2012-05-09 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbtypes.h"
33 #include "gdb_assert.h"
34 #include "complaints.h"
35 #include "gdb_string.h"
36 #include "expression.h" /* For "enum exp_opcode" used by... */
37 #include "bcache.h"
38 #include "filenames.h" /* For DOSish file names. */
39 #include "macrotab.h"
40 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
41 #include "block.h"
42 #include "cp-support.h"
43 #include "dictionary.h"
44 #include "addrmap.h"
45
46 /* Ask buildsym.h to define the vars it normally declares `extern'. */
47 #define EXTERN
48 /**/
49 #include "buildsym.h" /* Our own declarations. */
50 #undef EXTERN
51
52 /* For cleanup_undefined_types and finish_global_stabs (somewhat
53 questionable--see comment where we call them). */
54
55 #include "stabsread.h"
56
57 /* List of subfiles. */
58
59 static struct subfile *subfiles;
60
61 /* List of free `struct pending' structures for reuse. */
62
63 static struct pending *free_pendings;
64
65 /* Non-zero if symtab has line number info. This prevents an
66 otherwise empty symtab from being tossed. */
67
68 static int have_line_numbers;
69
70 /* The mutable address map for the compilation unit whose symbols
71 we're currently reading. The symtabs' shared blockvector will
72 point to a fixed copy of this. */
73 static struct addrmap *pending_addrmap;
74
75 /* The obstack on which we allocate pending_addrmap.
76 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
77 initialized (and holds pending_addrmap). */
78 static struct obstack pending_addrmap_obstack;
79
80 /* Non-zero if we recorded any ranges in the addrmap that are
81 different from those in the blockvector already. We set this to
82 zero when we start processing a symfile, and if it's still zero at
83 the end, then we just toss the addrmap. */
84 static int pending_addrmap_interesting;
85
86 \f
87 static int compare_line_numbers (const void *ln1p, const void *ln2p);
88
89 static void record_pending_block (struct objfile *objfile,
90 struct block *block,
91 struct pending_block *opblock);
92 \f
93
94 /* Initial sizes of data structures. These are realloc'd larger if
95 needed, and realloc'd down to the size actually used, when
96 completed. */
97
98 #define INITIAL_CONTEXT_STACK_SIZE 10
99 #define INITIAL_LINE_VECTOR_LENGTH 1000
100 \f
101
102 /* Maintain the lists of symbols and blocks. */
103
104 /* Add a symbol to one of the lists of symbols. */
105
106 void
107 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
108 {
109 struct pending *link;
110
111 /* If this is an alias for another symbol, don't add it. */
112 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
113 return;
114
115 /* We keep PENDINGSIZE symbols in each link of the list. If we
116 don't have a link with room in it, add a new link. */
117 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
118 {
119 if (free_pendings)
120 {
121 link = free_pendings;
122 free_pendings = link->next;
123 }
124 else
125 {
126 link = (struct pending *) xmalloc (sizeof (struct pending));
127 }
128
129 link->next = *listhead;
130 *listhead = link;
131 link->nsyms = 0;
132 }
133
134 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
135 }
136
137 /* Find a symbol named NAME on a LIST. NAME need not be
138 '\0'-terminated; LENGTH is the length of the name. */
139
140 struct symbol *
141 find_symbol_in_list (struct pending *list, char *name, int length)
142 {
143 int j;
144 const char *pp;
145
146 while (list != NULL)
147 {
148 for (j = list->nsyms; --j >= 0;)
149 {
150 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
151 if (*pp == *name && strncmp (pp, name, length) == 0
152 && pp[length] == '\0')
153 {
154 return (list->symbol[j]);
155 }
156 }
157 list = list->next;
158 }
159 return (NULL);
160 }
161
162 /* At end of reading syms, or in case of quit, really free as many
163 `struct pending's as we can easily find. */
164
165 void
166 really_free_pendings (void *dummy)
167 {
168 struct pending *next, *next1;
169
170 for (next = free_pendings; next; next = next1)
171 {
172 next1 = next->next;
173 xfree ((void *) next);
174 }
175 free_pendings = NULL;
176
177 free_pending_blocks ();
178
179 for (next = file_symbols; next != NULL; next = next1)
180 {
181 next1 = next->next;
182 xfree ((void *) next);
183 }
184 file_symbols = NULL;
185
186 for (next = global_symbols; next != NULL; next = next1)
187 {
188 next1 = next->next;
189 xfree ((void *) next);
190 }
191 global_symbols = NULL;
192
193 if (pending_macros)
194 free_macro_table (pending_macros);
195
196 if (pending_addrmap)
197 {
198 obstack_free (&pending_addrmap_obstack, NULL);
199 pending_addrmap = NULL;
200 }
201 }
202
203 /* This function is called to discard any pending blocks. */
204
205 void
206 free_pending_blocks (void)
207 {
208 /* The links are made in the objfile_obstack, so we only need to
209 reset PENDING_BLOCKS. */
210 pending_blocks = NULL;
211 }
212
213 /* Take one of the lists of symbols and make a block from it. Keep
214 the order the symbols have in the list (reversed from the input
215 file). Put the block on the list of pending blocks. */
216
217 struct block *
218 finish_block (struct symbol *symbol, struct pending **listhead,
219 struct pending_block *old_blocks,
220 CORE_ADDR start, CORE_ADDR end,
221 struct objfile *objfile)
222 {
223 struct gdbarch *gdbarch = get_objfile_arch (objfile);
224 struct pending *next, *next1;
225 struct block *block;
226 struct pending_block *pblock;
227 struct pending_block *opblock;
228
229 block = allocate_block (&objfile->objfile_obstack);
230
231 if (symbol)
232 {
233 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
234 *listhead);
235 }
236 else
237 {
238 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
239 *listhead);
240 }
241
242 BLOCK_START (block) = start;
243 BLOCK_END (block) = end;
244 /* Superblock filled in when containing block is made. */
245 BLOCK_SUPERBLOCK (block) = NULL;
246 BLOCK_NAMESPACE (block) = NULL;
247
248 /* Put the block in as the value of the symbol that names it. */
249
250 if (symbol)
251 {
252 struct type *ftype = SYMBOL_TYPE (symbol);
253 struct dict_iterator iter;
254 SYMBOL_BLOCK_VALUE (symbol) = block;
255 BLOCK_FUNCTION (block) = symbol;
256
257 if (TYPE_NFIELDS (ftype) <= 0)
258 {
259 /* No parameter type information is recorded with the
260 function's type. Set that from the type of the
261 parameter symbols. */
262 int nparams = 0, iparams;
263 struct symbol *sym;
264 ALL_BLOCK_SYMBOLS (block, iter, sym)
265 {
266 if (SYMBOL_IS_ARGUMENT (sym))
267 nparams++;
268 }
269 if (nparams > 0)
270 {
271 TYPE_NFIELDS (ftype) = nparams;
272 TYPE_FIELDS (ftype) = (struct field *)
273 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
274
275 iparams = 0;
276 ALL_BLOCK_SYMBOLS (block, iter, sym)
277 {
278 if (iparams == nparams)
279 break;
280
281 if (SYMBOL_IS_ARGUMENT (sym))
282 {
283 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
284 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
285 iparams++;
286 }
287 }
288 }
289 }
290 }
291 else
292 {
293 BLOCK_FUNCTION (block) = NULL;
294 }
295
296 /* Now "free" the links of the list, and empty the list. */
297
298 for (next = *listhead; next; next = next1)
299 {
300 next1 = next->next;
301 next->next = free_pendings;
302 free_pendings = next;
303 }
304 *listhead = NULL;
305
306 /* Check to be sure that the blocks have an end address that is
307 greater than starting address. */
308
309 if (BLOCK_END (block) < BLOCK_START (block))
310 {
311 if (symbol)
312 {
313 complaint (&symfile_complaints,
314 _("block end address less than block "
315 "start address in %s (patched it)"),
316 SYMBOL_PRINT_NAME (symbol));
317 }
318 else
319 {
320 complaint (&symfile_complaints,
321 _("block end address %s less than block "
322 "start address %s (patched it)"),
323 paddress (gdbarch, BLOCK_END (block)),
324 paddress (gdbarch, BLOCK_START (block)));
325 }
326 /* Better than nothing. */
327 BLOCK_END (block) = BLOCK_START (block);
328 }
329
330 /* Install this block as the superblock of all blocks made since the
331 start of this scope that don't have superblocks yet. */
332
333 opblock = NULL;
334 for (pblock = pending_blocks;
335 pblock && pblock != old_blocks;
336 pblock = pblock->next)
337 {
338 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
339 {
340 /* Check to be sure the blocks are nested as we receive
341 them. If the compiler/assembler/linker work, this just
342 burns a small amount of time.
343
344 Skip blocks which correspond to a function; they're not
345 physically nested inside this other blocks, only
346 lexically nested. */
347 if (BLOCK_FUNCTION (pblock->block) == NULL
348 && (BLOCK_START (pblock->block) < BLOCK_START (block)
349 || BLOCK_END (pblock->block) > BLOCK_END (block)))
350 {
351 if (symbol)
352 {
353 complaint (&symfile_complaints,
354 _("inner block not inside outer block in %s"),
355 SYMBOL_PRINT_NAME (symbol));
356 }
357 else
358 {
359 complaint (&symfile_complaints,
360 _("inner block (%s-%s) not "
361 "inside outer block (%s-%s)"),
362 paddress (gdbarch, BLOCK_START (pblock->block)),
363 paddress (gdbarch, BLOCK_END (pblock->block)),
364 paddress (gdbarch, BLOCK_START (block)),
365 paddress (gdbarch, BLOCK_END (block)));
366 }
367 if (BLOCK_START (pblock->block) < BLOCK_START (block))
368 BLOCK_START (pblock->block) = BLOCK_START (block);
369 if (BLOCK_END (pblock->block) > BLOCK_END (block))
370 BLOCK_END (pblock->block) = BLOCK_END (block);
371 }
372 BLOCK_SUPERBLOCK (pblock->block) = block;
373 }
374 opblock = pblock;
375 }
376
377 block_set_using (block, using_directives, &objfile->objfile_obstack);
378 using_directives = NULL;
379
380 record_pending_block (objfile, block, opblock);
381
382 return block;
383 }
384
385
386 /* Record BLOCK on the list of all blocks in the file. Put it after
387 OPBLOCK, or at the beginning if opblock is NULL. This puts the
388 block in the list after all its subblocks.
389
390 Allocate the pending block struct in the objfile_obstack to save
391 time. This wastes a little space. FIXME: Is it worth it? */
392
393 static void
394 record_pending_block (struct objfile *objfile, struct block *block,
395 struct pending_block *opblock)
396 {
397 struct pending_block *pblock;
398
399 pblock = (struct pending_block *)
400 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
401 pblock->block = block;
402 if (opblock)
403 {
404 pblock->next = opblock->next;
405 opblock->next = pblock;
406 }
407 else
408 {
409 pblock->next = pending_blocks;
410 pending_blocks = pblock;
411 }
412 }
413
414
415 /* Record that the range of addresses from START to END_INCLUSIVE
416 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
417 addresses must be set already. You must apply this function to all
418 BLOCK's children before applying it to BLOCK.
419
420 If a call to this function complicates the picture beyond that
421 already provided by BLOCK_START and BLOCK_END, then we create an
422 address map for the block. */
423 void
424 record_block_range (struct block *block,
425 CORE_ADDR start, CORE_ADDR end_inclusive)
426 {
427 /* If this is any different from the range recorded in the block's
428 own BLOCK_START and BLOCK_END, then note that the address map has
429 become interesting. Note that even if this block doesn't have
430 any "interesting" ranges, some later block might, so we still
431 need to record this block in the addrmap. */
432 if (start != BLOCK_START (block)
433 || end_inclusive + 1 != BLOCK_END (block))
434 pending_addrmap_interesting = 1;
435
436 if (! pending_addrmap)
437 {
438 obstack_init (&pending_addrmap_obstack);
439 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
440 }
441
442 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
443 }
444
445
446 static struct blockvector *
447 make_blockvector (struct objfile *objfile)
448 {
449 struct pending_block *next;
450 struct blockvector *blockvector;
451 int i;
452
453 /* Count the length of the list of blocks. */
454
455 for (next = pending_blocks, i = 0; next; next = next->next, i++)
456 {;
457 }
458
459 blockvector = (struct blockvector *)
460 obstack_alloc (&objfile->objfile_obstack,
461 (sizeof (struct blockvector)
462 + (i - 1) * sizeof (struct block *)));
463
464 /* Copy the blocks into the blockvector. This is done in reverse
465 order, which happens to put the blocks into the proper order
466 (ascending starting address). finish_block has hair to insert
467 each block into the list after its subblocks in order to make
468 sure this is true. */
469
470 BLOCKVECTOR_NBLOCKS (blockvector) = i;
471 for (next = pending_blocks; next; next = next->next)
472 {
473 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
474 }
475
476 free_pending_blocks ();
477
478 /* If we needed an address map for this symtab, record it in the
479 blockvector. */
480 if (pending_addrmap && pending_addrmap_interesting)
481 BLOCKVECTOR_MAP (blockvector)
482 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
483 else
484 BLOCKVECTOR_MAP (blockvector) = 0;
485
486 /* Some compilers output blocks in the wrong order, but we depend on
487 their being in the right order so we can binary search. Check the
488 order and moan about it. */
489 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
490 {
491 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
492 {
493 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
494 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
495 {
496 CORE_ADDR start
497 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
498
499 complaint (&symfile_complaints, _("block at %s out of order"),
500 hex_string ((LONGEST) start));
501 }
502 }
503 }
504
505 return (blockvector);
506 }
507 \f
508 /* Start recording information about source code that came from an
509 included (or otherwise merged-in) source file with a different
510 name. NAME is the name of the file (cannot be NULL), DIRNAME is
511 the directory in which the file was compiled (or NULL if not
512 known). */
513
514 void
515 start_subfile (const char *name, const char *dirname)
516 {
517 struct subfile *subfile;
518
519 /* See if this subfile is already known as a subfile of the current
520 main source file. */
521
522 for (subfile = subfiles; subfile; subfile = subfile->next)
523 {
524 char *subfile_name;
525
526 /* If NAME is an absolute path, and this subfile is not, then
527 attempt to create an absolute path to compare. */
528 if (IS_ABSOLUTE_PATH (name)
529 && !IS_ABSOLUTE_PATH (subfile->name)
530 && subfile->dirname != NULL)
531 subfile_name = concat (subfile->dirname, SLASH_STRING,
532 subfile->name, (char *) NULL);
533 else
534 subfile_name = subfile->name;
535
536 if (FILENAME_CMP (subfile_name, name) == 0)
537 {
538 current_subfile = subfile;
539 if (subfile_name != subfile->name)
540 xfree (subfile_name);
541 return;
542 }
543 if (subfile_name != subfile->name)
544 xfree (subfile_name);
545 }
546
547 /* This subfile is not known. Add an entry for it. Make an entry
548 for this subfile in the list of all subfiles of the current main
549 source file. */
550
551 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
552 memset ((char *) subfile, 0, sizeof (struct subfile));
553 subfile->next = subfiles;
554 subfiles = subfile;
555 current_subfile = subfile;
556
557 /* Save its name and compilation directory name. */
558 subfile->name = (name == NULL) ? NULL : xstrdup (name);
559 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
560
561 /* Initialize line-number recording for this subfile. */
562 subfile->line_vector = NULL;
563
564 /* Default the source language to whatever can be deduced from the
565 filename. If nothing can be deduced (such as for a C/C++ include
566 file with a ".h" extension), then inherit whatever language the
567 previous subfile had. This kludgery is necessary because there
568 is no standard way in some object formats to record the source
569 language. Also, when symtabs are allocated we try to deduce a
570 language then as well, but it is too late for us to use that
571 information while reading symbols, since symtabs aren't allocated
572 until after all the symbols have been processed for a given
573 source file. */
574
575 subfile->language = deduce_language_from_filename (subfile->name);
576 if (subfile->language == language_unknown
577 && subfile->next != NULL)
578 {
579 subfile->language = subfile->next->language;
580 }
581
582 /* Initialize the debug format string to NULL. We may supply it
583 later via a call to record_debugformat. */
584 subfile->debugformat = NULL;
585
586 /* Similarly for the producer. */
587 subfile->producer = NULL;
588
589 /* If the filename of this subfile ends in .C, then change the
590 language of any pending subfiles from C to C++. We also accept
591 any other C++ suffixes accepted by deduce_language_from_filename. */
592 /* Likewise for f2c. */
593
594 if (subfile->name)
595 {
596 struct subfile *s;
597 enum language sublang = deduce_language_from_filename (subfile->name);
598
599 if (sublang == language_cplus || sublang == language_fortran)
600 for (s = subfiles; s != NULL; s = s->next)
601 if (s->language == language_c)
602 s->language = sublang;
603 }
604
605 /* And patch up this file if necessary. */
606 if (subfile->language == language_c
607 && subfile->next != NULL
608 && (subfile->next->language == language_cplus
609 || subfile->next->language == language_fortran))
610 {
611 subfile->language = subfile->next->language;
612 }
613 }
614
615 /* For stabs readers, the first N_SO symbol is assumed to be the
616 source file name, and the subfile struct is initialized using that
617 assumption. If another N_SO symbol is later seen, immediately
618 following the first one, then the first one is assumed to be the
619 directory name and the second one is really the source file name.
620
621 So we have to patch up the subfile struct by moving the old name
622 value to dirname and remembering the new name. Some sanity
623 checking is performed to ensure that the state of the subfile
624 struct is reasonable and that the old name we are assuming to be a
625 directory name actually is (by checking for a trailing '/'). */
626
627 void
628 patch_subfile_names (struct subfile *subfile, char *name)
629 {
630 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
631 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
632 {
633 subfile->dirname = subfile->name;
634 subfile->name = xstrdup (name);
635 last_source_file = name;
636
637 /* Default the source language to whatever can be deduced from
638 the filename. If nothing can be deduced (such as for a C/C++
639 include file with a ".h" extension), then inherit whatever
640 language the previous subfile had. This kludgery is
641 necessary because there is no standard way in some object
642 formats to record the source language. Also, when symtabs
643 are allocated we try to deduce a language then as well, but
644 it is too late for us to use that information while reading
645 symbols, since symtabs aren't allocated until after all the
646 symbols have been processed for a given source file. */
647
648 subfile->language = deduce_language_from_filename (subfile->name);
649 if (subfile->language == language_unknown
650 && subfile->next != NULL)
651 {
652 subfile->language = subfile->next->language;
653 }
654 }
655 }
656 \f
657 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
658 switching source files (different subfiles, as we call them) within
659 one object file, but using a stack rather than in an arbitrary
660 order. */
661
662 void
663 push_subfile (void)
664 {
665 struct subfile_stack *tem
666 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
667
668 tem->next = subfile_stack;
669 subfile_stack = tem;
670 if (current_subfile == NULL || current_subfile->name == NULL)
671 {
672 internal_error (__FILE__, __LINE__,
673 _("failed internal consistency check"));
674 }
675 tem->name = current_subfile->name;
676 }
677
678 char *
679 pop_subfile (void)
680 {
681 char *name;
682 struct subfile_stack *link = subfile_stack;
683
684 if (link == NULL)
685 {
686 internal_error (__FILE__, __LINE__,
687 _("failed internal consistency check"));
688 }
689 name = link->name;
690 subfile_stack = link->next;
691 xfree ((void *) link);
692 return (name);
693 }
694 \f
695 /* Add a linetable entry for line number LINE and address PC to the
696 line vector for SUBFILE. */
697
698 void
699 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
700 {
701 struct linetable_entry *e;
702
703 /* Ignore the dummy line number in libg.o */
704 if (line == 0xffff)
705 {
706 return;
707 }
708
709 /* Make sure line vector exists and is big enough. */
710 if (!subfile->line_vector)
711 {
712 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
713 subfile->line_vector = (struct linetable *)
714 xmalloc (sizeof (struct linetable)
715 + subfile->line_vector_length * sizeof (struct linetable_entry));
716 subfile->line_vector->nitems = 0;
717 have_line_numbers = 1;
718 }
719
720 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
721 {
722 subfile->line_vector_length *= 2;
723 subfile->line_vector = (struct linetable *)
724 xrealloc ((char *) subfile->line_vector,
725 (sizeof (struct linetable)
726 + (subfile->line_vector_length
727 * sizeof (struct linetable_entry))));
728 }
729
730 /* Normally, we treat lines as unsorted. But the end of sequence
731 marker is special. We sort line markers at the same PC by line
732 number, so end of sequence markers (which have line == 0) appear
733 first. This is right if the marker ends the previous function,
734 and there is no padding before the next function. But it is
735 wrong if the previous line was empty and we are now marking a
736 switch to a different subfile. We must leave the end of sequence
737 marker at the end of this group of lines, not sort the empty line
738 to after the marker. The easiest way to accomplish this is to
739 delete any empty lines from our table, if they are followed by
740 end of sequence markers. All we lose is the ability to set
741 breakpoints at some lines which contain no instructions
742 anyway. */
743 if (line == 0 && subfile->line_vector->nitems > 0)
744 {
745 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
746 while (subfile->line_vector->nitems > 0 && e->pc == pc)
747 {
748 e--;
749 subfile->line_vector->nitems--;
750 }
751 }
752
753 e = subfile->line_vector->item + subfile->line_vector->nitems++;
754 e->line = line;
755 e->pc = pc;
756 }
757
758 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
759
760 static int
761 compare_line_numbers (const void *ln1p, const void *ln2p)
762 {
763 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
764 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
765
766 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
767 Please keep it that way. */
768 if (ln1->pc < ln2->pc)
769 return -1;
770
771 if (ln1->pc > ln2->pc)
772 return 1;
773
774 /* If pc equal, sort by line. I'm not sure whether this is optimum
775 behavior (see comment at struct linetable in symtab.h). */
776 return ln1->line - ln2->line;
777 }
778 \f
779 /* Start a new symtab for a new source file. Called, for example,
780 when a stabs symbol of type N_SO is seen, or when a DWARF
781 TAG_compile_unit DIE is seen. It indicates the start of data for
782 one original source file.
783
784 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
785 which the file was compiled (or NULL if not known). START_ADDR is the
786 lowest address of objects in the file (or 0 if not known). */
787
788 void
789 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
790 {
791 last_source_file = name;
792 last_source_start_addr = start_addr;
793 file_symbols = NULL;
794 global_symbols = NULL;
795 within_function = 0;
796 have_line_numbers = 0;
797
798 /* Context stack is initially empty. Allocate first one with room
799 for 10 levels; reuse it forever afterward. */
800 if (context_stack == NULL)
801 {
802 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
803 context_stack = (struct context_stack *)
804 xmalloc (context_stack_size * sizeof (struct context_stack));
805 }
806 context_stack_depth = 0;
807
808 /* We shouldn't have any address map at this point. */
809 gdb_assert (! pending_addrmap);
810
811 /* Initialize the list of sub source files with one entry for this
812 file (the top-level source file). */
813
814 subfiles = NULL;
815 current_subfile = NULL;
816 start_subfile (name, dirname);
817 }
818
819 /* Subroutine of end_symtab to simplify it. Look for a subfile that
820 matches the main source file's basename. If there is only one, and
821 if the main source file doesn't have any symbol or line number
822 information, then copy this file's symtab and line_vector to the
823 main source file's subfile and discard the other subfile. This can
824 happen because of a compiler bug or from the user playing games
825 with #line or from things like a distributed build system that
826 manipulates the debug info. */
827
828 static void
829 watch_main_source_file_lossage (void)
830 {
831 struct subfile *mainsub, *subfile;
832
833 /* Find the main source file.
834 This loop could be eliminated if start_symtab saved it for us. */
835 mainsub = NULL;
836 for (subfile = subfiles; subfile; subfile = subfile->next)
837 {
838 /* The main subfile is guaranteed to be the last one. */
839 if (subfile->next == NULL)
840 mainsub = subfile;
841 }
842
843 /* If the main source file doesn't have any line number or symbol
844 info, look for an alias in another subfile.
845
846 We have to watch for mainsub == NULL here. It's a quirk of
847 end_symtab, it can return NULL so there may not be a main
848 subfile. */
849
850 if (mainsub
851 && mainsub->line_vector == NULL
852 && mainsub->symtab == NULL)
853 {
854 const char *mainbase = lbasename (mainsub->name);
855 int nr_matches = 0;
856 struct subfile *prevsub;
857 struct subfile *mainsub_alias = NULL;
858 struct subfile *prev_mainsub_alias = NULL;
859
860 prevsub = NULL;
861 for (subfile = subfiles;
862 /* Stop before we get to the last one. */
863 subfile->next;
864 subfile = subfile->next)
865 {
866 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
867 {
868 ++nr_matches;
869 mainsub_alias = subfile;
870 prev_mainsub_alias = prevsub;
871 }
872 prevsub = subfile;
873 }
874
875 if (nr_matches == 1)
876 {
877 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
878
879 /* Found a match for the main source file.
880 Copy its line_vector and symtab to the main subfile
881 and then discard it. */
882
883 mainsub->line_vector = mainsub_alias->line_vector;
884 mainsub->line_vector_length = mainsub_alias->line_vector_length;
885 mainsub->symtab = mainsub_alias->symtab;
886
887 if (prev_mainsub_alias == NULL)
888 subfiles = mainsub_alias->next;
889 else
890 prev_mainsub_alias->next = mainsub_alias->next;
891 xfree (mainsub_alias);
892 }
893 }
894 }
895
896 /* Helper function for qsort. Parametes are `struct block *' pointers,
897 function sorts them in descending order by their BLOCK_START. */
898
899 static int
900 block_compar (const void *ap, const void *bp)
901 {
902 const struct block *a = *(const struct block **) ap;
903 const struct block *b = *(const struct block **) bp;
904
905 return ((BLOCK_START (b) > BLOCK_START (a))
906 - (BLOCK_START (b) < BLOCK_START (a)));
907 }
908
909 /* Finish the symbol definitions for one main source file, close off
910 all the lexical contexts for that file (creating struct block's for
911 them), then make the struct symtab for that file and put it in the
912 list of all such.
913
914 END_ADDR is the address of the end of the file's text. SECTION is
915 the section number (in objfile->section_offsets) of the blockvector
916 and linetable.
917
918 Note that it is possible for end_symtab() to return NULL. In
919 particular, for the DWARF case at least, it will return NULL when
920 it finds a compilation unit that has exactly one DIE, a
921 TAG_compile_unit DIE. This can happen when we link in an object
922 file that was compiled from an empty source file. Returning NULL
923 is probably not the correct thing to do, because then gdb will
924 never know about this empty file (FIXME). */
925
926 struct symtab *
927 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
928 {
929 struct symtab *symtab = NULL;
930 struct blockvector *blockvector;
931 struct subfile *subfile;
932 struct context_stack *cstk;
933 struct subfile *nextsub;
934
935 /* Finish the lexical context of the last function in the file; pop
936 the context stack. */
937
938 if (context_stack_depth > 0)
939 {
940 cstk = pop_context ();
941 /* Make a block for the local symbols within. */
942 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
943 cstk->start_addr, end_addr, objfile);
944
945 if (context_stack_depth > 0)
946 {
947 /* This is said to happen with SCO. The old coffread.c
948 code simply emptied the context stack, so we do the
949 same. FIXME: Find out why it is happening. This is not
950 believed to happen in most cases (even for coffread.c);
951 it used to be an abort(). */
952 complaint (&symfile_complaints,
953 _("Context stack not empty in end_symtab"));
954 context_stack_depth = 0;
955 }
956 }
957
958 /* Reordered executables may have out of order pending blocks; if
959 OBJF_REORDERED is true, then sort the pending blocks. */
960 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
961 {
962 unsigned count = 0;
963 struct pending_block *pb;
964 struct block **barray, **bp;
965 struct cleanup *back_to;
966
967 for (pb = pending_blocks; pb != NULL; pb = pb->next)
968 count++;
969
970 barray = xmalloc (sizeof (*barray) * count);
971 back_to = make_cleanup (xfree, barray);
972
973 bp = barray;
974 for (pb = pending_blocks; pb != NULL; pb = pb->next)
975 *bp++ = pb->block;
976
977 qsort (barray, count, sizeof (*barray), block_compar);
978
979 bp = barray;
980 for (pb = pending_blocks; pb != NULL; pb = pb->next)
981 pb->block = *bp++;
982
983 do_cleanups (back_to);
984 }
985
986 /* Cleanup any undefined types that have been left hanging around
987 (this needs to be done before the finish_blocks so that
988 file_symbols is still good).
989
990 Both cleanup_undefined_types and finish_global_stabs are stabs
991 specific, but harmless for other symbol readers, since on gdb
992 startup or when finished reading stabs, the state is set so these
993 are no-ops. FIXME: Is this handled right in case of QUIT? Can
994 we make this cleaner? */
995
996 cleanup_undefined_types (objfile);
997 finish_global_stabs (objfile);
998
999 if (pending_blocks == NULL
1000 && file_symbols == NULL
1001 && global_symbols == NULL
1002 && have_line_numbers == 0
1003 && pending_macros == NULL)
1004 {
1005 /* Ignore symtabs that have no functions with real debugging
1006 info. */
1007 blockvector = NULL;
1008 }
1009 else
1010 {
1011 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1012 blockvector. */
1013 finish_block (0, &file_symbols, 0, last_source_start_addr,
1014 end_addr, objfile);
1015 finish_block (0, &global_symbols, 0, last_source_start_addr,
1016 end_addr, objfile);
1017 blockvector = make_blockvector (objfile);
1018 }
1019
1020 /* Read the line table if it has to be read separately. */
1021 if (objfile->sf->sym_read_linetable != NULL)
1022 objfile->sf->sym_read_linetable ();
1023
1024 /* Handle the case where the debug info specifies a different path
1025 for the main source file. It can cause us to lose track of its
1026 line number information. */
1027 watch_main_source_file_lossage ();
1028
1029 /* Now create the symtab objects proper, one for each subfile. */
1030 /* (The main file is the last one on the chain.) */
1031
1032 for (subfile = subfiles; subfile; subfile = nextsub)
1033 {
1034 int linetablesize = 0;
1035 symtab = NULL;
1036
1037 /* If we have blocks of symbols, make a symtab. Otherwise, just
1038 ignore this file and any line number info in it. */
1039 if (blockvector)
1040 {
1041 if (subfile->line_vector)
1042 {
1043 linetablesize = sizeof (struct linetable) +
1044 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1045
1046 /* Like the pending blocks, the line table may be
1047 scrambled in reordered executables. Sort it if
1048 OBJF_REORDERED is true. */
1049 if (objfile->flags & OBJF_REORDERED)
1050 qsort (subfile->line_vector->item,
1051 subfile->line_vector->nitems,
1052 sizeof (struct linetable_entry), compare_line_numbers);
1053 }
1054
1055 /* Now, allocate a symbol table. */
1056 if (subfile->symtab == NULL)
1057 symtab = allocate_symtab (subfile->name, objfile);
1058 else
1059 symtab = subfile->symtab;
1060
1061 /* Fill in its components. */
1062 symtab->blockvector = blockvector;
1063 symtab->macro_table = pending_macros;
1064 if (subfile->line_vector)
1065 {
1066 /* Reallocate the line table on the symbol obstack. */
1067 symtab->linetable = (struct linetable *)
1068 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1069 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1070 }
1071 else
1072 {
1073 symtab->linetable = NULL;
1074 }
1075 symtab->block_line_section = section;
1076 if (subfile->dirname)
1077 {
1078 /* Reallocate the dirname on the symbol obstack. */
1079 symtab->dirname = (char *)
1080 obstack_alloc (&objfile->objfile_obstack,
1081 strlen (subfile->dirname) + 1);
1082 strcpy (symtab->dirname, subfile->dirname);
1083 }
1084 else
1085 {
1086 symtab->dirname = NULL;
1087 }
1088
1089 /* Use whatever language we have been using for this
1090 subfile, not the one that was deduced in allocate_symtab
1091 from the filename. We already did our own deducing when
1092 we created the subfile, and we may have altered our
1093 opinion of what language it is from things we found in
1094 the symbols. */
1095 symtab->language = subfile->language;
1096
1097 /* Save the debug format string (if any) in the symtab. */
1098 symtab->debugformat = subfile->debugformat;
1099
1100 /* Similarly for the producer. */
1101 symtab->producer = subfile->producer;
1102
1103 /* All symtabs for the main file and the subfiles share a
1104 blockvector, so we need to clear primary for everything
1105 but the main file. */
1106
1107 symtab->primary = 0;
1108 }
1109 else
1110 {
1111 if (subfile->symtab)
1112 {
1113 /* Since we are ignoring that subfile, we also need
1114 to unlink the associated empty symtab that we created.
1115 Otherwise, we can into trouble because various parts
1116 such as the block-vector are uninitialized whereas
1117 the rest of the code assumes that they are.
1118
1119 We can only unlink the symtab because it was allocated
1120 on the objfile obstack. */
1121 struct symtab *s;
1122
1123 if (objfile->symtabs == subfile->symtab)
1124 objfile->symtabs = objfile->symtabs->next;
1125 else
1126 ALL_OBJFILE_SYMTABS (objfile, s)
1127 if (s->next == subfile->symtab)
1128 {
1129 s->next = s->next->next;
1130 break;
1131 }
1132 subfile->symtab = NULL;
1133 }
1134 }
1135 if (subfile->name != NULL)
1136 {
1137 xfree ((void *) subfile->name);
1138 }
1139 if (subfile->dirname != NULL)
1140 {
1141 xfree ((void *) subfile->dirname);
1142 }
1143 if (subfile->line_vector != NULL)
1144 {
1145 xfree ((void *) subfile->line_vector);
1146 }
1147
1148 nextsub = subfile->next;
1149 xfree ((void *) subfile);
1150 }
1151
1152 /* Set this for the main source file. */
1153 if (symtab)
1154 {
1155 symtab->primary = 1;
1156 }
1157
1158 /* Default any symbols without a specified symtab to the primary
1159 symtab. */
1160 if (blockvector)
1161 {
1162 int block_i;
1163
1164 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1165 {
1166 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1167 struct symbol *sym;
1168 struct dict_iterator iter;
1169
1170 /* Inlined functions may have symbols not in the global or
1171 static symbol lists. */
1172 if (BLOCK_FUNCTION (block) != NULL)
1173 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1174 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1175
1176 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1177 sym != NULL;
1178 sym = dict_iterator_next (&iter))
1179 if (SYMBOL_SYMTAB (sym) == NULL)
1180 SYMBOL_SYMTAB (sym) = symtab;
1181 }
1182 }
1183
1184 last_source_file = NULL;
1185 current_subfile = NULL;
1186 pending_macros = NULL;
1187 if (pending_addrmap)
1188 {
1189 obstack_free (&pending_addrmap_obstack, NULL);
1190 pending_addrmap = NULL;
1191 }
1192
1193 return symtab;
1194 }
1195
1196 /* Push a context block. Args are an identifying nesting level
1197 (checkable when you pop it), and the starting PC address of this
1198 context. */
1199
1200 struct context_stack *
1201 push_context (int desc, CORE_ADDR valu)
1202 {
1203 struct context_stack *new;
1204
1205 if (context_stack_depth == context_stack_size)
1206 {
1207 context_stack_size *= 2;
1208 context_stack = (struct context_stack *)
1209 xrealloc ((char *) context_stack,
1210 (context_stack_size * sizeof (struct context_stack)));
1211 }
1212
1213 new = &context_stack[context_stack_depth++];
1214 new->depth = desc;
1215 new->locals = local_symbols;
1216 new->params = param_symbols;
1217 new->old_blocks = pending_blocks;
1218 new->start_addr = valu;
1219 new->using_directives = using_directives;
1220 new->name = NULL;
1221
1222 local_symbols = NULL;
1223 param_symbols = NULL;
1224 using_directives = NULL;
1225
1226 return new;
1227 }
1228
1229 /* Pop a context block. Returns the address of the context block just
1230 popped. */
1231
1232 struct context_stack *
1233 pop_context (void)
1234 {
1235 gdb_assert (context_stack_depth > 0);
1236 return (&context_stack[--context_stack_depth]);
1237 }
1238
1239 \f
1240
1241 /* Compute a small integer hash code for the given name. */
1242
1243 int
1244 hashname (const char *name)
1245 {
1246 return (hash(name,strlen(name)) % HASHSIZE);
1247 }
1248 \f
1249
1250 void
1251 record_debugformat (const char *format)
1252 {
1253 current_subfile->debugformat = format;
1254 }
1255
1256 void
1257 record_producer (const char *producer)
1258 {
1259 current_subfile->producer = producer;
1260 }
1261
1262 /* Merge the first symbol list SRCLIST into the second symbol list
1263 TARGETLIST by repeated calls to add_symbol_to_list(). This
1264 procedure "frees" each link of SRCLIST by adding it to the
1265 free_pendings list. Caller must set SRCLIST to a null list after
1266 calling this function.
1267
1268 Void return. */
1269
1270 void
1271 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1272 {
1273 int i;
1274
1275 if (!srclist || !*srclist)
1276 return;
1277
1278 /* Merge in elements from current link. */
1279 for (i = 0; i < (*srclist)->nsyms; i++)
1280 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1281
1282 /* Recurse on next. */
1283 merge_symbol_lists (&(*srclist)->next, targetlist);
1284
1285 /* "Free" the current link. */
1286 (*srclist)->next = free_pendings;
1287 free_pendings = (*srclist);
1288 }
1289 \f
1290 /* Initialize anything that needs initializing when starting to read a
1291 fresh piece of a symbol file, e.g. reading in the stuff
1292 corresponding to a psymtab. */
1293
1294 void
1295 buildsym_init (void)
1296 {
1297 free_pendings = NULL;
1298 file_symbols = NULL;
1299 global_symbols = NULL;
1300 pending_blocks = NULL;
1301 pending_macros = NULL;
1302
1303 /* We shouldn't have any address map at this point. */
1304 gdb_assert (! pending_addrmap);
1305 pending_addrmap_interesting = 0;
1306 }
1307
1308 /* Initialize anything that needs initializing when a completely new
1309 symbol file is specified (not just adding some symbols from another
1310 file, e.g. a shared library). */
1311
1312 void
1313 buildsym_new_init (void)
1314 {
1315 buildsym_init ();
1316 }
This page took 0.056407 seconds and 4 git commands to generate.