7316f92e3008890e63a5db4ec78d8df0c235f3dd
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #include "regcache.h"
26 #include "floatformat.h"
27
28 /* Forward declarations for prototypes. */
29 struct type;
30 struct value;
31
32 /* IEEE format floating point. */
33 #define TARGET_DOUBLE_FORMAT (target_byte_order == BFD_ENDIAN_BIG \
34 ? &floatformat_ieee_double_big \
35 : &floatformat_ieee_double_littlebyte_bigword)
36
37 /* When reading symbols, we need to zap the low bit of the address,
38 which may be set to 1 for Thumb functions. */
39
40 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
41
42 /* Remove useless bits from addresses in a running program. */
43
44 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
45
46 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
47
48 /* Offset from address of function to start of its code. Zero on most
49 machines. */
50
51 #define FUNCTION_START_OFFSET 0
52
53 /* Advance PC across any function entry prologue instructions to reach
54 some "real" code. */
55
56 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
57
58 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
59
60 /* Immediately after a function call, return the saved pc. Can't
61 always go through the frames for this because on some machines the
62 new frame is not set up until the new function executes some
63 instructions. */
64
65 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
66 struct frame_info;
67 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
68
69 /* The following define instruction sequences that will cause ARM
70 cpu's to take an undefined instruction trap. These are used to
71 signal a breakpoint to GDB.
72
73 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
74 modes. A different instruction is required for each mode. The ARM
75 cpu's can also be big or little endian. Thus four different
76 instructions are needed to support all cases.
77
78 Note: ARMv4 defines several new instructions that will take the
79 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
80 not in fact add the new instructions. The new undefined
81 instructions in ARMv4 are all instructions that had no defined
82 behaviour in earlier chips. There is no guarantee that they will
83 raise an exception, but may be treated as NOP's. In practice, it
84 may only safe to rely on instructions matching:
85
86 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
87 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
88 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
89
90 Even this may only true if the condition predicate is true. The
91 following use a condition predicate of ALWAYS so it is always TRUE.
92
93 There are other ways of forcing a breakpoint. ARM Linux, RISC iX,
94 and NetBSD will all use a software interrupt rather than an
95 undefined instruction to force a trap. This can be handled by
96 redefining some or all of the following in a target dependent
97 fashion. */
98
99 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
100 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
101 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
102 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
103
104 /* Stack grows downward. */
105
106 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
107
108 /* !!!! if we're using RDP, then we're inserting breakpoints and
109 storing their handles instread of what was in memory. It is nice
110 that this is the same size as a handle - otherwise remote-rdp will
111 have to change. */
112
113 /* BREAKPOINT_FROM_PC uses the program counter value to determine
114 whether a 16- or 32-bit breakpoint should be used. It returns a
115 pointer to a string of bytes that encode a breakpoint instruction,
116 stores the length of the string to *lenptr, and adjusts the pc (if
117 necessary) to point to the actual memory location where the
118 breakpoint should be inserted. */
119
120 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
121 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
122
123 /* Amount PC must be decremented by after a breakpoint. This is often
124 the number of bytes in BREAKPOINT but not always. */
125
126 #define DECR_PC_AFTER_BREAK 0
127
128 /* Code to execute to print interesting information about the floating
129 point processor (if any) or emulator. No need to define if there
130 is nothing to do. */
131 extern void arm_float_info (void);
132
133 #define FLOAT_INFO { arm_float_info (); }
134
135 /* Say how long (ordinary) registers are. This is a piece of bogosity
136 used in push_word and a few other places; REGISTER_RAW_SIZE is the
137 real way to know how big a register is. */
138
139 #define REGISTER_SIZE 4
140
141 /* Say how long FP registers are. Used for documentation purposes and
142 code readability in this header. IEEE extended doubles are 80
143 bits. DWORD aligned they use 96 bits. */
144 #define FP_REGISTER_RAW_SIZE 12
145
146 /* GCC doesn't support long doubles (extended IEEE values). The FP
147 register virtual size is therefore 64 bits. Used for documentation
148 purposes and code readability in this header. */
149 #define FP_REGISTER_VIRTUAL_SIZE 8
150
151 /* Status registers are the same size as general purpose registers.
152 Used for documentation purposes and code readability in this
153 header. */
154 #define STATUS_REGISTER_SIZE REGISTER_SIZE
155
156 /* Number of machine registers. The only define actually required
157 is NUM_REGS. The other definitions are used for documentation
158 purposes and code readability. */
159 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
160 (and called PS for processor status) so the status bits can be cleared
161 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
162 in PS. */
163 #define NUM_FREGS 8 /* Number of floating point registers. */
164 #define NUM_SREGS 2 /* Number of status registers. */
165 #define NUM_GREGS 16 /* Number of general purpose registers. */
166 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
167
168 /* An array of names of registers. */
169 extern char **arm_register_names;
170
171 #define REGISTER_NAME(i) arm_register_name(i)
172 char *arm_register_name (int);
173
174 /* Register numbers of various important registers. Note that some of
175 these values are "real" register numbers, and correspond to the
176 general registers of the machine, and some are "phony" register
177 numbers which are too large to be actual register numbers as far as
178 the user is concerned but do serve to get the desired values when
179 passed to read_register. */
180
181 #define A1_REGNUM 0 /* first integer-like argument */
182 #define A4_REGNUM 3 /* last integer-like argument */
183 #define AP_REGNUM 11
184 #define FP_REGNUM 11 /* Contains address of executing stack frame */
185 #define SP_REGNUM 13 /* Contains address of top of stack */
186 #define LR_REGNUM 14 /* address to return to from a function call */
187 #define PC_REGNUM 15 /* Contains program counter */
188 #define F0_REGNUM 16 /* first floating point register */
189 #define F3_REGNUM 19 /* last floating point argument register */
190 #define F7_REGNUM 23 /* last floating point register */
191 #define FPS_REGNUM 24 /* floating point status register */
192 #define PS_REGNUM 25 /* Contains processor status */
193
194 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
195
196 #define ARM_NUM_ARG_REGS 4
197 #define ARM_LAST_ARG_REGNUM A4_REGNUM
198 #define ARM_NUM_FP_ARG_REGS 4
199 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
200
201 /* Instruction condition field values. */
202 #define INST_EQ 0x0
203 #define INST_NE 0x1
204 #define INST_CS 0x2
205 #define INST_CC 0x3
206 #define INST_MI 0x4
207 #define INST_PL 0x5
208 #define INST_VS 0x6
209 #define INST_VC 0x7
210 #define INST_HI 0x8
211 #define INST_LS 0x9
212 #define INST_GE 0xa
213 #define INST_LT 0xb
214 #define INST_GT 0xc
215 #define INST_LE 0xd
216 #define INST_AL 0xe
217 #define INST_NV 0xf
218
219 #define FLAG_N 0x80000000
220 #define FLAG_Z 0x40000000
221 #define FLAG_C 0x20000000
222 #define FLAG_V 0x10000000
223
224
225
226 /* Total amount of space needed to store our copies of the machine's
227 register state, the array `registers'. */
228
229 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
230 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
231 (NUM_SREGS * STATUS_REGISTER_SIZE))
232
233 /* Index within `registers' of the first byte of the space for
234 register N. */
235
236 #define REGISTER_BYTE(N) \
237 ((N) < F0_REGNUM \
238 ? (N) * REGISTER_SIZE \
239 : ((N) < PS_REGNUM \
240 ? (NUM_GREGS * REGISTER_SIZE + \
241 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
242 : (NUM_GREGS * REGISTER_SIZE + \
243 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
244 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
245
246 /* Number of bytes of storage in the actual machine representation for
247 register N. All registers are 4 bytes, except fp0 - fp7, which are
248 12 bytes in length. */
249 #define REGISTER_RAW_SIZE(N) \
250 ((N) < F0_REGNUM ? REGISTER_SIZE : \
251 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
252
253 /* Number of bytes of storage in a program's representation
254 for register N. */
255 #define REGISTER_VIRTUAL_SIZE(N) \
256 ((N) < F0_REGNUM ? REGISTER_SIZE : \
257 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
258
259 /* Largest value REGISTER_RAW_SIZE can have. */
260
261 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
262
263 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
264 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
265
266 /* Return the GDB type object for the "standard" data type of data in
267 register N. */
268
269 extern struct type *arm_register_type (int regnum);
270 #define REGISTER_VIRTUAL_TYPE(N) arm_register_type (N)
271
272 /* The system C compiler uses a similar structure return convention to gcc */
273 extern use_struct_convention_fn arm_use_struct_convention;
274 #define USE_STRUCT_CONVENTION(gcc_p, type) \
275 arm_use_struct_convention (gcc_p, type)
276
277 /* Store the address of the place in which to copy the structure the
278 subroutine will return. This is called from call_function. */
279
280 #define STORE_STRUCT_RETURN(ADDR, SP) \
281 write_register (A1_REGNUM, (ADDR))
282
283 /* Extract from an array REGBUF containing the (raw) register state a
284 function return value of type TYPE, and copy that, in virtual
285 format, into VALBUF. */
286
287 extern void arm_extract_return_value (struct type *, char[], char *);
288 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
289 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
290
291 /* Write into appropriate registers a function return value of type
292 TYPE, given in virtual format. */
293
294 extern void convert_to_extended (void *dbl, void *ptr);
295 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
296 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
297 char _buf[MAX_REGISTER_RAW_SIZE]; \
298 convert_to_extended (VALBUF, _buf); \
299 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
300 } else \
301 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
302
303 /* Extract from an array REGBUF containing the (raw) register state
304 the address in which a function should return its structure value,
305 as a CORE_ADDR (or an expression that can be used as one). */
306
307 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
308 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
309
310 /* Specify that for the native compiler variables for a particular
311 lexical context are listed after the beginning LBRAC instead of
312 before in the executables list of symbols. */
313 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
314 \f
315
316 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
317 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
318 arm_init_extra_frame_info ((fromleaf), (fi))
319
320 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
321 CORE_ADDR arm_target_read_fp (void);
322 #define TARGET_READ_FP() arm_target_read_fp ()
323
324 /* Describe the pointer in each stack frame to the previous stack
325 frame (its caller). */
326
327 /* FRAME_CHAIN takes a frame's nominal address and produces the
328 frame's chain-pointer.
329
330 However, if FRAME_CHAIN_VALID returns zero,
331 it means the given frame is the outermost one and has no caller. */
332
333 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
334 extern CORE_ADDR arm_frame_chain (struct frame_info *);
335
336 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
337 #define FRAME_CHAIN_VALID(chain, thisframe) \
338 arm_frame_chain_valid (chain, thisframe)
339
340 /* Define other aspects of the stack frame. */
341
342 /* A macro that tells us whether the function invocation represented
343 by FI does not have a frame on the stack associated with it. If it
344 does not, FRAMELESS is set to 1, else 0.
345
346 Sometimes we have functions that do a little setup (like saving the
347 vN registers with the stmdb instruction, but DO NOT set up a frame.
348 The symbol table will report this as a prologue. However, it is
349 important not to try to parse these partial frames as frames, or we
350 will get really confused.
351
352 So I will demand 3 instructions between the start & end of the
353 prologue before I call it a real prologue, i.e. at least
354 mov ip, sp,
355 stmdb sp!, {}
356 sub sp, ip, #4. */
357
358 extern int arm_frameless_function_invocation (struct frame_info *fi);
359 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
360 (arm_frameless_function_invocation (FI))
361
362 /* Saved Pc. */
363
364 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
365 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
366
367 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
368
369 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
370
371 /* Return number of args passed to a frame.
372 Can return -1, meaning no way to tell. */
373
374 #define FRAME_NUM_ARGS(fi) (-1)
375
376 /* Return number of bytes at start of arglist that are not really args. */
377
378 #define FRAME_ARGS_SKIP 0
379
380 /* Put here the code to store, into a struct frame_saved_regs, the
381 addresses of the saved registers of frame described by FRAME_INFO.
382 This includes special registers such as pc and fp saved in special
383 ways in the stack frame. sp is even more special: the address we
384 return for it IS the sp for the next frame. */
385
386 void arm_frame_init_saved_regs (struct frame_info *);
387 #define FRAME_INIT_SAVED_REGS(frame_info) \
388 arm_frame_init_saved_regs (frame_info);
389
390 /* Things needed for making the inferior call functions. */
391
392 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
393 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
394 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
395 CORE_ADDR);
396
397 /* Push an empty stack frame, to record the current PC, etc. */
398
399 void arm_push_dummy_frame (void);
400
401 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
402
403 /* Discard from the stack the innermost frame, restoring all registers. */
404
405 void arm_pop_frame (void);
406
407 #define POP_FRAME arm_pop_frame ()
408
409 /* This sequence of words is the instructions
410
411 mov lr,pc
412 mov pc,r4
413 illegal
414
415 Note this is 12 bytes. */
416
417 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
418 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
419
420 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
421 extern int arm_call_dummy_breakpoint_offset (void);
422
423 /* Insert the specified number of args and function address into a
424 call sequence of the above form stored at DUMMYNAME. */
425
426 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
427 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
428
429 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
430 int nargs, struct value ** args,
431 struct type * type, int gcc_p);
432
433 /* Most ARMs don't have single stepping capability, so provide a
434 single-stepping mechanism by default */
435 #undef SOFTWARE_SINGLE_STEP_P
436 #define SOFTWARE_SINGLE_STEP_P() 1
437
438 #define SOFTWARE_SINGLE_STEP(sig,bpt) arm_software_single_step((sig), (bpt))
439 void arm_software_single_step (int, int);
440
441 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
442
443 /* Macros for setting and testing a bit in a minimal symbol that marks
444 it as Thumb function. The MSB of the minimal symbol's "info" field
445 is used for this purpose. This field is already being used to store
446 the symbol size, so the assumption is that the symbol size cannot
447 exceed 2^31.
448
449 COFF_MAKE_MSYMBOL_SPECIAL
450 ELF_MAKE_MSYMBOL_SPECIAL
451
452 These macros test whether the COFF or ELF symbol corresponds to a
453 thumb function, and set a "special" bit in a minimal symbol to
454 indicate that it does.
455
456 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
457 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
458 MSYMBOL_SIZE Returns the size of the minimal symbol,
459 i.e. the "info" field with the "special" bit
460 masked out
461 */
462
463 extern int coff_sym_is_thumb (int val);
464
465 #define MSYMBOL_SET_SPECIAL(msym) \
466 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
467 #define MSYMBOL_IS_SPECIAL(msym) \
468 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
469 #define MSYMBOL_SIZE(msym) \
470 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
471
472 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
473 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
474 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
475 MSYMBOL_SET_SPECIAL(msym); }
476
477 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
478 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
479
480 /* The first 0x20 bytes are the trap vectors. */
481 #define LOWEST_PC 0x20
482
483 /* Function to determine whether MEMADDR is in a Thumb function. */
484 extern int arm_pc_is_thumb (bfd_vma memaddr);
485
486 /* Function to determine whether MEMADDR is in a call dummy called from
487 a Thumb function. */
488 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
489
490 #endif /* TM_ARM_H */
This page took 0.039712 seconds and 3 git commands to generate.