Include regcache.h
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #include "regcache.h"
26
27 /* Forward declarations for prototypes. */
28 struct type;
29 struct value;
30
31 /* Target byte order on ARM defaults to selectable, and defaults to
32 little endian. */
33 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
34 #define TARGET_BYTE_ORDER_DEFAULT LITTLE_ENDIAN
35
36 /* IEEE format floating point. */
37 #define IEEE_FLOAT (1)
38 #define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
39 ? &floatformat_ieee_double_big \
40 : &floatformat_ieee_double_littlebyte_bigword)
41
42 /* When reading symbols, we need to zap the low bit of the address,
43 which may be set to 1 for Thumb functions. */
44
45 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
46
47 /* Remove useless bits from addresses in a running program. */
48
49 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
50
51 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
52
53 /* Offset from address of function to start of its code. Zero on most
54 machines. */
55
56 #define FUNCTION_START_OFFSET 0
57
58 /* Advance PC across any function entry prologue instructions to reach
59 some "real" code. */
60
61 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
62
63 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
64
65 /* Immediately after a function call, return the saved pc. Can't
66 always go through the frames for this because on some machines the
67 new frame is not set up until the new function executes some
68 instructions. */
69
70 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
71 struct frame_info;
72 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
73
74 /* The following define instruction sequences that will cause ARM
75 cpu's to take an undefined instruction trap. These are used to
76 signal a breakpoint to GDB.
77
78 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
79 modes. A different instruction is required for each mode. The ARM
80 cpu's can also be big or little endian. Thus four different
81 instructions are needed to support all cases.
82
83 Note: ARMv4 defines several new instructions that will take the
84 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
85 not in fact add the new instructions. The new undefined
86 instructions in ARMv4 are all instructions that had no defined
87 behaviour in earlier chips. There is no guarantee that they will
88 raise an exception, but may be treated as NOP's. In practice, it
89 may only safe to rely on instructions matching:
90
91 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
92 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
93 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
94
95 Even this may only true if the condition predicate is true. The
96 following use a condition predicate of ALWAYS so it is always TRUE.
97
98 There are other ways of forcing a breakpoint. ARM Linux, RisciX,
99 and I suspect NetBSD will all use a software interrupt rather than
100 an undefined instruction to force a trap. This can be handled by
101 redefining some or all of the following in a target dependent
102 fashion. */
103
104 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
105 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
106 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
107 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
108
109 /* Stack grows downward. */
110
111 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
112
113 /* !!!! if we're using RDP, then we're inserting breakpoints and
114 storing their handles instread of what was in memory. It is nice
115 that this is the same size as a handle - otherwise remote-rdp will
116 have to change. */
117
118 /* BREAKPOINT_FROM_PC uses the program counter value to determine
119 whether a 16- or 32-bit breakpoint should be used. It returns a
120 pointer to a string of bytes that encode a breakpoint instruction,
121 stores the length of the string to *lenptr, and adjusts the pc (if
122 necessary) to point to the actual memory location where the
123 breakpoint should be inserted. */
124
125 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
126 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
127
128 /* Amount PC must be decremented by after a breakpoint. This is often
129 the number of bytes in BREAKPOINT but not always. */
130
131 #define DECR_PC_AFTER_BREAK 0
132
133 /* Code to execute to print interesting information about the floating
134 point processor (if any) or emulator. No need to define if there
135 is nothing to do. */
136 extern void arm_float_info (void);
137
138 #define FLOAT_INFO { arm_float_info (); }
139
140 /* Say how long (ordinary) registers are. This is a piece of bogosity
141 used in push_word and a few other places; REGISTER_RAW_SIZE is the
142 real way to know how big a register is. */
143
144 #define REGISTER_SIZE 4
145
146 /* Say how long FP registers are. Used for documentation purposes and
147 code readability in this header. IEEE extended doubles are 80
148 bits. DWORD aligned they use 96 bits. */
149 #define FP_REGISTER_RAW_SIZE 12
150
151 /* GCC doesn't support long doubles (extended IEEE values). The FP
152 register virtual size is therefore 64 bits. Used for documentation
153 purposes and code readability in this header. */
154 #define FP_REGISTER_VIRTUAL_SIZE 8
155
156 /* Status registers are the same size as general purpose registers.
157 Used for documentation purposes and code readability in this
158 header. */
159 #define STATUS_REGISTER_SIZE REGISTER_SIZE
160
161 /* Number of machine registers. The only define actually required
162 is NUM_REGS. The other definitions are used for documentation
163 purposes and code readability. */
164 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
165 (and called PS for processor status) so the status bits can be cleared
166 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
167 in PS. */
168 #define NUM_FREGS 8 /* Number of floating point registers. */
169 #define NUM_SREGS 2 /* Number of status registers. */
170 #define NUM_GREGS 16 /* Number of general purpose registers. */
171 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
172
173 /* An array of names of registers. */
174 extern char **arm_register_names;
175
176 #define REGISTER_NAME(i) arm_register_names[i]
177
178 /* Register numbers of various important registers. Note that some of
179 these values are "real" register numbers, and correspond to the
180 general registers of the machine, and some are "phony" register
181 numbers which are too large to be actual register numbers as far as
182 the user is concerned but do serve to get the desired values when
183 passed to read_register. */
184
185 #define A1_REGNUM 0 /* first integer-like argument */
186 #define A4_REGNUM 3 /* last integer-like argument */
187 #define AP_REGNUM 11
188 #define FP_REGNUM 11 /* Contains address of executing stack frame */
189 #define SP_REGNUM 13 /* Contains address of top of stack */
190 #define LR_REGNUM 14 /* address to return to from a function call */
191 #define PC_REGNUM 15 /* Contains program counter */
192 #define F0_REGNUM 16 /* first floating point register */
193 #define F3_REGNUM 19 /* last floating point argument register */
194 #define F7_REGNUM 23 /* last floating point register */
195 #define FPS_REGNUM 24 /* floating point status register */
196 #define PS_REGNUM 25 /* Contains processor status */
197
198 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
199
200 #define ARM_NUM_ARG_REGS 4
201 #define ARM_LAST_ARG_REGNUM A4_REGNUM
202 #define ARM_NUM_FP_ARG_REGS 4
203 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
204
205 /* Instruction condition field values. */
206 #define INST_EQ 0x0
207 #define INST_NE 0x1
208 #define INST_CS 0x2
209 #define INST_CC 0x3
210 #define INST_MI 0x4
211 #define INST_PL 0x5
212 #define INST_VS 0x6
213 #define INST_VC 0x7
214 #define INST_HI 0x8
215 #define INST_LS 0x9
216 #define INST_GE 0xa
217 #define INST_LT 0xb
218 #define INST_GT 0xc
219 #define INST_LE 0xd
220 #define INST_AL 0xe
221 #define INST_NV 0xf
222
223 #define FLAG_N 0x80000000
224 #define FLAG_Z 0x40000000
225 #define FLAG_C 0x20000000
226 #define FLAG_V 0x10000000
227
228
229
230 /* Total amount of space needed to store our copies of the machine's
231 register state, the array `registers'. */
232
233 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
234 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
235 (NUM_SREGS * STATUS_REGISTER_SIZE))
236
237 /* Index within `registers' of the first byte of the space for
238 register N. */
239
240 #define REGISTER_BYTE(N) \
241 ((N) < F0_REGNUM \
242 ? (N) * REGISTER_SIZE \
243 : ((N) < PS_REGNUM \
244 ? (NUM_GREGS * REGISTER_SIZE + \
245 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
246 : (NUM_GREGS * REGISTER_SIZE + \
247 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
248 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
249
250 /* Number of bytes of storage in the actual machine representation for
251 register N. All registers are 4 bytes, except fp0 - fp7, which are
252 12 bytes in length. */
253 #define REGISTER_RAW_SIZE(N) \
254 ((N) < F0_REGNUM ? REGISTER_SIZE : \
255 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
256
257 /* Number of bytes of storage in a program's representation
258 for register N. */
259 #define REGISTER_VIRTUAL_SIZE(N) \
260 ((N) < F0_REGNUM ? REGISTER_SIZE : \
261 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
262
263 /* Largest value REGISTER_RAW_SIZE can have. */
264
265 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
266
267 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
268 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
269
270 /* Nonzero if register N requires conversion from raw format to
271 virtual format. */
272 extern int arm_register_convertible (unsigned int);
273 #define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
274
275 /* Convert data from raw format for register REGNUM in buffer FROM to
276 virtual format with type TYPE in buffer TO. */
277
278 extern void arm_register_convert_to_virtual (unsigned int regnum,
279 struct type *type,
280 void *from, void *to);
281 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
282 arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
283
284 /* Convert data from virtual format with type TYPE in buffer FROM to
285 raw format for register REGNUM in buffer TO. */
286
287 extern void arm_register_convert_to_raw (unsigned int regnum,
288 struct type *type,
289 void *from, void *to);
290 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
291 arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
292
293 /* Return the GDB type object for the "standard" data type of data in
294 register N. */
295
296 #define REGISTER_VIRTUAL_TYPE(N) \
297 (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
298 ? builtin_type_double : builtin_type_int)
299
300 /* The system C compiler uses a similar structure return convention to gcc */
301 extern use_struct_convention_fn arm_use_struct_convention;
302 #define USE_STRUCT_CONVENTION(gcc_p, type) \
303 arm_use_struct_convention (gcc_p, type)
304
305 /* Store the address of the place in which to copy the structure the
306 subroutine will return. This is called from call_function. */
307
308 #define STORE_STRUCT_RETURN(ADDR, SP) \
309 write_register (A1_REGNUM, (ADDR))
310
311 /* Extract from an array REGBUF containing the (raw) register state a
312 function return value of type TYPE, and copy that, in virtual
313 format, into VALBUF. */
314
315 extern void arm_extract_return_value (struct type *, char[], char *);
316 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
317 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
318
319 /* Write into appropriate registers a function return value of type
320 TYPE, given in virtual format. */
321
322 extern void convert_to_extended (void *dbl, void *ptr);
323 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
324 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
325 char _buf[MAX_REGISTER_RAW_SIZE]; \
326 convert_to_extended (VALBUF, _buf); \
327 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
328 } else \
329 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
330
331 /* Extract from an array REGBUF containing the (raw) register state
332 the address in which a function should return its structure value,
333 as a CORE_ADDR (or an expression that can be used as one). */
334
335 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
336 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
337
338 /* Specify that for the native compiler variables for a particular
339 lexical context are listed after the beginning LBRAC instead of
340 before in the executables list of symbols. */
341 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
342 \f
343
344 /* Define other aspects of the stack frame. We keep the offsets of
345 all saved registers, 'cause we need 'em a lot! We also keep the
346 current size of the stack frame, and the offset of the frame
347 pointer from the stack pointer (for frameless functions, and when
348 we're still in the prologue of a function with a frame) */
349
350 #define EXTRA_FRAME_INFO \
351 struct frame_saved_regs fsr; \
352 int framesize; \
353 int frameoffset; \
354 int framereg;
355
356 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
357 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
358 arm_init_extra_frame_info ((fromleaf), (fi))
359
360 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
361 CORE_ADDR arm_target_read_fp (void);
362 #define TARGET_READ_FP() arm_target_read_fp ()
363
364 /* Describe the pointer in each stack frame to the previous stack
365 frame (its caller). */
366
367 /* FRAME_CHAIN takes a frame's nominal address and produces the
368 frame's chain-pointer.
369
370 However, if FRAME_CHAIN_VALID returns zero,
371 it means the given frame is the outermost one and has no caller. */
372
373 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
374 extern CORE_ADDR arm_frame_chain (struct frame_info *);
375
376 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
377 #define FRAME_CHAIN_VALID(chain, thisframe) \
378 arm_frame_chain_valid (chain, thisframe)
379
380 /* Define other aspects of the stack frame. */
381
382 /* A macro that tells us whether the function invocation represented
383 by FI does not have a frame on the stack associated with it. If it
384 does not, FRAMELESS is set to 1, else 0.
385
386 Sometimes we have functions that do a little setup (like saving the
387 vN registers with the stmdb instruction, but DO NOT set up a frame.
388 The symbol table will report this as a prologue. However, it is
389 important not to try to parse these partial frames as frames, or we
390 will get really confused.
391
392 So I will demand 3 instructions between the start & end of the
393 prologue before I call it a real prologue, i.e. at least
394 mov ip, sp,
395 stmdb sp!, {}
396 sub sp, ip, #4. */
397
398 extern int arm_frameless_function_invocation (struct frame_info *fi);
399 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
400 (arm_frameless_function_invocation (FI))
401
402 /* Saved Pc. */
403
404 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
405 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
406
407 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
408
409 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
410
411 /* Return number of args passed to a frame.
412 Can return -1, meaning no way to tell. */
413
414 #define FRAME_NUM_ARGS(fi) (-1)
415
416 /* Return number of bytes at start of arglist that are not really args. */
417
418 #define FRAME_ARGS_SKIP 0
419
420 /* Put here the code to store, into a struct frame_saved_regs, the
421 addresses of the saved registers of frame described by FRAME_INFO.
422 This includes special registers such as pc and fp saved in special
423 ways in the stack frame. sp is even more special: the address we
424 return for it IS the sp for the next frame. */
425
426 struct frame_saved_regs;
427 struct frame_info;
428 void arm_frame_find_saved_regs (struct frame_info * fi,
429 struct frame_saved_regs * fsr);
430
431 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
432 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
433
434 /* Things needed for making the inferior call functions. */
435
436 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
437 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
438 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
439 CORE_ADDR);
440
441 /* Push an empty stack frame, to record the current PC, etc. */
442
443 void arm_push_dummy_frame (void);
444
445 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
446
447 /* Discard from the stack the innermost frame, restoring all registers. */
448
449 void arm_pop_frame (void);
450
451 #define POP_FRAME arm_pop_frame ()
452
453 /* This sequence of words is the instructions
454
455 mov lr,pc
456 mov pc,r4
457 illegal
458
459 Note this is 12 bytes. */
460
461 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
462 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
463
464 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
465 extern int arm_call_dummy_breakpoint_offset (void);
466
467 /* Insert the specified number of args and function address into a
468 call sequence of the above form stored at DUMMYNAME. */
469
470 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
471 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
472
473 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
474 int nargs, struct value ** args,
475 struct type * type, int gcc_p);
476
477 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
478
479 /* Macros for setting and testing a bit in a minimal symbol that marks
480 it as Thumb function. The MSB of the minimal symbol's "info" field
481 is used for this purpose. This field is already being used to store
482 the symbol size, so the assumption is that the symbol size cannot
483 exceed 2^31.
484
485 COFF_MAKE_MSYMBOL_SPECIAL
486 ELF_MAKE_MSYMBOL_SPECIAL
487
488 These macros test whether the COFF or ELF symbol corresponds to a
489 thumb function, and set a "special" bit in a minimal symbol to
490 indicate that it does.
491
492 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
493 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
494 MSYMBOL_SIZE Returns the size of the minimal symbol,
495 i.e. the "info" field with the "special" bit
496 masked out
497 */
498
499 extern int coff_sym_is_thumb (int val);
500
501 #define MSYMBOL_SET_SPECIAL(msym) \
502 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
503 #define MSYMBOL_IS_SPECIAL(msym) \
504 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
505 #define MSYMBOL_SIZE(msym) \
506 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
507
508 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
509 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
510 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
511 MSYMBOL_SET_SPECIAL(msym); }
512
513 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
514 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
515
516 /* The first 0x20 bytes are the trap vectors. */
517 #define LOWEST_PC 0x20
518
519 /* Function to determine whether MEMADDR is in a Thumb function. */
520 extern int arm_pc_is_thumb (bfd_vma memaddr);
521
522 /* Function to determine whether MEMADDR is in a call dummy called from
523 a Thumb function. */
524 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
525
526 #endif /* TM_ARM_H */
This page took 0.047493 seconds and 4 git commands to generate.