Move have_line_numbers to buildsym_compunit
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "bcache.h"
78 #include "filenames.h" /* For DOSish file names. */
79 #include "macrotab.h"
80 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
81 #include "block.h"
82 #include "cp-support.h"
83 #include "dictionary.h"
84 #include "addrmap.h"
85 #include <algorithm>
86
87 /* Ask buildsym.h to define the vars it normally declares `extern'. */
88 #define EXTERN
89 /**/
90 #include "buildsym.h" /* Our own declarations. */
91 #undef EXTERN
92
93 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
94 questionable--see comment where we call them). */
95
96 #include "stabsread.h"
97
98 /* Buildsym's counterpart to struct compunit_symtab.
99 TODO(dje): Move all related global state into here. */
100
101 struct buildsym_compunit
102 {
103 /* Start recording information about a primary source file (IOW, not an
104 included source file).
105 COMP_DIR is the directory in which the compilation unit was compiled
106 (or NULL if not known). */
107
108 buildsym_compunit (struct objfile *objfile_, const char *name,
109 const char *comp_dir_, enum language language_)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_)
114 {
115 }
116
117 ~buildsym_compunit ()
118 {
119 struct subfile *subfile, *nextsub;
120
121 if (m_pending_macros != nullptr)
122 free_macro_table (m_pending_macros);
123
124 for (subfile = subfiles;
125 subfile != NULL;
126 subfile = nextsub)
127 {
128 nextsub = subfile->next;
129 xfree (subfile->name);
130 xfree (subfile->line_vector);
131 xfree (subfile);
132 }
133 }
134
135 void set_last_source_file (const char *name)
136 {
137 char *new_name = name == NULL ? NULL : xstrdup (name);
138 m_last_source_file.reset (new_name);
139 }
140
141 struct macro_table *get_macro_table ()
142 {
143 if (m_pending_macros == nullptr)
144 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
145 objfile->per_bfd->macro_cache,
146 compunit_symtab);
147 return m_pending_macros;
148 }
149
150 struct macro_table *release_macros ()
151 {
152 struct macro_table *result = m_pending_macros;
153 m_pending_macros = nullptr;
154 return result;
155 }
156
157 /* The objfile we're reading debug info from. */
158 struct objfile *objfile;
159
160 /* List of subfiles (source files).
161 Files are added to the front of the list.
162 This is important mostly for the language determination hacks we use,
163 which iterate over previously added files. */
164 struct subfile *subfiles = nullptr;
165
166 /* The subfile of the main source file. */
167 struct subfile *main_subfile = nullptr;
168
169 /* Name of source file whose symbol data we are now processing. This
170 comes from a symbol of type N_SO for stabs. For DWARF it comes
171 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
172 gdb::unique_xmalloc_ptr<char> m_last_source_file;
173
174 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
175 gdb::unique_xmalloc_ptr<char> comp_dir;
176
177 /* Space for this is not malloc'd, and is assumed to have at least
178 the same lifetime as objfile. */
179 const char *producer = nullptr;
180
181 /* Space for this is not malloc'd, and is assumed to have at least
182 the same lifetime as objfile. */
183 const char *debugformat = nullptr;
184
185 /* The compunit we are building. */
186 struct compunit_symtab *compunit_symtab = nullptr;
187
188 /* Language of this compunit_symtab. */
189 enum language language;
190
191 /* The macro table for the compilation unit whose symbols we're
192 currently reading. */
193 struct macro_table *m_pending_macros = nullptr;
194
195 /* True if symtab has line number info. This prevents an otherwise
196 empty symtab from being tossed. */
197 bool m_have_line_numbers = false;
198 };
199
200 /* The work-in-progress of the compunit we are building.
201 This is created first, before any subfiles by start_symtab. */
202
203 static struct buildsym_compunit *buildsym_compunit;
204
205 /* List of free `struct pending' structures for reuse. */
206
207 static struct pending *free_pendings;
208
209 /* The mutable address map for the compilation unit whose symbols
210 we're currently reading. The symtabs' shared blockvector will
211 point to a fixed copy of this. */
212 static struct addrmap *pending_addrmap;
213
214 /* The obstack on which we allocate pending_addrmap.
215 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
216 initialized (and holds pending_addrmap). */
217 static struct obstack pending_addrmap_obstack;
218
219 /* Non-zero if we recorded any ranges in the addrmap that are
220 different from those in the blockvector already. We set this to
221 zero when we start processing a symfile, and if it's still zero at
222 the end, then we just toss the addrmap. */
223 static int pending_addrmap_interesting;
224
225 /* An obstack used for allocating pending blocks. */
226
227 static struct obstack pending_block_obstack;
228
229 /* List of blocks already made (lexical contexts already closed).
230 This is used at the end to make the blockvector. */
231
232 struct pending_block
233 {
234 struct pending_block *next;
235 struct block *block;
236 };
237
238 /* Pointer to the head of a linked list of symbol blocks which have
239 already been finalized (lexical contexts already closed) and which
240 are just waiting to be built into a blockvector when finalizing the
241 associated symtab. */
242
243 static struct pending_block *pending_blocks;
244
245 struct subfile_stack
246 {
247 struct subfile_stack *next;
248 char *name;
249 };
250
251 static struct subfile_stack *subfile_stack;
252
253 static void free_buildsym_compunit (void);
254
255 static int compare_line_numbers (const void *ln1p, const void *ln2p);
256
257 static void record_pending_block (struct objfile *objfile,
258 struct block *block,
259 struct pending_block *opblock);
260
261 /* Initial sizes of data structures. These are realloc'd larger if
262 needed, and realloc'd down to the size actually used, when
263 completed. */
264
265 #define INITIAL_CONTEXT_STACK_SIZE 10
266 #define INITIAL_LINE_VECTOR_LENGTH 1000
267 \f
268
269 /* Maintain the lists of symbols and blocks. */
270
271 /* Add a symbol to one of the lists of symbols. */
272
273 void
274 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
275 {
276 struct pending *link;
277
278 /* If this is an alias for another symbol, don't add it. */
279 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
280 return;
281
282 /* We keep PENDINGSIZE symbols in each link of the list. If we
283 don't have a link with room in it, add a new link. */
284 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
285 {
286 if (free_pendings)
287 {
288 link = free_pendings;
289 free_pendings = link->next;
290 }
291 else
292 {
293 link = XNEW (struct pending);
294 }
295
296 link->next = *listhead;
297 *listhead = link;
298 link->nsyms = 0;
299 }
300
301 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
302 }
303
304 /* Find a symbol named NAME on a LIST. NAME need not be
305 '\0'-terminated; LENGTH is the length of the name. */
306
307 struct symbol *
308 find_symbol_in_list (struct pending *list, char *name, int length)
309 {
310 int j;
311 const char *pp;
312
313 while (list != NULL)
314 {
315 for (j = list->nsyms; --j >= 0;)
316 {
317 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
318 if (*pp == *name && strncmp (pp, name, length) == 0
319 && pp[length] == '\0')
320 {
321 return (list->symbol[j]);
322 }
323 }
324 list = list->next;
325 }
326 return (NULL);
327 }
328
329 /* At end of reading syms, or in case of quit, ensure everything
330 associated with building symtabs is freed.
331
332 N.B. This is *not* intended to be used when building psymtabs. Some debug
333 info readers call this anyway, which is harmless if confusing. */
334
335 scoped_free_pendings::~scoped_free_pendings ()
336 {
337 struct pending *next, *next1;
338
339 for (next = free_pendings; next; next = next1)
340 {
341 next1 = next->next;
342 xfree ((void *) next);
343 }
344 free_pendings = NULL;
345
346 free_pending_blocks ();
347
348 for (next = file_symbols; next != NULL; next = next1)
349 {
350 next1 = next->next;
351 xfree ((void *) next);
352 }
353 file_symbols = NULL;
354
355 for (next = global_symbols; next != NULL; next = next1)
356 {
357 next1 = next->next;
358 xfree ((void *) next);
359 }
360 global_symbols = NULL;
361
362 if (pending_addrmap)
363 obstack_free (&pending_addrmap_obstack, NULL);
364 pending_addrmap = NULL;
365
366 free_buildsym_compunit ();
367 }
368
369 /* This function is called to discard any pending blocks. */
370
371 void
372 free_pending_blocks (void)
373 {
374 if (pending_blocks != NULL)
375 {
376 obstack_free (&pending_block_obstack, NULL);
377 pending_blocks = NULL;
378 }
379 }
380
381 /* Take one of the lists of symbols and make a block from it. Keep
382 the order the symbols have in the list (reversed from the input
383 file). Put the block on the list of pending blocks. */
384
385 static struct block *
386 finish_block_internal (struct symbol *symbol,
387 struct pending **listhead,
388 struct pending_block *old_blocks,
389 const struct dynamic_prop *static_link,
390 CORE_ADDR start, CORE_ADDR end,
391 int is_global, int expandable)
392 {
393 struct objfile *objfile = buildsym_compunit->objfile;
394 struct gdbarch *gdbarch = get_objfile_arch (objfile);
395 struct pending *next, *next1;
396 struct block *block;
397 struct pending_block *pblock;
398 struct pending_block *opblock;
399
400 block = (is_global
401 ? allocate_global_block (&objfile->objfile_obstack)
402 : allocate_block (&objfile->objfile_obstack));
403
404 if (symbol)
405 {
406 BLOCK_DICT (block)
407 = dict_create_linear (&objfile->objfile_obstack,
408 buildsym_compunit->language, *listhead);
409 }
410 else
411 {
412 if (expandable)
413 {
414 BLOCK_DICT (block)
415 = dict_create_hashed_expandable (buildsym_compunit->language);
416 dict_add_pending (BLOCK_DICT (block), *listhead);
417 }
418 else
419 {
420 BLOCK_DICT (block) =
421 dict_create_hashed (&objfile->objfile_obstack,
422 buildsym_compunit->language, *listhead);
423 }
424 }
425
426 BLOCK_START (block) = start;
427 BLOCK_END (block) = end;
428
429 /* Put the block in as the value of the symbol that names it. */
430
431 if (symbol)
432 {
433 struct type *ftype = SYMBOL_TYPE (symbol);
434 struct dict_iterator iter;
435 SYMBOL_BLOCK_VALUE (symbol) = block;
436 BLOCK_FUNCTION (block) = symbol;
437
438 if (TYPE_NFIELDS (ftype) <= 0)
439 {
440 /* No parameter type information is recorded with the
441 function's type. Set that from the type of the
442 parameter symbols. */
443 int nparams = 0, iparams;
444 struct symbol *sym;
445
446 /* Here we want to directly access the dictionary, because
447 we haven't fully initialized the block yet. */
448 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
449 {
450 if (SYMBOL_IS_ARGUMENT (sym))
451 nparams++;
452 }
453 if (nparams > 0)
454 {
455 TYPE_NFIELDS (ftype) = nparams;
456 TYPE_FIELDS (ftype) = (struct field *)
457 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
458
459 iparams = 0;
460 /* Here we want to directly access the dictionary, because
461 we haven't fully initialized the block yet. */
462 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
463 {
464 if (iparams == nparams)
465 break;
466
467 if (SYMBOL_IS_ARGUMENT (sym))
468 {
469 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
470 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
471 iparams++;
472 }
473 }
474 }
475 }
476 }
477 else
478 {
479 BLOCK_FUNCTION (block) = NULL;
480 }
481
482 if (static_link != NULL)
483 objfile_register_static_link (objfile, block, static_link);
484
485 /* Now "free" the links of the list, and empty the list. */
486
487 for (next = *listhead; next; next = next1)
488 {
489 next1 = next->next;
490 next->next = free_pendings;
491 free_pendings = next;
492 }
493 *listhead = NULL;
494
495 /* Check to be sure that the blocks have an end address that is
496 greater than starting address. */
497
498 if (BLOCK_END (block) < BLOCK_START (block))
499 {
500 if (symbol)
501 {
502 complaint (_("block end address less than block "
503 "start address in %s (patched it)"),
504 SYMBOL_PRINT_NAME (symbol));
505 }
506 else
507 {
508 complaint (_("block end address %s less than block "
509 "start address %s (patched it)"),
510 paddress (gdbarch, BLOCK_END (block)),
511 paddress (gdbarch, BLOCK_START (block)));
512 }
513 /* Better than nothing. */
514 BLOCK_END (block) = BLOCK_START (block);
515 }
516
517 /* Install this block as the superblock of all blocks made since the
518 start of this scope that don't have superblocks yet. */
519
520 opblock = NULL;
521 for (pblock = pending_blocks;
522 pblock && pblock != old_blocks;
523 pblock = pblock->next)
524 {
525 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
526 {
527 /* Check to be sure the blocks are nested as we receive
528 them. If the compiler/assembler/linker work, this just
529 burns a small amount of time.
530
531 Skip blocks which correspond to a function; they're not
532 physically nested inside this other blocks, only
533 lexically nested. */
534 if (BLOCK_FUNCTION (pblock->block) == NULL
535 && (BLOCK_START (pblock->block) < BLOCK_START (block)
536 || BLOCK_END (pblock->block) > BLOCK_END (block)))
537 {
538 if (symbol)
539 {
540 complaint (_("inner block not inside outer block in %s"),
541 SYMBOL_PRINT_NAME (symbol));
542 }
543 else
544 {
545 complaint (_("inner block (%s-%s) not "
546 "inside outer block (%s-%s)"),
547 paddress (gdbarch, BLOCK_START (pblock->block)),
548 paddress (gdbarch, BLOCK_END (pblock->block)),
549 paddress (gdbarch, BLOCK_START (block)),
550 paddress (gdbarch, BLOCK_END (block)));
551 }
552 if (BLOCK_START (pblock->block) < BLOCK_START (block))
553 BLOCK_START (pblock->block) = BLOCK_START (block);
554 if (BLOCK_END (pblock->block) > BLOCK_END (block))
555 BLOCK_END (pblock->block) = BLOCK_END (block);
556 }
557 BLOCK_SUPERBLOCK (pblock->block) = block;
558 }
559 opblock = pblock;
560 }
561
562 block_set_using (block,
563 (is_global
564 ? global_using_directives
565 : local_using_directives),
566 &objfile->objfile_obstack);
567 if (is_global)
568 global_using_directives = NULL;
569 else
570 local_using_directives = NULL;
571
572 record_pending_block (objfile, block, opblock);
573
574 return block;
575 }
576
577 struct block *
578 finish_block (struct symbol *symbol,
579 struct pending **listhead,
580 struct pending_block *old_blocks,
581 const struct dynamic_prop *static_link,
582 CORE_ADDR start, CORE_ADDR end)
583 {
584 return finish_block_internal (symbol, listhead, old_blocks, static_link,
585 start, end, 0, 0);
586 }
587
588 /* Record BLOCK on the list of all blocks in the file. Put it after
589 OPBLOCK, or at the beginning if opblock is NULL. This puts the
590 block in the list after all its subblocks.
591
592 Allocate the pending block struct in the objfile_obstack to save
593 time. This wastes a little space. FIXME: Is it worth it? */
594
595 static void
596 record_pending_block (struct objfile *objfile, struct block *block,
597 struct pending_block *opblock)
598 {
599 struct pending_block *pblock;
600
601 if (pending_blocks == NULL)
602 obstack_init (&pending_block_obstack);
603
604 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
605 pblock->block = block;
606 if (opblock)
607 {
608 pblock->next = opblock->next;
609 opblock->next = pblock;
610 }
611 else
612 {
613 pblock->next = pending_blocks;
614 pending_blocks = pblock;
615 }
616 }
617
618
619 /* Record that the range of addresses from START to END_INCLUSIVE
620 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
621 addresses must be set already. You must apply this function to all
622 BLOCK's children before applying it to BLOCK.
623
624 If a call to this function complicates the picture beyond that
625 already provided by BLOCK_START and BLOCK_END, then we create an
626 address map for the block. */
627 void
628 record_block_range (struct block *block,
629 CORE_ADDR start, CORE_ADDR end_inclusive)
630 {
631 /* If this is any different from the range recorded in the block's
632 own BLOCK_START and BLOCK_END, then note that the address map has
633 become interesting. Note that even if this block doesn't have
634 any "interesting" ranges, some later block might, so we still
635 need to record this block in the addrmap. */
636 if (start != BLOCK_START (block)
637 || end_inclusive + 1 != BLOCK_END (block))
638 pending_addrmap_interesting = 1;
639
640 if (! pending_addrmap)
641 {
642 obstack_init (&pending_addrmap_obstack);
643 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
644 }
645
646 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
647 }
648
649 static struct blockvector *
650 make_blockvector (void)
651 {
652 struct objfile *objfile = buildsym_compunit->objfile;
653 struct pending_block *next;
654 struct blockvector *blockvector;
655 int i;
656
657 /* Count the length of the list of blocks. */
658
659 for (next = pending_blocks, i = 0; next; next = next->next, i++)
660 {;
661 }
662
663 blockvector = (struct blockvector *)
664 obstack_alloc (&objfile->objfile_obstack,
665 (sizeof (struct blockvector)
666 + (i - 1) * sizeof (struct block *)));
667
668 /* Copy the blocks into the blockvector. This is done in reverse
669 order, which happens to put the blocks into the proper order
670 (ascending starting address). finish_block has hair to insert
671 each block into the list after its subblocks in order to make
672 sure this is true. */
673
674 BLOCKVECTOR_NBLOCKS (blockvector) = i;
675 for (next = pending_blocks; next; next = next->next)
676 {
677 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
678 }
679
680 free_pending_blocks ();
681
682 /* If we needed an address map for this symtab, record it in the
683 blockvector. */
684 if (pending_addrmap && pending_addrmap_interesting)
685 BLOCKVECTOR_MAP (blockvector)
686 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
687 else
688 BLOCKVECTOR_MAP (blockvector) = 0;
689
690 /* Some compilers output blocks in the wrong order, but we depend on
691 their being in the right order so we can binary search. Check the
692 order and moan about it.
693 Note: Remember that the first two blocks are the global and static
694 blocks. We could special case that fact and begin checking at block 2.
695 To avoid making that assumption we do not. */
696 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
697 {
698 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
699 {
700 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
701 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
702 {
703 CORE_ADDR start
704 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
705
706 complaint (_("block at %s out of order"),
707 hex_string ((LONGEST) start));
708 }
709 }
710 }
711
712 return (blockvector);
713 }
714 \f
715 /* Start recording information about source code that came from an
716 included (or otherwise merged-in) source file with a different
717 name. NAME is the name of the file (cannot be NULL). */
718
719 void
720 start_subfile (const char *name)
721 {
722 const char *subfile_dirname;
723 struct subfile *subfile;
724
725 gdb_assert (buildsym_compunit != NULL);
726
727 subfile_dirname = buildsym_compunit->comp_dir.get ();
728
729 /* See if this subfile is already registered. */
730
731 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
732 {
733 char *subfile_name;
734
735 /* If NAME is an absolute path, and this subfile is not, then
736 attempt to create an absolute path to compare. */
737 if (IS_ABSOLUTE_PATH (name)
738 && !IS_ABSOLUTE_PATH (subfile->name)
739 && subfile_dirname != NULL)
740 subfile_name = concat (subfile_dirname, SLASH_STRING,
741 subfile->name, (char *) NULL);
742 else
743 subfile_name = subfile->name;
744
745 if (FILENAME_CMP (subfile_name, name) == 0)
746 {
747 current_subfile = subfile;
748 if (subfile_name != subfile->name)
749 xfree (subfile_name);
750 return;
751 }
752 if (subfile_name != subfile->name)
753 xfree (subfile_name);
754 }
755
756 /* This subfile is not known. Add an entry for it. */
757
758 subfile = XNEW (struct subfile);
759 memset (subfile, 0, sizeof (struct subfile));
760 subfile->buildsym_compunit = buildsym_compunit;
761
762 subfile->next = buildsym_compunit->subfiles;
763 buildsym_compunit->subfiles = subfile;
764
765 current_subfile = subfile;
766
767 subfile->name = xstrdup (name);
768
769 /* Initialize line-number recording for this subfile. */
770 subfile->line_vector = NULL;
771
772 /* Default the source language to whatever can be deduced from the
773 filename. If nothing can be deduced (such as for a C/C++ include
774 file with a ".h" extension), then inherit whatever language the
775 previous subfile had. This kludgery is necessary because there
776 is no standard way in some object formats to record the source
777 language. Also, when symtabs are allocated we try to deduce a
778 language then as well, but it is too late for us to use that
779 information while reading symbols, since symtabs aren't allocated
780 until after all the symbols have been processed for a given
781 source file. */
782
783 subfile->language = deduce_language_from_filename (subfile->name);
784 if (subfile->language == language_unknown
785 && subfile->next != NULL)
786 {
787 subfile->language = subfile->next->language;
788 }
789
790 /* If the filename of this subfile ends in .C, then change the
791 language of any pending subfiles from C to C++. We also accept
792 any other C++ suffixes accepted by deduce_language_from_filename. */
793 /* Likewise for f2c. */
794
795 if (subfile->name)
796 {
797 struct subfile *s;
798 enum language sublang = deduce_language_from_filename (subfile->name);
799
800 if (sublang == language_cplus || sublang == language_fortran)
801 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
802 if (s->language == language_c)
803 s->language = sublang;
804 }
805
806 /* And patch up this file if necessary. */
807 if (subfile->language == language_c
808 && subfile->next != NULL
809 && (subfile->next->language == language_cplus
810 || subfile->next->language == language_fortran))
811 {
812 subfile->language = subfile->next->language;
813 }
814 }
815
816 /* Delete the buildsym compunit. */
817
818 static void
819 free_buildsym_compunit (void)
820 {
821 if (buildsym_compunit == NULL)
822 return;
823 delete buildsym_compunit;
824 buildsym_compunit = NULL;
825 current_subfile = NULL;
826 }
827
828 /* For stabs readers, the first N_SO symbol is assumed to be the
829 source file name, and the subfile struct is initialized using that
830 assumption. If another N_SO symbol is later seen, immediately
831 following the first one, then the first one is assumed to be the
832 directory name and the second one is really the source file name.
833
834 So we have to patch up the subfile struct by moving the old name
835 value to dirname and remembering the new name. Some sanity
836 checking is performed to ensure that the state of the subfile
837 struct is reasonable and that the old name we are assuming to be a
838 directory name actually is (by checking for a trailing '/'). */
839
840 void
841 patch_subfile_names (struct subfile *subfile, const char *name)
842 {
843 if (subfile != NULL
844 && buildsym_compunit->comp_dir == NULL
845 && subfile->name != NULL
846 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
847 {
848 buildsym_compunit->comp_dir.reset (subfile->name);
849 subfile->name = xstrdup (name);
850 set_last_source_file (name);
851
852 /* Default the source language to whatever can be deduced from
853 the filename. If nothing can be deduced (such as for a C/C++
854 include file with a ".h" extension), then inherit whatever
855 language the previous subfile had. This kludgery is
856 necessary because there is no standard way in some object
857 formats to record the source language. Also, when symtabs
858 are allocated we try to deduce a language then as well, but
859 it is too late for us to use that information while reading
860 symbols, since symtabs aren't allocated until after all the
861 symbols have been processed for a given source file. */
862
863 subfile->language = deduce_language_from_filename (subfile->name);
864 if (subfile->language == language_unknown
865 && subfile->next != NULL)
866 {
867 subfile->language = subfile->next->language;
868 }
869 }
870 }
871 \f
872 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
873 switching source files (different subfiles, as we call them) within
874 one object file, but using a stack rather than in an arbitrary
875 order. */
876
877 void
878 push_subfile (void)
879 {
880 struct subfile_stack *tem = XNEW (struct subfile_stack);
881
882 tem->next = subfile_stack;
883 subfile_stack = tem;
884 if (current_subfile == NULL || current_subfile->name == NULL)
885 {
886 internal_error (__FILE__, __LINE__,
887 _("failed internal consistency check"));
888 }
889 tem->name = current_subfile->name;
890 }
891
892 char *
893 pop_subfile (void)
894 {
895 char *name;
896 struct subfile_stack *link = subfile_stack;
897
898 if (link == NULL)
899 {
900 internal_error (__FILE__, __LINE__,
901 _("failed internal consistency check"));
902 }
903 name = link->name;
904 subfile_stack = link->next;
905 xfree ((void *) link);
906 return (name);
907 }
908 \f
909 /* Add a linetable entry for line number LINE and address PC to the
910 line vector for SUBFILE. */
911
912 void
913 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
914 {
915 struct linetable_entry *e;
916
917 /* Ignore the dummy line number in libg.o */
918 if (line == 0xffff)
919 {
920 return;
921 }
922
923 /* Make sure line vector exists and is big enough. */
924 if (!subfile->line_vector)
925 {
926 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
927 subfile->line_vector = (struct linetable *)
928 xmalloc (sizeof (struct linetable)
929 + subfile->line_vector_length * sizeof (struct linetable_entry));
930 subfile->line_vector->nitems = 0;
931 buildsym_compunit->m_have_line_numbers = true;
932 }
933
934 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
935 {
936 subfile->line_vector_length *= 2;
937 subfile->line_vector = (struct linetable *)
938 xrealloc ((char *) subfile->line_vector,
939 (sizeof (struct linetable)
940 + (subfile->line_vector_length
941 * sizeof (struct linetable_entry))));
942 }
943
944 /* Normally, we treat lines as unsorted. But the end of sequence
945 marker is special. We sort line markers at the same PC by line
946 number, so end of sequence markers (which have line == 0) appear
947 first. This is right if the marker ends the previous function,
948 and there is no padding before the next function. But it is
949 wrong if the previous line was empty and we are now marking a
950 switch to a different subfile. We must leave the end of sequence
951 marker at the end of this group of lines, not sort the empty line
952 to after the marker. The easiest way to accomplish this is to
953 delete any empty lines from our table, if they are followed by
954 end of sequence markers. All we lose is the ability to set
955 breakpoints at some lines which contain no instructions
956 anyway. */
957 if (line == 0 && subfile->line_vector->nitems > 0)
958 {
959 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
960 while (subfile->line_vector->nitems > 0 && e->pc == pc)
961 {
962 e--;
963 subfile->line_vector->nitems--;
964 }
965 }
966
967 e = subfile->line_vector->item + subfile->line_vector->nitems++;
968 e->line = line;
969 e->pc = pc;
970 }
971
972 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
973
974 static int
975 compare_line_numbers (const void *ln1p, const void *ln2p)
976 {
977 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
978 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
979
980 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
981 Please keep it that way. */
982 if (ln1->pc < ln2->pc)
983 return -1;
984
985 if (ln1->pc > ln2->pc)
986 return 1;
987
988 /* If pc equal, sort by line. I'm not sure whether this is optimum
989 behavior (see comment at struct linetable in symtab.h). */
990 return ln1->line - ln2->line;
991 }
992 \f
993 /* See buildsym.h. */
994
995 struct compunit_symtab *
996 buildsym_compunit_symtab (void)
997 {
998 gdb_assert (buildsym_compunit != NULL);
999
1000 return buildsym_compunit->compunit_symtab;
1001 }
1002
1003 /* See buildsym.h. */
1004
1005 struct macro_table *
1006 get_macro_table (void)
1007 {
1008 struct objfile *objfile;
1009
1010 gdb_assert (buildsym_compunit != NULL);
1011 return buildsym_compunit->get_macro_table ();
1012 }
1013 \f
1014 /* Init state to prepare for building a symtab.
1015 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1016 can call start_symtab+end_symtab multiple times after one call to
1017 buildsym_init. */
1018
1019 static void
1020 prepare_for_building (CORE_ADDR start_addr)
1021 {
1022 last_source_start_addr = start_addr;
1023
1024 local_symbols = NULL;
1025 local_using_directives = NULL;
1026 within_function = 0;
1027
1028 context_stack_depth = 0;
1029
1030 /* These should have been reset either by successful completion of building
1031 a symtab, or by the scoped_free_pendings destructor. */
1032 gdb_assert (file_symbols == NULL);
1033 gdb_assert (global_symbols == NULL);
1034 gdb_assert (global_using_directives == NULL);
1035 gdb_assert (pending_addrmap == NULL);
1036 gdb_assert (current_subfile == NULL);
1037 gdb_assert (buildsym_compunit == nullptr);
1038 }
1039
1040 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1041 when a stabs symbol of type N_SO is seen, or when a DWARF
1042 TAG_compile_unit DIE is seen. It indicates the start of data for
1043 one original source file.
1044
1045 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1046 directory in which the file was compiled (or NULL if not known).
1047 START_ADDR is the lowest address of objects in the file (or 0 if
1048 not known). LANGUAGE is the language of the source file, or
1049 language_unknown if not known, in which case it'll be deduced from
1050 the filename. */
1051
1052 struct compunit_symtab *
1053 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1054 CORE_ADDR start_addr, enum language language)
1055 {
1056 prepare_for_building (start_addr);
1057
1058 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1059 language);
1060
1061 /* Allocate the compunit symtab now. The caller needs it to allocate
1062 non-primary symtabs. It is also needed by get_macro_table. */
1063 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1064 name);
1065
1066 /* Build the subfile for NAME (the main source file) so that we can record
1067 a pointer to it for later.
1068 IMPORTANT: Do not allocate a struct symtab for NAME here.
1069 It can happen that the debug info provides a different path to NAME than
1070 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1071 that only works if the main_subfile doesn't have a symtab yet. */
1072 start_subfile (name);
1073 /* Save this so that we don't have to go looking for it at the end
1074 of the subfiles list. */
1075 buildsym_compunit->main_subfile = current_subfile;
1076
1077 return buildsym_compunit->compunit_symtab;
1078 }
1079
1080 /* Restart compilation for a symtab.
1081 CUST is the result of end_expandable_symtab.
1082 NAME, START_ADDR are the source file we are resuming with.
1083
1084 This is used when a symtab is built from multiple sources.
1085 The symtab is first built with start_symtab/end_expandable_symtab
1086 and then for each additional piece call restart_symtab/augment_*_symtab.
1087 Note: At the moment there is only augment_type_symtab. */
1088
1089 void
1090 restart_symtab (struct compunit_symtab *cust,
1091 const char *name, CORE_ADDR start_addr)
1092 {
1093 prepare_for_building (start_addr);
1094
1095 buildsym_compunit
1096 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1097 name,
1098 COMPUNIT_DIRNAME (cust),
1099 compunit_language (cust));
1100 buildsym_compunit->compunit_symtab = cust;
1101 }
1102
1103 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1104 matches the main source file's basename. If there is only one, and
1105 if the main source file doesn't have any symbol or line number
1106 information, then copy this file's symtab and line_vector to the
1107 main source file's subfile and discard the other subfile. This can
1108 happen because of a compiler bug or from the user playing games
1109 with #line or from things like a distributed build system that
1110 manipulates the debug info. This can also happen from an innocent
1111 symlink in the paths, we don't canonicalize paths here. */
1112
1113 static void
1114 watch_main_source_file_lossage (void)
1115 {
1116 struct subfile *mainsub, *subfile;
1117
1118 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1119 end_symtab, it can return NULL so there may not be a main subfile. */
1120 if (buildsym_compunit == NULL)
1121 return;
1122
1123 /* Get the main source file. */
1124 mainsub = buildsym_compunit->main_subfile;
1125
1126 /* If the main source file doesn't have any line number or symbol
1127 info, look for an alias in another subfile. */
1128
1129 if (mainsub->line_vector == NULL
1130 && mainsub->symtab == NULL)
1131 {
1132 const char *mainbase = lbasename (mainsub->name);
1133 int nr_matches = 0;
1134 struct subfile *prevsub;
1135 struct subfile *mainsub_alias = NULL;
1136 struct subfile *prev_mainsub_alias = NULL;
1137
1138 prevsub = NULL;
1139 for (subfile = buildsym_compunit->subfiles;
1140 subfile != NULL;
1141 subfile = subfile->next)
1142 {
1143 if (subfile == mainsub)
1144 continue;
1145 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1146 {
1147 ++nr_matches;
1148 mainsub_alias = subfile;
1149 prev_mainsub_alias = prevsub;
1150 }
1151 prevsub = subfile;
1152 }
1153
1154 if (nr_matches == 1)
1155 {
1156 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1157
1158 /* Found a match for the main source file.
1159 Copy its line_vector and symtab to the main subfile
1160 and then discard it. */
1161
1162 mainsub->line_vector = mainsub_alias->line_vector;
1163 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1164 mainsub->symtab = mainsub_alias->symtab;
1165
1166 if (prev_mainsub_alias == NULL)
1167 buildsym_compunit->subfiles = mainsub_alias->next;
1168 else
1169 prev_mainsub_alias->next = mainsub_alias->next;
1170 xfree (mainsub_alias->name);
1171 xfree (mainsub_alias);
1172 }
1173 }
1174 }
1175
1176 /* Reset state after a successful building of a symtab.
1177 This exists because dbxread.c and xcoffread.c can call
1178 start_symtab+end_symtab multiple times after one call to buildsym_init,
1179 and before the scoped_free_pendings destructor is called.
1180 We keep the free_pendings list around for dbx/xcoff sake. */
1181
1182 static void
1183 reset_symtab_globals (void)
1184 {
1185 local_symbols = NULL;
1186 local_using_directives = NULL;
1187 file_symbols = NULL;
1188 global_symbols = NULL;
1189 global_using_directives = NULL;
1190
1191 if (pending_addrmap)
1192 obstack_free (&pending_addrmap_obstack, NULL);
1193 pending_addrmap = NULL;
1194
1195 free_buildsym_compunit ();
1196 }
1197
1198 /* Implementation of the first part of end_symtab. It allows modifying
1199 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1200 If the returned value is NULL there is no blockvector created for
1201 this symtab (you still must call end_symtab_from_static_block).
1202
1203 END_ADDR is the same as for end_symtab: the address of the end of the
1204 file's text.
1205
1206 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1207 expandable.
1208
1209 If REQUIRED is non-zero, then a symtab is created even if it does
1210 not contain any symbols. */
1211
1212 struct block *
1213 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1214 {
1215 struct objfile *objfile = buildsym_compunit->objfile;
1216
1217 /* Finish the lexical context of the last function in the file; pop
1218 the context stack. */
1219
1220 if (context_stack_depth > 0)
1221 {
1222 struct context_stack *cstk = pop_context ();
1223
1224 /* Make a block for the local symbols within. */
1225 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1226 cstk->start_addr, end_addr);
1227
1228 if (context_stack_depth > 0)
1229 {
1230 /* This is said to happen with SCO. The old coffread.c
1231 code simply emptied the context stack, so we do the
1232 same. FIXME: Find out why it is happening. This is not
1233 believed to happen in most cases (even for coffread.c);
1234 it used to be an abort(). */
1235 complaint (_("Context stack not empty in end_symtab"));
1236 context_stack_depth = 0;
1237 }
1238 }
1239
1240 /* Reordered executables may have out of order pending blocks; if
1241 OBJF_REORDERED is true, then sort the pending blocks. */
1242
1243 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1244 {
1245 struct pending_block *pb;
1246
1247 std::vector<block *> barray;
1248
1249 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1250 barray.push_back (pb->block);
1251
1252 /* Sort blocks by start address in descending order. Blocks with the
1253 same start address must remain in the original order to preserve
1254 inline function caller/callee relationships. */
1255 std::stable_sort (barray.begin (), barray.end (),
1256 [] (const block *a, const block *b)
1257 {
1258 return BLOCK_START (a) > BLOCK_START (b);
1259 });
1260
1261 int i = 0;
1262 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1263 pb->block = barray[i++];
1264 }
1265
1266 /* Cleanup any undefined types that have been left hanging around
1267 (this needs to be done before the finish_blocks so that
1268 file_symbols is still good).
1269
1270 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1271 specific, but harmless for other symbol readers, since on gdb
1272 startup or when finished reading stabs, the state is set so these
1273 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1274 we make this cleaner? */
1275
1276 cleanup_undefined_stabs_types (objfile);
1277 finish_global_stabs (objfile);
1278
1279 if (!required
1280 && pending_blocks == NULL
1281 && file_symbols == NULL
1282 && global_symbols == NULL
1283 && !buildsym_compunit->m_have_line_numbers
1284 && buildsym_compunit->m_pending_macros == NULL
1285 && global_using_directives == NULL)
1286 {
1287 /* Ignore symtabs that have no functions with real debugging info. */
1288 return NULL;
1289 }
1290 else
1291 {
1292 /* Define the STATIC_BLOCK. */
1293 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1294 last_source_start_addr, end_addr,
1295 0, expandable);
1296 }
1297 }
1298
1299 /* Subroutine of end_symtab_from_static_block to simplify it.
1300 Handle the "have blockvector" case.
1301 See end_symtab_from_static_block for a description of the arguments. */
1302
1303 static struct compunit_symtab *
1304 end_symtab_with_blockvector (struct block *static_block,
1305 int section, int expandable)
1306 {
1307 struct objfile *objfile = buildsym_compunit->objfile;
1308 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1309 struct symtab *symtab;
1310 struct blockvector *blockvector;
1311 struct subfile *subfile;
1312 CORE_ADDR end_addr;
1313
1314 gdb_assert (static_block != NULL);
1315 gdb_assert (buildsym_compunit != NULL);
1316 gdb_assert (buildsym_compunit->subfiles != NULL);
1317
1318 end_addr = BLOCK_END (static_block);
1319
1320 /* Create the GLOBAL_BLOCK and build the blockvector. */
1321 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1322 last_source_start_addr, end_addr,
1323 1, expandable);
1324 blockvector = make_blockvector ();
1325
1326 /* Read the line table if it has to be read separately.
1327 This is only used by xcoffread.c. */
1328 if (objfile->sf->sym_read_linetable != NULL)
1329 objfile->sf->sym_read_linetable (objfile);
1330
1331 /* Handle the case where the debug info specifies a different path
1332 for the main source file. It can cause us to lose track of its
1333 line number information. */
1334 watch_main_source_file_lossage ();
1335
1336 /* Now create the symtab objects proper, if not already done,
1337 one for each subfile. */
1338
1339 for (subfile = buildsym_compunit->subfiles;
1340 subfile != NULL;
1341 subfile = subfile->next)
1342 {
1343 int linetablesize = 0;
1344
1345 if (subfile->line_vector)
1346 {
1347 linetablesize = sizeof (struct linetable) +
1348 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1349
1350 /* Like the pending blocks, the line table may be
1351 scrambled in reordered executables. Sort it if
1352 OBJF_REORDERED is true. */
1353 if (objfile->flags & OBJF_REORDERED)
1354 qsort (subfile->line_vector->item,
1355 subfile->line_vector->nitems,
1356 sizeof (struct linetable_entry), compare_line_numbers);
1357 }
1358
1359 /* Allocate a symbol table if necessary. */
1360 if (subfile->symtab == NULL)
1361 subfile->symtab = allocate_symtab (cu, subfile->name);
1362 symtab = subfile->symtab;
1363
1364 /* Fill in its components. */
1365
1366 if (subfile->line_vector)
1367 {
1368 /* Reallocate the line table on the symbol obstack. */
1369 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1370 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1371 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1372 linetablesize);
1373 }
1374 else
1375 {
1376 SYMTAB_LINETABLE (symtab) = NULL;
1377 }
1378
1379 /* Use whatever language we have been using for this
1380 subfile, not the one that was deduced in allocate_symtab
1381 from the filename. We already did our own deducing when
1382 we created the subfile, and we may have altered our
1383 opinion of what language it is from things we found in
1384 the symbols. */
1385 symtab->language = subfile->language;
1386 }
1387
1388 /* Make sure the symtab of main_subfile is the first in its list. */
1389 {
1390 struct symtab *main_symtab, *prev_symtab;
1391
1392 main_symtab = buildsym_compunit->main_subfile->symtab;
1393 prev_symtab = NULL;
1394 ALL_COMPUNIT_FILETABS (cu, symtab)
1395 {
1396 if (symtab == main_symtab)
1397 {
1398 if (prev_symtab != NULL)
1399 {
1400 prev_symtab->next = main_symtab->next;
1401 main_symtab->next = COMPUNIT_FILETABS (cu);
1402 COMPUNIT_FILETABS (cu) = main_symtab;
1403 }
1404 break;
1405 }
1406 prev_symtab = symtab;
1407 }
1408 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1409 }
1410
1411 /* Fill out the compunit symtab. */
1412
1413 if (buildsym_compunit->comp_dir != NULL)
1414 {
1415 /* Reallocate the dirname on the symbol obstack. */
1416 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1417 COMPUNIT_DIRNAME (cu)
1418 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1419 comp_dir, strlen (comp_dir));
1420 }
1421
1422 /* Save the debug format string (if any) in the symtab. */
1423 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1424
1425 /* Similarly for the producer. */
1426 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1427
1428 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1429 {
1430 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1431
1432 set_block_compunit_symtab (b, cu);
1433 }
1434
1435 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1436
1437 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1438
1439 /* Default any symbols without a specified symtab to the primary symtab. */
1440 {
1441 int block_i;
1442
1443 /* The main source file's symtab. */
1444 symtab = COMPUNIT_FILETABS (cu);
1445
1446 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1447 {
1448 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1449 struct symbol *sym;
1450 struct dict_iterator iter;
1451
1452 /* Inlined functions may have symbols not in the global or
1453 static symbol lists. */
1454 if (BLOCK_FUNCTION (block) != NULL)
1455 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1456 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1457
1458 /* Note that we only want to fix up symbols from the local
1459 blocks, not blocks coming from included symtabs. That is why
1460 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1461 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1462 if (symbol_symtab (sym) == NULL)
1463 symbol_set_symtab (sym, symtab);
1464 }
1465 }
1466
1467 add_compunit_symtab_to_objfile (cu);
1468
1469 return cu;
1470 }
1471
1472 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1473 as value returned by end_symtab_get_static_block.
1474
1475 SECTION is the same as for end_symtab: the section number
1476 (in objfile->section_offsets) of the blockvector and linetable.
1477
1478 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1479 expandable. */
1480
1481 struct compunit_symtab *
1482 end_symtab_from_static_block (struct block *static_block,
1483 int section, int expandable)
1484 {
1485 struct compunit_symtab *cu;
1486
1487 if (static_block == NULL)
1488 {
1489 /* Handle the "no blockvector" case.
1490 When this happens there is nothing to record, so there's nothing
1491 to do: memory will be freed up later.
1492
1493 Note: We won't be adding a compunit to the objfile's list of
1494 compunits, so there's nothing to unchain. However, since each symtab
1495 is added to the objfile's obstack we can't free that space.
1496 We could do better, but this is believed to be a sufficiently rare
1497 event. */
1498 cu = NULL;
1499 }
1500 else
1501 cu = end_symtab_with_blockvector (static_block, section, expandable);
1502
1503 reset_symtab_globals ();
1504
1505 return cu;
1506 }
1507
1508 /* Finish the symbol definitions for one main source file, close off
1509 all the lexical contexts for that file (creating struct block's for
1510 them), then make the struct symtab for that file and put it in the
1511 list of all such.
1512
1513 END_ADDR is the address of the end of the file's text. SECTION is
1514 the section number (in objfile->section_offsets) of the blockvector
1515 and linetable.
1516
1517 Note that it is possible for end_symtab() to return NULL. In
1518 particular, for the DWARF case at least, it will return NULL when
1519 it finds a compilation unit that has exactly one DIE, a
1520 TAG_compile_unit DIE. This can happen when we link in an object
1521 file that was compiled from an empty source file. Returning NULL
1522 is probably not the correct thing to do, because then gdb will
1523 never know about this empty file (FIXME).
1524
1525 If you need to modify STATIC_BLOCK before it is finalized you should
1526 call end_symtab_get_static_block and end_symtab_from_static_block
1527 yourself. */
1528
1529 struct compunit_symtab *
1530 end_symtab (CORE_ADDR end_addr, int section)
1531 {
1532 struct block *static_block;
1533
1534 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1535 return end_symtab_from_static_block (static_block, section, 0);
1536 }
1537
1538 /* Same as end_symtab except create a symtab that can be later added to. */
1539
1540 struct compunit_symtab *
1541 end_expandable_symtab (CORE_ADDR end_addr, int section)
1542 {
1543 struct block *static_block;
1544
1545 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1546 return end_symtab_from_static_block (static_block, section, 1);
1547 }
1548
1549 /* Subroutine of augment_type_symtab to simplify it.
1550 Attach the main source file's symtab to all symbols in PENDING_LIST that
1551 don't have one. */
1552
1553 static void
1554 set_missing_symtab (struct pending *pending_list,
1555 struct compunit_symtab *cu)
1556 {
1557 struct pending *pending;
1558 int i;
1559
1560 for (pending = pending_list; pending != NULL; pending = pending->next)
1561 {
1562 for (i = 0; i < pending->nsyms; ++i)
1563 {
1564 if (symbol_symtab (pending->symbol[i]) == NULL)
1565 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1566 }
1567 }
1568 }
1569
1570 /* Same as end_symtab, but for the case where we're adding more symbols
1571 to an existing symtab that is known to contain only type information.
1572 This is the case for DWARF4 Type Units. */
1573
1574 void
1575 augment_type_symtab (void)
1576 {
1577 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1578 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1579
1580 if (context_stack_depth > 0)
1581 {
1582 complaint (_("Context stack not empty in augment_type_symtab"));
1583 context_stack_depth = 0;
1584 }
1585 if (pending_blocks != NULL)
1586 complaint (_("Blocks in a type symtab"));
1587 if (buildsym_compunit->m_pending_macros != NULL)
1588 complaint (_("Macro in a type symtab"));
1589 if (buildsym_compunit->m_have_line_numbers)
1590 complaint (_("Line numbers recorded in a type symtab"));
1591
1592 if (file_symbols != NULL)
1593 {
1594 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1595
1596 /* First mark any symbols without a specified symtab as belonging
1597 to the primary symtab. */
1598 set_missing_symtab (file_symbols, cust);
1599
1600 dict_add_pending (BLOCK_DICT (block), file_symbols);
1601 }
1602
1603 if (global_symbols != NULL)
1604 {
1605 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1606
1607 /* First mark any symbols without a specified symtab as belonging
1608 to the primary symtab. */
1609 set_missing_symtab (global_symbols, cust);
1610
1611 dict_add_pending (BLOCK_DICT (block), global_symbols);
1612 }
1613
1614 reset_symtab_globals ();
1615 }
1616
1617 /* Push a context block. Args are an identifying nesting level
1618 (checkable when you pop it), and the starting PC address of this
1619 context. */
1620
1621 struct context_stack *
1622 push_context (int desc, CORE_ADDR valu)
1623 {
1624 struct context_stack *newobj;
1625
1626 if (context_stack_depth == context_stack_size)
1627 {
1628 context_stack_size *= 2;
1629 context_stack = (struct context_stack *)
1630 xrealloc ((char *) context_stack,
1631 (context_stack_size * sizeof (struct context_stack)));
1632 }
1633
1634 newobj = &context_stack[context_stack_depth++];
1635 newobj->depth = desc;
1636 newobj->locals = local_symbols;
1637 newobj->old_blocks = pending_blocks;
1638 newobj->start_addr = valu;
1639 newobj->local_using_directives = local_using_directives;
1640 newobj->name = NULL;
1641
1642 local_symbols = NULL;
1643 local_using_directives = NULL;
1644
1645 return newobj;
1646 }
1647
1648 /* Pop a context block. Returns the address of the context block just
1649 popped. */
1650
1651 struct context_stack *
1652 pop_context (void)
1653 {
1654 gdb_assert (context_stack_depth > 0);
1655 return (&context_stack[--context_stack_depth]);
1656 }
1657
1658 \f
1659
1660 /* Compute a small integer hash code for the given name. */
1661
1662 int
1663 hashname (const char *name)
1664 {
1665 return (hash(name,strlen(name)) % HASHSIZE);
1666 }
1667 \f
1668
1669 void
1670 record_debugformat (const char *format)
1671 {
1672 buildsym_compunit->debugformat = format;
1673 }
1674
1675 void
1676 record_producer (const char *producer)
1677 {
1678 buildsym_compunit->producer = producer;
1679 }
1680
1681 /* Merge the first symbol list SRCLIST into the second symbol list
1682 TARGETLIST by repeated calls to add_symbol_to_list(). This
1683 procedure "frees" each link of SRCLIST by adding it to the
1684 free_pendings list. Caller must set SRCLIST to a null list after
1685 calling this function.
1686
1687 Void return. */
1688
1689 void
1690 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1691 {
1692 int i;
1693
1694 if (!srclist || !*srclist)
1695 return;
1696
1697 /* Merge in elements from current link. */
1698 for (i = 0; i < (*srclist)->nsyms; i++)
1699 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1700
1701 /* Recurse on next. */
1702 merge_symbol_lists (&(*srclist)->next, targetlist);
1703
1704 /* "Free" the current link. */
1705 (*srclist)->next = free_pendings;
1706 free_pendings = (*srclist);
1707 }
1708 \f
1709
1710 /* See buildsym.h. */
1711
1712 void
1713 set_last_source_file (const char *name)
1714 {
1715 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1716 if (buildsym_compunit != nullptr)
1717 buildsym_compunit->set_last_source_file (name);
1718 }
1719
1720 /* See buildsym.h. */
1721
1722 const char *
1723 get_last_source_file (void)
1724 {
1725 if (buildsym_compunit == nullptr)
1726 return nullptr;
1727 return buildsym_compunit->m_last_source_file.get ();
1728 }
1729
1730 \f
1731
1732 /* Initialize anything that needs initializing when starting to read a
1733 fresh piece of a symbol file, e.g. reading in the stuff
1734 corresponding to a psymtab. */
1735
1736 void
1737 buildsym_init (void)
1738 {
1739 subfile_stack = NULL;
1740
1741 pending_addrmap_interesting = 0;
1742
1743 /* Context stack is initially empty. Allocate first one with room
1744 for a few levels; reuse it forever afterward. */
1745 if (context_stack == NULL)
1746 {
1747 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1748 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1749 }
1750
1751 /* Ensure the scoped_free_pendings destructor was called after
1752 the last time. */
1753 gdb_assert (free_pendings == NULL);
1754 gdb_assert (pending_blocks == NULL);
1755 gdb_assert (file_symbols == NULL);
1756 gdb_assert (global_symbols == NULL);
1757 gdb_assert (global_using_directives == NULL);
1758 gdb_assert (pending_addrmap == NULL);
1759 gdb_assert (buildsym_compunit == NULL);
1760 }
1761
1762 /* Initialize anything that needs initializing when a completely new
1763 symbol file is specified (not just adding some symbols from another
1764 file, e.g. a shared library). */
1765
1766 void
1767 buildsym_new_init (void)
1768 {
1769 buildsym_init ();
1770 }
This page took 0.06305 seconds and 5 git commands to generate.