* c-exp.y (yylex): scan template names, and scan nested class
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87
88 #ifndef YYDEBUG
89 #define YYDEBUG 0 /* Default to no yydebug support */
90 #endif
91
92 int
93 yyparse PARAMS ((void));
94
95 static int
96 yylex PARAMS ((void));
97
98 void
99 yyerror PARAMS ((char *));
100
101 %}
102
103 /* Although the yacc "value" of an expression is not used,
104 since the result is stored in the structure being created,
105 other node types do have values. */
106
107 %union
108 {
109 LONGEST lval;
110 struct {
111 LONGEST val;
112 struct type *type;
113 } typed_val;
114 double dval;
115 struct symbol *sym;
116 struct type *tval;
117 struct stoken sval;
118 struct ttype tsym;
119 struct symtoken ssym;
120 int voidval;
121 struct block *bval;
122 enum exp_opcode opcode;
123 struct internalvar *ivar;
124
125 struct type **tvec;
126 int *ivec;
127 }
128
129 %{
130 /* YYSTYPE gets defined by %union */
131 static int
132 parse_number PARAMS ((char *, int, int, YYSTYPE *));
133 %}
134
135 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
136 %type <lval> rcurly
137 %type <tval> type typebase
138 %type <tvec> nonempty_typelist
139 /* %type <bval> block */
140
141 /* Fancy type parsing. */
142 %type <voidval> func_mod direct_abs_decl abs_decl
143 %type <tval> ptype
144 %type <lval> array_mod
145
146 %token <typed_val> INT
147 %token <dval> FLOAT
148
149 /* Both NAME and TYPENAME tokens represent symbols in the input,
150 and both convey their data as strings.
151 But a TYPENAME is a string that happens to be defined as a typedef
152 or builtin type name (such as int or char)
153 and a NAME is any other symbol.
154 Contexts where this distinction is not important can use the
155 nonterminal "name", which matches either NAME or TYPENAME. */
156
157 %token <sval> STRING
158 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
159 %token <tsym> TYPENAME
160 %type <sval> name
161 %type <ssym> name_not_typename
162 %type <tsym> typename
163
164 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
165 but which would parse as a valid number in the current input radix.
166 E.g. "c" when input_radix==16. Depending on the parse, it will be
167 turned into a name or into a number. */
168
169 %token <ssym> NAME_OR_INT
170
171 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
172 %token TEMPLATE
173 %token ERROR
174
175 /* Special type cases, put in to allow the parser to distinguish different
176 legal basetypes. */
177 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
178 %token <lval> LAST REGNAME
179
180 %token <ivar> VARIABLE
181
182 %token <opcode> ASSIGN_MODIFY
183
184 /* C++ */
185 %token THIS
186
187 %left ','
188 %left ABOVE_COMMA
189 %right '=' ASSIGN_MODIFY
190 %right '?'
191 %left OROR
192 %left ANDAND
193 %left '|'
194 %left '^'
195 %left '&'
196 %left EQUAL NOTEQUAL
197 %left '<' '>' LEQ GEQ
198 %left LSH RSH
199 %left '@'
200 %left '+' '-'
201 %left '*' '/' '%'
202 %right UNARY INCREMENT DECREMENT
203 %right ARROW '.' '[' '('
204 %token <ssym> BLOCKNAME
205 %type <bval> block
206 %left COLONCOLON
207
208 \f
209 %%
210
211 start : exp1
212 | type_exp
213 ;
214
215 type_exp: type
216 { write_exp_elt_opcode(OP_TYPE);
217 write_exp_elt_type($1);
218 write_exp_elt_opcode(OP_TYPE);}
219 ;
220
221 /* Expressions, including the comma operator. */
222 exp1 : exp
223 | exp1 ',' exp
224 { write_exp_elt_opcode (BINOP_COMMA); }
225 ;
226
227 /* Expressions, not including the comma operator. */
228 exp : '*' exp %prec UNARY
229 { write_exp_elt_opcode (UNOP_IND); }
230
231 exp : '&' exp %prec UNARY
232 { write_exp_elt_opcode (UNOP_ADDR); }
233
234 exp : '-' exp %prec UNARY
235 { write_exp_elt_opcode (UNOP_NEG); }
236 ;
237
238 exp : '!' exp %prec UNARY
239 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
240 ;
241
242 exp : '~' exp %prec UNARY
243 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
244 ;
245
246 exp : INCREMENT exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
248 ;
249
250 exp : DECREMENT exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
252 ;
253
254 exp : exp INCREMENT %prec UNARY
255 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
256 ;
257
258 exp : exp DECREMENT %prec UNARY
259 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
260 ;
261
262 exp : SIZEOF exp %prec UNARY
263 { write_exp_elt_opcode (UNOP_SIZEOF); }
264 ;
265
266 exp : exp ARROW name
267 { write_exp_elt_opcode (STRUCTOP_PTR);
268 write_exp_string ($3);
269 write_exp_elt_opcode (STRUCTOP_PTR); }
270 ;
271
272 exp : exp ARROW qualified_name
273 { /* exp->type::name becomes exp->*(&type::name) */
274 /* Note: this doesn't work if name is a
275 static member! FIXME */
276 write_exp_elt_opcode (UNOP_ADDR);
277 write_exp_elt_opcode (STRUCTOP_MPTR); }
278 ;
279 exp : exp ARROW '*' exp
280 { write_exp_elt_opcode (STRUCTOP_MPTR); }
281 ;
282
283 exp : exp '.' name
284 { write_exp_elt_opcode (STRUCTOP_STRUCT);
285 write_exp_string ($3);
286 write_exp_elt_opcode (STRUCTOP_STRUCT); }
287 ;
288
289 exp : exp '.' qualified_name
290 { /* exp.type::name becomes exp.*(&type::name) */
291 /* Note: this doesn't work if name is a
292 static member! FIXME */
293 write_exp_elt_opcode (UNOP_ADDR);
294 write_exp_elt_opcode (STRUCTOP_MEMBER); }
295 ;
296
297 exp : exp '.' '*' exp
298 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
299 ;
300
301 exp : exp '[' exp1 ']'
302 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
303 ;
304
305 exp : exp '('
306 /* This is to save the value of arglist_len
307 being accumulated by an outer function call. */
308 { start_arglist (); }
309 arglist ')' %prec ARROW
310 { write_exp_elt_opcode (OP_FUNCALL);
311 write_exp_elt_longcst ((LONGEST) end_arglist ());
312 write_exp_elt_opcode (OP_FUNCALL); }
313 ;
314
315 lcurly : '{'
316 { start_arglist (); }
317 ;
318
319 arglist :
320 ;
321
322 arglist : exp
323 { arglist_len = 1; }
324 ;
325
326 arglist : arglist ',' exp %prec ABOVE_COMMA
327 { arglist_len++; }
328 ;
329
330 rcurly : '}'
331 { $$ = end_arglist () - 1; }
332 ;
333 exp : lcurly arglist rcurly %prec ARROW
334 { write_exp_elt_opcode (OP_ARRAY);
335 write_exp_elt_longcst ((LONGEST) 0);
336 write_exp_elt_longcst ((LONGEST) $3);
337 write_exp_elt_opcode (OP_ARRAY); }
338 ;
339
340 exp : lcurly type rcurly exp %prec UNARY
341 { write_exp_elt_opcode (UNOP_MEMVAL);
342 write_exp_elt_type ($2);
343 write_exp_elt_opcode (UNOP_MEMVAL); }
344 ;
345
346 exp : '(' type ')' exp %prec UNARY
347 { write_exp_elt_opcode (UNOP_CAST);
348 write_exp_elt_type ($2);
349 write_exp_elt_opcode (UNOP_CAST); }
350 ;
351
352 exp : '(' exp1 ')'
353 { }
354 ;
355
356 /* Binary operators in order of decreasing precedence. */
357
358 exp : exp '@' exp
359 { write_exp_elt_opcode (BINOP_REPEAT); }
360 ;
361
362 exp : exp '*' exp
363 { write_exp_elt_opcode (BINOP_MUL); }
364 ;
365
366 exp : exp '/' exp
367 { write_exp_elt_opcode (BINOP_DIV); }
368 ;
369
370 exp : exp '%' exp
371 { write_exp_elt_opcode (BINOP_REM); }
372 ;
373
374 exp : exp '+' exp
375 { write_exp_elt_opcode (BINOP_ADD); }
376 ;
377
378 exp : exp '-' exp
379 { write_exp_elt_opcode (BINOP_SUB); }
380 ;
381
382 exp : exp LSH exp
383 { write_exp_elt_opcode (BINOP_LSH); }
384 ;
385
386 exp : exp RSH exp
387 { write_exp_elt_opcode (BINOP_RSH); }
388 ;
389
390 exp : exp EQUAL exp
391 { write_exp_elt_opcode (BINOP_EQUAL); }
392 ;
393
394 exp : exp NOTEQUAL exp
395 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
396 ;
397
398 exp : exp LEQ exp
399 { write_exp_elt_opcode (BINOP_LEQ); }
400 ;
401
402 exp : exp GEQ exp
403 { write_exp_elt_opcode (BINOP_GEQ); }
404 ;
405
406 exp : exp '<' exp
407 { write_exp_elt_opcode (BINOP_LESS); }
408 ;
409
410 exp : exp '>' exp
411 { write_exp_elt_opcode (BINOP_GTR); }
412 ;
413
414 exp : exp '&' exp
415 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
416 ;
417
418 exp : exp '^' exp
419 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
420 ;
421
422 exp : exp '|' exp
423 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
424 ;
425
426 exp : exp ANDAND exp
427 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
428 ;
429
430 exp : exp OROR exp
431 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
432 ;
433
434 exp : exp '?' exp ':' exp %prec '?'
435 { write_exp_elt_opcode (TERNOP_COND); }
436 ;
437
438 exp : exp '=' exp
439 { write_exp_elt_opcode (BINOP_ASSIGN); }
440 ;
441
442 exp : exp ASSIGN_MODIFY exp
443 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
444 write_exp_elt_opcode ($2);
445 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
446 ;
447
448 exp : INT
449 { write_exp_elt_opcode (OP_LONG);
450 write_exp_elt_type ($1.type);
451 write_exp_elt_longcst ((LONGEST)($1.val));
452 write_exp_elt_opcode (OP_LONG); }
453 ;
454
455 exp : NAME_OR_INT
456 { YYSTYPE val;
457 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
458 write_exp_elt_opcode (OP_LONG);
459 write_exp_elt_type (val.typed_val.type);
460 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
461 write_exp_elt_opcode (OP_LONG);
462 }
463 ;
464
465
466 exp : FLOAT
467 { write_exp_elt_opcode (OP_DOUBLE);
468 write_exp_elt_type (builtin_type_double);
469 write_exp_elt_dblcst ($1);
470 write_exp_elt_opcode (OP_DOUBLE); }
471 ;
472
473 exp : variable
474 ;
475
476 exp : LAST
477 { write_exp_elt_opcode (OP_LAST);
478 write_exp_elt_longcst ((LONGEST) $1);
479 write_exp_elt_opcode (OP_LAST); }
480 ;
481
482 exp : REGNAME
483 { write_exp_elt_opcode (OP_REGISTER);
484 write_exp_elt_longcst ((LONGEST) $1);
485 write_exp_elt_opcode (OP_REGISTER); }
486 ;
487
488 exp : VARIABLE
489 { write_exp_elt_opcode (OP_INTERNALVAR);
490 write_exp_elt_intern ($1);
491 write_exp_elt_opcode (OP_INTERNALVAR); }
492 ;
493
494 exp : SIZEOF '(' type ')' %prec UNARY
495 { write_exp_elt_opcode (OP_LONG);
496 write_exp_elt_type (builtin_type_int);
497 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
498 write_exp_elt_opcode (OP_LONG); }
499 ;
500
501 exp : STRING
502 { /* C strings are converted into array constants with
503 an explicit null byte added at the end. Thus
504 the array upper bound is the string length.
505 There is no such thing in C as a completely empty
506 string. */
507 char *sp = $1.ptr; int count = $1.length;
508 while (count-- > 0)
509 {
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)(*sp++));
513 write_exp_elt_opcode (OP_LONG);
514 }
515 write_exp_elt_opcode (OP_LONG);
516 write_exp_elt_type (builtin_type_char);
517 write_exp_elt_longcst ((LONGEST)'\0');
518 write_exp_elt_opcode (OP_LONG);
519 write_exp_elt_opcode (OP_ARRAY);
520 write_exp_elt_longcst ((LONGEST) 0);
521 write_exp_elt_longcst ((LONGEST) ($1.length));
522 write_exp_elt_opcode (OP_ARRAY); }
523 ;
524
525 /* C++. */
526 exp : THIS
527 { write_exp_elt_opcode (OP_THIS);
528 write_exp_elt_opcode (OP_THIS); }
529 ;
530
531 /* end of C++. */
532
533 block : BLOCKNAME
534 {
535 if ($1.sym != 0)
536 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
537 else
538 {
539 struct symtab *tem =
540 lookup_symtab (copy_name ($1.stoken));
541 if (tem)
542 $$ = BLOCKVECTOR_BLOCK
543 (BLOCKVECTOR (tem), STATIC_BLOCK);
544 else
545 error ("No file or function \"%s\".",
546 copy_name ($1.stoken));
547 }
548 }
549 ;
550
551 block : block COLONCOLON name
552 { struct symbol *tem
553 = lookup_symbol (copy_name ($3), $1,
554 VAR_NAMESPACE, (int *) NULL,
555 (struct symtab **) NULL);
556 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
557 error ("No function \"%s\" in specified context.",
558 copy_name ($3));
559 $$ = SYMBOL_BLOCK_VALUE (tem); }
560 ;
561
562 variable: block COLONCOLON name
563 { struct symbol *sym;
564 sym = lookup_symbol (copy_name ($3), $1,
565 VAR_NAMESPACE, (int *) NULL,
566 (struct symtab **) NULL);
567 if (sym == 0)
568 error ("No symbol \"%s\" in specified context.",
569 copy_name ($3));
570
571 write_exp_elt_opcode (OP_VAR_VALUE);
572 /* block_found is set by lookup_symbol. */
573 write_exp_elt_block (block_found);
574 write_exp_elt_sym (sym);
575 write_exp_elt_opcode (OP_VAR_VALUE); }
576 ;
577
578 qualified_name: typebase COLONCOLON name
579 {
580 struct type *type = $1;
581 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
582 && TYPE_CODE (type) != TYPE_CODE_UNION)
583 error ("`%s' is not defined as an aggregate type.",
584 TYPE_NAME (type));
585
586 write_exp_elt_opcode (OP_SCOPE);
587 write_exp_elt_type (type);
588 write_exp_string ($3);
589 write_exp_elt_opcode (OP_SCOPE);
590 }
591 | typebase COLONCOLON '~' name
592 {
593 struct type *type = $1;
594 struct stoken tmp_token;
595 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
596 && TYPE_CODE (type) != TYPE_CODE_UNION)
597 error ("`%s' is not defined as an aggregate type.",
598 TYPE_NAME (type));
599
600 if (!STREQ (type_name_no_tag (type), $4.ptr))
601 error ("invalid destructor `%s::~%s'",
602 type_name_no_tag (type), $4.ptr);
603
604 tmp_token.ptr = (char*) alloca ($4.length + 2);
605 tmp_token.length = $4.length + 1;
606 tmp_token.ptr[0] = '~';
607 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
608 tmp_token.ptr[tmp_token.length] = 0;
609 write_exp_elt_opcode (OP_SCOPE);
610 write_exp_elt_type (type);
611 write_exp_string (tmp_token);
612 write_exp_elt_opcode (OP_SCOPE);
613 }
614 ;
615
616 variable: qualified_name
617 | COLONCOLON name
618 {
619 char *name = copy_name ($2);
620 struct symbol *sym;
621 struct minimal_symbol *msymbol;
622
623 sym =
624 lookup_symbol (name, (const struct block *) NULL,
625 VAR_NAMESPACE, (int *) NULL,
626 (struct symtab **) NULL);
627 if (sym)
628 {
629 write_exp_elt_opcode (OP_VAR_VALUE);
630 write_exp_elt_block (NULL);
631 write_exp_elt_sym (sym);
632 write_exp_elt_opcode (OP_VAR_VALUE);
633 break;
634 }
635
636 msymbol = lookup_minimal_symbol (name,
637 (struct objfile *) NULL);
638 if (msymbol != NULL)
639 {
640 write_exp_msymbol (msymbol,
641 lookup_function_type (builtin_type_int),
642 builtin_type_int);
643 }
644 else
645 if (!have_full_symbols () && !have_partial_symbols ())
646 error ("No symbol table is loaded. Use the \"file\" command.");
647 else
648 error ("No symbol \"%s\" in current context.", name);
649 }
650 ;
651
652 variable: name_not_typename
653 { struct symbol *sym = $1.sym;
654
655 if (sym)
656 {
657 if (symbol_read_needs_frame (sym))
658 {
659 if (innermost_block == 0 ||
660 contained_in (block_found,
661 innermost_block))
662 innermost_block = block_found;
663 }
664
665 write_exp_elt_opcode (OP_VAR_VALUE);
666 /* We want to use the selected frame, not
667 another more inner frame which happens to
668 be in the same block. */
669 write_exp_elt_block (NULL);
670 write_exp_elt_sym (sym);
671 write_exp_elt_opcode (OP_VAR_VALUE);
672 }
673 else if ($1.is_a_field_of_this)
674 {
675 /* C++: it hangs off of `this'. Must
676 not inadvertently convert from a method call
677 to data ref. */
678 if (innermost_block == 0 ||
679 contained_in (block_found, innermost_block))
680 innermost_block = block_found;
681 write_exp_elt_opcode (OP_THIS);
682 write_exp_elt_opcode (OP_THIS);
683 write_exp_elt_opcode (STRUCTOP_PTR);
684 write_exp_string ($1.stoken);
685 write_exp_elt_opcode (STRUCTOP_PTR);
686 }
687 else
688 {
689 struct minimal_symbol *msymbol;
690 register char *arg = copy_name ($1.stoken);
691
692 msymbol = lookup_minimal_symbol (arg,
693 (struct objfile *) NULL);
694 if (msymbol != NULL)
695 {
696 write_exp_msymbol (msymbol,
697 lookup_function_type (builtin_type_int),
698 builtin_type_int);
699 }
700 else if (!have_full_symbols () && !have_partial_symbols ())
701 error ("No symbol table is loaded. Use the \"file\" command.");
702 else
703 error ("No symbol \"%s\" in current context.",
704 copy_name ($1.stoken));
705 }
706 }
707 ;
708
709
710 ptype : typebase
711 /* "const" and "volatile" are curently ignored. A type qualifier
712 before the type is currently handled in the typebase rule.
713 The reason for recognizing these here (shift/reduce conflicts)
714 might be obsolete now that some pointer to member rules have
715 been deleted. */
716 | typebase CONST_KEYWORD
717 | typebase VOLATILE_KEYWORD
718 | typebase abs_decl
719 { $$ = follow_types ($1); }
720 | typebase CONST_KEYWORD abs_decl
721 { $$ = follow_types ($1); }
722 | typebase VOLATILE_KEYWORD abs_decl
723 { $$ = follow_types ($1); }
724 ;
725
726 abs_decl: '*'
727 { push_type (tp_pointer); $$ = 0; }
728 | '*' abs_decl
729 { push_type (tp_pointer); $$ = $2; }
730 | '&'
731 { push_type (tp_reference); $$ = 0; }
732 | '&' abs_decl
733 { push_type (tp_reference); $$ = $2; }
734 | direct_abs_decl
735 ;
736
737 direct_abs_decl: '(' abs_decl ')'
738 { $$ = $2; }
739 | direct_abs_decl array_mod
740 {
741 push_type_int ($2);
742 push_type (tp_array);
743 }
744 | array_mod
745 {
746 push_type_int ($1);
747 push_type (tp_array);
748 $$ = 0;
749 }
750
751 | direct_abs_decl func_mod
752 { push_type (tp_function); }
753 | func_mod
754 { push_type (tp_function); }
755 ;
756
757 array_mod: '[' ']'
758 { $$ = -1; }
759 | '[' INT ']'
760 { $$ = $2.val; }
761 ;
762
763 func_mod: '(' ')'
764 { $$ = 0; }
765 | '(' nonempty_typelist ')'
766 { free ((PTR)$2); $$ = 0; }
767 ;
768
769 /* We used to try to recognize more pointer to member types here, but
770 that didn't work (shift/reduce conflicts meant that these rules never
771 got executed). The problem is that
772 int (foo::bar::baz::bizzle)
773 is a function type but
774 int (foo::bar::baz::bizzle::*)
775 is a pointer to member type. Stroustrup loses again! */
776
777 type : ptype
778 | typebase COLONCOLON '*'
779 { $$ = lookup_member_type (builtin_type_int, $1); }
780 ;
781
782 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
783 : TYPENAME
784 { $$ = $1.type; }
785 | INT_KEYWORD
786 { $$ = builtin_type_int; }
787 | LONG
788 { $$ = builtin_type_long; }
789 | SHORT
790 { $$ = builtin_type_short; }
791 | LONG INT_KEYWORD
792 { $$ = builtin_type_long; }
793 | UNSIGNED LONG INT_KEYWORD
794 { $$ = builtin_type_unsigned_long; }
795 | LONG LONG
796 { $$ = builtin_type_long_long; }
797 | LONG LONG INT_KEYWORD
798 { $$ = builtin_type_long_long; }
799 | UNSIGNED LONG LONG
800 { $$ = builtin_type_unsigned_long_long; }
801 | UNSIGNED LONG LONG INT_KEYWORD
802 { $$ = builtin_type_unsigned_long_long; }
803 | SHORT INT_KEYWORD
804 { $$ = builtin_type_short; }
805 | UNSIGNED SHORT INT_KEYWORD
806 { $$ = builtin_type_unsigned_short; }
807 | STRUCT name
808 { $$ = lookup_struct (copy_name ($2),
809 expression_context_block); }
810 | CLASS name
811 { $$ = lookup_struct (copy_name ($2),
812 expression_context_block); }
813 | UNION name
814 { $$ = lookup_union (copy_name ($2),
815 expression_context_block); }
816 | ENUM name
817 { $$ = lookup_enum (copy_name ($2),
818 expression_context_block); }
819 | UNSIGNED typename
820 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
821 | UNSIGNED
822 { $$ = builtin_type_unsigned_int; }
823 | SIGNED_KEYWORD typename
824 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
825 | SIGNED_KEYWORD
826 { $$ = builtin_type_int; }
827 | TEMPLATE name '<' type '>'
828 { $$ = lookup_template_type(copy_name($2), $4,
829 expression_context_block);
830 }
831 /* "const" and "volatile" are curently ignored. A type qualifier
832 after the type is handled in the ptype rule. I think these could
833 be too. */
834 | CONST_KEYWORD typebase { $$ = $2; }
835 | VOLATILE_KEYWORD typebase { $$ = $2; }
836 ;
837
838 typename: TYPENAME
839 | INT_KEYWORD
840 {
841 $$.stoken.ptr = "int";
842 $$.stoken.length = 3;
843 $$.type = builtin_type_int;
844 }
845 | LONG
846 {
847 $$.stoken.ptr = "long";
848 $$.stoken.length = 4;
849 $$.type = builtin_type_long;
850 }
851 | SHORT
852 {
853 $$.stoken.ptr = "short";
854 $$.stoken.length = 5;
855 $$.type = builtin_type_short;
856 }
857 ;
858
859 nonempty_typelist
860 : type
861 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
862 $<ivec>$[0] = 1; /* Number of types in vector */
863 $$[1] = $1;
864 }
865 | nonempty_typelist ',' type
866 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
867 $$ = (struct type **) realloc ((char *) $1, len);
868 $$[$<ivec>$[0]] = $3;
869 }
870 ;
871
872 name : NAME { $$ = $1.stoken; }
873 | BLOCKNAME { $$ = $1.stoken; }
874 | TYPENAME { $$ = $1.stoken; }
875 | NAME_OR_INT { $$ = $1.stoken; }
876 ;
877
878 name_not_typename : NAME
879 | BLOCKNAME
880 /* These would be useful if name_not_typename was useful, but it is just
881 a fake for "variable", so these cause reduce/reduce conflicts because
882 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
883 =exp) or just an exp. If name_not_typename was ever used in an lvalue
884 context where only a name could occur, this might be useful.
885 | NAME_OR_INT
886 */
887 ;
888
889 %%
890
891 /* Take care of parsing a number (anything that starts with a digit).
892 Set yylval and return the token type; update lexptr.
893 LEN is the number of characters in it. */
894
895 /*** Needs some error checking for the float case ***/
896
897 static int
898 parse_number (p, len, parsed_float, putithere)
899 register char *p;
900 register int len;
901 int parsed_float;
902 YYSTYPE *putithere;
903 {
904 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
905 here, and we do kind of silly things like cast to unsigned. */
906 register LONGEST n = 0;
907 register LONGEST prevn = 0;
908 unsigned LONGEST un;
909
910 register int i = 0;
911 register int c;
912 register int base = input_radix;
913 int unsigned_p = 0;
914
915 /* Number of "L" suffixes encountered. */
916 int long_p = 0;
917
918 /* We have found a "L" or "U" suffix. */
919 int found_suffix = 0;
920
921 unsigned LONGEST high_bit;
922 struct type *signed_type;
923 struct type *unsigned_type;
924
925 if (parsed_float)
926 {
927 /* It's a float since it contains a point or an exponent. */
928 putithere->dval = atof (p);
929 return FLOAT;
930 }
931
932 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
933 if (p[0] == '0')
934 switch (p[1])
935 {
936 case 'x':
937 case 'X':
938 if (len >= 3)
939 {
940 p += 2;
941 base = 16;
942 len -= 2;
943 }
944 break;
945
946 case 't':
947 case 'T':
948 case 'd':
949 case 'D':
950 if (len >= 3)
951 {
952 p += 2;
953 base = 10;
954 len -= 2;
955 }
956 break;
957
958 default:
959 base = 8;
960 break;
961 }
962
963 while (len-- > 0)
964 {
965 c = *p++;
966 if (c >= 'A' && c <= 'Z')
967 c += 'a' - 'A';
968 if (c != 'l' && c != 'u')
969 n *= base;
970 if (c >= '0' && c <= '9')
971 {
972 if (found_suffix)
973 return ERROR;
974 n += i = c - '0';
975 }
976 else
977 {
978 if (base > 10 && c >= 'a' && c <= 'f')
979 {
980 if (found_suffix)
981 return ERROR;
982 n += i = c - 'a' + 10;
983 }
984 else if (c == 'l')
985 {
986 ++long_p;
987 found_suffix = 1;
988 }
989 else if (c == 'u')
990 {
991 unsigned_p = 1;
992 found_suffix = 1;
993 }
994 else
995 return ERROR; /* Char not a digit */
996 }
997 if (i >= base)
998 return ERROR; /* Invalid digit in this base */
999
1000 /* Portably test for overflow (only works for nonzero values, so make
1001 a second check for zero). FIXME: Can't we just make n and prevn
1002 unsigned and avoid this? */
1003 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1004 unsigned_p = 1; /* Try something unsigned */
1005
1006 /* Portably test for unsigned overflow.
1007 FIXME: This check is wrong; for example it doesn't find overflow
1008 on 0x123456789 when LONGEST is 32 bits. */
1009 if (c != 'l' && c != 'u' && n != 0)
1010 {
1011 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1012 error ("Numeric constant too large.");
1013 }
1014 prevn = n;
1015 }
1016
1017 /* An integer constant is an int, a long, or a long long. An L
1018 suffix forces it to be long; an LL suffix forces it to be long
1019 long. If not forced to a larger size, it gets the first type of
1020 the above that it fits in. To figure out whether it fits, we
1021 shift it right and see whether anything remains. Note that we
1022 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1023 operation, because many compilers will warn about such a shift
1024 (which always produces a zero result). Sometimes TARGET_INT_BIT
1025 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1026 the case where it is we just always shift the value more than
1027 once, with fewer bits each time. */
1028
1029 un = (unsigned LONGEST)n >> 2;
1030 if (long_p == 0
1031 && (un >> (TARGET_INT_BIT - 2)) == 0)
1032 {
1033 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1034
1035 /* A large decimal (not hex or octal) constant (between INT_MAX
1036 and UINT_MAX) is a long or unsigned long, according to ANSI,
1037 never an unsigned int, but this code treats it as unsigned
1038 int. This probably should be fixed. GCC gives a warning on
1039 such constants. */
1040
1041 unsigned_type = builtin_type_unsigned_int;
1042 signed_type = builtin_type_int;
1043 }
1044 else if (long_p <= 1
1045 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1046 {
1047 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1048 unsigned_type = builtin_type_unsigned_long;
1049 signed_type = builtin_type_long;
1050 }
1051 else
1052 {
1053 high_bit = (((unsigned LONGEST)1)
1054 << (TARGET_LONG_LONG_BIT - 32 - 1)
1055 << 16
1056 << 16);
1057 if (high_bit == 0)
1058 /* A long long does not fit in a LONGEST. */
1059 high_bit =
1060 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1061 unsigned_type = builtin_type_unsigned_long_long;
1062 signed_type = builtin_type_long_long;
1063 }
1064
1065 putithere->typed_val.val = n;
1066
1067 /* If the high bit of the worked out type is set then this number
1068 has to be unsigned. */
1069
1070 if (unsigned_p || (n & high_bit))
1071 {
1072 putithere->typed_val.type = unsigned_type;
1073 }
1074 else
1075 {
1076 putithere->typed_val.type = signed_type;
1077 }
1078
1079 return INT;
1080 }
1081
1082 struct token
1083 {
1084 char *operator;
1085 int token;
1086 enum exp_opcode opcode;
1087 };
1088
1089 static const struct token tokentab3[] =
1090 {
1091 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1092 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1093 };
1094
1095 static const struct token tokentab2[] =
1096 {
1097 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1098 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1099 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1100 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1101 {"%=", ASSIGN_MODIFY, BINOP_REM},
1102 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1103 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1104 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1105 {"++", INCREMENT, BINOP_END},
1106 {"--", DECREMENT, BINOP_END},
1107 {"->", ARROW, BINOP_END},
1108 {"&&", ANDAND, BINOP_END},
1109 {"||", OROR, BINOP_END},
1110 {"::", COLONCOLON, BINOP_END},
1111 {"<<", LSH, BINOP_END},
1112 {">>", RSH, BINOP_END},
1113 {"==", EQUAL, BINOP_END},
1114 {"!=", NOTEQUAL, BINOP_END},
1115 {"<=", LEQ, BINOP_END},
1116 {">=", GEQ, BINOP_END}
1117 };
1118
1119 /* Read one token, getting characters through lexptr. */
1120
1121 static int
1122 yylex ()
1123 {
1124 int c;
1125 int namelen;
1126 unsigned int i;
1127 char *tokstart;
1128 char *tokptr;
1129 int tempbufindex;
1130 static char *tempbuf;
1131 static int tempbufsize;
1132
1133 retry:
1134
1135 tokstart = lexptr;
1136 /* See if it is a special token of length 3. */
1137 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1138 if (STREQN (tokstart, tokentab3[i].operator, 3))
1139 {
1140 lexptr += 3;
1141 yylval.opcode = tokentab3[i].opcode;
1142 return tokentab3[i].token;
1143 }
1144
1145 /* See if it is a special token of length 2. */
1146 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1147 if (STREQN (tokstart, tokentab2[i].operator, 2))
1148 {
1149 lexptr += 2;
1150 yylval.opcode = tokentab2[i].opcode;
1151 return tokentab2[i].token;
1152 }
1153
1154 switch (c = *tokstart)
1155 {
1156 case 0:
1157 return 0;
1158
1159 case ' ':
1160 case '\t':
1161 case '\n':
1162 lexptr++;
1163 goto retry;
1164
1165 case '\'':
1166 /* We either have a character constant ('0' or '\177' for example)
1167 or we have a quoted symbol reference ('foo(int,int)' in C++
1168 for example). */
1169 lexptr++;
1170 c = *lexptr++;
1171 if (c == '\\')
1172 c = parse_escape (&lexptr);
1173
1174 yylval.typed_val.val = c;
1175 yylval.typed_val.type = builtin_type_char;
1176
1177 c = *lexptr++;
1178 if (c != '\'')
1179 {
1180 namelen = skip_quoted (tokstart) - tokstart;
1181 if (namelen > 2)
1182 {
1183 lexptr = tokstart + namelen;
1184 if (lexptr[-1] != '\'')
1185 error ("Unmatched single quote.");
1186 namelen -= 2;
1187 tokstart++;
1188 goto tryname;
1189 }
1190 error ("Invalid character constant.");
1191 }
1192 return INT;
1193
1194 case '(':
1195 paren_depth++;
1196 lexptr++;
1197 return c;
1198
1199 case ')':
1200 if (paren_depth == 0)
1201 return 0;
1202 paren_depth--;
1203 lexptr++;
1204 return c;
1205
1206 case ',':
1207 if (comma_terminates && paren_depth == 0)
1208 return 0;
1209 lexptr++;
1210 return c;
1211
1212 case '.':
1213 /* Might be a floating point number. */
1214 if (lexptr[1] < '0' || lexptr[1] > '9')
1215 goto symbol; /* Nope, must be a symbol. */
1216 /* FALL THRU into number case. */
1217
1218 case '0':
1219 case '1':
1220 case '2':
1221 case '3':
1222 case '4':
1223 case '5':
1224 case '6':
1225 case '7':
1226 case '8':
1227 case '9':
1228 {
1229 /* It's a number. */
1230 int got_dot = 0, got_e = 0, toktype;
1231 register char *p = tokstart;
1232 int hex = input_radix > 10;
1233
1234 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1235 {
1236 p += 2;
1237 hex = 1;
1238 }
1239 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1240 {
1241 p += 2;
1242 hex = 0;
1243 }
1244
1245 for (;; ++p)
1246 {
1247 /* This test includes !hex because 'e' is a valid hex digit
1248 and thus does not indicate a floating point number when
1249 the radix is hex. */
1250 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1251 got_dot = got_e = 1;
1252 /* This test does not include !hex, because a '.' always indicates
1253 a decimal floating point number regardless of the radix. */
1254 else if (!got_dot && *p == '.')
1255 got_dot = 1;
1256 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1257 && (*p == '-' || *p == '+'))
1258 /* This is the sign of the exponent, not the end of the
1259 number. */
1260 continue;
1261 /* We will take any letters or digits. parse_number will
1262 complain if past the radix, or if L or U are not final. */
1263 else if ((*p < '0' || *p > '9')
1264 && ((*p < 'a' || *p > 'z')
1265 && (*p < 'A' || *p > 'Z')))
1266 break;
1267 }
1268 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1269 if (toktype == ERROR)
1270 {
1271 char *err_copy = (char *) alloca (p - tokstart + 1);
1272
1273 memcpy (err_copy, tokstart, p - tokstart);
1274 err_copy[p - tokstart] = 0;
1275 error ("Invalid number \"%s\".", err_copy);
1276 }
1277 lexptr = p;
1278 return toktype;
1279 }
1280
1281 case '+':
1282 case '-':
1283 case '*':
1284 case '/':
1285 case '%':
1286 case '|':
1287 case '&':
1288 case '^':
1289 case '~':
1290 case '!':
1291 case '@':
1292 case '<':
1293 case '>':
1294 case '[':
1295 case ']':
1296 case '?':
1297 case ':':
1298 case '=':
1299 case '{':
1300 case '}':
1301 symbol:
1302 lexptr++;
1303 return c;
1304
1305 case '"':
1306
1307 /* Build the gdb internal form of the input string in tempbuf,
1308 translating any standard C escape forms seen. Note that the
1309 buffer is null byte terminated *only* for the convenience of
1310 debugging gdb itself and printing the buffer contents when
1311 the buffer contains no embedded nulls. Gdb does not depend
1312 upon the buffer being null byte terminated, it uses the length
1313 string instead. This allows gdb to handle C strings (as well
1314 as strings in other languages) with embedded null bytes */
1315
1316 tokptr = ++tokstart;
1317 tempbufindex = 0;
1318
1319 do {
1320 /* Grow the static temp buffer if necessary, including allocating
1321 the first one on demand. */
1322 if (tempbufindex + 1 >= tempbufsize)
1323 {
1324 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1325 }
1326 switch (*tokptr)
1327 {
1328 case '\0':
1329 case '"':
1330 /* Do nothing, loop will terminate. */
1331 break;
1332 case '\\':
1333 tokptr++;
1334 c = parse_escape (&tokptr);
1335 if (c == -1)
1336 {
1337 continue;
1338 }
1339 tempbuf[tempbufindex++] = c;
1340 break;
1341 default:
1342 tempbuf[tempbufindex++] = *tokptr++;
1343 break;
1344 }
1345 } while ((*tokptr != '"') && (*tokptr != '\0'));
1346 if (*tokptr++ != '"')
1347 {
1348 error ("Unterminated string in expression.");
1349 }
1350 tempbuf[tempbufindex] = '\0'; /* See note above */
1351 yylval.sval.ptr = tempbuf;
1352 yylval.sval.length = tempbufindex;
1353 lexptr = tokptr;
1354 return (STRING);
1355 }
1356
1357 if (!(c == '_' || c == '$'
1358 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1359 /* We must have come across a bad character (e.g. ';'). */
1360 error ("Invalid character '%c' in expression.", c);
1361
1362 /* It's a name. See how long it is. */
1363 namelen = 0;
1364 for (c = tokstart[namelen];
1365 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1366 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1367 {
1368 if (c == '<')
1369 while (tokstart[++namelen] != '>');
1370 c = tokstart[++namelen];
1371 }
1372
1373 /* The token "if" terminates the expression and is NOT
1374 removed from the input stream. */
1375 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1376 {
1377 return 0;
1378 }
1379
1380 lexptr += namelen;
1381
1382 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1383 and $$digits (equivalent to $<-digits> if you could type that).
1384 Make token type LAST, and put the number (the digits) in yylval. */
1385
1386 tryname:
1387 if (*tokstart == '$')
1388 {
1389 register int negate = 0;
1390 c = 1;
1391 /* Double dollar means negate the number and add -1 as well.
1392 Thus $$ alone means -1. */
1393 if (namelen >= 2 && tokstart[1] == '$')
1394 {
1395 negate = 1;
1396 c = 2;
1397 }
1398 if (c == namelen)
1399 {
1400 /* Just dollars (one or two) */
1401 yylval.lval = - negate;
1402 return LAST;
1403 }
1404 /* Is the rest of the token digits? */
1405 for (; c < namelen; c++)
1406 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1407 break;
1408 if (c == namelen)
1409 {
1410 yylval.lval = atoi (tokstart + 1 + negate);
1411 if (negate)
1412 yylval.lval = - yylval.lval;
1413 return LAST;
1414 }
1415 }
1416
1417 /* Handle tokens that refer to machine registers:
1418 $ followed by a register name. */
1419
1420 if (*tokstart == '$') {
1421 for (c = 0; c < NUM_REGS; c++)
1422 if (namelen - 1 == strlen (reg_names[c])
1423 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1424 {
1425 yylval.lval = c;
1426 return REGNAME;
1427 }
1428 for (c = 0; c < num_std_regs; c++)
1429 if (namelen - 1 == strlen (std_regs[c].name)
1430 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1431 {
1432 yylval.lval = std_regs[c].regnum;
1433 return REGNAME;
1434 }
1435 }
1436 /* Catch specific keywords. Should be done with a data structure. */
1437 switch (namelen)
1438 {
1439 case 8:
1440 if (STREQN (tokstart, "unsigned", 8))
1441 return UNSIGNED;
1442 if (current_language->la_language == language_cplus
1443 && STREQN (tokstart, "template", 8))
1444 return TEMPLATE;
1445 if (STREQN (tokstart, "volatile", 8))
1446 return VOLATILE_KEYWORD;
1447 break;
1448 case 6:
1449 if (STREQN (tokstart, "struct", 6))
1450 return STRUCT;
1451 if (STREQN (tokstart, "signed", 6))
1452 return SIGNED_KEYWORD;
1453 if (STREQN (tokstart, "sizeof", 6))
1454 return SIZEOF;
1455 break;
1456 case 5:
1457 if (current_language->la_language == language_cplus
1458 && STREQN (tokstart, "class", 5))
1459 return CLASS;
1460 if (STREQN (tokstart, "union", 5))
1461 return UNION;
1462 if (STREQN (tokstart, "short", 5))
1463 return SHORT;
1464 if (STREQN (tokstart, "const", 5))
1465 return CONST_KEYWORD;
1466 break;
1467 case 4:
1468 if (STREQN (tokstart, "enum", 4))
1469 return ENUM;
1470 if (STREQN (tokstart, "long", 4))
1471 return LONG;
1472 if (current_language->la_language == language_cplus
1473 && STREQN (tokstart, "this", 4))
1474 {
1475 static const char this_name[] =
1476 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1477
1478 if (lookup_symbol (this_name, expression_context_block,
1479 VAR_NAMESPACE, (int *) NULL,
1480 (struct symtab **) NULL))
1481 return THIS;
1482 }
1483 break;
1484 case 3:
1485 if (STREQN (tokstart, "int", 3))
1486 return INT_KEYWORD;
1487 break;
1488 default:
1489 break;
1490 }
1491
1492 yylval.sval.ptr = tokstart;
1493 yylval.sval.length = namelen;
1494
1495 /* Any other names starting in $ are debugger internal variables. */
1496
1497 if (*tokstart == '$')
1498 {
1499 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1500 return VARIABLE;
1501 }
1502
1503 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1504 functions or symtabs. If this is not so, then ...
1505 Use token-type TYPENAME for symbols that happen to be defined
1506 currently as names of types; NAME for other symbols.
1507 The caller is not constrained to care about the distinction. */
1508 {
1509 char *tmp = copy_name (yylval.sval);
1510 struct symbol *sym;
1511 int is_a_field_of_this = 0;
1512 int hextype;
1513
1514 sym = lookup_symbol (tmp, expression_context_block,
1515 VAR_NAMESPACE,
1516 current_language->la_language == language_cplus
1517 ? &is_a_field_of_this : (int *) NULL,
1518 (struct symtab **) NULL);
1519 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1520 no psymtabs (coff, xcoff, or some future change to blow away the
1521 psymtabs once once symbols are read). */
1522 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1523 lookup_symtab (tmp))
1524 {
1525 yylval.ssym.sym = sym;
1526 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1527 return BLOCKNAME;
1528 }
1529 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1530 {
1531 #if 1
1532 /* Despite the following flaw, we need to keep this code enabled.
1533 Because we can get called from check_stub_method, if we don't
1534 handle nested types then it screws many operations in any
1535 program which uses nested types. */
1536 /* In "A::x", if x is a member function of A and there happens
1537 to be a type (nested or not, since the stabs don't make that
1538 distinction) named x, then this code incorrectly thinks we
1539 are dealing with nested types rather than a member function. */
1540
1541 char *p;
1542 char *namestart;
1543 struct symbol *best_sym;
1544
1545 /* Look ahead to detect nested types. This probably should be
1546 done in the grammar, but trying seemed to introduce a lot
1547 of shift/reduce and reduce/reduce conflicts. It's possible
1548 that it could be done, though. Or perhaps a non-grammar, but
1549 less ad hoc, approach would work well. */
1550
1551 /* Since we do not currently have any way of distinguishing
1552 a nested type from a non-nested one (the stabs don't tell
1553 us whether a type is nested), we just ignore the
1554 containing type. */
1555
1556 p = lexptr;
1557 best_sym = sym;
1558 while (1)
1559 {
1560 /* Skip whitespace. */
1561 while (*p == ' ' || *p == '\t' || *p == '\n')
1562 ++p;
1563 if (*p == ':' && p[1] == ':')
1564 {
1565 /* Skip the `::'. */
1566 p += 2;
1567 /* Skip whitespace. */
1568 while (*p == ' ' || *p == '\t' || *p == '\n')
1569 ++p;
1570 namestart = p;
1571 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1572 || (*p >= 'a' && *p <= 'z')
1573 || (*p >= 'A' && *p <= 'Z'))
1574 ++p;
1575 if (p != namestart)
1576 {
1577 struct symbol *cur_sym;
1578 /* As big as the whole rest of the expression, which is
1579 at least big enough. */
1580 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1581 char *tmp1;
1582
1583 tmp1 = ncopy;
1584 memcpy (tmp1, tmp, strlen (tmp));
1585 tmp1 += strlen (tmp);
1586 memcpy (tmp1, "::", 2);
1587 tmp1 += 2;
1588 memcpy (tmp1, namestart, p - namestart);
1589 tmp1[p - namestart] = '\0';
1590 cur_sym = lookup_symbol (ncopy, expression_context_block,
1591 VAR_NAMESPACE, (int *) NULL,
1592 (struct symtab **) NULL);
1593 if (cur_sym)
1594 {
1595 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1596 {
1597 best_sym = cur_sym;
1598 lexptr = p;
1599 }
1600 else
1601 break;
1602 }
1603 else
1604 break;
1605 }
1606 else
1607 break;
1608 }
1609 else
1610 break;
1611 }
1612
1613 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1614 #else /* not 0 */
1615 yylval.tsym.type = SYMBOL_TYPE (sym);
1616 #endif /* not 0 */
1617 return TYPENAME;
1618 }
1619 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1620 return TYPENAME;
1621
1622 /* Input names that aren't symbols but ARE valid hex numbers,
1623 when the input radix permits them, can be names or numbers
1624 depending on the parse. Note we support radixes > 16 here. */
1625 if (!sym &&
1626 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1627 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1628 {
1629 YYSTYPE newlval; /* Its value is ignored. */
1630 hextype = parse_number (tokstart, namelen, 0, &newlval);
1631 if (hextype == INT)
1632 {
1633 yylval.ssym.sym = sym;
1634 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1635 return NAME_OR_INT;
1636 }
1637 }
1638
1639 /* Any other kind of symbol */
1640 yylval.ssym.sym = sym;
1641 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1642 return NAME;
1643 }
1644 }
1645
1646 void
1647 yyerror (msg)
1648 char *msg;
1649 {
1650 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1651 }
This page took 0.066464 seconds and 5 git commands to generate.