* gdb.disasm/mn10300.exp: Fix buglets in "other" tests.
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
24
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "symfile.h" /* Needed for "struct complaint" */
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "complaints.h"
36 #include "gdb_string.h"
37
38 /* Ask buildsym.h to define the vars it normally declares `extern'. */
39 #define EXTERN /**/
40 #include "buildsym.h" /* Our own declarations */
41 #undef EXTERN
42
43 /* For cleanup_undefined_types and finish_global_stabs (somewhat
44 questionable--see comment where we call them). */
45 #include "stabsread.h"
46
47 /* Pointer to the head of a linked list of symbol blocks which have
48 already been finalized (lexical contexts already closed) and which are
49 just waiting to be built into a blockvector when finalizing the
50 associated symtab. */
51
52 static struct pending_block *pending_blocks = NULL;
53
54 /* List of free `struct pending' structures for reuse. */
55
56 static struct pending *free_pendings;
57
58 \f
59 static int
60 compare_line_numbers PARAMS ((const void *, const void *));
61
62 \f
63 /* Initial sizes of data structures. These are realloc'd larger if needed,
64 and realloc'd down to the size actually used, when completed. */
65
66 #define INITIAL_CONTEXT_STACK_SIZE 10
67 #define INITIAL_LINE_VECTOR_LENGTH 1000
68
69 \f
70 /* Complaints about the symbols we have encountered. */
71
72 struct complaint block_end_complaint =
73 {"block end address less than block start address in %s (patched it)", 0, 0};
74
75 struct complaint anon_block_end_complaint =
76 {"block end address 0x%lx less than block start address 0x%lx (patched it)", 0, 0};
77
78 struct complaint innerblock_complaint =
79 {"inner block not inside outer block in %s", 0, 0};
80
81 struct complaint innerblock_anon_complaint =
82 {"inner block (0x%lx-0x%lx) not inside outer block (0x%lx-0x%lx)", 0, 0};
83
84 struct complaint blockvector_complaint =
85 {"block at 0x%lx out of order", 0, 0};
86
87 \f
88 /* maintain the lists of symbols and blocks */
89
90 /* Add a symbol to one of the lists of symbols. */
91
92 void
93 add_symbol_to_list (symbol, listhead)
94 struct symbol *symbol;
95 struct pending **listhead;
96 {
97 register struct pending *link;
98
99 /* We keep PENDINGSIZE symbols in each link of the list.
100 If we don't have a link with room in it, add a new link. */
101 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
102 {
103 if (free_pendings)
104 {
105 link = free_pendings;
106 free_pendings = link->next;
107 }
108 else
109 {
110 link = (struct pending *) xmalloc (sizeof (struct pending));
111 }
112
113 link->next = *listhead;
114 *listhead = link;
115 link->nsyms = 0;
116 }
117
118 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
119 }
120
121 /* Find a symbol named NAME on a LIST. NAME need not be '\0'-terminated;
122 LENGTH is the length of the name. */
123
124 struct symbol *
125 find_symbol_in_list (list, name, length)
126 struct pending *list;
127 char *name;
128 int length;
129 {
130 int j;
131 char *pp;
132
133 while (list != NULL)
134 {
135 for (j = list->nsyms; --j >= 0; )
136 {
137 pp = SYMBOL_NAME (list->symbol[j]);
138 if (*pp == *name && strncmp (pp, name, length) == 0 &&
139 pp[length] == '\0')
140 {
141 return (list->symbol[j]);
142 }
143 }
144 list = list->next;
145 }
146 return (NULL);
147 }
148
149 /* At end of reading syms, or in case of quit,
150 really free as many `struct pending's as we can easily find. */
151
152 /* ARGSUSED */
153 void
154 really_free_pendings (foo)
155 int foo;
156 {
157 struct pending *next, *next1;
158
159 for (next = free_pendings; next; next = next1)
160 {
161 next1 = next->next;
162 free ((PTR)next);
163 }
164 free_pendings = NULL;
165
166 free_pending_blocks ();
167
168 for (next = file_symbols; next != NULL; next = next1)
169 {
170 next1 = next->next;
171 free ((PTR)next);
172 }
173 file_symbols = NULL;
174
175 for (next = global_symbols; next != NULL; next = next1)
176 {
177 next1 = next->next;
178 free ((PTR)next);
179 }
180 global_symbols = NULL;
181 }
182
183 /* This function is called to discard any pending blocks. */
184
185 void
186 free_pending_blocks ()
187 {
188 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
189 struct pending_block *bnext, *bnext1;
190
191 for (bnext = pending_blocks; bnext; bnext = bnext1)
192 {
193 bnext1 = bnext->next;
194 free ((PTR)bnext);
195 }
196 #endif
197 pending_blocks = NULL;
198 }
199
200 /* Take one of the lists of symbols and make a block from it.
201 Keep the order the symbols have in the list (reversed from the input file).
202 Put the block on the list of pending blocks. */
203
204 void
205 finish_block (symbol, listhead, old_blocks, start, end, objfile)
206 struct symbol *symbol;
207 struct pending **listhead;
208 struct pending_block *old_blocks;
209 CORE_ADDR start, end;
210 struct objfile *objfile;
211 {
212 register struct pending *next, *next1;
213 register struct block *block;
214 register struct pending_block *pblock;
215 struct pending_block *opblock;
216 register int i;
217 register int j;
218
219 /* Count the length of the list of symbols. */
220
221 for (next = *listhead, i = 0;
222 next;
223 i += next->nsyms, next = next->next)
224 {
225 /*EMPTY*/;
226 }
227
228 block = (struct block *) obstack_alloc (&objfile -> symbol_obstack,
229 (sizeof (struct block) + ((i - 1) * sizeof (struct symbol *))));
230
231 /* Copy the symbols into the block. */
232
233 BLOCK_NSYMS (block) = i;
234 for (next = *listhead; next; next = next->next)
235 {
236 for (j = next->nsyms - 1; j >= 0; j--)
237 {
238 BLOCK_SYM (block, --i) = next->symbol[j];
239 }
240 }
241
242 BLOCK_START (block) = start;
243 BLOCK_END (block) = end;
244 /* Superblock filled in when containing block is made */
245 BLOCK_SUPERBLOCK (block) = NULL;
246 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
247
248 /* Put the block in as the value of the symbol that names it. */
249
250 if (symbol)
251 {
252 struct type *ftype = SYMBOL_TYPE (symbol);
253 SYMBOL_BLOCK_VALUE (symbol) = block;
254 BLOCK_FUNCTION (block) = symbol;
255
256 if (TYPE_NFIELDS (ftype) <= 0)
257 {
258 /* No parameter type information is recorded with the function's
259 type. Set that from the type of the parameter symbols. */
260 int nparams = 0, iparams;
261 struct symbol *sym;
262 for (i = 0; i < BLOCK_NSYMS (block); i++)
263 {
264 sym = BLOCK_SYM (block, i);
265 switch (SYMBOL_CLASS (sym))
266 {
267 case LOC_ARG:
268 case LOC_REF_ARG:
269 case LOC_REGPARM:
270 case LOC_REGPARM_ADDR:
271 case LOC_BASEREG_ARG:
272 case LOC_LOCAL_ARG:
273 nparams++;
274 break;
275 case LOC_UNDEF:
276 case LOC_CONST:
277 case LOC_STATIC:
278 case LOC_REGISTER:
279 case LOC_LOCAL:
280 case LOC_TYPEDEF:
281 case LOC_LABEL:
282 case LOC_BLOCK:
283 case LOC_CONST_BYTES:
284 case LOC_BASEREG:
285 case LOC_UNRESOLVED:
286 case LOC_OPTIMIZED_OUT:
287 default:
288 break;
289 }
290 }
291 if (nparams > 0)
292 {
293 TYPE_NFIELDS (ftype) = nparams;
294 TYPE_FIELDS (ftype) = (struct field *)
295 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
296
297 for (i = iparams = 0; iparams < nparams; i++)
298 {
299 sym = BLOCK_SYM (block, i);
300 switch (SYMBOL_CLASS (sym))
301 {
302 case LOC_ARG:
303 case LOC_REF_ARG:
304 case LOC_REGPARM:
305 case LOC_REGPARM_ADDR:
306 case LOC_BASEREG_ARG:
307 case LOC_LOCAL_ARG:
308 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
309 iparams++;
310 break;
311 case LOC_UNDEF:
312 case LOC_CONST:
313 case LOC_STATIC:
314 case LOC_REGISTER:
315 case LOC_LOCAL:
316 case LOC_TYPEDEF:
317 case LOC_LABEL:
318 case LOC_BLOCK:
319 case LOC_CONST_BYTES:
320 case LOC_BASEREG:
321 case LOC_UNRESOLVED:
322 case LOC_OPTIMIZED_OUT:
323 default:
324 break;
325 }
326 }
327 }
328 }
329 }
330 else
331 {
332 BLOCK_FUNCTION (block) = NULL;
333 }
334
335 /* Now "free" the links of the list, and empty the list. */
336
337 for (next = *listhead; next; next = next1)
338 {
339 next1 = next->next;
340 next->next = free_pendings;
341 free_pendings = next;
342 }
343 *listhead = NULL;
344
345 #if 1
346 /* Check to be sure that the blocks have an end address that is
347 greater than starting address */
348
349 if (BLOCK_END (block) < BLOCK_START (block))
350 {
351 if (symbol)
352 {
353 complain (&block_end_complaint, SYMBOL_SOURCE_NAME (symbol));
354 }
355 else
356 {
357 complain (&anon_block_end_complaint, BLOCK_END (block), BLOCK_START (block));
358 }
359 /* Better than nothing */
360 BLOCK_END (block) = BLOCK_START (block);
361 }
362 #endif
363
364 /* Install this block as the superblock
365 of all blocks made since the start of this scope
366 that don't have superblocks yet. */
367
368 opblock = NULL;
369 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
370 {
371 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
372 {
373 #if 1
374 /* Check to be sure the blocks are nested as we receive them.
375 If the compiler/assembler/linker work, this just burns a small
376 amount of time. */
377 if (BLOCK_START (pblock->block) < BLOCK_START (block) ||
378 BLOCK_END (pblock->block) > BLOCK_END (block))
379 {
380 if (symbol)
381 {
382 complain (&innerblock_complaint,
383 SYMBOL_SOURCE_NAME (symbol));
384 }
385 else
386 {
387 complain (&innerblock_anon_complaint, BLOCK_START (pblock->block),
388 BLOCK_END (pblock->block), BLOCK_START (block),
389 BLOCK_END (block));
390 }
391 if (BLOCK_START (pblock->block) < BLOCK_START (block))
392 BLOCK_START (pblock->block) = BLOCK_START (block);
393 if (BLOCK_END (pblock->block) > BLOCK_END (block))
394 BLOCK_END (pblock->block) = BLOCK_END (block);
395 }
396 #endif
397 BLOCK_SUPERBLOCK (pblock->block) = block;
398 }
399 opblock = pblock;
400 }
401
402 record_pending_block (objfile, block, opblock);
403 }
404
405 /* Record BLOCK on the list of all blocks in the file. Put it after
406 OPBLOCK, or at the beginning if opblock is NULL. This puts the block
407 in the list after all its subblocks.
408
409 Allocate the pending block struct in the symbol_obstack to save
410 time. This wastes a little space. FIXME: Is it worth it? */
411
412 void
413 record_pending_block (objfile, block, opblock)
414 struct objfile* objfile;
415 struct block *block;
416 struct pending_block *opblock;
417 {
418 register struct pending_block *pblock;
419
420 pblock = (struct pending_block *)
421 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct pending_block));
422 pblock -> block = block;
423 if (opblock)
424 {
425 pblock -> next = opblock -> next;
426 opblock -> next = pblock;
427 }
428 else
429 {
430 pblock -> next = pending_blocks;
431 pending_blocks = pblock;
432 }
433 }
434
435 /* Note that this is only used in this file and in dstread.c, which should be
436 fixed to not need direct access to this function. When that is done, it can
437 be made static again. */
438
439 struct blockvector *
440 make_blockvector (objfile)
441 struct objfile *objfile;
442 {
443 register struct pending_block *next;
444 register struct blockvector *blockvector;
445 register int i;
446
447 /* Count the length of the list of blocks. */
448
449 for (next = pending_blocks, i = 0; next; next = next->next, i++) {;}
450
451 blockvector = (struct blockvector *)
452 obstack_alloc (&objfile -> symbol_obstack,
453 (sizeof (struct blockvector)
454 + (i - 1) * sizeof (struct block *)));
455
456 /* Copy the blocks into the blockvector.
457 This is done in reverse order, which happens to put
458 the blocks into the proper order (ascending starting address).
459 finish_block has hair to insert each block into the list
460 after its subblocks in order to make sure this is true. */
461
462 BLOCKVECTOR_NBLOCKS (blockvector) = i;
463 for (next = pending_blocks; next; next = next->next)
464 {
465 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
466 }
467
468 #if 0 /* Now we make the links in the obstack, so don't free them. */
469 /* Now free the links of the list, and empty the list. */
470
471 for (next = pending_blocks; next; next = next1)
472 {
473 next1 = next->next;
474 free (next);
475 }
476 #endif
477 pending_blocks = NULL;
478
479 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
480 /* Some compilers output blocks in the wrong order, but we depend
481 on their being in the right order so we can binary search.
482 Check the order and moan about it. FIXME. */
483 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
484 {
485 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
486 {
487 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
488 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)))
489 {
490
491 /* FIXME-32x64: loses if CORE_ADDR doesn't fit in a
492 long. Possible solutions include a version of
493 complain which takes a callback, a
494 sprintf_address_numeric to match
495 print_address_numeric, or a way to set up a GDB_FILE
496 * which causes sprintf rather than fprintf to be
497 called. */
498
499 complain (&blockvector_complaint,
500 (unsigned long) BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
501 }
502 }
503 }
504 #endif
505
506 return (blockvector);
507 }
508
509 \f
510 /* Start recording information about source code that came from an included
511 (or otherwise merged-in) source file with a different name. NAME is
512 the name of the file (cannot be NULL), DIRNAME is the directory in which
513 it resides (or NULL if not known). */
514
515 void
516 start_subfile (name, dirname)
517 char *name;
518 char *dirname;
519 {
520 register struct subfile *subfile;
521
522 /* See if this subfile is already known as a subfile of the
523 current main source file. */
524
525 for (subfile = subfiles; subfile; subfile = subfile->next)
526 {
527 if (STREQ (subfile->name, name))
528 {
529 current_subfile = subfile;
530 return;
531 }
532 }
533
534 /* This subfile is not known. Add an entry for it.
535 Make an entry for this subfile in the list of all subfiles
536 of the current main source file. */
537
538 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
539 subfile->next = subfiles;
540 subfiles = subfile;
541 current_subfile = subfile;
542
543 /* Save its name and compilation directory name */
544 subfile->name = (name == NULL) ? NULL : savestring (name, strlen (name));
545 subfile->dirname =
546 (dirname == NULL) ? NULL : savestring (dirname, strlen (dirname));
547
548 /* Initialize line-number recording for this subfile. */
549 subfile->line_vector = NULL;
550
551 /* Default the source language to whatever can be deduced from
552 the filename. If nothing can be deduced (such as for a C/C++
553 include file with a ".h" extension), then inherit whatever
554 language the previous subfile had. This kludgery is necessary
555 because there is no standard way in some object formats to
556 record the source language. Also, when symtabs are allocated
557 we try to deduce a language then as well, but it is too late
558 for us to use that information while reading symbols, since
559 symtabs aren't allocated until after all the symbols have
560 been processed for a given source file. */
561
562 subfile->language = deduce_language_from_filename (subfile->name);
563 if (subfile->language == language_unknown &&
564 subfile->next != NULL)
565 {
566 subfile->language = subfile->next->language;
567 }
568
569 /* cfront output is a C program, so in most ways it looks like a C
570 program. But to demangle we need to set the language to C++. We
571 can distinguish cfront code by the fact that it has #line
572 directives which specify a file name ending in .C.
573
574 So if the filename of this subfile ends in .C, then change the language
575 of any pending subfiles from C to C++. We also accept any other C++
576 suffixes accepted by deduce_language_from_filename (in particular,
577 some people use .cxx with cfront). */
578 /* Likewise for f2c. */
579
580 if (subfile->name)
581 {
582 struct subfile *s;
583 enum language sublang = deduce_language_from_filename (subfile->name);
584
585 if (sublang == language_cplus || sublang == language_fortran)
586 for (s = subfiles; s != NULL; s = s->next)
587 if (s->language == language_c)
588 s->language = sublang;
589 }
590
591 /* And patch up this file if necessary. */
592 if (subfile->language == language_c
593 && subfile->next != NULL
594 && (subfile->next->language == language_cplus
595 || subfile->next->language == language_fortran))
596 {
597 subfile->language = subfile->next->language;
598 }
599 }
600
601 /* For stabs readers, the first N_SO symbol is assumed to be the source
602 file name, and the subfile struct is initialized using that assumption.
603 If another N_SO symbol is later seen, immediately following the first
604 one, then the first one is assumed to be the directory name and the
605 second one is really the source file name.
606
607 So we have to patch up the subfile struct by moving the old name value to
608 dirname and remembering the new name. Some sanity checking is performed
609 to ensure that the state of the subfile struct is reasonable and that the
610 old name we are assuming to be a directory name actually is (by checking
611 for a trailing '/'). */
612
613 void
614 patch_subfile_names (subfile, name)
615 struct subfile *subfile;
616 char *name;
617 {
618 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
619 && subfile->name[strlen(subfile->name)-1] == '/')
620 {
621 subfile->dirname = subfile->name;
622 subfile->name = savestring (name, strlen (name));
623 last_source_file = name;
624
625 /* Default the source language to whatever can be deduced from
626 the filename. If nothing can be deduced (such as for a C/C++
627 include file with a ".h" extension), then inherit whatever
628 language the previous subfile had. This kludgery is necessary
629 because there is no standard way in some object formats to
630 record the source language. Also, when symtabs are allocated
631 we try to deduce a language then as well, but it is too late
632 for us to use that information while reading symbols, since
633 symtabs aren't allocated until after all the symbols have
634 been processed for a given source file. */
635
636 subfile->language = deduce_language_from_filename (subfile->name);
637 if (subfile->language == language_unknown &&
638 subfile->next != NULL)
639 {
640 subfile->language = subfile->next->language;
641 }
642 }
643 }
644
645 \f
646 /* Handle the N_BINCL and N_EINCL symbol types
647 that act like N_SOL for switching source files
648 (different subfiles, as we call them) within one object file,
649 but using a stack rather than in an arbitrary order. */
650
651 void
652 push_subfile ()
653 {
654 register struct subfile_stack *tem
655 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
656
657 tem->next = subfile_stack;
658 subfile_stack = tem;
659 if (current_subfile == NULL || current_subfile->name == NULL)
660 {
661 abort ();
662 }
663 tem->name = current_subfile->name;
664 }
665
666 char *
667 pop_subfile ()
668 {
669 register char *name;
670 register struct subfile_stack *link = subfile_stack;
671
672 if (link == NULL)
673 {
674 abort ();
675 }
676 name = link->name;
677 subfile_stack = link->next;
678 free ((PTR)link);
679 return (name);
680 }
681
682 \f
683 /* Add a linetable entry for line number LINE and address PC to the line
684 vector for SUBFILE. */
685
686 void
687 record_line (subfile, line, pc)
688 register struct subfile *subfile;
689 int line;
690 CORE_ADDR pc;
691 {
692 struct linetable_entry *e;
693 /* Ignore the dummy line number in libg.o */
694
695 if (line == 0xffff)
696 {
697 return;
698 }
699
700 /* Make sure line vector exists and is big enough. */
701 if (!subfile->line_vector)
702 {
703 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
704 subfile->line_vector = (struct linetable *)
705 xmalloc (sizeof (struct linetable)
706 + subfile->line_vector_length * sizeof (struct linetable_entry));
707 subfile->line_vector->nitems = 0;
708 }
709
710 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
711 {
712 subfile->line_vector_length *= 2;
713 subfile->line_vector = (struct linetable *)
714 xrealloc ((char *) subfile->line_vector, (sizeof (struct linetable)
715 + subfile->line_vector_length * sizeof (struct linetable_entry)));
716 }
717
718 e = subfile->line_vector->item + subfile->line_vector->nitems++;
719 e->line = line; e->pc = pc;
720 }
721
722
723 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
724
725 static int
726 compare_line_numbers (ln1p, ln2p)
727 const void *ln1p;
728 const void *ln2p;
729 {
730 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
731 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
732
733 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
734 Please keep it that way. */
735 if (ln1->pc < ln2->pc)
736 return -1;
737
738 if (ln1->pc > ln2->pc)
739 return 1;
740
741 /* If pc equal, sort by line. I'm not sure whether this is optimum
742 behavior (see comment at struct linetable in symtab.h). */
743 return ln1->line - ln2->line;
744 }
745
746 \f
747 /* Start a new symtab for a new source file.
748 Called, for example, when a stabs symbol of type N_SO is seen, or when
749 a DWARF TAG_compile_unit DIE is seen.
750 It indicates the start of data for one original source file. */
751
752 void
753 start_symtab (name, dirname, start_addr)
754 char *name;
755 char *dirname;
756 CORE_ADDR start_addr;
757 {
758
759 last_source_file = name;
760 last_source_start_addr = start_addr;
761 file_symbols = NULL;
762 global_symbols = NULL;
763 within_function = 0;
764
765 /* Context stack is initially empty. Allocate first one with room for
766 10 levels; reuse it forever afterward. */
767 if (context_stack == NULL)
768 {
769 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
770 context_stack = (struct context_stack *)
771 xmalloc (context_stack_size * sizeof (struct context_stack));
772 }
773 context_stack_depth = 0;
774
775 /* Initialize the list of sub source files with one entry
776 for this file (the top-level source file). */
777
778 subfiles = NULL;
779 current_subfile = NULL;
780 start_subfile (name, dirname);
781 }
782
783 /* Finish the symbol definitions for one main source file,
784 close off all the lexical contexts for that file
785 (creating struct block's for them), then make the struct symtab
786 for that file and put it in the list of all such.
787
788 END_ADDR is the address of the end of the file's text.
789 SECTION is the section number (in objfile->section_offsets) of
790 the blockvector and linetable.
791
792 Note that it is possible for end_symtab() to return NULL. In particular,
793 for the DWARF case at least, it will return NULL when it finds a
794 compilation unit that has exactly one DIE, a TAG_compile_unit DIE. This
795 can happen when we link in an object file that was compiled from an empty
796 source file. Returning NULL is probably not the correct thing to do,
797 because then gdb will never know about this empty file (FIXME). */
798
799 struct symtab *
800 end_symtab (end_addr, objfile, section)
801 CORE_ADDR end_addr;
802 struct objfile *objfile;
803 int section;
804 {
805 register struct symtab *symtab = NULL;
806 register struct blockvector *blockvector;
807 register struct subfile *subfile;
808 register struct context_stack *cstk;
809 struct subfile *nextsub;
810
811 /* Finish the lexical context of the last function in the file;
812 pop the context stack. */
813
814 if (context_stack_depth > 0)
815 {
816 cstk = pop_context();
817 /* Make a block for the local symbols within. */
818 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
819 cstk->start_addr, end_addr, objfile);
820
821 if (context_stack_depth > 0)
822 {
823 /* This is said to happen with SCO. The old coffread.c code
824 simply emptied the context stack, so we do the same. FIXME:
825 Find out why it is happening. This is not believed to happen
826 in most cases (even for coffread.c); it used to be an abort(). */
827 static struct complaint msg =
828 {"Context stack not empty in end_symtab", 0, 0};
829 complain (&msg);
830 context_stack_depth = 0;
831 }
832 }
833
834 /* Reordered executables may have out of order pending blocks; if
835 OBJF_REORDERED is true, then sort the pending blocks. */
836 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
837 {
838 /* FIXME! Remove this horrid bubble sort and use qsort!!!
839 It'd be a whole lot easier if they weren't in a linked list!!! */
840 int swapped;
841 do
842 {
843 struct pending_block *pb, *pbnext;
844
845 pb = pending_blocks;
846 pbnext = pb->next;
847 swapped = 0;
848
849 while (pbnext)
850 {
851 /* swap blocks if unordered! */
852
853 if (BLOCK_START(pb->block) < BLOCK_START(pbnext->block))
854 {
855 struct block *tmp = pb->block;
856 pb->block = pbnext->block;
857 pbnext->block = tmp;
858 swapped = 1;
859 }
860 pb = pbnext;
861 pbnext = pbnext->next;
862 }
863 } while (swapped);
864 }
865
866 /* Cleanup any undefined types that have been left hanging around
867 (this needs to be done before the finish_blocks so that
868 file_symbols is still good).
869
870 Both cleanup_undefined_types and finish_global_stabs are stabs
871 specific, but harmless for other symbol readers, since on gdb
872 startup or when finished reading stabs, the state is set so these
873 are no-ops. FIXME: Is this handled right in case of QUIT? Can
874 we make this cleaner? */
875
876 cleanup_undefined_types ();
877 finish_global_stabs (objfile);
878
879 if (pending_blocks == NULL
880 && file_symbols == NULL
881 && global_symbols == NULL)
882 {
883 /* Ignore symtabs that have no functions with real debugging info */
884 blockvector = NULL;
885 }
886 else
887 {
888 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the blockvector. */
889 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
890 objfile);
891 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
892 objfile);
893 blockvector = make_blockvector (objfile);
894 }
895
896 #ifdef PROCESS_LINENUMBER_HOOK
897 PROCESS_LINENUMBER_HOOK (); /* Needed for xcoff. */
898 #endif
899
900 /* Now create the symtab objects proper, one for each subfile. */
901 /* (The main file is the last one on the chain.) */
902
903 for (subfile = subfiles; subfile; subfile = nextsub)
904 {
905 int linetablesize = 0;
906 /* If we have blocks of symbols, make a symtab.
907 Otherwise, just ignore this file and any line number info in it. */
908 symtab = NULL;
909 if (blockvector)
910 {
911 if (subfile->line_vector)
912 {
913 linetablesize = sizeof (struct linetable) +
914 subfile->line_vector->nitems * sizeof (struct linetable_entry);
915 #if 0
916 /* I think this is artifact from before it went on the obstack.
917 I doubt we'll need the memory between now and when we
918 free it later in this function. */
919 /* First, shrink the linetable to make more memory. */
920 subfile->line_vector = (struct linetable *)
921 xrealloc ((char *) subfile->line_vector, linetablesize);
922 #endif
923
924 /* Like the pending blocks, the line table may be scrambled
925 in reordered executables. Sort it if OBJF_REORDERED is
926 true. */
927 if (objfile->flags & OBJF_REORDERED)
928 qsort (subfile->line_vector->item,
929 subfile->line_vector->nitems,
930 sizeof (struct linetable_entry), compare_line_numbers);
931 }
932
933 /* Now, allocate a symbol table. */
934 symtab = allocate_symtab (subfile->name, objfile);
935
936 /* Fill in its components. */
937 symtab->blockvector = blockvector;
938 if (subfile->line_vector)
939 {
940 /* Reallocate the line table on the symbol obstack */
941 symtab->linetable = (struct linetable *)
942 obstack_alloc (&objfile -> symbol_obstack, linetablesize);
943 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
944 }
945 else
946 {
947 symtab->linetable = NULL;
948 }
949 symtab->block_line_section = section;
950 if (subfile->dirname)
951 {
952 /* Reallocate the dirname on the symbol obstack */
953 symtab->dirname = (char *)
954 obstack_alloc (&objfile -> symbol_obstack,
955 strlen (subfile -> dirname) + 1);
956 strcpy (symtab->dirname, subfile->dirname);
957 }
958 else
959 {
960 symtab->dirname = NULL;
961 }
962 symtab->free_code = free_linetable;
963 symtab->free_ptr = NULL;
964
965 /* Use whatever language we have been using for this subfile,
966 not the one that was deduced in allocate_symtab from the
967 filename. We already did our own deducing when we created
968 the subfile, and we may have altered our opinion of what
969 language it is from things we found in the symbols. */
970 symtab->language = subfile->language;
971
972 /* All symtabs for the main file and the subfiles share a
973 blockvector, so we need to clear primary for everything but
974 the main file. */
975
976 symtab->primary = 0;
977 }
978 if (subfile->name != NULL)
979 {
980 free ((PTR) subfile->name);
981 }
982 if (subfile->dirname != NULL)
983 {
984 free ((PTR) subfile->dirname);
985 }
986 if (subfile->line_vector != NULL)
987 {
988 free ((PTR) subfile->line_vector);
989 }
990
991 nextsub = subfile->next;
992 free ((PTR)subfile);
993 }
994
995 /* Set this for the main source file. */
996 if (symtab)
997 {
998 symtab->primary = 1;
999 }
1000
1001 last_source_file = NULL;
1002 current_subfile = NULL;
1003
1004 return (symtab);
1005 }
1006
1007
1008 /* Push a context block. Args are an identifying nesting level (checkable
1009 when you pop it), and the starting PC address of this context. */
1010
1011 struct context_stack *
1012 push_context (desc, valu)
1013 int desc;
1014 CORE_ADDR valu;
1015 {
1016 register struct context_stack *new;
1017
1018 if (context_stack_depth == context_stack_size)
1019 {
1020 context_stack_size *= 2;
1021 context_stack = (struct context_stack *)
1022 xrealloc ((char *) context_stack,
1023 (context_stack_size * sizeof (struct context_stack)));
1024 }
1025
1026 new = &context_stack[context_stack_depth++];
1027 new->depth = desc;
1028 new->locals = local_symbols;
1029 new->old_blocks = pending_blocks;
1030 new->start_addr = valu;
1031 new->name = NULL;
1032
1033 local_symbols = NULL;
1034
1035 return (new);
1036 }
1037
1038 \f
1039 /* Compute a small integer hash code for the given name. */
1040
1041 int
1042 hashname (name)
1043 char *name;
1044 {
1045 register char *p = name;
1046 register int total = p[0];
1047 register int c;
1048
1049 c = p[1];
1050 total += c << 2;
1051 if (c)
1052 {
1053 c = p[2];
1054 total += c << 4;
1055 if (c)
1056 {
1057 total += p[3] << 6;
1058 }
1059 }
1060
1061 /* Ensure result is positive. */
1062 if (total < 0)
1063 {
1064 total += (1000 << 6);
1065 }
1066 return (total % HASHSIZE);
1067 }
1068
1069 \f
1070 /* Initialize anything that needs initializing when starting to read
1071 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
1072 to a psymtab. */
1073
1074 void
1075 buildsym_init ()
1076 {
1077 free_pendings = NULL;
1078 file_symbols = NULL;
1079 global_symbols = NULL;
1080 pending_blocks = NULL;
1081 }
1082
1083 /* Initialize anything that needs initializing when a completely new
1084 symbol file is specified (not just adding some symbols from another
1085 file, e.g. a shared library). */
1086
1087 void
1088 buildsym_new_init ()
1089 {
1090 buildsym_init ();
1091 }
1092
1093 /* Initializer for this module */
1094
1095 void
1096 _initialize_buildsym ()
1097 {
1098 }
This page took 0.144117 seconds and 4 git commands to generate.