eae0794766c7b49ab9899c791920a6493ee67991
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87 #define yylhs c_yylhs
88 #define yylen c_yylen
89 #define yydefred c_yydefred
90 #define yydgoto c_yydgoto
91 #define yysindex c_yysindex
92 #define yyrindex c_yyrindex
93 #define yygindex c_yygindex
94 #define yytable c_yytable
95 #define yycheck c_yycheck
96
97 #ifndef YYDEBUG
98 #define YYDEBUG 0 /* Default to no yydebug support */
99 #endif
100
101 int
102 yyparse PARAMS ((void));
103
104 static int
105 yylex PARAMS ((void));
106
107 void
108 yyerror PARAMS ((char *));
109
110 %}
111
112 /* Although the yacc "value" of an expression is not used,
113 since the result is stored in the structure being created,
114 other node types do have values. */
115
116 %union
117 {
118 LONGEST lval;
119 struct {
120 LONGEST val;
121 struct type *type;
122 } typed_val;
123 double dval;
124 struct symbol *sym;
125 struct type *tval;
126 struct stoken sval;
127 struct ttype tsym;
128 struct symtoken ssym;
129 int voidval;
130 struct block *bval;
131 enum exp_opcode opcode;
132 struct internalvar *ivar;
133
134 struct type **tvec;
135 int *ivec;
136 }
137
138 %{
139 /* YYSTYPE gets defined by %union */
140 static int
141 parse_number PARAMS ((char *, int, int, YYSTYPE *));
142 %}
143
144 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
145 %type <lval> rcurly
146 %type <tval> type typebase
147 %type <tvec> nonempty_typelist
148 /* %type <bval> block */
149
150 /* Fancy type parsing. */
151 %type <voidval> func_mod direct_abs_decl abs_decl
152 %type <tval> ptype
153 %type <lval> array_mod
154
155 %token <typed_val> INT
156 %token <dval> FLOAT
157
158 /* Both NAME and TYPENAME tokens represent symbols in the input,
159 and both convey their data as strings.
160 But a TYPENAME is a string that happens to be defined as a typedef
161 or builtin type name (such as int or char)
162 and a NAME is any other symbol.
163 Contexts where this distinction is not important can use the
164 nonterminal "name", which matches either NAME or TYPENAME. */
165
166 %token <sval> STRING
167 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
168 %token <tsym> TYPENAME
169 %type <sval> name
170 %type <ssym> name_not_typename
171 %type <tsym> typename
172
173 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
174 but which would parse as a valid number in the current input radix.
175 E.g. "c" when input_radix==16. Depending on the parse, it will be
176 turned into a name or into a number. */
177
178 %token <ssym> NAME_OR_INT
179
180 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
181 %token TEMPLATE
182 %token ERROR
183
184 /* Special type cases, put in to allow the parser to distinguish different
185 legal basetypes. */
186 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
187
188 %token <voidval> VARIABLE
189
190 %token <opcode> ASSIGN_MODIFY
191
192 /* C++ */
193 %token THIS
194
195 %left ','
196 %left ABOVE_COMMA
197 %right '=' ASSIGN_MODIFY
198 %right '?'
199 %left OROR
200 %left ANDAND
201 %left '|'
202 %left '^'
203 %left '&'
204 %left EQUAL NOTEQUAL
205 %left '<' '>' LEQ GEQ
206 %left LSH RSH
207 %left '@'
208 %left '+' '-'
209 %left '*' '/' '%'
210 %right UNARY INCREMENT DECREMENT
211 %right ARROW '.' '[' '('
212 %token <ssym> BLOCKNAME
213 %type <bval> block
214 %left COLONCOLON
215
216 \f
217 %%
218
219 start : exp1
220 | type_exp
221 ;
222
223 type_exp: type
224 { write_exp_elt_opcode(OP_TYPE);
225 write_exp_elt_type($1);
226 write_exp_elt_opcode(OP_TYPE);}
227 ;
228
229 /* Expressions, including the comma operator. */
230 exp1 : exp
231 | exp1 ',' exp
232 { write_exp_elt_opcode (BINOP_COMMA); }
233 ;
234
235 /* Expressions, not including the comma operator. */
236 exp : '*' exp %prec UNARY
237 { write_exp_elt_opcode (UNOP_IND); }
238
239 exp : '&' exp %prec UNARY
240 { write_exp_elt_opcode (UNOP_ADDR); }
241
242 exp : '-' exp %prec UNARY
243 { write_exp_elt_opcode (UNOP_NEG); }
244 ;
245
246 exp : '!' exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
248 ;
249
250 exp : '~' exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
252 ;
253
254 exp : INCREMENT exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
256 ;
257
258 exp : DECREMENT exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
260 ;
261
262 exp : exp INCREMENT %prec UNARY
263 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
264 ;
265
266 exp : exp DECREMENT %prec UNARY
267 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
268 ;
269
270 exp : SIZEOF exp %prec UNARY
271 { write_exp_elt_opcode (UNOP_SIZEOF); }
272 ;
273
274 exp : exp ARROW name
275 { write_exp_elt_opcode (STRUCTOP_PTR);
276 write_exp_string ($3);
277 write_exp_elt_opcode (STRUCTOP_PTR); }
278 ;
279
280 exp : exp ARROW qualified_name
281 { /* exp->type::name becomes exp->*(&type::name) */
282 /* Note: this doesn't work if name is a
283 static member! FIXME */
284 write_exp_elt_opcode (UNOP_ADDR);
285 write_exp_elt_opcode (STRUCTOP_MPTR); }
286 ;
287 exp : exp ARROW '*' exp
288 { write_exp_elt_opcode (STRUCTOP_MPTR); }
289 ;
290
291 exp : exp '.' name
292 { write_exp_elt_opcode (STRUCTOP_STRUCT);
293 write_exp_string ($3);
294 write_exp_elt_opcode (STRUCTOP_STRUCT); }
295 ;
296
297 exp : exp '.' qualified_name
298 { /* exp.type::name becomes exp.*(&type::name) */
299 /* Note: this doesn't work if name is a
300 static member! FIXME */
301 write_exp_elt_opcode (UNOP_ADDR);
302 write_exp_elt_opcode (STRUCTOP_MEMBER); }
303 ;
304
305 exp : exp '.' '*' exp
306 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
307 ;
308
309 exp : exp '[' exp1 ']'
310 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
311 ;
312
313 exp : exp '('
314 /* This is to save the value of arglist_len
315 being accumulated by an outer function call. */
316 { start_arglist (); }
317 arglist ')' %prec ARROW
318 { write_exp_elt_opcode (OP_FUNCALL);
319 write_exp_elt_longcst ((LONGEST) end_arglist ());
320 write_exp_elt_opcode (OP_FUNCALL); }
321 ;
322
323 lcurly : '{'
324 { start_arglist (); }
325 ;
326
327 arglist :
328 ;
329
330 arglist : exp
331 { arglist_len = 1; }
332 ;
333
334 arglist : arglist ',' exp %prec ABOVE_COMMA
335 { arglist_len++; }
336 ;
337
338 rcurly : '}'
339 { $$ = end_arglist () - 1; }
340 ;
341 exp : lcurly arglist rcurly %prec ARROW
342 { write_exp_elt_opcode (OP_ARRAY);
343 write_exp_elt_longcst ((LONGEST) 0);
344 write_exp_elt_longcst ((LONGEST) $3);
345 write_exp_elt_opcode (OP_ARRAY); }
346 ;
347
348 exp : lcurly type rcurly exp %prec UNARY
349 { write_exp_elt_opcode (UNOP_MEMVAL);
350 write_exp_elt_type ($2);
351 write_exp_elt_opcode (UNOP_MEMVAL); }
352 ;
353
354 exp : '(' type ')' exp %prec UNARY
355 { write_exp_elt_opcode (UNOP_CAST);
356 write_exp_elt_type ($2);
357 write_exp_elt_opcode (UNOP_CAST); }
358 ;
359
360 exp : '(' exp1 ')'
361 { }
362 ;
363
364 /* Binary operators in order of decreasing precedence. */
365
366 exp : exp '@' exp
367 { write_exp_elt_opcode (BINOP_REPEAT); }
368 ;
369
370 exp : exp '*' exp
371 { write_exp_elt_opcode (BINOP_MUL); }
372 ;
373
374 exp : exp '/' exp
375 { write_exp_elt_opcode (BINOP_DIV); }
376 ;
377
378 exp : exp '%' exp
379 { write_exp_elt_opcode (BINOP_REM); }
380 ;
381
382 exp : exp '+' exp
383 { write_exp_elt_opcode (BINOP_ADD); }
384 ;
385
386 exp : exp '-' exp
387 { write_exp_elt_opcode (BINOP_SUB); }
388 ;
389
390 exp : exp LSH exp
391 { write_exp_elt_opcode (BINOP_LSH); }
392 ;
393
394 exp : exp RSH exp
395 { write_exp_elt_opcode (BINOP_RSH); }
396 ;
397
398 exp : exp EQUAL exp
399 { write_exp_elt_opcode (BINOP_EQUAL); }
400 ;
401
402 exp : exp NOTEQUAL exp
403 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
404 ;
405
406 exp : exp LEQ exp
407 { write_exp_elt_opcode (BINOP_LEQ); }
408 ;
409
410 exp : exp GEQ exp
411 { write_exp_elt_opcode (BINOP_GEQ); }
412 ;
413
414 exp : exp '<' exp
415 { write_exp_elt_opcode (BINOP_LESS); }
416 ;
417
418 exp : exp '>' exp
419 { write_exp_elt_opcode (BINOP_GTR); }
420 ;
421
422 exp : exp '&' exp
423 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
424 ;
425
426 exp : exp '^' exp
427 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
428 ;
429
430 exp : exp '|' exp
431 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
432 ;
433
434 exp : exp ANDAND exp
435 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
436 ;
437
438 exp : exp OROR exp
439 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
440 ;
441
442 exp : exp '?' exp ':' exp %prec '?'
443 { write_exp_elt_opcode (TERNOP_COND); }
444 ;
445
446 exp : exp '=' exp
447 { write_exp_elt_opcode (BINOP_ASSIGN); }
448 ;
449
450 exp : exp ASSIGN_MODIFY exp
451 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
452 write_exp_elt_opcode ($2);
453 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
454 ;
455
456 exp : INT
457 { write_exp_elt_opcode (OP_LONG);
458 write_exp_elt_type ($1.type);
459 write_exp_elt_longcst ((LONGEST)($1.val));
460 write_exp_elt_opcode (OP_LONG); }
461 ;
462
463 exp : NAME_OR_INT
464 { YYSTYPE val;
465 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
466 write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type (val.typed_val.type);
468 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
469 write_exp_elt_opcode (OP_LONG);
470 }
471 ;
472
473
474 exp : FLOAT
475 { write_exp_elt_opcode (OP_DOUBLE);
476 write_exp_elt_type (builtin_type_double);
477 write_exp_elt_dblcst ($1);
478 write_exp_elt_opcode (OP_DOUBLE); }
479 ;
480
481 exp : variable
482 ;
483
484 exp : VARIABLE
485 /* Already written by write_dollar_variable. */
486 ;
487
488 exp : SIZEOF '(' type ')' %prec UNARY
489 { write_exp_elt_opcode (OP_LONG);
490 write_exp_elt_type (builtin_type_int);
491 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
492 write_exp_elt_opcode (OP_LONG); }
493 ;
494
495 exp : STRING
496 { /* C strings are converted into array constants with
497 an explicit null byte added at the end. Thus
498 the array upper bound is the string length.
499 There is no such thing in C as a completely empty
500 string. */
501 char *sp = $1.ptr; int count = $1.length;
502 while (count-- > 0)
503 {
504 write_exp_elt_opcode (OP_LONG);
505 write_exp_elt_type (builtin_type_char);
506 write_exp_elt_longcst ((LONGEST)(*sp++));
507 write_exp_elt_opcode (OP_LONG);
508 }
509 write_exp_elt_opcode (OP_LONG);
510 write_exp_elt_type (builtin_type_char);
511 write_exp_elt_longcst ((LONGEST)'\0');
512 write_exp_elt_opcode (OP_LONG);
513 write_exp_elt_opcode (OP_ARRAY);
514 write_exp_elt_longcst ((LONGEST) 0);
515 write_exp_elt_longcst ((LONGEST) ($1.length));
516 write_exp_elt_opcode (OP_ARRAY); }
517 ;
518
519 /* C++. */
520 exp : THIS
521 { write_exp_elt_opcode (OP_THIS);
522 write_exp_elt_opcode (OP_THIS); }
523 ;
524
525 /* end of C++. */
526
527 block : BLOCKNAME
528 {
529 if ($1.sym != 0)
530 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
531 else
532 {
533 struct symtab *tem =
534 lookup_symtab (copy_name ($1.stoken));
535 if (tem)
536 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
537 else
538 error ("No file or function \"%s\".",
539 copy_name ($1.stoken));
540 }
541 }
542 ;
543
544 block : block COLONCOLON name
545 { struct symbol *tem
546 = lookup_symbol (copy_name ($3), $1,
547 VAR_NAMESPACE, (int *) NULL,
548 (struct symtab **) NULL);
549 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
550 error ("No function \"%s\" in specified context.",
551 copy_name ($3));
552 $$ = SYMBOL_BLOCK_VALUE (tem); }
553 ;
554
555 variable: block COLONCOLON name
556 { struct symbol *sym;
557 sym = lookup_symbol (copy_name ($3), $1,
558 VAR_NAMESPACE, (int *) NULL,
559 (struct symtab **) NULL);
560 if (sym == 0)
561 error ("No symbol \"%s\" in specified context.",
562 copy_name ($3));
563
564 write_exp_elt_opcode (OP_VAR_VALUE);
565 /* block_found is set by lookup_symbol. */
566 write_exp_elt_block (block_found);
567 write_exp_elt_sym (sym);
568 write_exp_elt_opcode (OP_VAR_VALUE); }
569 ;
570
571 qualified_name: typebase COLONCOLON name
572 {
573 struct type *type = $1;
574 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
575 && TYPE_CODE (type) != TYPE_CODE_UNION)
576 error ("`%s' is not defined as an aggregate type.",
577 TYPE_NAME (type));
578
579 write_exp_elt_opcode (OP_SCOPE);
580 write_exp_elt_type (type);
581 write_exp_string ($3);
582 write_exp_elt_opcode (OP_SCOPE);
583 }
584 | typebase COLONCOLON '~' name
585 {
586 struct type *type = $1;
587 struct stoken tmp_token;
588 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
589 && TYPE_CODE (type) != TYPE_CODE_UNION)
590 error ("`%s' is not defined as an aggregate type.",
591 TYPE_NAME (type));
592
593 if (!STREQ (type_name_no_tag (type), $4.ptr))
594 error ("invalid destructor `%s::~%s'",
595 type_name_no_tag (type), $4.ptr);
596
597 tmp_token.ptr = (char*) alloca ($4.length + 2);
598 tmp_token.length = $4.length + 1;
599 tmp_token.ptr[0] = '~';
600 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
601 tmp_token.ptr[tmp_token.length] = 0;
602 write_exp_elt_opcode (OP_SCOPE);
603 write_exp_elt_type (type);
604 write_exp_string (tmp_token);
605 write_exp_elt_opcode (OP_SCOPE);
606 }
607 ;
608
609 variable: qualified_name
610 | COLONCOLON name
611 {
612 char *name = copy_name ($2);
613 struct symbol *sym;
614 struct minimal_symbol *msymbol;
615
616 sym =
617 lookup_symbol (name, (const struct block *) NULL,
618 VAR_NAMESPACE, (int *) NULL,
619 (struct symtab **) NULL);
620 if (sym)
621 {
622 write_exp_elt_opcode (OP_VAR_VALUE);
623 write_exp_elt_block (NULL);
624 write_exp_elt_sym (sym);
625 write_exp_elt_opcode (OP_VAR_VALUE);
626 break;
627 }
628
629 msymbol = lookup_minimal_symbol (name, NULL, NULL);
630 if (msymbol != NULL)
631 {
632 write_exp_msymbol (msymbol,
633 lookup_function_type (builtin_type_int),
634 builtin_type_int);
635 }
636 else
637 if (!have_full_symbols () && !have_partial_symbols ())
638 error ("No symbol table is loaded. Use the \"file\" command.");
639 else
640 error ("No symbol \"%s\" in current context.", name);
641 }
642 ;
643
644 variable: name_not_typename
645 { struct symbol *sym = $1.sym;
646
647 if (sym)
648 {
649 if (symbol_read_needs_frame (sym))
650 {
651 if (innermost_block == 0 ||
652 contained_in (block_found,
653 innermost_block))
654 innermost_block = block_found;
655 }
656
657 write_exp_elt_opcode (OP_VAR_VALUE);
658 /* We want to use the selected frame, not
659 another more inner frame which happens to
660 be in the same block. */
661 write_exp_elt_block (NULL);
662 write_exp_elt_sym (sym);
663 write_exp_elt_opcode (OP_VAR_VALUE);
664 }
665 else if ($1.is_a_field_of_this)
666 {
667 /* C++: it hangs off of `this'. Must
668 not inadvertently convert from a method call
669 to data ref. */
670 if (innermost_block == 0 ||
671 contained_in (block_found, innermost_block))
672 innermost_block = block_found;
673 write_exp_elt_opcode (OP_THIS);
674 write_exp_elt_opcode (OP_THIS);
675 write_exp_elt_opcode (STRUCTOP_PTR);
676 write_exp_string ($1.stoken);
677 write_exp_elt_opcode (STRUCTOP_PTR);
678 }
679 else
680 {
681 struct minimal_symbol *msymbol;
682 register char *arg = copy_name ($1.stoken);
683
684 msymbol =
685 lookup_minimal_symbol (arg, NULL, NULL);
686 if (msymbol != NULL)
687 {
688 write_exp_msymbol (msymbol,
689 lookup_function_type (builtin_type_int),
690 builtin_type_int);
691 }
692 else if (!have_full_symbols () && !have_partial_symbols ())
693 error ("No symbol table is loaded. Use the \"file\" command.");
694 else
695 error ("No symbol \"%s\" in current context.",
696 copy_name ($1.stoken));
697 }
698 }
699 ;
700
701
702 ptype : typebase
703 /* "const" and "volatile" are curently ignored. A type qualifier
704 before the type is currently handled in the typebase rule.
705 The reason for recognizing these here (shift/reduce conflicts)
706 might be obsolete now that some pointer to member rules have
707 been deleted. */
708 | typebase CONST_KEYWORD
709 | typebase VOLATILE_KEYWORD
710 | typebase abs_decl
711 { $$ = follow_types ($1); }
712 | typebase CONST_KEYWORD abs_decl
713 { $$ = follow_types ($1); }
714 | typebase VOLATILE_KEYWORD abs_decl
715 { $$ = follow_types ($1); }
716 ;
717
718 abs_decl: '*'
719 { push_type (tp_pointer); $$ = 0; }
720 | '*' abs_decl
721 { push_type (tp_pointer); $$ = $2; }
722 | '&'
723 { push_type (tp_reference); $$ = 0; }
724 | '&' abs_decl
725 { push_type (tp_reference); $$ = $2; }
726 | direct_abs_decl
727 ;
728
729 direct_abs_decl: '(' abs_decl ')'
730 { $$ = $2; }
731 | direct_abs_decl array_mod
732 {
733 push_type_int ($2);
734 push_type (tp_array);
735 }
736 | array_mod
737 {
738 push_type_int ($1);
739 push_type (tp_array);
740 $$ = 0;
741 }
742
743 | direct_abs_decl func_mod
744 { push_type (tp_function); }
745 | func_mod
746 { push_type (tp_function); }
747 ;
748
749 array_mod: '[' ']'
750 { $$ = -1; }
751 | '[' INT ']'
752 { $$ = $2.val; }
753 ;
754
755 func_mod: '(' ')'
756 { $$ = 0; }
757 | '(' nonempty_typelist ')'
758 { free ((PTR)$2); $$ = 0; }
759 ;
760
761 /* We used to try to recognize more pointer to member types here, but
762 that didn't work (shift/reduce conflicts meant that these rules never
763 got executed). The problem is that
764 int (foo::bar::baz::bizzle)
765 is a function type but
766 int (foo::bar::baz::bizzle::*)
767 is a pointer to member type. Stroustrup loses again! */
768
769 type : ptype
770 | typebase COLONCOLON '*'
771 { $$ = lookup_member_type (builtin_type_int, $1); }
772 ;
773
774 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
775 : TYPENAME
776 { $$ = $1.type; }
777 | INT_KEYWORD
778 { $$ = builtin_type_int; }
779 | LONG
780 { $$ = builtin_type_long; }
781 | SHORT
782 { $$ = builtin_type_short; }
783 | LONG INT_KEYWORD
784 { $$ = builtin_type_long; }
785 | UNSIGNED LONG INT_KEYWORD
786 { $$ = builtin_type_unsigned_long; }
787 | LONG LONG
788 { $$ = builtin_type_long_long; }
789 | LONG LONG INT_KEYWORD
790 { $$ = builtin_type_long_long; }
791 | UNSIGNED LONG LONG
792 { $$ = builtin_type_unsigned_long_long; }
793 | UNSIGNED LONG LONG INT_KEYWORD
794 { $$ = builtin_type_unsigned_long_long; }
795 | SHORT INT_KEYWORD
796 { $$ = builtin_type_short; }
797 | UNSIGNED SHORT INT_KEYWORD
798 { $$ = builtin_type_unsigned_short; }
799 | STRUCT name
800 { $$ = lookup_struct (copy_name ($2),
801 expression_context_block); }
802 | CLASS name
803 { $$ = lookup_struct (copy_name ($2),
804 expression_context_block); }
805 | UNION name
806 { $$ = lookup_union (copy_name ($2),
807 expression_context_block); }
808 | ENUM name
809 { $$ = lookup_enum (copy_name ($2),
810 expression_context_block); }
811 | UNSIGNED typename
812 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
813 | UNSIGNED
814 { $$ = builtin_type_unsigned_int; }
815 | SIGNED_KEYWORD typename
816 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
817 | SIGNED_KEYWORD
818 { $$ = builtin_type_int; }
819 | TEMPLATE name '<' type '>'
820 { $$ = lookup_template_type(copy_name($2), $4,
821 expression_context_block);
822 }
823 /* "const" and "volatile" are curently ignored. A type qualifier
824 after the type is handled in the ptype rule. I think these could
825 be too. */
826 | CONST_KEYWORD typebase { $$ = $2; }
827 | VOLATILE_KEYWORD typebase { $$ = $2; }
828 ;
829
830 typename: TYPENAME
831 | INT_KEYWORD
832 {
833 $$.stoken.ptr = "int";
834 $$.stoken.length = 3;
835 $$.type = builtin_type_int;
836 }
837 | LONG
838 {
839 $$.stoken.ptr = "long";
840 $$.stoken.length = 4;
841 $$.type = builtin_type_long;
842 }
843 | SHORT
844 {
845 $$.stoken.ptr = "short";
846 $$.stoken.length = 5;
847 $$.type = builtin_type_short;
848 }
849 ;
850
851 nonempty_typelist
852 : type
853 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
854 $<ivec>$[0] = 1; /* Number of types in vector */
855 $$[1] = $1;
856 }
857 | nonempty_typelist ',' type
858 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
859 $$ = (struct type **) realloc ((char *) $1, len);
860 $$[$<ivec>$[0]] = $3;
861 }
862 ;
863
864 name : NAME { $$ = $1.stoken; }
865 | BLOCKNAME { $$ = $1.stoken; }
866 | TYPENAME { $$ = $1.stoken; }
867 | NAME_OR_INT { $$ = $1.stoken; }
868 ;
869
870 name_not_typename : NAME
871 | BLOCKNAME
872 /* These would be useful if name_not_typename was useful, but it is just
873 a fake for "variable", so these cause reduce/reduce conflicts because
874 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
875 =exp) or just an exp. If name_not_typename was ever used in an lvalue
876 context where only a name could occur, this might be useful.
877 | NAME_OR_INT
878 */
879 ;
880
881 %%
882
883 /* Take care of parsing a number (anything that starts with a digit).
884 Set yylval and return the token type; update lexptr.
885 LEN is the number of characters in it. */
886
887 /*** Needs some error checking for the float case ***/
888
889 static int
890 parse_number (p, len, parsed_float, putithere)
891 register char *p;
892 register int len;
893 int parsed_float;
894 YYSTYPE *putithere;
895 {
896 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
897 here, and we do kind of silly things like cast to unsigned. */
898 register LONGEST n = 0;
899 register LONGEST prevn = 0;
900 unsigned LONGEST un;
901
902 register int i = 0;
903 register int c;
904 register int base = input_radix;
905 int unsigned_p = 0;
906
907 /* Number of "L" suffixes encountered. */
908 int long_p = 0;
909
910 /* We have found a "L" or "U" suffix. */
911 int found_suffix = 0;
912
913 unsigned LONGEST high_bit;
914 struct type *signed_type;
915 struct type *unsigned_type;
916
917 if (parsed_float)
918 {
919 /* It's a float since it contains a point or an exponent. */
920 putithere->dval = atof (p);
921 return FLOAT;
922 }
923
924 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
925 if (p[0] == '0')
926 switch (p[1])
927 {
928 case 'x':
929 case 'X':
930 if (len >= 3)
931 {
932 p += 2;
933 base = 16;
934 len -= 2;
935 }
936 break;
937
938 case 't':
939 case 'T':
940 case 'd':
941 case 'D':
942 if (len >= 3)
943 {
944 p += 2;
945 base = 10;
946 len -= 2;
947 }
948 break;
949
950 default:
951 base = 8;
952 break;
953 }
954
955 while (len-- > 0)
956 {
957 c = *p++;
958 if (c >= 'A' && c <= 'Z')
959 c += 'a' - 'A';
960 if (c != 'l' && c != 'u')
961 n *= base;
962 if (c >= '0' && c <= '9')
963 {
964 if (found_suffix)
965 return ERROR;
966 n += i = c - '0';
967 }
968 else
969 {
970 if (base > 10 && c >= 'a' && c <= 'f')
971 {
972 if (found_suffix)
973 return ERROR;
974 n += i = c - 'a' + 10;
975 }
976 else if (c == 'l')
977 {
978 ++long_p;
979 found_suffix = 1;
980 }
981 else if (c == 'u')
982 {
983 unsigned_p = 1;
984 found_suffix = 1;
985 }
986 else
987 return ERROR; /* Char not a digit */
988 }
989 if (i >= base)
990 return ERROR; /* Invalid digit in this base */
991
992 /* Portably test for overflow (only works for nonzero values, so make
993 a second check for zero). FIXME: Can't we just make n and prevn
994 unsigned and avoid this? */
995 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
996 unsigned_p = 1; /* Try something unsigned */
997
998 /* Portably test for unsigned overflow.
999 FIXME: This check is wrong; for example it doesn't find overflow
1000 on 0x123456789 when LONGEST is 32 bits. */
1001 if (c != 'l' && c != 'u' && n != 0)
1002 {
1003 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1004 error ("Numeric constant too large.");
1005 }
1006 prevn = n;
1007 }
1008
1009 /* An integer constant is an int, a long, or a long long. An L
1010 suffix forces it to be long; an LL suffix forces it to be long
1011 long. If not forced to a larger size, it gets the first type of
1012 the above that it fits in. To figure out whether it fits, we
1013 shift it right and see whether anything remains. Note that we
1014 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1015 operation, because many compilers will warn about such a shift
1016 (which always produces a zero result). Sometimes TARGET_INT_BIT
1017 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1018 the case where it is we just always shift the value more than
1019 once, with fewer bits each time. */
1020
1021 un = (unsigned LONGEST)n >> 2;
1022 if (long_p == 0
1023 && (un >> (TARGET_INT_BIT - 2)) == 0)
1024 {
1025 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1026
1027 /* A large decimal (not hex or octal) constant (between INT_MAX
1028 and UINT_MAX) is a long or unsigned long, according to ANSI,
1029 never an unsigned int, but this code treats it as unsigned
1030 int. This probably should be fixed. GCC gives a warning on
1031 such constants. */
1032
1033 unsigned_type = builtin_type_unsigned_int;
1034 signed_type = builtin_type_int;
1035 }
1036 else if (long_p <= 1
1037 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1038 {
1039 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1040 unsigned_type = builtin_type_unsigned_long;
1041 signed_type = builtin_type_long;
1042 }
1043 else
1044 {
1045 high_bit = (((unsigned LONGEST)1)
1046 << (TARGET_LONG_LONG_BIT - 32 - 1)
1047 << 16
1048 << 16);
1049 if (high_bit == 0)
1050 /* A long long does not fit in a LONGEST. */
1051 high_bit =
1052 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1053 unsigned_type = builtin_type_unsigned_long_long;
1054 signed_type = builtin_type_long_long;
1055 }
1056
1057 putithere->typed_val.val = n;
1058
1059 /* If the high bit of the worked out type is set then this number
1060 has to be unsigned. */
1061
1062 if (unsigned_p || (n & high_bit))
1063 {
1064 putithere->typed_val.type = unsigned_type;
1065 }
1066 else
1067 {
1068 putithere->typed_val.type = signed_type;
1069 }
1070
1071 return INT;
1072 }
1073
1074 struct token
1075 {
1076 char *operator;
1077 int token;
1078 enum exp_opcode opcode;
1079 };
1080
1081 static const struct token tokentab3[] =
1082 {
1083 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1084 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1085 };
1086
1087 static const struct token tokentab2[] =
1088 {
1089 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1090 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1091 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1092 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1093 {"%=", ASSIGN_MODIFY, BINOP_REM},
1094 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1095 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1096 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1097 {"++", INCREMENT, BINOP_END},
1098 {"--", DECREMENT, BINOP_END},
1099 {"->", ARROW, BINOP_END},
1100 {"&&", ANDAND, BINOP_END},
1101 {"||", OROR, BINOP_END},
1102 {"::", COLONCOLON, BINOP_END},
1103 {"<<", LSH, BINOP_END},
1104 {">>", RSH, BINOP_END},
1105 {"==", EQUAL, BINOP_END},
1106 {"!=", NOTEQUAL, BINOP_END},
1107 {"<=", LEQ, BINOP_END},
1108 {">=", GEQ, BINOP_END}
1109 };
1110
1111 /* Read one token, getting characters through lexptr. */
1112
1113 static int
1114 yylex ()
1115 {
1116 int c;
1117 int namelen;
1118 unsigned int i;
1119 char *tokstart;
1120 char *tokptr;
1121 int tempbufindex;
1122 static char *tempbuf;
1123 static int tempbufsize;
1124
1125 retry:
1126
1127 tokstart = lexptr;
1128 /* See if it is a special token of length 3. */
1129 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1130 if (STREQN (tokstart, tokentab3[i].operator, 3))
1131 {
1132 lexptr += 3;
1133 yylval.opcode = tokentab3[i].opcode;
1134 return tokentab3[i].token;
1135 }
1136
1137 /* See if it is a special token of length 2. */
1138 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1139 if (STREQN (tokstart, tokentab2[i].operator, 2))
1140 {
1141 lexptr += 2;
1142 yylval.opcode = tokentab2[i].opcode;
1143 return tokentab2[i].token;
1144 }
1145
1146 switch (c = *tokstart)
1147 {
1148 case 0:
1149 return 0;
1150
1151 case ' ':
1152 case '\t':
1153 case '\n':
1154 lexptr++;
1155 goto retry;
1156
1157 case '\'':
1158 /* We either have a character constant ('0' or '\177' for example)
1159 or we have a quoted symbol reference ('foo(int,int)' in C++
1160 for example). */
1161 lexptr++;
1162 c = *lexptr++;
1163 if (c == '\\')
1164 c = parse_escape (&lexptr);
1165 else if (c == '\'')
1166 error ("Empty character constant.");
1167
1168 yylval.typed_val.val = c;
1169 yylval.typed_val.type = builtin_type_char;
1170
1171 c = *lexptr++;
1172 if (c != '\'')
1173 {
1174 namelen = skip_quoted (tokstart) - tokstart;
1175 if (namelen > 2)
1176 {
1177 lexptr = tokstart + namelen;
1178 if (lexptr[-1] != '\'')
1179 error ("Unmatched single quote.");
1180 namelen -= 2;
1181 tokstart++;
1182 goto tryname;
1183 }
1184 error ("Invalid character constant.");
1185 }
1186 return INT;
1187
1188 case '(':
1189 paren_depth++;
1190 lexptr++;
1191 return c;
1192
1193 case ')':
1194 if (paren_depth == 0)
1195 return 0;
1196 paren_depth--;
1197 lexptr++;
1198 return c;
1199
1200 case ',':
1201 if (comma_terminates && paren_depth == 0)
1202 return 0;
1203 lexptr++;
1204 return c;
1205
1206 case '.':
1207 /* Might be a floating point number. */
1208 if (lexptr[1] < '0' || lexptr[1] > '9')
1209 goto symbol; /* Nope, must be a symbol. */
1210 /* FALL THRU into number case. */
1211
1212 case '0':
1213 case '1':
1214 case '2':
1215 case '3':
1216 case '4':
1217 case '5':
1218 case '6':
1219 case '7':
1220 case '8':
1221 case '9':
1222 {
1223 /* It's a number. */
1224 int got_dot = 0, got_e = 0, toktype;
1225 register char *p = tokstart;
1226 int hex = input_radix > 10;
1227
1228 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1229 {
1230 p += 2;
1231 hex = 1;
1232 }
1233 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1234 {
1235 p += 2;
1236 hex = 0;
1237 }
1238
1239 for (;; ++p)
1240 {
1241 /* This test includes !hex because 'e' is a valid hex digit
1242 and thus does not indicate a floating point number when
1243 the radix is hex. */
1244 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1245 got_dot = got_e = 1;
1246 /* This test does not include !hex, because a '.' always indicates
1247 a decimal floating point number regardless of the radix. */
1248 else if (!got_dot && *p == '.')
1249 got_dot = 1;
1250 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1251 && (*p == '-' || *p == '+'))
1252 /* This is the sign of the exponent, not the end of the
1253 number. */
1254 continue;
1255 /* We will take any letters or digits. parse_number will
1256 complain if past the radix, or if L or U are not final. */
1257 else if ((*p < '0' || *p > '9')
1258 && ((*p < 'a' || *p > 'z')
1259 && (*p < 'A' || *p > 'Z')))
1260 break;
1261 }
1262 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1263 if (toktype == ERROR)
1264 {
1265 char *err_copy = (char *) alloca (p - tokstart + 1);
1266
1267 memcpy (err_copy, tokstart, p - tokstart);
1268 err_copy[p - tokstart] = 0;
1269 error ("Invalid number \"%s\".", err_copy);
1270 }
1271 lexptr = p;
1272 return toktype;
1273 }
1274
1275 case '+':
1276 case '-':
1277 case '*':
1278 case '/':
1279 case '%':
1280 case '|':
1281 case '&':
1282 case '^':
1283 case '~':
1284 case '!':
1285 case '@':
1286 case '<':
1287 case '>':
1288 case '[':
1289 case ']':
1290 case '?':
1291 case ':':
1292 case '=':
1293 case '{':
1294 case '}':
1295 symbol:
1296 lexptr++;
1297 return c;
1298
1299 case '"':
1300
1301 /* Build the gdb internal form of the input string in tempbuf,
1302 translating any standard C escape forms seen. Note that the
1303 buffer is null byte terminated *only* for the convenience of
1304 debugging gdb itself and printing the buffer contents when
1305 the buffer contains no embedded nulls. Gdb does not depend
1306 upon the buffer being null byte terminated, it uses the length
1307 string instead. This allows gdb to handle C strings (as well
1308 as strings in other languages) with embedded null bytes */
1309
1310 tokptr = ++tokstart;
1311 tempbufindex = 0;
1312
1313 do {
1314 /* Grow the static temp buffer if necessary, including allocating
1315 the first one on demand. */
1316 if (tempbufindex + 1 >= tempbufsize)
1317 {
1318 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1319 }
1320 switch (*tokptr)
1321 {
1322 case '\0':
1323 case '"':
1324 /* Do nothing, loop will terminate. */
1325 break;
1326 case '\\':
1327 tokptr++;
1328 c = parse_escape (&tokptr);
1329 if (c == -1)
1330 {
1331 continue;
1332 }
1333 tempbuf[tempbufindex++] = c;
1334 break;
1335 default:
1336 tempbuf[tempbufindex++] = *tokptr++;
1337 break;
1338 }
1339 } while ((*tokptr != '"') && (*tokptr != '\0'));
1340 if (*tokptr++ != '"')
1341 {
1342 error ("Unterminated string in expression.");
1343 }
1344 tempbuf[tempbufindex] = '\0'; /* See note above */
1345 yylval.sval.ptr = tempbuf;
1346 yylval.sval.length = tempbufindex;
1347 lexptr = tokptr;
1348 return (STRING);
1349 }
1350
1351 if (!(c == '_' || c == '$'
1352 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1353 /* We must have come across a bad character (e.g. ';'). */
1354 error ("Invalid character '%c' in expression.", c);
1355
1356 /* It's a name. See how long it is. */
1357 namelen = 0;
1358 for (c = tokstart[namelen];
1359 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1360 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1361 {
1362 if (c == '<')
1363 {
1364 int i = namelen;
1365 while (tokstart[++i] && tokstart[i] != '>');
1366 if (tokstart[i] == '>')
1367 namelen = i;
1368 }
1369 c = tokstart[++namelen];
1370 }
1371
1372 /* The token "if" terminates the expression and is NOT
1373 removed from the input stream. */
1374 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1375 {
1376 return 0;
1377 }
1378
1379 lexptr += namelen;
1380
1381 tryname:
1382
1383 /* Catch specific keywords. Should be done with a data structure. */
1384 switch (namelen)
1385 {
1386 case 8:
1387 if (STREQN (tokstart, "unsigned", 8))
1388 return UNSIGNED;
1389 if (current_language->la_language == language_cplus
1390 && STREQN (tokstart, "template", 8))
1391 return TEMPLATE;
1392 if (STREQN (tokstart, "volatile", 8))
1393 return VOLATILE_KEYWORD;
1394 break;
1395 case 6:
1396 if (STREQN (tokstart, "struct", 6))
1397 return STRUCT;
1398 if (STREQN (tokstart, "signed", 6))
1399 return SIGNED_KEYWORD;
1400 if (STREQN (tokstart, "sizeof", 6))
1401 return SIZEOF;
1402 break;
1403 case 5:
1404 if (current_language->la_language == language_cplus
1405 && STREQN (tokstart, "class", 5))
1406 return CLASS;
1407 if (STREQN (tokstart, "union", 5))
1408 return UNION;
1409 if (STREQN (tokstart, "short", 5))
1410 return SHORT;
1411 if (STREQN (tokstart, "const", 5))
1412 return CONST_KEYWORD;
1413 break;
1414 case 4:
1415 if (STREQN (tokstart, "enum", 4))
1416 return ENUM;
1417 if (STREQN (tokstart, "long", 4))
1418 return LONG;
1419 if (current_language->la_language == language_cplus
1420 && STREQN (tokstart, "this", 4))
1421 {
1422 static const char this_name[] =
1423 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1424
1425 if (lookup_symbol (this_name, expression_context_block,
1426 VAR_NAMESPACE, (int *) NULL,
1427 (struct symtab **) NULL))
1428 return THIS;
1429 }
1430 break;
1431 case 3:
1432 if (STREQN (tokstart, "int", 3))
1433 return INT_KEYWORD;
1434 break;
1435 default:
1436 break;
1437 }
1438
1439 yylval.sval.ptr = tokstart;
1440 yylval.sval.length = namelen;
1441
1442 if (*tokstart == '$')
1443 {
1444 write_dollar_variable (yylval.sval);
1445 return VARIABLE;
1446 }
1447
1448 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1449 functions or symtabs. If this is not so, then ...
1450 Use token-type TYPENAME for symbols that happen to be defined
1451 currently as names of types; NAME for other symbols.
1452 The caller is not constrained to care about the distinction. */
1453 {
1454 char *tmp = copy_name (yylval.sval);
1455 struct symbol *sym;
1456 int is_a_field_of_this = 0;
1457 int hextype;
1458
1459 sym = lookup_symbol (tmp, expression_context_block,
1460 VAR_NAMESPACE,
1461 current_language->la_language == language_cplus
1462 ? &is_a_field_of_this : (int *) NULL,
1463 (struct symtab **) NULL);
1464 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1465 no psymtabs (coff, xcoff, or some future change to blow away the
1466 psymtabs once once symbols are read). */
1467 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1468 lookup_symtab (tmp))
1469 {
1470 yylval.ssym.sym = sym;
1471 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1472 return BLOCKNAME;
1473 }
1474 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1475 {
1476 #if 1
1477 /* Despite the following flaw, we need to keep this code enabled.
1478 Because we can get called from check_stub_method, if we don't
1479 handle nested types then it screws many operations in any
1480 program which uses nested types. */
1481 /* In "A::x", if x is a member function of A and there happens
1482 to be a type (nested or not, since the stabs don't make that
1483 distinction) named x, then this code incorrectly thinks we
1484 are dealing with nested types rather than a member function. */
1485
1486 char *p;
1487 char *namestart;
1488 struct symbol *best_sym;
1489
1490 /* Look ahead to detect nested types. This probably should be
1491 done in the grammar, but trying seemed to introduce a lot
1492 of shift/reduce and reduce/reduce conflicts. It's possible
1493 that it could be done, though. Or perhaps a non-grammar, but
1494 less ad hoc, approach would work well. */
1495
1496 /* Since we do not currently have any way of distinguishing
1497 a nested type from a non-nested one (the stabs don't tell
1498 us whether a type is nested), we just ignore the
1499 containing type. */
1500
1501 p = lexptr;
1502 best_sym = sym;
1503 while (1)
1504 {
1505 /* Skip whitespace. */
1506 while (*p == ' ' || *p == '\t' || *p == '\n')
1507 ++p;
1508 if (*p == ':' && p[1] == ':')
1509 {
1510 /* Skip the `::'. */
1511 p += 2;
1512 /* Skip whitespace. */
1513 while (*p == ' ' || *p == '\t' || *p == '\n')
1514 ++p;
1515 namestart = p;
1516 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1517 || (*p >= 'a' && *p <= 'z')
1518 || (*p >= 'A' && *p <= 'Z'))
1519 ++p;
1520 if (p != namestart)
1521 {
1522 struct symbol *cur_sym;
1523 /* As big as the whole rest of the expression, which is
1524 at least big enough. */
1525 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1526 char *tmp1;
1527
1528 tmp1 = ncopy;
1529 memcpy (tmp1, tmp, strlen (tmp));
1530 tmp1 += strlen (tmp);
1531 memcpy (tmp1, "::", 2);
1532 tmp1 += 2;
1533 memcpy (tmp1, namestart, p - namestart);
1534 tmp1[p - namestart] = '\0';
1535 cur_sym = lookup_symbol (ncopy, expression_context_block,
1536 VAR_NAMESPACE, (int *) NULL,
1537 (struct symtab **) NULL);
1538 if (cur_sym)
1539 {
1540 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1541 {
1542 best_sym = cur_sym;
1543 lexptr = p;
1544 }
1545 else
1546 break;
1547 }
1548 else
1549 break;
1550 }
1551 else
1552 break;
1553 }
1554 else
1555 break;
1556 }
1557
1558 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1559 #else /* not 0 */
1560 yylval.tsym.type = SYMBOL_TYPE (sym);
1561 #endif /* not 0 */
1562 return TYPENAME;
1563 }
1564 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1565 return TYPENAME;
1566
1567 /* Input names that aren't symbols but ARE valid hex numbers,
1568 when the input radix permits them, can be names or numbers
1569 depending on the parse. Note we support radixes > 16 here. */
1570 if (!sym &&
1571 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1572 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1573 {
1574 YYSTYPE newlval; /* Its value is ignored. */
1575 hextype = parse_number (tokstart, namelen, 0, &newlval);
1576 if (hextype == INT)
1577 {
1578 yylval.ssym.sym = sym;
1579 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1580 return NAME_OR_INT;
1581 }
1582 }
1583
1584 /* Any other kind of symbol */
1585 yylval.ssym.sym = sym;
1586 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1587 return NAME;
1588 }
1589 }
1590
1591 void
1592 yyerror (msg)
1593 char *msg;
1594 {
1595 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1596 }
This page took 0.074811 seconds and 4 git commands to generate.