0e7d39ac6c2f69b6ee2b3c1585005ef3a4dbf7f5
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_long);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 if (symbol_read_needs_frame (sym))
663 {
664 if (innermost_block == 0 ||
665 contained_in (block_found,
666 innermost_block))
667 innermost_block = block_found;
668 }
669
670 write_exp_elt_opcode (OP_VAR_VALUE);
671 /* We want to use the selected frame, not
672 another more inner frame which happens to
673 be in the same block. */
674 write_exp_elt_block (NULL);
675 write_exp_elt_sym (sym);
676 write_exp_elt_opcode (OP_VAR_VALUE);
677 }
678 else if ($1.is_a_field_of_this)
679 {
680 /* C++: it hangs off of `this'. Must
681 not inadvertently convert from a method call
682 to data ref. */
683 if (innermost_block == 0 ||
684 contained_in (block_found, innermost_block))
685 innermost_block = block_found;
686 write_exp_elt_opcode (OP_THIS);
687 write_exp_elt_opcode (OP_THIS);
688 write_exp_elt_opcode (STRUCTOP_PTR);
689 write_exp_string ($1.stoken);
690 write_exp_elt_opcode (STRUCTOP_PTR);
691 }
692 else
693 {
694 struct minimal_symbol *msymbol;
695 register char *arg = copy_name ($1.stoken);
696
697 msymbol = lookup_minimal_symbol (arg,
698 (struct objfile *) NULL);
699 if (msymbol != NULL)
700 {
701 write_exp_elt_opcode (OP_LONG);
702 write_exp_elt_type (builtin_type_long);
703 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
704 write_exp_elt_opcode (OP_LONG);
705 write_exp_elt_opcode (UNOP_MEMVAL);
706 if (msymbol -> type == mst_data ||
707 msymbol -> type == mst_bss)
708 write_exp_elt_type (builtin_type_int);
709 else if (msymbol -> type == mst_text)
710 write_exp_elt_type (lookup_function_type (builtin_type_int));
711 else
712 write_exp_elt_type (builtin_type_char);
713 write_exp_elt_opcode (UNOP_MEMVAL);
714 }
715 else if (!have_full_symbols () && !have_partial_symbols ())
716 error ("No symbol table is loaded. Use the \"file\" command.");
717 else
718 error ("No symbol \"%s\" in current context.",
719 copy_name ($1.stoken));
720 }
721 }
722 ;
723
724
725 /* shift/reduce conflict: "typebase ." and the token is '('. (Shows up
726 twice, once where qualified_name is a possibility and once where
727 it is not). */
728 /* shift/reduce conflict: "typebase CONST_KEYWORD ." and the token is '('. */
729 /* shift/reduce conflict: "typebase VOLATILE_KEYWORD ." and the token is
730 '('. */
731 ptype : typebase
732 /* "const" and "volatile" are curently ignored. A type qualifier
733 before the type is currently handled in the typebase rule. */
734 | typebase CONST_KEYWORD
735 | typebase VOLATILE_KEYWORD
736 | typebase abs_decl
737 { $$ = follow_types ($1); }
738 | typebase CONST_KEYWORD abs_decl
739 { $$ = follow_types ($1); }
740 | typebase VOLATILE_KEYWORD abs_decl
741 { $$ = follow_types ($1); }
742 ;
743
744 abs_decl: '*'
745 { push_type (tp_pointer); $$ = 0; }
746 | '*' abs_decl
747 { push_type (tp_pointer); $$ = $2; }
748 | '&'
749 { push_type (tp_reference); $$ = 0; }
750 | '&' abs_decl
751 { push_type (tp_reference); $$ = $2; }
752 | direct_abs_decl
753 ;
754
755 direct_abs_decl: '(' abs_decl ')'
756 { $$ = $2; }
757 | direct_abs_decl array_mod
758 {
759 push_type_int ($2);
760 push_type (tp_array);
761 }
762 | array_mod
763 {
764 push_type_int ($1);
765 push_type (tp_array);
766 $$ = 0;
767 }
768
769 /* shift/reduce conflict. "direct_abs_decl . func_mod", and the token
770 is '('. */
771
772 | direct_abs_decl func_mod
773 { push_type (tp_function); }
774 | func_mod
775 { push_type (tp_function); }
776 ;
777
778 array_mod: '[' ']'
779 { $$ = -1; }
780 | '[' INT ']'
781 { $$ = $2.val; }
782 ;
783
784 func_mod: '(' ')'
785 { $$ = 0; }
786 | '(' nonempty_typelist ')'
787 { free ((PTR)$2); $$ = 0; }
788 ;
789
790 /* shift/reduce conflict: "type '(' typebase COLONCOLON '*' ')' ." and the
791 token is '('. */
792 type : ptype
793 | typebase COLONCOLON '*'
794 { $$ = lookup_member_type (builtin_type_int, $1); }
795 | type '(' typebase COLONCOLON '*' ')'
796 { $$ = lookup_member_type ($1, $3); }
797 | type '(' typebase COLONCOLON '*' ')' '(' ')'
798 { $$ = lookup_member_type
799 (lookup_function_type ($1), $3); }
800 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
801 { $$ = lookup_member_type
802 (lookup_function_type ($1), $3);
803 free ((PTR)$8); }
804 ;
805
806 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
807 : TYPENAME
808 { $$ = $1.type; }
809 | INT_KEYWORD
810 { $$ = builtin_type_int; }
811 | LONG
812 { $$ = builtin_type_long; }
813 | SHORT
814 { $$ = builtin_type_short; }
815 | LONG INT_KEYWORD
816 { $$ = builtin_type_long; }
817 | UNSIGNED LONG INT_KEYWORD
818 { $$ = builtin_type_unsigned_long; }
819 | LONG LONG
820 { $$ = builtin_type_long_long; }
821 | LONG LONG INT_KEYWORD
822 { $$ = builtin_type_long_long; }
823 | UNSIGNED LONG LONG
824 { $$ = builtin_type_unsigned_long_long; }
825 | UNSIGNED LONG LONG INT_KEYWORD
826 { $$ = builtin_type_unsigned_long_long; }
827 | SHORT INT_KEYWORD
828 { $$ = builtin_type_short; }
829 | UNSIGNED SHORT INT_KEYWORD
830 { $$ = builtin_type_unsigned_short; }
831 | STRUCT name
832 { $$ = lookup_struct (copy_name ($2),
833 expression_context_block); }
834 | CLASS name
835 { $$ = lookup_struct (copy_name ($2),
836 expression_context_block); }
837 | UNION name
838 { $$ = lookup_union (copy_name ($2),
839 expression_context_block); }
840 | ENUM name
841 { $$ = lookup_enum (copy_name ($2),
842 expression_context_block); }
843 | UNSIGNED typename
844 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
845 | UNSIGNED
846 { $$ = builtin_type_unsigned_int; }
847 | SIGNED_KEYWORD typename
848 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
849 | SIGNED_KEYWORD
850 { $$ = builtin_type_int; }
851 | TEMPLATE name '<' type '>'
852 { $$ = lookup_template_type(copy_name($2), $4,
853 expression_context_block);
854 }
855 /* "const" and "volatile" are curently ignored. A type qualifier
856 after the type is handled in the ptype rule. I think these could
857 be too. */
858 | CONST_KEYWORD typebase { $$ = $2; }
859 | VOLATILE_KEYWORD typebase { $$ = $2; }
860 ;
861
862 typename: TYPENAME
863 | INT_KEYWORD
864 {
865 $$.stoken.ptr = "int";
866 $$.stoken.length = 3;
867 $$.type = builtin_type_int;
868 }
869 | LONG
870 {
871 $$.stoken.ptr = "long";
872 $$.stoken.length = 4;
873 $$.type = builtin_type_long;
874 }
875 | SHORT
876 {
877 $$.stoken.ptr = "short";
878 $$.stoken.length = 5;
879 $$.type = builtin_type_short;
880 }
881 ;
882
883 nonempty_typelist
884 : type
885 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
886 $<ivec>$[0] = 1; /* Number of types in vector */
887 $$[1] = $1;
888 }
889 | nonempty_typelist ',' type
890 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
891 $$ = (struct type **) realloc ((char *) $1, len);
892 $$[$<ivec>$[0]] = $3;
893 }
894 ;
895
896 name : NAME { $$ = $1.stoken; }
897 | BLOCKNAME { $$ = $1.stoken; }
898 | TYPENAME { $$ = $1.stoken; }
899 | NAME_OR_INT { $$ = $1.stoken; }
900 ;
901
902 name_not_typename : NAME
903 | BLOCKNAME
904 /* These would be useful if name_not_typename was useful, but it is just
905 a fake for "variable", so these cause reduce/reduce conflicts because
906 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
907 =exp) or just an exp. If name_not_typename was ever used in an lvalue
908 context where only a name could occur, this might be useful.
909 | NAME_OR_INT
910 */
911 ;
912
913 %%
914
915 /* Take care of parsing a number (anything that starts with a digit).
916 Set yylval and return the token type; update lexptr.
917 LEN is the number of characters in it. */
918
919 /*** Needs some error checking for the float case ***/
920
921 static int
922 parse_number (p, len, parsed_float, putithere)
923 register char *p;
924 register int len;
925 int parsed_float;
926 YYSTYPE *putithere;
927 {
928 register LONGEST n = 0;
929 register LONGEST prevn = 0;
930 register int i = 0;
931 register int c;
932 register int base = input_radix;
933 int unsigned_p = 0;
934 int long_p = 0;
935 unsigned LONGEST high_bit;
936 struct type *signed_type;
937 struct type *unsigned_type;
938
939 if (parsed_float)
940 {
941 /* It's a float since it contains a point or an exponent. */
942 putithere->dval = atof (p);
943 return FLOAT;
944 }
945
946 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
947 if (p[0] == '0')
948 switch (p[1])
949 {
950 case 'x':
951 case 'X':
952 if (len >= 3)
953 {
954 p += 2;
955 base = 16;
956 len -= 2;
957 }
958 break;
959
960 case 't':
961 case 'T':
962 case 'd':
963 case 'D':
964 if (len >= 3)
965 {
966 p += 2;
967 base = 10;
968 len -= 2;
969 }
970 break;
971
972 default:
973 base = 8;
974 break;
975 }
976
977 while (len-- > 0)
978 {
979 c = *p++;
980 if (c >= 'A' && c <= 'Z')
981 c += 'a' - 'A';
982 if (c != 'l' && c != 'u')
983 n *= base;
984 if (c >= '0' && c <= '9')
985 n += i = c - '0';
986 else
987 {
988 if (base > 10 && c >= 'a' && c <= 'f')
989 n += i = c - 'a' + 10;
990 else if (len == 0 && c == 'l')
991 long_p = 1;
992 else if (len == 0 && c == 'u')
993 unsigned_p = 1;
994 else
995 return ERROR; /* Char not a digit */
996 }
997 if (i >= base)
998 return ERROR; /* Invalid digit in this base */
999
1000 /* Portably test for overflow (only works for nonzero values, so make
1001 a second check for zero). */
1002 if((prevn >= n) && n != 0)
1003 unsigned_p=1; /* Try something unsigned */
1004 /* If range checking enabled, portably test for unsigned overflow. */
1005 if(RANGE_CHECK && n!=0)
1006 {
1007 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1008 range_error("Overflow on numeric constant.");
1009 }
1010 prevn=n;
1011 }
1012
1013 /* If the number is too big to be an int, or it's got an l suffix
1014 then it's a long. Work out if this has to be a long by
1015 shifting right and and seeing if anything remains, and the
1016 target int size is different to the target long size.
1017
1018 In the expression below, we could have tested
1019 (n >> TARGET_INT_BIT)
1020 to see if it was zero,
1021 but too many compilers warn about that, when ints and longs
1022 are the same size. So we shift it twice, with fewer bits
1023 each time, for the same result. */
1024
1025 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1026 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1027 || long_p)
1028 {
1029 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1030 unsigned_type = builtin_type_unsigned_long;
1031 signed_type = builtin_type_long;
1032 }
1033 else
1034 {
1035 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1036 unsigned_type = builtin_type_unsigned_int;
1037 signed_type = builtin_type_int;
1038 }
1039
1040 putithere->typed_val.val = n;
1041
1042 /* If the high bit of the worked out type is set then this number
1043 has to be unsigned. */
1044
1045 if (unsigned_p || (n & high_bit))
1046 {
1047 putithere->typed_val.type = unsigned_type;
1048 }
1049 else
1050 {
1051 putithere->typed_val.type = signed_type;
1052 }
1053
1054 return INT;
1055 }
1056
1057 struct token
1058 {
1059 char *operator;
1060 int token;
1061 enum exp_opcode opcode;
1062 };
1063
1064 static const struct token tokentab3[] =
1065 {
1066 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1067 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1068 };
1069
1070 static const struct token tokentab2[] =
1071 {
1072 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1073 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1074 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1075 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1076 {"%=", ASSIGN_MODIFY, BINOP_REM},
1077 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1078 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1079 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1080 {"++", INCREMENT, BINOP_END},
1081 {"--", DECREMENT, BINOP_END},
1082 {"->", ARROW, BINOP_END},
1083 {"&&", ANDAND, BINOP_END},
1084 {"||", OROR, BINOP_END},
1085 {"::", COLONCOLON, BINOP_END},
1086 {"<<", LSH, BINOP_END},
1087 {">>", RSH, BINOP_END},
1088 {"==", EQUAL, BINOP_END},
1089 {"!=", NOTEQUAL, BINOP_END},
1090 {"<=", LEQ, BINOP_END},
1091 {">=", GEQ, BINOP_END}
1092 };
1093
1094 /* Read one token, getting characters through lexptr. */
1095
1096 static int
1097 yylex ()
1098 {
1099 int c;
1100 int namelen;
1101 unsigned int i;
1102 char *tokstart;
1103 char *tokptr;
1104 int tempbufindex;
1105 static char *tempbuf;
1106 static int tempbufsize;
1107
1108 retry:
1109
1110 tokstart = lexptr;
1111 /* See if it is a special token of length 3. */
1112 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1113 if (STREQN (tokstart, tokentab3[i].operator, 3))
1114 {
1115 lexptr += 3;
1116 yylval.opcode = tokentab3[i].opcode;
1117 return tokentab3[i].token;
1118 }
1119
1120 /* See if it is a special token of length 2. */
1121 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1122 if (STREQN (tokstart, tokentab2[i].operator, 2))
1123 {
1124 lexptr += 2;
1125 yylval.opcode = tokentab2[i].opcode;
1126 return tokentab2[i].token;
1127 }
1128
1129 switch (c = *tokstart)
1130 {
1131 case 0:
1132 return 0;
1133
1134 case ' ':
1135 case '\t':
1136 case '\n':
1137 lexptr++;
1138 goto retry;
1139
1140 case '\'':
1141 /* We either have a character constant ('0' or '\177' for example)
1142 or we have a quoted symbol reference ('foo(int,int)' in C++
1143 for example). */
1144 lexptr++;
1145 c = *lexptr++;
1146 if (c == '\\')
1147 c = parse_escape (&lexptr);
1148
1149 yylval.typed_val.val = c;
1150 yylval.typed_val.type = builtin_type_char;
1151
1152 c = *lexptr++;
1153 if (c != '\'')
1154 {
1155 namelen = skip_quoted (tokstart) - tokstart;
1156 if (namelen > 2)
1157 {
1158 lexptr = tokstart + namelen;
1159 if (lexptr[-1] != '\'')
1160 error ("Unmatched single quote.");
1161 namelen -= 2;
1162 tokstart++;
1163 goto tryname;
1164 }
1165 error ("Invalid character constant.");
1166 }
1167 return INT;
1168
1169 case '(':
1170 paren_depth++;
1171 lexptr++;
1172 return c;
1173
1174 case ')':
1175 if (paren_depth == 0)
1176 return 0;
1177 paren_depth--;
1178 lexptr++;
1179 return c;
1180
1181 case ',':
1182 if (comma_terminates && paren_depth == 0)
1183 return 0;
1184 lexptr++;
1185 return c;
1186
1187 case '.':
1188 /* Might be a floating point number. */
1189 if (lexptr[1] < '0' || lexptr[1] > '9')
1190 goto symbol; /* Nope, must be a symbol. */
1191 /* FALL THRU into number case. */
1192
1193 case '0':
1194 case '1':
1195 case '2':
1196 case '3':
1197 case '4':
1198 case '5':
1199 case '6':
1200 case '7':
1201 case '8':
1202 case '9':
1203 {
1204 /* It's a number. */
1205 int got_dot = 0, got_e = 0, toktype;
1206 register char *p = tokstart;
1207 int hex = input_radix > 10;
1208
1209 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1210 {
1211 p += 2;
1212 hex = 1;
1213 }
1214 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1215 {
1216 p += 2;
1217 hex = 0;
1218 }
1219
1220 for (;; ++p)
1221 {
1222 /* This test includes !hex because 'e' is a valid hex digit
1223 and thus does not indicate a floating point number when
1224 the radix is hex. */
1225 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1226 got_dot = got_e = 1;
1227 /* This test does not include !hex, because a '.' always indicates
1228 a decimal floating point number regardless of the radix. */
1229 else if (!got_dot && *p == '.')
1230 got_dot = 1;
1231 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1232 && (*p == '-' || *p == '+'))
1233 /* This is the sign of the exponent, not the end of the
1234 number. */
1235 continue;
1236 /* We will take any letters or digits. parse_number will
1237 complain if past the radix, or if L or U are not final. */
1238 else if ((*p < '0' || *p > '9')
1239 && ((*p < 'a' || *p > 'z')
1240 && (*p < 'A' || *p > 'Z')))
1241 break;
1242 }
1243 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1244 if (toktype == ERROR)
1245 {
1246 char *err_copy = (char *) alloca (p - tokstart + 1);
1247
1248 memcpy (err_copy, tokstart, p - tokstart);
1249 err_copy[p - tokstart] = 0;
1250 error ("Invalid number \"%s\".", err_copy);
1251 }
1252 lexptr = p;
1253 return toktype;
1254 }
1255
1256 case '+':
1257 case '-':
1258 case '*':
1259 case '/':
1260 case '%':
1261 case '|':
1262 case '&':
1263 case '^':
1264 case '~':
1265 case '!':
1266 case '@':
1267 case '<':
1268 case '>':
1269 case '[':
1270 case ']':
1271 case '?':
1272 case ':':
1273 case '=':
1274 case '{':
1275 case '}':
1276 symbol:
1277 lexptr++;
1278 return c;
1279
1280 case '"':
1281
1282 /* Build the gdb internal form of the input string in tempbuf,
1283 translating any standard C escape forms seen. Note that the
1284 buffer is null byte terminated *only* for the convenience of
1285 debugging gdb itself and printing the buffer contents when
1286 the buffer contains no embedded nulls. Gdb does not depend
1287 upon the buffer being null byte terminated, it uses the length
1288 string instead. This allows gdb to handle C strings (as well
1289 as strings in other languages) with embedded null bytes */
1290
1291 tokptr = ++tokstart;
1292 tempbufindex = 0;
1293
1294 do {
1295 /* Grow the static temp buffer if necessary, including allocating
1296 the first one on demand. */
1297 if (tempbufindex + 1 >= tempbufsize)
1298 {
1299 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1300 }
1301 switch (*tokptr)
1302 {
1303 case '\0':
1304 case '"':
1305 /* Do nothing, loop will terminate. */
1306 break;
1307 case '\\':
1308 tokptr++;
1309 c = parse_escape (&tokptr);
1310 if (c == -1)
1311 {
1312 continue;
1313 }
1314 tempbuf[tempbufindex++] = c;
1315 break;
1316 default:
1317 tempbuf[tempbufindex++] = *tokptr++;
1318 break;
1319 }
1320 } while ((*tokptr != '"') && (*tokptr != '\0'));
1321 if (*tokptr++ != '"')
1322 {
1323 error ("Unterminated string in expression.");
1324 }
1325 tempbuf[tempbufindex] = '\0'; /* See note above */
1326 yylval.sval.ptr = tempbuf;
1327 yylval.sval.length = tempbufindex;
1328 lexptr = tokptr;
1329 return (STRING);
1330 }
1331
1332 if (!(c == '_' || c == '$'
1333 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1334 /* We must have come across a bad character (e.g. ';'). */
1335 error ("Invalid character '%c' in expression.", c);
1336
1337 /* It's a name. See how long it is. */
1338 namelen = 0;
1339 for (c = tokstart[namelen];
1340 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1341 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1342 c = tokstart[++namelen])
1343 ;
1344
1345 /* The token "if" terminates the expression and is NOT
1346 removed from the input stream. */
1347 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1348 {
1349 return 0;
1350 }
1351
1352 lexptr += namelen;
1353
1354 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1355 and $$digits (equivalent to $<-digits> if you could type that).
1356 Make token type LAST, and put the number (the digits) in yylval. */
1357
1358 tryname:
1359 if (*tokstart == '$')
1360 {
1361 register int negate = 0;
1362 c = 1;
1363 /* Double dollar means negate the number and add -1 as well.
1364 Thus $$ alone means -1. */
1365 if (namelen >= 2 && tokstart[1] == '$')
1366 {
1367 negate = 1;
1368 c = 2;
1369 }
1370 if (c == namelen)
1371 {
1372 /* Just dollars (one or two) */
1373 yylval.lval = - negate;
1374 return LAST;
1375 }
1376 /* Is the rest of the token digits? */
1377 for (; c < namelen; c++)
1378 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1379 break;
1380 if (c == namelen)
1381 {
1382 yylval.lval = atoi (tokstart + 1 + negate);
1383 if (negate)
1384 yylval.lval = - yylval.lval;
1385 return LAST;
1386 }
1387 }
1388
1389 /* Handle tokens that refer to machine registers:
1390 $ followed by a register name. */
1391
1392 if (*tokstart == '$') {
1393 for (c = 0; c < NUM_REGS; c++)
1394 if (namelen - 1 == strlen (reg_names[c])
1395 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1396 {
1397 yylval.lval = c;
1398 return REGNAME;
1399 }
1400 for (c = 0; c < num_std_regs; c++)
1401 if (namelen - 1 == strlen (std_regs[c].name)
1402 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1403 {
1404 yylval.lval = std_regs[c].regnum;
1405 return REGNAME;
1406 }
1407 }
1408 /* Catch specific keywords. Should be done with a data structure. */
1409 switch (namelen)
1410 {
1411 case 8:
1412 if (STREQN (tokstart, "unsigned", 8))
1413 return UNSIGNED;
1414 if (current_language->la_language == language_cplus
1415 && STREQN (tokstart, "template", 8))
1416 return TEMPLATE;
1417 if (STREQN (tokstart, "volatile", 8))
1418 return VOLATILE_KEYWORD;
1419 break;
1420 case 6:
1421 if (STREQN (tokstart, "struct", 6))
1422 return STRUCT;
1423 if (STREQN (tokstart, "signed", 6))
1424 return SIGNED_KEYWORD;
1425 if (STREQN (tokstart, "sizeof", 6))
1426 return SIZEOF;
1427 break;
1428 case 5:
1429 if (current_language->la_language == language_cplus
1430 && STREQN (tokstart, "class", 5))
1431 return CLASS;
1432 if (STREQN (tokstart, "union", 5))
1433 return UNION;
1434 if (STREQN (tokstart, "short", 5))
1435 return SHORT;
1436 if (STREQN (tokstart, "const", 5))
1437 return CONST_KEYWORD;
1438 break;
1439 case 4:
1440 if (STREQN (tokstart, "enum", 4))
1441 return ENUM;
1442 if (STREQN (tokstart, "long", 4))
1443 return LONG;
1444 if (current_language->la_language == language_cplus
1445 && STREQN (tokstart, "this", 4))
1446 {
1447 static const char this_name[] =
1448 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1449
1450 if (lookup_symbol (this_name, expression_context_block,
1451 VAR_NAMESPACE, (int *) NULL,
1452 (struct symtab **) NULL))
1453 return THIS;
1454 }
1455 break;
1456 case 3:
1457 if (STREQN (tokstart, "int", 3))
1458 return INT_KEYWORD;
1459 break;
1460 default:
1461 break;
1462 }
1463
1464 yylval.sval.ptr = tokstart;
1465 yylval.sval.length = namelen;
1466
1467 /* Any other names starting in $ are debugger internal variables. */
1468
1469 if (*tokstart == '$')
1470 {
1471 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1472 return VARIABLE;
1473 }
1474
1475 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1476 functions or symtabs. If this is not so, then ...
1477 Use token-type TYPENAME for symbols that happen to be defined
1478 currently as names of types; NAME for other symbols.
1479 The caller is not constrained to care about the distinction. */
1480 {
1481 char *tmp = copy_name (yylval.sval);
1482 struct symbol *sym;
1483 int is_a_field_of_this = 0;
1484 int hextype;
1485
1486 sym = lookup_symbol (tmp, expression_context_block,
1487 VAR_NAMESPACE,
1488 current_language->la_language == language_cplus
1489 ? &is_a_field_of_this : (int *) NULL,
1490 (struct symtab **) NULL);
1491 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1492 lookup_partial_symtab (tmp))
1493 {
1494 yylval.ssym.sym = sym;
1495 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1496 return BLOCKNAME;
1497 }
1498 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1499 {
1500 char *p;
1501 char *namestart;
1502 struct symbol *best_sym;
1503
1504 /* Look ahead to detect nested types. This probably should be
1505 done in the grammar, but trying seemed to introduce a lot
1506 of shift/reduce and reduce/reduce conflicts. It's possible
1507 that it could be done, though. Or perhaps a non-grammar, but
1508 less ad hoc, approach would work well. */
1509
1510 /* Since we do not currently have any way of distinguishing
1511 a nested type from a non-nested one (the stabs don't tell
1512 us whether a type is nested), we just ignore the
1513 containing type. */
1514
1515 p = lexptr;
1516 best_sym = sym;
1517 while (1)
1518 {
1519 /* Skip whitespace. */
1520 while (*p == ' ' || *p == '\t' || *p == '\n')
1521 ++p;
1522 if (*p == ':' && p[1] == ':')
1523 {
1524 /* Skip the `::'. */
1525 p += 2;
1526 /* Skip whitespace. */
1527 while (*p == ' ' || *p == '\t' || *p == '\n')
1528 ++p;
1529 namestart = p;
1530 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1531 || (*p >= 'a' && *p <= 'z')
1532 || (*p >= 'A' && *p <= 'Z'))
1533 ++p;
1534 if (p != namestart)
1535 {
1536 struct symbol *cur_sym;
1537 /* As big as the whole rest of the expression, which is
1538 at least big enough. */
1539 char *tmp = alloca (strlen (namestart));
1540
1541 memcpy (tmp, namestart, p - namestart);
1542 tmp[p - namestart] = '\0';
1543 cur_sym = lookup_symbol (tmp, expression_context_block,
1544 VAR_NAMESPACE, (int *) NULL,
1545 (struct symtab **) NULL);
1546 if (cur_sym)
1547 {
1548 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1549 {
1550 best_sym = cur_sym;
1551 lexptr = p;
1552 }
1553 else
1554 break;
1555 }
1556 else
1557 break;
1558 }
1559 else
1560 break;
1561 }
1562 else
1563 break;
1564 }
1565
1566 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1567 return TYPENAME;
1568 }
1569 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1570 return TYPENAME;
1571
1572 /* Input names that aren't symbols but ARE valid hex numbers,
1573 when the input radix permits them, can be names or numbers
1574 depending on the parse. Note we support radixes > 16 here. */
1575 if (!sym &&
1576 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1577 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1578 {
1579 YYSTYPE newlval; /* Its value is ignored. */
1580 hextype = parse_number (tokstart, namelen, 0, &newlval);
1581 if (hextype == INT)
1582 {
1583 yylval.ssym.sym = sym;
1584 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1585 return NAME_OR_INT;
1586 }
1587 }
1588
1589 /* Any other kind of symbol */
1590 yylval.ssym.sym = sym;
1591 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1592 return NAME;
1593 }
1594 }
1595
1596 void
1597 yyerror (msg)
1598 char *msg;
1599 {
1600 error (msg ? msg : "Invalid syntax in expression.");
1601 }
This page took 0.062318 seconds and 4 git commands to generate.