use remote-utils facilities for baud_rate
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_int);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 switch (SYMBOL_CLASS (sym))
663 {
664 case LOC_REGISTER:
665 case LOC_ARG:
666 case LOC_REF_ARG:
667 case LOC_REGPARM:
668 case LOC_REGPARM_ADDR:
669 case LOC_LOCAL:
670 case LOC_LOCAL_ARG:
671 case LOC_BASEREG:
672 case LOC_BASEREG_ARG:
673 if (innermost_block == 0 ||
674 contained_in (block_found,
675 innermost_block))
676 innermost_block = block_found;
677 case LOC_UNDEF:
678 case LOC_CONST:
679 case LOC_STATIC:
680 case LOC_TYPEDEF:
681 case LOC_LABEL:
682 case LOC_BLOCK:
683 case LOC_CONST_BYTES:
684 case LOC_OPTIMIZED_OUT:
685
686 /* In this case the expression can
687 be evaluated regardless of what
688 frame we are in, so there is no
689 need to check for the
690 innermost_block. These cases are
691 listed so that gcc -Wall will
692 report types that may not have
693 been considered. */
694
695 break;
696 }
697 write_exp_elt_opcode (OP_VAR_VALUE);
698 /* We want to use the selected frame, not
699 another more inner frame which happens to
700 be in the same block. */
701 write_exp_elt_block (NULL);
702 write_exp_elt_sym (sym);
703 write_exp_elt_opcode (OP_VAR_VALUE);
704 }
705 else if ($1.is_a_field_of_this)
706 {
707 /* C++: it hangs off of `this'. Must
708 not inadvertently convert from a method call
709 to data ref. */
710 if (innermost_block == 0 ||
711 contained_in (block_found, innermost_block))
712 innermost_block = block_found;
713 write_exp_elt_opcode (OP_THIS);
714 write_exp_elt_opcode (OP_THIS);
715 write_exp_elt_opcode (STRUCTOP_PTR);
716 write_exp_string ($1.stoken);
717 write_exp_elt_opcode (STRUCTOP_PTR);
718 }
719 else
720 {
721 struct minimal_symbol *msymbol;
722 register char *arg = copy_name ($1.stoken);
723
724 msymbol = lookup_minimal_symbol (arg,
725 (struct objfile *) NULL);
726 if (msymbol != NULL)
727 {
728 write_exp_elt_opcode (OP_LONG);
729 write_exp_elt_type (builtin_type_int);
730 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
731 write_exp_elt_opcode (OP_LONG);
732 write_exp_elt_opcode (UNOP_MEMVAL);
733 if (msymbol -> type == mst_data ||
734 msymbol -> type == mst_bss)
735 write_exp_elt_type (builtin_type_int);
736 else if (msymbol -> type == mst_text)
737 write_exp_elt_type (lookup_function_type (builtin_type_int));
738 else
739 write_exp_elt_type (builtin_type_char);
740 write_exp_elt_opcode (UNOP_MEMVAL);
741 }
742 else if (!have_full_symbols () && !have_partial_symbols ())
743 error ("No symbol table is loaded. Use the \"file\" command.");
744 else
745 error ("No symbol \"%s\" in current context.",
746 copy_name ($1.stoken));
747 }
748 }
749 ;
750
751
752 ptype : typebase
753 | typebase abs_decl
754 {
755 /* This is where the interesting stuff happens. */
756 int done = 0;
757 int array_size;
758 struct type *follow_type = $1;
759 struct type *range_type;
760
761 while (!done)
762 switch (pop_type ())
763 {
764 case tp_end:
765 done = 1;
766 break;
767 case tp_pointer:
768 follow_type = lookup_pointer_type (follow_type);
769 break;
770 case tp_reference:
771 follow_type = lookup_reference_type (follow_type);
772 break;
773 case tp_array:
774 array_size = pop_type_int ();
775 if (array_size != -1)
776 {
777 range_type =
778 create_range_type ((struct type *) NULL,
779 builtin_type_int, 0,
780 array_size - 1);
781 follow_type =
782 create_array_type ((struct type *) NULL,
783 follow_type, range_type);
784 }
785 else
786 follow_type = lookup_pointer_type (follow_type);
787 break;
788 case tp_function:
789 follow_type = lookup_function_type (follow_type);
790 break;
791 }
792 $$ = follow_type;
793 }
794 ;
795
796 abs_decl: '*'
797 { push_type (tp_pointer); $$ = 0; }
798 | '*' abs_decl
799 { push_type (tp_pointer); $$ = $2; }
800 | '&'
801 { push_type (tp_reference); $$ = 0; }
802 | '&' abs_decl
803 { push_type (tp_reference); $$ = $2; }
804 | direct_abs_decl
805 ;
806
807 direct_abs_decl: '(' abs_decl ')'
808 { $$ = $2; }
809 | direct_abs_decl array_mod
810 {
811 push_type_int ($2);
812 push_type (tp_array);
813 }
814 | array_mod
815 {
816 push_type_int ($1);
817 push_type (tp_array);
818 $$ = 0;
819 }
820 | direct_abs_decl func_mod
821 { push_type (tp_function); }
822 | func_mod
823 { push_type (tp_function); }
824 ;
825
826 array_mod: '[' ']'
827 { $$ = -1; }
828 | '[' INT ']'
829 { $$ = $2.val; }
830 ;
831
832 func_mod: '(' ')'
833 { $$ = 0; }
834 | '(' nonempty_typelist ')'
835 { free ((PTR)$2); $$ = 0; }
836 ;
837
838 type : ptype
839 | typebase COLONCOLON '*'
840 { $$ = lookup_member_type (builtin_type_int, $1); }
841 | type '(' typebase COLONCOLON '*' ')'
842 { $$ = lookup_member_type ($1, $3); }
843 | type '(' typebase COLONCOLON '*' ')' '(' ')'
844 { $$ = lookup_member_type
845 (lookup_function_type ($1), $3); }
846 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
847 { $$ = lookup_member_type
848 (lookup_function_type ($1), $3);
849 free ((PTR)$8); }
850 ;
851
852 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
853 : TYPENAME
854 { $$ = $1.type; }
855 | INT_KEYWORD
856 { $$ = builtin_type_int; }
857 | LONG
858 { $$ = builtin_type_long; }
859 | SHORT
860 { $$ = builtin_type_short; }
861 | LONG INT_KEYWORD
862 { $$ = builtin_type_long; }
863 | UNSIGNED LONG INT_KEYWORD
864 { $$ = builtin_type_unsigned_long; }
865 | LONG LONG
866 { $$ = builtin_type_long_long; }
867 | LONG LONG INT_KEYWORD
868 { $$ = builtin_type_long_long; }
869 | UNSIGNED LONG LONG
870 { $$ = builtin_type_unsigned_long_long; }
871 | UNSIGNED LONG LONG INT_KEYWORD
872 { $$ = builtin_type_unsigned_long_long; }
873 | SHORT INT_KEYWORD
874 { $$ = builtin_type_short; }
875 | UNSIGNED SHORT INT_KEYWORD
876 { $$ = builtin_type_unsigned_short; }
877 | STRUCT name
878 { $$ = lookup_struct (copy_name ($2),
879 expression_context_block); }
880 | CLASS name
881 { $$ = lookup_struct (copy_name ($2),
882 expression_context_block); }
883 | UNION name
884 { $$ = lookup_union (copy_name ($2),
885 expression_context_block); }
886 | ENUM name
887 { $$ = lookup_enum (copy_name ($2),
888 expression_context_block); }
889 | UNSIGNED typename
890 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
891 | UNSIGNED
892 { $$ = builtin_type_unsigned_int; }
893 | SIGNED_KEYWORD typename
894 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
895 | SIGNED_KEYWORD
896 { $$ = builtin_type_int; }
897 | TEMPLATE name '<' type '>'
898 { $$ = lookup_template_type(copy_name($2), $4,
899 expression_context_block);
900 }
901 /* "const" and "volatile" are curently ignored. */
902 | CONST_KEYWORD typebase { $$ = $2; }
903 | VOLATILE_KEYWORD typebase { $$ = $2; }
904 ;
905
906 typename: TYPENAME
907 | INT_KEYWORD
908 {
909 $$.stoken.ptr = "int";
910 $$.stoken.length = 3;
911 $$.type = builtin_type_int;
912 }
913 | LONG
914 {
915 $$.stoken.ptr = "long";
916 $$.stoken.length = 4;
917 $$.type = builtin_type_long;
918 }
919 | SHORT
920 {
921 $$.stoken.ptr = "short";
922 $$.stoken.length = 5;
923 $$.type = builtin_type_short;
924 }
925 ;
926
927 nonempty_typelist
928 : type
929 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
930 $<ivec>$[0] = 1; /* Number of types in vector */
931 $$[1] = $1;
932 }
933 | nonempty_typelist ',' type
934 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
935 $$ = (struct type **) realloc ((char *) $1, len);
936 $$[$<ivec>$[0]] = $3;
937 }
938 ;
939
940 name : NAME { $$ = $1.stoken; }
941 | BLOCKNAME { $$ = $1.stoken; }
942 | TYPENAME { $$ = $1.stoken; }
943 | NAME_OR_INT { $$ = $1.stoken; }
944 ;
945
946 name_not_typename : NAME
947 | BLOCKNAME
948 /* These would be useful if name_not_typename was useful, but it is just
949 a fake for "variable", so these cause reduce/reduce conflicts because
950 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
951 =exp) or just an exp. If name_not_typename was ever used in an lvalue
952 context where only a name could occur, this might be useful.
953 | NAME_OR_INT
954 */
955 ;
956
957 %%
958
959 /* Take care of parsing a number (anything that starts with a digit).
960 Set yylval and return the token type; update lexptr.
961 LEN is the number of characters in it. */
962
963 /*** Needs some error checking for the float case ***/
964
965 static int
966 parse_number (p, len, parsed_float, putithere)
967 register char *p;
968 register int len;
969 int parsed_float;
970 YYSTYPE *putithere;
971 {
972 register LONGEST n = 0;
973 register LONGEST prevn = 0;
974 register int i = 0;
975 register int c;
976 register int base = input_radix;
977 int unsigned_p = 0;
978 int long_p = 0;
979 unsigned LONGEST high_bit;
980 struct type *signed_type;
981 struct type *unsigned_type;
982
983 if (parsed_float)
984 {
985 /* It's a float since it contains a point or an exponent. */
986 putithere->dval = atof (p);
987 return FLOAT;
988 }
989
990 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
991 if (p[0] == '0')
992 switch (p[1])
993 {
994 case 'x':
995 case 'X':
996 if (len >= 3)
997 {
998 p += 2;
999 base = 16;
1000 len -= 2;
1001 }
1002 break;
1003
1004 case 't':
1005 case 'T':
1006 case 'd':
1007 case 'D':
1008 if (len >= 3)
1009 {
1010 p += 2;
1011 base = 10;
1012 len -= 2;
1013 }
1014 break;
1015
1016 default:
1017 base = 8;
1018 break;
1019 }
1020
1021 while (len-- > 0)
1022 {
1023 c = *p++;
1024 if (c >= 'A' && c <= 'Z')
1025 c += 'a' - 'A';
1026 if (c != 'l' && c != 'u')
1027 n *= base;
1028 if (c >= '0' && c <= '9')
1029 n += i = c - '0';
1030 else
1031 {
1032 if (base > 10 && c >= 'a' && c <= 'f')
1033 n += i = c - 'a' + 10;
1034 else if (len == 0 && c == 'l')
1035 long_p = 1;
1036 else if (len == 0 && c == 'u')
1037 unsigned_p = 1;
1038 else
1039 return ERROR; /* Char not a digit */
1040 }
1041 if (i >= base)
1042 return ERROR; /* Invalid digit in this base */
1043
1044 /* Portably test for overflow (only works for nonzero values, so make
1045 a second check for zero). */
1046 if((prevn >= n) && n != 0)
1047 unsigned_p=1; /* Try something unsigned */
1048 /* If range checking enabled, portably test for unsigned overflow. */
1049 if(RANGE_CHECK && n!=0)
1050 {
1051 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1052 range_error("Overflow on numeric constant.");
1053 }
1054 prevn=n;
1055 }
1056
1057 /* If the number is too big to be an int, or it's got an l suffix
1058 then it's a long. Work out if this has to be a long by
1059 shifting right and and seeing if anything remains, and the
1060 target int size is different to the target long size.
1061
1062 In the expression below, we could have tested
1063 (n >> TARGET_INT_BIT)
1064 to see if it was zero,
1065 but too many compilers warn about that, when ints and longs
1066 are the same size. So we shift it twice, with fewer bits
1067 each time, for the same result. */
1068
1069 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1070 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1071 || long_p)
1072 {
1073 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1074 unsigned_type = builtin_type_unsigned_long;
1075 signed_type = builtin_type_long;
1076 }
1077 else
1078 {
1079 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1080 unsigned_type = builtin_type_unsigned_int;
1081 signed_type = builtin_type_int;
1082 }
1083
1084 putithere->typed_val.val = n;
1085
1086 /* If the high bit of the worked out type is set then this number
1087 has to be unsigned. */
1088
1089 if (unsigned_p || (n & high_bit))
1090 {
1091 putithere->typed_val.type = unsigned_type;
1092 }
1093 else
1094 {
1095 putithere->typed_val.type = signed_type;
1096 }
1097
1098 return INT;
1099 }
1100
1101 struct token
1102 {
1103 char *operator;
1104 int token;
1105 enum exp_opcode opcode;
1106 };
1107
1108 static const struct token tokentab3[] =
1109 {
1110 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1111 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1112 };
1113
1114 static const struct token tokentab2[] =
1115 {
1116 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1117 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1118 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1119 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1120 {"%=", ASSIGN_MODIFY, BINOP_REM},
1121 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1122 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1123 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1124 {"++", INCREMENT, BINOP_END},
1125 {"--", DECREMENT, BINOP_END},
1126 {"->", ARROW, BINOP_END},
1127 {"&&", ANDAND, BINOP_END},
1128 {"||", OROR, BINOP_END},
1129 {"::", COLONCOLON, BINOP_END},
1130 {"<<", LSH, BINOP_END},
1131 {">>", RSH, BINOP_END},
1132 {"==", EQUAL, BINOP_END},
1133 {"!=", NOTEQUAL, BINOP_END},
1134 {"<=", LEQ, BINOP_END},
1135 {">=", GEQ, BINOP_END}
1136 };
1137
1138 /* Read one token, getting characters through lexptr. */
1139
1140 static int
1141 yylex ()
1142 {
1143 int c;
1144 int namelen;
1145 unsigned int i;
1146 char *tokstart;
1147 char *tokptr;
1148 int tempbufindex;
1149 static char *tempbuf;
1150 static int tempbufsize;
1151
1152 retry:
1153
1154 tokstart = lexptr;
1155 /* See if it is a special token of length 3. */
1156 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1157 if (STREQN (tokstart, tokentab3[i].operator, 3))
1158 {
1159 lexptr += 3;
1160 yylval.opcode = tokentab3[i].opcode;
1161 return tokentab3[i].token;
1162 }
1163
1164 /* See if it is a special token of length 2. */
1165 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1166 if (STREQN (tokstart, tokentab2[i].operator, 2))
1167 {
1168 lexptr += 2;
1169 yylval.opcode = tokentab2[i].opcode;
1170 return tokentab2[i].token;
1171 }
1172
1173 switch (c = *tokstart)
1174 {
1175 case 0:
1176 return 0;
1177
1178 case ' ':
1179 case '\t':
1180 case '\n':
1181 lexptr++;
1182 goto retry;
1183
1184 case '\'':
1185 /* We either have a character constant ('0' or '\177' for example)
1186 or we have a quoted symbol reference ('foo(int,int)' in C++
1187 for example). */
1188 lexptr++;
1189 c = *lexptr++;
1190 if (c == '\\')
1191 c = parse_escape (&lexptr);
1192
1193 yylval.typed_val.val = c;
1194 yylval.typed_val.type = builtin_type_char;
1195
1196 c = *lexptr++;
1197 if (c != '\'')
1198 {
1199 namelen = skip_quoted (tokstart) - tokstart;
1200 if (namelen > 2)
1201 {
1202 lexptr = tokstart + namelen;
1203 if (lexptr[-1] != '\'')
1204 error ("Unmatched single quote.");
1205 namelen -= 2;
1206 tokstart++;
1207 goto tryname;
1208 }
1209 error ("Invalid character constant.");
1210 }
1211 return INT;
1212
1213 case '(':
1214 paren_depth++;
1215 lexptr++;
1216 return c;
1217
1218 case ')':
1219 if (paren_depth == 0)
1220 return 0;
1221 paren_depth--;
1222 lexptr++;
1223 return c;
1224
1225 case ',':
1226 if (comma_terminates && paren_depth == 0)
1227 return 0;
1228 lexptr++;
1229 return c;
1230
1231 case '.':
1232 /* Might be a floating point number. */
1233 if (lexptr[1] < '0' || lexptr[1] > '9')
1234 goto symbol; /* Nope, must be a symbol. */
1235 /* FALL THRU into number case. */
1236
1237 case '0':
1238 case '1':
1239 case '2':
1240 case '3':
1241 case '4':
1242 case '5':
1243 case '6':
1244 case '7':
1245 case '8':
1246 case '9':
1247 {
1248 /* It's a number. */
1249 int got_dot = 0, got_e = 0, toktype;
1250 register char *p = tokstart;
1251 int hex = input_radix > 10;
1252
1253 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1254 {
1255 p += 2;
1256 hex = 1;
1257 }
1258 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1259 {
1260 p += 2;
1261 hex = 0;
1262 }
1263
1264 for (;; ++p)
1265 {
1266 /* This test includes !hex because 'e' is a valid hex digit
1267 and thus does not indicate a floating point number when
1268 the radix is hex. */
1269 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1270 got_dot = got_e = 1;
1271 /* This test does not include !hex, because a '.' always indicates
1272 a decimal floating point number regardless of the radix. */
1273 else if (!got_dot && *p == '.')
1274 got_dot = 1;
1275 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1276 && (*p == '-' || *p == '+'))
1277 /* This is the sign of the exponent, not the end of the
1278 number. */
1279 continue;
1280 /* We will take any letters or digits. parse_number will
1281 complain if past the radix, or if L or U are not final. */
1282 else if ((*p < '0' || *p > '9')
1283 && ((*p < 'a' || *p > 'z')
1284 && (*p < 'A' || *p > 'Z')))
1285 break;
1286 }
1287 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1288 if (toktype == ERROR)
1289 {
1290 char *err_copy = (char *) alloca (p - tokstart + 1);
1291
1292 memcpy (err_copy, tokstart, p - tokstart);
1293 err_copy[p - tokstart] = 0;
1294 error ("Invalid number \"%s\".", err_copy);
1295 }
1296 lexptr = p;
1297 return toktype;
1298 }
1299
1300 case '+':
1301 case '-':
1302 case '*':
1303 case '/':
1304 case '%':
1305 case '|':
1306 case '&':
1307 case '^':
1308 case '~':
1309 case '!':
1310 case '@':
1311 case '<':
1312 case '>':
1313 case '[':
1314 case ']':
1315 case '?':
1316 case ':':
1317 case '=':
1318 case '{':
1319 case '}':
1320 symbol:
1321 lexptr++;
1322 return c;
1323
1324 case '"':
1325
1326 /* Build the gdb internal form of the input string in tempbuf,
1327 translating any standard C escape forms seen. Note that the
1328 buffer is null byte terminated *only* for the convenience of
1329 debugging gdb itself and printing the buffer contents when
1330 the buffer contains no embedded nulls. Gdb does not depend
1331 upon the buffer being null byte terminated, it uses the length
1332 string instead. This allows gdb to handle C strings (as well
1333 as strings in other languages) with embedded null bytes */
1334
1335 tokptr = ++tokstart;
1336 tempbufindex = 0;
1337
1338 do {
1339 /* Grow the static temp buffer if necessary, including allocating
1340 the first one on demand. */
1341 if (tempbufindex + 1 >= tempbufsize)
1342 {
1343 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1344 }
1345 switch (*tokptr)
1346 {
1347 case '\0':
1348 case '"':
1349 /* Do nothing, loop will terminate. */
1350 break;
1351 case '\\':
1352 tokptr++;
1353 c = parse_escape (&tokptr);
1354 if (c == -1)
1355 {
1356 continue;
1357 }
1358 tempbuf[tempbufindex++] = c;
1359 break;
1360 default:
1361 tempbuf[tempbufindex++] = *tokptr++;
1362 break;
1363 }
1364 } while ((*tokptr != '"') && (*tokptr != '\0'));
1365 if (*tokptr++ != '"')
1366 {
1367 error ("Unterminated string in expression.");
1368 }
1369 tempbuf[tempbufindex] = '\0'; /* See note above */
1370 yylval.sval.ptr = tempbuf;
1371 yylval.sval.length = tempbufindex;
1372 lexptr = tokptr;
1373 return (STRING);
1374 }
1375
1376 if (!(c == '_' || c == '$'
1377 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1378 /* We must have come across a bad character (e.g. ';'). */
1379 error ("Invalid character '%c' in expression.", c);
1380
1381 /* It's a name. See how long it is. */
1382 namelen = 0;
1383 for (c = tokstart[namelen];
1384 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1385 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1386 c = tokstart[++namelen])
1387 ;
1388
1389 /* The token "if" terminates the expression and is NOT
1390 removed from the input stream. */
1391 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1392 {
1393 return 0;
1394 }
1395
1396 lexptr += namelen;
1397
1398 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1399 and $$digits (equivalent to $<-digits> if you could type that).
1400 Make token type LAST, and put the number (the digits) in yylval. */
1401
1402 tryname:
1403 if (*tokstart == '$')
1404 {
1405 register int negate = 0;
1406 c = 1;
1407 /* Double dollar means negate the number and add -1 as well.
1408 Thus $$ alone means -1. */
1409 if (namelen >= 2 && tokstart[1] == '$')
1410 {
1411 negate = 1;
1412 c = 2;
1413 }
1414 if (c == namelen)
1415 {
1416 /* Just dollars (one or two) */
1417 yylval.lval = - negate;
1418 return LAST;
1419 }
1420 /* Is the rest of the token digits? */
1421 for (; c < namelen; c++)
1422 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1423 break;
1424 if (c == namelen)
1425 {
1426 yylval.lval = atoi (tokstart + 1 + negate);
1427 if (negate)
1428 yylval.lval = - yylval.lval;
1429 return LAST;
1430 }
1431 }
1432
1433 /* Handle tokens that refer to machine registers:
1434 $ followed by a register name. */
1435
1436 if (*tokstart == '$') {
1437 for (c = 0; c < NUM_REGS; c++)
1438 if (namelen - 1 == strlen (reg_names[c])
1439 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1440 {
1441 yylval.lval = c;
1442 return REGNAME;
1443 }
1444 for (c = 0; c < num_std_regs; c++)
1445 if (namelen - 1 == strlen (std_regs[c].name)
1446 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1447 {
1448 yylval.lval = std_regs[c].regnum;
1449 return REGNAME;
1450 }
1451 }
1452 /* Catch specific keywords. Should be done with a data structure. */
1453 switch (namelen)
1454 {
1455 case 8:
1456 if (STREQN (tokstart, "unsigned", 8))
1457 return UNSIGNED;
1458 if (current_language->la_language == language_cplus
1459 && STREQN (tokstart, "template", 8))
1460 return TEMPLATE;
1461 if (STREQN (tokstart, "volatile", 8))
1462 return VOLATILE_KEYWORD;
1463 break;
1464 case 6:
1465 if (STREQN (tokstart, "struct", 6))
1466 return STRUCT;
1467 if (STREQN (tokstart, "signed", 6))
1468 return SIGNED_KEYWORD;
1469 if (STREQN (tokstart, "sizeof", 6))
1470 return SIZEOF;
1471 break;
1472 case 5:
1473 if (current_language->la_language == language_cplus
1474 && STREQN (tokstart, "class", 5))
1475 return CLASS;
1476 if (STREQN (tokstart, "union", 5))
1477 return UNION;
1478 if (STREQN (tokstart, "short", 5))
1479 return SHORT;
1480 if (STREQN (tokstart, "const", 5))
1481 return CONST_KEYWORD;
1482 break;
1483 case 4:
1484 if (STREQN (tokstart, "enum", 4))
1485 return ENUM;
1486 if (STREQN (tokstart, "long", 4))
1487 return LONG;
1488 if (current_language->la_language == language_cplus
1489 && STREQN (tokstart, "this", 4))
1490 {
1491 static const char this_name[] =
1492 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1493
1494 if (lookup_symbol (this_name, expression_context_block,
1495 VAR_NAMESPACE, (int *) NULL,
1496 (struct symtab **) NULL))
1497 return THIS;
1498 }
1499 break;
1500 case 3:
1501 if (STREQN (tokstart, "int", 3))
1502 return INT_KEYWORD;
1503 break;
1504 default:
1505 break;
1506 }
1507
1508 yylval.sval.ptr = tokstart;
1509 yylval.sval.length = namelen;
1510
1511 /* Any other names starting in $ are debugger internal variables. */
1512
1513 if (*tokstart == '$')
1514 {
1515 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1516 return VARIABLE;
1517 }
1518
1519 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1520 functions or symtabs. If this is not so, then ...
1521 Use token-type TYPENAME for symbols that happen to be defined
1522 currently as names of types; NAME for other symbols.
1523 The caller is not constrained to care about the distinction. */
1524 {
1525 char *tmp = copy_name (yylval.sval);
1526 struct symbol *sym;
1527 int is_a_field_of_this = 0;
1528 int hextype;
1529
1530 sym = lookup_symbol (tmp, expression_context_block,
1531 VAR_NAMESPACE,
1532 current_language->la_language == language_cplus
1533 ? &is_a_field_of_this : (int *) NULL,
1534 (struct symtab **) NULL);
1535 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1536 lookup_partial_symtab (tmp))
1537 {
1538 yylval.ssym.sym = sym;
1539 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1540 return BLOCKNAME;
1541 }
1542 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1543 {
1544 char *p;
1545 char *namestart;
1546 struct symbol *best_sym;
1547
1548 /* Look ahead to detect nested types. This probably should be
1549 done in the grammar, but trying seemed to introduce a lot
1550 of shift/reduce and reduce/reduce conflicts. It's possible
1551 that it could be done, though. Or perhaps a non-grammar, but
1552 less ad hoc, approach would work well. */
1553
1554 /* Since we do not currently have any way of distinguishing
1555 a nested type from a non-nested one (the stabs don't tell
1556 us whether a type is nested), we just ignore the
1557 containing type. */
1558
1559 p = lexptr;
1560 best_sym = sym;
1561 while (1)
1562 {
1563 /* Skip whitespace. */
1564 while (*p == ' ' || *p == '\t' || *p == '\n')
1565 ++p;
1566 if (*p == ':' && p[1] == ':')
1567 {
1568 /* Skip the `::'. */
1569 p += 2;
1570 /* Skip whitespace. */
1571 while (*p == ' ' || *p == '\t' || *p == '\n')
1572 ++p;
1573 namestart = p;
1574 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1575 || (*p >= 'a' && *p <= 'z')
1576 || (*p >= 'A' && *p <= 'Z'))
1577 ++p;
1578 if (p != namestart)
1579 {
1580 struct symbol *cur_sym;
1581 /* As big as the whole rest of the expression, which is
1582 at least big enough. */
1583 char *tmp = alloca (strlen (namestart));
1584
1585 memcpy (tmp, namestart, p - namestart);
1586 tmp[p - namestart] = '\0';
1587 cur_sym = lookup_symbol (tmp, expression_context_block,
1588 VAR_NAMESPACE, (int *) NULL,
1589 (struct symtab **) NULL);
1590 if (cur_sym)
1591 {
1592 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1593 {
1594 best_sym = cur_sym;
1595 lexptr = p;
1596 }
1597 else
1598 break;
1599 }
1600 else
1601 break;
1602 }
1603 else
1604 break;
1605 }
1606 else
1607 break;
1608 }
1609
1610 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1611 return TYPENAME;
1612 }
1613 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1614 return TYPENAME;
1615
1616 /* Input names that aren't symbols but ARE valid hex numbers,
1617 when the input radix permits them, can be names or numbers
1618 depending on the parse. Note we support radixes > 16 here. */
1619 if (!sym &&
1620 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1621 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1622 {
1623 YYSTYPE newlval; /* Its value is ignored. */
1624 hextype = parse_number (tokstart, namelen, 0, &newlval);
1625 if (hextype == INT)
1626 {
1627 yylval.ssym.sym = sym;
1628 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1629 return NAME_OR_INT;
1630 }
1631 }
1632
1633 /* Any other kind of symbol */
1634 yylval.ssym.sym = sym;
1635 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1636 return NAME;
1637 }
1638 }
1639
1640 void
1641 yyerror (msg)
1642 char *msg;
1643 {
1644 error (msg ? msg : "Invalid syntax in expression.");
1645 }
This page took 0.081708 seconds and 4 git commands to generate.