formatting cleanups
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_int);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 switch (SYMBOL_CLASS (sym))
663 {
664 case LOC_REGISTER:
665 case LOC_ARG:
666 case LOC_REF_ARG:
667 case LOC_REGPARM:
668 case LOC_LOCAL:
669 case LOC_LOCAL_ARG:
670 if (innermost_block == 0 ||
671 contained_in (block_found,
672 innermost_block))
673 innermost_block = block_found;
674 case LOC_UNDEF:
675 case LOC_CONST:
676 case LOC_STATIC:
677 case LOC_TYPEDEF:
678 case LOC_LABEL:
679 case LOC_BLOCK:
680 case LOC_CONST_BYTES:
681 case LOC_OPTIMIZED_OUT:
682
683 /* In this case the expression can
684 be evaluated regardless of what
685 frame we are in, so there is no
686 need to check for the
687 innermost_block. These cases are
688 listed so that gcc -Wall will
689 report types that may not have
690 been considered. */
691
692 break;
693 }
694 write_exp_elt_opcode (OP_VAR_VALUE);
695 /* We want to use the selected frame, not
696 another more inner frame which happens to
697 be in the same block. */
698 write_exp_elt_block (NULL);
699 write_exp_elt_sym (sym);
700 write_exp_elt_opcode (OP_VAR_VALUE);
701 }
702 else if ($1.is_a_field_of_this)
703 {
704 /* C++: it hangs off of `this'. Must
705 not inadvertently convert from a method call
706 to data ref. */
707 if (innermost_block == 0 ||
708 contained_in (block_found, innermost_block))
709 innermost_block = block_found;
710 write_exp_elt_opcode (OP_THIS);
711 write_exp_elt_opcode (OP_THIS);
712 write_exp_elt_opcode (STRUCTOP_PTR);
713 write_exp_string ($1.stoken);
714 write_exp_elt_opcode (STRUCTOP_PTR);
715 }
716 else
717 {
718 struct minimal_symbol *msymbol;
719 register char *arg = copy_name ($1.stoken);
720
721 msymbol = lookup_minimal_symbol (arg,
722 (struct objfile *) NULL);
723 if (msymbol != NULL)
724 {
725 write_exp_elt_opcode (OP_LONG);
726 write_exp_elt_type (builtin_type_int);
727 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
728 write_exp_elt_opcode (OP_LONG);
729 write_exp_elt_opcode (UNOP_MEMVAL);
730 if (msymbol -> type == mst_data ||
731 msymbol -> type == mst_bss)
732 write_exp_elt_type (builtin_type_int);
733 else if (msymbol -> type == mst_text)
734 write_exp_elt_type (lookup_function_type (builtin_type_int));
735 else
736 write_exp_elt_type (builtin_type_char);
737 write_exp_elt_opcode (UNOP_MEMVAL);
738 }
739 else if (!have_full_symbols () && !have_partial_symbols ())
740 error ("No symbol table is loaded. Use the \"file\" command.");
741 else
742 error ("No symbol \"%s\" in current context.",
743 copy_name ($1.stoken));
744 }
745 }
746 ;
747
748
749 ptype : typebase
750 | typebase abs_decl
751 {
752 /* This is where the interesting stuff happens. */
753 int done = 0;
754 int array_size;
755 struct type *follow_type = $1;
756 struct type *range_type;
757
758 while (!done)
759 switch (pop_type ())
760 {
761 case tp_end:
762 done = 1;
763 break;
764 case tp_pointer:
765 follow_type = lookup_pointer_type (follow_type);
766 break;
767 case tp_reference:
768 follow_type = lookup_reference_type (follow_type);
769 break;
770 case tp_array:
771 array_size = pop_type_int ();
772 if (array_size != -1)
773 {
774 range_type =
775 create_range_type ((struct type *) NULL,
776 builtin_type_int, 0,
777 array_size - 1);
778 follow_type =
779 create_array_type ((struct type *) NULL,
780 follow_type, range_type);
781 }
782 else
783 follow_type = lookup_pointer_type (follow_type);
784 break;
785 case tp_function:
786 follow_type = lookup_function_type (follow_type);
787 break;
788 }
789 $$ = follow_type;
790 }
791 ;
792
793 abs_decl: '*'
794 { push_type (tp_pointer); $$ = 0; }
795 | '*' abs_decl
796 { push_type (tp_pointer); $$ = $2; }
797 | '&'
798 { push_type (tp_reference); $$ = 0; }
799 | '&' abs_decl
800 { push_type (tp_reference); $$ = $2; }
801 | direct_abs_decl
802 ;
803
804 direct_abs_decl: '(' abs_decl ')'
805 { $$ = $2; }
806 | direct_abs_decl array_mod
807 {
808 push_type_int ($2);
809 push_type (tp_array);
810 }
811 | array_mod
812 {
813 push_type_int ($1);
814 push_type (tp_array);
815 $$ = 0;
816 }
817 | direct_abs_decl func_mod
818 { push_type (tp_function); }
819 | func_mod
820 { push_type (tp_function); }
821 ;
822
823 array_mod: '[' ']'
824 { $$ = -1; }
825 | '[' INT ']'
826 { $$ = $2.val; }
827 ;
828
829 func_mod: '(' ')'
830 { $$ = 0; }
831 | '(' nonempty_typelist ')'
832 { free ((PTR)$2); $$ = 0; }
833 ;
834
835 type : ptype
836 | typebase COLONCOLON '*'
837 { $$ = lookup_member_type (builtin_type_int, $1); }
838 | type '(' typebase COLONCOLON '*' ')'
839 { $$ = lookup_member_type ($1, $3); }
840 | type '(' typebase COLONCOLON '*' ')' '(' ')'
841 { $$ = lookup_member_type
842 (lookup_function_type ($1), $3); }
843 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
844 { $$ = lookup_member_type
845 (lookup_function_type ($1), $3);
846 free ((PTR)$8); }
847 ;
848
849 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
850 : TYPENAME
851 { $$ = $1.type; }
852 | INT_KEYWORD
853 { $$ = builtin_type_int; }
854 | LONG
855 { $$ = builtin_type_long; }
856 | SHORT
857 { $$ = builtin_type_short; }
858 | LONG INT_KEYWORD
859 { $$ = builtin_type_long; }
860 | UNSIGNED LONG INT_KEYWORD
861 { $$ = builtin_type_unsigned_long; }
862 | LONG LONG
863 { $$ = builtin_type_long_long; }
864 | LONG LONG INT_KEYWORD
865 { $$ = builtin_type_long_long; }
866 | UNSIGNED LONG LONG
867 { $$ = builtin_type_unsigned_long_long; }
868 | UNSIGNED LONG LONG INT_KEYWORD
869 { $$ = builtin_type_unsigned_long_long; }
870 | SHORT INT_KEYWORD
871 { $$ = builtin_type_short; }
872 | UNSIGNED SHORT INT_KEYWORD
873 { $$ = builtin_type_unsigned_short; }
874 | STRUCT name
875 { $$ = lookup_struct (copy_name ($2),
876 expression_context_block); }
877 | CLASS name
878 { $$ = lookup_struct (copy_name ($2),
879 expression_context_block); }
880 | UNION name
881 { $$ = lookup_union (copy_name ($2),
882 expression_context_block); }
883 | ENUM name
884 { $$ = lookup_enum (copy_name ($2),
885 expression_context_block); }
886 | UNSIGNED typename
887 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
888 | UNSIGNED
889 { $$ = builtin_type_unsigned_int; }
890 | SIGNED_KEYWORD typename
891 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
892 | SIGNED_KEYWORD
893 { $$ = builtin_type_int; }
894 | TEMPLATE name '<' type '>'
895 { $$ = lookup_template_type(copy_name($2), $4,
896 expression_context_block);
897 }
898 /* "const" and "volatile" are curently ignored. */
899 | CONST_KEYWORD typebase { $$ = $2; }
900 | VOLATILE_KEYWORD typebase { $$ = $2; }
901 ;
902
903 typename: TYPENAME
904 | INT_KEYWORD
905 {
906 $$.stoken.ptr = "int";
907 $$.stoken.length = 3;
908 $$.type = builtin_type_int;
909 }
910 | LONG
911 {
912 $$.stoken.ptr = "long";
913 $$.stoken.length = 4;
914 $$.type = builtin_type_long;
915 }
916 | SHORT
917 {
918 $$.stoken.ptr = "short";
919 $$.stoken.length = 5;
920 $$.type = builtin_type_short;
921 }
922 ;
923
924 nonempty_typelist
925 : type
926 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
927 $<ivec>$[0] = 1; /* Number of types in vector */
928 $$[1] = $1;
929 }
930 | nonempty_typelist ',' type
931 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
932 $$ = (struct type **) realloc ((char *) $1, len);
933 $$[$<ivec>$[0]] = $3;
934 }
935 ;
936
937 name : NAME { $$ = $1.stoken; }
938 | BLOCKNAME { $$ = $1.stoken; }
939 | TYPENAME { $$ = $1.stoken; }
940 | NAME_OR_INT { $$ = $1.stoken; }
941 ;
942
943 name_not_typename : NAME
944 | BLOCKNAME
945 /* These would be useful if name_not_typename was useful, but it is just
946 a fake for "variable", so these cause reduce/reduce conflicts because
947 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
948 =exp) or just an exp. If name_not_typename was ever used in an lvalue
949 context where only a name could occur, this might be useful.
950 | NAME_OR_INT
951 */
952 ;
953
954 %%
955
956 /* Take care of parsing a number (anything that starts with a digit).
957 Set yylval and return the token type; update lexptr.
958 LEN is the number of characters in it. */
959
960 /*** Needs some error checking for the float case ***/
961
962 static int
963 parse_number (p, len, parsed_float, putithere)
964 register char *p;
965 register int len;
966 int parsed_float;
967 YYSTYPE *putithere;
968 {
969 register LONGEST n = 0;
970 register LONGEST prevn = 0;
971 register int i;
972 register int c;
973 register int base = input_radix;
974 int unsigned_p = 0;
975 int long_p = 0;
976 unsigned LONGEST high_bit;
977 struct type *signed_type;
978 struct type *unsigned_type;
979
980 if (parsed_float)
981 {
982 /* It's a float since it contains a point or an exponent. */
983 putithere->dval = atof (p);
984 return FLOAT;
985 }
986
987 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
988 if (p[0] == '0')
989 switch (p[1])
990 {
991 case 'x':
992 case 'X':
993 if (len >= 3)
994 {
995 p += 2;
996 base = 16;
997 len -= 2;
998 }
999 break;
1000
1001 case 't':
1002 case 'T':
1003 case 'd':
1004 case 'D':
1005 if (len >= 3)
1006 {
1007 p += 2;
1008 base = 10;
1009 len -= 2;
1010 }
1011 break;
1012
1013 default:
1014 base = 8;
1015 break;
1016 }
1017
1018 while (len-- > 0)
1019 {
1020 c = *p++;
1021 if (c >= 'A' && c <= 'Z')
1022 c += 'a' - 'A';
1023 if (c != 'l' && c != 'u')
1024 n *= base;
1025 if (c >= '0' && c <= '9')
1026 n += i = c - '0';
1027 else
1028 {
1029 if (base > 10 && c >= 'a' && c <= 'f')
1030 n += i = c - 'a' + 10;
1031 else if (len == 0 && c == 'l')
1032 long_p = 1;
1033 else if (len == 0 && c == 'u')
1034 unsigned_p = 1;
1035 else
1036 return ERROR; /* Char not a digit */
1037 }
1038 if (i >= base)
1039 return ERROR; /* Invalid digit in this base */
1040
1041 /* Portably test for overflow (only works for nonzero values, so make
1042 a second check for zero). */
1043 if((prevn >= n) && n != 0)
1044 unsigned_p=1; /* Try something unsigned */
1045 /* If range checking enabled, portably test for unsigned overflow. */
1046 if(RANGE_CHECK && n!=0)
1047 {
1048 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1049 range_error("Overflow on numeric constant.");
1050 }
1051 prevn=n;
1052 }
1053
1054 /* If the number is too big to be an int, or it's got an l suffix
1055 then it's a long. Work out if this has to be a long by
1056 shifting right and and seeing if anything remains, and the
1057 target int size is different to the target long size.
1058
1059 In the expression below, we could have tested
1060 (n >> TARGET_INT_BIT)
1061 to see if it was zero,
1062 but too many compilers warn about that, when ints and longs
1063 are the same size. So we shift it twice, with fewer bits
1064 each time, for the same result. */
1065
1066 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1067 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1068 || long_p)
1069 {
1070 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1071 unsigned_type = builtin_type_unsigned_long;
1072 signed_type = builtin_type_long;
1073 }
1074 else
1075 {
1076 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1077 unsigned_type = builtin_type_unsigned_int;
1078 signed_type = builtin_type_int;
1079 }
1080
1081 putithere->typed_val.val = n;
1082
1083 /* If the high bit of the worked out type is set then this number
1084 has to be unsigned. */
1085
1086 if (unsigned_p || (n & high_bit))
1087 {
1088 putithere->typed_val.type = unsigned_type;
1089 }
1090 else
1091 {
1092 putithere->typed_val.type = signed_type;
1093 }
1094
1095 return INT;
1096 }
1097
1098 struct token
1099 {
1100 char *operator;
1101 int token;
1102 enum exp_opcode opcode;
1103 };
1104
1105 static const struct token tokentab3[] =
1106 {
1107 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1108 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1109 };
1110
1111 static const struct token tokentab2[] =
1112 {
1113 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1114 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1115 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1116 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1117 {"%=", ASSIGN_MODIFY, BINOP_REM},
1118 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1119 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1120 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1121 {"++", INCREMENT, BINOP_END},
1122 {"--", DECREMENT, BINOP_END},
1123 {"->", ARROW, BINOP_END},
1124 {"&&", ANDAND, BINOP_END},
1125 {"||", OROR, BINOP_END},
1126 {"::", COLONCOLON, BINOP_END},
1127 {"<<", LSH, BINOP_END},
1128 {">>", RSH, BINOP_END},
1129 {"==", EQUAL, BINOP_END},
1130 {"!=", NOTEQUAL, BINOP_END},
1131 {"<=", LEQ, BINOP_END},
1132 {">=", GEQ, BINOP_END}
1133 };
1134
1135 /* Read one token, getting characters through lexptr. */
1136
1137 static int
1138 yylex ()
1139 {
1140 int c;
1141 int namelen;
1142 unsigned int i;
1143 char *tokstart;
1144 char *tokptr;
1145 int tempbufindex;
1146 static char *tempbuf;
1147 static int tempbufsize;
1148
1149 retry:
1150
1151 tokstart = lexptr;
1152 /* See if it is a special token of length 3. */
1153 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1154 if (STREQN (tokstart, tokentab3[i].operator, 3))
1155 {
1156 lexptr += 3;
1157 yylval.opcode = tokentab3[i].opcode;
1158 return tokentab3[i].token;
1159 }
1160
1161 /* See if it is a special token of length 2. */
1162 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1163 if (STREQN (tokstart, tokentab2[i].operator, 2))
1164 {
1165 lexptr += 2;
1166 yylval.opcode = tokentab2[i].opcode;
1167 return tokentab2[i].token;
1168 }
1169
1170 switch (c = *tokstart)
1171 {
1172 case 0:
1173 return 0;
1174
1175 case ' ':
1176 case '\t':
1177 case '\n':
1178 lexptr++;
1179 goto retry;
1180
1181 case '\'':
1182 /* We either have a character constant ('0' or '\177' for example)
1183 or we have a quoted symbol reference ('foo(int,int)' in C++
1184 for example). */
1185 lexptr++;
1186 c = *lexptr++;
1187 if (c == '\\')
1188 c = parse_escape (&lexptr);
1189
1190 yylval.typed_val.val = c;
1191 yylval.typed_val.type = builtin_type_char;
1192
1193 c = *lexptr++;
1194 if (c != '\'')
1195 {
1196 namelen = skip_quoted (tokstart) - tokstart;
1197 if (namelen > 2)
1198 {
1199 lexptr = tokstart + namelen;
1200 if (lexptr[-1] != '\'')
1201 error ("Unmatched single quote.");
1202 namelen -= 2;
1203 tokstart++;
1204 goto tryname;
1205 }
1206 error ("Invalid character constant.");
1207 }
1208 return INT;
1209
1210 case '(':
1211 paren_depth++;
1212 lexptr++;
1213 return c;
1214
1215 case ')':
1216 if (paren_depth == 0)
1217 return 0;
1218 paren_depth--;
1219 lexptr++;
1220 return c;
1221
1222 case ',':
1223 if (comma_terminates && paren_depth == 0)
1224 return 0;
1225 lexptr++;
1226 return c;
1227
1228 case '.':
1229 /* Might be a floating point number. */
1230 if (lexptr[1] < '0' || lexptr[1] > '9')
1231 goto symbol; /* Nope, must be a symbol. */
1232 /* FALL THRU into number case. */
1233
1234 case '0':
1235 case '1':
1236 case '2':
1237 case '3':
1238 case '4':
1239 case '5':
1240 case '6':
1241 case '7':
1242 case '8':
1243 case '9':
1244 {
1245 /* It's a number. */
1246 int got_dot = 0, got_e = 0, toktype;
1247 register char *p = tokstart;
1248 int hex = input_radix > 10;
1249
1250 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1251 {
1252 p += 2;
1253 hex = 1;
1254 }
1255 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1256 {
1257 p += 2;
1258 hex = 0;
1259 }
1260
1261 for (;; ++p)
1262 {
1263 /* This test includes !hex because 'e' is a valid hex digit
1264 and thus does not indicate a floating point number when
1265 the radix is hex. */
1266 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1267 got_dot = got_e = 1;
1268 /* This test does not include !hex, because a '.' always indicates
1269 a decimal floating point number regardless of the radix. */
1270 else if (!got_dot && *p == '.')
1271 got_dot = 1;
1272 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1273 && (*p == '-' || *p == '+'))
1274 /* This is the sign of the exponent, not the end of the
1275 number. */
1276 continue;
1277 /* We will take any letters or digits. parse_number will
1278 complain if past the radix, or if L or U are not final. */
1279 else if ((*p < '0' || *p > '9')
1280 && ((*p < 'a' || *p > 'z')
1281 && (*p < 'A' || *p > 'Z')))
1282 break;
1283 }
1284 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1285 if (toktype == ERROR)
1286 {
1287 char *err_copy = (char *) alloca (p - tokstart + 1);
1288
1289 memcpy (err_copy, tokstart, p - tokstart);
1290 err_copy[p - tokstart] = 0;
1291 error ("Invalid number \"%s\".", err_copy);
1292 }
1293 lexptr = p;
1294 return toktype;
1295 }
1296
1297 case '+':
1298 case '-':
1299 case '*':
1300 case '/':
1301 case '%':
1302 case '|':
1303 case '&':
1304 case '^':
1305 case '~':
1306 case '!':
1307 case '@':
1308 case '<':
1309 case '>':
1310 case '[':
1311 case ']':
1312 case '?':
1313 case ':':
1314 case '=':
1315 case '{':
1316 case '}':
1317 symbol:
1318 lexptr++;
1319 return c;
1320
1321 case '"':
1322
1323 /* Build the gdb internal form of the input string in tempbuf,
1324 translating any standard C escape forms seen. Note that the
1325 buffer is null byte terminated *only* for the convenience of
1326 debugging gdb itself and printing the buffer contents when
1327 the buffer contains no embedded nulls. Gdb does not depend
1328 upon the buffer being null byte terminated, it uses the length
1329 string instead. This allows gdb to handle C strings (as well
1330 as strings in other languages) with embedded null bytes */
1331
1332 tokptr = ++tokstart;
1333 tempbufindex = 0;
1334
1335 do {
1336 /* Grow the static temp buffer if necessary, including allocating
1337 the first one on demand. */
1338 if (tempbufindex + 1 >= tempbufsize)
1339 {
1340 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1341 }
1342 switch (*tokptr)
1343 {
1344 case '\0':
1345 case '"':
1346 /* Do nothing, loop will terminate. */
1347 break;
1348 case '\\':
1349 tokptr++;
1350 c = parse_escape (&tokptr);
1351 if (c == -1)
1352 {
1353 continue;
1354 }
1355 tempbuf[tempbufindex++] = c;
1356 break;
1357 default:
1358 tempbuf[tempbufindex++] = *tokptr++;
1359 break;
1360 }
1361 } while ((*tokptr != '"') && (*tokptr != '\0'));
1362 if (*tokptr++ != '"')
1363 {
1364 error ("Unterminated string in expression.");
1365 }
1366 tempbuf[tempbufindex] = '\0'; /* See note above */
1367 yylval.sval.ptr = tempbuf;
1368 yylval.sval.length = tempbufindex;
1369 lexptr = tokptr;
1370 return (STRING);
1371 }
1372
1373 if (!(c == '_' || c == '$'
1374 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1375 /* We must have come across a bad character (e.g. ';'). */
1376 error ("Invalid character '%c' in expression.", c);
1377
1378 /* It's a name. See how long it is. */
1379 namelen = 0;
1380 for (c = tokstart[namelen];
1381 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1382 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1383 c = tokstart[++namelen])
1384 ;
1385
1386 /* The token "if" terminates the expression and is NOT
1387 removed from the input stream. */
1388 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1389 {
1390 return 0;
1391 }
1392
1393 lexptr += namelen;
1394
1395 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1396 and $$digits (equivalent to $<-digits> if you could type that).
1397 Make token type LAST, and put the number (the digits) in yylval. */
1398
1399 tryname:
1400 if (*tokstart == '$')
1401 {
1402 register int negate = 0;
1403 c = 1;
1404 /* Double dollar means negate the number and add -1 as well.
1405 Thus $$ alone means -1. */
1406 if (namelen >= 2 && tokstart[1] == '$')
1407 {
1408 negate = 1;
1409 c = 2;
1410 }
1411 if (c == namelen)
1412 {
1413 /* Just dollars (one or two) */
1414 yylval.lval = - negate;
1415 return LAST;
1416 }
1417 /* Is the rest of the token digits? */
1418 for (; c < namelen; c++)
1419 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1420 break;
1421 if (c == namelen)
1422 {
1423 yylval.lval = atoi (tokstart + 1 + negate);
1424 if (negate)
1425 yylval.lval = - yylval.lval;
1426 return LAST;
1427 }
1428 }
1429
1430 /* Handle tokens that refer to machine registers:
1431 $ followed by a register name. */
1432
1433 if (*tokstart == '$') {
1434 for (c = 0; c < NUM_REGS; c++)
1435 if (namelen - 1 == strlen (reg_names[c])
1436 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1437 {
1438 yylval.lval = c;
1439 return REGNAME;
1440 }
1441 for (c = 0; c < num_std_regs; c++)
1442 if (namelen - 1 == strlen (std_regs[c].name)
1443 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1444 {
1445 yylval.lval = std_regs[c].regnum;
1446 return REGNAME;
1447 }
1448 }
1449 /* Catch specific keywords. Should be done with a data structure. */
1450 switch (namelen)
1451 {
1452 case 8:
1453 if (STREQN (tokstart, "unsigned", 8))
1454 return UNSIGNED;
1455 if (current_language->la_language == language_cplus
1456 && STREQN (tokstart, "template", 8))
1457 return TEMPLATE;
1458 if (STREQN (tokstart, "volatile", 8))
1459 return VOLATILE_KEYWORD;
1460 break;
1461 case 6:
1462 if (STREQN (tokstart, "struct", 6))
1463 return STRUCT;
1464 if (STREQN (tokstart, "signed", 6))
1465 return SIGNED_KEYWORD;
1466 if (STREQN (tokstart, "sizeof", 6))
1467 return SIZEOF;
1468 break;
1469 case 5:
1470 if (current_language->la_language == language_cplus
1471 && STREQN (tokstart, "class", 5))
1472 return CLASS;
1473 if (STREQN (tokstart, "union", 5))
1474 return UNION;
1475 if (STREQN (tokstart, "short", 5))
1476 return SHORT;
1477 if (STREQN (tokstart, "const", 5))
1478 return CONST_KEYWORD;
1479 break;
1480 case 4:
1481 if (STREQN (tokstart, "enum", 4))
1482 return ENUM;
1483 if (STREQN (tokstart, "long", 4))
1484 return LONG;
1485 if (current_language->la_language == language_cplus
1486 && STREQN (tokstart, "this", 4))
1487 {
1488 static const char this_name[] =
1489 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1490
1491 if (lookup_symbol (this_name, expression_context_block,
1492 VAR_NAMESPACE, (int *) NULL,
1493 (struct symtab **) NULL))
1494 return THIS;
1495 }
1496 break;
1497 case 3:
1498 if (STREQN (tokstart, "int", 3))
1499 return INT_KEYWORD;
1500 break;
1501 default:
1502 break;
1503 }
1504
1505 yylval.sval.ptr = tokstart;
1506 yylval.sval.length = namelen;
1507
1508 /* Any other names starting in $ are debugger internal variables. */
1509
1510 if (*tokstart == '$')
1511 {
1512 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1513 return VARIABLE;
1514 }
1515
1516 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1517 functions or symtabs. If this is not so, then ...
1518 Use token-type TYPENAME for symbols that happen to be defined
1519 currently as names of types; NAME for other symbols.
1520 The caller is not constrained to care about the distinction. */
1521 {
1522 char *tmp = copy_name (yylval.sval);
1523 struct symbol *sym;
1524 int is_a_field_of_this = 0;
1525 int hextype;
1526
1527 sym = lookup_symbol (tmp, expression_context_block,
1528 VAR_NAMESPACE,
1529 current_language->la_language == language_cplus
1530 ? &is_a_field_of_this : (int *) NULL,
1531 (struct symtab **) NULL);
1532 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1533 lookup_partial_symtab (tmp))
1534 {
1535 yylval.ssym.sym = sym;
1536 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1537 return BLOCKNAME;
1538 }
1539 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1540 {
1541 char *p;
1542 char *namestart;
1543 struct symbol *best_sym;
1544
1545 /* Look ahead to detect nested types. This probably should be
1546 done in the grammar, but trying seemed to introduce a lot
1547 of shift/reduce and reduce/reduce conflicts. It's possible
1548 that it could be done, though. Or perhaps a non-grammar, but
1549 less ad hoc, approach would work well. */
1550
1551 /* Since we do not currently have any way of distinguishing
1552 a nested type from a non-nested one (the stabs don't tell
1553 us whether a type is nested), we just ignore the
1554 containing type. */
1555
1556 p = lexptr;
1557 best_sym = sym;
1558 while (1)
1559 {
1560 /* Skip whitespace. */
1561 while (*p == ' ' || *p == '\t' || *p == '\n')
1562 ++p;
1563 if (*p == ':' && p[1] == ':')
1564 {
1565 /* Skip the `::'. */
1566 p += 2;
1567 /* Skip whitespace. */
1568 while (*p == ' ' || *p == '\t' || *p == '\n')
1569 ++p;
1570 namestart = p;
1571 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1572 || (*p >= 'a' && *p <= 'z')
1573 || (*p >= 'A' && *p <= 'Z'))
1574 ++p;
1575 if (p != namestart)
1576 {
1577 struct symbol *cur_sym;
1578 /* As big as the whole rest of the expression, which is
1579 at least big enough. */
1580 char *tmp = alloca (strlen (namestart));
1581
1582 memcpy (tmp, namestart, p - namestart);
1583 tmp[p - namestart] = '\0';
1584 cur_sym = lookup_symbol (tmp, expression_context_block,
1585 VAR_NAMESPACE, (int *) NULL,
1586 (struct symtab **) NULL);
1587 if (cur_sym)
1588 {
1589 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1590 {
1591 best_sym = cur_sym;
1592 lexptr = p;
1593 }
1594 else
1595 break;
1596 }
1597 else
1598 break;
1599 }
1600 else
1601 break;
1602 }
1603 else
1604 break;
1605 }
1606
1607 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1608 return TYPENAME;
1609 }
1610 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1611 return TYPENAME;
1612
1613 /* Input names that aren't symbols but ARE valid hex numbers,
1614 when the input radix permits them, can be names or numbers
1615 depending on the parse. Note we support radixes > 16 here. */
1616 if (!sym &&
1617 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1618 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1619 {
1620 YYSTYPE newlval; /* Its value is ignored. */
1621 hextype = parse_number (tokstart, namelen, 0, &newlval);
1622 if (hextype == INT)
1623 {
1624 yylval.ssym.sym = sym;
1625 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1626 return NAME_OR_INT;
1627 }
1628 }
1629
1630 /* Any other kind of symbol */
1631 yylval.ssym.sym = sym;
1632 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1633 return NAME;
1634 }
1635 }
1636
1637 void
1638 yyerror (msg)
1639 char *msg;
1640 {
1641 error (msg ? msg : "Invalid syntax in expression.");
1642 }
This page took 0.064723 seconds and 4 git commands to generate.