933007ed33fe6c19112fc1b758b599c29cb665a6
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, 0, NULL);
550 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
551 error ("No function \"%s\" in specified context.",
552 copy_name ($3));
553 $$ = SYMBOL_BLOCK_VALUE (tem); }
554 ;
555
556 variable: block COLONCOLON name
557 { struct symbol *sym;
558 sym = lookup_symbol (copy_name ($3), $1,
559 VAR_NAMESPACE, 0, NULL);
560 if (sym == 0)
561 error ("No symbol \"%s\" in specified context.",
562 copy_name ($3));
563
564 write_exp_elt_opcode (OP_VAR_VALUE);
565 write_exp_elt_sym (sym);
566 write_exp_elt_opcode (OP_VAR_VALUE); }
567 ;
568
569 qualified_name: typebase COLONCOLON name
570 {
571 struct type *type = $1;
572 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
573 && TYPE_CODE (type) != TYPE_CODE_UNION)
574 error ("`%s' is not defined as an aggregate type.",
575 TYPE_NAME (type));
576
577 write_exp_elt_opcode (OP_SCOPE);
578 write_exp_elt_type (type);
579 write_exp_string ($3);
580 write_exp_elt_opcode (OP_SCOPE);
581 }
582 | typebase COLONCOLON '~' name
583 {
584 struct type *type = $1;
585 struct stoken tmp_token;
586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
587 && TYPE_CODE (type) != TYPE_CODE_UNION)
588 error ("`%s' is not defined as an aggregate type.",
589 TYPE_NAME (type));
590
591 if (!STREQ (type_name_no_tag (type), $4.ptr))
592 error ("invalid destructor `%s::~%s'",
593 type_name_no_tag (type), $4.ptr);
594
595 tmp_token.ptr = (char*) alloca ($4.length + 2);
596 tmp_token.length = $4.length + 1;
597 tmp_token.ptr[0] = '~';
598 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
599 tmp_token.ptr[tmp_token.length] = 0;
600 write_exp_elt_opcode (OP_SCOPE);
601 write_exp_elt_type (type);
602 write_exp_string (tmp_token);
603 write_exp_elt_opcode (OP_SCOPE);
604 }
605 ;
606
607 variable: qualified_name
608 | COLONCOLON name
609 {
610 char *name = copy_name ($2);
611 struct symbol *sym;
612 struct minimal_symbol *msymbol;
613
614 sym =
615 lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
616 if (sym)
617 {
618 write_exp_elt_opcode (OP_VAR_VALUE);
619 write_exp_elt_sym (sym);
620 write_exp_elt_opcode (OP_VAR_VALUE);
621 break;
622 }
623
624 msymbol = lookup_minimal_symbol (name,
625 (struct objfile *) NULL);
626 if (msymbol != NULL)
627 {
628 write_exp_elt_opcode (OP_LONG);
629 write_exp_elt_type (builtin_type_int);
630 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
631 write_exp_elt_opcode (OP_LONG);
632 write_exp_elt_opcode (UNOP_MEMVAL);
633 if (msymbol -> type == mst_data ||
634 msymbol -> type == mst_bss)
635 write_exp_elt_type (builtin_type_int);
636 else if (msymbol -> type == mst_text)
637 write_exp_elt_type (lookup_function_type (builtin_type_int));
638 else
639 write_exp_elt_type (builtin_type_char);
640 write_exp_elt_opcode (UNOP_MEMVAL);
641 }
642 else
643 if (!have_full_symbols () && !have_partial_symbols ())
644 error ("No symbol table is loaded. Use the \"file\" command.");
645 else
646 error ("No symbol \"%s\" in current context.", name);
647 }
648 ;
649
650 variable: name_not_typename
651 { struct symbol *sym = $1.sym;
652
653 if (sym)
654 {
655 switch (SYMBOL_CLASS (sym))
656 {
657 case LOC_REGISTER:
658 case LOC_ARG:
659 case LOC_REF_ARG:
660 case LOC_REGPARM:
661 case LOC_LOCAL:
662 case LOC_LOCAL_ARG:
663 if (innermost_block == 0 ||
664 contained_in (block_found,
665 innermost_block))
666 innermost_block = block_found;
667 case LOC_UNDEF:
668 case LOC_CONST:
669 case LOC_STATIC:
670 case LOC_TYPEDEF:
671 case LOC_LABEL:
672 case LOC_BLOCK:
673 case LOC_CONST_BYTES:
674
675 /* In this case the expression can
676 be evaluated regardless of what
677 frame we are in, so there is no
678 need to check for the
679 innermost_block. These cases are
680 listed so that gcc -Wall will
681 report types that may not have
682 been considered. */
683
684 break;
685 }
686 write_exp_elt_opcode (OP_VAR_VALUE);
687 write_exp_elt_sym (sym);
688 write_exp_elt_opcode (OP_VAR_VALUE);
689 }
690 else if ($1.is_a_field_of_this)
691 {
692 /* C++: it hangs off of `this'. Must
693 not inadvertently convert from a method call
694 to data ref. */
695 if (innermost_block == 0 ||
696 contained_in (block_found, innermost_block))
697 innermost_block = block_found;
698 write_exp_elt_opcode (OP_THIS);
699 write_exp_elt_opcode (OP_THIS);
700 write_exp_elt_opcode (STRUCTOP_PTR);
701 write_exp_string ($1.stoken);
702 write_exp_elt_opcode (STRUCTOP_PTR);
703 }
704 else
705 {
706 struct minimal_symbol *msymbol;
707 register char *arg = copy_name ($1.stoken);
708
709 msymbol = lookup_minimal_symbol (arg,
710 (struct objfile *) NULL);
711 if (msymbol != NULL)
712 {
713 write_exp_elt_opcode (OP_LONG);
714 write_exp_elt_type (builtin_type_int);
715 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
716 write_exp_elt_opcode (OP_LONG);
717 write_exp_elt_opcode (UNOP_MEMVAL);
718 if (msymbol -> type == mst_data ||
719 msymbol -> type == mst_bss)
720 write_exp_elt_type (builtin_type_int);
721 else if (msymbol -> type == mst_text)
722 write_exp_elt_type (lookup_function_type (builtin_type_int));
723 else
724 write_exp_elt_type (builtin_type_char);
725 write_exp_elt_opcode (UNOP_MEMVAL);
726 }
727 else if (!have_full_symbols () && !have_partial_symbols ())
728 error ("No symbol table is loaded. Use the \"file\" command.");
729 else
730 error ("No symbol \"%s\" in current context.",
731 copy_name ($1.stoken));
732 }
733 }
734 ;
735
736
737 ptype : typebase
738 | typebase abs_decl
739 {
740 /* This is where the interesting stuff happens. */
741 int done = 0;
742 int array_size;
743 struct type *follow_type = $1;
744 struct type *range_type;
745
746 while (!done)
747 switch (pop_type ())
748 {
749 case tp_end:
750 done = 1;
751 break;
752 case tp_pointer:
753 follow_type = lookup_pointer_type (follow_type);
754 break;
755 case tp_reference:
756 follow_type = lookup_reference_type (follow_type);
757 break;
758 case tp_array:
759 array_size = pop_type_int ();
760 if (array_size != -1)
761 {
762 range_type =
763 create_range_type ((struct type *) NULL,
764 builtin_type_int, 0,
765 array_size - 1);
766 follow_type =
767 create_array_type ((struct type *) NULL,
768 follow_type, range_type);
769 }
770 else
771 follow_type = lookup_pointer_type (follow_type);
772 break;
773 case tp_function:
774 follow_type = lookup_function_type (follow_type);
775 break;
776 }
777 $$ = follow_type;
778 }
779 ;
780
781 abs_decl: '*'
782 { push_type (tp_pointer); $$ = 0; }
783 | '*' abs_decl
784 { push_type (tp_pointer); $$ = $2; }
785 | '&'
786 { push_type (tp_reference); $$ = 0; }
787 | '&' abs_decl
788 { push_type (tp_reference); $$ = $2; }
789 | direct_abs_decl
790 ;
791
792 direct_abs_decl: '(' abs_decl ')'
793 { $$ = $2; }
794 | direct_abs_decl array_mod
795 {
796 push_type_int ($2);
797 push_type (tp_array);
798 }
799 | array_mod
800 {
801 push_type_int ($1);
802 push_type (tp_array);
803 $$ = 0;
804 }
805 | direct_abs_decl func_mod
806 { push_type (tp_function); }
807 | func_mod
808 { push_type (tp_function); }
809 ;
810
811 array_mod: '[' ']'
812 { $$ = -1; }
813 | '[' INT ']'
814 { $$ = $2.val; }
815 ;
816
817 func_mod: '(' ')'
818 { $$ = 0; }
819 | '(' nonempty_typelist ')'
820 { free ((PTR)$2); $$ = 0; }
821 ;
822
823 type : ptype
824 | typebase COLONCOLON '*'
825 { $$ = lookup_member_type (builtin_type_int, $1); }
826 | type '(' typebase COLONCOLON '*' ')'
827 { $$ = lookup_member_type ($1, $3); }
828 | type '(' typebase COLONCOLON '*' ')' '(' ')'
829 { $$ = lookup_member_type
830 (lookup_function_type ($1), $3); }
831 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
832 { $$ = lookup_member_type
833 (lookup_function_type ($1), $3);
834 free ((PTR)$8); }
835 ;
836
837 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
838 : TYPENAME
839 { $$ = $1.type; }
840 | INT_KEYWORD
841 { $$ = builtin_type_int; }
842 | LONG
843 { $$ = builtin_type_long; }
844 | SHORT
845 { $$ = builtin_type_short; }
846 | LONG INT_KEYWORD
847 { $$ = builtin_type_long; }
848 | UNSIGNED LONG INT_KEYWORD
849 { $$ = builtin_type_unsigned_long; }
850 | LONG LONG
851 { $$ = builtin_type_long_long; }
852 | LONG LONG INT_KEYWORD
853 { $$ = builtin_type_long_long; }
854 | UNSIGNED LONG LONG
855 { $$ = builtin_type_unsigned_long_long; }
856 | UNSIGNED LONG LONG INT_KEYWORD
857 { $$ = builtin_type_unsigned_long_long; }
858 | SHORT INT_KEYWORD
859 { $$ = builtin_type_short; }
860 | UNSIGNED SHORT INT_KEYWORD
861 { $$ = builtin_type_unsigned_short; }
862 | STRUCT name
863 { $$ = lookup_struct (copy_name ($2),
864 expression_context_block); }
865 | CLASS name
866 { $$ = lookup_struct (copy_name ($2),
867 expression_context_block); }
868 | UNION name
869 { $$ = lookup_union (copy_name ($2),
870 expression_context_block); }
871 | ENUM name
872 { $$ = lookup_enum (copy_name ($2),
873 expression_context_block); }
874 | UNSIGNED typename
875 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
876 | UNSIGNED
877 { $$ = builtin_type_unsigned_int; }
878 | SIGNED_KEYWORD typename
879 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
880 | SIGNED_KEYWORD
881 { $$ = builtin_type_int; }
882 | TEMPLATE name '<' type '>'
883 { $$ = lookup_template_type(copy_name($2), $4,
884 expression_context_block);
885 }
886 /* "const" and "volatile" are curently ignored. */
887 | CONST_KEYWORD typebase { $$ = $2; }
888 | VOLATILE_KEYWORD typebase { $$ = $2; }
889 ;
890
891 typename: TYPENAME
892 | INT_KEYWORD
893 {
894 $$.stoken.ptr = "int";
895 $$.stoken.length = 3;
896 $$.type = builtin_type_int;
897 }
898 | LONG
899 {
900 $$.stoken.ptr = "long";
901 $$.stoken.length = 4;
902 $$.type = builtin_type_long;
903 }
904 | SHORT
905 {
906 $$.stoken.ptr = "short";
907 $$.stoken.length = 5;
908 $$.type = builtin_type_short;
909 }
910 ;
911
912 nonempty_typelist
913 : type
914 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
915 $<ivec>$[0] = 1; /* Number of types in vector */
916 $$[1] = $1;
917 }
918 | nonempty_typelist ',' type
919 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
920 $$ = (struct type **) realloc ((char *) $1, len);
921 $$[$<ivec>$[0]] = $3;
922 }
923 ;
924
925 name : NAME { $$ = $1.stoken; }
926 | BLOCKNAME { $$ = $1.stoken; }
927 | TYPENAME { $$ = $1.stoken; }
928 | NAME_OR_INT { $$ = $1.stoken; }
929 ;
930
931 name_not_typename : NAME
932 | BLOCKNAME
933 /* These would be useful if name_not_typename was useful, but it is just
934 a fake for "variable", so these cause reduce/reduce conflicts because
935 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
936 =exp) or just an exp. If name_not_typename was ever used in an lvalue
937 context where only a name could occur, this might be useful.
938 | NAME_OR_INT
939 */
940 ;
941
942 %%
943
944 /* Take care of parsing a number (anything that starts with a digit).
945 Set yylval and return the token type; update lexptr.
946 LEN is the number of characters in it. */
947
948 /*** Needs some error checking for the float case ***/
949
950 static int
951 parse_number (p, len, parsed_float, putithere)
952 register char *p;
953 register int len;
954 int parsed_float;
955 YYSTYPE *putithere;
956 {
957 register LONGEST n = 0;
958 register LONGEST prevn = 0;
959 register int i;
960 register int c;
961 register int base = input_radix;
962 int unsigned_p = 0;
963 int long_p = 0;
964 unsigned LONGEST high_bit;
965 struct type *signed_type;
966 struct type *unsigned_type;
967
968 if (parsed_float)
969 {
970 /* It's a float since it contains a point or an exponent. */
971 putithere->dval = atof (p);
972 return FLOAT;
973 }
974
975 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
976 if (p[0] == '0')
977 switch (p[1])
978 {
979 case 'x':
980 case 'X':
981 if (len >= 3)
982 {
983 p += 2;
984 base = 16;
985 len -= 2;
986 }
987 break;
988
989 case 't':
990 case 'T':
991 case 'd':
992 case 'D':
993 if (len >= 3)
994 {
995 p += 2;
996 base = 10;
997 len -= 2;
998 }
999 break;
1000
1001 default:
1002 base = 8;
1003 break;
1004 }
1005
1006 while (len-- > 0)
1007 {
1008 c = *p++;
1009 if (c >= 'A' && c <= 'Z')
1010 c += 'a' - 'A';
1011 if (c != 'l' && c != 'u')
1012 n *= base;
1013 if (c >= '0' && c <= '9')
1014 n += i = c - '0';
1015 else
1016 {
1017 if (base > 10 && c >= 'a' && c <= 'f')
1018 n += i = c - 'a' + 10;
1019 else if (len == 0 && c == 'l')
1020 long_p = 1;
1021 else if (len == 0 && c == 'u')
1022 unsigned_p = 1;
1023 else
1024 return ERROR; /* Char not a digit */
1025 }
1026 if (i >= base)
1027 return ERROR; /* Invalid digit in this base */
1028
1029 /* Portably test for overflow (only works for nonzero values, so make
1030 a second check for zero). */
1031 if((prevn >= n) && n != 0)
1032 unsigned_p=1; /* Try something unsigned */
1033 /* If range checking enabled, portably test for unsigned overflow. */
1034 if(RANGE_CHECK && n!=0)
1035 {
1036 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1037 range_error("Overflow on numeric constant.");
1038 }
1039 prevn=n;
1040 }
1041
1042 /* If the number is too big to be an int, or it's got an l suffix
1043 then it's a long. Work out if this has to be a long by
1044 shifting right and and seeing if anything remains, and the
1045 target int size is different to the target long size.
1046
1047 In the expression below, we could have tested
1048 (n >> TARGET_INT_BIT)
1049 to see if it was zero,
1050 but too many compilers warn about that, when ints and longs
1051 are the same size. So we shift it twice, with fewer bits
1052 each time, for the same result. */
1053
1054 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1055 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1056 || long_p)
1057 {
1058 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1059 unsigned_type = builtin_type_unsigned_long;
1060 signed_type = builtin_type_long;
1061 }
1062 else
1063 {
1064 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1065 unsigned_type = builtin_type_unsigned_int;
1066 signed_type = builtin_type_int;
1067 }
1068
1069 putithere->typed_val.val = n;
1070
1071 /* If the high bit of the worked out type is set then this number
1072 has to be unsigned. */
1073
1074 if (unsigned_p || (n & high_bit))
1075 {
1076 putithere->typed_val.type = unsigned_type;
1077 }
1078 else
1079 {
1080 putithere->typed_val.type = signed_type;
1081 }
1082
1083 return INT;
1084 }
1085
1086 struct token
1087 {
1088 char *operator;
1089 int token;
1090 enum exp_opcode opcode;
1091 };
1092
1093 static const struct token tokentab3[] =
1094 {
1095 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1096 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1097 };
1098
1099 static const struct token tokentab2[] =
1100 {
1101 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1102 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1103 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1104 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1105 {"%=", ASSIGN_MODIFY, BINOP_REM},
1106 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1107 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1108 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1109 {"++", INCREMENT, BINOP_END},
1110 {"--", DECREMENT, BINOP_END},
1111 {"->", ARROW, BINOP_END},
1112 {"&&", ANDAND, BINOP_END},
1113 {"||", OROR, BINOP_END},
1114 {"::", COLONCOLON, BINOP_END},
1115 {"<<", LSH, BINOP_END},
1116 {">>", RSH, BINOP_END},
1117 {"==", EQUAL, BINOP_END},
1118 {"!=", NOTEQUAL, BINOP_END},
1119 {"<=", LEQ, BINOP_END},
1120 {">=", GEQ, BINOP_END}
1121 };
1122
1123 /* Read one token, getting characters through lexptr. */
1124
1125 static int
1126 yylex ()
1127 {
1128 int c;
1129 int namelen;
1130 unsigned int i;
1131 char *tokstart;
1132 char *tokptr;
1133 int tempbufindex;
1134 static char *tempbuf;
1135 static int tempbufsize;
1136
1137 retry:
1138
1139 tokstart = lexptr;
1140 /* See if it is a special token of length 3. */
1141 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1142 if (STREQN (tokstart, tokentab3[i].operator, 3))
1143 {
1144 lexptr += 3;
1145 yylval.opcode = tokentab3[i].opcode;
1146 return tokentab3[i].token;
1147 }
1148
1149 /* See if it is a special token of length 2. */
1150 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1151 if (STREQN (tokstart, tokentab2[i].operator, 2))
1152 {
1153 lexptr += 2;
1154 yylval.opcode = tokentab2[i].opcode;
1155 return tokentab2[i].token;
1156 }
1157
1158 switch (c = *tokstart)
1159 {
1160 case 0:
1161 return 0;
1162
1163 case ' ':
1164 case '\t':
1165 case '\n':
1166 lexptr++;
1167 goto retry;
1168
1169 case '\'':
1170 /* We either have a character constant ('0' or '\177' for example)
1171 or we have a quoted symbol reference ('foo(int,int)' in C++
1172 for example). */
1173 lexptr++;
1174 c = *lexptr++;
1175 if (c == '\\')
1176 c = parse_escape (&lexptr);
1177
1178 yylval.typed_val.val = c;
1179 yylval.typed_val.type = builtin_type_char;
1180
1181 c = *lexptr++;
1182 if (c != '\'')
1183 {
1184 namelen = skip_quoted (tokstart) - tokstart;
1185 if (namelen > 2)
1186 {
1187 lexptr = tokstart + namelen;
1188 namelen -= 2;
1189 tokstart++;
1190 goto tryname;
1191 }
1192 error ("Invalid character constant.");
1193 }
1194 return INT;
1195
1196 case '(':
1197 paren_depth++;
1198 lexptr++;
1199 return c;
1200
1201 case ')':
1202 if (paren_depth == 0)
1203 return 0;
1204 paren_depth--;
1205 lexptr++;
1206 return c;
1207
1208 case ',':
1209 if (comma_terminates && paren_depth == 0)
1210 return 0;
1211 lexptr++;
1212 return c;
1213
1214 case '.':
1215 /* Might be a floating point number. */
1216 if (lexptr[1] < '0' || lexptr[1] > '9')
1217 goto symbol; /* Nope, must be a symbol. */
1218 /* FALL THRU into number case. */
1219
1220 case '0':
1221 case '1':
1222 case '2':
1223 case '3':
1224 case '4':
1225 case '5':
1226 case '6':
1227 case '7':
1228 case '8':
1229 case '9':
1230 {
1231 /* It's a number. */
1232 int got_dot = 0, got_e = 0, toktype;
1233 register char *p = tokstart;
1234 int hex = input_radix > 10;
1235
1236 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1237 {
1238 p += 2;
1239 hex = 1;
1240 }
1241 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1242 {
1243 p += 2;
1244 hex = 0;
1245 }
1246
1247 for (;; ++p)
1248 {
1249 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1250 got_dot = got_e = 1;
1251 else if (!hex && !got_dot && *p == '.')
1252 got_dot = 1;
1253 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1254 && (*p == '-' || *p == '+'))
1255 /* This is the sign of the exponent, not the end of the
1256 number. */
1257 continue;
1258 /* We will take any letters or digits. parse_number will
1259 complain if past the radix, or if L or U are not final. */
1260 else if ((*p < '0' || *p > '9')
1261 && ((*p < 'a' || *p > 'z')
1262 && (*p < 'A' || *p > 'Z')))
1263 break;
1264 }
1265 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1266 if (toktype == ERROR)
1267 {
1268 char *err_copy = (char *) alloca (p - tokstart + 1);
1269
1270 memcpy (err_copy, tokstart, p - tokstart);
1271 err_copy[p - tokstart] = 0;
1272 error ("Invalid number \"%s\".", err_copy);
1273 }
1274 lexptr = p;
1275 return toktype;
1276 }
1277
1278 case '+':
1279 case '-':
1280 case '*':
1281 case '/':
1282 case '%':
1283 case '|':
1284 case '&':
1285 case '^':
1286 case '~':
1287 case '!':
1288 case '@':
1289 case '<':
1290 case '>':
1291 case '[':
1292 case ']':
1293 case '?':
1294 case ':':
1295 case '=':
1296 case '{':
1297 case '}':
1298 symbol:
1299 lexptr++;
1300 return c;
1301
1302 case '"':
1303
1304 /* Build the gdb internal form of the input string in tempbuf,
1305 translating any standard C escape forms seen. Note that the
1306 buffer is null byte terminated *only* for the convenience of
1307 debugging gdb itself and printing the buffer contents when
1308 the buffer contains no embedded nulls. Gdb does not depend
1309 upon the buffer being null byte terminated, it uses the length
1310 string instead. This allows gdb to handle C strings (as well
1311 as strings in other languages) with embedded null bytes */
1312
1313 tokptr = ++tokstart;
1314 tempbufindex = 0;
1315
1316 do {
1317 /* Grow the static temp buffer if necessary, including allocating
1318 the first one on demand. */
1319 if (tempbufindex + 1 >= tempbufsize)
1320 {
1321 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1322 }
1323 switch (*tokptr)
1324 {
1325 case '\0':
1326 case '"':
1327 /* Do nothing, loop will terminate. */
1328 break;
1329 case '\\':
1330 tokptr++;
1331 c = parse_escape (&tokptr);
1332 if (c == -1)
1333 {
1334 continue;
1335 }
1336 tempbuf[tempbufindex++] = c;
1337 break;
1338 default:
1339 tempbuf[tempbufindex++] = *tokptr++;
1340 break;
1341 }
1342 } while ((*tokptr != '"') && (*tokptr != '\0'));
1343 if (*tokptr++ != '"')
1344 {
1345 error ("Unterminated string in expression.");
1346 }
1347 tempbuf[tempbufindex] = '\0'; /* See note above */
1348 yylval.sval.ptr = tempbuf;
1349 yylval.sval.length = tempbufindex;
1350 lexptr = tokptr;
1351 return (STRING);
1352 }
1353
1354 if (!(c == '_' || c == '$'
1355 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1356 /* We must have come across a bad character (e.g. ';'). */
1357 error ("Invalid character '%c' in expression.", c);
1358
1359 /* It's a name. See how long it is. */
1360 namelen = 0;
1361 for (c = tokstart[namelen];
1362 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1363 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1364 c = tokstart[++namelen])
1365 ;
1366
1367 /* The token "if" terminates the expression and is NOT
1368 removed from the input stream. */
1369 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1370 {
1371 return 0;
1372 }
1373
1374 lexptr += namelen;
1375
1376 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1377 and $$digits (equivalent to $<-digits> if you could type that).
1378 Make token type LAST, and put the number (the digits) in yylval. */
1379
1380 tryname:
1381 if (*tokstart == '$')
1382 {
1383 register int negate = 0;
1384 c = 1;
1385 /* Double dollar means negate the number and add -1 as well.
1386 Thus $$ alone means -1. */
1387 if (namelen >= 2 && tokstart[1] == '$')
1388 {
1389 negate = 1;
1390 c = 2;
1391 }
1392 if (c == namelen)
1393 {
1394 /* Just dollars (one or two) */
1395 yylval.lval = - negate;
1396 return LAST;
1397 }
1398 /* Is the rest of the token digits? */
1399 for (; c < namelen; c++)
1400 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1401 break;
1402 if (c == namelen)
1403 {
1404 yylval.lval = atoi (tokstart + 1 + negate);
1405 if (negate)
1406 yylval.lval = - yylval.lval;
1407 return LAST;
1408 }
1409 }
1410
1411 /* Handle tokens that refer to machine registers:
1412 $ followed by a register name. */
1413
1414 if (*tokstart == '$') {
1415 for (c = 0; c < NUM_REGS; c++)
1416 if (namelen - 1 == strlen (reg_names[c])
1417 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1418 {
1419 yylval.lval = c;
1420 return REGNAME;
1421 }
1422 for (c = 0; c < num_std_regs; c++)
1423 if (namelen - 1 == strlen (std_regs[c].name)
1424 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1425 {
1426 yylval.lval = std_regs[c].regnum;
1427 return REGNAME;
1428 }
1429 }
1430 /* Catch specific keywords. Should be done with a data structure. */
1431 switch (namelen)
1432 {
1433 case 8:
1434 if (STREQN (tokstart, "unsigned", 8))
1435 return UNSIGNED;
1436 if (current_language->la_language == language_cplus
1437 && STREQN (tokstart, "template", 8))
1438 return TEMPLATE;
1439 if (STREQN (tokstart, "volatile", 8))
1440 return VOLATILE_KEYWORD;
1441 break;
1442 case 6:
1443 if (STREQN (tokstart, "struct", 6))
1444 return STRUCT;
1445 if (STREQN (tokstart, "signed", 6))
1446 return SIGNED_KEYWORD;
1447 if (STREQN (tokstart, "sizeof", 6))
1448 return SIZEOF;
1449 break;
1450 case 5:
1451 if (current_language->la_language == language_cplus
1452 && STREQN (tokstart, "class", 5))
1453 return CLASS;
1454 if (STREQN (tokstart, "union", 5))
1455 return UNION;
1456 if (STREQN (tokstart, "short", 5))
1457 return SHORT;
1458 if (STREQN (tokstart, "const", 5))
1459 return CONST_KEYWORD;
1460 break;
1461 case 4:
1462 if (STREQN (tokstart, "enum", 4))
1463 return ENUM;
1464 if (STREQN (tokstart, "long", 4))
1465 return LONG;
1466 if (current_language->la_language == language_cplus
1467 && STREQN (tokstart, "this", 4))
1468 {
1469 static const char this_name[] =
1470 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1471
1472 if (lookup_symbol (this_name, expression_context_block,
1473 VAR_NAMESPACE, 0, NULL))
1474 return THIS;
1475 }
1476 break;
1477 case 3:
1478 if (STREQN (tokstart, "int", 3))
1479 return INT_KEYWORD;
1480 break;
1481 default:
1482 break;
1483 }
1484
1485 yylval.sval.ptr = tokstart;
1486 yylval.sval.length = namelen;
1487
1488 /* Any other names starting in $ are debugger internal variables. */
1489
1490 if (*tokstart == '$')
1491 {
1492 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1493 return VARIABLE;
1494 }
1495
1496 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1497 functions or symtabs. If this is not so, then ...
1498 Use token-type TYPENAME for symbols that happen to be defined
1499 currently as names of types; NAME for other symbols.
1500 The caller is not constrained to care about the distinction. */
1501 {
1502 char *tmp = copy_name (yylval.sval);
1503 struct symbol *sym;
1504 int is_a_field_of_this = 0;
1505 int hextype;
1506
1507 sym = lookup_symbol (tmp, expression_context_block,
1508 VAR_NAMESPACE,
1509 current_language->la_language == language_cplus
1510 ? &is_a_field_of_this : NULL,
1511 NULL);
1512 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1513 lookup_partial_symtab (tmp))
1514 {
1515 yylval.ssym.sym = sym;
1516 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1517 return BLOCKNAME;
1518 }
1519 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1520 {
1521 yylval.tsym.type = SYMBOL_TYPE (sym);
1522 return TYPENAME;
1523 }
1524 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1525 return TYPENAME;
1526
1527 /* Input names that aren't symbols but ARE valid hex numbers,
1528 when the input radix permits them, can be names or numbers
1529 depending on the parse. Note we support radixes > 16 here. */
1530 if (!sym &&
1531 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1532 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1533 {
1534 YYSTYPE newlval; /* Its value is ignored. */
1535 hextype = parse_number (tokstart, namelen, 0, &newlval);
1536 if (hextype == INT)
1537 {
1538 yylval.ssym.sym = sym;
1539 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1540 return NAME_OR_INT;
1541 }
1542 }
1543
1544 /* Any other kind of symbol */
1545 yylval.ssym.sym = sym;
1546 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1547 return NAME;
1548 }
1549 }
1550
1551 void
1552 yyerror (msg)
1553 char *msg;
1554 {
1555 error (msg ? msg : "Invalid syntax in expression.");
1556 }
This page took 0.082111 seconds and 4 git commands to generate.