 {
3416 struct breakpoint *b;
3417 struct gdbarch *gdbarch;
3418 struct breakpoint_objfile_data *bp_objfile_data;
3419 CORE_ADDR addr;
3420 struct explicit_location explicit_loc;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 /* We prefer the SystemTap probe point if it exists. */
3425 if (!bp_objfile_data->exception_searched)
3426 {
3427 std::vector<probe *> ret
3428 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3429
3430 if (!ret.empty ())
3431 {
3432 /* We are only interested in checking one element. */
3433 probe *p = ret[0];
3434
3435 if (!p->can_evaluate_arguments ())
3436 {
3437 /* We cannot use the probe interface here, because it does
3438 not know how to evaluate arguments. */
3439 ret.clear ();
3440 }
3441 }
3442 bp_objfile_data->exception_probes = ret;
3443 bp_objfile_data->exception_searched = 1;
3444 }
3445
3446 if (!bp_objfile_data->exception_probes.empty ())
3447 {
3448 gdbarch = get_objfile_arch (objfile);
3449
3450 for (probe *p : bp_objfile_data->exception_probes)
3451 {
3452 b = create_internal_breakpoint (gdbarch,
3453 p->get_relocated_address (objfile),
3454 bp_exception_master,
3455 &internal_breakpoint_ops);
3456 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3457 b->enable_state = bp_disabled;
3458 }
3459
3460 continue;
3461 }
3462
3463 /* Otherwise, try the hook function. */
3464
3465 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3466 continue;
3467
3468 gdbarch = get_objfile_arch (objfile);
3469
3470 if (bp_objfile_data->exception_msym.minsym == NULL)
3471 {
3472 struct bound_minimal_symbol debug_hook;
3473
3474 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3475 if (debug_hook.minsym == NULL)
3476 {
3477 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3478 continue;
3479 }
3480
3481 bp_objfile_data->exception_msym = debug_hook;
3482 }
3483
3484 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3485 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3486 current_top_target ());
3487 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3488 &internal_breakpoint_ops);
3489 initialize_explicit_location (&explicit_loc);
3490 explicit_loc.function_name = ASTRDUP (func_name);
3491 b->location = new_explicit_location (&explicit_loc);
3492 b->enable_state = bp_disabled;
3493 }
3494 }
3495
3496 /* Does B have a location spec? */
3497
3498 static int
3499 breakpoint_event_location_empty_p (const struct breakpoint *b)
3500 {
3501 return b->location != NULL && event_location_empty_p (b->location.get ());
3502 }
3503
3504 void
3505 update_breakpoints_after_exec (void)
3506 {
3507 struct breakpoint *b, *b_tmp;
3508 struct bp_location *bploc, **bplocp_tmp;
3509
3510 /* We're about to delete breakpoints from GDB's lists. If the
3511 INSERTED flag is true, GDB will try to lift the breakpoints by
3512 writing the breakpoints' "shadow contents" back into memory. The
3513 "shadow contents" are NOT valid after an exec, so GDB should not
3514 do that. Instead, the target is responsible from marking
3515 breakpoints out as soon as it detects an exec. We don't do that
3516 here instead, because there may be other attempts to delete
3517 breakpoints after detecting an exec and before reaching here. */
3518 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3519 if (bploc->pspace == current_program_space)
3520 gdb_assert (!bploc->inserted);
3521
3522 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3523 {
3524 if (b->pspace != current_program_space)
3525 continue;
3526
3527 /* Solib breakpoints must be explicitly reset after an exec(). */
3528 if (b->type == bp_shlib_event)
3529 {
3530 delete_breakpoint (b);
3531 continue;
3532 }
3533
3534 /* JIT breakpoints must be explicitly reset after an exec(). */
3535 if (b->type == bp_jit_event)
3536 {
3537 delete_breakpoint (b);
3538 continue;
3539 }
3540
3541 /* Thread event breakpoints must be set anew after an exec(),
3542 as must overlay event and longjmp master breakpoints. */
3543 if (b->type == bp_thread_event || b->type == bp_overlay_event
3544 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3545 || b->type == bp_exception_master)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Step-resume breakpoints are meaningless after an exec(). */
3552 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3553 {
3554 delete_breakpoint (b);
3555 continue;
3556 }
3557
3558 /* Just like single-step breakpoints. */
3559 if (b->type == bp_single_step)
3560 {
3561 delete_breakpoint (b);
3562 continue;
3563 }
3564
3565 /* Longjmp and longjmp-resume breakpoints are also meaningless
3566 after an exec. */
3567 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3568 || b->type == bp_longjmp_call_dummy
3569 || b->type == bp_exception || b->type == bp_exception_resume)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 if (b->type == bp_catchpoint)
3576 {
3577 /* For now, none of the bp_catchpoint breakpoints need to
3578 do anything at this point. In the future, if some of
3579 the catchpoints need to something, we will need to add
3580 a new method, and call this method from here. */
3581 continue;
3582 }
3583
3584 /* bp_finish is a special case. The only way we ought to be able
3585 to see one of these when an exec() has happened, is if the user
3586 caught a vfork, and then said "finish". Ordinarily a finish just
3587 carries them to the call-site of the current callee, by setting
3588 a temporary bp there and resuming. But in this case, the finish
3589 will carry them entirely through the vfork & exec.
3590
3591 We don't want to allow a bp_finish to remain inserted now. But
3592 we can't safely delete it, 'cause finish_command has a handle to
3593 the bp on a bpstat, and will later want to delete it. There's a
3594 chance (and I've seen it happen) that if we delete the bp_finish
3595 here, that its storage will get reused by the time finish_command
3596 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3597 We really must allow finish_command to delete a bp_finish.
3598
3599 In the absence of a general solution for the "how do we know
3600 it's safe to delete something others may have handles to?"
3601 problem, what we'll do here is just uninsert the bp_finish, and
3602 let finish_command delete it.
3603
3604 (We know the bp_finish is "doomed" in the sense that it's
3605 momentary, and will be deleted as soon as finish_command sees
3606 the inferior stopped. So it doesn't matter that the bp's
3607 address is probably bogus in the new a.out, unlike e.g., the
3608 solib breakpoints.) */
3609
3610 if (b->type == bp_finish)
3611 {
3612 continue;
3613 }
3614
3615 /* Without a symbolic address, we have little hope of the
3616 pre-exec() address meaning the same thing in the post-exec()
3617 a.out. */
3618 if (breakpoint_event_location_empty_p (b))
3619 {
3620 delete_breakpoint (b);
3621 continue;
3622 }
3623 }
3624 }
3625
3626 int
3627 detach_breakpoints (ptid_t ptid)
3628 {
3629 struct bp_location *bl, **blp_tmp;
3630 int val = 0;
3631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3632 struct inferior *inf = current_inferior ();
3633
3634 if (ptid.pid () == inferior_ptid.pid ())
3635 error (_("Cannot detach breakpoints of inferior_ptid"));
3636
3637 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3638 inferior_ptid = ptid;
3639 ALL_BP_LOCATIONS (bl, blp_tmp)
3640 {
3641 if (bl->pspace != inf->pspace)
3642 continue;
3643
3644 /* This function must physically remove breakpoints locations
3645 from the specified ptid, without modifying the breakpoint
3646 package's state. Locations of type bp_loc_other are only
3647 maintained at GDB side. So, there is no need to remove
3648 these bp_loc_other locations. Moreover, removing these
3649 would modify the breakpoint package's state. */
3650 if (bl->loc_type == bp_loc_other)
3651 continue;
3652
3653 if (bl->inserted)
3654 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3655 }
3656
3657 return val;
3658 }
3659
3660 /* Remove the breakpoint location BL from the current address space.
3661 Note that this is used to detach breakpoints from a child fork.
3662 When we get here, the child isn't in the inferior list, and neither
3663 do we have objects to represent its address space --- we should
3664 *not* look at bl->pspace->aspace here. */
3665
3666 static int
3667 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3668 {
3669 int val;
3670
3671 /* BL is never in moribund_locations by our callers. */
3672 gdb_assert (bl->owner != NULL);
3673
3674 /* The type of none suggests that owner is actually deleted.
3675 This should not ever happen. */
3676 gdb_assert (bl->owner->type != bp_none);
3677
3678 if (bl->loc_type == bp_loc_software_breakpoint
3679 || bl->loc_type == bp_loc_hardware_breakpoint)
3680 {
3681 /* "Normal" instruction breakpoint: either the standard
3682 trap-instruction bp (bp_breakpoint), or a
3683 bp_hardware_breakpoint. */
3684
3685 /* First check to see if we have to handle an overlay. */
3686 if (overlay_debugging == ovly_off
3687 || bl->section == NULL
3688 || !(section_is_overlay (bl->section)))
3689 {
3690 /* No overlay handling: just remove the breakpoint. */
3691
3692 /* If we're trying to uninsert a memory breakpoint that we
3693 know is set in a dynamic object that is marked
3694 shlib_disabled, then either the dynamic object was
3695 removed with "remove-symbol-file" or with
3696 "nosharedlibrary". In the former case, we don't know
3697 whether another dynamic object might have loaded over the
3698 breakpoint's address -- the user might well let us know
3699 about it next with add-symbol-file (the whole point of
3700 add-symbol-file is letting the user manually maintain a
3701 list of dynamically loaded objects). If we have the
3702 breakpoint's shadow memory, that is, this is a software
3703 breakpoint managed by GDB, check whether the breakpoint
3704 is still inserted in memory, to avoid overwriting wrong
3705 code with stale saved shadow contents. Note that HW
3706 breakpoints don't have shadow memory, as they're
3707 implemented using a mechanism that is not dependent on
3708 being able to modify the target's memory, and as such
3709 they should always be removed. */
3710 if (bl->shlib_disabled
3711 && bl->target_info.shadow_len != 0
3712 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3713 val = 0;
3714 else
3715 val = bl->owner->ops->remove_location (bl, reason);
3716 }
3717 else
3718 {
3719 /* This breakpoint is in an overlay section.
3720 Did we set a breakpoint at the LMA? */
3721 if (!overlay_events_enabled)
3722 {
3723 /* Yes -- overlay event support is not active, so we
3724 should have set a breakpoint at the LMA. Remove it.
3725 */
3726 /* Ignore any failures: if the LMA is in ROM, we will
3727 have already warned when we failed to insert it. */
3728 if (bl->loc_type == bp_loc_hardware_breakpoint)
3729 target_remove_hw_breakpoint (bl->gdbarch,
3730 &bl->overlay_target_info);
3731 else
3732 target_remove_breakpoint (bl->gdbarch,
3733 &bl->overlay_target_info,
3734 reason);
3735 }
3736 /* Did we set a breakpoint at the VMA?
3737 If so, we will have marked the breakpoint 'inserted'. */
3738 if (bl->inserted)
3739 {
3740 /* Yes -- remove it. Previously we did not bother to
3741 remove the breakpoint if the section had been
3742 unmapped, but let's not rely on that being safe. We
3743 don't know what the overlay manager might do. */
3744
3745 /* However, we should remove *software* breakpoints only
3746 if the section is still mapped, or else we overwrite
3747 wrong code with the saved shadow contents. */
3748 if (bl->loc_type == bp_loc_hardware_breakpoint
3749 || section_is_mapped (bl->section))
3750 val = bl->owner->ops->remove_location (bl, reason);
3751 else
3752 val = 0;
3753 }
3754 else
3755 {
3756 /* No -- not inserted, so no need to remove. No error. */
3757 val = 0;
3758 }
3759 }
3760
3761 /* In some cases, we might not be able to remove a breakpoint in
3762 a shared library that has already been removed, but we have
3763 not yet processed the shlib unload event. Similarly for an
3764 unloaded add-symbol-file object - the user might not yet have
3765 had the chance to remove-symbol-file it. shlib_disabled will
3766 be set if the library/object has already been removed, but
3767 the breakpoint hasn't been uninserted yet, e.g., after
3768 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3769 always-inserted mode. */
3770 if (val
3771 && (bl->loc_type == bp_loc_software_breakpoint
3772 && (bl->shlib_disabled
3773 || solib_name_from_address (bl->pspace, bl->address)
3774 || shared_objfile_contains_address_p (bl->pspace,
3775 bl->address))))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (reason == DETACH_BREAKPOINT);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (reason == DETACH_BREAKPOINT);
3788 bl->owner->ops->remove_location (bl, reason);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl, reason);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (reason == DETACH_BREAKPOINT);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl)
3814 {
3815 /* BL is never in moribund_locations by our callers. */
3816 gdb_assert (bl->owner != NULL);
3817
3818 /* The type of none suggests that owner is actually deleted.
3819 This should not ever happen. */
3820 gdb_assert (bl->owner->type != bp_none);
3821
3822 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3823
3824 switch_to_program_space_and_thread (bl->pspace);
3825
3826 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3827 }
3828
3829 /* Clear the "inserted" flag in all breakpoints. */
3830
3831 void
3832 mark_breakpoints_out (void)
3833 {
3834 struct bp_location *bl, **blp_tmp;
3835
3836 ALL_BP_LOCATIONS (bl, blp_tmp)
3837 if (bl->pspace == current_program_space)
3838 bl->inserted = 0;
3839 }
3840
3841 /* Clear the "inserted" flag in all breakpoints and delete any
3842 breakpoints which should go away between runs of the program.
3843
3844 Plus other such housekeeping that has to be done for breakpoints
3845 between runs.
3846
3847 Note: this function gets called at the end of a run (by
3848 generic_mourn_inferior) and when a run begins (by
3849 init_wait_for_inferior). */
3850
3851
3852
3853 void
3854 breakpoint_init_inferior (enum inf_context context)
3855 {
3856 struct breakpoint *b, *b_tmp;
3857 struct program_space *pspace = current_program_space;
3858
3859 /* If breakpoint locations are shared across processes, then there's
3860 nothing to do. */
3861 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3862 return;
3863
3864 mark_breakpoints_out ();
3865
3866 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3867 {
3868 if (b->loc && b->loc->pspace != pspace)
3869 continue;
3870
3871 switch (b->type)
3872 {
3873 case bp_call_dummy:
3874 case bp_longjmp_call_dummy:
3875
3876 /* If the call dummy breakpoint is at the entry point it will
3877 cause problems when the inferior is rerun, so we better get
3878 rid of it. */
3879
3880 case bp_watchpoint_scope:
3881
3882 /* Also get rid of scope breakpoints. */
3883
3884 case bp_shlib_event:
3885
3886 /* Also remove solib event breakpoints. Their addresses may
3887 have changed since the last time we ran the program.
3888 Actually we may now be debugging against different target;
3889 and so the solib backend that installed this breakpoint may
3890 not be used in by the target. E.g.,
3891
3892 (gdb) file prog-linux
3893 (gdb) run # native linux target
3894 ...
3895 (gdb) kill
3896 (gdb) file prog-win.exe
3897 (gdb) tar rem :9999 # remote Windows gdbserver.
3898 */
3899
3900 case bp_step_resume:
3901
3902 /* Also remove step-resume breakpoints. */
3903
3904 case bp_single_step:
3905
3906 /* Also remove single-step breakpoints. */
3907
3908 delete_breakpoint (b);
3909 break;
3910
3911 case bp_watchpoint:
3912 case bp_hardware_watchpoint:
3913 case bp_read_watchpoint:
3914 case bp_access_watchpoint:
3915 {
3916 struct watchpoint *w = (struct watchpoint *) b;
3917
3918 /* Likewise for watchpoints on local expressions. */
3919 if (w->exp_valid_block != NULL)
3920 delete_breakpoint (b);
3921 else
3922 {
3923 /* Get rid of existing locations, which are no longer
3924 valid. New ones will be created in
3925 update_watchpoint, when the inferior is restarted.
3926 The next update_global_location_list call will
3927 garbage collect them. */
3928 b->loc = NULL;
3929
3930 if (context == inf_starting)
3931 {
3932 /* Reset val field to force reread of starting value in
3933 insert_breakpoints. */
3934 w->val.reset (nullptr);
3935 w->val_valid = 0;
3936 }
3937 }
3938 }
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Get rid of the moribund locations. */
3946 for (bp_location *bl : moribund_locations)
3947 decref_bp_location (&bl);
3948 moribund_locations.clear ();
3949 }
3950
3951 /* These functions concern about actual breakpoints inserted in the
3952 target --- to e.g. check if we need to do decr_pc adjustment or if
3953 we need to hop over the bkpt --- so we check for address space
3954 match, not program space. */
3955
3956 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3957 exists at PC. It returns ordinary_breakpoint_here if it's an
3958 ordinary breakpoint, or permanent_breakpoint_here if it's a
3959 permanent breakpoint.
3960 - When continuing from a location with an ordinary breakpoint, we
3961 actually single step once before calling insert_breakpoints.
3962 - When continuing from a location with a permanent breakpoint, we
3963 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3964 the target, to advance the PC past the breakpoint. */
3965
3966 enum breakpoint_here
3967 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3968 {
3969 struct bp_location *bl, **blp_tmp;
3970 int any_breakpoint_here = 0;
3971
3972 ALL_BP_LOCATIONS (bl, blp_tmp)
3973 {
3974 if (bl->loc_type != bp_loc_software_breakpoint
3975 && bl->loc_type != bp_loc_hardware_breakpoint)
3976 continue;
3977
3978 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_match (bl, aspace, pc))
3982 {
3983 if (overlay_debugging
3984 && section_is_overlay (bl->section)
3985 && !section_is_mapped (bl->section))
3986 continue; /* unmapped overlay -- can't be a match */
3987 else if (bl->permanent)
3988 return permanent_breakpoint_here;
3989 else
3990 any_breakpoint_here = 1;
3991 }
3992 }
3993
3994 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3995 }
3996
3997 /* See breakpoint.h. */
3998
3999 int
4000 breakpoint_in_range_p (const address_space *aspace,
4001 CORE_ADDR addr, ULONGEST len)
4002 {
4003 struct bp_location *bl, **blp_tmp;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 if ((breakpoint_enabled (bl->owner)
4012 || bl->permanent)
4013 && breakpoint_location_address_range_overlap (bl, aspace,
4014 addr, len))
4015 {
4016 if (overlay_debugging
4017 && section_is_overlay (bl->section)
4018 && !section_is_mapped (bl->section))
4019 {
4020 /* Unmapped overlay -- can't be a match. */
4021 continue;
4022 }
4023
4024 return 1;
4025 }
4026 }
4027
4028 return 0;
4029 }
4030
4031 /* Return true if there's a moribund breakpoint at PC. */
4032
4033 int
4034 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4035 {
4036 for (bp_location *loc : moribund_locations)
4037 if (breakpoint_location_address_match (loc, aspace, pc))
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* Returns non-zero iff BL is inserted at PC, in address space
4044 ASPACE. */
4045
4046 static int
4047 bp_location_inserted_here_p (struct bp_location *bl,
4048 const address_space *aspace, CORE_ADDR pc)
4049 {
4050 if (bl->inserted
4051 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4052 aspace, pc))
4053 {
4054 if (overlay_debugging
4055 && section_is_overlay (bl->section)
4056 && !section_is_mapped (bl->section))
4057 return 0; /* unmapped overlay -- can't be a match */
4058 else
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4065
4066 int
4067 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4068 {
4069 struct bp_location **blp, **blp_tmp = NULL;
4070
4071 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4072 {
4073 struct bp_location *bl = *blp;
4074
4075 if (bl->loc_type != bp_loc_software_breakpoint
4076 && bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082 return 0;
4083 }
4084
4085 /* This function returns non-zero iff there is a software breakpoint
4086 inserted at PC. */
4087
4088 int
4089 software_breakpoint_inserted_here_p (const address_space *aspace,
4090 CORE_ADDR pc)
4091 {
4092 struct bp_location **blp, **blp_tmp = NULL;
4093
4094 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4095 {
4096 struct bp_location *bl = *blp;
4097
4098 if (bl->loc_type != bp_loc_software_breakpoint)
4099 continue;
4100
4101 if (bp_location_inserted_here_p (bl, aspace, pc))
4102 return 1;
4103 }
4104
4105 return 0;
4106 }
4107
4108 /* See breakpoint.h. */
4109
4110 int
4111 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4112 CORE_ADDR pc)
4113 {
4114 struct bp_location **blp, **blp_tmp = NULL;
4115
4116 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4117 {
4118 struct bp_location *bl = *blp;
4119
4120 if (bl->loc_type != bp_loc_hardware_breakpoint)
4121 continue;
4122
4123 if (bp_location_inserted_here_p (bl, aspace, pc))
4124 return 1;
4125 }
4126
4127 return 0;
4128 }
4129
4130 int
4131 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4132 CORE_ADDR addr, ULONGEST len)
4133 {
4134 struct breakpoint *bpt;
4135
4136 ALL_BREAKPOINTS (bpt)
4137 {
4138 struct bp_location *loc;
4139
4140 if (bpt->type != bp_hardware_watchpoint
4141 && bpt->type != bp_access_watchpoint)
4142 continue;
4143
4144 if (!breakpoint_enabled (bpt))
4145 continue;
4146
4147 for (loc = bpt->loc; loc; loc = loc->next)
4148 if (loc->pspace->aspace == aspace && loc->inserted)
4149 {
4150 CORE_ADDR l, h;
4151
4152 /* Check for intersection. */
4153 l = std::max<CORE_ADDR> (loc->address, addr);
4154 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4155 if (l < h)
4156 return 1;
4157 }
4158 }
4159 return 0;
4160 }
4161 \f
4162
4163 /* bpstat stuff. External routines' interfaces are documented
4164 in breakpoint.h. */
4165
4166 int
4167 is_catchpoint (struct breakpoint *ep)
4168 {
4169 return (ep->type == bp_catchpoint);
4170 }
4171
4172 /* Frees any storage that is part of a bpstat. Does not walk the
4173 'next' chain. */
4174
4175 bpstats::~bpstats ()
4176 {
4177 if (bp_location_at != NULL)
4178 decref_bp_location (&bp_location_at);
4179 }
4180
4181 /* Clear a bpstat so that it says we are not at any breakpoint.
4182 Also free any storage that is part of a bpstat. */
4183
4184 void
4185 bpstat_clear (bpstat *bsp)
4186 {
4187 bpstat p;
4188 bpstat q;
4189
4190 if (bsp == 0)
4191 return;
4192 p = *bsp;
4193 while (p != NULL)
4194 {
4195 q = p->next;
4196 delete p;
4197 p = q;
4198 }
4199 *bsp = NULL;
4200 }
4201
4202 bpstats::bpstats (const bpstats &other)
4203 : next (NULL),
4204 bp_location_at (other.bp_location_at),
4205 breakpoint_at (other.breakpoint_at),
4206 commands (other.commands),
4207 print (other.print),
4208 stop (other.stop),
4209 print_it (other.print_it)
4210 {
4211 if (other.old_val != NULL)
4212 old_val = release_value (value_copy (other.old_val.get ()));
4213 incref_bp_location (bp_location_at);
4214 }
4215
4216 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4217 is part of the bpstat is copied as well. */
4218
4219 bpstat
4220 bpstat_copy (bpstat bs)
4221 {
4222 bpstat p = NULL;
4223 bpstat tmp;
4224 bpstat retval = NULL;
4225
4226 if (bs == NULL)
4227 return bs;
4228
4229 for (; bs != NULL; bs = bs->next)
4230 {
4231 tmp = new bpstats (*bs);
4232
4233 if (p == NULL)
4234 /* This is the first thing in the chain. */
4235 retval = tmp;
4236 else
4237 p->next = tmp;
4238 p = tmp;
4239 }
4240 p->next = NULL;
4241 return retval;
4242 }
4243
4244 /* Find the bpstat associated with this breakpoint. */
4245
4246 bpstat
4247 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4248 {
4249 if (bsp == NULL)
4250 return NULL;
4251
4252 for (; bsp != NULL; bsp = bsp->next)
4253 {
4254 if (bsp->breakpoint_at == breakpoint)
4255 return bsp;
4256 }
4257 return NULL;
4258 }
4259
4260 /* See breakpoint.h. */
4261
4262 int
4263 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4264 {
4265 for (; bsp != NULL; bsp = bsp->next)
4266 {
4267 if (bsp->breakpoint_at == NULL)
4268 {
4269 /* A moribund location can never explain a signal other than
4270 GDB_SIGNAL_TRAP. */
4271 if (sig == GDB_SIGNAL_TRAP)
4272 return 1;
4273 }
4274 else
4275 {
4276 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4277 sig))
4278 return 1;
4279 }
4280 }
4281
4282 return 0;
4283 }
4284
4285 /* Put in *NUM the breakpoint number of the first breakpoint we are
4286 stopped at. *BSP upon return is a bpstat which points to the
4287 remaining breakpoints stopped at (but which is not guaranteed to be
4288 good for anything but further calls to bpstat_num).
4289
4290 Return 0 if passed a bpstat which does not indicate any breakpoints.
4291 Return -1 if stopped at a breakpoint that has been deleted since
4292 we set it.
4293 Return 1 otherwise. */
4294
4295 int
4296 bpstat_num (bpstat *bsp, int *num)
4297 {
4298 struct breakpoint *b;
4299
4300 if ((*bsp) == NULL)
4301 return 0; /* No more breakpoint values */
4302
4303 /* We assume we'll never have several bpstats that correspond to a
4304 single breakpoint -- otherwise, this function might return the
4305 same number more than once and this will look ugly. */
4306 b = (*bsp)->breakpoint_at;
4307 *bsp = (*bsp)->next;
4308 if (b == NULL)
4309 return -1; /* breakpoint that's been deleted since */
4310
4311 *num = b->number; /* We have its number */
4312 return 1;
4313 }
4314
4315 /* See breakpoint.h. */
4316
4317 void
4318 bpstat_clear_actions (void)
4319 {
4320 bpstat bs;
4321
4322 if (inferior_ptid == null_ptid)
4323 return;
4324
4325 thread_info *tp = inferior_thread ();
4326 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4327 {
4328 bs->commands = NULL;
4329 bs->old_val.reset (nullptr);
4330 }
4331 }
4332
4333 /* Called when a command is about to proceed the inferior. */
4334
4335 static void
4336 breakpoint_about_to_proceed (void)
4337 {
4338 if (inferior_ptid != null_ptid)
4339 {
4340 struct thread_info *tp = inferior_thread ();
4341
4342 /* Allow inferior function calls in breakpoint commands to not
4343 interrupt the command list. When the call finishes
4344 successfully, the inferior will be standing at the same
4345 breakpoint as if nothing happened. */
4346 if (tp->control.in_infcall)
4347 return;
4348 }
4349
4350 breakpoint_proceeded = 1;
4351 }
4352
4353 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4354 or its equivalent. */
4355
4356 static int
4357 command_line_is_silent (struct command_line *cmd)
4358 {
4359 return cmd && (strcmp ("silent", cmd->line) == 0);
4360 }
4361
4362 /* Execute all the commands associated with all the breakpoints at
4363 this location. Any of these commands could cause the process to
4364 proceed beyond this point, etc. We look out for such changes by
4365 checking the global "breakpoint_proceeded" after each command.
4366
4367 Returns true if a breakpoint command resumed the inferior. In that
4368 case, it is the caller's responsibility to recall it again with the
4369 bpstat of the current thread. */
4370
4371 static int
4372 bpstat_do_actions_1 (bpstat *bsp)
4373 {
4374 bpstat bs;
4375 int again = 0;
4376
4377 /* Avoid endless recursion if a `source' command is contained
4378 in bs->commands. */
4379 if (executing_breakpoint_commands)
4380 return 0;
4381
4382 scoped_restore save_executing
4383 = make_scoped_restore (&executing_breakpoint_commands, 1);
4384
4385 scoped_restore preventer = prevent_dont_repeat ();
4386
4387 /* This pointer will iterate over the list of bpstat's. */
4388 bs = *bsp;
4389
4390 breakpoint_proceeded = 0;
4391 for (; bs != NULL; bs = bs->next)
4392 {
4393 struct command_line *cmd = NULL;
4394
4395 /* Take ownership of the BSP's command tree, if it has one.
4396
4397 The command tree could legitimately contain commands like
4398 'step' and 'next', which call clear_proceed_status, which
4399 frees stop_bpstat's command tree. To make sure this doesn't
4400 free the tree we're executing out from under us, we need to
4401 take ownership of the tree ourselves. Since a given bpstat's
4402 commands are only executed once, we don't need to copy it; we
4403 can clear the pointer in the bpstat, and make sure we free
4404 the tree when we're done. */
4405 counted_command_line ccmd = bs->commands;
4406 bs->commands = NULL;
4407 if (ccmd != NULL)
4408 cmd = ccmd.get ();
4409 if (command_line_is_silent (cmd))
4410 {
4411 /* The action has been already done by bpstat_stop_status. */
4412 cmd = cmd->next;
4413 }
4414
4415 while (cmd != NULL)
4416 {
4417 execute_control_command (cmd);
4418
4419 if (breakpoint_proceeded)
4420 break;
4421 else
4422 cmd = cmd->next;
4423 }
4424
4425 if (breakpoint_proceeded)
4426 {
4427 if (current_ui->async)
4428 /* If we are in async mode, then the target might be still
4429 running, not stopped at any breakpoint, so nothing for
4430 us to do here -- just return to the event loop. */
4431 ;
4432 else
4433 /* In sync mode, when execute_control_command returns
4434 we're already standing on the next breakpoint.
4435 Breakpoint commands for that stop were not run, since
4436 execute_command does not run breakpoint commands --
4437 only command_line_handler does, but that one is not
4438 involved in execution of breakpoint commands. So, we
4439 can now execute breakpoint commands. It should be
4440 noted that making execute_command do bpstat actions is
4441 not an option -- in this case we'll have recursive
4442 invocation of bpstat for each breakpoint with a
4443 command, and can easily blow up GDB stack. Instead, we
4444 return true, which will trigger the caller to recall us
4445 with the new stop_bpstat. */
4446 again = 1;
4447 break;
4448 }
4449 }
4450 return again;
4451 }
4452
4453 /* Helper for bpstat_do_actions. Get the current thread, if there's
4454 one, is alive and has execution. Return NULL otherwise. */
4455
4456 static thread_info *
4457 get_bpstat_thread ()
4458 {
4459 if (inferior_ptid == null_ptid || !target_has_execution)
4460 return NULL;
4461
4462 thread_info *tp = inferior_thread ();
4463 if (tp->state == THREAD_EXITED || tp->executing)
4464 return NULL;
4465 return tp;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4472 thread_info *tp;
4473
4474 /* Do any commands attached to breakpoint we are stopped at. */
4475 while ((tp = get_bpstat_thread ()) != NULL)
4476 {
4477 /* Since in sync mode, bpstat_do_actions may resume the
4478 inferior, and only return when it is stopped at the next
4479 breakpoint, we keep doing breakpoint actions until it returns
4480 false to indicate the inferior was not resumed. */
4481 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4482 break;
4483 }
4484
4485 cleanup_if_error.release ();
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 bool any_added = !current_program_space->added_solibs.empty ();
4584
4585 if (!is_catchpoint)
4586 {
4587 if (any_added || any_deleted)
4588 current_uiout->text (_("Stopped due to shared library event:\n"));
4589 else
4590 current_uiout->text (_("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (current_uiout->is_mi_like_p ())
4595 current_uiout->field_string ("reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 current_uiout->text (_(" Inferior unloaded "));
4601 ui_out_emit_list list_emitter (current_uiout, "removed");
4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4603 {
4604 const std::string &name = current_program_space->deleted_solibs[ix];
4605
4606 if (ix > 0)
4607 current_uiout->text (" ");
4608 current_uiout->field_string ("library", name);
4609 current_uiout->text ("\n");
4610 }
4611 }
4612
4613 if (any_added)
4614 {
4615 current_uiout->text (_(" Inferior loaded "));
4616 ui_out_emit_list list_emitter (current_uiout, "added");
4617 bool first = true;
4618 for (so_list *iter : current_program_space->added_solibs)
4619 {
4620 if (!first)
4621 current_uiout->text (" ");
4622 first = false;
4623 current_uiout->field_string ("library", iter->so_name);
4624 current_uiout->text ("\n");
4625 }
4626 }
4627 }
4628
4629 /* Print a message indicating what happened. This is called from
4630 normal_stop(). The input to this routine is the head of the bpstat
4631 list - a list of the eventpoints that caused this stop. KIND is
4632 the target_waitkind for the stopping event. This
4633 routine calls the generic print routine for printing a message
4634 about reasons for stopping. This will print (for example) the
4635 "Breakpoint n," part of the output. The return value of this
4636 routine is one of:
4637
4638 PRINT_UNKNOWN: Means we printed nothing.
4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4640 code to print the location. An example is
4641 "Breakpoint 1, " which should be followed by
4642 the location.
4643 PRINT_SRC_ONLY: Means we printed something, but there is no need
4644 to also print the location part of the message.
4645 An example is the catch/throw messages, which
4646 don't require a location appended to the end.
4647 PRINT_NOTHING: We have done some printing and we don't need any
4648 further info to be printed. */
4649
4650 enum print_stop_action
4651 bpstat_print (bpstat bs, int kind)
4652 {
4653 enum print_stop_action val;
4654
4655 /* Maybe another breakpoint in the chain caused us to stop.
4656 (Currently all watchpoints go on the bpstat whether hit or not.
4657 That probably could (should) be changed, provided care is taken
4658 with respect to bpstat_explains_signal). */
4659 for (; bs; bs = bs->next)
4660 {
4661 val = print_bp_stop_message (bs);
4662 if (val == PRINT_SRC_ONLY
4663 || val == PRINT_SRC_AND_LOC
4664 || val == PRINT_NOTHING)
4665 return val;
4666 }
4667
4668 /* If we had hit a shared library event breakpoint,
4669 print_bp_stop_message would print out this message. If we hit an
4670 OS-level shared library event, do the same thing. */
4671 if (kind == TARGET_WAITKIND_LOADED)
4672 {
4673 print_solib_event (0);
4674 return PRINT_NOTHING;
4675 }
4676
4677 /* We reached the end of the chain, or we got a null BS to start
4678 with and nothing was printed. */
4679 return PRINT_UNKNOWN;
4680 }
4681
4682 /* Evaluate the boolean expression EXP and return the result. */
4683
4684 static bool
4685 breakpoint_cond_eval (expression *exp)
4686 {
4687 struct value *mark = value_mark ();
4688 bool res = value_true (evaluate_expression (exp));
4689
4690 value_free_to_mark (mark);
4691 return res;
4692 }
4693
4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4695
4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4697 : next (NULL),
4698 bp_location_at (bl),
4699 breakpoint_at (bl->owner),
4700 commands (NULL),
4701 print (0),
4702 stop (0),
4703 print_it (print_it_normal)
4704 {
4705 incref_bp_location (bl);
4706 **bs_link_pointer = this;
4707 *bs_link_pointer = &next;
4708 }
4709
4710 bpstats::bpstats ()
4711 : next (NULL),
4712 bp_location_at (NULL),
4713 breakpoint_at (NULL),
4714 commands (NULL),
4715 print (0),
4716 stop (0),
4717 print_it (print_it_normal)
4718 {
4719 }
4720 \f
4721 /* The target has stopped with waitstatus WS. Check if any hardware
4722 watchpoints have triggered, according to the target. */
4723
4724 int
4725 watchpoints_triggered (struct target_waitstatus *ws)
4726 {
4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4728 CORE_ADDR addr;
4729 struct breakpoint *b;
4730
4731 if (!stopped_by_watchpoint)
4732 {
4733 /* We were not stopped by a watchpoint. Mark all watchpoints
4734 as not triggered. */
4735 ALL_BREAKPOINTS (b)
4736 if (is_hardware_watchpoint (b))
4737 {
4738 struct watchpoint *w = (struct watchpoint *) b;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 }
4742
4743 return 0;
4744 }
4745
4746 if (!target_stopped_data_address (current_top_target (), &addr))
4747 {
4748 /* We were stopped by a watchpoint, but we don't know where.
4749 Mark all watchpoints as unknown. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_unknown;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* The target could report the data address. Mark watchpoints
4762 affected by this data address as triggered, and all others as not
4763 triggered. */
4764
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769 struct bp_location *loc;
4770
4771 w->watchpoint_triggered = watch_triggered_no;
4772 for (loc = b->loc; loc; loc = loc->next)
4773 {
4774 if (is_masked_watchpoint (b))
4775 {
4776 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4777 CORE_ADDR start = loc->address & w->hw_wp_mask;
4778
4779 if (newaddr == start)
4780 {
4781 w->watchpoint_triggered = watch_triggered_yes;
4782 break;
4783 }
4784 }
4785 /* Exact match not required. Within range is sufficient. */
4786 else if (target_watchpoint_addr_within_range (current_top_target (),
4787 addr, loc->address,
4788 loc->length))
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Possible return values for watchpoint_check. */
4800 enum wp_check_result
4801 {
4802 /* The watchpoint has been deleted. */
4803 WP_DELETED = 1,
4804
4805 /* The value has changed. */
4806 WP_VALUE_CHANGED = 2,
4807
4808 /* The value has not changed. */
4809 WP_VALUE_NOT_CHANGED = 3,
4810
4811 /* Ignore this watchpoint, no matter if the value changed or not. */
4812 WP_IGNORE = 4,
4813 };
4814
4815 #define BP_TEMPFLAG 1
4816 #define BP_HARDWAREFLAG 2
4817
4818 /* Evaluate watchpoint condition expression and check if its value
4819 changed. */
4820
4821 static wp_check_result
4822 watchpoint_check (bpstat bs)
4823 {
4824 struct watchpoint *b;
4825 struct frame_info *fr;
4826 int within_current_scope;
4827
4828 /* BS is built from an existing struct breakpoint. */
4829 gdb_assert (bs->breakpoint_at != NULL);
4830 b = (struct watchpoint *) bs->breakpoint_at;
4831
4832 /* If this is a local watchpoint, we only want to check if the
4833 watchpoint frame is in scope if the current thread is the thread
4834 that was used to create the watchpoint. */
4835 if (!watchpoint_in_thread_scope (b))
4836 return WP_IGNORE;
4837
4838 if (b->exp_valid_block == NULL)
4839 within_current_scope = 1;
4840 else
4841 {
4842 struct frame_info *frame = get_current_frame ();
4843 struct gdbarch *frame_arch = get_frame_arch (frame);
4844 CORE_ADDR frame_pc = get_frame_pc (frame);
4845
4846 /* stack_frame_destroyed_p() returns a non-zero value if we're
4847 still in the function but the stack frame has already been
4848 invalidated. Since we can't rely on the values of local
4849 variables after the stack has been destroyed, we are treating
4850 the watchpoint in that state as `not changed' without further
4851 checking. Don't mark watchpoints as changed if the current
4852 frame is in an epilogue - even if they are in some other
4853 frame, our view of the stack is likely to be wrong and
4854 frame_find_by_id could error out. */
4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4856 return WP_IGNORE;
4857
4858 fr = frame_find_by_id (b->watchpoint_frame);
4859 within_current_scope = (fr != NULL);
4860
4861 /* If we've gotten confused in the unwinder, we might have
4862 returned a frame that can't describe this variable. */
4863 if (within_current_scope)
4864 {
4865 struct symbol *function;
4866
4867 function = get_frame_function (fr);
4868 if (function == NULL
4869 || !contained_in (b->exp_valid_block,
4870 SYMBOL_BLOCK_VALUE (function)))
4871 within_current_scope = 0;
4872 }
4873
4874 if (within_current_scope)
4875 /* If we end up stopping, the current frame will get selected
4876 in normal_stop. So this call to select_frame won't affect
4877 the user. */
4878 select_frame (fr);
4879 }
4880
4881 if (within_current_scope)
4882 {
4883 /* We use value_{,free_to_}mark because it could be a *long*
4884 time before we return to the command level and call
4885 free_all_values. We can't call free_all_values because we
4886 might be in the middle of evaluating a function call. */
4887
4888 int pc = 0;
4889 struct value *mark;
4890 struct value *new_val;
4891
4892 if (is_masked_watchpoint (b))
4893 /* Since we don't know the exact trigger address (from
4894 stopped_data_address), just tell the user we've triggered
4895 a mask watchpoint. */
4896 return WP_VALUE_CHANGED;
4897
4898 mark = value_mark ();
4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4900
4901 if (b->val_bitsize != 0)
4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4903
4904 /* We use value_equal_contents instead of value_equal because
4905 the latter coerces an array to a pointer, thus comparing just
4906 the address of the array instead of its contents. This is
4907 not what we want. */
4908 if ((b->val != NULL) != (new_val != NULL)
4909 || (b->val != NULL && !value_equal_contents (b->val.get (),
4910 new_val)))
4911 {
4912 bs->old_val = b->val;
4913 b->val = release_value (new_val);
4914 b->val_valid = 1;
4915 if (new_val != NULL)
4916 value_free_to_mark (mark);
4917 return WP_VALUE_CHANGED;
4918 }
4919 else
4920 {
4921 /* Nothing changed. */
4922 value_free_to_mark (mark);
4923 return WP_VALUE_NOT_CHANGED;
4924 }
4925 }
4926 else
4927 {
4928 /* This seems like the only logical thing to do because
4929 if we temporarily ignored the watchpoint, then when
4930 we reenter the block in which it is valid it contains
4931 garbage (in the case of a function, it may have two
4932 garbage values, one before and one after the prologue).
4933 So we can't even detect the first assignment to it and
4934 watch after that (since the garbage may or may not equal
4935 the first value assigned). */
4936 /* We print all the stop information in
4937 breakpoint_ops->print_it, but in this case, by the time we
4938 call breakpoint_ops->print_it this bp will be deleted
4939 already. So we have no choice but print the information
4940 here. */
4941
4942 SWITCH_THRU_ALL_UIS ()
4943 {
4944 struct ui_out *uiout = current_uiout;
4945
4946 if (uiout->is_mi_like_p ())
4947 uiout->field_string
4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4949 uiout->text ("\nWatchpoint ");
4950 uiout->field_int ("wpnum", b->number);
4951 uiout->text (" deleted because the program has left the block in\n"
4952 "which its expression is valid.\n");
4953 }
4954
4955 /* Make sure the watchpoint's commands aren't executed. */
4956 b->commands = NULL;
4957 watchpoint_del_at_next_stop (b);
4958
4959 return WP_DELETED;
4960 }
4961 }
4962
4963 /* Return true if it looks like target has stopped due to hitting
4964 breakpoint location BL. This function does not check if we should
4965 stop, only if BL explains the stop. */
4966
4967 static int
4968 bpstat_check_location (const struct bp_location *bl,
4969 const address_space *aspace, CORE_ADDR bp_addr,
4970 const struct target_waitstatus *ws)
4971 {
4972 struct breakpoint *b = bl->owner;
4973
4974 /* BL is from an existing breakpoint. */
4975 gdb_assert (b != NULL);
4976
4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4978 }
4979
4980 /* Determine if the watched values have actually changed, and we
4981 should stop. If not, set BS->stop to 0. */
4982
4983 static void
4984 bpstat_check_watchpoint (bpstat bs)
4985 {
4986 const struct bp_location *bl;
4987 struct watchpoint *b;
4988
4989 /* BS is built for existing struct breakpoint. */
4990 bl = bs->bp_location_at;
4991 gdb_assert (bl != NULL);
4992 b = (struct watchpoint *) bs->breakpoint_at;
4993 gdb_assert (b != NULL);
4994
4995 {
4996 int must_check_value = 0;
4997
4998 if (b->type == bp_watchpoint)
4999 /* For a software watchpoint, we must always check the
5000 watched value. */
5001 must_check_value = 1;
5002 else if (b->watchpoint_triggered == watch_triggered_yes)
5003 /* We have a hardware watchpoint (read, write, or access)
5004 and the target earlier reported an address watched by
5005 this watchpoint. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_unknown
5008 && b->type == bp_hardware_watchpoint)
5009 /* We were stopped by a hardware watchpoint, but the target could
5010 not report the data address. We must check the watchpoint's
5011 value. Access and read watchpoints are out of luck; without
5012 a data address, we can't figure it out. */
5013 must_check_value = 1;
5014
5015 if (must_check_value)
5016 {
5017 wp_check_result e;
5018
5019 TRY
5020 {
5021 e = watchpoint_check (bs);
5022 }
5023 CATCH (ex, RETURN_MASK_ALL)
5024 {
5025 exception_fprintf (gdb_stderr, ex,
5026 "Error evaluating expression "
5027 "for watchpoint %d\n",
5028 b->number);
5029
5030 SWITCH_THRU_ALL_UIS ()
5031 {
5032 printf_filtered (_("Watchpoint %d deleted.\n"),
5033 b->number);
5034 }
5035 watchpoint_del_at_next_stop (b);
5036 e = WP_DELETED;
5037 }
5038 END_CATCH
5039
5040 switch (e)
5041 {
5042 case WP_DELETED:
5043 /* We've already printed what needs to be printed. */
5044 bs->print_it = print_it_done;
5045 /* Stop. */
5046 break;
5047 case WP_IGNORE:
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 break;
5051 case WP_VALUE_CHANGED:
5052 if (b->type == bp_read_watchpoint)
5053 {
5054 /* There are two cases to consider here:
5055
5056 1. We're watching the triggered memory for reads.
5057 In that case, trust the target, and always report
5058 the watchpoint hit to the user. Even though
5059 reads don't cause value changes, the value may
5060 have changed since the last time it was read, and
5061 since we're not trapping writes, we will not see
5062 those, and as such we should ignore our notion of
5063 old value.
5064
5065 2. We're watching the triggered memory for both
5066 reads and writes. There are two ways this may
5067 happen:
5068
5069 2.1. This is a target that can't break on data
5070 reads only, but can break on accesses (reads or
5071 writes), such as e.g., x86. We detect this case
5072 at the time we try to insert read watchpoints.
5073
5074 2.2. Otherwise, the target supports read
5075 watchpoints, but, the user set an access or write
5076 watchpoint watching the same memory as this read
5077 watchpoint.
5078
5079 If we're watching memory writes as well as reads,
5080 ignore watchpoint hits when we find that the
5081 value hasn't changed, as reads don't cause
5082 changes. This still gives false positives when
5083 the program writes the same value to memory as
5084 what there was already in memory (we will confuse
5085 it for a read), but it's much better than
5086 nothing. */
5087
5088 int other_write_watchpoint = 0;
5089
5090 if (bl->watchpoint_type == hw_read)
5091 {
5092 struct breakpoint *other_b;
5093
5094 ALL_BREAKPOINTS (other_b)
5095 if (other_b->type == bp_hardware_watchpoint
5096 || other_b->type == bp_access_watchpoint)
5097 {
5098 struct watchpoint *other_w =
5099 (struct watchpoint *) other_b;
5100
5101 if (other_w->watchpoint_triggered
5102 == watch_triggered_yes)
5103 {
5104 other_write_watchpoint = 1;
5105 break;
5106 }
5107 }
5108 }
5109
5110 if (other_write_watchpoint
5111 || bl->watchpoint_type == hw_access)
5112 {
5113 /* We're watching the same memory for writes,
5114 and the value changed since the last time we
5115 updated it, so this trap must be for a write.
5116 Ignore it. */
5117 bs->print_it = print_it_noop;
5118 bs->stop = 0;
5119 }
5120 }
5121 break;
5122 case WP_VALUE_NOT_CHANGED:
5123 if (b->type == bp_hardware_watchpoint
5124 || b->type == bp_watchpoint)
5125 {
5126 /* Don't stop: write watchpoints shouldn't fire if
5127 the value hasn't changed. */
5128 bs->print_it = print_it_noop;
5129 bs->stop = 0;
5130 }
5131 /* Stop. */
5132 break;
5133 default:
5134 /* Can't happen. */
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5157 {
5158 const struct bp_location *bl;
5159 struct breakpoint *b;
5160 /* Assume stop. */
5161 bool condition_result = true;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread/task-specific breakpoint, don't waste cpu
5184 evaluating the condition if this isn't the specified
5185 thread/task. */
5186 if ((b->thread != -1 && b->thread != thread->global_num)
5187 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* Evaluate extension language breakpoints that have a "stop" method
5194 implemented. */
5195 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5196
5197 if (is_watchpoint (b))
5198 {
5199 struct watchpoint *w = (struct watchpoint *) b;
5200
5201 cond = w->cond_exp.get ();
5202 }
5203 else
5204 cond = bl->cond.get ();
5205
5206 if (cond && b->disposition != disp_del_at_next_stop)
5207 {
5208 int within_current_scope = 1;
5209 struct watchpoint * w;
5210
5211 /* We use value_mark and value_free_to_mark because it could
5212 be a long time before we return to the command level and
5213 call free_all_values. We can't call free_all_values
5214 because we might be in the middle of evaluating a
5215 function call. */
5216 struct value *mark = value_mark ();
5217
5218 if (is_watchpoint (b))
5219 w = (struct watchpoint *) b;
5220 else
5221 w = NULL;
5222
5223 /* Need to select the frame, with all that implies so that
5224 the conditions will have the right context. Because we
5225 use the frame, we will not see an inlined function's
5226 variables when we arrive at a breakpoint at the start
5227 of the inlined function; the current frame will be the
5228 call site. */
5229 if (w == NULL || w->cond_exp_valid_block == NULL)
5230 select_frame (get_current_frame ());
5231 else
5232 {
5233 struct frame_info *frame;
5234
5235 /* For local watchpoint expressions, which particular
5236 instance of a local is being watched matters, so we
5237 keep track of the frame to evaluate the expression
5238 in. To evaluate the condition however, it doesn't
5239 really matter which instantiation of the function
5240 where the condition makes sense triggers the
5241 watchpoint. This allows an expression like "watch
5242 global if q > 10" set in `func', catch writes to
5243 global on all threads that call `func', or catch
5244 writes on all recursive calls of `func' by a single
5245 thread. We simply always evaluate the condition in
5246 the innermost frame that's executing where it makes
5247 sense to evaluate the condition. It seems
5248 intuitive. */
5249 frame = block_innermost_frame (w->cond_exp_valid_block);
5250 if (frame != NULL)
5251 select_frame (frame);
5252 else
5253 within_current_scope = 0;
5254 }
5255 if (within_current_scope)
5256 {
5257 TRY
5258 {
5259 condition_result = breakpoint_cond_eval (cond);
5260 }
5261 CATCH (ex, RETURN_MASK_ALL)
5262 {
5263 exception_fprintf (gdb_stderr, ex,
5264 "Error in testing breakpoint condition:\n");
5265 }
5266 END_CATCH
5267 }
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 }
5275 /* FIXME-someday, should give breakpoint #. */
5276 value_free_to_mark (mark);
5277 }
5278
5279 if (cond && !condition_result)
5280 {
5281 bs->stop = 0;
5282 }
5283 else if (b->ignore_count > 0)
5284 {
5285 b->ignore_count--;
5286 bs->stop = 0;
5287 /* Increase the hit count even though we don't stop. */
5288 ++(b->hit_count);
5289 gdb::observers::breakpoint_modified.notify (b);
5290 }
5291 }
5292
5293 /* Returns true if we need to track moribund locations of LOC's type
5294 on the current target. */
5295
5296 static int
5297 need_moribund_for_location_type (struct bp_location *loc)
5298 {
5299 return ((loc->loc_type == bp_loc_software_breakpoint
5300 && !target_supports_stopped_by_sw_breakpoint ())
5301 || (loc->loc_type == bp_loc_hardware_breakpoint
5302 && !target_supports_stopped_by_hw_breakpoint ()));
5303 }
5304
5305 /* See breakpoint.h. */
5306
5307 bpstat
5308 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5309 const struct target_waitstatus *ws)
5310 {
5311 struct breakpoint *b;
5312 bpstat bs_head = NULL, *bs_link = &bs_head;
5313
5314 ALL_BREAKPOINTS (b)
5315 {
5316 if (!breakpoint_enabled (b))
5317 continue;
5318
5319 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5320 {
5321 /* For hardware watchpoints, we look only at the first
5322 location. The watchpoint_check function will work on the
5323 entire expression, not the individual locations. For
5324 read watchpoints, the watchpoints_triggered function has
5325 checked all locations already. */
5326 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5327 break;
5328
5329 if (!bl->enabled || bl->shlib_disabled)
5330 continue;
5331
5332 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5333 continue;
5334
5335 /* Come here if it's a watchpoint, or if the break address
5336 matches. */
5337
5338 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5339 explain stop. */
5340
5341 /* Assume we stop. Should we find a watchpoint that is not
5342 actually triggered, or if the condition of the breakpoint
5343 evaluates as false, we'll reset 'stop' to 0. */
5344 bs->stop = 1;
5345 bs->print = 1;
5346
5347 /* If this is a scope breakpoint, mark the associated
5348 watchpoint as triggered so that we will handle the
5349 out-of-scope event. We'll get to the watchpoint next
5350 iteration. */
5351 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5352 {
5353 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5354
5355 w->watchpoint_triggered = watch_triggered_yes;
5356 }
5357 }
5358 }
5359
5360 /* Check if a moribund breakpoint explains the stop. */
5361 if (!target_supports_stopped_by_sw_breakpoint ()
5362 || !target_supports_stopped_by_hw_breakpoint ())
5363 {
5364 for (bp_location *loc : moribund_locations)
5365 {
5366 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5367 && need_moribund_for_location_type (loc))
5368 {
5369 bpstat bs = new bpstats (loc, &bs_link);
5370 /* For hits of moribund locations, we should just proceed. */
5371 bs->stop = 0;
5372 bs->print = 0;
5373 bs->print_it = print_it_noop;
5374 }
5375 }
5376 }
5377
5378 return bs_head;
5379 }
5380
5381 /* See breakpoint.h. */
5382
5383 bpstat
5384 bpstat_stop_status (const address_space *aspace,
5385 CORE_ADDR bp_addr, thread_info *thread,
5386 const struct target_waitstatus *ws,
5387 bpstat stop_chain)
5388 {
5389 struct breakpoint *b = NULL;
5390 /* First item of allocated bpstat's. */
5391 bpstat bs_head = stop_chain;
5392 bpstat bs;
5393 int need_remove_insert;
5394 int removed_any;
5395
5396 /* First, build the bpstat chain with locations that explain a
5397 target stop, while being careful to not set the target running,
5398 as that may invalidate locations (in particular watchpoint
5399 locations are recreated). Resuming will happen here with
5400 breakpoint conditions or watchpoint expressions that include
5401 inferior function calls. */
5402 if (bs_head == NULL)
5403 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5404
5405 /* A bit of special processing for shlib breakpoints. We need to
5406 process solib loading here, so that the lists of loaded and
5407 unloaded libraries are correct before we handle "catch load" and
5408 "catch unload". */
5409 for (bs = bs_head; bs != NULL; bs = bs->next)
5410 {
5411 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5412 {
5413 handle_solib_event ();
5414 break;
5415 }
5416 }
5417
5418 /* Now go through the locations that caused the target to stop, and
5419 check whether we're interested in reporting this stop to higher
5420 layers, or whether we should resume the target transparently. */
5421
5422 removed_any = 0;
5423
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 {
5426 if (!bs->stop)
5427 continue;
5428
5429 b = bs->breakpoint_at;
5430 b->ops->check_status (bs);
5431 if (bs->stop)
5432 {
5433 bpstat_check_breakpoint_conditions (bs, thread);
5434
5435 if (bs->stop)
5436 {
5437 ++(b->hit_count);
5438 gdb::observers::breakpoint_modified.notify (b);
5439
5440 /* We will stop here. */
5441 if (b->disposition == disp_disable)
5442 {
5443 --(b->enable_count);
5444 if (b->enable_count <= 0)
5445 b->enable_state = bp_disabled;
5446 removed_any = 1;
5447 }
5448 if (b->silent)
5449 bs->print = 0;
5450 bs->commands = b->commands;
5451 if (command_line_is_silent (bs->commands
5452 ? bs->commands.get () : NULL))
5453 bs->print = 0;
5454
5455 b->ops->after_condition_true (bs);
5456 }
5457
5458 }
5459
5460 /* Print nothing for this entry if we don't stop or don't
5461 print. */
5462 if (!bs->stop || !bs->print)
5463 bs->print_it = print_it_noop;
5464 }
5465
5466 /* If we aren't stopping, the value of some hardware watchpoint may
5467 not have changed, but the intermediate memory locations we are
5468 watching may have. Don't bother if we're stopping; this will get
5469 done later. */
5470 need_remove_insert = 0;
5471 if (! bpstat_causes_stop (bs_head))
5472 for (bs = bs_head; bs != NULL; bs = bs->next)
5473 if (!bs->stop
5474 && bs->breakpoint_at
5475 && is_hardware_watchpoint (bs->breakpoint_at))
5476 {
5477 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5478
5479 update_watchpoint (w, 0 /* don't reparse. */);
5480 need_remove_insert = 1;
5481 }
5482
5483 if (need_remove_insert)
5484 update_global_location_list (UGLL_MAY_INSERT);
5485 else if (removed_any)
5486 update_global_location_list (UGLL_DONT_INSERT);
5487
5488 return bs_head;
5489 }
5490
5491 static void
5492 handle_jit_event (void)
5493 {
5494 struct frame_info *frame;
5495 struct gdbarch *gdbarch;
5496
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5499
5500 /* Switch terminal for any messages produced by
5501 breakpoint_re_set. */
5502 target_terminal::ours_for_output ();
5503
5504 frame = get_current_frame ();
5505 gdbarch = get_frame_arch (frame);
5506
5507 jit_event_handler (gdbarch);
5508
5509 target_terminal::inferior ();
5510 }
5511
5512 /* Prepare WHAT final decision for infrun. */
5513
5514 /* Decide what infrun needs to do with this bpstat. */
5515
5516 struct bpstat_what
5517 bpstat_what (bpstat bs_head)
5518 {
5519 struct bpstat_what retval;
5520 bpstat bs;
5521
5522 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5523 retval.call_dummy = STOP_NONE;
5524 retval.is_longjmp = 0;
5525
5526 for (bs = bs_head; bs != NULL; bs = bs->next)
5527 {
5528 /* Extract this BS's action. After processing each BS, we check
5529 if its action overrides all we've seem so far. */
5530 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5531 enum bptype bptype;
5532
5533 if (bs->breakpoint_at == NULL)
5534 {
5535 /* I suspect this can happen if it was a momentary
5536 breakpoint which has since been deleted. */
5537 bptype = bp_none;
5538 }
5539 else
5540 bptype = bs->breakpoint_at->type;
5541
5542 switch (bptype)
5543 {
5544 case bp_none:
5545 break;
5546 case bp_breakpoint:
5547 case bp_hardware_breakpoint:
5548 case bp_single_step:
5549 case bp_until:
5550 case bp_finish:
5551 case bp_shlib_event:
5552 if (bs->stop)
5553 {
5554 if (bs->print)
5555 this_action = BPSTAT_WHAT_STOP_NOISY;
5556 else
5557 this_action = BPSTAT_WHAT_STOP_SILENT;
5558 }
5559 else
5560 this_action = BPSTAT_WHAT_SINGLE;
5561 break;
5562 case bp_watchpoint:
5563 case bp_hardware_watchpoint:
5564 case bp_read_watchpoint:
5565 case bp_access_watchpoint:
5566 if (bs->stop)
5567 {
5568 if (bs->print)
5569 this_action = BPSTAT_WHAT_STOP_NOISY;
5570 else
5571 this_action = BPSTAT_WHAT_STOP_SILENT;
5572 }
5573 else
5574 {
5575 /* There was a watchpoint, but we're not stopping.
5576 This requires no further action. */
5577 }
5578 break;
5579 case bp_longjmp:
5580 case bp_longjmp_call_dummy:
5581 case bp_exception:
5582 if (bs->stop)
5583 {
5584 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5585 retval.is_longjmp = bptype != bp_exception;
5586 }
5587 else
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_longjmp_resume:
5591 case bp_exception_resume:
5592 if (bs->stop)
5593 {
5594 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5595 retval.is_longjmp = bptype == bp_longjmp_resume;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_step_resume:
5601 if (bs->stop)
5602 this_action = BPSTAT_WHAT_STEP_RESUME;
5603 else
5604 {
5605 /* It is for the wrong frame. */
5606 this_action = BPSTAT_WHAT_SINGLE;
5607 }
5608 break;
5609 case bp_hp_step_resume:
5610 if (bs->stop)
5611 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5612 else
5613 {
5614 /* It is for the wrong frame. */
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 }
5617 break;
5618 case bp_watchpoint_scope:
5619 case bp_thread_event:
5620 case bp_overlay_event:
5621 case bp_longjmp_master:
5622 case bp_std_terminate_master:
5623 case bp_exception_master:
5624 this_action = BPSTAT_WHAT_SINGLE;
5625 break;
5626 case bp_catchpoint:
5627 if (bs->stop)
5628 {
5629 if (bs->print)
5630 this_action = BPSTAT_WHAT_STOP_NOISY;
5631 else
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 }
5634 else
5635 {
5636 /* There was a catchpoint, but we're not stopping.
5637 This requires no further action. */
5638 }
5639 break;
5640 case bp_jit_event:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_call_dummy:
5644 /* Make sure the action is stop (silent or noisy),
5645 so infrun.c pops the dummy frame. */
5646 retval.call_dummy = STOP_STACK_DUMMY;
5647 this_action = BPSTAT_WHAT_STOP_SILENT;
5648 break;
5649 case bp_std_terminate:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STD_TERMINATE;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_tracepoint:
5656 case bp_fast_tracepoint:
5657 case bp_static_tracepoint:
5658 /* Tracepoint hits should not be reported back to GDB, and
5659 if one got through somehow, it should have been filtered
5660 out already. */
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: tracepoint encountered"));
5663 break;
5664 case bp_gnu_ifunc_resolver:
5665 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_gnu_ifunc_resolver_return:
5669 /* The breakpoint will be removed, execution will restart from the
5670 PC of the former breakpoint. */
5671 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5672 break;
5673
5674 case bp_dprintf:
5675 if (bs->stop)
5676 this_action = BPSTAT_WHAT_STOP_SILENT;
5677 else
5678 this_action = BPSTAT_WHAT_SINGLE;
5679 break;
5680
5681 default:
5682 internal_error (__FILE__, __LINE__,
5683 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5684 }
5685
5686 retval.main_action = std::max (retval.main_action, this_action);
5687 }
5688
5689 return retval;
5690 }
5691
5692 void
5693 bpstat_run_callbacks (bpstat bs_head)
5694 {
5695 bpstat bs;
5696
5697 for (bs = bs_head; bs != NULL; bs = bs->next)
5698 {
5699 struct breakpoint *b = bs->breakpoint_at;
5700
5701 if (b == NULL)
5702 continue;
5703 switch (b->type)
5704 {
5705 case bp_jit_event:
5706 handle_jit_event ();
5707 break;
5708 case bp_gnu_ifunc_resolver:
5709 gnu_ifunc_resolver_stop (b);
5710 break;
5711 case bp_gnu_ifunc_resolver_return:
5712 gnu_ifunc_resolver_return_stop (b);
5713 break;
5714 }
5715 }
5716 }
5717
5718 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5719 without hardware support). This isn't related to a specific bpstat,
5720 just to things like whether watchpoints are set. */
5721
5722 int
5723 bpstat_should_step (void)
5724 {
5725 struct breakpoint *b;
5726
5727 ALL_BREAKPOINTS (b)
5728 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5729 return 1;
5730 return 0;
5731 }
5732
5733 int
5734 bpstat_causes_stop (bpstat bs)
5735 {
5736 for (; bs != NULL; bs = bs->next)
5737 if (bs->stop)
5738 return 1;
5739
5740 return 0;
5741 }
5742
5743 \f
5744
5745 /* Compute a string of spaces suitable to indent the next line
5746 so it starts at the position corresponding to the table column
5747 named COL_NAME in the currently active table of UIOUT. */
5748
5749 static char *
5750 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5751 {
5752 static char wrap_indent[80];
5753 int i, total_width, width, align;
5754 const char *text;
5755
5756 total_width = 0;
5757 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5758 {
5759 if (strcmp (text, col_name) == 0)
5760 {
5761 gdb_assert (total_width < sizeof wrap_indent);
5762 memset (wrap_indent, ' ', total_width);
5763 wrap_indent[total_width] = 0;
5764
5765 return wrap_indent;
5766 }
5767
5768 total_width += width + 1;
5769 }
5770
5771 return NULL;
5772 }
5773
5774 /* Determine if the locations of this breakpoint will have their conditions
5775 evaluated by the target, host or a mix of both. Returns the following:
5776
5777 "host": Host evals condition.
5778 "host or target": Host or Target evals condition.
5779 "target": Target evals condition.
5780 */
5781
5782 static const char *
5783 bp_condition_evaluator (struct breakpoint *b)
5784 {
5785 struct bp_location *bl;
5786 char host_evals = 0;
5787 char target_evals = 0;
5788
5789 if (!b)
5790 return NULL;
5791
5792 if (!is_breakpoint (b))
5793 return NULL;
5794
5795 if (gdb_evaluates_breakpoint_condition_p ()
5796 || !target_supports_evaluation_of_breakpoint_conditions ())
5797 return condition_evaluation_host;
5798
5799 for (bl = b->loc; bl; bl = bl->next)
5800 {
5801 if (bl->cond_bytecode)
5802 target_evals++;
5803 else
5804 host_evals++;
5805 }
5806
5807 if (host_evals && target_evals)
5808 return condition_evaluation_both;
5809 else if (target_evals)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Determine the breakpoint location's condition evaluator. This is
5816 similar to bp_condition_evaluator, but for locations. */
5817
5818 static const char *
5819 bp_location_condition_evaluator (struct bp_location *bl)
5820 {
5821 if (bl && !is_breakpoint (bl->owner))
5822 return NULL;
5823
5824 if (gdb_evaluates_breakpoint_condition_p ()
5825 || !target_supports_evaluation_of_breakpoint_conditions ())
5826 return condition_evaluation_host;
5827
5828 if (bl && bl->cond_bytecode)
5829 return condition_evaluation_target;
5830 else
5831 return condition_evaluation_host;
5832 }
5833
5834 /* Print the LOC location out of the list of B->LOC locations. */
5835
5836 static void
5837 print_breakpoint_location (struct breakpoint *b,
5838 struct bp_location *loc)
5839 {
5840 struct ui_out *uiout = current_uiout;
5841
5842 scoped_restore_current_program_space restore_pspace;
5843
5844 if (loc != NULL && loc->shlib_disabled)
5845 loc = NULL;
5846
5847 if (loc != NULL)
5848 set_current_program_space (loc->pspace);
5849
5850 if (b->display_canonical)
5851 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5852 else if (loc && loc->symtab)
5853 {
5854 const struct symbol *sym = loc->symbol;
5855
5856 if (sym)
5857 {
5858 uiout->text ("in ");
5859 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5860 ui_out_style_kind::FUNCTION);
5861 uiout->text (" ");
5862 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5863 uiout->text ("at ");
5864 }
5865 uiout->field_string ("file",
5866 symtab_to_filename_for_display (loc->symtab),
5867 ui_out_style_kind::FILE);
5868 uiout->text (":");
5869
5870 if (uiout->is_mi_like_p ())
5871 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5872
5873 uiout->field_int ("line", loc->line_number);
5874 }
5875 else if (loc)
5876 {
5877 string_file stb;
5878
5879 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5880 demangle, "");
5881 uiout->field_stream ("at", stb);
5882 }
5883 else
5884 {
5885 uiout->field_string ("pending",
5886 event_location_to_string (b->location.get ()));
5887 /* If extra_string is available, it could be holding a condition
5888 or dprintf arguments. In either case, make sure it is printed,
5889 too, but only for non-MI streams. */
5890 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5891 {
5892 if (b->type == bp_dprintf)
5893 uiout->text (",");
5894 else
5895 uiout->text (" ");
5896 uiout->text (b->extra_string);
5897 }
5898 }
5899
5900 if (loc && is_breakpoint (b)
5901 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5902 && bp_condition_evaluator (b) == condition_evaluation_both)
5903 {
5904 uiout->text (" (");
5905 uiout->field_string ("evaluated-by",
5906 bp_location_condition_evaluator (loc));
5907 uiout->text (")");
5908 }
5909 }
5910
5911 static const char *
5912 bptype_string (enum bptype type)
5913 {
5914 struct ep_type_description
5915 {
5916 enum bptype type;
5917 const char *description;
5918 };
5919 static struct ep_type_description bptypes[] =
5920 {
5921 {bp_none, "?deleted?"},
5922 {bp_breakpoint, "breakpoint"},
5923 {bp_hardware_breakpoint, "hw breakpoint"},
5924 {bp_single_step, "sw single-step"},
5925 {bp_until, "until"},
5926 {bp_finish, "finish"},
5927 {bp_watchpoint, "watchpoint"},
5928 {bp_hardware_watchpoint, "hw watchpoint"},
5929 {bp_read_watchpoint, "read watchpoint"},
5930 {bp_access_watchpoint, "acc watchpoint"},
5931 {bp_longjmp, "longjmp"},
5932 {bp_longjmp_resume, "longjmp resume"},
5933 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5934 {bp_exception, "exception"},
5935 {bp_exception_resume, "exception resume"},
5936 {bp_step_resume, "step resume"},
5937 {bp_hp_step_resume, "high-priority step resume"},
5938 {bp_watchpoint_scope, "watchpoint scope"},
5939 {bp_call_dummy, "call dummy"},
5940 {bp_std_terminate, "std::terminate"},
5941 {bp_shlib_event, "shlib events"},
5942 {bp_thread_event, "thread events"},
5943 {bp_overlay_event, "overlay events"},
5944 {bp_longjmp_master, "longjmp master"},
5945 {bp_std_terminate_master, "std::terminate master"},
5946 {bp_exception_master, "exception master"},
5947 {bp_catchpoint, "catchpoint"},
5948 {bp_tracepoint, "tracepoint"},
5949 {bp_fast_tracepoint, "fast tracepoint"},
5950 {bp_static_tracepoint, "static tracepoint"},
5951 {bp_dprintf, "dprintf"},
5952 {bp_jit_event, "jit events"},
5953 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5954 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5955 };
5956
5957 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5958 || ((int) type != bptypes[(int) type].type))
5959 internal_error (__FILE__, __LINE__,
5960 _("bptypes table does not describe type #%d."),
5961 (int) type);
5962
5963 return bptypes[(int) type].description;
5964 }
5965
5966 /* For MI, output a field named 'thread-groups' with a list as the value.
5967 For CLI, prefix the list with the string 'inf'. */
5968
5969 static void
5970 output_thread_groups (struct ui_out *uiout,
5971 const char *field_name,
5972 const std::vector<int> &inf_nums,
5973 int mi_only)
5974 {
5975 int is_mi = uiout->is_mi_like_p ();
5976
5977 /* For backward compatibility, don't display inferiors in CLI unless
5978 there are several. Always display them for MI. */
5979 if (!is_mi && mi_only)
5980 return;
5981
5982 ui_out_emit_list list_emitter (uiout, field_name);
5983
5984 for (size_t i = 0; i < inf_nums.size (); i++)
5985 {
5986 if (is_mi)
5987 {
5988 char mi_group[10];
5989
5990 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5991 uiout->field_string (NULL, mi_group);
5992 }
5993 else
5994 {
5995 if (i == 0)
5996 uiout->text (" inf ");
5997 else
5998 uiout->text (", ");
5999
6000 uiout->text (plongest (inf_nums[i]));
6001 }
6002 }
6003 }
6004
6005 /* Print B to gdb_stdout. */
6006
6007 static void
6008 print_one_breakpoint_location (struct breakpoint *b,
6009 struct bp_location *loc,
6010 int loc_number,
6011 struct bp_location **last_loc,
6012 int allflag)
6013 {
6014 struct command_line *l;
6015 static char bpenables[] = "nynny";
6016
6017 struct ui_out *uiout = current_uiout;
6018 int header_of_multiple = 0;
6019 int part_of_multiple = (loc != NULL);
6020 struct value_print_options opts;
6021
6022 get_user_print_options (&opts);
6023
6024 gdb_assert (!loc || loc_number != 0);
6025 /* See comment in print_one_breakpoint concerning treatment of
6026 breakpoints with single disabled location. */
6027 if (loc == NULL
6028 && (b->loc != NULL
6029 && (b->loc->next != NULL || !b->loc->enabled)))
6030 header_of_multiple = 1;
6031 if (loc == NULL)
6032 loc = b->loc;
6033
6034 annotate_record ();
6035
6036 /* 1 */
6037 annotate_field (0);
6038 if (part_of_multiple)
6039 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6040 else
6041 uiout->field_int ("number", b->number);
6042
6043 /* 2 */
6044 annotate_field (1);
6045 if (part_of_multiple)
6046 uiout->field_skip ("type");
6047 else
6048 uiout->field_string ("type", bptype_string (b->type));
6049
6050 /* 3 */
6051 annotate_field (2);
6052 if (part_of_multiple)
6053 uiout->field_skip ("disp");
6054 else
6055 uiout->field_string ("disp", bpdisp_text (b->disposition));
6056
6057 /* 4 */
6058 annotate_field (3);
6059 if (part_of_multiple)
6060 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6061 else
6062 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6063
6064 /* 5 and 6 */
6065 if (b->ops != NULL && b->ops->print_one != NULL)
6066 {
6067 /* Although the print_one can possibly print all locations,
6068 calling it here is not likely to get any nice result. So,
6069 make sure there's just one location. */
6070 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6071 b->ops->print_one (b, last_loc);
6072 }
6073 else
6074 switch (b->type)
6075 {
6076 case bp_none:
6077 internal_error (__FILE__, __LINE__,
6078 _("print_one_breakpoint: bp_none encountered\n"));
6079 break;
6080
6081 case bp_watchpoint:
6082 case bp_hardware_watchpoint:
6083 case bp_read_watchpoint:
6084 case bp_access_watchpoint:
6085 {
6086 struct watchpoint *w = (struct watchpoint *) b;
6087
6088 /* Field 4, the address, is omitted (which makes the columns
6089 not line up too nicely with the headers, but the effect
6090 is relatively readable). */
6091 if (opts.addressprint)
6092 uiout->field_skip ("addr");
6093 annotate_field (5);
6094 uiout->field_string ("what", w->exp_string);
6095 }
6096 break;
6097
6098 case bp_breakpoint:
6099 case bp_hardware_breakpoint:
6100 case bp_single_step:
6101 case bp_until:
6102 case bp_finish:
6103 case bp_longjmp:
6104 case bp_longjmp_resume:
6105 case bp_longjmp_call_dummy:
6106 case bp_exception:
6107 case bp_exception_resume:
6108 case bp_step_resume:
6109 case bp_hp_step_resume:
6110 case bp_watchpoint_scope:
6111 case bp_call_dummy:
6112 case bp_std_terminate:
6113 case bp_shlib_event:
6114 case bp_thread_event:
6115 case bp_overlay_event:
6116 case bp_longjmp_master:
6117 case bp_std_terminate_master:
6118 case bp_exception_master:
6119 case bp_tracepoint:
6120 case bp_fast_tracepoint:
6121 case bp_static_tracepoint:
6122 case bp_dprintf:
6123 case bp_jit_event:
6124 case bp_gnu_ifunc_resolver:
6125 case bp_gnu_ifunc_resolver_return:
6126 if (opts.addressprint)
6127 {
6128 annotate_field (4);
6129 if (header_of_multiple)
6130 uiout->field_string ("addr", "<MULTIPLE>");
6131 else if (b->loc == NULL || loc->shlib_disabled)
6132 uiout->field_string ("addr", "<PENDING>");
6133 else
6134 uiout->field_core_addr ("addr",
6135 loc->gdbarch, loc->address);
6136 }
6137 annotate_field (5);
6138 if (!header_of_multiple)
6139 print_breakpoint_location (b, loc);
6140 if (b->loc)
6141 *last_loc = b->loc;
6142 break;
6143 }
6144
6145
6146 if (loc != NULL && !header_of_multiple)
6147 {
6148 std::vector<int> inf_nums;
6149 int mi_only = 1;
6150
6151 for (inferior *inf : all_inferiors ())
6152 {
6153 if (inf->pspace == loc->pspace)
6154 inf_nums.push_back (inf->num);
6155 }
6156
6157 /* For backward compatibility, don't display inferiors in CLI unless
6158 there are several. Always display for MI. */
6159 if (allflag
6160 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6161 && (number_of_program_spaces () > 1
6162 || number_of_inferiors () > 1)
6163 /* LOC is for existing B, it cannot be in
6164 moribund_locations and thus having NULL OWNER. */
6165 && loc->owner->type != bp_catchpoint))
6166 mi_only = 0;
6167 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6168 }
6169
6170 if (!part_of_multiple)
6171 {
6172 if (b->thread != -1)
6173 {
6174 /* FIXME: This seems to be redundant and lost here; see the
6175 "stop only in" line a little further down. */
6176 uiout->text (" thread ");
6177 uiout->field_int ("thread", b->thread);
6178 }
6179 else if (b->task != 0)
6180 {
6181 uiout->text (" task ");
6182 uiout->field_int ("task", b->task);
6183 }
6184 }
6185
6186 uiout->text ("\n");
6187
6188 if (!part_of_multiple)
6189 b->ops->print_one_detail (b, uiout);
6190
6191 if (part_of_multiple && frame_id_p (b->frame_id))
6192 {
6193 annotate_field (6);
6194 uiout->text ("\tstop only in stack frame at ");
6195 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6196 the frame ID. */
6197 uiout->field_core_addr ("frame",
6198 b->gdbarch, b->frame_id.stack_addr);
6199 uiout->text ("\n");
6200 }
6201
6202 if (!part_of_multiple && b->cond_string)
6203 {
6204 annotate_field (7);
6205 if (is_tracepoint (b))
6206 uiout->text ("\ttrace only if ");
6207 else
6208 uiout->text ("\tstop only if ");
6209 uiout->field_string ("cond", b->cond_string);
6210
6211 /* Print whether the target is doing the breakpoint's condition
6212 evaluation. If GDB is doing the evaluation, don't print anything. */
6213 if (is_breakpoint (b)
6214 && breakpoint_condition_evaluation_mode ()
6215 == condition_evaluation_target)
6216 {
6217 uiout->text (" (");
6218 uiout->field_string ("evaluated-by",
6219 bp_condition_evaluator (b));
6220 uiout->text (" evals)");
6221 }
6222 uiout->text ("\n");
6223 }
6224
6225 if (!part_of_multiple && b->thread != -1)
6226 {
6227 /* FIXME should make an annotation for this. */
6228 uiout->text ("\tstop only in thread ");
6229 if (uiout->is_mi_like_p ())
6230 uiout->field_int ("thread", b->thread);
6231 else
6232 {
6233 struct thread_info *thr = find_thread_global_id (b->thread);
6234
6235 uiout->field_string ("thread", print_thread_id (thr));
6236 }
6237 uiout->text ("\n");
6238 }
6239
6240 if (!part_of_multiple)
6241 {
6242 if (b->hit_count)
6243 {
6244 /* FIXME should make an annotation for this. */
6245 if (is_catchpoint (b))
6246 uiout->text ("\tcatchpoint");
6247 else if (is_tracepoint (b))
6248 uiout->text ("\ttracepoint");
6249 else
6250 uiout->text ("\tbreakpoint");
6251 uiout->text (" already hit ");
6252 uiout->field_int ("times", b->hit_count);
6253 if (b->hit_count == 1)
6254 uiout->text (" time\n");
6255 else
6256 uiout->text (" times\n");
6257 }
6258 else
6259 {
6260 /* Output the count also if it is zero, but only if this is mi. */
6261 if (uiout->is_mi_like_p ())
6262 uiout->field_int ("times", b->hit_count);
6263 }
6264 }
6265
6266 if (!part_of_multiple && b->ignore_count)
6267 {
6268 annotate_field (8);
6269 uiout->text ("\tignore next ");
6270 uiout->field_int ("ignore", b->ignore_count);
6271 uiout->text (" hits\n");
6272 }
6273
6274 /* Note that an enable count of 1 corresponds to "enable once"
6275 behavior, which is reported by the combination of enablement and
6276 disposition, so we don't need to mention it here. */
6277 if (!part_of_multiple && b->enable_count > 1)
6278 {
6279 annotate_field (8);
6280 uiout->text ("\tdisable after ");
6281 /* Tweak the wording to clarify that ignore and enable counts
6282 are distinct, and have additive effect. */
6283 if (b->ignore_count)
6284 uiout->text ("additional ");
6285 else
6286 uiout->text ("next ");
6287 uiout->field_int ("enable", b->enable_count);
6288 uiout->text (" hits\n");
6289 }
6290
6291 if (!part_of_multiple && is_tracepoint (b))
6292 {
6293 struct tracepoint *tp = (struct tracepoint *) b;
6294
6295 if (tp->traceframe_usage)
6296 {
6297 uiout->text ("\ttrace buffer usage ");
6298 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6299 uiout->text (" bytes\n");
6300 }
6301 }
6302
6303 l = b->commands ? b->commands.get () : NULL;
6304 if (!part_of_multiple && l)
6305 {
6306 annotate_field (9);
6307 ui_out_emit_tuple tuple_emitter (uiout, "script");
6308 print_command_lines (uiout, l, 4);
6309 }
6310
6311 if (is_tracepoint (b))
6312 {
6313 struct tracepoint *t = (struct tracepoint *) b;
6314
6315 if (!part_of_multiple && t->pass_count)
6316 {
6317 annotate_field (10);
6318 uiout->text ("\tpass count ");
6319 uiout->field_int ("pass", t->pass_count);
6320 uiout->text (" \n");
6321 }
6322
6323 /* Don't display it when tracepoint or tracepoint location is
6324 pending. */
6325 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6326 {
6327 annotate_field (11);
6328
6329 if (uiout->is_mi_like_p ())
6330 uiout->field_string ("installed",
6331 loc->inserted ? "y" : "n");
6332 else
6333 {
6334 if (loc->inserted)
6335 uiout->text ("\t");
6336 else
6337 uiout->text ("\tnot ");
6338 uiout->text ("installed on target\n");
6339 }
6340 }
6341 }
6342
6343 if (uiout->is_mi_like_p () && !part_of_multiple)
6344 {
6345 if (is_watchpoint (b))
6346 {
6347 struct watchpoint *w = (struct watchpoint *) b;
6348
6349 uiout->field_string ("original-location", w->exp_string);
6350 }
6351 else if (b->location != NULL
6352 && event_location_to_string (b->location.get ()) != NULL)
6353 uiout->field_string ("original-location",
6354 event_location_to_string (b->location.get ()));
6355 }
6356 }
6357
6358 static void
6359 print_one_breakpoint (struct breakpoint *b,
6360 struct bp_location **last_loc,
6361 int allflag)
6362 {
6363 struct ui_out *uiout = current_uiout;
6364 bool use_fixed_output = mi_multi_location_breakpoint_output_fixed (uiout);
6365
6366 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6367 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6368
6369 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6370 are outside. */
6371 if (!use_fixed_output)
6372 bkpt_tuple_emitter.reset ();
6373
6374 /* If this breakpoint has custom print function,
6375 it's already printed. Otherwise, print individual
6376 locations, if any. */
6377 if (b->ops == NULL || b->ops->print_one == NULL)
6378 {
6379 /* If breakpoint has a single location that is disabled, we
6380 print it as if it had several locations, since otherwise it's
6381 hard to represent "breakpoint enabled, location disabled"
6382 situation.
6383
6384 Note that while hardware watchpoints have several locations
6385 internally, that's not a property exposed to user. */
6386 if (b->loc
6387 && !is_hardware_watchpoint (b)
6388 && (b->loc->next || !b->loc->enabled))
6389 {
6390 gdb::optional<ui_out_emit_list> locations_list;
6391
6392 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6393 MI record. For later versions, place breakpoint locations in a
6394 list. */
6395 if (uiout->is_mi_like_p () && use_fixed_output)
6396 locations_list.emplace (uiout, "locations");
6397
6398 int n = 1;
6399 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6400 {
6401 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6402 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6403 }
6404 }
6405 }
6406 }
6407
6408 static int
6409 breakpoint_address_bits (struct breakpoint *b)
6410 {
6411 int print_address_bits = 0;
6412 struct bp_location *loc;
6413
6414 /* Software watchpoints that aren't watching memory don't have an
6415 address to print. */
6416 if (is_no_memory_software_watchpoint (b))
6417 return 0;
6418
6419 for (loc = b->loc; loc; loc = loc->next)
6420 {
6421 int addr_bit;
6422
6423 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6424 if (addr_bit > print_address_bits)
6425 print_address_bits = addr_bit;
6426 }
6427
6428 return print_address_bits;
6429 }
6430
6431 /* See breakpoint.h. */
6432
6433 void
6434 print_breakpoint (breakpoint *b)
6435 {
6436 struct bp_location *dummy_loc = NULL;
6437 print_one_breakpoint (b, &dummy_loc, 0);
6438 }
6439
6440 /* Return true if this breakpoint was set by the user, false if it is
6441 internal or momentary. */
6442
6443 int
6444 user_breakpoint_p (struct breakpoint *b)
6445 {
6446 return b->number > 0;
6447 }
6448
6449 /* See breakpoint.h. */
6450
6451 int
6452 pending_breakpoint_p (struct breakpoint *b)
6453 {
6454 return b->loc == NULL;
6455 }
6456
6457 /* Print information on user settable breakpoint (watchpoint, etc)
6458 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6459 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6460 FILTER is non-NULL, call it on each breakpoint and only include the
6461 ones for which it returns non-zero. Return the total number of
6462 breakpoints listed. */
6463
6464 static int
6465 breakpoint_1 (const char *args, int allflag,
6466 int (*filter) (const struct breakpoint *))
6467 {
6468 struct breakpoint *b;
6469 struct bp_location *last_loc = NULL;
6470 int nr_printable_breakpoints;
6471 struct value_print_options opts;
6472 int print_address_bits = 0;
6473 int print_type_col_width = 14;
6474 struct ui_out *uiout = current_uiout;
6475
6476 get_user_print_options (&opts);
6477
6478 /* Compute the number of rows in the table, as well as the size
6479 required for address fields. */
6480 nr_printable_breakpoints = 0;
6481 ALL_BREAKPOINTS (b)
6482 {
6483 /* If we have a filter, only list the breakpoints it accepts. */
6484 if (filter && !filter (b))
6485 continue;
6486
6487 /* If we have an "args" string, it is a list of breakpoints to
6488 accept. Skip the others. */
6489 if (args != NULL && *args != '\0')
6490 {
6491 if (allflag && parse_and_eval_long (args) != b->number)
6492 continue;
6493 if (!allflag && !number_is_in_list (args, b->number))
6494 continue;
6495 }
6496
6497 if (allflag || user_breakpoint_p (b))
6498 {
6499 int addr_bit, type_len;
6500
6501 addr_bit = breakpoint_address_bits (b);
6502 if (addr_bit > print_address_bits)
6503 print_address_bits = addr_bit;
6504
6505 type_len = strlen (bptype_string (b->type));
6506 if (type_len > print_type_col_width)
6507 print_type_col_width = type_len;
6508
6509 nr_printable_breakpoints++;
6510 }
6511 }
6512
6513 {
6514 ui_out_emit_table table_emitter (uiout,
6515 opts.addressprint ? 6 : 5,
6516 nr_printable_breakpoints,
6517 "BreakpointTable");
6518
6519 if (nr_printable_breakpoints > 0)
6520 annotate_breakpoints_headers ();
6521 if (nr_printable_breakpoints > 0)
6522 annotate_field (0);
6523 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6524 if (nr_printable_breakpoints > 0)
6525 annotate_field (1);
6526 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6527 if (nr_printable_breakpoints > 0)
6528 annotate_field (2);
6529 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6530 if (nr_printable_breakpoints > 0)
6531 annotate_field (3);
6532 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6533 if (opts.addressprint)
6534 {
6535 if (nr_printable_breakpoints > 0)
6536 annotate_field (4);
6537 if (print_address_bits <= 32)
6538 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6539 else
6540 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6541 }
6542 if (nr_printable_breakpoints > 0)
6543 annotate_field (5);
6544 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6545 uiout->table_body ();
6546 if (nr_printable_breakpoints > 0)
6547 annotate_breakpoints_table ();
6548
6549 ALL_BREAKPOINTS (b)
6550 {
6551 QUIT;
6552 /* If we have a filter, only list the breakpoints it accepts. */
6553 if (filter && !filter (b))
6554 continue;
6555
6556 /* If we have an "args" string, it is a list of breakpoints to
6557 accept. Skip the others. */
6558
6559 if (args != NULL && *args != '\0')
6560 {
6561 if (allflag) /* maintenance info breakpoint */
6562 {
6563 if (parse_and_eval_long (args) != b->number)
6564 continue;
6565 }
6566 else /* all others */
6567 {
6568 if (!number_is_in_list (args, b->number))
6569 continue;
6570 }
6571 }
6572 /* We only print out user settable breakpoints unless the
6573 allflag is set. */
6574 if (allflag || user_breakpoint_p (b))
6575 print_one_breakpoint (b, &last_loc, allflag);
6576 }
6577 }
6578
6579 if (nr_printable_breakpoints == 0)
6580 {
6581 /* If there's a filter, let the caller decide how to report
6582 empty list. */
6583 if (!filter)
6584 {
6585 if (args == NULL || *args == '\0')
6586 uiout->message ("No breakpoints or watchpoints.\n");
6587 else
6588 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6589 args);
6590 }
6591 }
6592 else
6593 {
6594 if (last_loc && !server_command)
6595 set_next_address (last_loc->gdbarch, last_loc->address);
6596 }
6597
6598 /* FIXME? Should this be moved up so that it is only called when
6599 there have been breakpoints? */
6600 annotate_breakpoints_table_end ();
6601
6602 return nr_printable_breakpoints;
6603 }
6604
6605 /* Display the value of default-collect in a way that is generally
6606 compatible with the breakpoint list. */
6607
6608 static void
6609 default_collect_info (void)
6610 {
6611 struct ui_out *uiout = current_uiout;
6612
6613 /* If it has no value (which is frequently the case), say nothing; a
6614 message like "No default-collect." gets in user's face when it's
6615 not wanted. */
6616 if (!*default_collect)
6617 return;
6618
6619 /* The following phrase lines up nicely with per-tracepoint collect
6620 actions. */
6621 uiout->text ("default collect ");
6622 uiout->field_string ("default-collect", default_collect);
6623 uiout->text (" \n");
6624 }
6625
6626 static void
6627 info_breakpoints_command (const char *args, int from_tty)
6628 {
6629 breakpoint_1 (args, 0, NULL);
6630
6631 default_collect_info ();
6632 }
6633
6634 static void
6635 info_watchpoints_command (const char *args, int from_tty)
6636 {
6637 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6638 struct ui_out *uiout = current_uiout;
6639
6640 if (num_printed == 0)
6641 {
6642 if (args == NULL || *args == '\0')
6643 uiout->message ("No watchpoints.\n");
6644 else
6645 uiout->message ("No watchpoint matching '%s'.\n", args);
6646 }
6647 }
6648
6649 static void
6650 maintenance_info_breakpoints (const char *args, int from_tty)
6651 {
6652 breakpoint_1 (args, 1, NULL);
6653
6654 default_collect_info ();
6655 }
6656
6657 static int
6658 breakpoint_has_pc (struct breakpoint *b,
6659 struct program_space *pspace,
6660 CORE_ADDR pc, struct obj_section *section)
6661 {
6662 struct bp_location *bl = b->loc;
6663
6664 for (; bl; bl = bl->next)
6665 {
6666 if (bl->pspace == pspace
6667 && bl->address == pc
6668 && (!overlay_debugging || bl->section == section))
6669 return 1;
6670 }
6671 return 0;
6672 }
6673
6674 /* Print a message describing any user-breakpoints set at PC. This
6675 concerns with logical breakpoints, so we match program spaces, not
6676 address spaces. */
6677
6678 static void
6679 describe_other_breakpoints (struct gdbarch *gdbarch,
6680 struct program_space *pspace, CORE_ADDR pc,
6681 struct obj_section *section, int thread)
6682 {
6683 int others = 0;
6684 struct breakpoint *b;
6685
6686 ALL_BREAKPOINTS (b)
6687 others += (user_breakpoint_p (b)
6688 && breakpoint_has_pc (b, pspace, pc, section));
6689 if (others > 0)
6690 {
6691 if (others == 1)
6692 printf_filtered (_("Note: breakpoint "));
6693 else /* if (others == ???) */
6694 printf_filtered (_("Note: breakpoints "));
6695 ALL_BREAKPOINTS (b)
6696 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6697 {
6698 others--;
6699 printf_filtered ("%d", b->number);
6700 if (b->thread == -1 && thread != -1)
6701 printf_filtered (" (all threads)");
6702 else if (b->thread != -1)
6703 printf_filtered (" (thread %d)", b->thread);
6704 printf_filtered ("%s%s ",
6705 ((b->enable_state == bp_disabled
6706 || b->enable_state == bp_call_disabled)
6707 ? " (disabled)"
6708 : ""),
6709 (others > 1) ? ","
6710 : ((others == 1) ? " and" : ""));
6711 }
6712 printf_filtered (_("also set at pc "));
6713 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6714 printf_filtered (".\n");
6715 }
6716 }
6717 \f
6718
6719 /* Return true iff it is meaningful to use the address member of
6720 BPT locations. For some breakpoint types, the locations' address members
6721 are irrelevant and it makes no sense to attempt to compare them to other
6722 addresses (or use them for any other purpose either).
6723
6724 More specifically, each of the following breakpoint types will
6725 always have a zero valued location address and we don't want to mark
6726 breakpoints of any of these types to be a duplicate of an actual
6727 breakpoint location at address zero:
6728
6729 bp_watchpoint
6730 bp_catchpoint
6731
6732 */
6733
6734 static int
6735 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6736 {
6737 enum bptype type = bpt->type;
6738
6739 return (type != bp_watchpoint && type != bp_catchpoint);
6740 }
6741
6742 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6743 true if LOC1 and LOC2 represent the same watchpoint location. */
6744
6745 static int
6746 watchpoint_locations_match (struct bp_location *loc1,
6747 struct bp_location *loc2)
6748 {
6749 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6750 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6751
6752 /* Both of them must exist. */
6753 gdb_assert (w1 != NULL);
6754 gdb_assert (w2 != NULL);
6755
6756 /* If the target can evaluate the condition expression in hardware,
6757 then we we need to insert both watchpoints even if they are at
6758 the same place. Otherwise the watchpoint will only trigger when
6759 the condition of whichever watchpoint was inserted evaluates to
6760 true, not giving a chance for GDB to check the condition of the
6761 other watchpoint. */
6762 if ((w1->cond_exp
6763 && target_can_accel_watchpoint_condition (loc1->address,
6764 loc1->length,
6765 loc1->watchpoint_type,
6766 w1->cond_exp.get ()))
6767 || (w2->cond_exp
6768 && target_can_accel_watchpoint_condition (loc2->address,
6769 loc2->length,
6770 loc2->watchpoint_type,
6771 w2->cond_exp.get ())))
6772 return 0;
6773
6774 /* Note that this checks the owner's type, not the location's. In
6775 case the target does not support read watchpoints, but does
6776 support access watchpoints, we'll have bp_read_watchpoint
6777 watchpoints with hw_access locations. Those should be considered
6778 duplicates of hw_read locations. The hw_read locations will
6779 become hw_access locations later. */
6780 return (loc1->owner->type == loc2->owner->type
6781 && loc1->pspace->aspace == loc2->pspace->aspace
6782 && loc1->address == loc2->address
6783 && loc1->length == loc2->length);
6784 }
6785
6786 /* See breakpoint.h. */
6787
6788 int
6789 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6790 const address_space *aspace2, CORE_ADDR addr2)
6791 {
6792 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6793 || aspace1 == aspace2)
6794 && addr1 == addr2);
6795 }
6796
6797 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6798 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6799 matches ASPACE2. On targets that have global breakpoints, the address
6800 space doesn't really matter. */
6801
6802 static int
6803 breakpoint_address_match_range (const address_space *aspace1,
6804 CORE_ADDR addr1,
6805 int len1, const address_space *aspace2,
6806 CORE_ADDR addr2)
6807 {
6808 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6809 || aspace1 == aspace2)
6810 && addr2 >= addr1 && addr2 < addr1 + len1);
6811 }
6812
6813 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6814 a ranged breakpoint. In most targets, a match happens only if ASPACE
6815 matches the breakpoint's address space. On targets that have global
6816 breakpoints, the address space doesn't really matter. */
6817
6818 static int
6819 breakpoint_location_address_match (struct bp_location *bl,
6820 const address_space *aspace,
6821 CORE_ADDR addr)
6822 {
6823 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6824 aspace, addr)
6825 || (bl->length
6826 && breakpoint_address_match_range (bl->pspace->aspace,
6827 bl->address, bl->length,
6828 aspace, addr)));
6829 }
6830
6831 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6832 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6833 match happens only if ASPACE matches the breakpoint's address
6834 space. On targets that have global breakpoints, the address space
6835 doesn't really matter. */
6836
6837 static int
6838 breakpoint_location_address_range_overlap (struct bp_location *bl,
6839 const address_space *aspace,
6840 CORE_ADDR addr, int len)
6841 {
6842 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6843 || bl->pspace->aspace == aspace)
6844 {
6845 int bl_len = bl->length != 0 ? bl->length : 1;
6846
6847 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6848 return 1;
6849 }
6850 return 0;
6851 }
6852
6853 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6854 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6855 true, otherwise returns false. */
6856
6857 static int
6858 tracepoint_locations_match (struct bp_location *loc1,
6859 struct bp_location *loc2)
6860 {
6861 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6862 /* Since tracepoint locations are never duplicated with others', tracepoint
6863 locations at the same address of different tracepoints are regarded as
6864 different locations. */
6865 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6866 else
6867 return 0;
6868 }
6869
6870 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6871 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6872 represent the same location. */
6873
6874 static int
6875 breakpoint_locations_match (struct bp_location *loc1,
6876 struct bp_location *loc2)
6877 {
6878 int hw_point1, hw_point2;
6879
6880 /* Both of them must not be in moribund_locations. */
6881 gdb_assert (loc1->owner != NULL);
6882 gdb_assert (loc2->owner != NULL);
6883
6884 hw_point1 = is_hardware_watchpoint (loc1->owner);
6885 hw_point2 = is_hardware_watchpoint (loc2->owner);
6886
6887 if (hw_point1 != hw_point2)
6888 return 0;
6889 else if (hw_point1)
6890 return watchpoint_locations_match (loc1, loc2);
6891 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6892 return tracepoint_locations_match (loc1, loc2);
6893 else
6894 /* We compare bp_location.length in order to cover ranged breakpoints. */
6895 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6896 loc2->pspace->aspace, loc2->address)
6897 && loc1->length == loc2->length);
6898 }
6899
6900 static void
6901 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6902 int bnum, int have_bnum)
6903 {
6904 /* The longest string possibly returned by hex_string_custom
6905 is 50 chars. These must be at least that big for safety. */
6906 char astr1[64];
6907 char astr2[64];
6908
6909 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6910 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6911 if (have_bnum)
6912 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6913 bnum, astr1, astr2);
6914 else
6915 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6916 }
6917
6918 /* Adjust a breakpoint's address to account for architectural
6919 constraints on breakpoint placement. Return the adjusted address.
6920 Note: Very few targets require this kind of adjustment. For most
6921 targets, this function is simply the identity function. */
6922
6923 static CORE_ADDR
6924 adjust_breakpoint_address (struct gdbarch *gdbarch,
6925 CORE_ADDR bpaddr, enum bptype bptype)
6926 {
6927 if (bptype == bp_watchpoint
6928 || bptype == bp_hardware_watchpoint
6929 || bptype == bp_read_watchpoint
6930 || bptype == bp_access_watchpoint
6931 || bptype == bp_catchpoint)
6932 {
6933 /* Watchpoints and the various bp_catch_* eventpoints should not
6934 have their addresses modified. */
6935 return bpaddr;
6936 }
6937 else if (bptype == bp_single_step)
6938 {
6939 /* Single-step breakpoints should not have their addresses
6940 modified. If there's any architectural constrain that
6941 applies to this address, then it should have already been
6942 taken into account when the breakpoint was created in the
6943 first place. If we didn't do this, stepping through e.g.,
6944 Thumb-2 IT blocks would break. */
6945 return bpaddr;
6946 }
6947 else
6948 {
6949 CORE_ADDR adjusted_bpaddr = bpaddr;
6950
6951 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6952 {
6953 /* Some targets have architectural constraints on the placement
6954 of breakpoint instructions. Obtain the adjusted address. */
6955 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6956 }
6957
6958 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6959
6960 /* An adjusted breakpoint address can significantly alter
6961 a user's expectations. Print a warning if an adjustment
6962 is required. */
6963 if (adjusted_bpaddr != bpaddr)
6964 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6965
6966 return adjusted_bpaddr;
6967 }
6968 }
6969
6970 bp_location::bp_location (breakpoint *owner)
6971 {
6972 bp_location *loc = this;
6973
6974 loc->owner = owner;
6975 loc->cond_bytecode = NULL;
6976 loc->shlib_disabled = 0;
6977 loc->enabled = 1;
6978
6979 switch (owner->type)
6980 {
6981 case bp_breakpoint:
6982 case bp_single_step:
6983 case bp_until:
6984 case bp_finish:
6985 case bp_longjmp:
6986 case bp_longjmp_resume:
6987 case bp_longjmp_call_dummy:
6988 case bp_exception:
6989 case bp_exception_resume:
6990 case bp_step_resume:
6991 case bp_hp_step_resume:
6992 case bp_watchpoint_scope:
6993 case bp_call_dummy:
6994 case bp_std_terminate:
6995 case bp_shlib_event:
6996 case bp_thread_event:
6997 case bp_overlay_event:
6998 case bp_jit_event:
6999 case bp_longjmp_master:
7000 case bp_std_terminate_master:
7001 case bp_exception_master:
7002 case bp_gnu_ifunc_resolver:
7003 case bp_gnu_ifunc_resolver_return:
7004 case bp_dprintf:
7005 loc->loc_type = bp_loc_software_breakpoint;
7006 mark_breakpoint_location_modified (loc);
7007 break;
7008 case bp_hardware_breakpoint:
7009 loc->loc_type = bp_loc_hardware_breakpoint;
7010 mark_breakpoint_location_modified (loc);
7011 break;
7012 case bp_hardware_watchpoint:
7013 case bp_read_watchpoint:
7014 case bp_access_watchpoint:
7015 loc->loc_type = bp_loc_hardware_watchpoint;
7016 break;
7017 case bp_watchpoint:
7018 case bp_catchpoint:
7019 case bp_tracepoint:
7020 case bp_fast_tracepoint:
7021 case bp_static_tracepoint:
7022 loc->loc_type = bp_loc_other;
7023 break;
7024 default:
7025 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7026 }
7027
7028 loc->refc = 1;
7029 }
7030
7031 /* Allocate a struct bp_location. */
7032
7033 static struct bp_location *
7034 allocate_bp_location (struct breakpoint *bpt)
7035 {
7036 return bpt->ops->allocate_location (bpt);
7037 }
7038
7039 static void
7040 free_bp_location (struct bp_location *loc)
7041 {
7042 delete loc;
7043 }
7044
7045 /* Increment reference count. */
7046
7047 static void
7048 incref_bp_location (struct bp_location *bl)
7049 {
7050 ++bl->refc;
7051 }
7052
7053 /* Decrement reference count. If the reference count reaches 0,
7054 destroy the bp_location. Sets *BLP to NULL. */
7055
7056 static void
7057 decref_bp_location (struct bp_location **blp)
7058 {
7059 gdb_assert ((*blp)->refc > 0);
7060
7061 if (--(*blp)->refc == 0)
7062 free_bp_location (*blp);
7063 *blp = NULL;
7064 }
7065
7066 /* Add breakpoint B at the end of the global breakpoint chain. */
7067
7068 static breakpoint *
7069 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7070 {
7071 struct breakpoint *b1;
7072 struct breakpoint *result = b.get ();
7073
7074 /* Add this breakpoint to the end of the chain so that a list of
7075 breakpoints will come out in order of increasing numbers. */
7076
7077 b1 = breakpoint_chain;
7078 if (b1 == 0)
7079 breakpoint_chain = b.release ();
7080 else
7081 {
7082 while (b1->next)
7083 b1 = b1->next;
7084 b1->next = b.release ();
7085 }
7086
7087 return result;
7088 }
7089
7090 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7091
7092 static void
7093 init_raw_breakpoint_without_location (struct breakpoint *b,
7094 struct gdbarch *gdbarch,
7095 enum bptype bptype,
7096 const struct breakpoint_ops *ops)
7097 {
7098 gdb_assert (ops != NULL);
7099
7100 b->ops = ops;
7101 b->type = bptype;
7102 b->gdbarch = gdbarch;
7103 b->language = current_language->la_language;
7104 b->input_radix = input_radix;
7105 b->related_breakpoint = b;
7106 }
7107
7108 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7109 that has type BPTYPE and has no locations as yet. */
7110
7111 static struct breakpoint *
7112 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7113 enum bptype bptype,
7114 const struct breakpoint_ops *ops)
7115 {
7116 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7117
7118 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7119 return add_to_breakpoint_chain (std::move (b));
7120 }
7121
7122 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7123 resolutions should be made as the user specified the location explicitly
7124 enough. */
7125
7126 static void
7127 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7128 {
7129 gdb_assert (loc->owner != NULL);
7130
7131 if (loc->owner->type == bp_breakpoint
7132 || loc->owner->type == bp_hardware_breakpoint
7133 || is_tracepoint (loc->owner))
7134 {
7135 const char *function_name;
7136
7137 if (loc->msymbol != NULL
7138 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7139 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7140 && !explicit_loc)
7141 {
7142 struct breakpoint *b = loc->owner;
7143
7144 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7145
7146 if (b->type == bp_breakpoint && b->loc == loc
7147 && loc->next == NULL && b->related_breakpoint == b)
7148 {
7149 /* Create only the whole new breakpoint of this type but do not
7150 mess more complicated breakpoints with multiple locations. */
7151 b->type = bp_gnu_ifunc_resolver;
7152 /* Remember the resolver's address for use by the return
7153 breakpoint. */
7154 loc->related_address = loc->address;
7155 }
7156 }
7157 else
7158 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7159
7160 if (function_name)
7161 loc->function_name = xstrdup (function_name);
7162 }
7163 }
7164
7165 /* Attempt to determine architecture of location identified by SAL. */
7166 struct gdbarch *
7167 get_sal_arch (struct symtab_and_line sal)
7168 {
7169 if (sal.section)
7170 return get_objfile_arch (sal.section->objfile);
7171 if (sal.symtab)
7172 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7173
7174 return NULL;
7175 }
7176
7177 /* Low level routine for partially initializing a breakpoint of type
7178 BPTYPE. The newly created breakpoint's address, section, source
7179 file name, and line number are provided by SAL.
7180
7181 It is expected that the caller will complete the initialization of
7182 the newly created breakpoint struct as well as output any status
7183 information regarding the creation of a new breakpoint. */
7184
7185 static void
7186 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7187 struct symtab_and_line sal, enum bptype bptype,
7188 const struct breakpoint_ops *ops)
7189 {
7190 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7191
7192 add_location_to_breakpoint (b, &sal);
7193
7194 if (bptype != bp_catchpoint)
7195 gdb_assert (sal.pspace != NULL);
7196
7197 /* Store the program space that was used to set the breakpoint,
7198 except for ordinary breakpoints, which are independent of the
7199 program space. */
7200 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7201 b->pspace = sal.pspace;
7202 }
7203
7204 /* set_raw_breakpoint is a low level routine for allocating and
7205 partially initializing a breakpoint of type BPTYPE. The newly
7206 created breakpoint's address, section, source file name, and line
7207 number are provided by SAL. The newly created and partially
7208 initialized breakpoint is added to the breakpoint chain and
7209 is also returned as the value of this function.
7210
7211 It is expected that the caller will complete the initialization of
7212 the newly created breakpoint struct as well as output any status
7213 information regarding the creation of a new breakpoint. In
7214 particular, set_raw_breakpoint does NOT set the breakpoint
7215 number! Care should be taken to not allow an error to occur
7216 prior to completing the initialization of the breakpoint. If this
7217 should happen, a bogus breakpoint will be left on the chain. */
7218
7219 struct breakpoint *
7220 set_raw_breakpoint (struct gdbarch *gdbarch,
7221 struct symtab_and_line sal, enum bptype bptype,
7222 const struct breakpoint_ops *ops)
7223 {
7224 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7225
7226 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7227 return add_to_breakpoint_chain (std::move (b));
7228 }
7229
7230 /* Call this routine when stepping and nexting to enable a breakpoint
7231 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7232 initiated the operation. */
7233
7234 void
7235 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7236 {
7237 struct breakpoint *b, *b_tmp;
7238 int thread = tp->global_num;
7239
7240 /* To avoid having to rescan all objfile symbols at every step,
7241 we maintain a list of continually-inserted but always disabled
7242 longjmp "master" breakpoints. Here, we simply create momentary
7243 clones of those and enable them for the requested thread. */
7244 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7245 if (b->pspace == current_program_space
7246 && (b->type == bp_longjmp_master
7247 || b->type == bp_exception_master))
7248 {
7249 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7250 struct breakpoint *clone;
7251
7252 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7253 after their removal. */
7254 clone = momentary_breakpoint_from_master (b, type,
7255 &momentary_breakpoint_ops, 1);
7256 clone->thread = thread;
7257 }
7258
7259 tp->initiating_frame = frame;
7260 }
7261
7262 /* Delete all longjmp breakpoints from THREAD. */
7263 void
7264 delete_longjmp_breakpoint (int thread)
7265 {
7266 struct breakpoint *b, *b_tmp;
7267
7268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7269 if (b->type == bp_longjmp || b->type == bp_exception)
7270 {
7271 if (b->thread == thread)
7272 delete_breakpoint (b);
7273 }
7274 }
7275
7276 void
7277 delete_longjmp_breakpoint_at_next_stop (int thread)
7278 {
7279 struct breakpoint *b, *b_tmp;
7280
7281 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7282 if (b->type == bp_longjmp || b->type == bp_exception)
7283 {
7284 if (b->thread == thread)
7285 b->disposition = disp_del_at_next_stop;
7286 }
7287 }
7288
7289 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7290 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7291 pointer to any of them. Return NULL if this system cannot place longjmp
7292 breakpoints. */
7293
7294 struct breakpoint *
7295 set_longjmp_breakpoint_for_call_dummy (void)
7296 {
7297 struct breakpoint *b, *retval = NULL;
7298
7299 ALL_BREAKPOINTS (b)
7300 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7301 {
7302 struct breakpoint *new_b;
7303
7304 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7305 &momentary_breakpoint_ops,
7306 1);
7307 new_b->thread = inferior_thread ()->global_num;
7308
7309 /* Link NEW_B into the chain of RETVAL breakpoints. */
7310
7311 gdb_assert (new_b->related_breakpoint == new_b);
7312 if (retval == NULL)
7313 retval = new_b;
7314 new_b->related_breakpoint = retval;
7315 while (retval->related_breakpoint != new_b->related_breakpoint)
7316 retval = retval->related_breakpoint;
7317 retval->related_breakpoint = new_b;
7318 }
7319
7320 return retval;
7321 }
7322
7323 /* Verify all existing dummy frames and their associated breakpoints for
7324 TP. Remove those which can no longer be found in the current frame
7325 stack.
7326
7327 You should call this function only at places where it is safe to currently
7328 unwind the whole stack. Failed stack unwind would discard live dummy
7329 frames. */
7330
7331 void
7332 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7338 {
7339 struct breakpoint *dummy_b = b->related_breakpoint;
7340
7341 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7342 dummy_b = dummy_b->related_breakpoint;
7343 if (dummy_b->type != bp_call_dummy
7344 || frame_find_by_id (dummy_b->frame_id) != NULL)
7345 continue;
7346
7347 dummy_frame_discard (dummy_b->frame_id, tp);
7348
7349 while (b->related_breakpoint != b)
7350 {
7351 if (b_tmp == b->related_breakpoint)
7352 b_tmp = b->related_breakpoint->next;
7353 delete_breakpoint (b->related_breakpoint);
7354 }
7355 delete_breakpoint (b);
7356 }
7357 }
7358
7359 void
7360 enable_overlay_breakpoints (void)
7361 {
7362 struct breakpoint *b;
7363
7364 ALL_BREAKPOINTS (b)
7365 if (b->type == bp_overlay_event)
7366 {
7367 b->enable_state = bp_enabled;
7368 update_global_location_list (UGLL_MAY_INSERT);
7369 overlay_events_enabled = 1;
7370 }
7371 }
7372
7373 void
7374 disable_overlay_breakpoints (void)
7375 {
7376 struct breakpoint *b;
7377
7378 ALL_BREAKPOINTS (b)
7379 if (b->type == bp_overlay_event)
7380 {
7381 b->enable_state = bp_disabled;
7382 update_global_location_list (UGLL_DONT_INSERT);
7383 overlay_events_enabled = 0;
7384 }
7385 }
7386
7387 /* Set an active std::terminate breakpoint for each std::terminate
7388 master breakpoint. */
7389 void
7390 set_std_terminate_breakpoint (void)
7391 {
7392 struct breakpoint *b, *b_tmp;
7393
7394 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7395 if (b->pspace == current_program_space
7396 && b->type == bp_std_terminate_master)
7397 {
7398 momentary_breakpoint_from_master (b, bp_std_terminate,
7399 &momentary_breakpoint_ops, 1);
7400 }
7401 }
7402
7403 /* Delete all the std::terminate breakpoints. */
7404 void
7405 delete_std_terminate_breakpoint (void)
7406 {
7407 struct breakpoint *b, *b_tmp;
7408
7409 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7410 if (b->type == bp_std_terminate)
7411 delete_breakpoint (b);
7412 }
7413
7414 struct breakpoint *
7415 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7416 {
7417 struct breakpoint *b;
7418
7419 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7420 &internal_breakpoint_ops);
7421
7422 b->enable_state = bp_enabled;
7423 /* location has to be used or breakpoint_re_set will delete me. */
7424 b->location = new_address_location (b->loc->address, NULL, 0);
7425
7426 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7427
7428 return b;
7429 }
7430
7431 struct lang_and_radix
7432 {
7433 enum language lang;
7434 int radix;
7435 };
7436
7437 /* Create a breakpoint for JIT code registration and unregistration. */
7438
7439 struct breakpoint *
7440 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7441 {
7442 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7443 &internal_breakpoint_ops);
7444 }
7445
7446 /* Remove JIT code registration and unregistration breakpoint(s). */
7447
7448 void
7449 remove_jit_event_breakpoints (void)
7450 {
7451 struct breakpoint *b, *b_tmp;
7452
7453 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7454 if (b->type == bp_jit_event
7455 && b->loc->pspace == current_program_space)
7456 delete_breakpoint (b);
7457 }
7458
7459 void
7460 remove_solib_event_breakpoints (void)
7461 {
7462 struct breakpoint *b, *b_tmp;
7463
7464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7465 if (b->type == bp_shlib_event
7466 && b->loc->pspace == current_program_space)
7467 delete_breakpoint (b);
7468 }
7469
7470 /* See breakpoint.h. */
7471
7472 void
7473 remove_solib_event_breakpoints_at_next_stop (void)
7474 {
7475 struct breakpoint *b, *b_tmp;
7476
7477 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7478 if (b->type == bp_shlib_event
7479 && b->loc->pspace == current_program_space)
7480 b->disposition = disp_del_at_next_stop;
7481 }
7482
7483 /* Helper for create_solib_event_breakpoint /
7484 create_and_insert_solib_event_breakpoint. Allows specifying which
7485 INSERT_MODE to pass through to update_global_location_list. */
7486
7487 static struct breakpoint *
7488 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7489 enum ugll_insert_mode insert_mode)
7490 {
7491 struct breakpoint *b;
7492
7493 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7494 &internal_breakpoint_ops);
7495 update_global_location_list_nothrow (insert_mode);
7496 return b;
7497 }
7498
7499 struct breakpoint *
7500 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7501 {
7502 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7503 }
7504
7505 /* See breakpoint.h. */
7506
7507 struct breakpoint *
7508 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7509 {
7510 struct breakpoint *b;
7511
7512 /* Explicitly tell update_global_location_list to insert
7513 locations. */
7514 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7515 if (!b->loc->inserted)
7516 {
7517 delete_breakpoint (b);
7518 return NULL;
7519 }
7520 return b;
7521 }
7522
7523 /* Disable any breakpoints that are on code in shared libraries. Only
7524 apply to enabled breakpoints, disabled ones can just stay disabled. */
7525
7526 void
7527 disable_breakpoints_in_shlibs (void)
7528 {
7529 struct bp_location *loc, **locp_tmp;
7530
7531 ALL_BP_LOCATIONS (loc, locp_tmp)
7532 {
7533 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7534 struct breakpoint *b = loc->owner;
7535
7536 /* We apply the check to all breakpoints, including disabled for
7537 those with loc->duplicate set. This is so that when breakpoint
7538 becomes enabled, or the duplicate is removed, gdb will try to
7539 insert all breakpoints. If we don't set shlib_disabled here,
7540 we'll try to insert those breakpoints and fail. */
7541 if (((b->type == bp_breakpoint)
7542 || (b->type == bp_jit_event)
7543 || (b->type == bp_hardware_breakpoint)
7544 || (is_tracepoint (b)))
7545 && loc->pspace == current_program_space
7546 && !loc->shlib_disabled
7547 && solib_name_from_address (loc->pspace, loc->address)
7548 )
7549 {
7550 loc->shlib_disabled = 1;
7551 }
7552 }
7553 }
7554
7555 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7556 notification of unloaded_shlib. Only apply to enabled breakpoints,
7557 disabled ones can just stay disabled. */
7558
7559 static void
7560 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7561 {
7562 struct bp_location *loc, **locp_tmp;
7563 int disabled_shlib_breaks = 0;
7564
7565 ALL_BP_LOCATIONS (loc, locp_tmp)
7566 {
7567 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7568 struct breakpoint *b = loc->owner;
7569
7570 if (solib->pspace == loc->pspace
7571 && !loc->shlib_disabled
7572 && (((b->type == bp_breakpoint
7573 || b->type == bp_jit_event
7574 || b->type == bp_hardware_breakpoint)
7575 && (loc->loc_type == bp_loc_hardware_breakpoint
7576 || loc->loc_type == bp_loc_software_breakpoint))
7577 || is_tracepoint (b))
7578 && solib_contains_address_p (solib, loc->address))
7579 {
7580 loc->shlib_disabled = 1;
7581 /* At this point, we cannot rely on remove_breakpoint
7582 succeeding so we must mark the breakpoint as not inserted
7583 to prevent future errors occurring in remove_breakpoints. */
7584 loc->inserted = 0;
7585
7586 /* This may cause duplicate notifications for the same breakpoint. */
7587 gdb::observers::breakpoint_modified.notify (b);
7588
7589 if (!disabled_shlib_breaks)
7590 {
7591 target_terminal::ours_for_output ();
7592 warning (_("Temporarily disabling breakpoints "
7593 "for unloaded shared library \"%s\""),
7594 solib->so_name);
7595 }
7596 disabled_shlib_breaks = 1;
7597 }
7598 }
7599 }
7600
7601 /* Disable any breakpoints and tracepoints in OBJFILE upon
7602 notification of free_objfile. Only apply to enabled breakpoints,
7603 disabled ones can just stay disabled. */
7604
7605 static void
7606 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7607 {
7608 struct breakpoint *b;
7609
7610 if (objfile == NULL)
7611 return;
7612
7613 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7614 managed by the user with add-symbol-file/remove-symbol-file.
7615 Similarly to how breakpoints in shared libraries are handled in
7616 response to "nosharedlibrary", mark breakpoints in such modules
7617 shlib_disabled so they end up uninserted on the next global
7618 location list update. Shared libraries not loaded by the user
7619 aren't handled here -- they're already handled in
7620 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7621 solib_unloaded observer. We skip objfiles that are not
7622 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7623 main objfile). */
7624 if ((objfile->flags & OBJF_SHARED) == 0
7625 || (objfile->flags & OBJF_USERLOADED) == 0)
7626 return;
7627
7628 ALL_BREAKPOINTS (b)
7629 {
7630 struct bp_location *loc;
7631 int bp_modified = 0;
7632
7633 if (!is_breakpoint (b) && !is_tracepoint (b))
7634 continue;
7635
7636 for (loc = b->loc; loc != NULL; loc = loc->next)
7637 {
7638 CORE_ADDR loc_addr = loc->address;
7639
7640 if (loc->loc_type != bp_loc_hardware_breakpoint
7641 && loc->loc_type != bp_loc_software_breakpoint)
7642 continue;
7643
7644 if (loc->shlib_disabled != 0)
7645 continue;
7646
7647 if (objfile->pspace != loc->pspace)
7648 continue;
7649
7650 if (loc->loc_type != bp_loc_hardware_breakpoint
7651 && loc->loc_type != bp_loc_software_breakpoint)
7652 continue;
7653
7654 if (is_addr_in_objfile (loc_addr, objfile))
7655 {
7656 loc->shlib_disabled = 1;
7657 /* At this point, we don't know whether the object was
7658 unmapped from the inferior or not, so leave the
7659 inserted flag alone. We'll handle failure to
7660 uninsert quietly, in case the object was indeed
7661 unmapped. */
7662
7663 mark_breakpoint_location_modified (loc);
7664
7665 bp_modified = 1;
7666 }
7667 }
7668
7669 if (bp_modified)
7670 gdb::observers::breakpoint_modified.notify (b);
7671 }
7672 }
7673
7674 /* FORK & VFORK catchpoints. */
7675
7676 /* An instance of this type is used to represent a fork or vfork
7677 catchpoint. A breakpoint is really of this type iff its ops pointer points
7678 to CATCH_FORK_BREAKPOINT_OPS. */
7679
7680 struct fork_catchpoint : public breakpoint
7681 {
7682 /* Process id of a child process whose forking triggered this
7683 catchpoint. This field is only valid immediately after this
7684 catchpoint has triggered. */
7685 ptid_t forked_inferior_pid;
7686 };
7687
7688 /* Implement the "insert" breakpoint_ops method for fork
7689 catchpoints. */
7690
7691 static int
7692 insert_catch_fork (struct bp_location *bl)
7693 {
7694 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7695 }
7696
7697 /* Implement the "remove" breakpoint_ops method for fork
7698 catchpoints. */
7699
7700 static int
7701 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7702 {
7703 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7704 }
7705
7706 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7707 catchpoints. */
7708
7709 static int
7710 breakpoint_hit_catch_fork (const struct bp_location *bl,
7711 const address_space *aspace, CORE_ADDR bp_addr,
7712 const struct target_waitstatus *ws)
7713 {
7714 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7715
7716 if (ws->kind != TARGET_WAITKIND_FORKED)
7717 return 0;
7718
7719 c->forked_inferior_pid = ws->value.related_pid;
7720 return 1;
7721 }
7722
7723 /* Implement the "print_it" breakpoint_ops method for fork
7724 catchpoints. */
7725
7726 static enum print_stop_action
7727 print_it_catch_fork (bpstat bs)
7728 {
7729 struct ui_out *uiout = current_uiout;
7730 struct breakpoint *b = bs->breakpoint_at;
7731 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7732
7733 annotate_catchpoint (b->number);
7734 maybe_print_thread_hit_breakpoint (uiout);
7735 if (b->disposition == disp_del)
7736 uiout->text ("Temporary catchpoint ");
7737 else
7738 uiout->text ("Catchpoint ");
7739 if (uiout->is_mi_like_p ())
7740 {
7741 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7742 uiout->field_string ("disp", bpdisp_text (b->disposition));
7743 }
7744 uiout->field_int ("bkptno", b->number);
7745 uiout->text (" (forked process ");
7746 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7747 uiout->text ("), ");
7748 return PRINT_SRC_AND_LOC;
7749 }
7750
7751 /* Implement the "print_one" breakpoint_ops method for fork
7752 catchpoints. */
7753
7754 static void
7755 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7756 {
7757 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7758 struct value_print_options opts;
7759 struct ui_out *uiout = current_uiout;
7760
7761 get_user_print_options (&opts);
7762
7763 /* Field 4, the address, is omitted (which makes the columns not
7764 line up too nicely with the headers, but the effect is relatively
7765 readable). */
7766 if (opts.addressprint)
7767 uiout->field_skip ("addr");
7768 annotate_field (5);
7769 uiout->text ("fork");
7770 if (c->forked_inferior_pid != null_ptid)
7771 {
7772 uiout->text (", process ");
7773 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7774 uiout->spaces (1);
7775 }
7776
7777 if (uiout->is_mi_like_p ())
7778 uiout->field_string ("catch-type", "fork");
7779 }
7780
7781 /* Implement the "print_mention" breakpoint_ops method for fork
7782 catchpoints. */
7783
7784 static void
7785 print_mention_catch_fork (struct breakpoint *b)
7786 {
7787 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7788 }
7789
7790 /* Implement the "print_recreate" breakpoint_ops method for fork
7791 catchpoints. */
7792
7793 static void
7794 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7795 {
7796 fprintf_unfiltered (fp, "catch fork");
7797 print_recreate_thread (b, fp);
7798 }
7799
7800 /* The breakpoint_ops structure to be used in fork catchpoints. */
7801
7802 static struct breakpoint_ops catch_fork_breakpoint_ops;
7803
7804 /* Implement the "insert" breakpoint_ops method for vfork
7805 catchpoints. */
7806
7807 static int
7808 insert_catch_vfork (struct bp_location *bl)
7809 {
7810 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7811 }
7812
7813 /* Implement the "remove" breakpoint_ops method for vfork
7814 catchpoints. */
7815
7816 static int
7817 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7818 {
7819 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7820 }
7821
7822 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7823 catchpoints. */
7824
7825 static int
7826 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7827 const address_space *aspace, CORE_ADDR bp_addr,
7828 const struct target_waitstatus *ws)
7829 {
7830 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7831
7832 if (ws->kind != TARGET_WAITKIND_VFORKED)
7833 return 0;
7834
7835 c->forked_inferior_pid = ws->value.related_pid;
7836 return 1;
7837 }
7838
7839 /* Implement the "print_it" breakpoint_ops method for vfork
7840 catchpoints. */
7841
7842 static enum print_stop_action
7843 print_it_catch_vfork (bpstat bs)
7844 {
7845 struct ui_out *uiout = current_uiout;
7846 struct breakpoint *b = bs->breakpoint_at;
7847 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7848
7849 annotate_catchpoint (b->number);
7850 maybe_print_thread_hit_breakpoint (uiout);
7851 if (b->disposition == disp_del)
7852 uiout->text ("Temporary catchpoint ");
7853 else
7854 uiout->text ("Catchpoint ");
7855 if (uiout->is_mi_like_p ())
7856 {
7857 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7858 uiout->field_string ("disp", bpdisp_text (b->disposition));
7859 }
7860 uiout->field_int ("bkptno", b->number);
7861 uiout->text (" (vforked process ");
7862 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7863 uiout->text ("), ");
7864 return PRINT_SRC_AND_LOC;
7865 }
7866
7867 /* Implement the "print_one" breakpoint_ops method for vfork
7868 catchpoints. */
7869
7870 static void
7871 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7872 {
7873 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7874 struct value_print_options opts;
7875 struct ui_out *uiout = current_uiout;
7876
7877 get_user_print_options (&opts);
7878 /* Field 4, the address, is omitted (which makes the columns not
7879 line up too nicely with the headers, but the effect is relatively
7880 readable). */
7881 if (opts.addressprint)
7882 uiout->field_skip ("addr");
7883 annotate_field (5);
7884 uiout->text ("vfork");
7885 if (c->forked_inferior_pid != null_ptid)
7886 {
7887 uiout->text (", process ");
7888 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7889 uiout->spaces (1);
7890 }
7891
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("catch-type", "vfork");
7894 }
7895
7896 /* Implement the "print_mention" breakpoint_ops method for vfork
7897 catchpoints. */
7898
7899 static void
7900 print_mention_catch_vfork (struct breakpoint *b)
7901 {
7902 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7903 }
7904
7905 /* Implement the "print_recreate" breakpoint_ops method for vfork
7906 catchpoints. */
7907
7908 static void
7909 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7910 {
7911 fprintf_unfiltered (fp, "catch vfork");
7912 print_recreate_thread (b, fp);
7913 }
7914
7915 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7916
7917 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7918
7919 /* An instance of this type is used to represent an solib catchpoint.
7920 A breakpoint is really of this type iff its ops pointer points to
7921 CATCH_SOLIB_BREAKPOINT_OPS. */
7922
7923 struct solib_catchpoint : public breakpoint
7924 {
7925 ~solib_catchpoint () override;
7926
7927 /* True for "catch load", false for "catch unload". */
7928 unsigned char is_load;
7929
7930 /* Regular expression to match, if any. COMPILED is only valid when
7931 REGEX is non-NULL. */
7932 char *regex;
7933 std::unique_ptr<compiled_regex> compiled;
7934 };
7935
7936 solib_catchpoint::~solib_catchpoint ()
7937 {
7938 xfree (this->regex);
7939 }
7940
7941 static int
7942 insert_catch_solib (struct bp_location *ignore)
7943 {
7944 return 0;
7945 }
7946
7947 static int
7948 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7949 {
7950 return 0;
7951 }
7952
7953 static int
7954 breakpoint_hit_catch_solib (const struct bp_location *bl,
7955 const address_space *aspace,
7956 CORE_ADDR bp_addr,
7957 const struct target_waitstatus *ws)
7958 {
7959 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7960 struct breakpoint *other;
7961
7962 if (ws->kind == TARGET_WAITKIND_LOADED)
7963 return 1;
7964
7965 ALL_BREAKPOINTS (other)
7966 {
7967 struct bp_location *other_bl;
7968
7969 if (other == bl->owner)
7970 continue;
7971
7972 if (other->type != bp_shlib_event)
7973 continue;
7974
7975 if (self->pspace != NULL && other->pspace != self->pspace)
7976 continue;
7977
7978 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7979 {
7980 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7981 return 1;
7982 }
7983 }
7984
7985 return 0;
7986 }
7987
7988 static void
7989 check_status_catch_solib (struct bpstats *bs)
7990 {
7991 struct solib_catchpoint *self
7992 = (struct solib_catchpoint *) bs->breakpoint_at;
7993
7994 if (self->is_load)
7995 {
7996 for (so_list *iter : current_program_space->added_solibs)
7997 {
7998 if (!self->regex
7999 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8000 return;
8001 }
8002 }
8003 else
8004 {
8005 for (const std::string &iter : current_program_space->deleted_solibs)
8006 {
8007 if (!self->regex
8008 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8009 return;
8010 }
8011 }
8012
8013 bs->stop = 0;
8014 bs->print_it = print_it_noop;
8015 }
8016
8017 static enum print_stop_action
8018 print_it_catch_solib (bpstat bs)
8019 {
8020 struct breakpoint *b = bs->breakpoint_at;
8021 struct ui_out *uiout = current_uiout;
8022
8023 annotate_catchpoint (b->number);
8024 maybe_print_thread_hit_breakpoint (uiout);
8025 if (b->disposition == disp_del)
8026 uiout->text ("Temporary catchpoint ");
8027 else
8028 uiout->text ("Catchpoint ");
8029 uiout->field_int ("bkptno", b->number);
8030 uiout->text ("\n");
8031 if (uiout->is_mi_like_p ())
8032 uiout->field_string ("disp", bpdisp_text (b->disposition));
8033 print_solib_event (1);
8034 return PRINT_SRC_AND_LOC;
8035 }
8036
8037 static void
8038 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8039 {
8040 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8041 struct value_print_options opts;
8042 struct ui_out *uiout = current_uiout;
8043
8044 get_user_print_options (&opts);
8045 /* Field 4, the address, is omitted (which makes the columns not
8046 line up too nicely with the headers, but the effect is relatively
8047 readable). */
8048 if (opts.addressprint)
8049 {
8050 annotate_field (4);
8051 uiout->field_skip ("addr");
8052 }
8053
8054 std::string msg;
8055 annotate_field (5);
8056 if (self->is_load)
8057 {
8058 if (self->regex)
8059 msg = string_printf (_("load of library matching %s"), self->regex);
8060 else
8061 msg = _("load of library");
8062 }
8063 else
8064 {
8065 if (self->regex)
8066 msg = string_printf (_("unload of library matching %s"), self->regex);
8067 else
8068 msg = _("unload of library");
8069 }
8070 uiout->field_string ("what", msg);
8071
8072 if (uiout->is_mi_like_p ())
8073 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8074 }
8075
8076 static void
8077 print_mention_catch_solib (struct breakpoint *b)
8078 {
8079 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8080
8081 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8082 self->is_load ? "load" : "unload");
8083 }
8084
8085 static void
8086 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8087 {
8088 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8089
8090 fprintf_unfiltered (fp, "%s %s",
8091 b->disposition == disp_del ? "tcatch" : "catch",
8092 self->is_load ? "load" : "unload");
8093 if (self->regex)
8094 fprintf_unfiltered (fp, " %s", self->regex);
8095 fprintf_unfiltered (fp, "\n");
8096 }
8097
8098 static struct breakpoint_ops catch_solib_breakpoint_ops;
8099
8100 /* Shared helper function (MI and CLI) for creating and installing
8101 a shared object event catchpoint. If IS_LOAD is non-zero then
8102 the events to be caught are load events, otherwise they are
8103 unload events. If IS_TEMP is non-zero the catchpoint is a
8104 temporary one. If ENABLED is non-zero the catchpoint is
8105 created in an enabled state. */
8106
8107 void
8108 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8109 {
8110 struct gdbarch *gdbarch = get_current_arch ();
8111
8112 if (!arg)
8113 arg = "";
8114 arg = skip_spaces (arg);
8115
8116 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8117
8118 if (*arg != '\0')
8119 {
8120 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8121 _("Invalid regexp")));
8122 c->regex = xstrdup (arg);
8123 }
8124
8125 c->is_load = is_load;
8126 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8127 &catch_solib_breakpoint_ops);
8128
8129 c->enable_state = enabled ? bp_enabled : bp_disabled;
8130
8131 install_breakpoint (0, std::move (c), 1);
8132 }
8133
8134 /* A helper function that does all the work for "catch load" and
8135 "catch unload". */
8136
8137 static void
8138 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8139 struct cmd_list_element *command)
8140 {
8141 int tempflag;
8142 const int enabled = 1;
8143
8144 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8145
8146 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8147 }
8148
8149 static void
8150 catch_load_command_1 (const char *arg, int from_tty,
8151 struct cmd_list_element *command)
8152 {
8153 catch_load_or_unload (arg, from_tty, 1, command);
8154 }
8155
8156 static void
8157 catch_unload_command_1 (const char *arg, int from_tty,
8158 struct cmd_list_element *command)
8159 {
8160 catch_load_or_unload (arg, from_tty, 0, command);
8161 }
8162
8163 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8164 is non-zero, then make the breakpoint temporary. If COND_STRING is
8165 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8166 the breakpoint_ops structure associated to the catchpoint. */
8167
8168 void
8169 init_catchpoint (struct breakpoint *b,
8170 struct gdbarch *gdbarch, int tempflag,
8171 const char *cond_string,
8172 const struct breakpoint_ops *ops)
8173 {
8174 symtab_and_line sal;
8175 sal.pspace = current_program_space;
8176
8177 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8178
8179 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8180 b->disposition = tempflag ? disp_del : disp_donttouch;
8181 }
8182
8183 void
8184 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8185 {
8186 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8187 set_breakpoint_number (internal, b);
8188 if (is_tracepoint (b))
8189 set_tracepoint_count (breakpoint_count);
8190 if (!internal)
8191 mention (b);
8192 gdb::observers::breakpoint_created.notify (b);
8193
8194 if (update_gll)
8195 update_global_location_list (UGLL_MAY_INSERT);
8196 }
8197
8198 static void
8199 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8200 int tempflag, const char *cond_string,
8201 const struct breakpoint_ops *ops)
8202 {
8203 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8204
8205 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8206
8207 c->forked_inferior_pid = null_ptid;
8208
8209 install_breakpoint (0, std::move (c), 1);
8210 }
8211
8212 /* Exec catchpoints. */
8213
8214 /* An instance of this type is used to represent an exec catchpoint.
8215 A breakpoint is really of this type iff its ops pointer points to
8216 CATCH_EXEC_BREAKPOINT_OPS. */
8217
8218 struct exec_catchpoint : public breakpoint
8219 {
8220 ~exec_catchpoint () override;
8221
8222 /* Filename of a program whose exec triggered this catchpoint.
8223 This field is only valid immediately after this catchpoint has
8224 triggered. */
8225 char *exec_pathname;
8226 };
8227
8228 /* Exec catchpoint destructor. */
8229
8230 exec_catchpoint::~exec_catchpoint ()
8231 {
8232 xfree (this->exec_pathname);
8233 }
8234
8235 static int
8236 insert_catch_exec (struct bp_location *bl)
8237 {
8238 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8239 }
8240
8241 static int
8242 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8243 {
8244 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8245 }
8246
8247 static int
8248 breakpoint_hit_catch_exec (const struct bp_location *bl,
8249 const address_space *aspace, CORE_ADDR bp_addr,
8250 const struct target_waitstatus *ws)
8251 {
8252 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8253
8254 if (ws->kind != TARGET_WAITKIND_EXECD)
8255 return 0;
8256
8257 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8258 return 1;
8259 }
8260
8261 static enum print_stop_action
8262 print_it_catch_exec (bpstat bs)
8263 {
8264 struct ui_out *uiout = current_uiout;
8265 struct breakpoint *b = bs->breakpoint_at;
8266 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8267
8268 annotate_catchpoint (b->number);
8269 maybe_print_thread_hit_breakpoint (uiout);
8270 if (b->disposition == disp_del)
8271 uiout->text ("Temporary catchpoint ");
8272 else
8273 uiout->text ("Catchpoint ");
8274 if (uiout->is_mi_like_p ())
8275 {
8276 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8277 uiout->field_string ("disp", bpdisp_text (b->disposition));
8278 }
8279 uiout->field_int ("bkptno", b->number);
8280 uiout->text (" (exec'd ");
8281 uiout->field_string ("new-exec", c->exec_pathname);
8282 uiout->text ("), ");
8283
8284 return PRINT_SRC_AND_LOC;
8285 }
8286
8287 static void
8288 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8289 {
8290 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8291 struct value_print_options opts;
8292 struct ui_out *uiout = current_uiout;
8293
8294 get_user_print_options (&opts);
8295
8296 /* Field 4, the address, is omitted (which makes the columns
8297 not line up too nicely with the headers, but the effect
8298 is relatively readable). */
8299 if (opts.addressprint)
8300 uiout->field_skip ("addr");
8301 annotate_field (5);
8302 uiout->text ("exec");
8303 if (c->exec_pathname != NULL)
8304 {
8305 uiout->text (", program \"");
8306 uiout->field_string ("what", c->exec_pathname);
8307 uiout->text ("\" ");
8308 }
8309
8310 if (uiout->is_mi_like_p ())
8311 uiout->field_string ("catch-type", "exec");
8312 }
8313
8314 static void
8315 print_mention_catch_exec (struct breakpoint *b)
8316 {
8317 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8318 }
8319
8320 /* Implement the "print_recreate" breakpoint_ops method for exec
8321 catchpoints. */
8322
8323 static void
8324 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8325 {
8326 fprintf_unfiltered (fp, "catch exec");
8327 print_recreate_thread (b, fp);
8328 }
8329
8330 static struct breakpoint_ops catch_exec_breakpoint_ops;
8331
8332 static int
8333 hw_breakpoint_used_count (void)
8334 {
8335 int i = 0;
8336 struct breakpoint *b;
8337 struct bp_location *bl;
8338
8339 ALL_BREAKPOINTS (b)
8340 {
8341 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8342 for (bl = b->loc; bl; bl = bl->next)
8343 {
8344 /* Special types of hardware breakpoints may use more than
8345 one register. */
8346 i += b->ops->resources_needed (bl);
8347 }
8348 }
8349
8350 return i;
8351 }
8352
8353 /* Returns the resources B would use if it were a hardware
8354 watchpoint. */
8355
8356 static int
8357 hw_watchpoint_use_count (struct breakpoint *b)
8358 {
8359 int i = 0;
8360 struct bp_location *bl;
8361
8362 if (!breakpoint_enabled (b))
8363 return 0;
8364
8365 for (bl = b->loc; bl; bl = bl->next)
8366 {
8367 /* Special types of hardware watchpoints may use more than
8368 one register. */
8369 i += b->ops->resources_needed (bl);
8370 }
8371
8372 return i;
8373 }
8374
8375 /* Returns the sum the used resources of all hardware watchpoints of
8376 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8377 the sum of the used resources of all hardware watchpoints of other
8378 types _not_ TYPE. */
8379
8380 static int
8381 hw_watchpoint_used_count_others (struct breakpoint *except,
8382 enum bptype type, int *other_type_used)
8383 {
8384 int i = 0;
8385 struct breakpoint *b;
8386
8387 *other_type_used = 0;
8388 ALL_BREAKPOINTS (b)
8389 {
8390 if (b == except)
8391 continue;
8392 if (!breakpoint_enabled (b))
8393 continue;
8394
8395 if (b->type == type)
8396 i += hw_watchpoint_use_count (b);
8397 else if (is_hardware_watchpoint (b))
8398 *other_type_used = 1;
8399 }
8400
8401 return i;
8402 }
8403
8404 void
8405 disable_watchpoints_before_interactive_call_start (void)
8406 {
8407 struct breakpoint *b;
8408
8409 ALL_BREAKPOINTS (b)
8410 {
8411 if (is_watchpoint (b) && breakpoint_enabled (b))
8412 {
8413 b->enable_state = bp_call_disabled;
8414 update_global_location_list (UGLL_DONT_INSERT);
8415 }
8416 }
8417 }
8418
8419 void
8420 enable_watchpoints_after_interactive_call_stop (void)
8421 {
8422 struct breakpoint *b;
8423
8424 ALL_BREAKPOINTS (b)
8425 {
8426 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8427 {
8428 b->enable_state = bp_enabled;
8429 update_global_location_list (UGLL_MAY_INSERT);
8430 }
8431 }
8432 }
8433
8434 void
8435 disable_breakpoints_before_startup (void)
8436 {
8437 current_program_space->executing_startup = 1;
8438 update_global_location_list (UGLL_DONT_INSERT);
8439 }
8440
8441 void
8442 enable_breakpoints_after_startup (void)
8443 {
8444 current_program_space->executing_startup = 0;
8445 breakpoint_re_set ();
8446 }
8447
8448 /* Create a new single-step breakpoint for thread THREAD, with no
8449 locations. */
8450
8451 static struct breakpoint *
8452 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8453 {
8454 std::unique_ptr<breakpoint> b (new breakpoint ());
8455
8456 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8457 &momentary_breakpoint_ops);
8458
8459 b->disposition = disp_donttouch;
8460 b->frame_id = null_frame_id;
8461
8462 b->thread = thread;
8463 gdb_assert (b->thread != 0);
8464
8465 return add_to_breakpoint_chain (std::move (b));
8466 }
8467
8468 /* Set a momentary breakpoint of type TYPE at address specified by
8469 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8470 frame. */
8471
8472 breakpoint_up
8473 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8474 struct frame_id frame_id, enum bptype type)
8475 {
8476 struct breakpoint *b;
8477
8478 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8479 tail-called one. */
8480 gdb_assert (!frame_id_artificial_p (frame_id));
8481
8482 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8483 b->enable_state = bp_enabled;
8484 b->disposition = disp_donttouch;
8485 b->frame_id = frame_id;
8486
8487 b->thread = inferior_thread ()->global_num;
8488
8489 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8490
8491 return breakpoint_up (b);
8492 }
8493
8494 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8495 The new breakpoint will have type TYPE, use OPS as its
8496 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8497
8498 static struct breakpoint *
8499 momentary_breakpoint_from_master (struct breakpoint *orig,
8500 enum bptype type,
8501 const struct breakpoint_ops *ops,
8502 int loc_enabled)
8503 {
8504 struct breakpoint *copy;
8505
8506 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8507 copy->loc = allocate_bp_location (copy);
8508 set_breakpoint_location_function (copy->loc, 1);
8509
8510 copy->loc->gdbarch = orig->loc->gdbarch;
8511 copy->loc->requested_address = orig->loc->requested_address;
8512 copy->loc->address = orig->loc->address;
8513 copy->loc->section = orig->loc->section;
8514 copy->loc->pspace = orig->loc->pspace;
8515 copy->loc->probe = orig->loc->probe;
8516 copy->loc->line_number = orig->loc->line_number;
8517 copy->loc->symtab = orig->loc->symtab;
8518 copy->loc->enabled = loc_enabled;
8519 copy->frame_id = orig->frame_id;
8520 copy->thread = orig->thread;
8521 copy->pspace = orig->pspace;
8522
8523 copy->enable_state = bp_enabled;
8524 copy->disposition = disp_donttouch;
8525 copy->number = internal_breakpoint_number--;
8526
8527 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8528 return copy;
8529 }
8530
8531 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8532 ORIG is NULL. */
8533
8534 struct breakpoint *
8535 clone_momentary_breakpoint (struct breakpoint *orig)
8536 {
8537 /* If there's nothing to clone, then return nothing. */
8538 if (orig == NULL)
8539 return NULL;
8540
8541 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8542 }
8543
8544 breakpoint_up
8545 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8546 enum bptype type)
8547 {
8548 struct symtab_and_line sal;
8549
8550 sal = find_pc_line (pc, 0);
8551 sal.pc = pc;
8552 sal.section = find_pc_overlay (pc);
8553 sal.explicit_pc = 1;
8554
8555 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8556 }
8557 \f
8558
8559 /* Tell the user we have just set a breakpoint B. */
8560
8561 static void
8562 mention (struct breakpoint *b)
8563 {
8564 b->ops->print_mention (b);
8565 current_uiout->text ("\n");
8566 }
8567 \f
8568
8569 static int bp_loc_is_permanent (struct bp_location *loc);
8570
8571 static struct bp_location *
8572 add_location_to_breakpoint (struct breakpoint *b,
8573 const struct symtab_and_line *sal)
8574 {
8575 struct bp_location *loc, **tmp;
8576 CORE_ADDR adjusted_address;
8577 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8578
8579 if (loc_gdbarch == NULL)
8580 loc_gdbarch = b->gdbarch;
8581
8582 /* Adjust the breakpoint's address prior to allocating a location.
8583 Once we call allocate_bp_location(), that mostly uninitialized
8584 location will be placed on the location chain. Adjustment of the
8585 breakpoint may cause target_read_memory() to be called and we do
8586 not want its scan of the location chain to find a breakpoint and
8587 location that's only been partially initialized. */
8588 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8589 sal->pc, b->type);
8590
8591 /* Sort the locations by their ADDRESS. */
8592 loc = allocate_bp_location (b);
8593 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8594 tmp = &((*tmp)->next))
8595 ;
8596 loc->next = *tmp;
8597 *tmp = loc;
8598
8599 loc->requested_address = sal->pc;
8600 loc->address = adjusted_address;
8601 loc->pspace = sal->pspace;
8602 loc->probe.prob = sal->prob;
8603 loc->probe.objfile = sal->objfile;
8604 gdb_assert (loc->pspace != NULL);
8605 loc->section = sal->section;
8606 loc->gdbarch = loc_gdbarch;
8607 loc->line_number = sal->line;
8608 loc->symtab = sal->symtab;
8609 loc->symbol = sal->symbol;
8610 loc->msymbol = sal->msymbol;
8611 loc->objfile = sal->objfile;
8612
8613 set_breakpoint_location_function (loc,
8614 sal->explicit_pc || sal->explicit_line);
8615
8616 /* While by definition, permanent breakpoints are already present in the
8617 code, we don't mark the location as inserted. Normally one would expect
8618 that GDB could rely on that breakpoint instruction to stop the program,
8619 thus removing the need to insert its own breakpoint, except that executing
8620 the breakpoint instruction can kill the target instead of reporting a
8621 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8622 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8623 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8624 breakpoint be inserted normally results in QEMU knowing about the GDB
8625 breakpoint, and thus trap before the breakpoint instruction is executed.
8626 (If GDB later needs to continue execution past the permanent breakpoint,
8627 it manually increments the PC, thus avoiding executing the breakpoint
8628 instruction.) */
8629 if (bp_loc_is_permanent (loc))
8630 loc->permanent = 1;
8631
8632 return loc;
8633 }
8634 \f
8635
8636 /* See breakpoint.h. */
8637
8638 int
8639 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8640 {
8641 int len;
8642 CORE_ADDR addr;
8643 const gdb_byte *bpoint;
8644 gdb_byte *target_mem;
8645
8646 addr = address;
8647 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8648
8649 /* Software breakpoints unsupported? */
8650 if (bpoint == NULL)
8651 return 0;
8652
8653 target_mem = (gdb_byte *) alloca (len);
8654
8655 /* Enable the automatic memory restoration from breakpoints while
8656 we read the memory. Otherwise we could say about our temporary
8657 breakpoints they are permanent. */
8658 scoped_restore restore_memory
8659 = make_scoped_restore_show_memory_breakpoints (0);
8660
8661 if (target_read_memory (address, target_mem, len) == 0
8662 && memcmp (target_mem, bpoint, len) == 0)
8663 return 1;
8664
8665 return 0;
8666 }
8667
8668 /* Return 1 if LOC is pointing to a permanent breakpoint,
8669 return 0 otherwise. */
8670
8671 static int
8672 bp_loc_is_permanent (struct bp_location *loc)
8673 {
8674 gdb_assert (loc != NULL);
8675
8676 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8677 attempt to read from the addresses the locations of these breakpoint types
8678 point to. program_breakpoint_here_p, below, will attempt to read
8679 memory. */
8680 if (!breakpoint_address_is_meaningful (loc->owner))
8681 return 0;
8682
8683 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8684 switch_to_program_space_and_thread (loc->pspace);
8685 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8686 }
8687
8688 /* Build a command list for the dprintf corresponding to the current
8689 settings of the dprintf style options. */
8690
8691 static void
8692 update_dprintf_command_list (struct breakpoint *b)
8693 {
8694 char *dprintf_args = b->extra_string;
8695 char *printf_line = NULL;
8696
8697 if (!dprintf_args)
8698 return;
8699
8700 dprintf_args = skip_spaces (dprintf_args);
8701
8702 /* Allow a comma, as it may have terminated a location, but don't
8703 insist on it. */
8704 if (*dprintf_args == ',')
8705 ++dprintf_args;
8706 dprintf_args = skip_spaces (dprintf_args);
8707
8708 if (*dprintf_args != '"')
8709 error (_("Bad format string, missing '\"'."));
8710
8711 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8712 printf_line = xstrprintf ("printf %s", dprintf_args);
8713 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8714 {
8715 if (!dprintf_function)
8716 error (_("No function supplied for dprintf call"));
8717
8718 if (dprintf_channel && strlen (dprintf_channel) > 0)
8719 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8720 dprintf_function,
8721 dprintf_channel,
8722 dprintf_args);
8723 else
8724 printf_line = xstrprintf ("call (void) %s (%s)",
8725 dprintf_function,
8726 dprintf_args);
8727 }
8728 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8729 {
8730 if (target_can_run_breakpoint_commands ())
8731 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8732 else
8733 {
8734 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8735 printf_line = xstrprintf ("printf %s", dprintf_args);
8736 }
8737 }
8738 else
8739 internal_error (__FILE__, __LINE__,
8740 _("Invalid dprintf style."));
8741
8742 gdb_assert (printf_line != NULL);
8743
8744 /* Manufacture a printf sequence. */
8745 struct command_line *printf_cmd_line
8746 = new struct command_line (simple_control, printf_line);
8747 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8748 command_lines_deleter ()));
8749 }
8750
8751 /* Update all dprintf commands, making their command lists reflect
8752 current style settings. */
8753
8754 static void
8755 update_dprintf_commands (const char *args, int from_tty,
8756 struct cmd_list_element *c)
8757 {
8758 struct breakpoint *b;
8759
8760 ALL_BREAKPOINTS (b)
8761 {
8762 if (b->type == bp_dprintf)
8763 update_dprintf_command_list (b);
8764 }
8765 }
8766
8767 /* Create a breakpoint with SAL as location. Use LOCATION
8768 as a description of the location, and COND_STRING
8769 as condition expression. If LOCATION is NULL then create an
8770 "address location" from the address in the SAL. */
8771
8772 static void
8773 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8774 gdb::array_view<const symtab_and_line> sals,
8775 event_location_up &&location,
8776 gdb::unique_xmalloc_ptr<char> filter,
8777 gdb::unique_xmalloc_ptr<char> cond_string,
8778 gdb::unique_xmalloc_ptr<char> extra_string,
8779 enum bptype type, enum bpdisp disposition,
8780 int thread, int task, int ignore_count,
8781 const struct breakpoint_ops *ops, int from_tty,
8782 int enabled, int internal, unsigned flags,
8783 int display_canonical)
8784 {
8785 int i;
8786
8787 if (type == bp_hardware_breakpoint)
8788 {
8789 int target_resources_ok;
8790
8791 i = hw_breakpoint_used_count ();
8792 target_resources_ok =
8793 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8794 i + 1, 0);
8795 if (target_resources_ok == 0)
8796 error (_("No hardware breakpoint support in the target."));
8797 else if (target_resources_ok < 0)
8798 error (_("Hardware breakpoints used exceeds limit."));
8799 }
8800
8801 gdb_assert (!sals.empty ());
8802
8803 for (const auto &sal : sals)
8804 {
8805 struct bp_location *loc;
8806
8807 if (from_tty)
8808 {
8809 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8810 if (!loc_gdbarch)
8811 loc_gdbarch = gdbarch;
8812
8813 describe_other_breakpoints (loc_gdbarch,
8814 sal.pspace, sal.pc, sal.section, thread);
8815 }
8816
8817 if (&sal == &sals[0])
8818 {
8819 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8820 b->thread = thread;
8821 b->task = task;
8822
8823 b->cond_string = cond_string.release ();
8824 b->extra_string = extra_string.release ();
8825 b->ignore_count = ignore_count;
8826 b->enable_state = enabled ? bp_enabled : bp_disabled;
8827 b->disposition = disposition;
8828
8829 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8830 b->loc->inserted = 1;
8831
8832 if (type == bp_static_tracepoint)
8833 {
8834 struct tracepoint *t = (struct tracepoint *) b;
8835 struct static_tracepoint_marker marker;
8836
8837 if (strace_marker_p (b))
8838 {
8839 /* We already know the marker exists, otherwise, we
8840 wouldn't see a sal for it. */
8841 const char *p
8842 = &event_location_to_string (b->location.get ())[3];
8843 const char *endp;
8844
8845 p = skip_spaces (p);
8846
8847 endp = skip_to_space (p);
8848
8849 t->static_trace_marker_id.assign (p, endp - p);
8850
8851 printf_filtered (_("Probed static tracepoint "
8852 "marker \"%s\"\n"),
8853 t->static_trace_marker_id.c_str ());
8854 }
8855 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8856 {
8857 t->static_trace_marker_id = std::move (marker.str_id);
8858
8859 printf_filtered (_("Probed static tracepoint "
8860 "marker \"%s\"\n"),
8861 t->static_trace_marker_id.c_str ());
8862 }
8863 else
8864 warning (_("Couldn't determine the static "
8865 "tracepoint marker to probe"));
8866 }
8867
8868 loc = b->loc;
8869 }
8870 else
8871 {
8872 loc = add_location_to_breakpoint (b, &sal);
8873 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8874 loc->inserted = 1;
8875 }
8876
8877 if (b->cond_string)
8878 {
8879 const char *arg = b->cond_string;
8880
8881 loc->cond = parse_exp_1 (&arg, loc->address,
8882 block_for_pc (loc->address), 0);
8883 if (*arg)
8884 error (_("Garbage '%s' follows condition"), arg);
8885 }
8886
8887 /* Dynamic printf requires and uses additional arguments on the
8888 command line, otherwise it's an error. */
8889 if (type == bp_dprintf)
8890 {
8891 if (b->extra_string)
8892 update_dprintf_command_list (b);
8893 else
8894 error (_("Format string required"));
8895 }
8896 else if (b->extra_string)
8897 error (_("Garbage '%s' at end of command"), b->extra_string);
8898 }
8899
8900 b->display_canonical = display_canonical;
8901 if (location != NULL)
8902 b->location = std::move (location);
8903 else
8904 b->location = new_address_location (b->loc->address, NULL, 0);
8905 b->filter = filter.release ();
8906 }
8907
8908 static void
8909 create_breakpoint_sal (struct gdbarch *gdbarch,
8910 gdb::array_view<const symtab_and_line> sals,
8911 event_location_up &&location,
8912 gdb::unique_xmalloc_ptr<char> filter,
8913 gdb::unique_xmalloc_ptr<char> cond_string,
8914 gdb::unique_xmalloc_ptr<char> extra_string,
8915 enum bptype type, enum bpdisp disposition,
8916 int thread, int task, int ignore_count,
8917 const struct breakpoint_ops *ops, int from_tty,
8918 int enabled, int internal, unsigned flags,
8919 int display_canonical)
8920 {
8921 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8922
8923 init_breakpoint_sal (b.get (), gdbarch,
8924 sals, std::move (location),
8925 std::move (filter),
8926 std::move (cond_string),
8927 std::move (extra_string),
8928 type, disposition,
8929 thread, task, ignore_count,
8930 ops, from_tty,
8931 enabled, internal, flags,
8932 display_canonical);
8933
8934 install_breakpoint (internal, std::move (b), 0);
8935 }
8936
8937 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8938 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8939 value. COND_STRING, if not NULL, specified the condition to be
8940 used for all breakpoints. Essentially the only case where
8941 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8942 function. In that case, it's still not possible to specify
8943 separate conditions for different overloaded functions, so
8944 we take just a single condition string.
8945
8946 NOTE: If the function succeeds, the caller is expected to cleanup
8947 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8948 array contents). If the function fails (error() is called), the
8949 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8950 COND and SALS arrays and each of those arrays contents. */
8951
8952 static void
8953 create_breakpoints_sal (struct gdbarch *gdbarch,
8954 struct linespec_result *canonical,
8955 gdb::unique_xmalloc_ptr<char> cond_string,
8956 gdb::unique_xmalloc_ptr<char> extra_string,
8957 enum bptype type, enum bpdisp disposition,
8958 int thread, int task, int ignore_count,
8959 const struct breakpoint_ops *ops, int from_tty,
8960 int enabled, int internal, unsigned flags)
8961 {
8962 if (canonical->pre_expanded)
8963 gdb_assert (canonical->lsals.size () == 1);
8964
8965 for (const auto &lsal : canonical->lsals)
8966 {
8967 /* Note that 'location' can be NULL in the case of a plain
8968 'break', without arguments. */
8969 event_location_up location
8970 = (canonical->location != NULL
8971 ? copy_event_location (canonical->location.get ()) : NULL);
8972 gdb::unique_xmalloc_ptr<char> filter_string
8973 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8974
8975 create_breakpoint_sal (gdbarch, lsal.sals,
8976 std::move (location),
8977 std::move (filter_string),
8978 std::move (cond_string),
8979 std::move (extra_string),
8980 type, disposition,
8981 thread, task, ignore_count, ops,
8982 from_tty, enabled, internal, flags,
8983 canonical->special_display);
8984 }
8985 }
8986
8987 /* Parse LOCATION which is assumed to be a SAL specification possibly
8988 followed by conditionals. On return, SALS contains an array of SAL
8989 addresses found. LOCATION points to the end of the SAL (for
8990 linespec locations).
8991
8992 The array and the line spec strings are allocated on the heap, it is
8993 the caller's responsibility to free them. */
8994
8995 static void
8996 parse_breakpoint_sals (const struct event_location *location,
8997 struct linespec_result *canonical)
8998 {
8999 struct symtab_and_line cursal;
9000
9001 if (event_location_type (location) == LINESPEC_LOCATION)
9002 {
9003 const char *spec = get_linespec_location (location)->spec_string;
9004
9005 if (spec == NULL)
9006 {
9007 /* The last displayed codepoint, if it's valid, is our default
9008 breakpoint address. */
9009 if (last_displayed_sal_is_valid ())
9010 {
9011 /* Set sal's pspace, pc, symtab, and line to the values
9012 corresponding to the last call to print_frame_info.
9013 Be sure to reinitialize LINE with NOTCURRENT == 0
9014 as the breakpoint line number is inappropriate otherwise.
9015 find_pc_line would adjust PC, re-set it back. */
9016 symtab_and_line sal = get_last_displayed_sal ();
9017 CORE_ADDR pc = sal.pc;
9018
9019 sal = find_pc_line (pc, 0);
9020
9021 /* "break" without arguments is equivalent to "break *PC"
9022 where PC is the last displayed codepoint's address. So
9023 make sure to set sal.explicit_pc to prevent GDB from
9024 trying to expand the list of sals to include all other
9025 instances with the same symtab and line. */
9026 sal.pc = pc;
9027 sal.explicit_pc = 1;
9028
9029 struct linespec_sals lsal;
9030 lsal.sals = {sal};
9031 lsal.canonical = NULL;
9032
9033 canonical->lsals.push_back (std::move (lsal));
9034 return;
9035 }
9036 else
9037 error (_("No default breakpoint address now."));
9038 }
9039 }
9040
9041 /* Force almost all breakpoints to be in terms of the
9042 current_source_symtab (which is decode_line_1's default).
9043 This should produce the results we want almost all of the
9044 time while leaving default_breakpoint_* alone.
9045
9046 ObjC: However, don't match an Objective-C method name which
9047 may have a '+' or '-' succeeded by a '['. */
9048 cursal = get_current_source_symtab_and_line ();
9049 if (last_displayed_sal_is_valid ())
9050 {
9051 const char *spec = NULL;
9052
9053 if (event_location_type (location) == LINESPEC_LOCATION)
9054 spec = get_linespec_location (location)->spec_string;
9055
9056 if (!cursal.symtab
9057 || (spec != NULL
9058 && strchr ("+-", spec[0]) != NULL
9059 && spec[1] != '['))
9060 {
9061 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9062 get_last_displayed_symtab (),
9063 get_last_displayed_line (),
9064 canonical, NULL, NULL);
9065 return;
9066 }
9067 }
9068
9069 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9070 cursal.symtab, cursal.line, canonical, NULL, NULL);
9071 }
9072
9073
9074 /* Convert each SAL into a real PC. Verify that the PC can be
9075 inserted as a breakpoint. If it can't throw an error. */
9076
9077 static void
9078 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9079 {
9080 for (auto &sal : sals)
9081 resolve_sal_pc (&sal);
9082 }
9083
9084 /* Fast tracepoints may have restrictions on valid locations. For
9085 instance, a fast tracepoint using a jump instead of a trap will
9086 likely have to overwrite more bytes than a trap would, and so can
9087 only be placed where the instruction is longer than the jump, or a
9088 multi-instruction sequence does not have a jump into the middle of
9089 it, etc. */
9090
9091 static void
9092 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9093 gdb::array_view<const symtab_and_line> sals)
9094 {
9095 for (const auto &sal : sals)
9096 {
9097 struct gdbarch *sarch;
9098
9099 sarch = get_sal_arch (sal);
9100 /* We fall back to GDBARCH if there is no architecture
9101 associated with SAL. */
9102 if (sarch == NULL)
9103 sarch = gdbarch;
9104 std::string msg;
9105 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9106 error (_("May not have a fast tracepoint at %s%s"),
9107 paddress (sarch, sal.pc), msg.c_str ());
9108 }
9109 }
9110
9111 /* Given TOK, a string specification of condition and thread, as
9112 accepted by the 'break' command, extract the condition
9113 string and thread number and set *COND_STRING and *THREAD.
9114 PC identifies the context at which the condition should be parsed.
9115 If no condition is found, *COND_STRING is set to NULL.
9116 If no thread is found, *THREAD is set to -1. */
9117
9118 static void
9119 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9120 char **cond_string, int *thread, int *task,
9121 char **rest)
9122 {
9123 *cond_string = NULL;
9124 *thread = -1;
9125 *task = 0;
9126 *rest = NULL;
9127
9128 while (tok && *tok)
9129 {
9130 const char *end_tok;
9131 int toklen;
9132 const char *cond_start = NULL;
9133 const char *cond_end = NULL;
9134
9135 tok = skip_spaces (tok);
9136
9137 if ((*tok == '"' || *tok == ',') && rest)
9138 {
9139 *rest = savestring (tok, strlen (tok));
9140 return;
9141 }
9142
9143 end_tok = skip_to_space (tok);
9144
9145 toklen = end_tok - tok;
9146
9147 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9148 {
9149 tok = cond_start = end_tok + 1;
9150 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9151 cond_end = tok;
9152 *cond_string = savestring (cond_start, cond_end - cond_start);
9153 }
9154 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9155 {
9156 const char *tmptok;
9157 struct thread_info *thr;
9158
9159 tok = end_tok + 1;
9160 thr = parse_thread_id (tok, &tmptok);
9161 if (tok == tmptok)
9162 error (_("Junk after thread keyword."));
9163 *thread = thr->global_num;
9164 tok = tmptok;
9165 }
9166 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9167 {
9168 char *tmptok;
9169
9170 tok = end_tok + 1;
9171 *task = strtol (tok, &tmptok, 0);
9172 if (tok == tmptok)
9173 error (_("Junk after task keyword."));
9174 if (!valid_task_id (*task))
9175 error (_("Unknown task %d."), *task);
9176 tok = tmptok;
9177 }
9178 else if (rest)
9179 {
9180 *rest = savestring (tok, strlen (tok));
9181 return;
9182 }
9183 else
9184 error (_("Junk at end of arguments."));
9185 }
9186 }
9187
9188 /* Decode a static tracepoint marker spec. */
9189
9190 static std::vector<symtab_and_line>
9191 decode_static_tracepoint_spec (const char **arg_p)
9192 {
9193 const char *p = &(*arg_p)[3];
9194 const char *endp;
9195
9196 p = skip_spaces (p);
9197
9198 endp = skip_to_space (p);
9199
9200 std::string marker_str (p, endp - p);
9201
9202 std::vector<static_tracepoint_marker> markers
9203 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9204 if (markers.empty ())
9205 error (_("No known static tracepoint marker named %s"),
9206 marker_str.c_str ());
9207
9208 std::vector<symtab_and_line> sals;
9209 sals.reserve (markers.size ());
9210
9211 for (const static_tracepoint_marker &marker : markers)
9212 {
9213 symtab_and_line sal = find_pc_line (marker.address, 0);
9214 sal.pc = marker.address;
9215 sals.push_back (sal);
9216 }
9217
9218 *arg_p = endp;
9219 return sals;
9220 }
9221
9222 /* See breakpoint.h. */
9223
9224 int
9225 create_breakpoint (struct gdbarch *gdbarch,
9226 const struct event_location *location,
9227 const char *cond_string,
9228 int thread, const char *extra_string,
9229 int parse_extra,
9230 int tempflag, enum bptype type_wanted,
9231 int ignore_count,
9232 enum auto_boolean pending_break_support,
9233 const struct breakpoint_ops *ops,
9234 int from_tty, int enabled, int internal,
9235 unsigned flags)
9236 {
9237 struct linespec_result canonical;
9238 int pending = 0;
9239 int task = 0;
9240 int prev_bkpt_count = breakpoint_count;
9241
9242 gdb_assert (ops != NULL);
9243
9244 /* If extra_string isn't useful, set it to NULL. */
9245 if (extra_string != NULL && *extra_string == '\0')
9246 extra_string = NULL;
9247
9248 TRY
9249 {
9250 ops->create_sals_from_location (location, &canonical, type_wanted);
9251 }
9252 CATCH (e, RETURN_MASK_ERROR)
9253 {
9254 /* If caller is interested in rc value from parse, set
9255 value. */
9256 if (e.error == NOT_FOUND_ERROR)
9257 {
9258 /* If pending breakpoint support is turned off, throw
9259 error. */
9260
9261 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9262 throw_exception (e);
9263
9264 exception_print (gdb_stderr, e);
9265
9266 /* If pending breakpoint support is auto query and the user
9267 selects no, then simply return the error code. */
9268 if (pending_break_support == AUTO_BOOLEAN_AUTO
9269 && !nquery (_("Make %s pending on future shared library load? "),
9270 bptype_string (type_wanted)))
9271 return 0;
9272
9273 /* At this point, either the user was queried about setting
9274 a pending breakpoint and selected yes, or pending
9275 breakpoint behavior is on and thus a pending breakpoint
9276 is defaulted on behalf of the user. */
9277 pending = 1;
9278 }
9279 else
9280 throw_exception (e);
9281 }
9282 END_CATCH
9283
9284 if (!pending && canonical.lsals.empty ())
9285 return 0;
9286
9287 /* Resolve all line numbers to PC's and verify that the addresses
9288 are ok for the target. */
9289 if (!pending)
9290 {
9291 for (auto &lsal : canonical.lsals)
9292 breakpoint_sals_to_pc (lsal.sals);
9293 }
9294
9295 /* Fast tracepoints may have additional restrictions on location. */
9296 if (!pending && type_wanted == bp_fast_tracepoint)
9297 {
9298 for (const auto &lsal : canonical.lsals)
9299 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9300 }
9301
9302 /* Verify that condition can be parsed, before setting any
9303 breakpoints. Allocate a separate condition expression for each
9304 breakpoint. */
9305 if (!pending)
9306 {
9307 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9308 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9309
9310 if (parse_extra)
9311 {
9312 char *rest;
9313 char *cond;
9314
9315 const linespec_sals &lsal = canonical.lsals[0];
9316
9317 /* Here we only parse 'arg' to separate condition
9318 from thread number, so parsing in context of first
9319 sal is OK. When setting the breakpoint we'll
9320 re-parse it in context of each sal. */
9321
9322 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9323 &cond, &thread, &task, &rest);
9324 cond_string_copy.reset (cond);
9325 extra_string_copy.reset (rest);
9326 }
9327 else
9328 {
9329 if (type_wanted != bp_dprintf
9330 && extra_string != NULL && *extra_string != '\0')
9331 error (_("Garbage '%s' at end of location"), extra_string);
9332
9333 /* Create a private copy of condition string. */
9334 if (cond_string)
9335 cond_string_copy.reset (xstrdup (cond_string));
9336 /* Create a private copy of any extra string. */
9337 if (extra_string)
9338 extra_string_copy.reset (xstrdup (extra_string));
9339 }
9340
9341 ops->create_breakpoints_sal (gdbarch, &canonical,
9342 std::move (cond_string_copy),
9343 std::move (extra_string_copy),
9344 type_wanted,
9345 tempflag ? disp_del : disp_donttouch,
9346 thread, task, ignore_count, ops,
9347 from_tty, enabled, internal, flags);
9348 }
9349 else
9350 {
9351 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9352
9353 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9354 b->location = copy_event_location (location);
9355
9356 if (parse_extra)
9357 b->cond_string = NULL;
9358 else
9359 {
9360 /* Create a private copy of condition string. */
9361 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9362 b->thread = thread;
9363 }
9364
9365 /* Create a private copy of any extra string. */
9366 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9367 b->ignore_count = ignore_count;
9368 b->disposition = tempflag ? disp_del : disp_donttouch;
9369 b->condition_not_parsed = 1;
9370 b->enable_state = enabled ? bp_enabled : bp_disabled;
9371 if ((type_wanted != bp_breakpoint
9372 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9373 b->pspace = current_program_space;
9374
9375 install_breakpoint (internal, std::move (b), 0);
9376 }
9377
9378 if (canonical.lsals.size () > 1)
9379 {
9380 warning (_("Multiple breakpoints were set.\nUse the "
9381 "\"delete\" command to delete unwanted breakpoints."));
9382 prev_breakpoint_count = prev_bkpt_count;
9383 }
9384
9385 update_global_location_list (UGLL_MAY_INSERT);
9386
9387 return 1;
9388 }
9389
9390 /* Set a breakpoint.
9391 ARG is a string describing breakpoint address,
9392 condition, and thread.
9393 FLAG specifies if a breakpoint is hardware on,
9394 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9395 and BP_TEMPFLAG. */
9396
9397 static void
9398 break_command_1 (const char *arg, int flag, int from_tty)
9399 {
9400 int tempflag = flag & BP_TEMPFLAG;
9401 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9402 ? bp_hardware_breakpoint
9403 : bp_breakpoint);
9404 struct breakpoint_ops *ops;
9405
9406 event_location_up location = string_to_event_location (&arg, current_language);
9407
9408 /* Matching breakpoints on probes. */
9409 if (location != NULL
9410 && event_location_type (location.get ()) == PROBE_LOCATION)
9411 ops = &bkpt_probe_breakpoint_ops;
9412 else
9413 ops = &bkpt_breakpoint_ops;
9414
9415 create_breakpoint (get_current_arch (),
9416 location.get (),
9417 NULL, 0, arg, 1 /* parse arg */,
9418 tempflag, type_wanted,
9419 0 /* Ignore count */,
9420 pending_break_support,
9421 ops,
9422 from_tty,
9423 1 /* enabled */,
9424 0 /* internal */,
9425 0);
9426 }
9427
9428 /* Helper function for break_command_1 and disassemble_command. */
9429
9430 void
9431 resolve_sal_pc (struct symtab_and_line *sal)
9432 {
9433 CORE_ADDR pc;
9434
9435 if (sal->pc == 0 && sal->symtab != NULL)
9436 {
9437 if (!find_line_pc (sal->symtab, sal->line, &pc))
9438 error (_("No line %d in file \"%s\"."),
9439 sal->line, symtab_to_filename_for_display (sal->symtab));
9440 sal->pc = pc;
9441
9442 /* If this SAL corresponds to a breakpoint inserted using a line
9443 number, then skip the function prologue if necessary. */
9444 if (sal->explicit_line)
9445 skip_prologue_sal (sal);
9446 }
9447
9448 if (sal->section == 0 && sal->symtab != NULL)
9449 {
9450 const struct blockvector *bv;
9451 const struct block *b;
9452 struct symbol *sym;
9453
9454 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9455 SYMTAB_COMPUNIT (sal->symtab));
9456 if (bv != NULL)
9457 {
9458 sym = block_linkage_function (b);
9459 if (sym != NULL)
9460 {
9461 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9462 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9463 sym);
9464 }
9465 else
9466 {
9467 /* It really is worthwhile to have the section, so we'll
9468 just have to look harder. This case can be executed
9469 if we have line numbers but no functions (as can
9470 happen in assembly source). */
9471
9472 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9473 switch_to_program_space_and_thread (sal->pspace);
9474
9475 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9476 if (msym.minsym)
9477 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9478 }
9479 }
9480 }
9481 }
9482
9483 void
9484 break_command (const char *arg, int from_tty)
9485 {
9486 break_command_1 (arg, 0, from_tty);
9487 }
9488
9489 void
9490 tbreak_command (const char *arg, int from_tty)
9491 {
9492 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9493 }
9494
9495 static void
9496 hbreak_command (const char *arg, int from_tty)
9497 {
9498 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9499 }
9500
9501 static void
9502 thbreak_command (const char *arg, int from_tty)
9503 {
9504 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9505 }
9506
9507 static void
9508 stop_command (const char *arg, int from_tty)
9509 {
9510 printf_filtered (_("Specify the type of breakpoint to set.\n\
9511 Usage: stop in <function | address>\n\
9512 stop at <line>\n"));
9513 }
9514
9515 static void
9516 stopin_command (const char *arg, int from_tty)
9517 {
9518 int badInput = 0;
9519
9520 if (arg == (char *) NULL)
9521 badInput = 1;
9522 else if (*arg != '*')
9523 {
9524 const char *argptr = arg;
9525 int hasColon = 0;
9526
9527 /* Look for a ':'. If this is a line number specification, then
9528 say it is bad, otherwise, it should be an address or
9529 function/method name. */
9530 while (*argptr && !hasColon)
9531 {
9532 hasColon = (*argptr == ':');
9533 argptr++;
9534 }
9535
9536 if (hasColon)
9537 badInput = (*argptr != ':'); /* Not a class::method */
9538 else
9539 badInput = isdigit (*arg); /* a simple line number */
9540 }
9541
9542 if (badInput)
9543 printf_filtered (_("Usage: stop in <function | address>\n"));
9544 else
9545 break_command_1 (arg, 0, from_tty);
9546 }
9547
9548 static void
9549 stopat_command (const char *arg, int from_tty)
9550 {
9551 int badInput = 0;
9552
9553 if (arg == (char *) NULL || *arg == '*') /* no line number */
9554 badInput = 1;
9555 else
9556 {
9557 const char *argptr = arg;
9558 int hasColon = 0;
9559
9560 /* Look for a ':'. If there is a '::' then get out, otherwise
9561 it is probably a line number. */
9562 while (*argptr && !hasColon)
9563 {
9564 hasColon = (*argptr == ':');
9565 argptr++;
9566 }
9567
9568 if (hasColon)
9569 badInput = (*argptr == ':'); /* we have class::method */
9570 else
9571 badInput = !isdigit (*arg); /* not a line number */
9572 }
9573
9574 if (badInput)
9575 printf_filtered (_("Usage: stop at LINE\n"));
9576 else
9577 break_command_1 (arg, 0, from_tty);
9578 }
9579
9580 /* The dynamic printf command is mostly like a regular breakpoint, but
9581 with a prewired command list consisting of a single output command,
9582 built from extra arguments supplied on the dprintf command
9583 line. */
9584
9585 static void
9586 dprintf_command (const char *arg, int from_tty)
9587 {
9588 event_location_up location = string_to_event_location (&arg, current_language);
9589
9590 /* If non-NULL, ARG should have been advanced past the location;
9591 the next character must be ','. */
9592 if (arg != NULL)
9593 {
9594 if (arg[0] != ',' || arg[1] == '\0')
9595 error (_("Format string required"));
9596 else
9597 {
9598 /* Skip the comma. */
9599 ++arg;
9600 }
9601 }
9602
9603 create_breakpoint (get_current_arch (),
9604 location.get (),
9605 NULL, 0, arg, 1 /* parse arg */,
9606 0, bp_dprintf,
9607 0 /* Ignore count */,
9608 pending_break_support,
9609 &dprintf_breakpoint_ops,
9610 from_tty,
9611 1 /* enabled */,
9612 0 /* internal */,
9613 0);
9614 }
9615
9616 static void
9617 agent_printf_command (const char *arg, int from_tty)
9618 {
9619 error (_("May only run agent-printf on the target"));
9620 }
9621
9622 /* Implement the "breakpoint_hit" breakpoint_ops method for
9623 ranged breakpoints. */
9624
9625 static int
9626 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9627 const address_space *aspace,
9628 CORE_ADDR bp_addr,
9629 const struct target_waitstatus *ws)
9630 {
9631 if (ws->kind != TARGET_WAITKIND_STOPPED
9632 || ws->value.sig != GDB_SIGNAL_TRAP)
9633 return 0;
9634
9635 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9636 bl->length, aspace, bp_addr);
9637 }
9638
9639 /* Implement the "resources_needed" breakpoint_ops method for
9640 ranged breakpoints. */
9641
9642 static int
9643 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9644 {
9645 return target_ranged_break_num_registers ();
9646 }
9647
9648 /* Implement the "print_it" breakpoint_ops method for
9649 ranged breakpoints. */
9650
9651 static enum print_stop_action
9652 print_it_ranged_breakpoint (bpstat bs)
9653 {
9654 struct breakpoint *b = bs->breakpoint_at;
9655 struct bp_location *bl = b->loc;
9656 struct ui_out *uiout = current_uiout;
9657
9658 gdb_assert (b->type == bp_hardware_breakpoint);
9659
9660 /* Ranged breakpoints have only one location. */
9661 gdb_assert (bl && bl->next == NULL);
9662
9663 annotate_breakpoint (b->number);
9664
9665 maybe_print_thread_hit_breakpoint (uiout);
9666
9667 if (b->disposition == disp_del)
9668 uiout->text ("Temporary ranged breakpoint ");
9669 else
9670 uiout->text ("Ranged breakpoint ");
9671 if (uiout->is_mi_like_p ())
9672 {
9673 uiout->field_string ("reason",
9674 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9675 uiout->field_string ("disp", bpdisp_text (b->disposition));
9676 }
9677 uiout->field_int ("bkptno", b->number);
9678 uiout->text (", ");
9679
9680 return PRINT_SRC_AND_LOC;
9681 }
9682
9683 /* Implement the "print_one" breakpoint_ops method for
9684 ranged breakpoints. */
9685
9686 static void
9687 print_one_ranged_breakpoint (struct breakpoint *b,
9688 struct bp_location **last_loc)
9689 {
9690 struct bp_location *bl = b->loc;
9691 struct value_print_options opts;
9692 struct ui_out *uiout = current_uiout;
9693
9694 /* Ranged breakpoints have only one location. */
9695 gdb_assert (bl && bl->next == NULL);
9696
9697 get_user_print_options (&opts);
9698
9699 if (opts.addressprint)
9700 /* We don't print the address range here, it will be printed later
9701 by print_one_detail_ranged_breakpoint. */
9702 uiout->field_skip ("addr");
9703 annotate_field (5);
9704 print_breakpoint_location (b, bl);
9705 *last_loc = bl;
9706 }
9707
9708 /* Implement the "print_one_detail" breakpoint_ops method for
9709 ranged breakpoints. */
9710
9711 static void
9712 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9713 struct ui_out *uiout)
9714 {
9715 CORE_ADDR address_start, address_end;
9716 struct bp_location *bl = b->loc;
9717 string_file stb;
9718
9719 gdb_assert (bl);
9720
9721 address_start = bl->address;
9722 address_end = address_start + bl->length - 1;
9723
9724 uiout->text ("\taddress range: ");
9725 stb.printf ("[%s, %s]",
9726 print_core_address (bl->gdbarch, address_start),
9727 print_core_address (bl->gdbarch, address_end));
9728 uiout->field_stream ("addr", stb);
9729 uiout->text ("\n");
9730 }
9731
9732 /* Implement the "print_mention" breakpoint_ops method for
9733 ranged breakpoints. */
9734
9735 static void
9736 print_mention_ranged_breakpoint (struct breakpoint *b)
9737 {
9738 struct bp_location *bl = b->loc;
9739 struct ui_out *uiout = current_uiout;
9740
9741 gdb_assert (bl);
9742 gdb_assert (b->type == bp_hardware_breakpoint);
9743
9744 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9745 b->number, paddress (bl->gdbarch, bl->address),
9746 paddress (bl->gdbarch, bl->address + bl->length - 1));
9747 }
9748
9749 /* Implement the "print_recreate" breakpoint_ops method for
9750 ranged breakpoints. */
9751
9752 static void
9753 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9754 {
9755 fprintf_unfiltered (fp, "break-range %s, %s",
9756 event_location_to_string (b->location.get ()),
9757 event_location_to_string (b->location_range_end.get ()));
9758 print_recreate_thread (b, fp);
9759 }
9760
9761 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9762
9763 static struct breakpoint_ops ranged_breakpoint_ops;
9764
9765 /* Find the address where the end of the breakpoint range should be
9766 placed, given the SAL of the end of the range. This is so that if
9767 the user provides a line number, the end of the range is set to the
9768 last instruction of the given line. */
9769
9770 static CORE_ADDR
9771 find_breakpoint_range_end (struct symtab_and_line sal)
9772 {
9773 CORE_ADDR end;
9774
9775 /* If the user provided a PC value, use it. Otherwise,
9776 find the address of the end of the given location. */
9777 if (sal.explicit_pc)
9778 end = sal.pc;
9779 else
9780 {
9781 int ret;
9782 CORE_ADDR start;
9783
9784 ret = find_line_pc_range (sal, &start, &end);
9785 if (!ret)
9786 error (_("Could not find location of the end of the range."));
9787
9788 /* find_line_pc_range returns the start of the next line. */
9789 end--;
9790 }
9791
9792 return end;
9793 }
9794
9795 /* Implement the "break-range" CLI command. */
9796
9797 static void
9798 break_range_command (const char *arg, int from_tty)
9799 {
9800 const char *arg_start;
9801 struct linespec_result canonical_start, canonical_end;
9802 int bp_count, can_use_bp, length;
9803 CORE_ADDR end;
9804 struct breakpoint *b;
9805
9806 /* We don't support software ranged breakpoints. */
9807 if (target_ranged_break_num_registers () < 0)
9808 error (_("This target does not support hardware ranged breakpoints."));
9809
9810 bp_count = hw_breakpoint_used_count ();
9811 bp_count += target_ranged_break_num_registers ();
9812 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9813 bp_count, 0);
9814 if (can_use_bp < 0)
9815 error (_("Hardware breakpoints used exceeds limit."));
9816
9817 arg = skip_spaces (arg);
9818 if (arg == NULL || arg[0] == '\0')
9819 error(_("No address range specified."));
9820
9821 arg_start = arg;
9822 event_location_up start_location = string_to_event_location (&arg,
9823 current_language);
9824 parse_breakpoint_sals (start_location.get (), &canonical_start);
9825
9826 if (arg[0] != ',')
9827 error (_("Too few arguments."));
9828 else if (canonical_start.lsals.empty ())
9829 error (_("Could not find location of the beginning of the range."));
9830
9831 const linespec_sals &lsal_start = canonical_start.lsals[0];
9832
9833 if (canonical_start.lsals.size () > 1
9834 || lsal_start.sals.size () != 1)
9835 error (_("Cannot create a ranged breakpoint with multiple locations."));
9836
9837 const symtab_and_line &sal_start = lsal_start.sals[0];
9838 std::string addr_string_start (arg_start, arg - arg_start);
9839
9840 arg++; /* Skip the comma. */
9841 arg = skip_spaces (arg);
9842
9843 /* Parse the end location. */
9844
9845 arg_start = arg;
9846
9847 /* We call decode_line_full directly here instead of using
9848 parse_breakpoint_sals because we need to specify the start location's
9849 symtab and line as the default symtab and line for the end of the
9850 range. This makes it possible to have ranges like "foo.c:27, +14",
9851 where +14 means 14 lines from the start location. */
9852 event_location_up end_location = string_to_event_location (&arg,
9853 current_language);
9854 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9855 sal_start.symtab, sal_start.line,
9856 &canonical_end, NULL, NULL);
9857
9858 if (canonical_end.lsals.empty ())
9859 error (_("Could not find location of the end of the range."));
9860
9861 const linespec_sals &lsal_end = canonical_end.lsals[0];
9862 if (canonical_end.lsals.size () > 1
9863 || lsal_end.sals.size () != 1)
9864 error (_("Cannot create a ranged breakpoint with multiple locations."));
9865
9866 const symtab_and_line &sal_end = lsal_end.sals[0];
9867
9868 end = find_breakpoint_range_end (sal_end);
9869 if (sal_start.pc > end)
9870 error (_("Invalid address range, end precedes start."));
9871
9872 length = end - sal_start.pc + 1;
9873 if (length < 0)
9874 /* Length overflowed. */
9875 error (_("Address range too large."));
9876 else if (length == 1)
9877 {
9878 /* This range is simple enough to be handled by
9879 the `hbreak' command. */
9880 hbreak_command (&addr_string_start[0], 1);
9881
9882 return;
9883 }
9884
9885 /* Now set up the breakpoint. */
9886 b = set_raw_breakpoint (get_current_arch (), sal_start,
9887 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9888 set_breakpoint_count (breakpoint_count + 1);
9889 b->number = breakpoint_count;
9890 b->disposition = disp_donttouch;
9891 b->location = std::move (start_location);
9892 b->location_range_end = std::move (end_location);
9893 b->loc->length = length;
9894
9895 mention (b);
9896 gdb::observers::breakpoint_created.notify (b);
9897 update_global_location_list (UGLL_MAY_INSERT);
9898 }
9899
9900 /* Return non-zero if EXP is verified as constant. Returned zero
9901 means EXP is variable. Also the constant detection may fail for
9902 some constant expressions and in such case still falsely return
9903 zero. */
9904
9905 static int
9906 watchpoint_exp_is_const (const struct expression *exp)
9907 {
9908 int i = exp->nelts;
9909
9910 while (i > 0)
9911 {
9912 int oplenp, argsp;
9913
9914 /* We are only interested in the descriptor of each element. */
9915 operator_length (exp, i, &oplenp, &argsp);
9916 i -= oplenp;
9917
9918 switch (exp->elts[i].opcode)
9919 {
9920 case BINOP_ADD:
9921 case BINOP_SUB:
9922 case BINOP_MUL:
9923 case BINOP_DIV:
9924 case BINOP_REM:
9925 case BINOP_MOD:
9926 case BINOP_LSH:
9927 case BINOP_RSH:
9928 case BINOP_LOGICAL_AND:
9929 case BINOP_LOGICAL_OR:
9930 case BINOP_BITWISE_AND:
9931 case BINOP_BITWISE_IOR:
9932 case BINOP_BITWISE_XOR:
9933 case BINOP_EQUAL:
9934 case BINOP_NOTEQUAL:
9935 case BINOP_LESS:
9936 case BINOP_GTR:
9937 case BINOP_LEQ:
9938 case BINOP_GEQ:
9939 case BINOP_REPEAT:
9940 case BINOP_COMMA:
9941 case BINOP_EXP:
9942 case BINOP_MIN:
9943 case BINOP_MAX:
9944 case BINOP_INTDIV:
9945 case BINOP_CONCAT:
9946 case TERNOP_COND:
9947 case TERNOP_SLICE:
9948
9949 case OP_LONG:
9950 case OP_FLOAT:
9951 case OP_LAST:
9952 case OP_COMPLEX:
9953 case OP_STRING:
9954 case OP_ARRAY:
9955 case OP_TYPE:
9956 case OP_TYPEOF:
9957 case OP_DECLTYPE:
9958 case OP_TYPEID:
9959 case OP_NAME:
9960 case OP_OBJC_NSSTRING:
9961
9962 case UNOP_NEG:
9963 case UNOP_LOGICAL_NOT:
9964 case UNOP_COMPLEMENT:
9965 case UNOP_ADDR:
9966 case UNOP_HIGH:
9967 case UNOP_CAST:
9968
9969 case UNOP_CAST_TYPE:
9970 case UNOP_REINTERPRET_CAST:
9971 case UNOP_DYNAMIC_CAST:
9972 /* Unary, binary and ternary operators: We have to check
9973 their operands. If they are constant, then so is the
9974 result of that operation. For instance, if A and B are
9975 determined to be constants, then so is "A + B".
9976
9977 UNOP_IND is one exception to the rule above, because the
9978 value of *ADDR is not necessarily a constant, even when
9979 ADDR is. */
9980 break;
9981
9982 case OP_VAR_VALUE:
9983 /* Check whether the associated symbol is a constant.
9984
9985 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9986 possible that a buggy compiler could mark a variable as
9987 constant even when it is not, and TYPE_CONST would return
9988 true in this case, while SYMBOL_CLASS wouldn't.
9989
9990 We also have to check for function symbols because they
9991 are always constant. */
9992 {
9993 struct symbol *s = exp->elts[i + 2].symbol;
9994
9995 if (SYMBOL_CLASS (s) != LOC_BLOCK
9996 && SYMBOL_CLASS (s) != LOC_CONST
9997 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9998 return 0;
9999 break;
10000 }
10001
10002 /* The default action is to return 0 because we are using
10003 the optimistic approach here: If we don't know something,
10004 then it is not a constant. */
10005 default:
10006 return 0;
10007 }
10008 }
10009
10010 return 1;
10011 }
10012
10013 /* Watchpoint destructor. */
10014
10015 watchpoint::~watchpoint ()
10016 {
10017 xfree (this->exp_string);
10018 xfree (this->exp_string_reparse);
10019 }
10020
10021 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10022
10023 static void
10024 re_set_watchpoint (struct breakpoint *b)
10025 {
10026 struct watchpoint *w = (struct watchpoint *) b;
10027
10028 /* Watchpoint can be either on expression using entirely global
10029 variables, or it can be on local variables.
10030
10031 Watchpoints of the first kind are never auto-deleted, and even
10032 persist across program restarts. Since they can use variables
10033 from shared libraries, we need to reparse expression as libraries
10034 are loaded and unloaded.
10035
10036 Watchpoints on local variables can also change meaning as result
10037 of solib event. For example, if a watchpoint uses both a local
10038 and a global variables in expression, it's a local watchpoint,
10039 but unloading of a shared library will make the expression
10040 invalid. This is not a very common use case, but we still
10041 re-evaluate expression, to avoid surprises to the user.
10042
10043 Note that for local watchpoints, we re-evaluate it only if
10044 watchpoints frame id is still valid. If it's not, it means the
10045 watchpoint is out of scope and will be deleted soon. In fact,
10046 I'm not sure we'll ever be called in this case.
10047
10048 If a local watchpoint's frame id is still valid, then
10049 w->exp_valid_block is likewise valid, and we can safely use it.
10050
10051 Don't do anything about disabled watchpoints, since they will be
10052 reevaluated again when enabled. */
10053 update_watchpoint (w, 1 /* reparse */);
10054 }
10055
10056 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10057
10058 static int
10059 insert_watchpoint (struct bp_location *bl)
10060 {
10061 struct watchpoint *w = (struct watchpoint *) bl->owner;
10062 int length = w->exact ? 1 : bl->length;
10063
10064 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10065 w->cond_exp.get ());
10066 }
10067
10068 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10069
10070 static int
10071 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10072 {
10073 struct watchpoint *w = (struct watchpoint *) bl->owner;
10074 int length = w->exact ? 1 : bl->length;
10075
10076 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10077 w->cond_exp.get ());
10078 }
10079
10080 static int
10081 breakpoint_hit_watchpoint (const struct bp_location *bl,
10082 const address_space *aspace, CORE_ADDR bp_addr,
10083 const struct target_waitstatus *ws)
10084 {
10085 struct breakpoint *b = bl->owner;
10086 struct watchpoint *w = (struct watchpoint *) b;
10087
10088 /* Continuable hardware watchpoints are treated as non-existent if the
10089 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10090 some data address). Otherwise gdb won't stop on a break instruction
10091 in the code (not from a breakpoint) when a hardware watchpoint has
10092 been defined. Also skip watchpoints which we know did not trigger
10093 (did not match the data address). */
10094 if (is_hardware_watchpoint (b)
10095 && w->watchpoint_triggered == watch_triggered_no)
10096 return 0;
10097
10098 return 1;
10099 }
10100
10101 static void
10102 check_status_watchpoint (bpstat bs)
10103 {
10104 gdb_assert (is_watchpoint (bs->breakpoint_at));
10105
10106 bpstat_check_watchpoint (bs);
10107 }
10108
10109 /* Implement the "resources_needed" breakpoint_ops method for
10110 hardware watchpoints. */
10111
10112 static int
10113 resources_needed_watchpoint (const struct bp_location *bl)
10114 {
10115 struct watchpoint *w = (struct watchpoint *) bl->owner;
10116 int length = w->exact? 1 : bl->length;
10117
10118 return target_region_ok_for_hw_watchpoint (bl->address, length);
10119 }
10120
10121 /* Implement the "works_in_software_mode" breakpoint_ops method for
10122 hardware watchpoints. */
10123
10124 static int
10125 works_in_software_mode_watchpoint (const struct breakpoint *b)
10126 {
10127 /* Read and access watchpoints only work with hardware support. */
10128 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10129 }
10130
10131 static enum print_stop_action
10132 print_it_watchpoint (bpstat bs)
10133 {
10134 struct breakpoint *b;
10135 enum print_stop_action result;
10136 struct watchpoint *w;
10137 struct ui_out *uiout = current_uiout;
10138
10139 gdb_assert (bs->bp_location_at != NULL);
10140
10141 b = bs->breakpoint_at;
10142 w = (struct watchpoint *) b;
10143
10144 annotate_watchpoint (b->number);
10145 maybe_print_thread_hit_breakpoint (uiout);
10146
10147 string_file stb;
10148
10149 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10150 switch (b->type)
10151 {
10152 case bp_watchpoint:
10153 case bp_hardware_watchpoint:
10154 if (uiout->is_mi_like_p ())
10155 uiout->field_string
10156 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10157 mention (b);
10158 tuple_emitter.emplace (uiout, "value");
10159 uiout->text ("\nOld value = ");
10160 watchpoint_value_print (bs->old_val.get (), &stb);
10161 uiout->field_stream ("old", stb);
10162 uiout->text ("\nNew value = ");
10163 watchpoint_value_print (w->val.get (), &stb);
10164 uiout->field_stream ("new", stb);
10165 uiout->text ("\n");
10166 /* More than one watchpoint may have been triggered. */
10167 result = PRINT_UNKNOWN;
10168 break;
10169
10170 case bp_read_watchpoint:
10171 if (uiout->is_mi_like_p ())
10172 uiout->field_string
10173 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10174 mention (b);
10175 tuple_emitter.emplace (uiout, "value");
10176 uiout->text ("\nValue = ");
10177 watchpoint_value_print (w->val.get (), &stb);
10178 uiout->field_stream ("value", stb);
10179 uiout->text ("\n");
10180 result = PRINT_UNKNOWN;
10181 break;
10182
10183 case bp_access_watchpoint:
10184 if (bs->old_val != NULL)
10185 {
10186 if (uiout->is_mi_like_p ())
10187 uiout->field_string
10188 ("reason",
10189 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10190 mention (b);
10191 tuple_emitter.emplace (uiout, "value");
10192 uiout->text ("\nOld value = ");
10193 watchpoint_value_print (bs->old_val.get (), &stb);
10194 uiout->field_stream ("old", stb);
10195 uiout->text ("\nNew value = ");
10196 }
10197 else
10198 {
10199 mention (b);
10200 if (uiout->is_mi_like_p ())
10201 uiout->field_string
10202 ("reason",
10203 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10204 tuple_emitter.emplace (uiout, "value");
10205 uiout->text ("\nValue = ");
10206 }
10207 watchpoint_value_print (w->val.get (), &stb);
10208 uiout->field_stream ("new", stb);
10209 uiout->text ("\n");
10210 result = PRINT_UNKNOWN;
10211 break;
10212 default:
10213 result = PRINT_UNKNOWN;
10214 }
10215
10216 return result;
10217 }
10218
10219 /* Implement the "print_mention" breakpoint_ops method for hardware
10220 watchpoints. */
10221
10222 static void
10223 print_mention_watchpoint (struct breakpoint *b)
10224 {
10225 struct watchpoint *w = (struct watchpoint *) b;
10226 struct ui_out *uiout = current_uiout;
10227 const char *tuple_name;
10228
10229 switch (b->type)
10230 {
10231 case bp_watchpoint:
10232 uiout->text ("Watchpoint ");
10233 tuple_name = "wpt";
10234 break;
10235 case bp_hardware_watchpoint:
10236 uiout->text ("Hardware watchpoint ");
10237 tuple_name = "wpt";
10238 break;
10239 case bp_read_watchpoint:
10240 uiout->text ("Hardware read watchpoint ");
10241 tuple_name = "hw-rwpt";
10242 break;
10243 case bp_access_watchpoint:
10244 uiout->text ("Hardware access (read/write) watchpoint ");
10245 tuple_name = "hw-awpt";
10246 break;
10247 default:
10248 internal_error (__FILE__, __LINE__,
10249 _("Invalid hardware watchpoint type."));
10250 }
10251
10252 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10253 uiout->field_int ("number", b->number);
10254 uiout->text (": ");
10255 uiout->field_string ("exp", w->exp_string);
10256 }
10257
10258 /* Implement the "print_recreate" breakpoint_ops method for
10259 watchpoints. */
10260
10261 static void
10262 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10263 {
10264 struct watchpoint *w = (struct watchpoint *) b;
10265
10266 switch (b->type)
10267 {
10268 case bp_watchpoint:
10269 case bp_hardware_watchpoint:
10270 fprintf_unfiltered (fp, "watch");
10271 break;
10272 case bp_read_watchpoint:
10273 fprintf_unfiltered (fp, "rwatch");
10274 break;
10275 case bp_access_watchpoint:
10276 fprintf_unfiltered (fp, "awatch");
10277 break;
10278 default:
10279 internal_error (__FILE__, __LINE__,
10280 _("Invalid watchpoint type."));
10281 }
10282
10283 fprintf_unfiltered (fp, " %s", w->exp_string);
10284 print_recreate_thread (b, fp);
10285 }
10286
10287 /* Implement the "explains_signal" breakpoint_ops method for
10288 watchpoints. */
10289
10290 static int
10291 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10292 {
10293 /* A software watchpoint cannot cause a signal other than
10294 GDB_SIGNAL_TRAP. */
10295 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10296 return 0;
10297
10298 return 1;
10299 }
10300
10301 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10302
10303 static struct breakpoint_ops watchpoint_breakpoint_ops;
10304
10305 /* Implement the "insert" breakpoint_ops method for
10306 masked hardware watchpoints. */
10307
10308 static int
10309 insert_masked_watchpoint (struct bp_location *bl)
10310 {
10311 struct watchpoint *w = (struct watchpoint *) bl->owner;
10312
10313 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10314 bl->watchpoint_type);
10315 }
10316
10317 /* Implement the "remove" breakpoint_ops method for
10318 masked hardware watchpoints. */
10319
10320 static int
10321 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10322 {
10323 struct watchpoint *w = (struct watchpoint *) bl->owner;
10324
10325 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10326 bl->watchpoint_type);
10327 }
10328
10329 /* Implement the "resources_needed" breakpoint_ops method for
10330 masked hardware watchpoints. */
10331
10332 static int
10333 resources_needed_masked_watchpoint (const struct bp_location *bl)
10334 {
10335 struct watchpoint *w = (struct watchpoint *) bl->owner;
10336
10337 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10338 }
10339
10340 /* Implement the "works_in_software_mode" breakpoint_ops method for
10341 masked hardware watchpoints. */
10342
10343 static int
10344 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10345 {
10346 return 0;
10347 }
10348
10349 /* Implement the "print_it" breakpoint_ops method for
10350 masked hardware watchpoints. */
10351
10352 static enum print_stop_action
10353 print_it_masked_watchpoint (bpstat bs)
10354 {
10355 struct breakpoint *b = bs->breakpoint_at;
10356 struct ui_out *uiout = current_uiout;
10357
10358 /* Masked watchpoints have only one location. */
10359 gdb_assert (b->loc && b->loc->next == NULL);
10360
10361 annotate_watchpoint (b->number);
10362 maybe_print_thread_hit_breakpoint (uiout);
10363
10364 switch (b->type)
10365 {
10366 case bp_hardware_watchpoint:
10367 if (uiout->is_mi_like_p ())
10368 uiout->field_string
10369 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10370 break;
10371
10372 case bp_read_watchpoint:
10373 if (uiout->is_mi_like_p ())
10374 uiout->field_string
10375 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10376 break;
10377
10378 case bp_access_watchpoint:
10379 if (uiout->is_mi_like_p ())
10380 uiout->field_string
10381 ("reason",
10382 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10383 break;
10384 default:
10385 internal_error (__FILE__, __LINE__,
10386 _("Invalid hardware watchpoint type."));
10387 }
10388
10389 mention (b);
10390 uiout->text (_("\n\
10391 Check the underlying instruction at PC for the memory\n\
10392 address and value which triggered this watchpoint.\n"));
10393 uiout->text ("\n");
10394
10395 /* More than one watchpoint may have been triggered. */
10396 return PRINT_UNKNOWN;
10397 }
10398
10399 /* Implement the "print_one_detail" breakpoint_ops method for
10400 masked hardware watchpoints. */
10401
10402 static void
10403 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10404 struct ui_out *uiout)
10405 {
10406 struct watchpoint *w = (struct watchpoint *) b;
10407
10408 /* Masked watchpoints have only one location. */
10409 gdb_assert (b->loc && b->loc->next == NULL);
10410
10411 uiout->text ("\tmask ");
10412 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10413 uiout->text ("\n");
10414 }
10415
10416 /* Implement the "print_mention" breakpoint_ops method for
10417 masked hardware watchpoints. */
10418
10419 static void
10420 print_mention_masked_watchpoint (struct breakpoint *b)
10421 {
10422 struct watchpoint *w = (struct watchpoint *) b;
10423 struct ui_out *uiout = current_uiout;
10424 const char *tuple_name;
10425
10426 switch (b->type)
10427 {
10428 case bp_hardware_watchpoint:
10429 uiout->text ("Masked hardware watchpoint ");
10430 tuple_name = "wpt";
10431 break;
10432 case bp_read_watchpoint:
10433 uiout->text ("Masked hardware read watchpoint ");
10434 tuple_name = "hw-rwpt";
10435 break;
10436 case bp_access_watchpoint:
10437 uiout->text ("Masked hardware access (read/write) watchpoint ");
10438 tuple_name = "hw-awpt";
10439 break;
10440 default:
10441 internal_error (__FILE__, __LINE__,
10442 _("Invalid hardware watchpoint type."));
10443 }
10444
10445 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10446 uiout->field_int ("number", b->number);
10447 uiout->text (": ");
10448 uiout->field_string ("exp", w->exp_string);
10449 }
10450
10451 /* Implement the "print_recreate" breakpoint_ops method for
10452 masked hardware watchpoints. */
10453
10454 static void
10455 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10456 {
10457 struct watchpoint *w = (struct watchpoint *) b;
10458 char tmp[40];
10459
10460 switch (b->type)
10461 {
10462 case bp_hardware_watchpoint:
10463 fprintf_unfiltered (fp, "watch");
10464 break;
10465 case bp_read_watchpoint:
10466 fprintf_unfiltered (fp, "rwatch");
10467 break;
10468 case bp_access_watchpoint:
10469 fprintf_unfiltered (fp, "awatch");
10470 break;
10471 default:
10472 internal_error (__FILE__, __LINE__,
10473 _("Invalid hardware watchpoint type."));
10474 }
10475
10476 sprintf_vma (tmp, w->hw_wp_mask);
10477 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10478 print_recreate_thread (b, fp);
10479 }
10480
10481 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10482
10483 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10484
10485 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10486
10487 static int
10488 is_masked_watchpoint (const struct breakpoint *b)
10489 {
10490 return b->ops == &masked_watchpoint_breakpoint_ops;
10491 }
10492
10493 /* accessflag: hw_write: watch write,
10494 hw_read: watch read,
10495 hw_access: watch access (read or write) */
10496 static void
10497 watch_command_1 (const char *arg, int accessflag, int from_tty,
10498 int just_location, int internal)
10499 {
10500 struct breakpoint *scope_breakpoint = NULL;
10501 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10502 struct value *result;
10503 int saved_bitpos = 0, saved_bitsize = 0;
10504 const char *exp_start = NULL;
10505 const char *exp_end = NULL;
10506 const char *tok, *end_tok;
10507 int toklen = -1;
10508 const char *cond_start = NULL;
10509 const char *cond_end = NULL;
10510 enum bptype bp_type;
10511 int thread = -1;
10512 int pc = 0;
10513 /* Flag to indicate whether we are going to use masks for
10514 the hardware watchpoint. */
10515 int use_mask = 0;
10516 CORE_ADDR mask = 0;
10517
10518 /* Make sure that we actually have parameters to parse. */
10519 if (arg != NULL && arg[0] != '\0')
10520 {
10521 const char *value_start;
10522
10523 exp_end = arg + strlen (arg);
10524
10525 /* Look for "parameter value" pairs at the end
10526 of the arguments string. */
10527 for (tok = exp_end - 1; tok > arg; tok--)
10528 {
10529 /* Skip whitespace at the end of the argument list. */
10530 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10531 tok--;
10532
10533 /* Find the beginning of the last token.
10534 This is the value of the parameter. */
10535 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10536 tok--;
10537 value_start = tok + 1;
10538
10539 /* Skip whitespace. */
10540 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10541 tok--;
10542
10543 end_tok = tok;
10544
10545 /* Find the beginning of the second to last token.
10546 This is the parameter itself. */
10547 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10548 tok--;
10549 tok++;
10550 toklen = end_tok - tok + 1;
10551
10552 if (toklen == 6 && startswith (tok, "thread"))
10553 {
10554 struct thread_info *thr;
10555 /* At this point we've found a "thread" token, which means
10556 the user is trying to set a watchpoint that triggers
10557 only in a specific thread. */
10558 const char *endp;
10559
10560 if (thread != -1)
10561 error(_("You can specify only one thread."));
10562
10563 /* Extract the thread ID from the next token. */
10564 thr = parse_thread_id (value_start, &endp);
10565
10566 /* Check if the user provided a valid thread ID. */
10567 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10568 invalid_thread_id_error (value_start);
10569
10570 thread = thr->global_num;
10571 }
10572 else if (toklen == 4 && startswith (tok, "mask"))
10573 {
10574 /* We've found a "mask" token, which means the user wants to
10575 create a hardware watchpoint that is going to have the mask
10576 facility. */
10577 struct value *mask_value, *mark;
10578
10579 if (use_mask)
10580 error(_("You can specify only one mask."));
10581
10582 use_mask = just_location = 1;
10583
10584 mark = value_mark ();
10585 mask_value = parse_to_comma_and_eval (&value_start);
10586 mask = value_as_address (mask_value);
10587 value_free_to_mark (mark);
10588 }
10589 else
10590 /* We didn't recognize what we found. We should stop here. */
10591 break;
10592
10593 /* Truncate the string and get rid of the "parameter value" pair before
10594 the arguments string is parsed by the parse_exp_1 function. */
10595 exp_end = tok;
10596 }
10597 }
10598 else
10599 exp_end = arg;
10600
10601 /* Parse the rest of the arguments. From here on out, everything
10602 is in terms of a newly allocated string instead of the original
10603 ARG. */
10604 std::string expression (arg, exp_end - arg);
10605 exp_start = arg = expression.c_str ();
10606 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10607 exp_end = arg;
10608 /* Remove trailing whitespace from the expression before saving it.
10609 This makes the eventual display of the expression string a bit
10610 prettier. */
10611 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10612 --exp_end;
10613
10614 /* Checking if the expression is not constant. */
10615 if (watchpoint_exp_is_const (exp.get ()))
10616 {
10617 int len;
10618
10619 len = exp_end - exp_start;
10620 while (len > 0 && isspace (exp_start[len - 1]))
10621 len--;
10622 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10623 }
10624
10625 exp_valid_block = innermost_block.block ();
10626 struct value *mark = value_mark ();
10627 struct value *val_as_value = nullptr;
10628 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10629 just_location);
10630
10631 if (val_as_value != NULL && just_location)
10632 {
10633 saved_bitpos = value_bitpos (val_as_value);
10634 saved_bitsize = value_bitsize (val_as_value);
10635 }
10636
10637 value_ref_ptr val;
10638 if (just_location)
10639 {
10640 int ret;
10641
10642 exp_valid_block = NULL;
10643 val = release_value (value_addr (result));
10644 value_free_to_mark (mark);
10645
10646 if (use_mask)
10647 {
10648 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10649 mask);
10650 if (ret == -1)
10651 error (_("This target does not support masked watchpoints."));
10652 else if (ret == -2)
10653 error (_("Invalid mask or memory region."));
10654 }
10655 }
10656 else if (val_as_value != NULL)
10657 val = release_value (val_as_value);
10658
10659 tok = skip_spaces (arg);
10660 end_tok = skip_to_space (tok);
10661
10662 toklen = end_tok - tok;
10663 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10664 {
10665 tok = cond_start = end_tok + 1;
10666 parse_exp_1 (&tok, 0, 0, 0);
10667
10668 /* The watchpoint expression may not be local, but the condition
10669 may still be. E.g.: `watch global if local > 0'. */
10670 cond_exp_valid_block = innermost_block.block ();
10671
10672 cond_end = tok;
10673 }
10674 if (*tok)
10675 error (_("Junk at end of command."));
10676
10677 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10678
10679 /* Save this because create_internal_breakpoint below invalidates
10680 'wp_frame'. */
10681 frame_id watchpoint_frame = get_frame_id (wp_frame);
10682
10683 /* If the expression is "local", then set up a "watchpoint scope"
10684 breakpoint at the point where we've left the scope of the watchpoint
10685 expression. Create the scope breakpoint before the watchpoint, so
10686 that we will encounter it first in bpstat_stop_status. */
10687 if (exp_valid_block != NULL && wp_frame != NULL)
10688 {
10689 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10690
10691 if (frame_id_p (caller_frame_id))
10692 {
10693 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10694 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10695
10696 scope_breakpoint
10697 = create_internal_breakpoint (caller_arch, caller_pc,
10698 bp_watchpoint_scope,
10699 &momentary_breakpoint_ops);
10700
10701 /* create_internal_breakpoint could invalidate WP_FRAME. */
10702 wp_frame = NULL;
10703
10704 scope_breakpoint->enable_state = bp_enabled;
10705
10706 /* Automatically delete the breakpoint when it hits. */
10707 scope_breakpoint->disposition = disp_del;
10708
10709 /* Only break in the proper frame (help with recursion). */
10710 scope_breakpoint->frame_id = caller_frame_id;
10711
10712 /* Set the address at which we will stop. */
10713 scope_breakpoint->loc->gdbarch = caller_arch;
10714 scope_breakpoint->loc->requested_address = caller_pc;
10715 scope_breakpoint->loc->address
10716 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10717 scope_breakpoint->loc->requested_address,
10718 scope_breakpoint->type);
10719 }
10720 }
10721
10722 /* Now set up the breakpoint. We create all watchpoints as hardware
10723 watchpoints here even if hardware watchpoints are turned off, a call
10724 to update_watchpoint later in this function will cause the type to
10725 drop back to bp_watchpoint (software watchpoint) if required. */
10726
10727 if (accessflag == hw_read)
10728 bp_type = bp_read_watchpoint;
10729 else if (accessflag == hw_access)
10730 bp_type = bp_access_watchpoint;
10731 else
10732 bp_type = bp_hardware_watchpoint;
10733
10734 std::unique_ptr<watchpoint> w (new watchpoint ());
10735
10736 if (use_mask)
10737 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10738 &masked_watchpoint_breakpoint_ops);
10739 else
10740 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10741 &watchpoint_breakpoint_ops);
10742 w->thread = thread;
10743 w->disposition = disp_donttouch;
10744 w->pspace = current_program_space;
10745 w->exp = std::move (exp);
10746 w->exp_valid_block = exp_valid_block;
10747 w->cond_exp_valid_block = cond_exp_valid_block;
10748 if (just_location)
10749 {
10750 struct type *t = value_type (val.get ());
10751 CORE_ADDR addr = value_as_address (val.get ());
10752
10753 w->exp_string_reparse
10754 = current_language->la_watch_location_expression (t, addr).release ();
10755
10756 w->exp_string = xstrprintf ("-location %.*s",
10757 (int) (exp_end - exp_start), exp_start);
10758 }
10759 else
10760 w->exp_string = savestring (exp_start, exp_end - exp_start);
10761
10762 if (use_mask)
10763 {
10764 w->hw_wp_mask = mask;
10765 }
10766 else
10767 {
10768 w->val = val;
10769 w->val_bitpos = saved_bitpos;
10770 w->val_bitsize = saved_bitsize;
10771 w->val_valid = 1;
10772 }
10773
10774 if (cond_start)
10775 w->cond_string = savestring (cond_start, cond_end - cond_start);
10776 else
10777 w->cond_string = 0;
10778
10779 if (frame_id_p (watchpoint_frame))
10780 {
10781 w->watchpoint_frame = watchpoint_frame;
10782 w->watchpoint_thread = inferior_ptid;
10783 }
10784 else
10785 {
10786 w->watchpoint_frame = null_frame_id;
10787 w->watchpoint_thread = null_ptid;
10788 }
10789
10790 if (scope_breakpoint != NULL)
10791 {
10792 /* The scope breakpoint is related to the watchpoint. We will
10793 need to act on them together. */
10794 w->related_breakpoint = scope_breakpoint;
10795 scope_breakpoint->related_breakpoint = w.get ();
10796 }
10797
10798 if (!just_location)
10799 value_free_to_mark (mark);
10800
10801 /* Finally update the new watchpoint. This creates the locations
10802 that should be inserted. */
10803 update_watchpoint (w.get (), 1);
10804
10805 install_breakpoint (internal, std::move (w), 1);
10806 }
10807
10808 /* Return count of debug registers needed to watch the given expression.
10809 If the watchpoint cannot be handled in hardware return zero. */
10810
10811 static int
10812 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10813 {
10814 int found_memory_cnt = 0;
10815
10816 /* Did the user specifically forbid us to use hardware watchpoints? */
10817 if (!can_use_hw_watchpoints)
10818 return 0;
10819
10820 gdb_assert (!vals.empty ());
10821 struct value *head = vals[0].get ();
10822
10823 /* Make sure that the value of the expression depends only upon
10824 memory contents, and values computed from them within GDB. If we
10825 find any register references or function calls, we can't use a
10826 hardware watchpoint.
10827
10828 The idea here is that evaluating an expression generates a series
10829 of values, one holding the value of every subexpression. (The
10830 expression a*b+c has five subexpressions: a, b, a*b, c, and
10831 a*b+c.) GDB's values hold almost enough information to establish
10832 the criteria given above --- they identify memory lvalues,
10833 register lvalues, computed values, etcetera. So we can evaluate
10834 the expression, and then scan the chain of values that leaves
10835 behind to decide whether we can detect any possible change to the
10836 expression's final value using only hardware watchpoints.
10837
10838 However, I don't think that the values returned by inferior
10839 function calls are special in any way. So this function may not
10840 notice that an expression involving an inferior function call
10841 can't be watched with hardware watchpoints. FIXME. */
10842 for (const value_ref_ptr &iter : vals)
10843 {
10844 struct value *v = iter.get ();
10845
10846 if (VALUE_LVAL (v) == lval_memory)
10847 {
10848 if (v != head && value_lazy (v))
10849 /* A lazy memory lvalue in the chain is one that GDB never
10850 needed to fetch; we either just used its address (e.g.,
10851 `a' in `a.b') or we never needed it at all (e.g., `a'
10852 in `a,b'). This doesn't apply to HEAD; if that is
10853 lazy then it was not readable, but watch it anyway. */
10854 ;
10855 else
10856 {
10857 /* Ahh, memory we actually used! Check if we can cover
10858 it with hardware watchpoints. */
10859 struct type *vtype = check_typedef (value_type (v));
10860
10861 /* We only watch structs and arrays if user asked for it
10862 explicitly, never if they just happen to appear in a
10863 middle of some value chain. */
10864 if (v == head
10865 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10866 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10867 {
10868 CORE_ADDR vaddr = value_address (v);
10869 int len;
10870 int num_regs;
10871
10872 len = (target_exact_watchpoints
10873 && is_scalar_type_recursive (vtype))?
10874 1 : TYPE_LENGTH (value_type (v));
10875
10876 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10877 if (!num_regs)
10878 return 0;
10879 else
10880 found_memory_cnt += num_regs;
10881 }
10882 }
10883 }
10884 else if (VALUE_LVAL (v) != not_lval
10885 && deprecated_value_modifiable (v) == 0)
10886 return 0; /* These are values from the history (e.g., $1). */
10887 else if (VALUE_LVAL (v) == lval_register)
10888 return 0; /* Cannot watch a register with a HW watchpoint. */
10889 }
10890
10891 /* The expression itself looks suitable for using a hardware
10892 watchpoint, but give the target machine a chance to reject it. */
10893 return found_memory_cnt;
10894 }
10895
10896 void
10897 watch_command_wrapper (const char *arg, int from_tty, int internal)
10898 {
10899 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10900 }
10901
10902 /* A helper function that looks for the "-location" argument and then
10903 calls watch_command_1. */
10904
10905 static void
10906 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10907 {
10908 int just_location = 0;
10909
10910 if (arg
10911 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10912 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10913 {
10914 arg = skip_spaces (arg);
10915 just_location = 1;
10916 }
10917
10918 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10919 }
10920
10921 static void
10922 watch_command (const char *arg, int from_tty)
10923 {
10924 watch_maybe_just_location (arg, hw_write, from_tty);
10925 }
10926
10927 void
10928 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10929 {
10930 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10931 }
10932
10933 static void
10934 rwatch_command (const char *arg, int from_tty)
10935 {
10936 watch_maybe_just_location (arg, hw_read, from_tty);
10937 }
10938
10939 void
10940 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10941 {
10942 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10943 }
10944
10945 static void
10946 awatch_command (const char *arg, int from_tty)
10947 {
10948 watch_maybe_just_location (arg, hw_access, from_tty);
10949 }
10950 \f
10951
10952 /* Data for the FSM that manages the until(location)/advance commands
10953 in infcmd.c. Here because it uses the mechanisms of
10954 breakpoints. */
10955
10956 struct until_break_fsm : public thread_fsm
10957 {
10958 /* The thread that was current when the command was executed. */
10959 int thread;
10960
10961 /* The breakpoint set at the destination location. */
10962 breakpoint_up location_breakpoint;
10963
10964 /* Breakpoint set at the return address in the caller frame. May be
10965 NULL. */
10966 breakpoint_up caller_breakpoint;
10967
10968 until_break_fsm (struct interp *cmd_interp, int thread,
10969 breakpoint_up &&location_breakpoint,
10970 breakpoint_up &&caller_breakpoint)
10971 : thread_fsm (cmd_interp),
10972 thread (thread),
10973 location_breakpoint (std::move (location_breakpoint)),
10974 caller_breakpoint (std::move (caller_breakpoint))
10975 {
10976 }
10977
10978 void clean_up (struct thread_info *thread) override;
10979 bool should_stop (struct thread_info *thread) override;
10980 enum async_reply_reason do_async_reply_reason () override;
10981 };
10982
10983 /* Implementation of the 'should_stop' FSM method for the
10984 until(location)/advance commands. */
10985
10986 bool
10987 until_break_fsm::should_stop (struct thread_info *tp)
10988 {
10989 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10990 location_breakpoint.get ()) != NULL
10991 || (caller_breakpoint != NULL
10992 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10993 caller_breakpoint.get ()) != NULL))
10994 set_finished ();
10995
10996 return true;
10997 }
10998
10999 /* Implementation of the 'clean_up' FSM method for the
11000 until(location)/advance commands. */
11001
11002 void
11003 until_break_fsm::clean_up (struct thread_info *)
11004 {
11005 /* Clean up our temporary breakpoints. */
11006 location_breakpoint.reset ();
11007 caller_breakpoint.reset ();
11008 delete_longjmp_breakpoint (thread);
11009 }
11010
11011 /* Implementation of the 'async_reply_reason' FSM method for the
11012 until(location)/advance commands. */
11013
11014 enum async_reply_reason
11015 until_break_fsm::do_async_reply_reason ()
11016 {
11017 return EXEC_ASYNC_LOCATION_REACHED;
11018 }
11019
11020 void
11021 until_break_command (const char *arg, int from_tty, int anywhere)
11022 {
11023 struct frame_info *frame;
11024 struct gdbarch *frame_gdbarch;
11025 struct frame_id stack_frame_id;
11026 struct frame_id caller_frame_id;
11027 int thread;
11028 struct thread_info *tp;
11029
11030 clear_proceed_status (0);
11031
11032 /* Set a breakpoint where the user wants it and at return from
11033 this function. */
11034
11035 event_location_up location = string_to_event_location (&arg, current_language);
11036
11037 std::vector<symtab_and_line> sals
11038 = (last_displayed_sal_is_valid ()
11039 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11040 get_last_displayed_symtab (),
11041 get_last_displayed_line ())
11042 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11043 NULL, (struct symtab *) NULL, 0));
11044
11045 if (sals.size () != 1)
11046 error (_("Couldn't get information on specified line."));
11047
11048 symtab_and_line &sal = sals[0];
11049
11050 if (*arg)
11051 error (_("Junk at end of arguments."));
11052
11053 resolve_sal_pc (&sal);
11054
11055 tp = inferior_thread ();
11056 thread = tp->global_num;
11057
11058 /* Note linespec handling above invalidates the frame chain.
11059 Installing a breakpoint also invalidates the frame chain (as it
11060 may need to switch threads), so do any frame handling before
11061 that. */
11062
11063 frame = get_selected_frame (NULL);
11064 frame_gdbarch = get_frame_arch (frame);
11065 stack_frame_id = get_stack_frame_id (frame);
11066 caller_frame_id = frame_unwind_caller_id (frame);
11067
11068 /* Keep within the current frame, or in frames called by the current
11069 one. */
11070
11071 breakpoint_up caller_breakpoint;
11072
11073 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11074
11075 if (frame_id_p (caller_frame_id))
11076 {
11077 struct symtab_and_line sal2;
11078 struct gdbarch *caller_gdbarch;
11079
11080 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11081 sal2.pc = frame_unwind_caller_pc (frame);
11082 caller_gdbarch = frame_unwind_caller_arch (frame);
11083 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11084 sal2,
11085 caller_frame_id,
11086 bp_until);
11087
11088 set_longjmp_breakpoint (tp, caller_frame_id);
11089 lj_deleter.emplace (thread);
11090 }
11091
11092 /* set_momentary_breakpoint could invalidate FRAME. */
11093 frame = NULL;
11094
11095 breakpoint_up location_breakpoint;
11096 if (anywhere)
11097 /* If the user told us to continue until a specified location,
11098 we don't specify a frame at which we need to stop. */
11099 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11100 null_frame_id, bp_until);
11101 else
11102 /* Otherwise, specify the selected frame, because we want to stop
11103 only at the very same frame. */
11104 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11105 stack_frame_id, bp_until);
11106
11107 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11108 std::move (location_breakpoint),
11109 std::move (caller_breakpoint));
11110
11111 if (lj_deleter)
11112 lj_deleter->release ();
11113
11114 proceed (-1, GDB_SIGNAL_DEFAULT);
11115 }
11116
11117 /* This function attempts to parse an optional "if <cond>" clause
11118 from the arg string. If one is not found, it returns NULL.
11119
11120 Else, it returns a pointer to the condition string. (It does not
11121 attempt to evaluate the string against a particular block.) And,
11122 it updates arg to point to the first character following the parsed
11123 if clause in the arg string. */
11124
11125 const char *
11126 ep_parse_optional_if_clause (const char **arg)
11127 {
11128 const char *cond_string;
11129
11130 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11131 return NULL;
11132
11133 /* Skip the "if" keyword. */
11134 (*arg) += 2;
11135
11136 /* Skip any extra leading whitespace, and record the start of the
11137 condition string. */
11138 *arg = skip_spaces (*arg);
11139 cond_string = *arg;
11140
11141 /* Assume that the condition occupies the remainder of the arg
11142 string. */
11143 (*arg) += strlen (cond_string);
11144
11145 return cond_string;
11146 }
11147
11148 /* Commands to deal with catching events, such as signals, exceptions,
11149 process start/exit, etc. */
11150
11151 typedef enum
11152 {
11153 catch_fork_temporary, catch_vfork_temporary,
11154 catch_fork_permanent, catch_vfork_permanent
11155 }
11156 catch_fork_kind;
11157
11158 static void
11159 catch_fork_command_1 (const char *arg, int from_tty,
11160 struct cmd_list_element *command)
11161 {
11162 struct gdbarch *gdbarch = get_current_arch ();
11163 const char *cond_string = NULL;
11164 catch_fork_kind fork_kind;
11165 int tempflag;
11166
11167 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11168 tempflag = (fork_kind == catch_fork_temporary
11169 || fork_kind == catch_vfork_temporary);
11170
11171 if (!arg)
11172 arg = "";
11173 arg = skip_spaces (arg);
11174
11175 /* The allowed syntax is:
11176 catch [v]fork
11177 catch [v]fork if <cond>
11178
11179 First, check if there's an if clause. */
11180 cond_string = ep_parse_optional_if_clause (&arg);
11181
11182 if ((*arg != '\0') && !isspace (*arg))
11183 error (_("Junk at end of arguments."));
11184
11185 /* If this target supports it, create a fork or vfork catchpoint
11186 and enable reporting of such events. */
11187 switch (fork_kind)
11188 {
11189 case catch_fork_temporary:
11190 case catch_fork_permanent:
11191 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11192 &catch_fork_breakpoint_ops);
11193 break;
11194 case catch_vfork_temporary:
11195 case catch_vfork_permanent:
11196 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11197 &catch_vfork_breakpoint_ops);
11198 break;
11199 default:
11200 error (_("unsupported or unknown fork kind; cannot catch it"));
11201 break;
11202 }
11203 }
11204
11205 static void
11206 catch_exec_command_1 (const char *arg, int from_tty,
11207 struct cmd_list_element *command)
11208 {
11209 struct gdbarch *gdbarch = get_current_arch ();
11210 int tempflag;
11211 const char *cond_string = NULL;
11212
11213 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11214
11215 if (!arg)
11216 arg = "";
11217 arg = skip_spaces (arg);
11218
11219 /* The allowed syntax is:
11220 catch exec
11221 catch exec if <cond>
11222
11223 First, check if there's an if clause. */
11224 cond_string = ep_parse_optional_if_clause (&arg);
11225
11226 if ((*arg != '\0') && !isspace (*arg))
11227 error (_("Junk at end of arguments."));
11228
11229 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11230 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11231 &catch_exec_breakpoint_ops);
11232 c->exec_pathname = NULL;
11233
11234 install_breakpoint (0, std::move (c), 1);
11235 }
11236
11237 void
11238 init_ada_exception_breakpoint (struct breakpoint *b,
11239 struct gdbarch *gdbarch,
11240 struct symtab_and_line sal,
11241 const char *addr_string,
11242 const struct breakpoint_ops *ops,
11243 int tempflag,
11244 int enabled,
11245 int from_tty)
11246 {
11247 if (from_tty)
11248 {
11249 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11250 if (!loc_gdbarch)
11251 loc_gdbarch = gdbarch;
11252
11253 describe_other_breakpoints (loc_gdbarch,
11254 sal.pspace, sal.pc, sal.section, -1);
11255 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11256 version for exception catchpoints, because two catchpoints
11257 used for different exception names will use the same address.
11258 In this case, a "breakpoint ... also set at..." warning is
11259 unproductive. Besides, the warning phrasing is also a bit
11260 inappropriate, we should use the word catchpoint, and tell
11261 the user what type of catchpoint it is. The above is good
11262 enough for now, though. */
11263 }
11264
11265 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11266
11267 b->enable_state = enabled ? bp_enabled : bp_disabled;
11268 b->disposition = tempflag ? disp_del : disp_donttouch;
11269 b->location = string_to_event_location (&addr_string,
11270 language_def (language_ada));
11271 b->language = language_ada;
11272 }
11273
11274 static void
11275 catch_command (const char *arg, int from_tty)
11276 {
11277 error (_("Catch requires an event name."));
11278 }
11279 \f
11280
11281 static void
11282 tcatch_command (const char *arg, int from_tty)
11283 {
11284 error (_("Catch requires an event name."));
11285 }
11286
11287 /* Compare two breakpoints and return a strcmp-like result. */
11288
11289 static int
11290 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11291 {
11292 uintptr_t ua = (uintptr_t) a;
11293 uintptr_t ub = (uintptr_t) b;
11294
11295 if (a->number < b->number)
11296 return -1;
11297 else if (a->number > b->number)
11298 return 1;
11299
11300 /* Now sort by address, in case we see, e..g, two breakpoints with
11301 the number 0. */
11302 if (ua < ub)
11303 return -1;
11304 return ua > ub ? 1 : 0;
11305 }
11306
11307 /* Delete breakpoints by address or line. */
11308
11309 static void
11310 clear_command (const char *arg, int from_tty)
11311 {
11312 struct breakpoint *b;
11313 int default_match;
11314
11315 std::vector<symtab_and_line> decoded_sals;
11316 symtab_and_line last_sal;
11317 gdb::array_view<symtab_and_line> sals;
11318 if (arg)
11319 {
11320 decoded_sals
11321 = decode_line_with_current_source (arg,
11322 (DECODE_LINE_FUNFIRSTLINE
11323 | DECODE_LINE_LIST_MODE));
11324 default_match = 0;
11325 sals = decoded_sals;
11326 }
11327 else
11328 {
11329 /* Set sal's line, symtab, pc, and pspace to the values
11330 corresponding to the last call to print_frame_info. If the
11331 codepoint is not valid, this will set all the fields to 0. */
11332 last_sal = get_last_displayed_sal ();
11333 if (last_sal.symtab == 0)
11334 error (_("No source file specified."));
11335
11336 default_match = 1;
11337 sals = last_sal;
11338 }
11339
11340 /* We don't call resolve_sal_pc here. That's not as bad as it
11341 seems, because all existing breakpoints typically have both
11342 file/line and pc set. So, if clear is given file/line, we can
11343 match this to existing breakpoint without obtaining pc at all.
11344
11345 We only support clearing given the address explicitly
11346 present in breakpoint table. Say, we've set breakpoint
11347 at file:line. There were several PC values for that file:line,
11348 due to optimization, all in one block.
11349
11350 We've picked one PC value. If "clear" is issued with another
11351 PC corresponding to the same file:line, the breakpoint won't
11352 be cleared. We probably can still clear the breakpoint, but
11353 since the other PC value is never presented to user, user
11354 can only find it by guessing, and it does not seem important
11355 to support that. */
11356
11357 /* For each line spec given, delete bps which correspond to it. Do
11358 it in two passes, solely to preserve the current behavior that
11359 from_tty is forced true if we delete more than one
11360 breakpoint. */
11361
11362 std::vector<struct breakpoint *> found;
11363 for (const auto &sal : sals)
11364 {
11365 const char *sal_fullname;
11366
11367 /* If exact pc given, clear bpts at that pc.
11368 If line given (pc == 0), clear all bpts on specified line.
11369 If defaulting, clear all bpts on default line
11370 or at default pc.
11371
11372 defaulting sal.pc != 0 tests to do
11373
11374 0 1 pc
11375 1 1 pc _and_ line
11376 0 0 line
11377 1 0 <can't happen> */
11378
11379 sal_fullname = (sal.symtab == NULL
11380 ? NULL : symtab_to_fullname (sal.symtab));
11381
11382 /* Find all matching breakpoints and add them to 'found'. */
11383 ALL_BREAKPOINTS (b)
11384 {
11385 int match = 0;
11386 /* Are we going to delete b? */
11387 if (b->type != bp_none && !is_watchpoint (b))
11388 {
11389 struct bp_location *loc = b->loc;
11390 for (; loc; loc = loc->next)
11391 {
11392 /* If the user specified file:line, don't allow a PC
11393 match. This matches historical gdb behavior. */
11394 int pc_match = (!sal.explicit_line
11395 && sal.pc
11396 && (loc->pspace == sal.pspace)
11397 && (loc->address == sal.pc)
11398 && (!section_is_overlay (loc->section)
11399 || loc->section == sal.section));
11400 int line_match = 0;
11401
11402 if ((default_match || sal.explicit_line)
11403 && loc->symtab != NULL
11404 && sal_fullname != NULL
11405 && sal.pspace == loc->pspace
11406 && loc->line_number == sal.line
11407 && filename_cmp (symtab_to_fullname (loc->symtab),
11408 sal_fullname) == 0)
11409 line_match = 1;
11410
11411 if (pc_match || line_match)
11412 {
11413 match = 1;
11414 break;
11415 }
11416 }
11417 }
11418
11419 if (match)
11420 found.push_back (b);
11421 }
11422 }
11423
11424 /* Now go thru the 'found' chain and delete them. */
11425 if (found.empty ())
11426 {
11427 if (arg)
11428 error (_("No breakpoint at %s."), arg);
11429 else
11430 error (_("No breakpoint at this line."));
11431 }
11432
11433 /* Remove duplicates from the vec. */
11434 std::sort (found.begin (), found.end (),
11435 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11436 {
11437 return compare_breakpoints (bp_a, bp_b) < 0;
11438 });
11439 found.erase (std::unique (found.begin (), found.end (),
11440 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11441 {
11442 return compare_breakpoints (bp_a, bp_b) == 0;
11443 }),
11444 found.end ());
11445
11446 if (found.size () > 1)
11447 from_tty = 1; /* Always report if deleted more than one. */
11448 if (from_tty)
11449 {
11450 if (found.size () == 1)
11451 printf_unfiltered (_("Deleted breakpoint "));
11452 else
11453 printf_unfiltered (_("Deleted breakpoints "));
11454 }
11455
11456 for (breakpoint *iter : found)
11457 {
11458 if (from_tty)
11459 printf_unfiltered ("%d ", iter->number);
11460 delete_breakpoint (iter);
11461 }
11462 if (from_tty)
11463 putchar_unfiltered ('\n');
11464 }
11465 \f
11466 /* Delete breakpoint in BS if they are `delete' breakpoints and
11467 all breakpoints that are marked for deletion, whether hit or not.
11468 This is called after any breakpoint is hit, or after errors. */
11469
11470 void
11471 breakpoint_auto_delete (bpstat bs)
11472 {
11473 struct breakpoint *b, *b_tmp;
11474
11475 for (; bs; bs = bs->next)
11476 if (bs->breakpoint_at
11477 && bs->breakpoint_at->disposition == disp_del
11478 && bs->stop)
11479 delete_breakpoint (bs->breakpoint_at);
11480
11481 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11482 {
11483 if (b->disposition == disp_del_at_next_stop)
11484 delete_breakpoint (b);
11485 }
11486 }
11487
11488 /* A comparison function for bp_location AP and BP being interfaced to
11489 qsort. Sort elements primarily by their ADDRESS (no matter what
11490 does breakpoint_address_is_meaningful say for its OWNER),
11491 secondarily by ordering first permanent elements and
11492 terciarily just ensuring the array is sorted stable way despite
11493 qsort being an unstable algorithm. */
11494
11495 static int
11496 bp_locations_compare (const void *ap, const void *bp)
11497 {
11498 const struct bp_location *a = *(const struct bp_location **) ap;
11499 const struct bp_location *b = *(const struct bp_location **) bp;
11500
11501 if (a->address != b->address)
11502 return (a->address > b->address) - (a->address < b->address);
11503
11504 /* Sort locations at the same address by their pspace number, keeping
11505 locations of the same inferior (in a multi-inferior environment)
11506 grouped. */
11507
11508 if (a->pspace->num != b->pspace->num)
11509 return ((a->pspace->num > b->pspace->num)
11510 - (a->pspace->num < b->pspace->num));
11511
11512 /* Sort permanent breakpoints first. */
11513 if (a->permanent != b->permanent)
11514 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11515
11516 /* Make the internal GDB representation stable across GDB runs
11517 where A and B memory inside GDB can differ. Breakpoint locations of
11518 the same type at the same address can be sorted in arbitrary order. */
11519
11520 if (a->owner->number != b->owner->number)
11521 return ((a->owner->number > b->owner->number)
11522 - (a->owner->number < b->owner->number));
11523
11524 return (a > b) - (a < b);
11525 }
11526
11527 /* Set bp_locations_placed_address_before_address_max and
11528 bp_locations_shadow_len_after_address_max according to the current
11529 content of the bp_locations array. */
11530
11531 static void
11532 bp_locations_target_extensions_update (void)
11533 {
11534 struct bp_location *bl, **blp_tmp;
11535
11536 bp_locations_placed_address_before_address_max = 0;
11537 bp_locations_shadow_len_after_address_max = 0;
11538
11539 ALL_BP_LOCATIONS (bl, blp_tmp)
11540 {
11541 CORE_ADDR start, end, addr;
11542
11543 if (!bp_location_has_shadow (bl))
11544 continue;
11545
11546 start = bl->target_info.placed_address;
11547 end = start + bl->target_info.shadow_len;
11548
11549 gdb_assert (bl->address >= start);
11550 addr = bl->address - start;
11551 if (addr > bp_locations_placed_address_before_address_max)
11552 bp_locations_placed_address_before_address_max = addr;
11553
11554 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11555
11556 gdb_assert (bl->address < end);
11557 addr = end - bl->address;
11558 if (addr > bp_locations_shadow_len_after_address_max)
11559 bp_locations_shadow_len_after_address_max = addr;
11560 }
11561 }
11562
11563 /* Download tracepoint locations if they haven't been. */
11564
11565 static void
11566 download_tracepoint_locations (void)
11567 {
11568 struct breakpoint *b;
11569 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11570
11571 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11572
11573 ALL_TRACEPOINTS (b)
11574 {
11575 struct bp_location *bl;
11576 struct tracepoint *t;
11577 int bp_location_downloaded = 0;
11578
11579 if ((b->type == bp_fast_tracepoint
11580 ? !may_insert_fast_tracepoints
11581 : !may_insert_tracepoints))
11582 continue;
11583
11584 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11585 {
11586 if (target_can_download_tracepoint ())
11587 can_download_tracepoint = TRIBOOL_TRUE;
11588 else
11589 can_download_tracepoint = TRIBOOL_FALSE;
11590 }
11591
11592 if (can_download_tracepoint == TRIBOOL_FALSE)
11593 break;
11594
11595 for (bl = b->loc; bl; bl = bl->next)
11596 {
11597 /* In tracepoint, locations are _never_ duplicated, so
11598 should_be_inserted is equivalent to
11599 unduplicated_should_be_inserted. */
11600 if (!should_be_inserted (bl) || bl->inserted)
11601 continue;
11602
11603 switch_to_program_space_and_thread (bl->pspace);
11604
11605 target_download_tracepoint (bl);
11606
11607 bl->inserted = 1;
11608 bp_location_downloaded = 1;
11609 }
11610 t = (struct tracepoint *) b;
11611 t->number_on_target = b->number;
11612 if (bp_location_downloaded)
11613 gdb::observers::breakpoint_modified.notify (b);
11614 }
11615 }
11616
11617 /* Swap the insertion/duplication state between two locations. */
11618
11619 static void
11620 swap_insertion (struct bp_location *left, struct bp_location *right)
11621 {
11622 const int left_inserted = left->inserted;
11623 const int left_duplicate = left->duplicate;
11624 const int left_needs_update = left->needs_update;
11625 const struct bp_target_info left_target_info = left->target_info;
11626
11627 /* Locations of tracepoints can never be duplicated. */
11628 if (is_tracepoint (left->owner))
11629 gdb_assert (!left->duplicate);
11630 if (is_tracepoint (right->owner))
11631 gdb_assert (!right->duplicate);
11632
11633 left->inserted = right->inserted;
11634 left->duplicate = right->duplicate;
11635 left->needs_update = right->needs_update;
11636 left->target_info = right->target_info;
11637 right->inserted = left_inserted;
11638 right->duplicate = left_duplicate;
11639 right->needs_update = left_needs_update;
11640 right->target_info = left_target_info;
11641 }
11642
11643 /* Force the re-insertion of the locations at ADDRESS. This is called
11644 once a new/deleted/modified duplicate location is found and we are evaluating
11645 conditions on the target's side. Such conditions need to be updated on
11646 the target. */
11647
11648 static void
11649 force_breakpoint_reinsertion (struct bp_location *bl)
11650 {
11651 struct bp_location **locp = NULL, **loc2p;
11652 struct bp_location *loc;
11653 CORE_ADDR address = 0;
11654 int pspace_num;
11655
11656 address = bl->address;
11657 pspace_num = bl->pspace->num;
11658
11659 /* This is only meaningful if the target is
11660 evaluating conditions and if the user has
11661 opted for condition evaluation on the target's
11662 side. */
11663 if (gdb_evaluates_breakpoint_condition_p ()
11664 || !target_supports_evaluation_of_breakpoint_conditions ())
11665 return;
11666
11667 /* Flag all breakpoint locations with this address and
11668 the same program space as the location
11669 as "its condition has changed". We need to
11670 update the conditions on the target's side. */
11671 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11672 {
11673 loc = *loc2p;
11674
11675 if (!is_breakpoint (loc->owner)
11676 || pspace_num != loc->pspace->num)
11677 continue;
11678
11679 /* Flag the location appropriately. We use a different state to
11680 let everyone know that we already updated the set of locations
11681 with addr bl->address and program space bl->pspace. This is so
11682 we don't have to keep calling these functions just to mark locations
11683 that have already been marked. */
11684 loc->condition_changed = condition_updated;
11685
11686 /* Free the agent expression bytecode as well. We will compute
11687 it later on. */
11688 loc->cond_bytecode.reset ();
11689 }
11690 }
11691 /* Called whether new breakpoints are created, or existing breakpoints
11692 deleted, to update the global location list and recompute which
11693 locations are duplicate of which.
11694
11695 The INSERT_MODE flag determines whether locations may not, may, or
11696 shall be inserted now. See 'enum ugll_insert_mode' for more
11697 info. */
11698
11699 static void
11700 update_global_location_list (enum ugll_insert_mode insert_mode)
11701 {
11702 struct breakpoint *b;
11703 struct bp_location **locp, *loc;
11704 /* Last breakpoint location address that was marked for update. */
11705 CORE_ADDR last_addr = 0;
11706 /* Last breakpoint location program space that was marked for update. */
11707 int last_pspace_num = -1;
11708
11709 /* Used in the duplicates detection below. When iterating over all
11710 bp_locations, points to the first bp_location of a given address.
11711 Breakpoints and watchpoints of different types are never
11712 duplicates of each other. Keep one pointer for each type of
11713 breakpoint/watchpoint, so we only need to loop over all locations
11714 once. */
11715 struct bp_location *bp_loc_first; /* breakpoint */
11716 struct bp_location *wp_loc_first; /* hardware watchpoint */
11717 struct bp_location *awp_loc_first; /* access watchpoint */
11718 struct bp_location *rwp_loc_first; /* read watchpoint */
11719
11720 /* Saved former bp_locations array which we compare against the newly
11721 built bp_locations from the current state of ALL_BREAKPOINTS. */
11722 struct bp_location **old_locp;
11723 unsigned old_locations_count;
11724 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11725
11726 old_locations_count = bp_locations_count;
11727 bp_locations = NULL;
11728 bp_locations_count = 0;
11729
11730 ALL_BREAKPOINTS (b)
11731 for (loc = b->loc; loc; loc = loc->next)
11732 bp_locations_count++;
11733
11734 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11735 locp = bp_locations;
11736 ALL_BREAKPOINTS (b)
11737 for (loc = b->loc; loc; loc = loc->next)
11738 *locp++ = loc;
11739 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11740 bp_locations_compare);
11741
11742 bp_locations_target_extensions_update ();
11743
11744 /* Identify bp_location instances that are no longer present in the
11745 new list, and therefore should be freed. Note that it's not
11746 necessary that those locations should be removed from inferior --
11747 if there's another location at the same address (previously
11748 marked as duplicate), we don't need to remove/insert the
11749 location.
11750
11751 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11752 and former bp_location array state respectively. */
11753
11754 locp = bp_locations;
11755 for (old_locp = old_locations.get ();
11756 old_locp < old_locations.get () + old_locations_count;
11757 old_locp++)
11758 {
11759 struct bp_location *old_loc = *old_locp;
11760 struct bp_location **loc2p;
11761
11762 /* Tells if 'old_loc' is found among the new locations. If
11763 not, we have to free it. */
11764 int found_object = 0;
11765 /* Tells if the location should remain inserted in the target. */
11766 int keep_in_target = 0;
11767 int removed = 0;
11768
11769 /* Skip LOCP entries which will definitely never be needed.
11770 Stop either at or being the one matching OLD_LOC. */
11771 while (locp < bp_locations + bp_locations_count
11772 && (*locp)->address < old_loc->address)
11773 locp++;
11774
11775 for (loc2p = locp;
11776 (loc2p < bp_locations + bp_locations_count
11777 && (*loc2p)->address == old_loc->address);
11778 loc2p++)
11779 {
11780 /* Check if this is a new/duplicated location or a duplicated
11781 location that had its condition modified. If so, we want to send
11782 its condition to the target if evaluation of conditions is taking
11783 place there. */
11784 if ((*loc2p)->condition_changed == condition_modified
11785 && (last_addr != old_loc->address
11786 || last_pspace_num != old_loc->pspace->num))
11787 {
11788 force_breakpoint_reinsertion (*loc2p);
11789 last_pspace_num = old_loc->pspace->num;
11790 }
11791
11792 if (*loc2p == old_loc)
11793 found_object = 1;
11794 }
11795
11796 /* We have already handled this address, update it so that we don't
11797 have to go through updates again. */
11798 last_addr = old_loc->address;
11799
11800 /* Target-side condition evaluation: Handle deleted locations. */
11801 if (!found_object)
11802 force_breakpoint_reinsertion (old_loc);
11803
11804 /* If this location is no longer present, and inserted, look if
11805 there's maybe a new location at the same address. If so,
11806 mark that one inserted, and don't remove this one. This is
11807 needed so that we don't have a time window where a breakpoint
11808 at certain location is not inserted. */
11809
11810 if (old_loc->inserted)
11811 {
11812 /* If the location is inserted now, we might have to remove
11813 it. */
11814
11815 if (found_object && should_be_inserted (old_loc))
11816 {
11817 /* The location is still present in the location list,
11818 and still should be inserted. Don't do anything. */
11819 keep_in_target = 1;
11820 }
11821 else
11822 {
11823 /* This location still exists, but it won't be kept in the
11824 target since it may have been disabled. We proceed to
11825 remove its target-side condition. */
11826
11827 /* The location is either no longer present, or got
11828 disabled. See if there's another location at the
11829 same address, in which case we don't need to remove
11830 this one from the target. */
11831
11832 /* OLD_LOC comes from existing struct breakpoint. */
11833 if (breakpoint_address_is_meaningful (old_loc->owner))
11834 {
11835 for (loc2p = locp;
11836 (loc2p < bp_locations + bp_locations_count
11837 && (*loc2p)->address == old_loc->address);
11838 loc2p++)
11839 {
11840 struct bp_location *loc2 = *loc2p;
11841
11842 if (breakpoint_locations_match (loc2, old_loc))
11843 {
11844 /* Read watchpoint locations are switched to
11845 access watchpoints, if the former are not
11846 supported, but the latter are. */
11847 if (is_hardware_watchpoint (old_loc->owner))
11848 {
11849 gdb_assert (is_hardware_watchpoint (loc2->owner));
11850 loc2->watchpoint_type = old_loc->watchpoint_type;
11851 }
11852
11853 /* loc2 is a duplicated location. We need to check
11854 if it should be inserted in case it will be
11855 unduplicated. */
11856 if (loc2 != old_loc
11857 && unduplicated_should_be_inserted (loc2))
11858 {
11859 swap_insertion (old_loc, loc2);
11860 keep_in_target = 1;
11861 break;
11862 }
11863 }
11864 }
11865 }
11866 }
11867
11868 if (!keep_in_target)
11869 {
11870 if (remove_breakpoint (old_loc))
11871 {
11872 /* This is just about all we can do. We could keep
11873 this location on the global list, and try to
11874 remove it next time, but there's no particular
11875 reason why we will succeed next time.
11876
11877 Note that at this point, old_loc->owner is still
11878 valid, as delete_breakpoint frees the breakpoint
11879 only after calling us. */
11880 printf_filtered (_("warning: Error removing "
11881 "breakpoint %d\n"),
11882 old_loc->owner->number);
11883 }
11884 removed = 1;
11885 }
11886 }
11887
11888 if (!found_object)
11889 {
11890 if (removed && target_is_non_stop_p ()
11891 && need_moribund_for_location_type (old_loc))
11892 {
11893 /* This location was removed from the target. In
11894 non-stop mode, a race condition is possible where
11895 we've removed a breakpoint, but stop events for that
11896 breakpoint are already queued and will arrive later.
11897 We apply an heuristic to be able to distinguish such
11898 SIGTRAPs from other random SIGTRAPs: we keep this
11899 breakpoint location for a bit, and will retire it
11900 after we see some number of events. The theory here
11901 is that reporting of events should, "on the average",
11902 be fair, so after a while we'll see events from all
11903 threads that have anything of interest, and no longer
11904 need to keep this breakpoint location around. We
11905 don't hold locations forever so to reduce chances of
11906 mistaking a non-breakpoint SIGTRAP for a breakpoint
11907 SIGTRAP.
11908
11909 The heuristic failing can be disastrous on
11910 decr_pc_after_break targets.
11911
11912 On decr_pc_after_break targets, like e.g., x86-linux,
11913 if we fail to recognize a late breakpoint SIGTRAP,
11914 because events_till_retirement has reached 0 too
11915 soon, we'll fail to do the PC adjustment, and report
11916 a random SIGTRAP to the user. When the user resumes
11917 the inferior, it will most likely immediately crash
11918 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11919 corrupted, because of being resumed e.g., in the
11920 middle of a multi-byte instruction, or skipped a
11921 one-byte instruction. This was actually seen happen
11922 on native x86-linux, and should be less rare on
11923 targets that do not support new thread events, like
11924 remote, due to the heuristic depending on
11925 thread_count.
11926
11927 Mistaking a random SIGTRAP for a breakpoint trap
11928 causes similar symptoms (PC adjustment applied when
11929 it shouldn't), but then again, playing with SIGTRAPs
11930 behind the debugger's back is asking for trouble.
11931
11932 Since hardware watchpoint traps are always
11933 distinguishable from other traps, so we don't need to
11934 apply keep hardware watchpoint moribund locations
11935 around. We simply always ignore hardware watchpoint
11936 traps we can no longer explain. */
11937
11938 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11939 old_loc->owner = NULL;
11940
11941 moribund_locations.push_back (old_loc);
11942 }
11943 else
11944 {
11945 old_loc->owner = NULL;
11946 decref_bp_location (&old_loc);
11947 }
11948 }
11949 }
11950
11951 /* Rescan breakpoints at the same address and section, marking the
11952 first one as "first" and any others as "duplicates". This is so
11953 that the bpt instruction is only inserted once. If we have a
11954 permanent breakpoint at the same place as BPT, make that one the
11955 official one, and the rest as duplicates. Permanent breakpoints
11956 are sorted first for the same address.
11957
11958 Do the same for hardware watchpoints, but also considering the
11959 watchpoint's type (regular/access/read) and length. */
11960
11961 bp_loc_first = NULL;
11962 wp_loc_first = NULL;
11963 awp_loc_first = NULL;
11964 rwp_loc_first = NULL;
11965 ALL_BP_LOCATIONS (loc, locp)
11966 {
11967 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11968 non-NULL. */
11969 struct bp_location **loc_first_p;
11970 b = loc->owner;
11971
11972 if (!unduplicated_should_be_inserted (loc)
11973 || !breakpoint_address_is_meaningful (b)
11974 /* Don't detect duplicate for tracepoint locations because they are
11975 never duplicated. See the comments in field `duplicate' of
11976 `struct bp_location'. */
11977 || is_tracepoint (b))
11978 {
11979 /* Clear the condition modification flag. */
11980 loc->condition_changed = condition_unchanged;
11981 continue;
11982 }
11983
11984 if (b->type == bp_hardware_watchpoint)
11985 loc_first_p = &wp_loc_first;
11986 else if (b->type == bp_read_watchpoint)
11987 loc_first_p = &rwp_loc_first;
11988 else if (b->type == bp_access_watchpoint)
11989 loc_first_p = &awp_loc_first;
11990 else
11991 loc_first_p = &bp_loc_first;
11992
11993 if (*loc_first_p == NULL
11994 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11995 || !breakpoint_locations_match (loc, *loc_first_p))
11996 {
11997 *loc_first_p = loc;
11998 loc->duplicate = 0;
11999
12000 if (is_breakpoint (loc->owner) && loc->condition_changed)
12001 {
12002 loc->needs_update = 1;
12003 /* Clear the condition modification flag. */
12004 loc->condition_changed = condition_unchanged;
12005 }
12006 continue;
12007 }
12008
12009
12010 /* This and the above ensure the invariant that the first location
12011 is not duplicated, and is the inserted one.
12012 All following are marked as duplicated, and are not inserted. */
12013 if (loc->inserted)
12014 swap_insertion (loc, *loc_first_p);
12015 loc->duplicate = 1;
12016
12017 /* Clear the condition modification flag. */
12018 loc->condition_changed = condition_unchanged;
12019 }
12020
12021 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12022 {
12023 if (insert_mode != UGLL_DONT_INSERT)
12024 insert_breakpoint_locations ();
12025 else
12026 {
12027 /* Even though the caller told us to not insert new
12028 locations, we may still need to update conditions on the
12029 target's side of breakpoints that were already inserted
12030 if the target is evaluating breakpoint conditions. We
12031 only update conditions for locations that are marked
12032 "needs_update". */
12033 update_inserted_breakpoint_locations ();
12034 }
12035 }
12036
12037 if (insert_mode != UGLL_DONT_INSERT)
12038 download_tracepoint_locations ();
12039 }
12040
12041 void
12042 breakpoint_retire_moribund (void)
12043 {
12044 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12045 {
12046 struct bp_location *loc = moribund_locations[ix];
12047 if (--(loc->events_till_retirement) == 0)
12048 {
12049 decref_bp_location (&loc);
12050 unordered_remove (moribund_locations, ix);
12051 --ix;
12052 }
12053 }
12054 }
12055
12056 static void
12057 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12058 {
12059
12060 TRY
12061 {
12062 update_global_location_list (insert_mode);
12063 }
12064 CATCH (e, RETURN_MASK_ERROR)
12065 {
12066 }
12067 END_CATCH
12068 }
12069
12070 /* Clear BKP from a BPS. */
12071
12072 static void
12073 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12074 {
12075 bpstat bs;
12076
12077 for (bs = bps; bs; bs = bs->next)
12078 if (bs->breakpoint_at == bpt)
12079 {
12080 bs->breakpoint_at = NULL;
12081 bs->old_val = NULL;
12082 /* bs->commands will be freed later. */
12083 }
12084 }
12085
12086 /* Callback for iterate_over_threads. */
12087 static int
12088 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12089 {
12090 struct breakpoint *bpt = (struct breakpoint *) data;
12091
12092 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12093 return 0;
12094 }
12095
12096 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12097 callbacks. */
12098
12099 static void
12100 say_where (struct breakpoint *b)
12101 {
12102 struct value_print_options opts;
12103
12104 get_user_print_options (&opts);
12105
12106 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12107 single string. */
12108 if (b->loc == NULL)
12109 {
12110 /* For pending locations, the output differs slightly based
12111 on b->extra_string. If this is non-NULL, it contains either
12112 a condition or dprintf arguments. */
12113 if (b->extra_string == NULL)
12114 {
12115 printf_filtered (_(" (%s) pending."),
12116 event_location_to_string (b->location.get ()));
12117 }
12118 else if (b->type == bp_dprintf)
12119 {
12120 printf_filtered (_(" (%s,%s) pending."),
12121 event_location_to_string (b->location.get ()),
12122 b->extra_string);
12123 }
12124 else
12125 {
12126 printf_filtered (_(" (%s %s) pending."),
12127 event_location_to_string (b->location.get ()),
12128 b->extra_string);
12129 }
12130 }
12131 else
12132 {
12133 if (opts.addressprint || b->loc->symtab == NULL)
12134 {
12135 printf_filtered (" at ");
12136 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12137 address_style.style (),
12138 gdb_stdout);
12139 }
12140 if (b->loc->symtab != NULL)
12141 {
12142 /* If there is a single location, we can print the location
12143 more nicely. */
12144 if (b->loc->next == NULL)
12145 {
12146 puts_filtered (": file ");
12147 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12148 file_name_style.style (),
12149 gdb_stdout);
12150 printf_filtered (", line %d.",
12151 b->loc->line_number);
12152 }
12153 else
12154 /* This is not ideal, but each location may have a
12155 different file name, and this at least reflects the
12156 real situation somewhat. */
12157 printf_filtered (": %s.",
12158 event_location_to_string (b->location.get ()));
12159 }
12160
12161 if (b->loc->next)
12162 {
12163 struct bp_location *loc = b->loc;
12164 int n = 0;
12165 for (; loc; loc = loc->next)
12166 ++n;
12167 printf_filtered (" (%d locations)", n);
12168 }
12169 }
12170 }
12171
12172 bp_location::~bp_location ()
12173 {
12174 xfree (function_name);
12175 }
12176
12177 /* Destructor for the breakpoint base class. */
12178
12179 breakpoint::~breakpoint ()
12180 {
12181 xfree (this->cond_string);
12182 xfree (this->extra_string);
12183 xfree (this->filter);
12184 }
12185
12186 static struct bp_location *
12187 base_breakpoint_allocate_location (struct breakpoint *self)
12188 {
12189 return new bp_location (self);
12190 }
12191
12192 static void
12193 base_breakpoint_re_set (struct breakpoint *b)
12194 {
12195 /* Nothing to re-set. */
12196 }
12197
12198 #define internal_error_pure_virtual_called() \
12199 gdb_assert_not_reached ("pure virtual function called")
12200
12201 static int
12202 base_breakpoint_insert_location (struct bp_location *bl)
12203 {
12204 internal_error_pure_virtual_called ();
12205 }
12206
12207 static int
12208 base_breakpoint_remove_location (struct bp_location *bl,
12209 enum remove_bp_reason reason)
12210 {
12211 internal_error_pure_virtual_called ();
12212 }
12213
12214 static int
12215 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12216 const address_space *aspace,
12217 CORE_ADDR bp_addr,
12218 const struct target_waitstatus *ws)
12219 {
12220 internal_error_pure_virtual_called ();
12221 }
12222
12223 static void
12224 base_breakpoint_check_status (bpstat bs)
12225 {
12226 /* Always stop. */
12227 }
12228
12229 /* A "works_in_software_mode" breakpoint_ops method that just internal
12230 errors. */
12231
12232 static int
12233 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12234 {
12235 internal_error_pure_virtual_called ();
12236 }
12237
12238 /* A "resources_needed" breakpoint_ops method that just internal
12239 errors. */
12240
12241 static int
12242 base_breakpoint_resources_needed (const struct bp_location *bl)
12243 {
12244 internal_error_pure_virtual_called ();
12245 }
12246
12247 static enum print_stop_action
12248 base_breakpoint_print_it (bpstat bs)
12249 {
12250 internal_error_pure_virtual_called ();
12251 }
12252
12253 static void
12254 base_breakpoint_print_one_detail (const struct breakpoint *self,
12255 struct ui_out *uiout)
12256 {
12257 /* nothing */
12258 }
12259
12260 static void
12261 base_breakpoint_print_mention (struct breakpoint *b)
12262 {
12263 internal_error_pure_virtual_called ();
12264 }
12265
12266 static void
12267 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12268 {
12269 internal_error_pure_virtual_called ();
12270 }
12271
12272 static void
12273 base_breakpoint_create_sals_from_location
12274 (const struct event_location *location,
12275 struct linespec_result *canonical,
12276 enum bptype type_wanted)
12277 {
12278 internal_error_pure_virtual_called ();
12279 }
12280
12281 static void
12282 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12283 struct linespec_result *c,
12284 gdb::unique_xmalloc_ptr<char> cond_string,
12285 gdb::unique_xmalloc_ptr<char> extra_string,
12286 enum bptype type_wanted,
12287 enum bpdisp disposition,
12288 int thread,
12289 int task, int ignore_count,
12290 const struct breakpoint_ops *o,
12291 int from_tty, int enabled,
12292 int internal, unsigned flags)
12293 {
12294 internal_error_pure_virtual_called ();
12295 }
12296
12297 static std::vector<symtab_and_line>
12298 base_breakpoint_decode_location (struct breakpoint *b,
12299 const struct event_location *location,
12300 struct program_space *search_pspace)
12301 {
12302 internal_error_pure_virtual_called ();
12303 }
12304
12305 /* The default 'explains_signal' method. */
12306
12307 static int
12308 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12309 {
12310 return 1;
12311 }
12312
12313 /* The default "after_condition_true" method. */
12314
12315 static void
12316 base_breakpoint_after_condition_true (struct bpstats *bs)
12317 {
12318 /* Nothing to do. */
12319 }
12320
12321 struct breakpoint_ops base_breakpoint_ops =
12322 {
12323 base_breakpoint_allocate_location,
12324 base_breakpoint_re_set,
12325 base_breakpoint_insert_location,
12326 base_breakpoint_remove_location,
12327 base_breakpoint_breakpoint_hit,
12328 base_breakpoint_check_status,
12329 base_breakpoint_resources_needed,
12330 base_breakpoint_works_in_software_mode,
12331 base_breakpoint_print_it,
12332 NULL,
12333 base_breakpoint_print_one_detail,
12334 base_breakpoint_print_mention,
12335 base_breakpoint_print_recreate,
12336 base_breakpoint_create_sals_from_location,
12337 base_breakpoint_create_breakpoints_sal,
12338 base_breakpoint_decode_location,
12339 base_breakpoint_explains_signal,
12340 base_breakpoint_after_condition_true,
12341 };
12342
12343 /* Default breakpoint_ops methods. */
12344
12345 static void
12346 bkpt_re_set (struct breakpoint *b)
12347 {
12348 /* FIXME: is this still reachable? */
12349 if (breakpoint_event_location_empty_p (b))
12350 {
12351 /* Anything without a location can't be re-set. */
12352 delete_breakpoint (b);
12353 return;
12354 }
12355
12356 breakpoint_re_set_default (b);
12357 }
12358
12359 static int
12360 bkpt_insert_location (struct bp_location *bl)
12361 {
12362 CORE_ADDR addr = bl->target_info.reqstd_address;
12363
12364 bl->target_info.kind = breakpoint_kind (bl, &addr);
12365 bl->target_info.placed_address = addr;
12366
12367 if (bl->loc_type == bp_loc_hardware_breakpoint)
12368 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12369 else
12370 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12371 }
12372
12373 static int
12374 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12375 {
12376 if (bl->loc_type == bp_loc_hardware_breakpoint)
12377 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12378 else
12379 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12380 }
12381
12382 static int
12383 bkpt_breakpoint_hit (const struct bp_location *bl,
12384 const address_space *aspace, CORE_ADDR bp_addr,
12385 const struct target_waitstatus *ws)
12386 {
12387 if (ws->kind != TARGET_WAITKIND_STOPPED
12388 || ws->value.sig != GDB_SIGNAL_TRAP)
12389 return 0;
12390
12391 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12392 aspace, bp_addr))
12393 return 0;
12394
12395 if (overlay_debugging /* unmapped overlay section */
12396 && section_is_overlay (bl->section)
12397 && !section_is_mapped (bl->section))
12398 return 0;
12399
12400 return 1;
12401 }
12402
12403 static int
12404 dprintf_breakpoint_hit (const struct bp_location *bl,
12405 const address_space *aspace, CORE_ADDR bp_addr,
12406 const struct target_waitstatus *ws)
12407 {
12408 if (dprintf_style == dprintf_style_agent
12409 && target_can_run_breakpoint_commands ())
12410 {
12411 /* An agent-style dprintf never causes a stop. If we see a trap
12412 for this address it must be for a breakpoint that happens to
12413 be set at the same address. */
12414 return 0;
12415 }
12416
12417 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12418 }
12419
12420 static int
12421 bkpt_resources_needed (const struct bp_location *bl)
12422 {
12423 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12424
12425 return 1;
12426 }
12427
12428 static enum print_stop_action
12429 bkpt_print_it (bpstat bs)
12430 {
12431 struct breakpoint *b;
12432 const struct bp_location *bl;
12433 int bp_temp;
12434 struct ui_out *uiout = current_uiout;
12435
12436 gdb_assert (bs->bp_location_at != NULL);
12437
12438 bl = bs->bp_location_at;
12439 b = bs->breakpoint_at;
12440
12441 bp_temp = b->disposition == disp_del;
12442 if (bl->address != bl->requested_address)
12443 breakpoint_adjustment_warning (bl->requested_address,
12444 bl->address,
12445 b->number, 1);
12446 annotate_breakpoint (b->number);
12447 maybe_print_thread_hit_breakpoint (uiout);
12448
12449 if (bp_temp)
12450 uiout->text ("Temporary breakpoint ");
12451 else
12452 uiout->text ("Breakpoint ");
12453 if (uiout->is_mi_like_p ())
12454 {
12455 uiout->field_string ("reason",
12456 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12457 uiout->field_string ("disp", bpdisp_text (b->disposition));
12458 }
12459 uiout->field_int ("bkptno", b->number);
12460 uiout->text (", ");
12461
12462 return PRINT_SRC_AND_LOC;
12463 }
12464
12465 static void
12466 bkpt_print_mention (struct breakpoint *b)
12467 {
12468 if (current_uiout->is_mi_like_p ())
12469 return;
12470
12471 switch (b->type)
12472 {
12473 case bp_breakpoint:
12474 case bp_gnu_ifunc_resolver:
12475 if (b->disposition == disp_del)
12476 printf_filtered (_("Temporary breakpoint"));
12477 else
12478 printf_filtered (_("Breakpoint"));
12479 printf_filtered (_(" %d"), b->number);
12480 if (b->type == bp_gnu_ifunc_resolver)
12481 printf_filtered (_(" at gnu-indirect-function resolver"));
12482 break;
12483 case bp_hardware_breakpoint:
12484 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12485 break;
12486 case bp_dprintf:
12487 printf_filtered (_("Dprintf %d"), b->number);
12488 break;
12489 }
12490
12491 say_where (b);
12492 }
12493
12494 static void
12495 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12496 {
12497 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12498 fprintf_unfiltered (fp, "tbreak");
12499 else if (tp->type == bp_breakpoint)
12500 fprintf_unfiltered (fp, "break");
12501 else if (tp->type == bp_hardware_breakpoint
12502 && tp->disposition == disp_del)
12503 fprintf_unfiltered (fp, "thbreak");
12504 else if (tp->type == bp_hardware_breakpoint)
12505 fprintf_unfiltered (fp, "hbreak");
12506 else
12507 internal_error (__FILE__, __LINE__,
12508 _("unhandled breakpoint type %d"), (int) tp->type);
12509
12510 fprintf_unfiltered (fp, " %s",
12511 event_location_to_string (tp->location.get ()));
12512
12513 /* Print out extra_string if this breakpoint is pending. It might
12514 contain, for example, conditions that were set by the user. */
12515 if (tp->loc == NULL && tp->extra_string != NULL)
12516 fprintf_unfiltered (fp, " %s", tp->extra_string);
12517
12518 print_recreate_thread (tp, fp);
12519 }
12520
12521 static void
12522 bkpt_create_sals_from_location (const struct event_location *location,
12523 struct linespec_result *canonical,
12524 enum bptype type_wanted)
12525 {
12526 create_sals_from_location_default (location, canonical, type_wanted);
12527 }
12528
12529 static void
12530 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12531 struct linespec_result *canonical,
12532 gdb::unique_xmalloc_ptr<char> cond_string,
12533 gdb::unique_xmalloc_ptr<char> extra_string,
12534 enum bptype type_wanted,
12535 enum bpdisp disposition,
12536 int thread,
12537 int task, int ignore_count,
12538 const struct breakpoint_ops *ops,
12539 int from_tty, int enabled,
12540 int internal, unsigned flags)
12541 {
12542 create_breakpoints_sal_default (gdbarch, canonical,
12543 std::move (cond_string),
12544 std::move (extra_string),
12545 type_wanted,
12546 disposition, thread, task,
12547 ignore_count, ops, from_tty,
12548 enabled, internal, flags);
12549 }
12550
12551 static std::vector<symtab_and_line>
12552 bkpt_decode_location (struct breakpoint *b,
12553 const struct event_location *location,
12554 struct program_space *search_pspace)
12555 {
12556 return decode_location_default (b, location, search_pspace);
12557 }
12558
12559 /* Virtual table for internal breakpoints. */
12560
12561 static void
12562 internal_bkpt_re_set (struct breakpoint *b)
12563 {
12564 switch (b->type)
12565 {
12566 /* Delete overlay event and longjmp master breakpoints; they
12567 will be reset later by breakpoint_re_set. */
12568 case bp_overlay_event:
12569 case bp_longjmp_master:
12570 case bp_std_terminate_master:
12571 case bp_exception_master:
12572 delete_breakpoint (b);
12573 break;
12574
12575 /* This breakpoint is special, it's set up when the inferior
12576 starts and we really don't want to touch it. */
12577 case bp_shlib_event:
12578
12579 /* Like bp_shlib_event, this breakpoint type is special. Once
12580 it is set up, we do not want to touch it. */
12581 case bp_thread_event:
12582 break;
12583 }
12584 }
12585
12586 static void
12587 internal_bkpt_check_status (bpstat bs)
12588 {
12589 if (bs->breakpoint_at->type == bp_shlib_event)
12590 {
12591 /* If requested, stop when the dynamic linker notifies GDB of
12592 events. This allows the user to get control and place
12593 breakpoints in initializer routines for dynamically loaded
12594 objects (among other things). */
12595 bs->stop = stop_on_solib_events;
12596 bs->print = stop_on_solib_events;
12597 }
12598 else
12599 bs->stop = 0;
12600 }
12601
12602 static enum print_stop_action
12603 internal_bkpt_print_it (bpstat bs)
12604 {
12605 struct breakpoint *b;
12606
12607 b = bs->breakpoint_at;
12608
12609 switch (b->type)
12610 {
12611 case bp_shlib_event:
12612 /* Did we stop because the user set the stop_on_solib_events
12613 variable? (If so, we report this as a generic, "Stopped due
12614 to shlib event" message.) */
12615 print_solib_event (0);
12616 break;
12617
12618 case bp_thread_event:
12619 /* Not sure how we will get here.
12620 GDB should not stop for these breakpoints. */
12621 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12622 break;
12623
12624 case bp_overlay_event:
12625 /* By analogy with the thread event, GDB should not stop for these. */
12626 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12627 break;
12628
12629 case bp_longjmp_master:
12630 /* These should never be enabled. */
12631 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12632 break;
12633
12634 case bp_std_terminate_master:
12635 /* These should never be enabled. */
12636 printf_filtered (_("std::terminate Master Breakpoint: "
12637 "gdb should not stop!\n"));
12638 break;
12639
12640 case bp_exception_master:
12641 /* These should never be enabled. */
12642 printf_filtered (_("Exception Master Breakpoint: "
12643 "gdb should not stop!\n"));
12644 break;
12645 }
12646
12647 return PRINT_NOTHING;
12648 }
12649
12650 static void
12651 internal_bkpt_print_mention (struct breakpoint *b)
12652 {
12653 /* Nothing to mention. These breakpoints are internal. */
12654 }
12655
12656 /* Virtual table for momentary breakpoints */
12657
12658 static void
12659 momentary_bkpt_re_set (struct breakpoint *b)
12660 {
12661 /* Keep temporary breakpoints, which can be encountered when we step
12662 over a dlopen call and solib_add is resetting the breakpoints.
12663 Otherwise these should have been blown away via the cleanup chain
12664 or by breakpoint_init_inferior when we rerun the executable. */
12665 }
12666
12667 static void
12668 momentary_bkpt_check_status (bpstat bs)
12669 {
12670 /* Nothing. The point of these breakpoints is causing a stop. */
12671 }
12672
12673 static enum print_stop_action
12674 momentary_bkpt_print_it (bpstat bs)
12675 {
12676 return PRINT_UNKNOWN;
12677 }
12678
12679 static void
12680 momentary_bkpt_print_mention (struct breakpoint *b)
12681 {
12682 /* Nothing to mention. These breakpoints are internal. */
12683 }
12684
12685 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12686
12687 It gets cleared already on the removal of the first one of such placed
12688 breakpoints. This is OK as they get all removed altogether. */
12689
12690 longjmp_breakpoint::~longjmp_breakpoint ()
12691 {
12692 thread_info *tp = find_thread_global_id (this->thread);
12693
12694 if (tp != NULL)
12695 tp->initiating_frame = null_frame_id;
12696 }
12697
12698 /* Specific methods for probe breakpoints. */
12699
12700 static int
12701 bkpt_probe_insert_location (struct bp_location *bl)
12702 {
12703 int v = bkpt_insert_location (bl);
12704
12705 if (v == 0)
12706 {
12707 /* The insertion was successful, now let's set the probe's semaphore
12708 if needed. */
12709 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12710 }
12711
12712 return v;
12713 }
12714
12715 static int
12716 bkpt_probe_remove_location (struct bp_location *bl,
12717 enum remove_bp_reason reason)
12718 {
12719 /* Let's clear the semaphore before removing the location. */
12720 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12721
12722 return bkpt_remove_location (bl, reason);
12723 }
12724
12725 static void
12726 bkpt_probe_create_sals_from_location (const struct event_location *location,
12727 struct linespec_result *canonical,
12728 enum bptype type_wanted)
12729 {
12730 struct linespec_sals lsal;
12731
12732 lsal.sals = parse_probes (location, NULL, canonical);
12733 lsal.canonical
12734 = xstrdup (event_location_to_string (canonical->location.get ()));
12735 canonical->lsals.push_back (std::move (lsal));
12736 }
12737
12738 static std::vector<symtab_and_line>
12739 bkpt_probe_decode_location (struct breakpoint *b,
12740 const struct event_location *location,
12741 struct program_space *search_pspace)
12742 {
12743 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12744 if (sals.empty ())
12745 error (_("probe not found"));
12746 return sals;
12747 }
12748
12749 /* The breakpoint_ops structure to be used in tracepoints. */
12750
12751 static void
12752 tracepoint_re_set (struct breakpoint *b)
12753 {
12754 breakpoint_re_set_default (b);
12755 }
12756
12757 static int
12758 tracepoint_breakpoint_hit (const struct bp_location *bl,
12759 const address_space *aspace, CORE_ADDR bp_addr,
12760 const struct target_waitstatus *ws)
12761 {
12762 /* By definition, the inferior does not report stops at
12763 tracepoints. */
12764 return 0;
12765 }
12766
12767 static void
12768 tracepoint_print_one_detail (const struct breakpoint *self,
12769 struct ui_out *uiout)
12770 {
12771 struct tracepoint *tp = (struct tracepoint *) self;
12772 if (!tp->static_trace_marker_id.empty ())
12773 {
12774 gdb_assert (self->type == bp_static_tracepoint);
12775
12776 uiout->text ("\tmarker id is ");
12777 uiout->field_string ("static-tracepoint-marker-string-id",
12778 tp->static_trace_marker_id);
12779 uiout->text ("\n");
12780 }
12781 }
12782
12783 static void
12784 tracepoint_print_mention (struct breakpoint *b)
12785 {
12786 if (current_uiout->is_mi_like_p ())
12787 return;
12788
12789 switch (b->type)
12790 {
12791 case bp_tracepoint:
12792 printf_filtered (_("Tracepoint"));
12793 printf_filtered (_(" %d"), b->number);
12794 break;
12795 case bp_fast_tracepoint:
12796 printf_filtered (_("Fast tracepoint"));
12797 printf_filtered (_(" %d"), b->number);
12798 break;
12799 case bp_static_tracepoint:
12800 printf_filtered (_("Static tracepoint"));
12801 printf_filtered (_(" %d"), b->number);
12802 break;
12803 default:
12804 internal_error (__FILE__, __LINE__,
12805 _("unhandled tracepoint type %d"), (int) b->type);
12806 }
12807
12808 say_where (b);
12809 }
12810
12811 static void
12812 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12813 {
12814 struct tracepoint *tp = (struct tracepoint *) self;
12815
12816 if (self->type == bp_fast_tracepoint)
12817 fprintf_unfiltered (fp, "ftrace");
12818 else if (self->type == bp_static_tracepoint)
12819 fprintf_unfiltered (fp, "strace");
12820 else if (self->type == bp_tracepoint)
12821 fprintf_unfiltered (fp, "trace");
12822 else
12823 internal_error (__FILE__, __LINE__,
12824 _("unhandled tracepoint type %d"), (int) self->type);
12825
12826 fprintf_unfiltered (fp, " %s",
12827 event_location_to_string (self->location.get ()));
12828 print_recreate_thread (self, fp);
12829
12830 if (tp->pass_count)
12831 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12832 }
12833
12834 static void
12835 tracepoint_create_sals_from_location (const struct event_location *location,
12836 struct linespec_result *canonical,
12837 enum bptype type_wanted)
12838 {
12839 create_sals_from_location_default (location, canonical, type_wanted);
12840 }
12841
12842 static void
12843 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12844 struct linespec_result *canonical,
12845 gdb::unique_xmalloc_ptr<char> cond_string,
12846 gdb::unique_xmalloc_ptr<char> extra_string,
12847 enum bptype type_wanted,
12848 enum bpdisp disposition,
12849 int thread,
12850 int task, int ignore_count,
12851 const struct breakpoint_ops *ops,
12852 int from_tty, int enabled,
12853 int internal, unsigned flags)
12854 {
12855 create_breakpoints_sal_default (gdbarch, canonical,
12856 std::move (cond_string),
12857 std::move (extra_string),
12858 type_wanted,
12859 disposition, thread, task,
12860 ignore_count, ops, from_tty,
12861 enabled, internal, flags);
12862 }
12863
12864 static std::vector<symtab_and_line>
12865 tracepoint_decode_location (struct breakpoint *b,
12866 const struct event_location *location,
12867 struct program_space *search_pspace)
12868 {
12869 return decode_location_default (b, location, search_pspace);
12870 }
12871
12872 struct breakpoint_ops tracepoint_breakpoint_ops;
12873
12874 /* The breakpoint_ops structure to be use on tracepoints placed in a
12875 static probe. */
12876
12877 static void
12878 tracepoint_probe_create_sals_from_location
12879 (const struct event_location *location,
12880 struct linespec_result *canonical,
12881 enum bptype type_wanted)
12882 {
12883 /* We use the same method for breakpoint on probes. */
12884 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12885 }
12886
12887 static std::vector<symtab_and_line>
12888 tracepoint_probe_decode_location (struct breakpoint *b,
12889 const struct event_location *location,
12890 struct program_space *search_pspace)
12891 {
12892 /* We use the same method for breakpoint on probes. */
12893 return bkpt_probe_decode_location (b, location, search_pspace);
12894 }
12895
12896 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12897
12898 /* Dprintf breakpoint_ops methods. */
12899
12900 static void
12901 dprintf_re_set (struct breakpoint *b)
12902 {
12903 breakpoint_re_set_default (b);
12904
12905 /* extra_string should never be non-NULL for dprintf. */
12906 gdb_assert (b->extra_string != NULL);
12907
12908 /* 1 - connect to target 1, that can run breakpoint commands.
12909 2 - create a dprintf, which resolves fine.
12910 3 - disconnect from target 1
12911 4 - connect to target 2, that can NOT run breakpoint commands.
12912
12913 After steps #3/#4, you'll want the dprintf command list to
12914 be updated, because target 1 and 2 may well return different
12915 answers for target_can_run_breakpoint_commands().
12916 Given absence of finer grained resetting, we get to do
12917 it all the time. */
12918 if (b->extra_string != NULL)
12919 update_dprintf_command_list (b);
12920 }
12921
12922 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12923
12924 static void
12925 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12926 {
12927 fprintf_unfiltered (fp, "dprintf %s,%s",
12928 event_location_to_string (tp->location.get ()),
12929 tp->extra_string);
12930 print_recreate_thread (tp, fp);
12931 }
12932
12933 /* Implement the "after_condition_true" breakpoint_ops method for
12934 dprintf.
12935
12936 dprintf's are implemented with regular commands in their command
12937 list, but we run the commands here instead of before presenting the
12938 stop to the user, as dprintf's don't actually cause a stop. This
12939 also makes it so that the commands of multiple dprintfs at the same
12940 address are all handled. */
12941
12942 static void
12943 dprintf_after_condition_true (struct bpstats *bs)
12944 {
12945 struct bpstats tmp_bs;
12946 struct bpstats *tmp_bs_p = &tmp_bs;
12947
12948 /* dprintf's never cause a stop. This wasn't set in the
12949 check_status hook instead because that would make the dprintf's
12950 condition not be evaluated. */
12951 bs->stop = 0;
12952
12953 /* Run the command list here. Take ownership of it instead of
12954 copying. We never want these commands to run later in
12955 bpstat_do_actions, if a breakpoint that causes a stop happens to
12956 be set at same address as this dprintf, or even if running the
12957 commands here throws. */
12958 tmp_bs.commands = bs->commands;
12959 bs->commands = NULL;
12960
12961 bpstat_do_actions_1 (&tmp_bs_p);
12962
12963 /* 'tmp_bs.commands' will usually be NULL by now, but
12964 bpstat_do_actions_1 may return early without processing the whole
12965 list. */
12966 }
12967
12968 /* The breakpoint_ops structure to be used on static tracepoints with
12969 markers (`-m'). */
12970
12971 static void
12972 strace_marker_create_sals_from_location (const struct event_location *location,
12973 struct linespec_result *canonical,
12974 enum bptype type_wanted)
12975 {
12976 struct linespec_sals lsal;
12977 const char *arg_start, *arg;
12978
12979 arg = arg_start = get_linespec_location (location)->spec_string;
12980 lsal.sals = decode_static_tracepoint_spec (&arg);
12981
12982 std::string str (arg_start, arg - arg_start);
12983 const char *ptr = str.c_str ();
12984 canonical->location
12985 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12986
12987 lsal.canonical
12988 = xstrdup (event_location_to_string (canonical->location.get ()));
12989 canonical->lsals.push_back (std::move (lsal));
12990 }
12991
12992 static void
12993 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12994 struct linespec_result *canonical,
12995 gdb::unique_xmalloc_ptr<char> cond_string,
12996 gdb::unique_xmalloc_ptr<char> extra_string,
12997 enum bptype type_wanted,
12998 enum bpdisp disposition,
12999 int thread,
13000 int task, int ignore_count,
13001 const struct breakpoint_ops *ops,
13002 int from_tty, int enabled,
13003 int internal, unsigned flags)
13004 {
13005 const linespec_sals &lsal = canonical->lsals[0];
13006
13007 /* If the user is creating a static tracepoint by marker id
13008 (strace -m MARKER_ID), then store the sals index, so that
13009 breakpoint_re_set can try to match up which of the newly
13010 found markers corresponds to this one, and, don't try to
13011 expand multiple locations for each sal, given than SALS
13012 already should contain all sals for MARKER_ID. */
13013
13014 for (size_t i = 0; i < lsal.sals.size (); i++)
13015 {
13016 event_location_up location
13017 = copy_event_location (canonical->location.get ());
13018
13019 std::unique_ptr<tracepoint> tp (new tracepoint ());
13020 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13021 std::move (location), NULL,
13022 std::move (cond_string),
13023 std::move (extra_string),
13024 type_wanted, disposition,
13025 thread, task, ignore_count, ops,
13026 from_tty, enabled, internal, flags,
13027 canonical->special_display);
13028 /* Given that its possible to have multiple markers with
13029 the same string id, if the user is creating a static
13030 tracepoint by marker id ("strace -m MARKER_ID"), then
13031 store the sals index, so that breakpoint_re_set can
13032 try to match up which of the newly found markers
13033 corresponds to this one */
13034 tp->static_trace_marker_id_idx = i;
13035
13036 install_breakpoint (internal, std::move (tp), 0);
13037 }
13038 }
13039
13040 static std::vector<symtab_and_line>
13041 strace_marker_decode_location (struct breakpoint *b,
13042 const struct event_location *location,
13043 struct program_space *search_pspace)
13044 {
13045 struct tracepoint *tp = (struct tracepoint *) b;
13046 const char *s = get_linespec_location (location)->spec_string;
13047
13048 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13049 if (sals.size () > tp->static_trace_marker_id_idx)
13050 {
13051 sals[0] = sals[tp->static_trace_marker_id_idx];
13052 sals.resize (1);
13053 return sals;
13054 }
13055 else
13056 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13057 }
13058
13059 static struct breakpoint_ops strace_marker_breakpoint_ops;
13060
13061 static int
13062 strace_marker_p (struct breakpoint *b)
13063 {
13064 return b->ops == &strace_marker_breakpoint_ops;
13065 }
13066
13067 /* Delete a breakpoint and clean up all traces of it in the data
13068 structures. */
13069
13070 void
13071 delete_breakpoint (struct breakpoint *bpt)
13072 {
13073 struct breakpoint *b;
13074
13075 gdb_assert (bpt != NULL);
13076
13077 /* Has this bp already been deleted? This can happen because
13078 multiple lists can hold pointers to bp's. bpstat lists are
13079 especial culprits.
13080
13081 One example of this happening is a watchpoint's scope bp. When
13082 the scope bp triggers, we notice that the watchpoint is out of
13083 scope, and delete it. We also delete its scope bp. But the
13084 scope bp is marked "auto-deleting", and is already on a bpstat.
13085 That bpstat is then checked for auto-deleting bp's, which are
13086 deleted.
13087
13088 A real solution to this problem might involve reference counts in
13089 bp's, and/or giving them pointers back to their referencing
13090 bpstat's, and teaching delete_breakpoint to only free a bp's
13091 storage when no more references were extent. A cheaper bandaid
13092 was chosen. */
13093 if (bpt->type == bp_none)
13094 return;
13095
13096 /* At least avoid this stale reference until the reference counting
13097 of breakpoints gets resolved. */
13098 if (bpt->related_breakpoint != bpt)
13099 {
13100 struct breakpoint *related;
13101 struct watchpoint *w;
13102
13103 if (bpt->type == bp_watchpoint_scope)
13104 w = (struct watchpoint *) bpt->related_breakpoint;
13105 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13106 w = (struct watchpoint *) bpt;
13107 else
13108 w = NULL;
13109 if (w != NULL)
13110 watchpoint_del_at_next_stop (w);
13111
13112 /* Unlink bpt from the bpt->related_breakpoint ring. */
13113 for (related = bpt; related->related_breakpoint != bpt;
13114 related = related->related_breakpoint);
13115 related->related_breakpoint = bpt->related_breakpoint;
13116 bpt->related_breakpoint = bpt;
13117 }
13118
13119 /* watch_command_1 creates a watchpoint but only sets its number if
13120 update_watchpoint succeeds in creating its bp_locations. If there's
13121 a problem in that process, we'll be asked to delete the half-created
13122 watchpoint. In that case, don't announce the deletion. */
13123 if (bpt->number)
13124 gdb::observers::breakpoint_deleted.notify (bpt);
13125
13126 if (breakpoint_chain == bpt)
13127 breakpoint_chain = bpt->next;
13128
13129 ALL_BREAKPOINTS (b)
13130 if (b->next == bpt)
13131 {
13132 b->next = bpt->next;
13133 break;
13134 }
13135
13136 /* Be sure no bpstat's are pointing at the breakpoint after it's
13137 been freed. */
13138 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13139 in all threads for now. Note that we cannot just remove bpstats
13140 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13141 commands are associated with the bpstat; if we remove it here,
13142 then the later call to bpstat_do_actions (&stop_bpstat); in
13143 event-top.c won't do anything, and temporary breakpoints with
13144 commands won't work. */
13145
13146 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13147
13148 /* Now that breakpoint is removed from breakpoint list, update the
13149 global location list. This will remove locations that used to
13150 belong to this breakpoint. Do this before freeing the breakpoint
13151 itself, since remove_breakpoint looks at location's owner. It
13152 might be better design to have location completely
13153 self-contained, but it's not the case now. */
13154 update_global_location_list (UGLL_DONT_INSERT);
13155
13156 /* On the chance that someone will soon try again to delete this
13157 same bp, we mark it as deleted before freeing its storage. */
13158 bpt->type = bp_none;
13159 delete bpt;
13160 }
13161
13162 /* Iterator function to call a user-provided callback function once
13163 for each of B and its related breakpoints. */
13164
13165 static void
13166 iterate_over_related_breakpoints (struct breakpoint *b,
13167 gdb::function_view<void (breakpoint *)> function)
13168 {
13169 struct breakpoint *related;
13170
13171 related = b;
13172 do
13173 {
13174 struct breakpoint *next;
13175
13176 /* FUNCTION may delete RELATED. */
13177 next = related->related_breakpoint;
13178
13179 if (next == related)
13180 {
13181 /* RELATED is the last ring entry. */
13182 function (related);
13183
13184 /* FUNCTION may have deleted it, so we'd never reach back to
13185 B. There's nothing left to do anyway, so just break
13186 out. */
13187 break;
13188 }
13189 else
13190 function (related);
13191
13192 related = next;
13193 }
13194 while (related != b);
13195 }
13196
13197 static void
13198 delete_command (const char *arg, int from_tty)
13199 {
13200 struct breakpoint *b, *b_tmp;
13201
13202 dont_repeat ();
13203
13204 if (arg == 0)
13205 {
13206 int breaks_to_delete = 0;
13207
13208 /* Delete all breakpoints if no argument. Do not delete
13209 internal breakpoints, these have to be deleted with an
13210 explicit breakpoint number argument. */
13211 ALL_BREAKPOINTS (b)
13212 if (user_breakpoint_p (b))
13213 {
13214 breaks_to_delete = 1;
13215 break;
13216 }
13217
13218 /* Ask user only if there are some breakpoints to delete. */
13219 if (!from_tty
13220 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13221 {
13222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13223 if (user_breakpoint_p (b))
13224 delete_breakpoint (b);
13225 }
13226 }
13227 else
13228 map_breakpoint_numbers
13229 (arg, [&] (breakpoint *br)
13230 {
13231 iterate_over_related_breakpoints (br, delete_breakpoint);
13232 });
13233 }
13234
13235 /* Return true if all locations of B bound to PSPACE are pending. If
13236 PSPACE is NULL, all locations of all program spaces are
13237 considered. */
13238
13239 static int
13240 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13241 {
13242 struct bp_location *loc;
13243
13244 for (loc = b->loc; loc != NULL; loc = loc->next)
13245 if ((pspace == NULL
13246 || loc->pspace == pspace)
13247 && !loc->shlib_disabled
13248 && !loc->pspace->executing_startup)
13249 return 0;
13250 return 1;
13251 }
13252
13253 /* Subroutine of update_breakpoint_locations to simplify it.
13254 Return non-zero if multiple fns in list LOC have the same name.
13255 Null names are ignored. */
13256
13257 static int
13258 ambiguous_names_p (struct bp_location *loc)
13259 {
13260 struct bp_location *l;
13261 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13262 xcalloc, xfree);
13263
13264 for (l = loc; l != NULL; l = l->next)
13265 {
13266 const char **slot;
13267 const char *name = l->function_name;
13268
13269 /* Allow for some names to be NULL, ignore them. */
13270 if (name == NULL)
13271 continue;
13272
13273 slot = (const char **) htab_find_slot (htab, (const void *) name,
13274 INSERT);
13275 /* NOTE: We can assume slot != NULL here because xcalloc never
13276 returns NULL. */
13277 if (*slot != NULL)
13278 {
13279 htab_delete (htab);
13280 return 1;
13281 }
13282 *slot = name;
13283 }
13284
13285 htab_delete (htab);
13286 return 0;
13287 }
13288
13289 /* When symbols change, it probably means the sources changed as well,
13290 and it might mean the static tracepoint markers are no longer at
13291 the same address or line numbers they used to be at last we
13292 checked. Losing your static tracepoints whenever you rebuild is
13293 undesirable. This function tries to resync/rematch gdb static
13294 tracepoints with the markers on the target, for static tracepoints
13295 that have not been set by marker id. Static tracepoint that have
13296 been set by marker id are reset by marker id in breakpoint_re_set.
13297 The heuristic is:
13298
13299 1) For a tracepoint set at a specific address, look for a marker at
13300 the old PC. If one is found there, assume to be the same marker.
13301 If the name / string id of the marker found is different from the
13302 previous known name, assume that means the user renamed the marker
13303 in the sources, and output a warning.
13304
13305 2) For a tracepoint set at a given line number, look for a marker
13306 at the new address of the old line number. If one is found there,
13307 assume to be the same marker. If the name / string id of the
13308 marker found is different from the previous known name, assume that
13309 means the user renamed the marker in the sources, and output a
13310 warning.
13311
13312 3) If a marker is no longer found at the same address or line, it
13313 may mean the marker no longer exists. But it may also just mean
13314 the code changed a bit. Maybe the user added a few lines of code
13315 that made the marker move up or down (in line number terms). Ask
13316 the target for info about the marker with the string id as we knew
13317 it. If found, update line number and address in the matching
13318 static tracepoint. This will get confused if there's more than one
13319 marker with the same ID (possible in UST, although unadvised
13320 precisely because it confuses tools). */
13321
13322 static struct symtab_and_line
13323 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13324 {
13325 struct tracepoint *tp = (struct tracepoint *) b;
13326 struct static_tracepoint_marker marker;
13327 CORE_ADDR pc;
13328
13329 pc = sal.pc;
13330 if (sal.line)
13331 find_line_pc (sal.symtab, sal.line, &pc);
13332
13333 if (target_static_tracepoint_marker_at (pc, &marker))
13334 {
13335 if (tp->static_trace_marker_id != marker.str_id)
13336 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13337 b->number, tp->static_trace_marker_id.c_str (),
13338 marker.str_id.c_str ());
13339
13340 tp->static_trace_marker_id = std::move (marker.str_id);
13341
13342 return sal;
13343 }
13344
13345 /* Old marker wasn't found on target at lineno. Try looking it up
13346 by string ID. */
13347 if (!sal.explicit_pc
13348 && sal.line != 0
13349 && sal.symtab != NULL
13350 && !tp->static_trace_marker_id.empty ())
13351 {
13352 std::vector<static_tracepoint_marker> markers
13353 = target_static_tracepoint_markers_by_strid
13354 (tp->static_trace_marker_id.c_str ());
13355
13356 if (!markers.empty ())
13357 {
13358 struct symbol *sym;
13359 struct static_tracepoint_marker *tpmarker;
13360 struct ui_out *uiout = current_uiout;
13361 struct explicit_location explicit_loc;
13362
13363 tpmarker = &markers[0];
13364
13365 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13366
13367 warning (_("marker for static tracepoint %d (%s) not "
13368 "found at previous line number"),
13369 b->number, tp->static_trace_marker_id.c_str ());
13370
13371 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13372 sym = find_pc_sect_function (tpmarker->address, NULL);
13373 uiout->text ("Now in ");
13374 if (sym)
13375 {
13376 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13377 ui_out_style_kind::FUNCTION);
13378 uiout->text (" at ");
13379 }
13380 uiout->field_string ("file",
13381 symtab_to_filename_for_display (sal2.symtab),
13382 ui_out_style_kind::FILE);
13383 uiout->text (":");
13384
13385 if (uiout->is_mi_like_p ())
13386 {
13387 const char *fullname = symtab_to_fullname (sal2.symtab);
13388
13389 uiout->field_string ("fullname", fullname);
13390 }
13391
13392 uiout->field_int ("line", sal2.line);
13393 uiout->text ("\n");
13394
13395 b->loc->line_number = sal2.line;
13396 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13397
13398 b->location.reset (NULL);
13399 initialize_explicit_location (&explicit_loc);
13400 explicit_loc.source_filename
13401 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13402 explicit_loc.line_offset.offset = b->loc->line_number;
13403 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13404 b->location = new_explicit_location (&explicit_loc);
13405
13406 /* Might be nice to check if function changed, and warn if
13407 so. */
13408 }
13409 }
13410 return sal;
13411 }
13412
13413 /* Returns 1 iff locations A and B are sufficiently same that
13414 we don't need to report breakpoint as changed. */
13415
13416 static int
13417 locations_are_equal (struct bp_location *a, struct bp_location *b)
13418 {
13419 while (a && b)
13420 {
13421 if (a->address != b->address)
13422 return 0;
13423
13424 if (a->shlib_disabled != b->shlib_disabled)
13425 return 0;
13426
13427 if (a->enabled != b->enabled)
13428 return 0;
13429
13430 a = a->next;
13431 b = b->next;
13432 }
13433
13434 if ((a == NULL) != (b == NULL))
13435 return 0;
13436
13437 return 1;
13438 }
13439
13440 /* Split all locations of B that are bound to PSPACE out of B's
13441 location list to a separate list and return that list's head. If
13442 PSPACE is NULL, hoist out all locations of B. */
13443
13444 static struct bp_location *
13445 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13446 {
13447 struct bp_location head;
13448 struct bp_location *i = b->loc;
13449 struct bp_location **i_link = &b->loc;
13450 struct bp_location *hoisted = &head;
13451
13452 if (pspace == NULL)
13453 {
13454 i = b->loc;
13455 b->loc = NULL;
13456 return i;
13457 }
13458
13459 head.next = NULL;
13460
13461 while (i != NULL)
13462 {
13463 if (i->pspace == pspace)
13464 {
13465 *i_link = i->next;
13466 i->next = NULL;
13467 hoisted->next = i;
13468 hoisted = i;
13469 }
13470 else
13471 i_link = &i->next;
13472 i = *i_link;
13473 }
13474
13475 return head.next;
13476 }
13477
13478 /* Create new breakpoint locations for B (a hardware or software
13479 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13480 zero, then B is a ranged breakpoint. Only recreates locations for
13481 FILTER_PSPACE. Locations of other program spaces are left
13482 untouched. */
13483
13484 void
13485 update_breakpoint_locations (struct breakpoint *b,
13486 struct program_space *filter_pspace,
13487 gdb::array_view<const symtab_and_line> sals,
13488 gdb::array_view<const symtab_and_line> sals_end)
13489 {
13490 struct bp_location *existing_locations;
13491
13492 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13493 {
13494 /* Ranged breakpoints have only one start location and one end
13495 location. */
13496 b->enable_state = bp_disabled;
13497 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13498 "multiple locations found\n"),
13499 b->number);
13500 return;
13501 }
13502
13503 /* If there's no new locations, and all existing locations are
13504 pending, don't do anything. This optimizes the common case where
13505 all locations are in the same shared library, that was unloaded.
13506 We'd like to retain the location, so that when the library is
13507 loaded again, we don't loose the enabled/disabled status of the
13508 individual locations. */
13509 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13510 return;
13511
13512 existing_locations = hoist_existing_locations (b, filter_pspace);
13513
13514 for (const auto &sal : sals)
13515 {
13516 struct bp_location *new_loc;
13517
13518 switch_to_program_space_and_thread (sal.pspace);
13519
13520 new_loc = add_location_to_breakpoint (b, &sal);
13521
13522 /* Reparse conditions, they might contain references to the
13523 old symtab. */
13524 if (b->cond_string != NULL)
13525 {
13526 const char *s;
13527
13528 s = b->cond_string;
13529 TRY
13530 {
13531 new_loc->cond = parse_exp_1 (&s, sal.pc,
13532 block_for_pc (sal.pc),
13533 0);
13534 }
13535 CATCH (e, RETURN_MASK_ERROR)
13536 {
13537 warning (_("failed to reevaluate condition "
13538 "for breakpoint %d: %s"),
13539 b->number, e.message);
13540 new_loc->enabled = 0;
13541 }
13542 END_CATCH
13543 }
13544
13545 if (!sals_end.empty ())
13546 {
13547 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13548
13549 new_loc->length = end - sals[0].pc + 1;
13550 }
13551 }
13552
13553 /* If possible, carry over 'disable' status from existing
13554 breakpoints. */
13555 {
13556 struct bp_location *e = existing_locations;
13557 /* If there are multiple breakpoints with the same function name,
13558 e.g. for inline functions, comparing function names won't work.
13559 Instead compare pc addresses; this is just a heuristic as things
13560 may have moved, but in practice it gives the correct answer
13561 often enough until a better solution is found. */
13562 int have_ambiguous_names = ambiguous_names_p (b->loc);
13563
13564 for (; e; e = e->next)
13565 {
13566 if (!e->enabled && e->function_name)
13567 {
13568 struct bp_location *l = b->loc;
13569 if (have_ambiguous_names)
13570 {
13571 for (; l; l = l->next)
13572 if (breakpoint_locations_match (e, l))
13573 {
13574 l->enabled = 0;
13575 break;
13576 }
13577 }
13578 else
13579 {
13580 for (; l; l = l->next)
13581 if (l->function_name
13582 && strcmp (e->function_name, l->function_name) == 0)
13583 {
13584 l->enabled = 0;
13585 break;
13586 }
13587 }
13588 }
13589 }
13590 }
13591
13592 if (!locations_are_equal (existing_locations, b->loc))
13593 gdb::observers::breakpoint_modified.notify (b);
13594 }
13595
13596 /* Find the SaL locations corresponding to the given LOCATION.
13597 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13598
13599 static std::vector<symtab_and_line>
13600 location_to_sals (struct breakpoint *b, struct event_location *location,
13601 struct program_space *search_pspace, int *found)
13602 {
13603 struct gdb_exception exception = exception_none;
13604
13605 gdb_assert (b->ops != NULL);
13606
13607 std::vector<symtab_and_line> sals;
13608
13609 TRY
13610 {
13611 sals = b->ops->decode_location (b, location, search_pspace);
13612 }
13613 CATCH (e, RETURN_MASK_ERROR)
13614 {
13615 int not_found_and_ok = 0;
13616
13617 exception = e;
13618
13619 /* For pending breakpoints, it's expected that parsing will
13620 fail until the right shared library is loaded. User has
13621 already told to create pending breakpoints and don't need
13622 extra messages. If breakpoint is in bp_shlib_disabled
13623 state, then user already saw the message about that
13624 breakpoint being disabled, and don't want to see more
13625 errors. */
13626 if (e.error == NOT_FOUND_ERROR
13627 && (b->condition_not_parsed
13628 || (b->loc != NULL
13629 && search_pspace != NULL
13630 && b->loc->pspace != search_pspace)
13631 || (b->loc && b->loc->shlib_disabled)
13632 || (b->loc && b->loc->pspace->executing_startup)
13633 || b->enable_state == bp_disabled))
13634 not_found_and_ok = 1;
13635
13636 if (!not_found_and_ok)
13637 {
13638 /* We surely don't want to warn about the same breakpoint
13639 10 times. One solution, implemented here, is disable
13640 the breakpoint on error. Another solution would be to
13641 have separate 'warning emitted' flag. Since this
13642 happens only when a binary has changed, I don't know
13643 which approach is better. */
13644 b->enable_state = bp_disabled;
13645 throw_exception (e);
13646 }
13647 }
13648 END_CATCH
13649
13650 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13651 {
13652 for (auto &sal : sals)
13653 resolve_sal_pc (&sal);
13654 if (b->condition_not_parsed && b->extra_string != NULL)
13655 {
13656 char *cond_string, *extra_string;
13657 int thread, task;
13658
13659 find_condition_and_thread (b->extra_string, sals[0].pc,
13660 &cond_string, &thread, &task,
13661 &extra_string);
13662 gdb_assert (b->cond_string == NULL);
13663 if (cond_string)
13664 b->cond_string = cond_string;
13665 b->thread = thread;
13666 b->task = task;
13667 if (extra_string)
13668 {
13669 xfree (b->extra_string);
13670 b->extra_string = extra_string;
13671 }
13672 b->condition_not_parsed = 0;
13673 }
13674
13675 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13676 sals[0] = update_static_tracepoint (b, sals[0]);
13677
13678 *found = 1;
13679 }
13680 else
13681 *found = 0;
13682
13683 return sals;
13684 }
13685
13686 /* The default re_set method, for typical hardware or software
13687 breakpoints. Reevaluate the breakpoint and recreate its
13688 locations. */
13689
13690 static void
13691 breakpoint_re_set_default (struct breakpoint *b)
13692 {
13693 struct program_space *filter_pspace = current_program_space;
13694 std::vector<symtab_and_line> expanded, expanded_end;
13695
13696 int found;
13697 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13698 filter_pspace, &found);
13699 if (found)
13700 expanded = std::move (sals);
13701
13702 if (b->location_range_end != NULL)
13703 {
13704 std::vector<symtab_and_line> sals_end
13705 = location_to_sals (b, b->location_range_end.get (),
13706 filter_pspace, &found);
13707 if (found)
13708 expanded_end = std::move (sals_end);
13709 }
13710
13711 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13712 }
13713
13714 /* Default method for creating SALs from an address string. It basically
13715 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13716
13717 static void
13718 create_sals_from_location_default (const struct event_location *location,
13719 struct linespec_result *canonical,
13720 enum bptype type_wanted)
13721 {
13722 parse_breakpoint_sals (location, canonical);
13723 }
13724
13725 /* Call create_breakpoints_sal for the given arguments. This is the default
13726 function for the `create_breakpoints_sal' method of
13727 breakpoint_ops. */
13728
13729 static void
13730 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13731 struct linespec_result *canonical,
13732 gdb::unique_xmalloc_ptr<char> cond_string,
13733 gdb::unique_xmalloc_ptr<char> extra_string,
13734 enum bptype type_wanted,
13735 enum bpdisp disposition,
13736 int thread,
13737 int task, int ignore_count,
13738 const struct breakpoint_ops *ops,
13739 int from_tty, int enabled,
13740 int internal, unsigned flags)
13741 {
13742 create_breakpoints_sal (gdbarch, canonical,
13743 std::move (cond_string),
13744 std::move (extra_string),
13745 type_wanted, disposition,
13746 thread, task, ignore_count, ops, from_tty,
13747 enabled, internal, flags);
13748 }
13749
13750 /* Decode the line represented by S by calling decode_line_full. This is the
13751 default function for the `decode_location' method of breakpoint_ops. */
13752
13753 static std::vector<symtab_and_line>
13754 decode_location_default (struct breakpoint *b,
13755 const struct event_location *location,
13756 struct program_space *search_pspace)
13757 {
13758 struct linespec_result canonical;
13759
13760 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13761 (struct symtab *) NULL, 0,
13762 &canonical, multiple_symbols_all,
13763 b->filter);
13764
13765 /* We should get 0 or 1 resulting SALs. */
13766 gdb_assert (canonical.lsals.size () < 2);
13767
13768 if (!canonical.lsals.empty ())
13769 {
13770 const linespec_sals &lsal = canonical.lsals[0];
13771 return std::move (lsal.sals);
13772 }
13773 return {};
13774 }
13775
13776 /* Reset a breakpoint. */
13777
13778 static void
13779 breakpoint_re_set_one (breakpoint *b)
13780 {
13781 input_radix = b->input_radix;
13782 set_language (b->language);
13783
13784 b->ops->re_set (b);
13785 }
13786
13787 /* Re-set breakpoint locations for the current program space.
13788 Locations bound to other program spaces are left untouched. */
13789
13790 void
13791 breakpoint_re_set (void)
13792 {
13793 struct breakpoint *b, *b_tmp;
13794
13795 {
13796 scoped_restore_current_language save_language;
13797 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13798 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13799
13800 /* breakpoint_re_set_one sets the current_language to the language
13801 of the breakpoint it is resetting (see prepare_re_set_context)
13802 before re-evaluating the breakpoint's location. This change can
13803 unfortunately get undone by accident if the language_mode is set
13804 to auto, and we either switch frames, or more likely in this context,
13805 we select the current frame.
13806
13807 We prevent this by temporarily turning the language_mode to
13808 language_mode_manual. We restore it once all breakpoints
13809 have been reset. */
13810 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13811 language_mode = language_mode_manual;
13812
13813 /* Note: we must not try to insert locations until after all
13814 breakpoints have been re-set. Otherwise, e.g., when re-setting
13815 breakpoint 1, we'd insert the locations of breakpoint 2, which
13816 hadn't been re-set yet, and thus may have stale locations. */
13817
13818 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13819 {
13820 TRY
13821 {
13822 breakpoint_re_set_one (b);
13823 }
13824 CATCH (ex, RETURN_MASK_ALL)
13825 {
13826 exception_fprintf (gdb_stderr, ex,
13827 "Error in re-setting breakpoint %d: ",
13828 b->number);
13829 }
13830 END_CATCH
13831 }
13832
13833 jit_breakpoint_re_set ();
13834 }
13835
13836 create_overlay_event_breakpoint ();
13837 create_longjmp_master_breakpoint ();
13838 create_std_terminate_master_breakpoint ();
13839 create_exception_master_breakpoint ();
13840
13841 /* Now we can insert. */
13842 update_global_location_list (UGLL_MAY_INSERT);
13843 }
13844 \f
13845 /* Reset the thread number of this breakpoint:
13846
13847 - If the breakpoint is for all threads, leave it as-is.
13848 - Else, reset it to the current thread for inferior_ptid. */
13849 void
13850 breakpoint_re_set_thread (struct breakpoint *b)
13851 {
13852 if (b->thread != -1)
13853 {
13854 b->thread = inferior_thread ()->global_num;
13855
13856 /* We're being called after following a fork. The new fork is
13857 selected as current, and unless this was a vfork will have a
13858 different program space from the original thread. Reset that
13859 as well. */
13860 b->loc->pspace = current_program_space;
13861 }
13862 }
13863
13864 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13865 If from_tty is nonzero, it prints a message to that effect,
13866 which ends with a period (no newline). */
13867
13868 void
13869 set_ignore_count (int bptnum, int count, int from_tty)
13870 {
13871 struct breakpoint *b;
13872
13873 if (count < 0)
13874 count = 0;
13875
13876 ALL_BREAKPOINTS (b)
13877 if (b->number == bptnum)
13878 {
13879 if (is_tracepoint (b))
13880 {
13881 if (from_tty && count != 0)
13882 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13883 bptnum);
13884 return;
13885 }
13886
13887 b->ignore_count = count;
13888 if (from_tty)
13889 {
13890 if (count == 0)
13891 printf_filtered (_("Will stop next time "
13892 "breakpoint %d is reached."),
13893 bptnum);
13894 else if (count == 1)
13895 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13896 bptnum);
13897 else
13898 printf_filtered (_("Will ignore next %d "
13899 "crossings of breakpoint %d."),
13900 count, bptnum);
13901 }
13902 gdb::observers::breakpoint_modified.notify (b);
13903 return;
13904 }
13905
13906 error (_("No breakpoint number %d."), bptnum);
13907 }
13908
13909 /* Command to set ignore-count of breakpoint N to COUNT. */
13910
13911 static void
13912 ignore_command (const char *args, int from_tty)
13913 {
13914 const char *p = args;
13915 int num;
13916
13917 if (p == 0)
13918 error_no_arg (_("a breakpoint number"));
13919
13920 num = get_number (&p);
13921 if (num == 0)
13922 error (_("bad breakpoint number: '%s'"), args);
13923 if (*p == 0)
13924 error (_("Second argument (specified ignore-count) is missing."));
13925
13926 set_ignore_count (num,
13927 longest_to_int (value_as_long (parse_and_eval (p))),
13928 from_tty);
13929 if (from_tty)
13930 printf_filtered ("\n");
13931 }
13932 \f
13933
13934 /* Call FUNCTION on each of the breakpoints with numbers in the range
13935 defined by BP_NUM_RANGE (an inclusive range). */
13936
13937 static void
13938 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13939 gdb::function_view<void (breakpoint *)> function)
13940 {
13941 if (bp_num_range.first == 0)
13942 {
13943 warning (_("bad breakpoint number at or near '%d'"),
13944 bp_num_range.first);
13945 }
13946 else
13947 {
13948 struct breakpoint *b, *tmp;
13949
13950 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13951 {
13952 bool match = false;
13953
13954 ALL_BREAKPOINTS_SAFE (b, tmp)
13955 if (b->number == i)
13956 {
13957 match = true;
13958 function (b);
13959 break;
13960 }
13961 if (!match)
13962 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13963 }
13964 }
13965 }
13966
13967 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13968 ARGS. */
13969
13970 static void
13971 map_breakpoint_numbers (const char *args,
13972 gdb::function_view<void (breakpoint *)> function)
13973 {
13974 if (args == NULL || *args == '\0')
13975 error_no_arg (_("one or more breakpoint numbers"));
13976
13977 number_or_range_parser parser (args);
13978
13979 while (!parser.finished ())
13980 {
13981 int num = parser.get_number ();
13982 map_breakpoint_number_range (std::make_pair (num, num), function);
13983 }
13984 }
13985
13986 /* Return the breakpoint location structure corresponding to the
13987 BP_NUM and LOC_NUM values. */
13988
13989 static struct bp_location *
13990 find_location_by_number (int bp_num, int loc_num)
13991 {
13992 struct breakpoint *b;
13993
13994 ALL_BREAKPOINTS (b)
13995 if (b->number == bp_num)
13996 {
13997 break;
13998 }
13999
14000 if (!b || b->number != bp_num)
14001 error (_("Bad breakpoint number '%d'"), bp_num);
14002
14003 if (loc_num == 0)
14004 error (_("Bad breakpoint location number '%d'"), loc_num);
14005
14006 int n = 0;
14007 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14008 if (++n == loc_num)
14009 return loc;
14010
14011 error (_("Bad breakpoint location number '%d'"), loc_num);
14012 }
14013
14014 /* Modes of operation for extract_bp_num. */
14015 enum class extract_bp_kind
14016 {
14017 /* Extracting a breakpoint number. */
14018 bp,
14019
14020 /* Extracting a location number. */
14021 loc,
14022 };
14023
14024 /* Extract a breakpoint or location number (as determined by KIND)
14025 from the string starting at START. TRAILER is a character which
14026 can be found after the number. If you don't want a trailer, use
14027 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14028 string. This always returns a positive integer. */
14029
14030 static int
14031 extract_bp_num (extract_bp_kind kind, const char *start,
14032 int trailer, const char **end_out = NULL)
14033 {
14034 const char *end = start;
14035 int num = get_number_trailer (&end, trailer);
14036 if (num < 0)
14037 error (kind == extract_bp_kind::bp
14038 ? _("Negative breakpoint number '%.*s'")
14039 : _("Negative breakpoint location number '%.*s'"),
14040 int (end - start), start);
14041 if (num == 0)
14042 error (kind == extract_bp_kind::bp
14043 ? _("Bad breakpoint number '%.*s'")
14044 : _("Bad breakpoint location number '%.*s'"),
14045 int (end - start), start);
14046
14047 if (end_out != NULL)
14048 *end_out = end;
14049 return num;
14050 }
14051
14052 /* Extract a breakpoint or location range (as determined by KIND) in
14053 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14054 representing the (inclusive) range. The returned pair's elements
14055 are always positive integers. */
14056
14057 static std::pair<int, int>
14058 extract_bp_or_bp_range (extract_bp_kind kind,
14059 const std::string &arg,
14060 std::string::size_type arg_offset)
14061 {
14062 std::pair<int, int> range;
14063 const char *bp_loc = &arg[arg_offset];
14064 std::string::size_type dash = arg.find ('-', arg_offset);
14065 if (dash != std::string::npos)
14066 {
14067 /* bp_loc is a range (x-z). */
14068 if (arg.length () == dash + 1)
14069 error (kind == extract_bp_kind::bp
14070 ? _("Bad breakpoint number at or near: '%s'")
14071 : _("Bad breakpoint location number at or near: '%s'"),
14072 bp_loc);
14073
14074 const char *end;
14075 const char *start_first = bp_loc;
14076 const char *start_second = &arg[dash + 1];
14077 range.first = extract_bp_num (kind, start_first, '-');
14078 range.second = extract_bp_num (kind, start_second, '\0', &end);
14079
14080 if (range.first > range.second)
14081 error (kind == extract_bp_kind::bp
14082 ? _("Inverted breakpoint range at '%.*s'")
14083 : _("Inverted breakpoint location range at '%.*s'"),
14084 int (end - start_first), start_first);
14085 }
14086 else
14087 {
14088 /* bp_loc is a single value. */
14089 range.first = extract_bp_num (kind, bp_loc, '\0');
14090 range.second = range.first;
14091 }
14092 return range;
14093 }
14094
14095 /* Extract the breakpoint/location range specified by ARG. Returns
14096 the breakpoint range in BP_NUM_RANGE, and the location range in
14097 BP_LOC_RANGE.
14098
14099 ARG may be in any of the following forms:
14100
14101 x where 'x' is a breakpoint number.
14102 x-y where 'x' and 'y' specify a breakpoint numbers range.
14103 x.y where 'x' is a breakpoint number and 'y' a location number.
14104 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14105 location number range.
14106 */
14107
14108 static void
14109 extract_bp_number_and_location (const std::string &arg,
14110 std::pair<int, int> &bp_num_range,
14111 std::pair<int, int> &bp_loc_range)
14112 {
14113 std::string::size_type dot = arg.find ('.');
14114
14115 if (dot != std::string::npos)
14116 {
14117 /* Handle 'x.y' and 'x.y-z' cases. */
14118
14119 if (arg.length () == dot + 1 || dot == 0)
14120 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14121
14122 bp_num_range.first
14123 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14124 bp_num_range.second = bp_num_range.first;
14125
14126 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14127 arg, dot + 1);
14128 }
14129 else
14130 {
14131 /* Handle x and x-y cases. */
14132
14133 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14134 bp_loc_range.first = 0;
14135 bp_loc_range.second = 0;
14136 }
14137 }
14138
14139 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14140 specifies whether to enable or disable. */
14141
14142 static void
14143 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14144 {
14145 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14146 if (loc != NULL)
14147 {
14148 if (loc->enabled != enable)
14149 {
14150 loc->enabled = enable;
14151 mark_breakpoint_location_modified (loc);
14152 }
14153 if (target_supports_enable_disable_tracepoint ()
14154 && current_trace_status ()->running && loc->owner
14155 && is_tracepoint (loc->owner))
14156 target_disable_tracepoint (loc);
14157 }
14158 update_global_location_list (UGLL_DONT_INSERT);
14159
14160 gdb::observers::breakpoint_modified.notify (loc->owner);
14161 }
14162
14163 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14164 number of the breakpoint, and BP_LOC_RANGE specifies the
14165 (inclusive) range of location numbers of that breakpoint to
14166 enable/disable. ENABLE specifies whether to enable or disable the
14167 location. */
14168
14169 static void
14170 enable_disable_breakpoint_location_range (int bp_num,
14171 std::pair<int, int> &bp_loc_range,
14172 bool enable)
14173 {
14174 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14175 enable_disable_bp_num_loc (bp_num, i, enable);
14176 }
14177
14178 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14179 If from_tty is nonzero, it prints a message to that effect,
14180 which ends with a period (no newline). */
14181
14182 void
14183 disable_breakpoint (struct breakpoint *bpt)
14184 {
14185 /* Never disable a watchpoint scope breakpoint; we want to
14186 hit them when we leave scope so we can delete both the
14187 watchpoint and its scope breakpoint at that time. */
14188 if (bpt->type == bp_watchpoint_scope)
14189 return;
14190
14191 bpt->enable_state = bp_disabled;
14192
14193 /* Mark breakpoint locations modified. */
14194 mark_breakpoint_modified (bpt);
14195
14196 if (target_supports_enable_disable_tracepoint ()
14197 && current_trace_status ()->running && is_tracepoint (bpt))
14198 {
14199 struct bp_location *location;
14200
14201 for (location = bpt->loc; location; location = location->next)
14202 target_disable_tracepoint (location);
14203 }
14204
14205 update_global_location_list (UGLL_DONT_INSERT);
14206
14207 gdb::observers::breakpoint_modified.notify (bpt);
14208 }
14209
14210 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14211 specified in ARGS. ARGS may be in any of the formats handled by
14212 extract_bp_number_and_location. ENABLE specifies whether to enable
14213 or disable the breakpoints/locations. */
14214
14215 static void
14216 enable_disable_command (const char *args, int from_tty, bool enable)
14217 {
14218 if (args == 0)
14219 {
14220 struct breakpoint *bpt;
14221
14222 ALL_BREAKPOINTS (bpt)
14223 if (user_breakpoint_p (bpt))
14224 {
14225 if (enable)
14226 enable_breakpoint (bpt);
14227 else
14228 disable_breakpoint (bpt);
14229 }
14230 }
14231 else
14232 {
14233 std::string num = extract_arg (&args);
14234
14235 while (!num.empty ())
14236 {
14237 std::pair<int, int> bp_num_range, bp_loc_range;
14238
14239 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14240
14241 if (bp_loc_range.first == bp_loc_range.second
14242 && bp_loc_range.first == 0)
14243 {
14244 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14245 map_breakpoint_number_range (bp_num_range,
14246 enable
14247 ? enable_breakpoint
14248 : disable_breakpoint);
14249 }
14250 else
14251 {
14252 /* Handle breakpoint ids with formats 'x.y' or
14253 'x.y-z'. */
14254 enable_disable_breakpoint_location_range
14255 (bp_num_range.first, bp_loc_range, enable);
14256 }
14257 num = extract_arg (&args);
14258 }
14259 }
14260 }
14261
14262 /* The disable command disables the specified breakpoints/locations
14263 (or all defined breakpoints) so they're no longer effective in
14264 stopping the inferior. ARGS may be in any of the forms defined in
14265 extract_bp_number_and_location. */
14266
14267 static void
14268 disable_command (const char *args, int from_tty)
14269 {
14270 enable_disable_command (args, from_tty, false);
14271 }
14272
14273 static void
14274 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14275 int count)
14276 {
14277 int target_resources_ok;
14278
14279 if (bpt->type == bp_hardware_breakpoint)
14280 {
14281 int i;
14282 i = hw_breakpoint_used_count ();
14283 target_resources_ok =
14284 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14285 i + 1, 0);
14286 if (target_resources_ok == 0)
14287 error (_("No hardware breakpoint support in the target."));
14288 else if (target_resources_ok < 0)
14289 error (_("Hardware breakpoints used exceeds limit."));
14290 }
14291
14292 if (is_watchpoint (bpt))
14293 {
14294 /* Initialize it just to avoid a GCC false warning. */
14295 enum enable_state orig_enable_state = bp_disabled;
14296
14297 TRY
14298 {
14299 struct watchpoint *w = (struct watchpoint *) bpt;
14300
14301 orig_enable_state = bpt->enable_state;
14302 bpt->enable_state = bp_enabled;
14303 update_watchpoint (w, 1 /* reparse */);
14304 }
14305 CATCH (e, RETURN_MASK_ALL)
14306 {
14307 bpt->enable_state = orig_enable_state;
14308 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14309 bpt->number);
14310 return;
14311 }
14312 END_CATCH
14313 }
14314
14315 bpt->enable_state = bp_enabled;
14316
14317 /* Mark breakpoint locations modified. */
14318 mark_breakpoint_modified (bpt);
14319
14320 if (target_supports_enable_disable_tracepoint ()
14321 && current_trace_status ()->running && is_tracepoint (bpt))
14322 {
14323 struct bp_location *location;
14324
14325 for (location = bpt->loc; location; location = location->next)
14326 target_enable_tracepoint (location);
14327 }
14328
14329 bpt->disposition = disposition;
14330 bpt->enable_count = count;
14331 update_global_location_list (UGLL_MAY_INSERT);
14332
14333 gdb::observers::breakpoint_modified.notify (bpt);
14334 }
14335
14336
14337 void
14338 enable_breakpoint (struct breakpoint *bpt)
14339 {
14340 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14341 }
14342
14343 /* The enable command enables the specified breakpoints/locations (or
14344 all defined breakpoints) so they once again become (or continue to
14345 be) effective in stopping the inferior. ARGS may be in any of the
14346 forms defined in extract_bp_number_and_location. */
14347
14348 static void
14349 enable_command (const char *args, int from_tty)
14350 {
14351 enable_disable_command (args, from_tty, true);
14352 }
14353
14354 static void
14355 enable_once_command (const char *args, int from_tty)
14356 {
14357 map_breakpoint_numbers
14358 (args, [&] (breakpoint *b)
14359 {
14360 iterate_over_related_breakpoints
14361 (b, [&] (breakpoint *bpt)
14362 {
14363 enable_breakpoint_disp (bpt, disp_disable, 1);
14364 });
14365 });
14366 }
14367
14368 static void
14369 enable_count_command (const char *args, int from_tty)
14370 {
14371 int count;
14372
14373 if (args == NULL)
14374 error_no_arg (_("hit count"));
14375
14376 count = get_number (&args);
14377
14378 map_breakpoint_numbers
14379 (args, [&] (breakpoint *b)
14380 {
14381 iterate_over_related_breakpoints
14382 (b, [&] (breakpoint *bpt)
14383 {
14384 enable_breakpoint_disp (bpt, disp_disable, count);
14385 });
14386 });
14387 }
14388
14389 static void
14390 enable_delete_command (const char *args, int from_tty)
14391 {
14392 map_breakpoint_numbers
14393 (args, [&] (breakpoint *b)
14394 {
14395 iterate_over_related_breakpoints
14396 (b, [&] (breakpoint *bpt)
14397 {
14398 enable_breakpoint_disp (bpt, disp_del, 1);
14399 });
14400 });
14401 }
14402 \f
14403 static void
14404 set_breakpoint_cmd (const char *args, int from_tty)
14405 {
14406 }
14407
14408 static void
14409 show_breakpoint_cmd (const char *args, int from_tty)
14410 {
14411 }
14412
14413 /* Invalidate last known value of any hardware watchpoint if
14414 the memory which that value represents has been written to by
14415 GDB itself. */
14416
14417 static void
14418 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14419 CORE_ADDR addr, ssize_t len,
14420 const bfd_byte *data)
14421 {
14422 struct breakpoint *bp;
14423
14424 ALL_BREAKPOINTS (bp)
14425 if (bp->enable_state == bp_enabled
14426 && bp->type == bp_hardware_watchpoint)
14427 {
14428 struct watchpoint *wp = (struct watchpoint *) bp;
14429
14430 if (wp->val_valid && wp->val != nullptr)
14431 {
14432 struct bp_location *loc;
14433
14434 for (loc = bp->loc; loc != NULL; loc = loc->next)
14435 if (loc->loc_type == bp_loc_hardware_watchpoint
14436 && loc->address + loc->length > addr
14437 && addr + len > loc->address)
14438 {
14439 wp->val = NULL;
14440 wp->val_valid = 0;
14441 }
14442 }
14443 }
14444 }
14445
14446 /* Create and insert a breakpoint for software single step. */
14447
14448 void
14449 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14450 const address_space *aspace,
14451 CORE_ADDR next_pc)
14452 {
14453 struct thread_info *tp = inferior_thread ();
14454 struct symtab_and_line sal;
14455 CORE_ADDR pc = next_pc;
14456
14457 if (tp->control.single_step_breakpoints == NULL)
14458 {
14459 tp->control.single_step_breakpoints
14460 = new_single_step_breakpoint (tp->global_num, gdbarch);
14461 }
14462
14463 sal = find_pc_line (pc, 0);
14464 sal.pc = pc;
14465 sal.section = find_pc_overlay (pc);
14466 sal.explicit_pc = 1;
14467 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14468
14469 update_global_location_list (UGLL_INSERT);
14470 }
14471
14472 /* Insert single step breakpoints according to the current state. */
14473
14474 int
14475 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14476 {
14477 struct regcache *regcache = get_current_regcache ();
14478 std::vector<CORE_ADDR> next_pcs;
14479
14480 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14481
14482 if (!next_pcs.empty ())
14483 {
14484 struct frame_info *frame = get_current_frame ();
14485 const address_space *aspace = get_frame_address_space (frame);
14486
14487 for (CORE_ADDR pc : next_pcs)
14488 insert_single_step_breakpoint (gdbarch, aspace, pc);
14489
14490 return 1;
14491 }
14492 else
14493 return 0;
14494 }
14495
14496 /* See breakpoint.h. */
14497
14498 int
14499 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14500 const address_space *aspace,
14501 CORE_ADDR pc)
14502 {
14503 struct bp_location *loc;
14504
14505 for (loc = bp->loc; loc != NULL; loc = loc->next)
14506 if (loc->inserted
14507 && breakpoint_location_address_match (loc, aspace, pc))
14508 return 1;
14509
14510 return 0;
14511 }
14512
14513 /* Check whether a software single-step breakpoint is inserted at
14514 PC. */
14515
14516 int
14517 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14518 CORE_ADDR pc)
14519 {
14520 struct breakpoint *bpt;
14521
14522 ALL_BREAKPOINTS (bpt)
14523 {
14524 if (bpt->type == bp_single_step
14525 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14526 return 1;
14527 }
14528 return 0;
14529 }
14530
14531 /* Tracepoint-specific operations. */
14532
14533 /* Set tracepoint count to NUM. */
14534 static void
14535 set_tracepoint_count (int num)
14536 {
14537 tracepoint_count = num;
14538 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14539 }
14540
14541 static void
14542 trace_command (const char *arg, int from_tty)
14543 {
14544 struct breakpoint_ops *ops;
14545
14546 event_location_up location = string_to_event_location (&arg,
14547 current_language);
14548 if (location != NULL
14549 && event_location_type (location.get ()) == PROBE_LOCATION)
14550 ops = &tracepoint_probe_breakpoint_ops;
14551 else
14552 ops = &tracepoint_breakpoint_ops;
14553
14554 create_breakpoint (get_current_arch (),
14555 location.get (),
14556 NULL, 0, arg, 1 /* parse arg */,
14557 0 /* tempflag */,
14558 bp_tracepoint /* type_wanted */,
14559 0 /* Ignore count */,
14560 pending_break_support,
14561 ops,
14562 from_tty,
14563 1 /* enabled */,
14564 0 /* internal */, 0);
14565 }
14566
14567 static void
14568 ftrace_command (const char *arg, int from_tty)
14569 {
14570 event_location_up location = string_to_event_location (&arg,
14571 current_language);
14572 create_breakpoint (get_current_arch (),
14573 location.get (),
14574 NULL, 0, arg, 1 /* parse arg */,
14575 0 /* tempflag */,
14576 bp_fast_tracepoint /* type_wanted */,
14577 0 /* Ignore count */,
14578 pending_break_support,
14579 &tracepoint_breakpoint_ops,
14580 from_tty,
14581 1 /* enabled */,
14582 0 /* internal */, 0);
14583 }
14584
14585 /* strace command implementation. Creates a static tracepoint. */
14586
14587 static void
14588 strace_command (const char *arg, int from_tty)
14589 {
14590 struct breakpoint_ops *ops;
14591 event_location_up location;
14592
14593 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14594 or with a normal static tracepoint. */
14595 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14596 {
14597 ops = &strace_marker_breakpoint_ops;
14598 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14599 }
14600 else
14601 {
14602 ops = &tracepoint_breakpoint_ops;
14603 location = string_to_event_location (&arg, current_language);
14604 }
14605
14606 create_breakpoint (get_current_arch (),
14607 location.get (),
14608 NULL, 0, arg, 1 /* parse arg */,
14609 0 /* tempflag */,
14610 bp_static_tracepoint /* type_wanted */,
14611 0 /* Ignore count */,
14612 pending_break_support,
14613 ops,
14614 from_tty,
14615 1 /* enabled */,
14616 0 /* internal */, 0);
14617 }
14618
14619 /* Set up a fake reader function that gets command lines from a linked
14620 list that was acquired during tracepoint uploading. */
14621
14622 static struct uploaded_tp *this_utp;
14623 static int next_cmd;
14624
14625 static char *
14626 read_uploaded_action (void)
14627 {
14628 char *rslt = nullptr;
14629
14630 if (next_cmd < this_utp->cmd_strings.size ())
14631 {
14632 rslt = this_utp->cmd_strings[next_cmd].get ();
14633 next_cmd++;
14634 }
14635
14636 return rslt;
14637 }
14638
14639 /* Given information about a tracepoint as recorded on a target (which
14640 can be either a live system or a trace file), attempt to create an
14641 equivalent GDB tracepoint. This is not a reliable process, since
14642 the target does not necessarily have all the information used when
14643 the tracepoint was originally defined. */
14644
14645 struct tracepoint *
14646 create_tracepoint_from_upload (struct uploaded_tp *utp)
14647 {
14648 const char *addr_str;
14649 char small_buf[100];
14650 struct tracepoint *tp;
14651
14652 if (utp->at_string)
14653 addr_str = utp->at_string.get ();
14654 else
14655 {
14656 /* In the absence of a source location, fall back to raw
14657 address. Since there is no way to confirm that the address
14658 means the same thing as when the trace was started, warn the
14659 user. */
14660 warning (_("Uploaded tracepoint %d has no "
14661 "source location, using raw address"),
14662 utp->number);
14663 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14664 addr_str = small_buf;
14665 }
14666
14667 /* There's not much we can do with a sequence of bytecodes. */
14668 if (utp->cond && !utp->cond_string)
14669 warning (_("Uploaded tracepoint %d condition "
14670 "has no source form, ignoring it"),
14671 utp->number);
14672
14673 event_location_up location = string_to_event_location (&addr_str,
14674 current_language);
14675 if (!create_breakpoint (get_current_arch (),
14676 location.get (),
14677 utp->cond_string.get (), -1, addr_str,
14678 0 /* parse cond/thread */,
14679 0 /* tempflag */,
14680 utp->type /* type_wanted */,
14681 0 /* Ignore count */,
14682 pending_break_support,
14683 &tracepoint_breakpoint_ops,
14684 0 /* from_tty */,
14685 utp->enabled /* enabled */,
14686 0 /* internal */,
14687 CREATE_BREAKPOINT_FLAGS_INSERTED))
14688 return NULL;
14689
14690 /* Get the tracepoint we just created. */
14691 tp = get_tracepoint (tracepoint_count);
14692 gdb_assert (tp != NULL);
14693
14694 if (utp->pass > 0)
14695 {
14696 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14697 tp->number);
14698
14699 trace_pass_command (small_buf, 0);
14700 }
14701
14702 /* If we have uploaded versions of the original commands, set up a
14703 special-purpose "reader" function and call the usual command line
14704 reader, then pass the result to the breakpoint command-setting
14705 function. */
14706 if (!utp->cmd_strings.empty ())
14707 {
14708 counted_command_line cmd_list;
14709
14710 this_utp = utp;
14711 next_cmd = 0;
14712
14713 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14714
14715 breakpoint_set_commands (tp, std::move (cmd_list));
14716 }
14717 else if (!utp->actions.empty ()
14718 || !utp->step_actions.empty ())
14719 warning (_("Uploaded tracepoint %d actions "
14720 "have no source form, ignoring them"),
14721 utp->number);
14722
14723 /* Copy any status information that might be available. */
14724 tp->hit_count = utp->hit_count;
14725 tp->traceframe_usage = utp->traceframe_usage;
14726
14727 return tp;
14728 }
14729
14730 /* Print information on tracepoint number TPNUM_EXP, or all if
14731 omitted. */
14732
14733 static void
14734 info_tracepoints_command (const char *args, int from_tty)
14735 {
14736 struct ui_out *uiout = current_uiout;
14737 int num_printed;
14738
14739 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14740
14741 if (num_printed == 0)
14742 {
14743 if (args == NULL || *args == '\0')
14744 uiout->message ("No tracepoints.\n");
14745 else
14746 uiout->message ("No tracepoint matching '%s'.\n", args);
14747 }
14748
14749 default_collect_info ();
14750 }
14751
14752 /* The 'enable trace' command enables tracepoints.
14753 Not supported by all targets. */
14754 static void
14755 enable_trace_command (const char *args, int from_tty)
14756 {
14757 enable_command (args, from_tty);
14758 }
14759
14760 /* The 'disable trace' command disables tracepoints.
14761 Not supported by all targets. */
14762 static void
14763 disable_trace_command (const char *args, int from_tty)
14764 {
14765 disable_command (args, from_tty);
14766 }
14767
14768 /* Remove a tracepoint (or all if no argument). */
14769 static void
14770 delete_trace_command (const char *arg, int from_tty)
14771 {
14772 struct breakpoint *b, *b_tmp;
14773
14774 dont_repeat ();
14775
14776 if (arg == 0)
14777 {
14778 int breaks_to_delete = 0;
14779
14780 /* Delete all breakpoints if no argument.
14781 Do not delete internal or call-dummy breakpoints, these
14782 have to be deleted with an explicit breakpoint number
14783 argument. */
14784 ALL_TRACEPOINTS (b)
14785 if (is_tracepoint (b) && user_breakpoint_p (b))
14786 {
14787 breaks_to_delete = 1;
14788 break;
14789 }
14790
14791 /* Ask user only if there are some breakpoints to delete. */
14792 if (!from_tty
14793 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14794 {
14795 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14796 if (is_tracepoint (b) && user_breakpoint_p (b))
14797 delete_breakpoint (b);
14798 }
14799 }
14800 else
14801 map_breakpoint_numbers
14802 (arg, [&] (breakpoint *br)
14803 {
14804 iterate_over_related_breakpoints (br, delete_breakpoint);
14805 });
14806 }
14807
14808 /* Helper function for trace_pass_command. */
14809
14810 static void
14811 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14812 {
14813 tp->pass_count = count;
14814 gdb::observers::breakpoint_modified.notify (tp);
14815 if (from_tty)
14816 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14817 tp->number, count);
14818 }
14819
14820 /* Set passcount for tracepoint.
14821
14822 First command argument is passcount, second is tracepoint number.
14823 If tracepoint number omitted, apply to most recently defined.
14824 Also accepts special argument "all". */
14825
14826 static void
14827 trace_pass_command (const char *args, int from_tty)
14828 {
14829 struct tracepoint *t1;
14830 ULONGEST count;
14831
14832 if (args == 0 || *args == 0)
14833 error (_("passcount command requires an "
14834 "argument (count + optional TP num)"));
14835
14836 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14837
14838 args = skip_spaces (args);
14839 if (*args && strncasecmp (args, "all", 3) == 0)
14840 {
14841 struct breakpoint *b;
14842
14843 args += 3; /* Skip special argument "all". */
14844 if (*args)
14845 error (_("Junk at end of arguments."));
14846
14847 ALL_TRACEPOINTS (b)
14848 {
14849 t1 = (struct tracepoint *) b;
14850 trace_pass_set_count (t1, count, from_tty);
14851 }
14852 }
14853 else if (*args == '\0')
14854 {
14855 t1 = get_tracepoint_by_number (&args, NULL);
14856 if (t1)
14857 trace_pass_set_count (t1, count, from_tty);
14858 }
14859 else
14860 {
14861 number_or_range_parser parser (args);
14862 while (!parser.finished ())
14863 {
14864 t1 = get_tracepoint_by_number (&args, &parser);
14865 if (t1)
14866 trace_pass_set_count (t1, count, from_tty);
14867 }
14868 }
14869 }
14870
14871 struct tracepoint *
14872 get_tracepoint (int num)
14873 {
14874 struct breakpoint *t;
14875
14876 ALL_TRACEPOINTS (t)
14877 if (t->number == num)
14878 return (struct tracepoint *) t;
14879
14880 return NULL;
14881 }
14882
14883 /* Find the tracepoint with the given target-side number (which may be
14884 different from the tracepoint number after disconnecting and
14885 reconnecting). */
14886
14887 struct tracepoint *
14888 get_tracepoint_by_number_on_target (int num)
14889 {
14890 struct breakpoint *b;
14891
14892 ALL_TRACEPOINTS (b)
14893 {
14894 struct tracepoint *t = (struct tracepoint *) b;
14895
14896 if (t->number_on_target == num)
14897 return t;
14898 }
14899
14900 return NULL;
14901 }
14902
14903 /* Utility: parse a tracepoint number and look it up in the list.
14904 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14905 If the argument is missing, the most recent tracepoint
14906 (tracepoint_count) is returned. */
14907
14908 struct tracepoint *
14909 get_tracepoint_by_number (const char **arg,
14910 number_or_range_parser *parser)
14911 {
14912 struct breakpoint *t;
14913 int tpnum;
14914 const char *instring = arg == NULL ? NULL : *arg;
14915
14916 if (parser != NULL)
14917 {
14918 gdb_assert (!parser->finished ());
14919 tpnum = parser->get_number ();
14920 }
14921 else if (arg == NULL || *arg == NULL || ! **arg)
14922 tpnum = tracepoint_count;
14923 else
14924 tpnum = get_number (arg);
14925
14926 if (tpnum <= 0)
14927 {
14928 if (instring && *instring)
14929 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14930 instring);
14931 else
14932 printf_filtered (_("No previous tracepoint\n"));
14933 return NULL;
14934 }
14935
14936 ALL_TRACEPOINTS (t)
14937 if (t->number == tpnum)
14938 {
14939 return (struct tracepoint *) t;
14940 }
14941
14942 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14943 return NULL;
14944 }
14945
14946 void
14947 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14948 {
14949 if (b->thread != -1)
14950 fprintf_unfiltered (fp, " thread %d", b->thread);
14951
14952 if (b->task != 0)
14953 fprintf_unfiltered (fp, " task %d", b->task);
14954
14955 fprintf_unfiltered (fp, "\n");
14956 }
14957
14958 /* Save information on user settable breakpoints (watchpoints, etc) to
14959 a new script file named FILENAME. If FILTER is non-NULL, call it
14960 on each breakpoint and only include the ones for which it returns
14961 non-zero. */
14962
14963 static void
14964 save_breakpoints (const char *filename, int from_tty,
14965 int (*filter) (const struct breakpoint *))
14966 {
14967 struct breakpoint *tp;
14968 int any = 0;
14969 int extra_trace_bits = 0;
14970
14971 if (filename == 0 || *filename == 0)
14972 error (_("Argument required (file name in which to save)"));
14973
14974 /* See if we have anything to save. */
14975 ALL_BREAKPOINTS (tp)
14976 {
14977 /* Skip internal and momentary breakpoints. */
14978 if (!user_breakpoint_p (tp))
14979 continue;
14980
14981 /* If we have a filter, only save the breakpoints it accepts. */
14982 if (filter && !filter (tp))
14983 continue;
14984
14985 any = 1;
14986
14987 if (is_tracepoint (tp))
14988 {
14989 extra_trace_bits = 1;
14990
14991 /* We can stop searching. */
14992 break;
14993 }
14994 }
14995
14996 if (!any)
14997 {
14998 warning (_("Nothing to save."));
14999 return;
15000 }
15001
15002 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15003
15004 stdio_file fp;
15005
15006 if (!fp.open (expanded_filename.get (), "w"))
15007 error (_("Unable to open file '%s' for saving (%s)"),
15008 expanded_filename.get (), safe_strerror (errno));
15009
15010 if (extra_trace_bits)
15011 save_trace_state_variables (&fp);
15012
15013 ALL_BREAKPOINTS (tp)
15014 {
15015 /* Skip internal and momentary breakpoints. */
15016 if (!user_breakpoint_p (tp))
15017 continue;
15018
15019 /* If we have a filter, only save the breakpoints it accepts. */
15020 if (filter && !filter (tp))
15021 continue;
15022
15023 tp->ops->print_recreate (tp, &fp);
15024
15025 /* Note, we can't rely on tp->number for anything, as we can't
15026 assume the recreated breakpoint numbers will match. Use $bpnum
15027 instead. */
15028
15029 if (tp->cond_string)
15030 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15031
15032 if (tp->ignore_count)
15033 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15034
15035 if (tp->type != bp_dprintf && tp->commands)
15036 {
15037 fp.puts (" commands\n");
15038
15039 current_uiout->redirect (&fp);
15040 TRY
15041 {
15042 print_command_lines (current_uiout, tp->commands.get (), 2);
15043 }
15044 CATCH (ex, RETURN_MASK_ALL)
15045 {
15046 current_uiout->redirect (NULL);
15047 throw_exception (ex);
15048 }
15049 END_CATCH
15050
15051 current_uiout->redirect (NULL);
15052 fp.puts (" end\n");
15053 }
15054
15055 if (tp->enable_state == bp_disabled)
15056 fp.puts ("disable $bpnum\n");
15057
15058 /* If this is a multi-location breakpoint, check if the locations
15059 should be individually disabled. Watchpoint locations are
15060 special, and not user visible. */
15061 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15062 {
15063 struct bp_location *loc;
15064 int n = 1;
15065
15066 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15067 if (!loc->enabled)
15068 fp.printf ("disable $bpnum.%d\n", n);
15069 }
15070 }
15071
15072 if (extra_trace_bits && *default_collect)
15073 fp.printf ("set default-collect %s\n", default_collect);
15074
15075 if (from_tty)
15076 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15077 }
15078
15079 /* The `save breakpoints' command. */
15080
15081 static void
15082 save_breakpoints_command (const char *args, int from_tty)
15083 {
15084 save_breakpoints (args, from_tty, NULL);
15085 }
15086
15087 /* The `save tracepoints' command. */
15088
15089 static void
15090 save_tracepoints_command (const char *args, int from_tty)
15091 {
15092 save_breakpoints (args, from_tty, is_tracepoint);
15093 }
15094
15095 /* Create a vector of all tracepoints. */
15096
15097 std::vector<breakpoint *>
15098 all_tracepoints (void)
15099 {
15100 std::vector<breakpoint *> tp_vec;
15101 struct breakpoint *tp;
15102
15103 ALL_TRACEPOINTS (tp)
15104 {
15105 tp_vec.push_back (tp);
15106 }
15107
15108 return tp_vec;
15109 }
15110
15111 \f
15112 /* This help string is used to consolidate all the help string for specifying
15113 locations used by several commands. */
15114
15115 #define LOCATION_HELP_STRING \
15116 "Linespecs are colon-separated lists of location parameters, such as\n\
15117 source filename, function name, label name, and line number.\n\
15118 Example: To specify the start of a label named \"the_top\" in the\n\
15119 function \"fact\" in the file \"factorial.c\", use\n\
15120 \"factorial.c:fact:the_top\".\n\
15121 \n\
15122 Address locations begin with \"*\" and specify an exact address in the\n\
15123 program. Example: To specify the fourth byte past the start function\n\
15124 \"main\", use \"*main + 4\".\n\
15125 \n\
15126 Explicit locations are similar to linespecs but use an option/argument\n\
15127 syntax to specify location parameters.\n\
15128 Example: To specify the start of the label named \"the_top\" in the\n\
15129 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15130 -function fact -label the_top\".\n\
15131 \n\
15132 By default, a specified function is matched against the program's\n\
15133 functions in all scopes. For C++, this means in all namespaces and\n\
15134 classes. For Ada, this means in all packages. E.g., in C++,\n\
15135 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15136 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15137 specified name as a complete fully-qualified name instead.\n"
15138
15139 /* This help string is used for the break, hbreak, tbreak and thbreak
15140 commands. It is defined as a macro to prevent duplication.
15141 COMMAND should be a string constant containing the name of the
15142 command. */
15143
15144 #define BREAK_ARGS_HELP(command) \
15145 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15146 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15147 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15148 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15149 `-probe-dtrace' (for a DTrace probe).\n\
15150 LOCATION may be a linespec, address, or explicit location as described\n\
15151 below.\n\
15152 \n\
15153 With no LOCATION, uses current execution address of the selected\n\
15154 stack frame. This is useful for breaking on return to a stack frame.\n\
15155 \n\
15156 THREADNUM is the number from \"info threads\".\n\
15157 CONDITION is a boolean expression.\n\
15158 \n" LOCATION_HELP_STRING "\n\
15159 Multiple breakpoints at one place are permitted, and useful if their\n\
15160 conditions are different.\n\
15161 \n\
15162 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15163
15164 /* List of subcommands for "catch". */
15165 static struct cmd_list_element *catch_cmdlist;
15166
15167 /* List of subcommands for "tcatch". */
15168 static struct cmd_list_element *tcatch_cmdlist;
15169
15170 void
15171 add_catch_command (const char *name, const char *docstring,
15172 cmd_const_sfunc_ftype *sfunc,
15173 completer_ftype *completer,
15174 void *user_data_catch,
15175 void *user_data_tcatch)
15176 {
15177 struct cmd_list_element *command;
15178
15179 command = add_cmd (name, class_breakpoint, docstring,
15180 &catch_cmdlist);
15181 set_cmd_sfunc (command, sfunc);
15182 set_cmd_context (command, user_data_catch);
15183 set_cmd_completer (command, completer);
15184
15185 command = add_cmd (name, class_breakpoint, docstring,
15186 &tcatch_cmdlist);
15187 set_cmd_sfunc (command, sfunc);
15188 set_cmd_context (command, user_data_tcatch);
15189 set_cmd_completer (command, completer);
15190 }
15191
15192 static void
15193 save_command (const char *arg, int from_tty)
15194 {
15195 printf_unfiltered (_("\"save\" must be followed by "
15196 "the name of a save subcommand.\n"));
15197 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15198 }
15199
15200 struct breakpoint *
15201 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15202 void *data)
15203 {
15204 struct breakpoint *b, *b_tmp;
15205
15206 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15207 {
15208 if ((*callback) (b, data))
15209 return b;
15210 }
15211
15212 return NULL;
15213 }
15214
15215 /* Zero if any of the breakpoint's locations could be a location where
15216 functions have been inlined, nonzero otherwise. */
15217
15218 static int
15219 is_non_inline_function (struct breakpoint *b)
15220 {
15221 /* The shared library event breakpoint is set on the address of a
15222 non-inline function. */
15223 if (b->type == bp_shlib_event)
15224 return 1;
15225
15226 return 0;
15227 }
15228
15229 /* Nonzero if the specified PC cannot be a location where functions
15230 have been inlined. */
15231
15232 int
15233 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15234 const struct target_waitstatus *ws)
15235 {
15236 struct breakpoint *b;
15237 struct bp_location *bl;
15238
15239 ALL_BREAKPOINTS (b)
15240 {
15241 if (!is_non_inline_function (b))
15242 continue;
15243
15244 for (bl = b->loc; bl != NULL; bl = bl->next)
15245 {
15246 if (!bl->shlib_disabled
15247 && bpstat_check_location (bl, aspace, pc, ws))
15248 return 1;
15249 }
15250 }
15251
15252 return 0;
15253 }
15254
15255 /* Remove any references to OBJFILE which is going to be freed. */
15256
15257 void
15258 breakpoint_free_objfile (struct objfile *objfile)
15259 {
15260 struct bp_location **locp, *loc;
15261
15262 ALL_BP_LOCATIONS (loc, locp)
15263 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15264 loc->symtab = NULL;
15265 }
15266
15267 void
15268 initialize_breakpoint_ops (void)
15269 {
15270 static int initialized = 0;
15271
15272 struct breakpoint_ops *ops;
15273
15274 if (initialized)
15275 return;
15276 initialized = 1;
15277
15278 /* The breakpoint_ops structure to be inherit by all kinds of
15279 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15280 internal and momentary breakpoints, etc.). */
15281 ops = &bkpt_base_breakpoint_ops;
15282 *ops = base_breakpoint_ops;
15283 ops->re_set = bkpt_re_set;
15284 ops->insert_location = bkpt_insert_location;
15285 ops->remove_location = bkpt_remove_location;
15286 ops->breakpoint_hit = bkpt_breakpoint_hit;
15287 ops->create_sals_from_location = bkpt_create_sals_from_location;
15288 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15289 ops->decode_location = bkpt_decode_location;
15290
15291 /* The breakpoint_ops structure to be used in regular breakpoints. */
15292 ops = &bkpt_breakpoint_ops;
15293 *ops = bkpt_base_breakpoint_ops;
15294 ops->re_set = bkpt_re_set;
15295 ops->resources_needed = bkpt_resources_needed;
15296 ops->print_it = bkpt_print_it;
15297 ops->print_mention = bkpt_print_mention;
15298 ops->print_recreate = bkpt_print_recreate;
15299
15300 /* Ranged breakpoints. */
15301 ops = &ranged_breakpoint_ops;
15302 *ops = bkpt_breakpoint_ops;
15303 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15304 ops->resources_needed = resources_needed_ranged_breakpoint;
15305 ops->print_it = print_it_ranged_breakpoint;
15306 ops->print_one = print_one_ranged_breakpoint;
15307 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15308 ops->print_mention = print_mention_ranged_breakpoint;
15309 ops->print_recreate = print_recreate_ranged_breakpoint;
15310
15311 /* Internal breakpoints. */
15312 ops = &internal_breakpoint_ops;
15313 *ops = bkpt_base_breakpoint_ops;
15314 ops->re_set = internal_bkpt_re_set;
15315 ops->check_status = internal_bkpt_check_status;
15316 ops->print_it = internal_bkpt_print_it;
15317 ops->print_mention = internal_bkpt_print_mention;
15318
15319 /* Momentary breakpoints. */
15320 ops = &momentary_breakpoint_ops;
15321 *ops = bkpt_base_breakpoint_ops;
15322 ops->re_set = momentary_bkpt_re_set;
15323 ops->check_status = momentary_bkpt_check_status;
15324 ops->print_it = momentary_bkpt_print_it;
15325 ops->print_mention = momentary_bkpt_print_mention;
15326
15327 /* Probe breakpoints. */
15328 ops = &bkpt_probe_breakpoint_ops;
15329 *ops = bkpt_breakpoint_ops;
15330 ops->insert_location = bkpt_probe_insert_location;
15331 ops->remove_location = bkpt_probe_remove_location;
15332 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15333 ops->decode_location = bkpt_probe_decode_location;
15334
15335 /* Watchpoints. */
15336 ops = &watchpoint_breakpoint_ops;
15337 *ops = base_breakpoint_ops;
15338 ops->re_set = re_set_watchpoint;
15339 ops->insert_location = insert_watchpoint;
15340 ops->remove_location = remove_watchpoint;
15341 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15342 ops->check_status = check_status_watchpoint;
15343 ops->resources_needed = resources_needed_watchpoint;
15344 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15345 ops->print_it = print_it_watchpoint;
15346 ops->print_mention = print_mention_watchpoint;
15347 ops->print_recreate = print_recreate_watchpoint;
15348 ops->explains_signal = explains_signal_watchpoint;
15349
15350 /* Masked watchpoints. */
15351 ops = &masked_watchpoint_breakpoint_ops;
15352 *ops = watchpoint_breakpoint_ops;
15353 ops->insert_location = insert_masked_watchpoint;
15354 ops->remove_location = remove_masked_watchpoint;
15355 ops->resources_needed = resources_needed_masked_watchpoint;
15356 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15357 ops->print_it = print_it_masked_watchpoint;
15358 ops->print_one_detail = print_one_detail_masked_watchpoint;
15359 ops->print_mention = print_mention_masked_watchpoint;
15360 ops->print_recreate = print_recreate_masked_watchpoint;
15361
15362 /* Tracepoints. */
15363 ops = &tracepoint_breakpoint_ops;
15364 *ops = base_breakpoint_ops;
15365 ops->re_set = tracepoint_re_set;
15366 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15367 ops->print_one_detail = tracepoint_print_one_detail;
15368 ops->print_mention = tracepoint_print_mention;
15369 ops->print_recreate = tracepoint_print_recreate;
15370 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15371 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15372 ops->decode_location = tracepoint_decode_location;
15373
15374 /* Probe tracepoints. */
15375 ops = &tracepoint_probe_breakpoint_ops;
15376 *ops = tracepoint_breakpoint_ops;
15377 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15378 ops->decode_location = tracepoint_probe_decode_location;
15379
15380 /* Static tracepoints with marker (`-m'). */
15381 ops = &strace_marker_breakpoint_ops;
15382 *ops = tracepoint_breakpoint_ops;
15383 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15384 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15385 ops->decode_location = strace_marker_decode_location;
15386
15387 /* Fork catchpoints. */
15388 ops = &catch_fork_breakpoint_ops;
15389 *ops = base_breakpoint_ops;
15390 ops->insert_location = insert_catch_fork;
15391 ops->remove_location = remove_catch_fork;
15392 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15393 ops->print_it = print_it_catch_fork;
15394 ops->print_one = print_one_catch_fork;
15395 ops->print_mention = print_mention_catch_fork;
15396 ops->print_recreate = print_recreate_catch_fork;
15397
15398 /* Vfork catchpoints. */
15399 ops = &catch_vfork_breakpoint_ops;
15400 *ops = base_breakpoint_ops;
15401 ops->insert_location = insert_catch_vfork;
15402 ops->remove_location = remove_catch_vfork;
15403 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15404 ops->print_it = print_it_catch_vfork;
15405 ops->print_one = print_one_catch_vfork;
15406 ops->print_mention = print_mention_catch_vfork;
15407 ops->print_recreate = print_recreate_catch_vfork;
15408
15409 /* Exec catchpoints. */
15410 ops = &catch_exec_breakpoint_ops;
15411 *ops = base_breakpoint_ops;
15412 ops->insert_location = insert_catch_exec;
15413 ops->remove_location = remove_catch_exec;
15414 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15415 ops->print_it = print_it_catch_exec;
15416 ops->print_one = print_one_catch_exec;
15417 ops->print_mention = print_mention_catch_exec;
15418 ops->print_recreate = print_recreate_catch_exec;
15419
15420 /* Solib-related catchpoints. */
15421 ops = &catch_solib_breakpoint_ops;
15422 *ops = base_breakpoint_ops;
15423 ops->insert_location = insert_catch_solib;
15424 ops->remove_location = remove_catch_solib;
15425 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15426 ops->check_status = check_status_catch_solib;
15427 ops->print_it = print_it_catch_solib;
15428 ops->print_one = print_one_catch_solib;
15429 ops->print_mention = print_mention_catch_solib;
15430 ops->print_recreate = print_recreate_catch_solib;
15431
15432 ops = &dprintf_breakpoint_ops;
15433 *ops = bkpt_base_breakpoint_ops;
15434 ops->re_set = dprintf_re_set;
15435 ops->resources_needed = bkpt_resources_needed;
15436 ops->print_it = bkpt_print_it;
15437 ops->print_mention = bkpt_print_mention;
15438 ops->print_recreate = dprintf_print_recreate;
15439 ops->after_condition_true = dprintf_after_condition_true;
15440 ops->breakpoint_hit = dprintf_breakpoint_hit;
15441 }
15442
15443 /* Chain containing all defined "enable breakpoint" subcommands. */
15444
15445 static struct cmd_list_element *enablebreaklist = NULL;
15446
15447 /* See breakpoint.h. */
15448
15449 cmd_list_element *commands_cmd_element = nullptr;
15450
15451 void
15452 _initialize_breakpoint (void)
15453 {
15454 struct cmd_list_element *c;
15455
15456 initialize_breakpoint_ops ();
15457
15458 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15459 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15460 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15461
15462 breakpoint_objfile_key
15463 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15464
15465 breakpoint_chain = 0;
15466 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15467 before a breakpoint is set. */
15468 breakpoint_count = 0;
15469
15470 tracepoint_count = 0;
15471
15472 add_com ("ignore", class_breakpoint, ignore_command, _("\
15473 Set ignore-count of breakpoint number N to COUNT.\n\
15474 Usage is `ignore N COUNT'."));
15475
15476 commands_cmd_element = add_com ("commands", class_breakpoint,
15477 commands_command, _("\
15478 Set commands to be executed when the given breakpoints are hit.\n\
15479 Give a space-separated breakpoint list as argument after \"commands\".\n\
15480 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15481 (e.g. `5-7').\n\
15482 With no argument, the targeted breakpoint is the last one set.\n\
15483 The commands themselves follow starting on the next line.\n\
15484 Type a line containing \"end\" to indicate the end of them.\n\
15485 Give \"silent\" as the first line to make the breakpoint silent;\n\
15486 then no output is printed when it is hit, except what the commands print."));
15487
15488 c = add_com ("condition", class_breakpoint, condition_command, _("\
15489 Specify breakpoint number N to break only if COND is true.\n\
15490 Usage is `condition N COND', where N is an integer and COND is an\n\
15491 expression to be evaluated whenever breakpoint N is reached."));
15492 set_cmd_completer (c, condition_completer);
15493
15494 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15495 Set a temporary breakpoint.\n\
15496 Like \"break\" except the breakpoint is only temporary,\n\
15497 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15498 by using \"enable delete\" on the breakpoint number.\n\
15499 \n"
15500 BREAK_ARGS_HELP ("tbreak")));
15501 set_cmd_completer (c, location_completer);
15502
15503 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15504 Set a hardware assisted breakpoint.\n\
15505 Like \"break\" except the breakpoint requires hardware support,\n\
15506 some target hardware may not have this support.\n\
15507 \n"
15508 BREAK_ARGS_HELP ("hbreak")));
15509 set_cmd_completer (c, location_completer);
15510
15511 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15512 Set a temporary hardware assisted breakpoint.\n\
15513 Like \"hbreak\" except the breakpoint is only temporary,\n\
15514 so it will be deleted when hit.\n\
15515 \n"
15516 BREAK_ARGS_HELP ("thbreak")));
15517 set_cmd_completer (c, location_completer);
15518
15519 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15520 Enable some breakpoints.\n\
15521 Give breakpoint numbers (separated by spaces) as arguments.\n\
15522 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15523 This is used to cancel the effect of the \"disable\" command.\n\
15524 With a subcommand you can enable temporarily."),
15525 &enablelist, "enable ", 1, &cmdlist);
15526
15527 add_com_alias ("en", "enable", class_breakpoint, 1);
15528
15529 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15530 Enable some breakpoints.\n\
15531 Give breakpoint numbers (separated by spaces) as arguments.\n\
15532 This is used to cancel the effect of the \"disable\" command.\n\
15533 May be abbreviated to simply \"enable\".\n"),
15534 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15535
15536 add_cmd ("once", no_class, enable_once_command, _("\
15537 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15538 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15539 &enablebreaklist);
15540
15541 add_cmd ("delete", no_class, enable_delete_command, _("\
15542 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15543 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15544 &enablebreaklist);
15545
15546 add_cmd ("count", no_class, enable_count_command, _("\
15547 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15548 If a breakpoint is hit while enabled in this fashion,\n\
15549 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15550 &enablebreaklist);
15551
15552 add_cmd ("delete", no_class, enable_delete_command, _("\
15553 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15554 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15555 &enablelist);
15556
15557 add_cmd ("once", no_class, enable_once_command, _("\
15558 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15559 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15560 &enablelist);
15561
15562 add_cmd ("count", no_class, enable_count_command, _("\
15563 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15564 If a breakpoint is hit while enabled in this fashion,\n\
15565 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15566 &enablelist);
15567
15568 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15569 Disable some breakpoints.\n\
15570 Arguments are breakpoint numbers with spaces in between.\n\
15571 To disable all breakpoints, give no argument.\n\
15572 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15573 &disablelist, "disable ", 1, &cmdlist);
15574 add_com_alias ("dis", "disable", class_breakpoint, 1);
15575 add_com_alias ("disa", "disable", class_breakpoint, 1);
15576
15577 add_cmd ("breakpoints", class_alias, disable_command, _("\
15578 Disable some breakpoints.\n\
15579 Arguments are breakpoint numbers with spaces in between.\n\
15580 To disable all breakpoints, give no argument.\n\
15581 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15582 This command may be abbreviated \"disable\"."),
15583 &disablelist);
15584
15585 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15586 Delete some breakpoints or auto-display expressions.\n\
15587 Arguments are breakpoint numbers with spaces in between.\n\
15588 To delete all breakpoints, give no argument.\n\
15589 \n\
15590 Also a prefix command for deletion of other GDB objects.\n\
15591 The \"unset\" command is also an alias for \"delete\"."),
15592 &deletelist, "delete ", 1, &cmdlist);
15593 add_com_alias ("d", "delete", class_breakpoint, 1);
15594 add_com_alias ("del", "delete", class_breakpoint, 1);
15595
15596 add_cmd ("breakpoints", class_alias, delete_command, _("\
15597 Delete some breakpoints or auto-display expressions.\n\
15598 Arguments are breakpoint numbers with spaces in between.\n\
15599 To delete all breakpoints, give no argument.\n\
15600 This command may be abbreviated \"delete\"."),
15601 &deletelist);
15602
15603 add_com ("clear", class_breakpoint, clear_command, _("\
15604 Clear breakpoint at specified location.\n\
15605 Argument may be a linespec, explicit, or address location as described below.\n\
15606 \n\
15607 With no argument, clears all breakpoints in the line that the selected frame\n\
15608 is executing in.\n"
15609 "\n" LOCATION_HELP_STRING "\n\
15610 See also the \"delete\" command which clears breakpoints by number."));
15611 add_com_alias ("cl", "clear", class_breakpoint, 1);
15612
15613 c = add_com ("break", class_breakpoint, break_command, _("\
15614 Set breakpoint at specified location.\n"
15615 BREAK_ARGS_HELP ("break")));
15616 set_cmd_completer (c, location_completer);
15617
15618 add_com_alias ("b", "break", class_run, 1);
15619 add_com_alias ("br", "break", class_run, 1);
15620 add_com_alias ("bre", "break", class_run, 1);
15621 add_com_alias ("brea", "break", class_run, 1);
15622
15623 if (dbx_commands)
15624 {
15625 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15626 Break in function/address or break at a line in the current file."),
15627 &stoplist, "stop ", 1, &cmdlist);
15628 add_cmd ("in", class_breakpoint, stopin_command,
15629 _("Break in function or address."), &stoplist);
15630 add_cmd ("at", class_breakpoint, stopat_command,
15631 _("Break at a line in the current file."), &stoplist);
15632 add_com ("status", class_info, info_breakpoints_command, _("\
15633 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15634 The \"Type\" column indicates one of:\n\
15635 \tbreakpoint - normal breakpoint\n\
15636 \twatchpoint - watchpoint\n\
15637 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15638 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15639 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15640 address and file/line number respectively.\n\
15641 \n\
15642 Convenience variable \"$_\" and default examine address for \"x\"\n\
15643 are set to the address of the last breakpoint listed unless the command\n\
15644 is prefixed with \"server \".\n\n\
15645 Convenience variable \"$bpnum\" contains the number of the last\n\
15646 breakpoint set."));
15647 }
15648
15649 add_info ("breakpoints", info_breakpoints_command, _("\
15650 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15651 The \"Type\" column indicates one of:\n\
15652 \tbreakpoint - normal breakpoint\n\
15653 \twatchpoint - watchpoint\n\
15654 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15655 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15656 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15657 address and file/line number respectively.\n\
15658 \n\
15659 Convenience variable \"$_\" and default examine address for \"x\"\n\
15660 are set to the address of the last breakpoint listed unless the command\n\
15661 is prefixed with \"server \".\n\n\
15662 Convenience variable \"$bpnum\" contains the number of the last\n\
15663 breakpoint set."));
15664
15665 add_info_alias ("b", "breakpoints", 1);
15666
15667 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15668 Status of all breakpoints, or breakpoint number NUMBER.\n\
15669 The \"Type\" column indicates one of:\n\
15670 \tbreakpoint - normal breakpoint\n\
15671 \twatchpoint - watchpoint\n\
15672 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15673 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15674 \tuntil - internal breakpoint used by the \"until\" command\n\
15675 \tfinish - internal breakpoint used by the \"finish\" command\n\
15676 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15677 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15678 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15679 address and file/line number respectively.\n\
15680 \n\
15681 Convenience variable \"$_\" and default examine address for \"x\"\n\
15682 are set to the address of the last breakpoint listed unless the command\n\
15683 is prefixed with \"server \".\n\n\
15684 Convenience variable \"$bpnum\" contains the number of the last\n\
15685 breakpoint set."),
15686 &maintenanceinfolist);
15687
15688 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15689 Set catchpoints to catch events."),
15690 &catch_cmdlist, "catch ",
15691 0/*allow-unknown*/, &cmdlist);
15692
15693 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15694 Set temporary catchpoints to catch events."),
15695 &tcatch_cmdlist, "tcatch ",
15696 0/*allow-unknown*/, &cmdlist);
15697
15698 add_catch_command ("fork", _("Catch calls to fork."),
15699 catch_fork_command_1,
15700 NULL,
15701 (void *) (uintptr_t) catch_fork_permanent,
15702 (void *) (uintptr_t) catch_fork_temporary);
15703 add_catch_command ("vfork", _("Catch calls to vfork."),
15704 catch_fork_command_1,
15705 NULL,
15706 (void *) (uintptr_t) catch_vfork_permanent,
15707 (void *) (uintptr_t) catch_vfork_temporary);
15708 add_catch_command ("exec", _("Catch calls to exec."),
15709 catch_exec_command_1,
15710 NULL,
15711 CATCH_PERMANENT,
15712 CATCH_TEMPORARY);
15713 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15714 Usage: catch load [REGEX]\n\
15715 If REGEX is given, only stop for libraries matching the regular expression."),
15716 catch_load_command_1,
15717 NULL,
15718 CATCH_PERMANENT,
15719 CATCH_TEMPORARY);
15720 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15721 Usage: catch unload [REGEX]\n\
15722 If REGEX is given, only stop for libraries matching the regular expression."),
15723 catch_unload_command_1,
15724 NULL,
15725 CATCH_PERMANENT,
15726 CATCH_TEMPORARY);
15727
15728 c = add_com ("watch", class_breakpoint, watch_command, _("\
15729 Set a watchpoint for an expression.\n\
15730 Usage: watch [-l|-location] EXPRESSION\n\
15731 A watchpoint stops execution of your program whenever the value of\n\
15732 an expression changes.\n\
15733 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15734 the memory to which it refers."));
15735 set_cmd_completer (c, expression_completer);
15736
15737 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15738 Set a read watchpoint for an expression.\n\
15739 Usage: rwatch [-l|-location] EXPRESSION\n\
15740 A watchpoint stops execution of your program whenever the value of\n\
15741 an expression is read.\n\
15742 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15743 the memory to which it refers."));
15744 set_cmd_completer (c, expression_completer);
15745
15746 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15747 Set a watchpoint for an expression.\n\
15748 Usage: awatch [-l|-location] EXPRESSION\n\
15749 A watchpoint stops execution of your program whenever the value of\n\
15750 an expression is either read or written.\n\
15751 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15752 the memory to which it refers."));
15753 set_cmd_completer (c, expression_completer);
15754
15755 add_info ("watchpoints", info_watchpoints_command, _("\
15756 Status of specified watchpoints (all watchpoints if no argument)."));
15757
15758 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15759 respond to changes - contrary to the description. */
15760 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15761 &can_use_hw_watchpoints, _("\
15762 Set debugger's willingness to use watchpoint hardware."), _("\
15763 Show debugger's willingness to use watchpoint hardware."), _("\
15764 If zero, gdb will not use hardware for new watchpoints, even if\n\
15765 such is available. (However, any hardware watchpoints that were\n\
15766 created before setting this to nonzero, will continue to use watchpoint\n\
15767 hardware.)"),
15768 NULL,
15769 show_can_use_hw_watchpoints,
15770 &setlist, &showlist);
15771
15772 can_use_hw_watchpoints = 1;
15773
15774 /* Tracepoint manipulation commands. */
15775
15776 c = add_com ("trace", class_breakpoint, trace_command, _("\
15777 Set a tracepoint at specified location.\n\
15778 \n"
15779 BREAK_ARGS_HELP ("trace") "\n\
15780 Do \"help tracepoints\" for info on other tracepoint commands."));
15781 set_cmd_completer (c, location_completer);
15782
15783 add_com_alias ("tp", "trace", class_alias, 0);
15784 add_com_alias ("tr", "trace", class_alias, 1);
15785 add_com_alias ("tra", "trace", class_alias, 1);
15786 add_com_alias ("trac", "trace", class_alias, 1);
15787
15788 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15789 Set a fast tracepoint at specified location.\n\
15790 \n"
15791 BREAK_ARGS_HELP ("ftrace") "\n\
15792 Do \"help tracepoints\" for info on other tracepoint commands."));
15793 set_cmd_completer (c, location_completer);
15794
15795 c = add_com ("strace", class_breakpoint, strace_command, _("\
15796 Set a static tracepoint at location or marker.\n\
15797 \n\
15798 strace [LOCATION] [if CONDITION]\n\
15799 LOCATION may be a linespec, explicit, or address location (described below) \n\
15800 or -m MARKER_ID.\n\n\
15801 If a marker id is specified, probe the marker with that name. With\n\
15802 no LOCATION, uses current execution address of the selected stack frame.\n\
15803 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15804 This collects arbitrary user data passed in the probe point call to the\n\
15805 tracing library. You can inspect it when analyzing the trace buffer,\n\
15806 by printing the $_sdata variable like any other convenience variable.\n\
15807 \n\
15808 CONDITION is a boolean expression.\n\
15809 \n" LOCATION_HELP_STRING "\n\
15810 Multiple tracepoints at one place are permitted, and useful if their\n\
15811 conditions are different.\n\
15812 \n\
15813 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15814 Do \"help tracepoints\" for info on other tracepoint commands."));
15815 set_cmd_completer (c, location_completer);
15816
15817 add_info ("tracepoints", info_tracepoints_command, _("\
15818 Status of specified tracepoints (all tracepoints if no argument).\n\
15819 Convenience variable \"$tpnum\" contains the number of the\n\
15820 last tracepoint set."));
15821
15822 add_info_alias ("tp", "tracepoints", 1);
15823
15824 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15825 Delete specified tracepoints.\n\
15826 Arguments are tracepoint numbers, separated by spaces.\n\
15827 No argument means delete all tracepoints."),
15828 &deletelist);
15829 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15830
15831 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15832 Disable specified tracepoints.\n\
15833 Arguments are tracepoint numbers, separated by spaces.\n\
15834 No argument means disable all tracepoints."),
15835 &disablelist);
15836 deprecate_cmd (c, "disable");
15837
15838 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15839 Enable specified tracepoints.\n\
15840 Arguments are tracepoint numbers, separated by spaces.\n\
15841 No argument means enable all tracepoints."),
15842 &enablelist);
15843 deprecate_cmd (c, "enable");
15844
15845 add_com ("passcount", class_trace, trace_pass_command, _("\
15846 Set the passcount for a tracepoint.\n\
15847 The trace will end when the tracepoint has been passed 'count' times.\n\
15848 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15849 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15850
15851 add_prefix_cmd ("save", class_breakpoint, save_command,
15852 _("Save breakpoint definitions as a script."),
15853 &save_cmdlist, "save ",
15854 0/*allow-unknown*/, &cmdlist);
15855
15856 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15857 Save current breakpoint definitions as a script.\n\
15858 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15859 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15860 session to restore them."),
15861 &save_cmdlist);
15862 set_cmd_completer (c, filename_completer);
15863
15864 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15865 Save current tracepoint definitions as a script.\n\
15866 Use the 'source' command in another debug session to restore them."),
15867 &save_cmdlist);
15868 set_cmd_completer (c, filename_completer);
15869
15870 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15871 deprecate_cmd (c, "save tracepoints");
15872
15873 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15874 Breakpoint specific settings\n\
15875 Configure various breakpoint-specific variables such as\n\
15876 pending breakpoint behavior"),
15877 &breakpoint_set_cmdlist, "set breakpoint ",
15878 0/*allow-unknown*/, &setlist);
15879 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15880 Breakpoint specific settings\n\
15881 Configure various breakpoint-specific variables such as\n\
15882 pending breakpoint behavior"),
15883 &breakpoint_show_cmdlist, "show breakpoint ",
15884 0/*allow-unknown*/, &showlist);
15885
15886 add_setshow_auto_boolean_cmd ("pending", no_class,
15887 &pending_break_support, _("\
15888 Set debugger's behavior regarding pending breakpoints."), _("\
15889 Show debugger's behavior regarding pending breakpoints."), _("\
15890 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15891 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15892 an error. If auto, an unrecognized breakpoint location results in a\n\
15893 user-query to see if a pending breakpoint should be created."),
15894 NULL,
15895 show_pending_break_support,
15896 &breakpoint_set_cmdlist,
15897 &breakpoint_show_cmdlist);
15898
15899 pending_break_support = AUTO_BOOLEAN_AUTO;
15900
15901 add_setshow_boolean_cmd ("auto-hw", no_class,
15902 &automatic_hardware_breakpoints, _("\
15903 Set automatic usage of hardware breakpoints."), _("\
15904 Show automatic usage of hardware breakpoints."), _("\
15905 If set, the debugger will automatically use hardware breakpoints for\n\
15906 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15907 a warning will be emitted for such breakpoints."),
15908 NULL,
15909 show_automatic_hardware_breakpoints,
15910 &breakpoint_set_cmdlist,
15911 &breakpoint_show_cmdlist);
15912
15913 add_setshow_boolean_cmd ("always-inserted", class_support,
15914 &always_inserted_mode, _("\
15915 Set mode for inserting breakpoints."), _("\
15916 Show mode for inserting breakpoints."), _("\
15917 When this mode is on, breakpoints are inserted immediately as soon as\n\
15918 they're created, kept inserted even when execution stops, and removed\n\
15919 only when the user deletes them. When this mode is off (the default),\n\
15920 breakpoints are inserted only when execution continues, and removed\n\
15921 when execution stops."),
15922 NULL,
15923 &show_always_inserted_mode,
15924 &breakpoint_set_cmdlist,
15925 &breakpoint_show_cmdlist);
15926
15927 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15928 condition_evaluation_enums,
15929 &condition_evaluation_mode_1, _("\
15930 Set mode of breakpoint condition evaluation."), _("\
15931 Show mode of breakpoint condition evaluation."), _("\
15932 When this is set to \"host\", breakpoint conditions will be\n\
15933 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15934 breakpoint conditions will be downloaded to the target (if the target\n\
15935 supports such feature) and conditions will be evaluated on the target's side.\n\
15936 If this is set to \"auto\" (default), this will be automatically set to\n\
15937 \"target\" if it supports condition evaluation, otherwise it will\n\
15938 be set to \"gdb\""),
15939 &set_condition_evaluation_mode,
15940 &show_condition_evaluation_mode,
15941 &breakpoint_set_cmdlist,
15942 &breakpoint_show_cmdlist);
15943
15944 add_com ("break-range", class_breakpoint, break_range_command, _("\
15945 Set a breakpoint for an address range.\n\
15946 break-range START-LOCATION, END-LOCATION\n\
15947 where START-LOCATION and END-LOCATION can be one of the following:\n\
15948 LINENUM, for that line in the current file,\n\
15949 FILE:LINENUM, for that line in that file,\n\
15950 +OFFSET, for that number of lines after the current line\n\
15951 or the start of the range\n\
15952 FUNCTION, for the first line in that function,\n\
15953 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15954 *ADDRESS, for the instruction at that address.\n\
15955 \n\
15956 The breakpoint will stop execution of the inferior whenever it executes\n\
15957 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15958 range (including START-LOCATION and END-LOCATION)."));
15959
15960 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15961 Set a dynamic printf at specified location.\n\
15962 dprintf location,format string,arg1,arg2,...\n\
15963 location may be a linespec, explicit, or address location.\n"
15964 "\n" LOCATION_HELP_STRING));
15965 set_cmd_completer (c, location_completer);
15966
15967 add_setshow_enum_cmd ("dprintf-style", class_support,
15968 dprintf_style_enums, &dprintf_style, _("\
15969 Set the style of usage for dynamic printf."), _("\
15970 Show the style of usage for dynamic printf."), _("\
15971 This setting chooses how GDB will do a dynamic printf.\n\
15972 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15973 console, as with the \"printf\" command.\n\
15974 If the value is \"call\", the print is done by calling a function in your\n\
15975 program; by default printf(), but you can choose a different function or\n\
15976 output stream by setting dprintf-function and dprintf-channel."),
15977 update_dprintf_commands, NULL,
15978 &setlist, &showlist);
15979
15980 dprintf_function = xstrdup ("printf");
15981 add_setshow_string_cmd ("dprintf-function", class_support,
15982 &dprintf_function, _("\
15983 Set the function to use for dynamic printf"), _("\
15984 Show the function to use for dynamic printf"), NULL,
15985 update_dprintf_commands, NULL,
15986 &setlist, &showlist);
15987
15988 dprintf_channel = xstrdup ("");
15989 add_setshow_string_cmd ("dprintf-channel", class_support,
15990 &dprintf_channel, _("\
15991 Set the channel to use for dynamic printf"), _("\
15992 Show the channel to use for dynamic printf"), NULL,
15993 update_dprintf_commands, NULL,
15994 &setlist, &showlist);
15995
15996 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15997 &disconnected_dprintf, _("\
15998 Set whether dprintf continues after GDB disconnects."), _("\
15999 Show whether dprintf continues after GDB disconnects."), _("\
16000 Use this to let dprintf commands continue to hit and produce output\n\
16001 even if GDB disconnects or detaches from the target."),
16002 NULL,
16003 NULL,
16004 &setlist, &showlist);
16005
16006 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16007 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16008 (target agent only) This is useful for formatted output in user-defined commands."));
16009
16010 automatic_hardware_breakpoints = 1;
16011
16012 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16013 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16014 }
This page took 0.374035 seconds and 5 git commands to generate.