* breakpoint.c (breakpoint_re_set): #ifdef GET_LONGJMP_TARGET
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87 #define yylhs c_yylhs
88 #define yylen c_yylen
89 #define yydefred c_yydefred
90 #define yydgoto c_yydgoto
91 #define yysindex c_yysindex
92 #define yyrindex c_yyrindex
93 #define yygindex c_yygindex
94 #define yytable c_yytable
95 #define yycheck c_yycheck
96
97 #ifndef YYDEBUG
98 #define YYDEBUG 0 /* Default to no yydebug support */
99 #endif
100
101 int
102 yyparse PARAMS ((void));
103
104 static int
105 yylex PARAMS ((void));
106
107 void
108 yyerror PARAMS ((char *));
109
110 %}
111
112 /* Although the yacc "value" of an expression is not used,
113 since the result is stored in the structure being created,
114 other node types do have values. */
115
116 %union
117 {
118 LONGEST lval;
119 struct {
120 LONGEST val;
121 struct type *type;
122 } typed_val;
123 double dval;
124 struct symbol *sym;
125 struct type *tval;
126 struct stoken sval;
127 struct ttype tsym;
128 struct symtoken ssym;
129 int voidval;
130 struct block *bval;
131 enum exp_opcode opcode;
132 struct internalvar *ivar;
133
134 struct type **tvec;
135 int *ivec;
136 }
137
138 %{
139 /* YYSTYPE gets defined by %union */
140 static int
141 parse_number PARAMS ((char *, int, int, YYSTYPE *));
142 %}
143
144 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
145 %type <lval> rcurly
146 %type <tval> type typebase
147 %type <tvec> nonempty_typelist
148 /* %type <bval> block */
149
150 /* Fancy type parsing. */
151 %type <voidval> func_mod direct_abs_decl abs_decl
152 %type <tval> ptype
153 %type <lval> array_mod
154
155 %token <typed_val> INT
156 %token <dval> FLOAT
157
158 /* Both NAME and TYPENAME tokens represent symbols in the input,
159 and both convey their data as strings.
160 But a TYPENAME is a string that happens to be defined as a typedef
161 or builtin type name (such as int or char)
162 and a NAME is any other symbol.
163 Contexts where this distinction is not important can use the
164 nonterminal "name", which matches either NAME or TYPENAME. */
165
166 %token <sval> STRING
167 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
168 %token <tsym> TYPENAME
169 %type <sval> name
170 %type <ssym> name_not_typename
171 %type <tsym> typename
172
173 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
174 but which would parse as a valid number in the current input radix.
175 E.g. "c" when input_radix==16. Depending on the parse, it will be
176 turned into a name or into a number. */
177
178 %token <ssym> NAME_OR_INT
179
180 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
181 %token TEMPLATE
182 %token ERROR
183
184 /* Special type cases, put in to allow the parser to distinguish different
185 legal basetypes. */
186 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
187
188 %token <voidval> VARIABLE
189
190 %token <opcode> ASSIGN_MODIFY
191
192 /* C++ */
193 %token THIS
194
195 %left ','
196 %left ABOVE_COMMA
197 %right '=' ASSIGN_MODIFY
198 %right '?'
199 %left OROR
200 %left ANDAND
201 %left '|'
202 %left '^'
203 %left '&'
204 %left EQUAL NOTEQUAL
205 %left '<' '>' LEQ GEQ
206 %left LSH RSH
207 %left '@'
208 %left '+' '-'
209 %left '*' '/' '%'
210 %right UNARY INCREMENT DECREMENT
211 %right ARROW '.' '[' '('
212 %token <ssym> BLOCKNAME
213 %type <bval> block
214 %left COLONCOLON
215
216 \f
217 %%
218
219 start : exp1
220 | type_exp
221 ;
222
223 type_exp: type
224 { write_exp_elt_opcode(OP_TYPE);
225 write_exp_elt_type($1);
226 write_exp_elt_opcode(OP_TYPE);}
227 ;
228
229 /* Expressions, including the comma operator. */
230 exp1 : exp
231 | exp1 ',' exp
232 { write_exp_elt_opcode (BINOP_COMMA); }
233 ;
234
235 /* Expressions, not including the comma operator. */
236 exp : '*' exp %prec UNARY
237 { write_exp_elt_opcode (UNOP_IND); }
238
239 exp : '&' exp %prec UNARY
240 { write_exp_elt_opcode (UNOP_ADDR); }
241
242 exp : '-' exp %prec UNARY
243 { write_exp_elt_opcode (UNOP_NEG); }
244 ;
245
246 exp : '!' exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
248 ;
249
250 exp : '~' exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
252 ;
253
254 exp : INCREMENT exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
256 ;
257
258 exp : DECREMENT exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
260 ;
261
262 exp : exp INCREMENT %prec UNARY
263 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
264 ;
265
266 exp : exp DECREMENT %prec UNARY
267 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
268 ;
269
270 exp : SIZEOF exp %prec UNARY
271 { write_exp_elt_opcode (UNOP_SIZEOF); }
272 ;
273
274 exp : exp ARROW name
275 { write_exp_elt_opcode (STRUCTOP_PTR);
276 write_exp_string ($3);
277 write_exp_elt_opcode (STRUCTOP_PTR); }
278 ;
279
280 exp : exp ARROW qualified_name
281 { /* exp->type::name becomes exp->*(&type::name) */
282 /* Note: this doesn't work if name is a
283 static member! FIXME */
284 write_exp_elt_opcode (UNOP_ADDR);
285 write_exp_elt_opcode (STRUCTOP_MPTR); }
286 ;
287 exp : exp ARROW '*' exp
288 { write_exp_elt_opcode (STRUCTOP_MPTR); }
289 ;
290
291 exp : exp '.' name
292 { write_exp_elt_opcode (STRUCTOP_STRUCT);
293 write_exp_string ($3);
294 write_exp_elt_opcode (STRUCTOP_STRUCT); }
295 ;
296
297 /* start-sanitize-gm
298 Need to find a better way to do this...
299 exp : exp '@' name
300 { write_exp_elt_opcode (STRUCTOP_FIELD);
301 write_exp_string ($3);
302 write_exp_elt_opcode (STRUCTOP_FIELD);
303 }
304 end-sanitize-gm */
305
306 exp : exp '.' qualified_name
307 { /* exp.type::name becomes exp.*(&type::name) */
308 /* Note: this doesn't work if name is a
309 static member! FIXME */
310 write_exp_elt_opcode (UNOP_ADDR);
311 write_exp_elt_opcode (STRUCTOP_MEMBER); }
312 ;
313
314 exp : exp '.' '*' exp
315 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
316 ;
317
318 exp : exp '[' exp1 ']'
319 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
320 ;
321
322 exp : exp '('
323 /* This is to save the value of arglist_len
324 being accumulated by an outer function call. */
325 { start_arglist (); }
326 arglist ')' %prec ARROW
327 { write_exp_elt_opcode (OP_FUNCALL);
328 write_exp_elt_longcst ((LONGEST) end_arglist ());
329 write_exp_elt_opcode (OP_FUNCALL); }
330 ;
331
332 lcurly : '{'
333 { start_arglist (); }
334 ;
335
336 arglist :
337 ;
338
339 arglist : exp
340 { arglist_len = 1; }
341 ;
342
343 arglist : arglist ',' exp %prec ABOVE_COMMA
344 { arglist_len++; }
345 ;
346
347 rcurly : '}'
348 { $$ = end_arglist () - 1; }
349 ;
350 exp : lcurly arglist rcurly %prec ARROW
351 { write_exp_elt_opcode (OP_ARRAY);
352 write_exp_elt_longcst ((LONGEST) 0);
353 write_exp_elt_longcst ((LONGEST) $3);
354 write_exp_elt_opcode (OP_ARRAY); }
355 ;
356
357 exp : lcurly type rcurly exp %prec UNARY
358 { write_exp_elt_opcode (UNOP_MEMVAL);
359 write_exp_elt_type ($2);
360 write_exp_elt_opcode (UNOP_MEMVAL); }
361 ;
362
363 exp : '(' type ')' exp %prec UNARY
364 { write_exp_elt_opcode (UNOP_CAST);
365 write_exp_elt_type ($2);
366 write_exp_elt_opcode (UNOP_CAST); }
367 ;
368
369 exp : '(' exp1 ')'
370 { }
371 ;
372
373 /* Binary operators in order of decreasing precedence. */
374
375 exp : exp '@' exp
376 { write_exp_elt_opcode (BINOP_REPEAT); }
377 ;
378
379 exp : exp '*' exp
380 { write_exp_elt_opcode (BINOP_MUL); }
381 ;
382
383 exp : exp '/' exp
384 { write_exp_elt_opcode (BINOP_DIV); }
385 ;
386
387 exp : exp '%' exp
388 { write_exp_elt_opcode (BINOP_REM); }
389 ;
390
391 exp : exp '+' exp
392 { write_exp_elt_opcode (BINOP_ADD); }
393 ;
394
395 exp : exp '-' exp
396 { write_exp_elt_opcode (BINOP_SUB); }
397 ;
398
399 exp : exp LSH exp
400 { write_exp_elt_opcode (BINOP_LSH); }
401 ;
402
403 exp : exp RSH exp
404 { write_exp_elt_opcode (BINOP_RSH); }
405 ;
406
407 exp : exp EQUAL exp
408 { write_exp_elt_opcode (BINOP_EQUAL); }
409 ;
410
411 exp : exp NOTEQUAL exp
412 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
413 ;
414
415 exp : exp LEQ exp
416 { write_exp_elt_opcode (BINOP_LEQ); }
417 ;
418
419 exp : exp GEQ exp
420 { write_exp_elt_opcode (BINOP_GEQ); }
421 ;
422
423 exp : exp '<' exp
424 { write_exp_elt_opcode (BINOP_LESS); }
425 ;
426
427 exp : exp '>' exp
428 { write_exp_elt_opcode (BINOP_GTR); }
429 ;
430
431 exp : exp '&' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
433 ;
434
435 exp : exp '^' exp
436 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
437 ;
438
439 exp : exp '|' exp
440 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
441 ;
442
443 exp : exp ANDAND exp
444 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
445 ;
446
447 exp : exp OROR exp
448 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
449 ;
450
451 exp : exp '?' exp ':' exp %prec '?'
452 { write_exp_elt_opcode (TERNOP_COND); }
453 ;
454
455 exp : exp '=' exp
456 { write_exp_elt_opcode (BINOP_ASSIGN); }
457 ;
458
459 exp : exp ASSIGN_MODIFY exp
460 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
461 write_exp_elt_opcode ($2);
462 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
463 ;
464
465 exp : INT
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type ($1.type);
468 write_exp_elt_longcst ((LONGEST)($1.val));
469 write_exp_elt_opcode (OP_LONG); }
470 ;
471
472 exp : NAME_OR_INT
473 { YYSTYPE val;
474 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
475 write_exp_elt_opcode (OP_LONG);
476 write_exp_elt_type (val.typed_val.type);
477 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
478 write_exp_elt_opcode (OP_LONG);
479 }
480 ;
481
482
483 exp : FLOAT
484 { write_exp_elt_opcode (OP_DOUBLE);
485 write_exp_elt_type (builtin_type_double);
486 write_exp_elt_dblcst ($1);
487 write_exp_elt_opcode (OP_DOUBLE); }
488 ;
489
490 exp : variable
491 ;
492
493 exp : VARIABLE
494 /* Already written by write_dollar_variable. */
495 ;
496
497 exp : SIZEOF '(' type ')' %prec UNARY
498 { write_exp_elt_opcode (OP_LONG);
499 write_exp_elt_type (builtin_type_int);
500 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
501 write_exp_elt_opcode (OP_LONG); }
502 ;
503
504 exp : STRING
505 { /* C strings are converted into array constants with
506 an explicit null byte added at the end. Thus
507 the array upper bound is the string length.
508 There is no such thing in C as a completely empty
509 string. */
510 char *sp = $1.ptr; int count = $1.length;
511 while (count-- > 0)
512 {
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_type (builtin_type_char);
515 write_exp_elt_longcst ((LONGEST)(*sp++));
516 write_exp_elt_opcode (OP_LONG);
517 }
518 write_exp_elt_opcode (OP_LONG);
519 write_exp_elt_type (builtin_type_char);
520 write_exp_elt_longcst ((LONGEST)'\0');
521 write_exp_elt_opcode (OP_LONG);
522 write_exp_elt_opcode (OP_ARRAY);
523 write_exp_elt_longcst ((LONGEST) 0);
524 write_exp_elt_longcst ((LONGEST) ($1.length));
525 write_exp_elt_opcode (OP_ARRAY); }
526 ;
527
528 /* C++. */
529 exp : THIS
530 { write_exp_elt_opcode (OP_THIS);
531 write_exp_elt_opcode (OP_THIS); }
532 ;
533
534 /* end of C++. */
535
536 block : BLOCKNAME
537 {
538 if ($1.sym != 0)
539 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
540 else
541 {
542 struct symtab *tem =
543 lookup_symtab (copy_name ($1.stoken));
544 if (tem)
545 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
546 else
547 error ("No file or function \"%s\".",
548 copy_name ($1.stoken));
549 }
550 }
551 ;
552
553 block : block COLONCOLON name
554 { struct symbol *tem
555 = lookup_symbol (copy_name ($3), $1,
556 VAR_NAMESPACE, (int *) NULL,
557 (struct symtab **) NULL);
558 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
559 error ("No function \"%s\" in specified context.",
560 copy_name ($3));
561 $$ = SYMBOL_BLOCK_VALUE (tem); }
562 ;
563
564 variable: block COLONCOLON name
565 { struct symbol *sym;
566 sym = lookup_symbol (copy_name ($3), $1,
567 VAR_NAMESPACE, (int *) NULL,
568 (struct symtab **) NULL);
569 if (sym == 0)
570 error ("No symbol \"%s\" in specified context.",
571 copy_name ($3));
572
573 write_exp_elt_opcode (OP_VAR_VALUE);
574 /* block_found is set by lookup_symbol. */
575 write_exp_elt_block (block_found);
576 write_exp_elt_sym (sym);
577 write_exp_elt_opcode (OP_VAR_VALUE); }
578 ;
579
580 qualified_name: typebase COLONCOLON name
581 {
582 struct type *type = $1;
583 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
584 && TYPE_CODE (type) != TYPE_CODE_UNION)
585 error ("`%s' is not defined as an aggregate type.",
586 TYPE_NAME (type));
587
588 write_exp_elt_opcode (OP_SCOPE);
589 write_exp_elt_type (type);
590 write_exp_string ($3);
591 write_exp_elt_opcode (OP_SCOPE);
592 }
593 | typebase COLONCOLON '~' name
594 {
595 struct type *type = $1;
596 struct stoken tmp_token;
597 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
598 && TYPE_CODE (type) != TYPE_CODE_UNION)
599 error ("`%s' is not defined as an aggregate type.",
600 TYPE_NAME (type));
601
602 if (!STREQ (type_name_no_tag (type), $4.ptr))
603 error ("invalid destructor `%s::~%s'",
604 type_name_no_tag (type), $4.ptr);
605
606 tmp_token.ptr = (char*) alloca ($4.length + 2);
607 tmp_token.length = $4.length + 1;
608 tmp_token.ptr[0] = '~';
609 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
610 tmp_token.ptr[tmp_token.length] = 0;
611 write_exp_elt_opcode (OP_SCOPE);
612 write_exp_elt_type (type);
613 write_exp_string (tmp_token);
614 write_exp_elt_opcode (OP_SCOPE);
615 }
616 ;
617
618 variable: qualified_name
619 | COLONCOLON name
620 {
621 char *name = copy_name ($2);
622 struct symbol *sym;
623 struct minimal_symbol *msymbol;
624
625 sym =
626 lookup_symbol (name, (const struct block *) NULL,
627 VAR_NAMESPACE, (int *) NULL,
628 (struct symtab **) NULL);
629 if (sym)
630 {
631 write_exp_elt_opcode (OP_VAR_VALUE);
632 write_exp_elt_block (NULL);
633 write_exp_elt_sym (sym);
634 write_exp_elt_opcode (OP_VAR_VALUE);
635 break;
636 }
637
638 msymbol = lookup_minimal_symbol (name, NULL, NULL);
639 if (msymbol != NULL)
640 {
641 write_exp_msymbol (msymbol,
642 lookup_function_type (builtin_type_int),
643 builtin_type_int);
644 }
645 else
646 if (!have_full_symbols () && !have_partial_symbols ())
647 error ("No symbol table is loaded. Use the \"file\" command.");
648 else
649 error ("No symbol \"%s\" in current context.", name);
650 }
651 ;
652
653 variable: name_not_typename
654 { struct symbol *sym = $1.sym;
655
656 if (sym)
657 {
658 if (symbol_read_needs_frame (sym))
659 {
660 if (innermost_block == 0 ||
661 contained_in (block_found,
662 innermost_block))
663 innermost_block = block_found;
664 }
665
666 write_exp_elt_opcode (OP_VAR_VALUE);
667 /* We want to use the selected frame, not
668 another more inner frame which happens to
669 be in the same block. */
670 write_exp_elt_block (NULL);
671 write_exp_elt_sym (sym);
672 write_exp_elt_opcode (OP_VAR_VALUE);
673 }
674 else if ($1.is_a_field_of_this)
675 {
676 /* C++: it hangs off of `this'. Must
677 not inadvertently convert from a method call
678 to data ref. */
679 if (innermost_block == 0 ||
680 contained_in (block_found, innermost_block))
681 innermost_block = block_found;
682 write_exp_elt_opcode (OP_THIS);
683 write_exp_elt_opcode (OP_THIS);
684 write_exp_elt_opcode (STRUCTOP_PTR);
685 write_exp_string ($1.stoken);
686 write_exp_elt_opcode (STRUCTOP_PTR);
687 }
688 else
689 {
690 struct minimal_symbol *msymbol;
691 register char *arg = copy_name ($1.stoken);
692
693 msymbol =
694 lookup_minimal_symbol (arg, NULL, NULL);
695 if (msymbol != NULL)
696 {
697 write_exp_msymbol (msymbol,
698 lookup_function_type (builtin_type_int),
699 builtin_type_int);
700 }
701 else if (!have_full_symbols () && !have_partial_symbols ())
702 error ("No symbol table is loaded. Use the \"file\" command.");
703 else
704 error ("No symbol \"%s\" in current context.",
705 copy_name ($1.stoken));
706 }
707 }
708 ;
709
710
711 ptype : typebase
712 /* "const" and "volatile" are curently ignored. A type qualifier
713 before the type is currently handled in the typebase rule.
714 The reason for recognizing these here (shift/reduce conflicts)
715 might be obsolete now that some pointer to member rules have
716 been deleted. */
717 | typebase CONST_KEYWORD
718 | typebase VOLATILE_KEYWORD
719 | typebase abs_decl
720 { $$ = follow_types ($1); }
721 | typebase CONST_KEYWORD abs_decl
722 { $$ = follow_types ($1); }
723 | typebase VOLATILE_KEYWORD abs_decl
724 { $$ = follow_types ($1); }
725 ;
726
727 abs_decl: '*'
728 { push_type (tp_pointer); $$ = 0; }
729 | '*' abs_decl
730 { push_type (tp_pointer); $$ = $2; }
731 | '&'
732 { push_type (tp_reference); $$ = 0; }
733 | '&' abs_decl
734 { push_type (tp_reference); $$ = $2; }
735 | direct_abs_decl
736 ;
737
738 direct_abs_decl: '(' abs_decl ')'
739 { $$ = $2; }
740 | direct_abs_decl array_mod
741 {
742 push_type_int ($2);
743 push_type (tp_array);
744 }
745 | array_mod
746 {
747 push_type_int ($1);
748 push_type (tp_array);
749 $$ = 0;
750 }
751
752 | direct_abs_decl func_mod
753 { push_type (tp_function); }
754 | func_mod
755 { push_type (tp_function); }
756 ;
757
758 array_mod: '[' ']'
759 { $$ = -1; }
760 | '[' INT ']'
761 { $$ = $2.val; }
762 ;
763
764 func_mod: '(' ')'
765 { $$ = 0; }
766 | '(' nonempty_typelist ')'
767 { free ((PTR)$2); $$ = 0; }
768 ;
769
770 /* We used to try to recognize more pointer to member types here, but
771 that didn't work (shift/reduce conflicts meant that these rules never
772 got executed). The problem is that
773 int (foo::bar::baz::bizzle)
774 is a function type but
775 int (foo::bar::baz::bizzle::*)
776 is a pointer to member type. Stroustrup loses again! */
777
778 type : ptype
779 | typebase COLONCOLON '*'
780 { $$ = lookup_member_type (builtin_type_int, $1); }
781 ;
782
783 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
784 : TYPENAME
785 { $$ = $1.type; }
786 | INT_KEYWORD
787 { $$ = builtin_type_int; }
788 | LONG
789 { $$ = builtin_type_long; }
790 | SHORT
791 { $$ = builtin_type_short; }
792 | LONG INT_KEYWORD
793 { $$ = builtin_type_long; }
794 | UNSIGNED LONG INT_KEYWORD
795 { $$ = builtin_type_unsigned_long; }
796 | LONG LONG
797 { $$ = builtin_type_long_long; }
798 | LONG LONG INT_KEYWORD
799 { $$ = builtin_type_long_long; }
800 | UNSIGNED LONG LONG
801 { $$ = builtin_type_unsigned_long_long; }
802 | UNSIGNED LONG LONG INT_KEYWORD
803 { $$ = builtin_type_unsigned_long_long; }
804 | SHORT INT_KEYWORD
805 { $$ = builtin_type_short; }
806 | UNSIGNED SHORT INT_KEYWORD
807 { $$ = builtin_type_unsigned_short; }
808 | STRUCT name
809 { $$ = lookup_struct (copy_name ($2),
810 expression_context_block); }
811 | CLASS name
812 { $$ = lookup_struct (copy_name ($2),
813 expression_context_block); }
814 | UNION name
815 { $$ = lookup_union (copy_name ($2),
816 expression_context_block); }
817 | ENUM name
818 { $$ = lookup_enum (copy_name ($2),
819 expression_context_block); }
820 | UNSIGNED typename
821 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
822 | UNSIGNED
823 { $$ = builtin_type_unsigned_int; }
824 | SIGNED_KEYWORD typename
825 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
826 | SIGNED_KEYWORD
827 { $$ = builtin_type_int; }
828 | TEMPLATE name '<' type '>'
829 { $$ = lookup_template_type(copy_name($2), $4,
830 expression_context_block);
831 }
832 /* "const" and "volatile" are curently ignored. A type qualifier
833 after the type is handled in the ptype rule. I think these could
834 be too. */
835 | CONST_KEYWORD typebase { $$ = $2; }
836 | VOLATILE_KEYWORD typebase { $$ = $2; }
837 ;
838
839 typename: TYPENAME
840 | INT_KEYWORD
841 {
842 $$.stoken.ptr = "int";
843 $$.stoken.length = 3;
844 $$.type = builtin_type_int;
845 }
846 | LONG
847 {
848 $$.stoken.ptr = "long";
849 $$.stoken.length = 4;
850 $$.type = builtin_type_long;
851 }
852 | SHORT
853 {
854 $$.stoken.ptr = "short";
855 $$.stoken.length = 5;
856 $$.type = builtin_type_short;
857 }
858 ;
859
860 nonempty_typelist
861 : type
862 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
863 $<ivec>$[0] = 1; /* Number of types in vector */
864 $$[1] = $1;
865 }
866 | nonempty_typelist ',' type
867 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
868 $$ = (struct type **) realloc ((char *) $1, len);
869 $$[$<ivec>$[0]] = $3;
870 }
871 ;
872
873 name : NAME { $$ = $1.stoken; }
874 | BLOCKNAME { $$ = $1.stoken; }
875 | TYPENAME { $$ = $1.stoken; }
876 | NAME_OR_INT { $$ = $1.stoken; }
877 ;
878
879 name_not_typename : NAME
880 | BLOCKNAME
881 /* These would be useful if name_not_typename was useful, but it is just
882 a fake for "variable", so these cause reduce/reduce conflicts because
883 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
884 =exp) or just an exp. If name_not_typename was ever used in an lvalue
885 context where only a name could occur, this might be useful.
886 | NAME_OR_INT
887 */
888 ;
889
890 %%
891
892 /* Take care of parsing a number (anything that starts with a digit).
893 Set yylval and return the token type; update lexptr.
894 LEN is the number of characters in it. */
895
896 /*** Needs some error checking for the float case ***/
897
898 static int
899 parse_number (p, len, parsed_float, putithere)
900 register char *p;
901 register int len;
902 int parsed_float;
903 YYSTYPE *putithere;
904 {
905 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
906 here, and we do kind of silly things like cast to unsigned. */
907 register LONGEST n = 0;
908 register LONGEST prevn = 0;
909 unsigned LONGEST un;
910
911 register int i = 0;
912 register int c;
913 register int base = input_radix;
914 int unsigned_p = 0;
915
916 /* Number of "L" suffixes encountered. */
917 int long_p = 0;
918
919 /* We have found a "L" or "U" suffix. */
920 int found_suffix = 0;
921
922 unsigned LONGEST high_bit;
923 struct type *signed_type;
924 struct type *unsigned_type;
925
926 if (parsed_float)
927 {
928 /* It's a float since it contains a point or an exponent. */
929 putithere->dval = atof (p);
930 return FLOAT;
931 }
932
933 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
934 if (p[0] == '0')
935 switch (p[1])
936 {
937 case 'x':
938 case 'X':
939 if (len >= 3)
940 {
941 p += 2;
942 base = 16;
943 len -= 2;
944 }
945 break;
946
947 case 't':
948 case 'T':
949 case 'd':
950 case 'D':
951 if (len >= 3)
952 {
953 p += 2;
954 base = 10;
955 len -= 2;
956 }
957 break;
958
959 default:
960 base = 8;
961 break;
962 }
963
964 while (len-- > 0)
965 {
966 c = *p++;
967 if (c >= 'A' && c <= 'Z')
968 c += 'a' - 'A';
969 if (c != 'l' && c != 'u')
970 n *= base;
971 if (c >= '0' && c <= '9')
972 {
973 if (found_suffix)
974 return ERROR;
975 n += i = c - '0';
976 }
977 else
978 {
979 if (base > 10 && c >= 'a' && c <= 'f')
980 {
981 if (found_suffix)
982 return ERROR;
983 n += i = c - 'a' + 10;
984 }
985 else if (c == 'l')
986 {
987 ++long_p;
988 found_suffix = 1;
989 }
990 else if (c == 'u')
991 {
992 unsigned_p = 1;
993 found_suffix = 1;
994 }
995 else
996 return ERROR; /* Char not a digit */
997 }
998 if (i >= base)
999 return ERROR; /* Invalid digit in this base */
1000
1001 /* Portably test for overflow (only works for nonzero values, so make
1002 a second check for zero). FIXME: Can't we just make n and prevn
1003 unsigned and avoid this? */
1004 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1005 unsigned_p = 1; /* Try something unsigned */
1006
1007 /* Portably test for unsigned overflow.
1008 FIXME: This check is wrong; for example it doesn't find overflow
1009 on 0x123456789 when LONGEST is 32 bits. */
1010 if (c != 'l' && c != 'u' && n != 0)
1011 {
1012 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1013 error ("Numeric constant too large.");
1014 }
1015 prevn = n;
1016 }
1017
1018 /* An integer constant is an int, a long, or a long long. An L
1019 suffix forces it to be long; an LL suffix forces it to be long
1020 long. If not forced to a larger size, it gets the first type of
1021 the above that it fits in. To figure out whether it fits, we
1022 shift it right and see whether anything remains. Note that we
1023 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1024 operation, because many compilers will warn about such a shift
1025 (which always produces a zero result). Sometimes TARGET_INT_BIT
1026 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1027 the case where it is we just always shift the value more than
1028 once, with fewer bits each time. */
1029
1030 un = (unsigned LONGEST)n >> 2;
1031 if (long_p == 0
1032 && (un >> (TARGET_INT_BIT - 2)) == 0)
1033 {
1034 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1035
1036 /* A large decimal (not hex or octal) constant (between INT_MAX
1037 and UINT_MAX) is a long or unsigned long, according to ANSI,
1038 never an unsigned int, but this code treats it as unsigned
1039 int. This probably should be fixed. GCC gives a warning on
1040 such constants. */
1041
1042 unsigned_type = builtin_type_unsigned_int;
1043 signed_type = builtin_type_int;
1044 }
1045 else if (long_p <= 1
1046 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1047 {
1048 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1049 unsigned_type = builtin_type_unsigned_long;
1050 signed_type = builtin_type_long;
1051 }
1052 else
1053 {
1054 high_bit = (((unsigned LONGEST)1)
1055 << (TARGET_LONG_LONG_BIT - 32 - 1)
1056 << 16
1057 << 16);
1058 if (high_bit == 0)
1059 /* A long long does not fit in a LONGEST. */
1060 high_bit =
1061 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1062 unsigned_type = builtin_type_unsigned_long_long;
1063 signed_type = builtin_type_long_long;
1064 }
1065
1066 putithere->typed_val.val = n;
1067
1068 /* If the high bit of the worked out type is set then this number
1069 has to be unsigned. */
1070
1071 if (unsigned_p || (n & high_bit))
1072 {
1073 putithere->typed_val.type = unsigned_type;
1074 }
1075 else
1076 {
1077 putithere->typed_val.type = signed_type;
1078 }
1079
1080 return INT;
1081 }
1082
1083 struct token
1084 {
1085 char *operator;
1086 int token;
1087 enum exp_opcode opcode;
1088 };
1089
1090 static const struct token tokentab3[] =
1091 {
1092 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1093 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1094 };
1095
1096 static const struct token tokentab2[] =
1097 {
1098 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1099 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1100 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1101 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1102 {"%=", ASSIGN_MODIFY, BINOP_REM},
1103 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1104 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1105 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1106 {"++", INCREMENT, BINOP_END},
1107 {"--", DECREMENT, BINOP_END},
1108 {"->", ARROW, BINOP_END},
1109 {"&&", ANDAND, BINOP_END},
1110 {"||", OROR, BINOP_END},
1111 {"::", COLONCOLON, BINOP_END},
1112 {"<<", LSH, BINOP_END},
1113 {">>", RSH, BINOP_END},
1114 {"==", EQUAL, BINOP_END},
1115 {"!=", NOTEQUAL, BINOP_END},
1116 {"<=", LEQ, BINOP_END},
1117 {">=", GEQ, BINOP_END}
1118 };
1119
1120 /* Read one token, getting characters through lexptr. */
1121
1122 static int
1123 yylex ()
1124 {
1125 int c;
1126 int namelen;
1127 unsigned int i;
1128 char *tokstart;
1129 char *tokptr;
1130 int tempbufindex;
1131 static char *tempbuf;
1132 static int tempbufsize;
1133
1134 retry:
1135
1136 tokstart = lexptr;
1137 /* See if it is a special token of length 3. */
1138 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1139 if (STREQN (tokstart, tokentab3[i].operator, 3))
1140 {
1141 lexptr += 3;
1142 yylval.opcode = tokentab3[i].opcode;
1143 return tokentab3[i].token;
1144 }
1145
1146 /* See if it is a special token of length 2. */
1147 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1148 if (STREQN (tokstart, tokentab2[i].operator, 2))
1149 {
1150 lexptr += 2;
1151 yylval.opcode = tokentab2[i].opcode;
1152 return tokentab2[i].token;
1153 }
1154
1155 switch (c = *tokstart)
1156 {
1157 case 0:
1158 return 0;
1159
1160 case ' ':
1161 case '\t':
1162 case '\n':
1163 lexptr++;
1164 goto retry;
1165
1166 case '\'':
1167 /* We either have a character constant ('0' or '\177' for example)
1168 or we have a quoted symbol reference ('foo(int,int)' in C++
1169 for example). */
1170 lexptr++;
1171 c = *lexptr++;
1172 if (c == '\\')
1173 c = parse_escape (&lexptr);
1174 else if (c == '\'')
1175 error ("Empty character constant.");
1176
1177 yylval.typed_val.val = c;
1178 yylval.typed_val.type = builtin_type_char;
1179
1180 c = *lexptr++;
1181 if (c != '\'')
1182 {
1183 namelen = skip_quoted (tokstart) - tokstart;
1184 if (namelen > 2)
1185 {
1186 lexptr = tokstart + namelen;
1187 if (lexptr[-1] != '\'')
1188 error ("Unmatched single quote.");
1189 namelen -= 2;
1190 tokstart++;
1191 goto tryname;
1192 }
1193 error ("Invalid character constant.");
1194 }
1195 return INT;
1196
1197 case '(':
1198 paren_depth++;
1199 lexptr++;
1200 return c;
1201
1202 case ')':
1203 if (paren_depth == 0)
1204 return 0;
1205 paren_depth--;
1206 lexptr++;
1207 return c;
1208
1209 case ',':
1210 if (comma_terminates && paren_depth == 0)
1211 return 0;
1212 lexptr++;
1213 return c;
1214
1215 case '.':
1216 /* Might be a floating point number. */
1217 if (lexptr[1] < '0' || lexptr[1] > '9')
1218 goto symbol; /* Nope, must be a symbol. */
1219 /* FALL THRU into number case. */
1220
1221 case '0':
1222 case '1':
1223 case '2':
1224 case '3':
1225 case '4':
1226 case '5':
1227 case '6':
1228 case '7':
1229 case '8':
1230 case '9':
1231 {
1232 /* It's a number. */
1233 int got_dot = 0, got_e = 0, toktype;
1234 register char *p = tokstart;
1235 int hex = input_radix > 10;
1236
1237 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1238 {
1239 p += 2;
1240 hex = 1;
1241 }
1242 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1243 {
1244 p += 2;
1245 hex = 0;
1246 }
1247
1248 for (;; ++p)
1249 {
1250 /* This test includes !hex because 'e' is a valid hex digit
1251 and thus does not indicate a floating point number when
1252 the radix is hex. */
1253 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1254 got_dot = got_e = 1;
1255 /* This test does not include !hex, because a '.' always indicates
1256 a decimal floating point number regardless of the radix. */
1257 else if (!got_dot && *p == '.')
1258 got_dot = 1;
1259 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1260 && (*p == '-' || *p == '+'))
1261 /* This is the sign of the exponent, not the end of the
1262 number. */
1263 continue;
1264 /* We will take any letters or digits. parse_number will
1265 complain if past the radix, or if L or U are not final. */
1266 else if ((*p < '0' || *p > '9')
1267 && ((*p < 'a' || *p > 'z')
1268 && (*p < 'A' || *p > 'Z')))
1269 break;
1270 }
1271 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1272 if (toktype == ERROR)
1273 {
1274 char *err_copy = (char *) alloca (p - tokstart + 1);
1275
1276 memcpy (err_copy, tokstart, p - tokstart);
1277 err_copy[p - tokstart] = 0;
1278 error ("Invalid number \"%s\".", err_copy);
1279 }
1280 lexptr = p;
1281 return toktype;
1282 }
1283
1284 case '+':
1285 case '-':
1286 case '*':
1287 case '/':
1288 case '%':
1289 case '|':
1290 case '&':
1291 case '^':
1292 case '~':
1293 case '!':
1294 case '@':
1295 case '<':
1296 case '>':
1297 case '[':
1298 case ']':
1299 case '?':
1300 case ':':
1301 case '=':
1302 case '{':
1303 case '}':
1304 symbol:
1305 lexptr++;
1306 return c;
1307
1308 case '"':
1309
1310 /* Build the gdb internal form of the input string in tempbuf,
1311 translating any standard C escape forms seen. Note that the
1312 buffer is null byte terminated *only* for the convenience of
1313 debugging gdb itself and printing the buffer contents when
1314 the buffer contains no embedded nulls. Gdb does not depend
1315 upon the buffer being null byte terminated, it uses the length
1316 string instead. This allows gdb to handle C strings (as well
1317 as strings in other languages) with embedded null bytes */
1318
1319 tokptr = ++tokstart;
1320 tempbufindex = 0;
1321
1322 do {
1323 /* Grow the static temp buffer if necessary, including allocating
1324 the first one on demand. */
1325 if (tempbufindex + 1 >= tempbufsize)
1326 {
1327 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1328 }
1329 switch (*tokptr)
1330 {
1331 case '\0':
1332 case '"':
1333 /* Do nothing, loop will terminate. */
1334 break;
1335 case '\\':
1336 tokptr++;
1337 c = parse_escape (&tokptr);
1338 if (c == -1)
1339 {
1340 continue;
1341 }
1342 tempbuf[tempbufindex++] = c;
1343 break;
1344 default:
1345 tempbuf[tempbufindex++] = *tokptr++;
1346 break;
1347 }
1348 } while ((*tokptr != '"') && (*tokptr != '\0'));
1349 if (*tokptr++ != '"')
1350 {
1351 error ("Unterminated string in expression.");
1352 }
1353 tempbuf[tempbufindex] = '\0'; /* See note above */
1354 yylval.sval.ptr = tempbuf;
1355 yylval.sval.length = tempbufindex;
1356 lexptr = tokptr;
1357 return (STRING);
1358 }
1359
1360 if (!(c == '_' || c == '$'
1361 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1362 /* We must have come across a bad character (e.g. ';'). */
1363 error ("Invalid character '%c' in expression.", c);
1364
1365 /* It's a name. See how long it is. */
1366 namelen = 0;
1367 for (c = tokstart[namelen];
1368 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1369 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1370 {
1371 if (c == '<')
1372 {
1373 int i = namelen;
1374 while (tokstart[++i] && tokstart[i] != '>');
1375 if (tokstart[i] == '>')
1376 namelen = i;
1377 }
1378 c = tokstart[++namelen];
1379 }
1380
1381 /* The token "if" terminates the expression and is NOT
1382 removed from the input stream. */
1383 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1384 {
1385 return 0;
1386 }
1387
1388 lexptr += namelen;
1389
1390 tryname:
1391
1392 /* Catch specific keywords. Should be done with a data structure. */
1393 switch (namelen)
1394 {
1395 case 8:
1396 if (STREQN (tokstart, "unsigned", 8))
1397 return UNSIGNED;
1398 if (current_language->la_language == language_cplus
1399 && STREQN (tokstart, "template", 8))
1400 return TEMPLATE;
1401 if (STREQN (tokstart, "volatile", 8))
1402 return VOLATILE_KEYWORD;
1403 break;
1404 case 6:
1405 if (STREQN (tokstart, "struct", 6))
1406 return STRUCT;
1407 if (STREQN (tokstart, "signed", 6))
1408 return SIGNED_KEYWORD;
1409 if (STREQN (tokstart, "sizeof", 6))
1410 return SIZEOF;
1411 break;
1412 case 5:
1413 if (current_language->la_language == language_cplus
1414 && STREQN (tokstart, "class", 5))
1415 return CLASS;
1416 if (STREQN (tokstart, "union", 5))
1417 return UNION;
1418 if (STREQN (tokstart, "short", 5))
1419 return SHORT;
1420 if (STREQN (tokstart, "const", 5))
1421 return CONST_KEYWORD;
1422 break;
1423 case 4:
1424 if (STREQN (tokstart, "enum", 4))
1425 return ENUM;
1426 if (STREQN (tokstart, "long", 4))
1427 return LONG;
1428 if (current_language->la_language == language_cplus
1429 && STREQN (tokstart, "this", 4))
1430 {
1431 static const char this_name[] =
1432 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1433
1434 if (lookup_symbol (this_name, expression_context_block,
1435 VAR_NAMESPACE, (int *) NULL,
1436 (struct symtab **) NULL))
1437 return THIS;
1438 }
1439 break;
1440 case 3:
1441 if (STREQN (tokstart, "int", 3))
1442 return INT_KEYWORD;
1443 break;
1444 default:
1445 break;
1446 }
1447
1448 yylval.sval.ptr = tokstart;
1449 yylval.sval.length = namelen;
1450
1451 if (*tokstart == '$')
1452 {
1453 write_dollar_variable (yylval.sval);
1454 return VARIABLE;
1455 }
1456
1457 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1458 functions or symtabs. If this is not so, then ...
1459 Use token-type TYPENAME for symbols that happen to be defined
1460 currently as names of types; NAME for other symbols.
1461 The caller is not constrained to care about the distinction. */
1462 {
1463 char *tmp = copy_name (yylval.sval);
1464 struct symbol *sym;
1465 int is_a_field_of_this = 0;
1466 int hextype;
1467
1468 sym = lookup_symbol (tmp, expression_context_block,
1469 VAR_NAMESPACE,
1470 current_language->la_language == language_cplus
1471 ? &is_a_field_of_this : (int *) NULL,
1472 (struct symtab **) NULL);
1473 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1474 no psymtabs (coff, xcoff, or some future change to blow away the
1475 psymtabs once once symbols are read). */
1476 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1477 lookup_symtab (tmp))
1478 {
1479 yylval.ssym.sym = sym;
1480 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1481 return BLOCKNAME;
1482 }
1483 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1484 {
1485 #if 1
1486 /* Despite the following flaw, we need to keep this code enabled.
1487 Because we can get called from check_stub_method, if we don't
1488 handle nested types then it screws many operations in any
1489 program which uses nested types. */
1490 /* In "A::x", if x is a member function of A and there happens
1491 to be a type (nested or not, since the stabs don't make that
1492 distinction) named x, then this code incorrectly thinks we
1493 are dealing with nested types rather than a member function. */
1494
1495 char *p;
1496 char *namestart;
1497 struct symbol *best_sym;
1498
1499 /* Look ahead to detect nested types. This probably should be
1500 done in the grammar, but trying seemed to introduce a lot
1501 of shift/reduce and reduce/reduce conflicts. It's possible
1502 that it could be done, though. Or perhaps a non-grammar, but
1503 less ad hoc, approach would work well. */
1504
1505 /* Since we do not currently have any way of distinguishing
1506 a nested type from a non-nested one (the stabs don't tell
1507 us whether a type is nested), we just ignore the
1508 containing type. */
1509
1510 p = lexptr;
1511 best_sym = sym;
1512 while (1)
1513 {
1514 /* Skip whitespace. */
1515 while (*p == ' ' || *p == '\t' || *p == '\n')
1516 ++p;
1517 if (*p == ':' && p[1] == ':')
1518 {
1519 /* Skip the `::'. */
1520 p += 2;
1521 /* Skip whitespace. */
1522 while (*p == ' ' || *p == '\t' || *p == '\n')
1523 ++p;
1524 namestart = p;
1525 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1526 || (*p >= 'a' && *p <= 'z')
1527 || (*p >= 'A' && *p <= 'Z'))
1528 ++p;
1529 if (p != namestart)
1530 {
1531 struct symbol *cur_sym;
1532 /* As big as the whole rest of the expression, which is
1533 at least big enough. */
1534 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1535 char *tmp1;
1536
1537 tmp1 = ncopy;
1538 memcpy (tmp1, tmp, strlen (tmp));
1539 tmp1 += strlen (tmp);
1540 memcpy (tmp1, "::", 2);
1541 tmp1 += 2;
1542 memcpy (tmp1, namestart, p - namestart);
1543 tmp1[p - namestart] = '\0';
1544 cur_sym = lookup_symbol (ncopy, expression_context_block,
1545 VAR_NAMESPACE, (int *) NULL,
1546 (struct symtab **) NULL);
1547 if (cur_sym)
1548 {
1549 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1550 {
1551 best_sym = cur_sym;
1552 lexptr = p;
1553 }
1554 else
1555 break;
1556 }
1557 else
1558 break;
1559 }
1560 else
1561 break;
1562 }
1563 else
1564 break;
1565 }
1566
1567 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1568 #else /* not 0 */
1569 yylval.tsym.type = SYMBOL_TYPE (sym);
1570 #endif /* not 0 */
1571 return TYPENAME;
1572 }
1573 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1574 return TYPENAME;
1575
1576 /* Input names that aren't symbols but ARE valid hex numbers,
1577 when the input radix permits them, can be names or numbers
1578 depending on the parse. Note we support radixes > 16 here. */
1579 if (!sym &&
1580 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1581 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1582 {
1583 YYSTYPE newlval; /* Its value is ignored. */
1584 hextype = parse_number (tokstart, namelen, 0, &newlval);
1585 if (hextype == INT)
1586 {
1587 yylval.ssym.sym = sym;
1588 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1589 return NAME_OR_INT;
1590 }
1591 }
1592
1593 /* Any other kind of symbol */
1594 yylval.ssym.sym = sym;
1595 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1596 return NAME;
1597 }
1598 }
1599
1600 void
1601 yyerror (msg)
1602 char *msg;
1603 {
1604 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1605 }
This page took 0.063066 seconds and 5 git commands to generate.