* config/tc-mips.c (macro_build_jalr): Reverse a negative
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
24
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h" /* For DOSish file names. */
41 #include "macrotab.h"
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "buildsym.h" /* Our own declarations. */
52 #undef EXTERN
53
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
56
57 #include "stabsread.h"
58
59 /* List of subfiles. */
60
61 static struct subfile *subfiles;
62
63 /* List of free `struct pending' structures for reuse. */
64
65 static struct pending *free_pendings;
66
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
69
70 static int have_line_numbers;
71
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
76
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
81
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
87
88 \f
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 \f
91
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
94 completed. */
95
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
98 \f
99
100 /* Maintain the lists of symbols and blocks. */
101
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
105 {
106 struct pending *link = list;
107
108 if (list)
109 {
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
113 }
114 }
115
116 /* Add a symbol to one of the lists of symbols. */
117
118 void
119 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
120 {
121 struct pending *link;
122
123 /* If this is an alias for another symbol, don't add it. */
124 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
125 return;
126
127 /* We keep PENDINGSIZE symbols in each link of the list. If we
128 don't have a link with room in it, add a new link. */
129 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
130 {
131 if (free_pendings)
132 {
133 link = free_pendings;
134 free_pendings = link->next;
135 }
136 else
137 {
138 link = (struct pending *) xmalloc (sizeof (struct pending));
139 }
140
141 link->next = *listhead;
142 *listhead = link;
143 link->nsyms = 0;
144 }
145
146 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
147 }
148
149 /* Find a symbol named NAME on a LIST. NAME need not be
150 '\0'-terminated; LENGTH is the length of the name. */
151
152 struct symbol *
153 find_symbol_in_list (struct pending *list, char *name, int length)
154 {
155 int j;
156 char *pp;
157
158 while (list != NULL)
159 {
160 for (j = list->nsyms; --j >= 0;)
161 {
162 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
163 if (*pp == *name && strncmp (pp, name, length) == 0
164 && pp[length] == '\0')
165 {
166 return (list->symbol[j]);
167 }
168 }
169 list = list->next;
170 }
171 return (NULL);
172 }
173
174 /* At end of reading syms, or in case of quit, really free as many
175 `struct pending's as we can easily find. */
176
177 void
178 really_free_pendings (void *dummy)
179 {
180 struct pending *next, *next1;
181
182 for (next = free_pendings; next; next = next1)
183 {
184 next1 = next->next;
185 xfree ((void *) next);
186 }
187 free_pendings = NULL;
188
189 free_pending_blocks ();
190
191 for (next = file_symbols; next != NULL; next = next1)
192 {
193 next1 = next->next;
194 xfree ((void *) next);
195 }
196 file_symbols = NULL;
197
198 for (next = global_symbols; next != NULL; next = next1)
199 {
200 next1 = next->next;
201 xfree ((void *) next);
202 }
203 global_symbols = NULL;
204
205 if (pending_macros)
206 free_macro_table (pending_macros);
207
208 if (pending_addrmap)
209 {
210 obstack_free (&pending_addrmap_obstack, NULL);
211 pending_addrmap = NULL;
212 }
213 }
214
215 /* This function is called to discard any pending blocks. */
216
217 void
218 free_pending_blocks (void)
219 {
220 /* The links are made in the objfile_obstack, so we only need to
221 reset PENDING_BLOCKS. */
222 pending_blocks = NULL;
223 }
224
225 /* Take one of the lists of symbols and make a block from it. Keep
226 the order the symbols have in the list (reversed from the input
227 file). Put the block on the list of pending blocks. */
228
229 struct block *
230 finish_block (struct symbol *symbol, struct pending **listhead,
231 struct pending_block *old_blocks,
232 CORE_ADDR start, CORE_ADDR end,
233 struct objfile *objfile)
234 {
235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
236 struct pending *next, *next1;
237 struct block *block;
238 struct pending_block *pblock;
239 struct pending_block *opblock;
240
241 block = allocate_block (&objfile->objfile_obstack);
242
243 if (symbol)
244 {
245 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
246 *listhead);
247 }
248 else
249 {
250 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
251 *listhead);
252 }
253
254 BLOCK_START (block) = start;
255 BLOCK_END (block) = end;
256 /* Superblock filled in when containing block is made. */
257 BLOCK_SUPERBLOCK (block) = NULL;
258 BLOCK_NAMESPACE (block) = NULL;
259
260 /* Put the block in as the value of the symbol that names it. */
261
262 if (symbol)
263 {
264 struct type *ftype = SYMBOL_TYPE (symbol);
265 struct dict_iterator iter;
266 SYMBOL_BLOCK_VALUE (symbol) = block;
267 BLOCK_FUNCTION (block) = symbol;
268
269 if (TYPE_NFIELDS (ftype) <= 0)
270 {
271 /* No parameter type information is recorded with the
272 function's type. Set that from the type of the
273 parameter symbols. */
274 int nparams = 0, iparams;
275 struct symbol *sym;
276 ALL_BLOCK_SYMBOLS (block, iter, sym)
277 {
278 if (SYMBOL_IS_ARGUMENT (sym))
279 nparams++;
280 }
281 if (nparams > 0)
282 {
283 TYPE_NFIELDS (ftype) = nparams;
284 TYPE_FIELDS (ftype) = (struct field *)
285 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
286
287 iparams = 0;
288 ALL_BLOCK_SYMBOLS (block, iter, sym)
289 {
290 if (iparams == nparams)
291 break;
292
293 if (SYMBOL_IS_ARGUMENT (sym))
294 {
295 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
296 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
297 iparams++;
298 }
299 }
300 }
301 }
302 }
303 else
304 {
305 BLOCK_FUNCTION (block) = NULL;
306 }
307
308 /* Now "free" the links of the list, and empty the list. */
309
310 for (next = *listhead; next; next = next1)
311 {
312 next1 = next->next;
313 next->next = free_pendings;
314 free_pendings = next;
315 }
316 *listhead = NULL;
317
318 /* Check to be sure that the blocks have an end address that is
319 greater than starting address. */
320
321 if (BLOCK_END (block) < BLOCK_START (block))
322 {
323 if (symbol)
324 {
325 complaint (&symfile_complaints,
326 _("block end address less than block "
327 "start address in %s (patched it)"),
328 SYMBOL_PRINT_NAME (symbol));
329 }
330 else
331 {
332 complaint (&symfile_complaints,
333 _("block end address %s less than block "
334 "start address %s (patched it)"),
335 paddress (gdbarch, BLOCK_END (block)),
336 paddress (gdbarch, BLOCK_START (block)));
337 }
338 /* Better than nothing. */
339 BLOCK_END (block) = BLOCK_START (block);
340 }
341
342 /* Install this block as the superblock of all blocks made since the
343 start of this scope that don't have superblocks yet. */
344
345 opblock = NULL;
346 for (pblock = pending_blocks;
347 pblock && pblock != old_blocks;
348 pblock = pblock->next)
349 {
350 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
351 {
352 /* Check to be sure the blocks are nested as we receive
353 them. If the compiler/assembler/linker work, this just
354 burns a small amount of time.
355
356 Skip blocks which correspond to a function; they're not
357 physically nested inside this other blocks, only
358 lexically nested. */
359 if (BLOCK_FUNCTION (pblock->block) == NULL
360 && (BLOCK_START (pblock->block) < BLOCK_START (block)
361 || BLOCK_END (pblock->block) > BLOCK_END (block)))
362 {
363 if (symbol)
364 {
365 complaint (&symfile_complaints,
366 _("inner block not inside outer block in %s"),
367 SYMBOL_PRINT_NAME (symbol));
368 }
369 else
370 {
371 complaint (&symfile_complaints,
372 _("inner block (%s-%s) not "
373 "inside outer block (%s-%s)"),
374 paddress (gdbarch, BLOCK_START (pblock->block)),
375 paddress (gdbarch, BLOCK_END (pblock->block)),
376 paddress (gdbarch, BLOCK_START (block)),
377 paddress (gdbarch, BLOCK_END (block)));
378 }
379 if (BLOCK_START (pblock->block) < BLOCK_START (block))
380 BLOCK_START (pblock->block) = BLOCK_START (block);
381 if (BLOCK_END (pblock->block) > BLOCK_END (block))
382 BLOCK_END (pblock->block) = BLOCK_END (block);
383 }
384 BLOCK_SUPERBLOCK (pblock->block) = block;
385 }
386 opblock = pblock;
387 }
388
389 block_set_using (block, using_directives, &objfile->objfile_obstack);
390 using_directives = NULL;
391
392 record_pending_block (objfile, block, opblock);
393
394 return block;
395 }
396
397
398 /* Record BLOCK on the list of all blocks in the file. Put it after
399 OPBLOCK, or at the beginning if opblock is NULL. This puts the
400 block in the list after all its subblocks.
401
402 Allocate the pending block struct in the objfile_obstack to save
403 time. This wastes a little space. FIXME: Is it worth it? */
404
405 void
406 record_pending_block (struct objfile *objfile, struct block *block,
407 struct pending_block *opblock)
408 {
409 struct pending_block *pblock;
410
411 pblock = (struct pending_block *)
412 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
413 pblock->block = block;
414 if (opblock)
415 {
416 pblock->next = opblock->next;
417 opblock->next = pblock;
418 }
419 else
420 {
421 pblock->next = pending_blocks;
422 pending_blocks = pblock;
423 }
424 }
425
426
427 /* Record that the range of addresses from START to END_INCLUSIVE
428 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
429 addresses must be set already. You must apply this function to all
430 BLOCK's children before applying it to BLOCK.
431
432 If a call to this function complicates the picture beyond that
433 already provided by BLOCK_START and BLOCK_END, then we create an
434 address map for the block. */
435 void
436 record_block_range (struct block *block,
437 CORE_ADDR start, CORE_ADDR end_inclusive)
438 {
439 /* If this is any different from the range recorded in the block's
440 own BLOCK_START and BLOCK_END, then note that the address map has
441 become interesting. Note that even if this block doesn't have
442 any "interesting" ranges, some later block might, so we still
443 need to record this block in the addrmap. */
444 if (start != BLOCK_START (block)
445 || end_inclusive + 1 != BLOCK_END (block))
446 pending_addrmap_interesting = 1;
447
448 if (! pending_addrmap)
449 {
450 obstack_init (&pending_addrmap_obstack);
451 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
452 }
453
454 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
455 }
456
457
458 static struct blockvector *
459 make_blockvector (struct objfile *objfile)
460 {
461 struct pending_block *next;
462 struct blockvector *blockvector;
463 int i;
464
465 /* Count the length of the list of blocks. */
466
467 for (next = pending_blocks, i = 0; next; next = next->next, i++)
468 {;
469 }
470
471 blockvector = (struct blockvector *)
472 obstack_alloc (&objfile->objfile_obstack,
473 (sizeof (struct blockvector)
474 + (i - 1) * sizeof (struct block *)));
475
476 /* Copy the blocks into the blockvector. This is done in reverse
477 order, which happens to put the blocks into the proper order
478 (ascending starting address). finish_block has hair to insert
479 each block into the list after its subblocks in order to make
480 sure this is true. */
481
482 BLOCKVECTOR_NBLOCKS (blockvector) = i;
483 for (next = pending_blocks; next; next = next->next)
484 {
485 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
486 }
487
488 free_pending_blocks ();
489
490 /* If we needed an address map for this symtab, record it in the
491 blockvector. */
492 if (pending_addrmap && pending_addrmap_interesting)
493 BLOCKVECTOR_MAP (blockvector)
494 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
495 else
496 BLOCKVECTOR_MAP (blockvector) = 0;
497
498 /* Some compilers output blocks in the wrong order, but we depend on
499 their being in the right order so we can binary search. Check the
500 order and moan about it. */
501 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
502 {
503 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
504 {
505 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
506 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
507 {
508 CORE_ADDR start
509 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
510
511 complaint (&symfile_complaints, _("block at %s out of order"),
512 hex_string ((LONGEST) start));
513 }
514 }
515 }
516
517 return (blockvector);
518 }
519 \f
520 /* Start recording information about source code that came from an
521 included (or otherwise merged-in) source file with a different
522 name. NAME is the name of the file (cannot be NULL), DIRNAME is
523 the directory in which the file was compiled (or NULL if not
524 known). */
525
526 void
527 start_subfile (const char *name, const char *dirname)
528 {
529 struct subfile *subfile;
530
531 /* See if this subfile is already known as a subfile of the current
532 main source file. */
533
534 for (subfile = subfiles; subfile; subfile = subfile->next)
535 {
536 char *subfile_name;
537
538 /* If NAME is an absolute path, and this subfile is not, then
539 attempt to create an absolute path to compare. */
540 if (IS_ABSOLUTE_PATH (name)
541 && !IS_ABSOLUTE_PATH (subfile->name)
542 && subfile->dirname != NULL)
543 subfile_name = concat (subfile->dirname, SLASH_STRING,
544 subfile->name, (char *) NULL);
545 else
546 subfile_name = subfile->name;
547
548 if (FILENAME_CMP (subfile_name, name) == 0)
549 {
550 current_subfile = subfile;
551 if (subfile_name != subfile->name)
552 xfree (subfile_name);
553 return;
554 }
555 if (subfile_name != subfile->name)
556 xfree (subfile_name);
557 }
558
559 /* This subfile is not known. Add an entry for it. Make an entry
560 for this subfile in the list of all subfiles of the current main
561 source file. */
562
563 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
564 memset ((char *) subfile, 0, sizeof (struct subfile));
565 subfile->next = subfiles;
566 subfiles = subfile;
567 current_subfile = subfile;
568
569 /* Save its name and compilation directory name. */
570 subfile->name = (name == NULL) ? NULL : xstrdup (name);
571 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
572
573 /* Initialize line-number recording for this subfile. */
574 subfile->line_vector = NULL;
575
576 /* Default the source language to whatever can be deduced from the
577 filename. If nothing can be deduced (such as for a C/C++ include
578 file with a ".h" extension), then inherit whatever language the
579 previous subfile had. This kludgery is necessary because there
580 is no standard way in some object formats to record the source
581 language. Also, when symtabs are allocated we try to deduce a
582 language then as well, but it is too late for us to use that
583 information while reading symbols, since symtabs aren't allocated
584 until after all the symbols have been processed for a given
585 source file. */
586
587 subfile->language = deduce_language_from_filename (subfile->name);
588 if (subfile->language == language_unknown
589 && subfile->next != NULL)
590 {
591 subfile->language = subfile->next->language;
592 }
593
594 /* Initialize the debug format string to NULL. We may supply it
595 later via a call to record_debugformat. */
596 subfile->debugformat = NULL;
597
598 /* Similarly for the producer. */
599 subfile->producer = NULL;
600
601 /* If the filename of this subfile ends in .C, then change the
602 language of any pending subfiles from C to C++. We also accept
603 any other C++ suffixes accepted by deduce_language_from_filename. */
604 /* Likewise for f2c. */
605
606 if (subfile->name)
607 {
608 struct subfile *s;
609 enum language sublang = deduce_language_from_filename (subfile->name);
610
611 if (sublang == language_cplus || sublang == language_fortran)
612 for (s = subfiles; s != NULL; s = s->next)
613 if (s->language == language_c)
614 s->language = sublang;
615 }
616
617 /* And patch up this file if necessary. */
618 if (subfile->language == language_c
619 && subfile->next != NULL
620 && (subfile->next->language == language_cplus
621 || subfile->next->language == language_fortran))
622 {
623 subfile->language = subfile->next->language;
624 }
625 }
626
627 /* For stabs readers, the first N_SO symbol is assumed to be the
628 source file name, and the subfile struct is initialized using that
629 assumption. If another N_SO symbol is later seen, immediately
630 following the first one, then the first one is assumed to be the
631 directory name and the second one is really the source file name.
632
633 So we have to patch up the subfile struct by moving the old name
634 value to dirname and remembering the new name. Some sanity
635 checking is performed to ensure that the state of the subfile
636 struct is reasonable and that the old name we are assuming to be a
637 directory name actually is (by checking for a trailing '/'). */
638
639 void
640 patch_subfile_names (struct subfile *subfile, char *name)
641 {
642 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
643 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
644 {
645 subfile->dirname = subfile->name;
646 subfile->name = xstrdup (name);
647 last_source_file = name;
648
649 /* Default the source language to whatever can be deduced from
650 the filename. If nothing can be deduced (such as for a C/C++
651 include file with a ".h" extension), then inherit whatever
652 language the previous subfile had. This kludgery is
653 necessary because there is no standard way in some object
654 formats to record the source language. Also, when symtabs
655 are allocated we try to deduce a language then as well, but
656 it is too late for us to use that information while reading
657 symbols, since symtabs aren't allocated until after all the
658 symbols have been processed for a given source file. */
659
660 subfile->language = deduce_language_from_filename (subfile->name);
661 if (subfile->language == language_unknown
662 && subfile->next != NULL)
663 {
664 subfile->language = subfile->next->language;
665 }
666 }
667 }
668 \f
669 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
670 switching source files (different subfiles, as we call them) within
671 one object file, but using a stack rather than in an arbitrary
672 order. */
673
674 void
675 push_subfile (void)
676 {
677 struct subfile_stack *tem
678 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
679
680 tem->next = subfile_stack;
681 subfile_stack = tem;
682 if (current_subfile == NULL || current_subfile->name == NULL)
683 {
684 internal_error (__FILE__, __LINE__,
685 _("failed internal consistency check"));
686 }
687 tem->name = current_subfile->name;
688 }
689
690 char *
691 pop_subfile (void)
692 {
693 char *name;
694 struct subfile_stack *link = subfile_stack;
695
696 if (link == NULL)
697 {
698 internal_error (__FILE__, __LINE__,
699 _("failed internal consistency check"));
700 }
701 name = link->name;
702 subfile_stack = link->next;
703 xfree ((void *) link);
704 return (name);
705 }
706 \f
707 /* Add a linetable entry for line number LINE and address PC to the
708 line vector for SUBFILE. */
709
710 void
711 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
712 {
713 struct linetable_entry *e;
714
715 /* Ignore the dummy line number in libg.o */
716 if (line == 0xffff)
717 {
718 return;
719 }
720
721 /* Make sure line vector exists and is big enough. */
722 if (!subfile->line_vector)
723 {
724 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
725 subfile->line_vector = (struct linetable *)
726 xmalloc (sizeof (struct linetable)
727 + subfile->line_vector_length * sizeof (struct linetable_entry));
728 subfile->line_vector->nitems = 0;
729 have_line_numbers = 1;
730 }
731
732 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
733 {
734 subfile->line_vector_length *= 2;
735 subfile->line_vector = (struct linetable *)
736 xrealloc ((char *) subfile->line_vector,
737 (sizeof (struct linetable)
738 + (subfile->line_vector_length
739 * sizeof (struct linetable_entry))));
740 }
741
742 /* Normally, we treat lines as unsorted. But the end of sequence
743 marker is special. We sort line markers at the same PC by line
744 number, so end of sequence markers (which have line == 0) appear
745 first. This is right if the marker ends the previous function,
746 and there is no padding before the next function. But it is
747 wrong if the previous line was empty and we are now marking a
748 switch to a different subfile. We must leave the end of sequence
749 marker at the end of this group of lines, not sort the empty line
750 to after the marker. The easiest way to accomplish this is to
751 delete any empty lines from our table, if they are followed by
752 end of sequence markers. All we lose is the ability to set
753 breakpoints at some lines which contain no instructions
754 anyway. */
755 if (line == 0 && subfile->line_vector->nitems > 0)
756 {
757 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
758 while (subfile->line_vector->nitems > 0 && e->pc == pc)
759 {
760 e--;
761 subfile->line_vector->nitems--;
762 }
763 }
764
765 e = subfile->line_vector->item + subfile->line_vector->nitems++;
766 e->line = line;
767 e->pc = pc;
768 }
769
770 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
771
772 static int
773 compare_line_numbers (const void *ln1p, const void *ln2p)
774 {
775 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
776 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
777
778 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
779 Please keep it that way. */
780 if (ln1->pc < ln2->pc)
781 return -1;
782
783 if (ln1->pc > ln2->pc)
784 return 1;
785
786 /* If pc equal, sort by line. I'm not sure whether this is optimum
787 behavior (see comment at struct linetable in symtab.h). */
788 return ln1->line - ln2->line;
789 }
790 \f
791 /* Start a new symtab for a new source file. Called, for example,
792 when a stabs symbol of type N_SO is seen, or when a DWARF
793 TAG_compile_unit DIE is seen. It indicates the start of data for
794 one original source file.
795
796 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
797 which the file was compiled (or NULL if not known). START_ADDR is the
798 lowest address of objects in the file (or 0 if not known). */
799
800 void
801 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
802 {
803 last_source_file = name;
804 last_source_start_addr = start_addr;
805 file_symbols = NULL;
806 global_symbols = NULL;
807 within_function = 0;
808 have_line_numbers = 0;
809
810 /* Context stack is initially empty. Allocate first one with room
811 for 10 levels; reuse it forever afterward. */
812 if (context_stack == NULL)
813 {
814 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
815 context_stack = (struct context_stack *)
816 xmalloc (context_stack_size * sizeof (struct context_stack));
817 }
818 context_stack_depth = 0;
819
820 /* We shouldn't have any address map at this point. */
821 gdb_assert (! pending_addrmap);
822
823 /* Initialize the list of sub source files with one entry for this
824 file (the top-level source file). */
825
826 subfiles = NULL;
827 current_subfile = NULL;
828 start_subfile (name, dirname);
829 }
830
831 /* Subroutine of end_symtab to simplify it. Look for a subfile that
832 matches the main source file's basename. If there is only one, and
833 if the main source file doesn't have any symbol or line number
834 information, then copy this file's symtab and line_vector to the
835 main source file's subfile and discard the other subfile. This can
836 happen because of a compiler bug or from the user playing games
837 with #line or from things like a distributed build system that
838 manipulates the debug info. */
839
840 static void
841 watch_main_source_file_lossage (void)
842 {
843 struct subfile *mainsub, *subfile;
844
845 /* Find the main source file.
846 This loop could be eliminated if start_symtab saved it for us. */
847 mainsub = NULL;
848 for (subfile = subfiles; subfile; subfile = subfile->next)
849 {
850 /* The main subfile is guaranteed to be the last one. */
851 if (subfile->next == NULL)
852 mainsub = subfile;
853 }
854
855 /* If the main source file doesn't have any line number or symbol
856 info, look for an alias in another subfile.
857
858 We have to watch for mainsub == NULL here. It's a quirk of
859 end_symtab, it can return NULL so there may not be a main
860 subfile. */
861
862 if (mainsub
863 && mainsub->line_vector == NULL
864 && mainsub->symtab == NULL)
865 {
866 const char *mainbase = lbasename (mainsub->name);
867 int nr_matches = 0;
868 struct subfile *prevsub;
869 struct subfile *mainsub_alias = NULL;
870 struct subfile *prev_mainsub_alias = NULL;
871
872 prevsub = NULL;
873 for (subfile = subfiles;
874 /* Stop before we get to the last one. */
875 subfile->next;
876 subfile = subfile->next)
877 {
878 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
879 {
880 ++nr_matches;
881 mainsub_alias = subfile;
882 prev_mainsub_alias = prevsub;
883 }
884 prevsub = subfile;
885 }
886
887 if (nr_matches == 1)
888 {
889 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
890
891 /* Found a match for the main source file.
892 Copy its line_vector and symtab to the main subfile
893 and then discard it. */
894
895 mainsub->line_vector = mainsub_alias->line_vector;
896 mainsub->line_vector_length = mainsub_alias->line_vector_length;
897 mainsub->symtab = mainsub_alias->symtab;
898
899 if (prev_mainsub_alias == NULL)
900 subfiles = mainsub_alias->next;
901 else
902 prev_mainsub_alias->next = mainsub_alias->next;
903 xfree (mainsub_alias);
904 }
905 }
906 }
907
908 /* Helper function for qsort. Parametes are `struct block *' pointers,
909 function sorts them in descending order by their BLOCK_START. */
910
911 static int
912 block_compar (const void *ap, const void *bp)
913 {
914 const struct block *a = *(const struct block **) ap;
915 const struct block *b = *(const struct block **) bp;
916
917 return ((BLOCK_START (b) > BLOCK_START (a))
918 - (BLOCK_START (b) < BLOCK_START (a)));
919 }
920
921 /* Finish the symbol definitions for one main source file, close off
922 all the lexical contexts for that file (creating struct block's for
923 them), then make the struct symtab for that file and put it in the
924 list of all such.
925
926 END_ADDR is the address of the end of the file's text. SECTION is
927 the section number (in objfile->section_offsets) of the blockvector
928 and linetable.
929
930 Note that it is possible for end_symtab() to return NULL. In
931 particular, for the DWARF case at least, it will return NULL when
932 it finds a compilation unit that has exactly one DIE, a
933 TAG_compile_unit DIE. This can happen when we link in an object
934 file that was compiled from an empty source file. Returning NULL
935 is probably not the correct thing to do, because then gdb will
936 never know about this empty file (FIXME). */
937
938 struct symtab *
939 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
940 {
941 struct symtab *symtab = NULL;
942 struct blockvector *blockvector;
943 struct subfile *subfile;
944 struct context_stack *cstk;
945 struct subfile *nextsub;
946
947 /* Finish the lexical context of the last function in the file; pop
948 the context stack. */
949
950 if (context_stack_depth > 0)
951 {
952 cstk = pop_context ();
953 /* Make a block for the local symbols within. */
954 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
955 cstk->start_addr, end_addr, objfile);
956
957 if (context_stack_depth > 0)
958 {
959 /* This is said to happen with SCO. The old coffread.c
960 code simply emptied the context stack, so we do the
961 same. FIXME: Find out why it is happening. This is not
962 believed to happen in most cases (even for coffread.c);
963 it used to be an abort(). */
964 complaint (&symfile_complaints,
965 _("Context stack not empty in end_symtab"));
966 context_stack_depth = 0;
967 }
968 }
969
970 /* Reordered executables may have out of order pending blocks; if
971 OBJF_REORDERED is true, then sort the pending blocks. */
972 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
973 {
974 unsigned count = 0;
975 struct pending_block *pb;
976 struct block **barray, **bp;
977 struct cleanup *back_to;
978
979 for (pb = pending_blocks; pb != NULL; pb = pb->next)
980 count++;
981
982 barray = xmalloc (sizeof (*barray) * count);
983 back_to = make_cleanup (xfree, barray);
984
985 bp = barray;
986 for (pb = pending_blocks; pb != NULL; pb = pb->next)
987 *bp++ = pb->block;
988
989 qsort (barray, count, sizeof (*barray), block_compar);
990
991 bp = barray;
992 for (pb = pending_blocks; pb != NULL; pb = pb->next)
993 pb->block = *bp++;
994
995 do_cleanups (back_to);
996 }
997
998 /* Cleanup any undefined types that have been left hanging around
999 (this needs to be done before the finish_blocks so that
1000 file_symbols is still good).
1001
1002 Both cleanup_undefined_types and finish_global_stabs are stabs
1003 specific, but harmless for other symbol readers, since on gdb
1004 startup or when finished reading stabs, the state is set so these
1005 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1006 we make this cleaner? */
1007
1008 cleanup_undefined_types (objfile);
1009 finish_global_stabs (objfile);
1010
1011 if (pending_blocks == NULL
1012 && file_symbols == NULL
1013 && global_symbols == NULL
1014 && have_line_numbers == 0
1015 && pending_macros == NULL)
1016 {
1017 /* Ignore symtabs that have no functions with real debugging
1018 info. */
1019 blockvector = NULL;
1020 }
1021 else
1022 {
1023 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1024 blockvector. */
1025 finish_block (0, &file_symbols, 0, last_source_start_addr,
1026 end_addr, objfile);
1027 finish_block (0, &global_symbols, 0, last_source_start_addr,
1028 end_addr, objfile);
1029 blockvector = make_blockvector (objfile);
1030 }
1031
1032 /* Read the line table if it has to be read separately. */
1033 if (objfile->sf->sym_read_linetable != NULL)
1034 objfile->sf->sym_read_linetable ();
1035
1036 /* Handle the case where the debug info specifies a different path
1037 for the main source file. It can cause us to lose track of its
1038 line number information. */
1039 watch_main_source_file_lossage ();
1040
1041 /* Now create the symtab objects proper, one for each subfile. */
1042 /* (The main file is the last one on the chain.) */
1043
1044 for (subfile = subfiles; subfile; subfile = nextsub)
1045 {
1046 int linetablesize = 0;
1047 symtab = NULL;
1048
1049 /* If we have blocks of symbols, make a symtab. Otherwise, just
1050 ignore this file and any line number info in it. */
1051 if (blockvector)
1052 {
1053 if (subfile->line_vector)
1054 {
1055 linetablesize = sizeof (struct linetable) +
1056 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1057
1058 /* Like the pending blocks, the line table may be
1059 scrambled in reordered executables. Sort it if
1060 OBJF_REORDERED is true. */
1061 if (objfile->flags & OBJF_REORDERED)
1062 qsort (subfile->line_vector->item,
1063 subfile->line_vector->nitems,
1064 sizeof (struct linetable_entry), compare_line_numbers);
1065 }
1066
1067 /* Now, allocate a symbol table. */
1068 if (subfile->symtab == NULL)
1069 symtab = allocate_symtab (subfile->name, objfile);
1070 else
1071 symtab = subfile->symtab;
1072
1073 /* Fill in its components. */
1074 symtab->blockvector = blockvector;
1075 symtab->macro_table = pending_macros;
1076 if (subfile->line_vector)
1077 {
1078 /* Reallocate the line table on the symbol obstack. */
1079 symtab->linetable = (struct linetable *)
1080 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1081 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1082 }
1083 else
1084 {
1085 symtab->linetable = NULL;
1086 }
1087 symtab->block_line_section = section;
1088 if (subfile->dirname)
1089 {
1090 /* Reallocate the dirname on the symbol obstack. */
1091 symtab->dirname = (char *)
1092 obstack_alloc (&objfile->objfile_obstack,
1093 strlen (subfile->dirname) + 1);
1094 strcpy (symtab->dirname, subfile->dirname);
1095 }
1096 else
1097 {
1098 symtab->dirname = NULL;
1099 }
1100
1101 /* Use whatever language we have been using for this
1102 subfile, not the one that was deduced in allocate_symtab
1103 from the filename. We already did our own deducing when
1104 we created the subfile, and we may have altered our
1105 opinion of what language it is from things we found in
1106 the symbols. */
1107 symtab->language = subfile->language;
1108
1109 /* Save the debug format string (if any) in the symtab. */
1110 symtab->debugformat = subfile->debugformat;
1111
1112 /* Similarly for the producer. */
1113 symtab->producer = subfile->producer;
1114
1115 /* All symtabs for the main file and the subfiles share a
1116 blockvector, so we need to clear primary for everything
1117 but the main file. */
1118
1119 symtab->primary = 0;
1120 }
1121 else
1122 {
1123 if (subfile->symtab)
1124 {
1125 /* Since we are ignoring that subfile, we also need
1126 to unlink the associated empty symtab that we created.
1127 Otherwise, we can into trouble because various parts
1128 such as the block-vector are uninitialized whereas
1129 the rest of the code assumes that they are.
1130
1131 We can only unlink the symtab because it was allocated
1132 on the objfile obstack. */
1133 struct symtab *s;
1134
1135 if (objfile->symtabs == subfile->symtab)
1136 objfile->symtabs = objfile->symtabs->next;
1137 else
1138 ALL_OBJFILE_SYMTABS (objfile, s)
1139 if (s->next == subfile->symtab)
1140 {
1141 s->next = s->next->next;
1142 break;
1143 }
1144 subfile->symtab = NULL;
1145 }
1146 }
1147 if (subfile->name != NULL)
1148 {
1149 xfree ((void *) subfile->name);
1150 }
1151 if (subfile->dirname != NULL)
1152 {
1153 xfree ((void *) subfile->dirname);
1154 }
1155 if (subfile->line_vector != NULL)
1156 {
1157 xfree ((void *) subfile->line_vector);
1158 }
1159
1160 nextsub = subfile->next;
1161 xfree ((void *) subfile);
1162 }
1163
1164 /* Set this for the main source file. */
1165 if (symtab)
1166 {
1167 symtab->primary = 1;
1168 }
1169
1170 /* Default any symbols without a specified symtab to the primary
1171 symtab. */
1172 if (blockvector)
1173 {
1174 int block_i;
1175
1176 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1177 {
1178 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1179 struct symbol *sym;
1180 struct dict_iterator iter;
1181
1182 /* Inlined functions may have symbols not in the global or
1183 static symbol lists. */
1184 if (BLOCK_FUNCTION (block) != NULL)
1185 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1186 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1187
1188 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1189 sym != NULL;
1190 sym = dict_iterator_next (&iter))
1191 if (SYMBOL_SYMTAB (sym) == NULL)
1192 SYMBOL_SYMTAB (sym) = symtab;
1193 }
1194 }
1195
1196 last_source_file = NULL;
1197 current_subfile = NULL;
1198 pending_macros = NULL;
1199 if (pending_addrmap)
1200 {
1201 obstack_free (&pending_addrmap_obstack, NULL);
1202 pending_addrmap = NULL;
1203 }
1204
1205 return symtab;
1206 }
1207
1208 /* Push a context block. Args are an identifying nesting level
1209 (checkable when you pop it), and the starting PC address of this
1210 context. */
1211
1212 struct context_stack *
1213 push_context (int desc, CORE_ADDR valu)
1214 {
1215 struct context_stack *new;
1216
1217 if (context_stack_depth == context_stack_size)
1218 {
1219 context_stack_size *= 2;
1220 context_stack = (struct context_stack *)
1221 xrealloc ((char *) context_stack,
1222 (context_stack_size * sizeof (struct context_stack)));
1223 }
1224
1225 new = &context_stack[context_stack_depth++];
1226 new->depth = desc;
1227 new->locals = local_symbols;
1228 new->params = param_symbols;
1229 new->old_blocks = pending_blocks;
1230 new->start_addr = valu;
1231 new->using_directives = using_directives;
1232 new->name = NULL;
1233
1234 local_symbols = NULL;
1235 param_symbols = NULL;
1236 using_directives = NULL;
1237
1238 return new;
1239 }
1240
1241 /* Pop a context block. Returns the address of the context block just
1242 popped. */
1243
1244 struct context_stack *
1245 pop_context (void)
1246 {
1247 gdb_assert (context_stack_depth > 0);
1248 return (&context_stack[--context_stack_depth]);
1249 }
1250
1251 \f
1252
1253 /* Compute a small integer hash code for the given name. */
1254
1255 int
1256 hashname (char *name)
1257 {
1258 return (hash(name,strlen(name)) % HASHSIZE);
1259 }
1260 \f
1261
1262 void
1263 record_debugformat (const char *format)
1264 {
1265 current_subfile->debugformat = format;
1266 }
1267
1268 void
1269 record_producer (const char *producer)
1270 {
1271 current_subfile->producer = producer;
1272 }
1273
1274 /* Merge the first symbol list SRCLIST into the second symbol list
1275 TARGETLIST by repeated calls to add_symbol_to_list(). This
1276 procedure "frees" each link of SRCLIST by adding it to the
1277 free_pendings list. Caller must set SRCLIST to a null list after
1278 calling this function.
1279
1280 Void return. */
1281
1282 void
1283 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1284 {
1285 int i;
1286
1287 if (!srclist || !*srclist)
1288 return;
1289
1290 /* Merge in elements from current link. */
1291 for (i = 0; i < (*srclist)->nsyms; i++)
1292 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1293
1294 /* Recurse on next. */
1295 merge_symbol_lists (&(*srclist)->next, targetlist);
1296
1297 /* "Free" the current link. */
1298 (*srclist)->next = free_pendings;
1299 free_pendings = (*srclist);
1300 }
1301 \f
1302 /* Initialize anything that needs initializing when starting to read a
1303 fresh piece of a symbol file, e.g. reading in the stuff
1304 corresponding to a psymtab. */
1305
1306 void
1307 buildsym_init (void)
1308 {
1309 free_pendings = NULL;
1310 file_symbols = NULL;
1311 global_symbols = NULL;
1312 pending_blocks = NULL;
1313 pending_macros = NULL;
1314
1315 /* We shouldn't have any address map at this point. */
1316 gdb_assert (! pending_addrmap);
1317 pending_addrmap_interesting = 0;
1318 }
1319
1320 /* Initialize anything that needs initializing when a completely new
1321 symbol file is specified (not just adding some symbols from another
1322 file, e.g. a shared library). */
1323
1324 void
1325 buildsym_new_init (void)
1326 {
1327 buildsym_init ();
1328 }
This page took 0.06917 seconds and 4 git commands to generate.