Assume TARGET_BYTE_ORDER_SELECTABLE{,_P} is always true.
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #include "regcache.h"
26 #include "floatformat.h"
27
28 /* Forward declarations for prototypes. */
29 struct type;
30 struct value;
31
32 /* Target byte order on ARM defaults to selectable, and defaults to
33 little endian. */
34 #define TARGET_BYTE_ORDER_DEFAULT BFD_ENDIAN_LITTLE
35
36 /* IEEE format floating point. */
37 #define TARGET_DOUBLE_FORMAT (target_byte_order == BFD_ENDIAN_BIG \
38 ? &floatformat_ieee_double_big \
39 : &floatformat_ieee_double_littlebyte_bigword)
40
41 /* When reading symbols, we need to zap the low bit of the address,
42 which may be set to 1 for Thumb functions. */
43
44 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
45
46 /* Remove useless bits from addresses in a running program. */
47
48 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
49
50 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
51
52 /* Offset from address of function to start of its code. Zero on most
53 machines. */
54
55 #define FUNCTION_START_OFFSET 0
56
57 /* Advance PC across any function entry prologue instructions to reach
58 some "real" code. */
59
60 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
61
62 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
63
64 /* Immediately after a function call, return the saved pc. Can't
65 always go through the frames for this because on some machines the
66 new frame is not set up until the new function executes some
67 instructions. */
68
69 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
70 struct frame_info;
71 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
72
73 /* The following define instruction sequences that will cause ARM
74 cpu's to take an undefined instruction trap. These are used to
75 signal a breakpoint to GDB.
76
77 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
78 modes. A different instruction is required for each mode. The ARM
79 cpu's can also be big or little endian. Thus four different
80 instructions are needed to support all cases.
81
82 Note: ARMv4 defines several new instructions that will take the
83 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
84 not in fact add the new instructions. The new undefined
85 instructions in ARMv4 are all instructions that had no defined
86 behaviour in earlier chips. There is no guarantee that they will
87 raise an exception, but may be treated as NOP's. In practice, it
88 may only safe to rely on instructions matching:
89
90 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
91 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
92 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
93
94 Even this may only true if the condition predicate is true. The
95 following use a condition predicate of ALWAYS so it is always TRUE.
96
97 There are other ways of forcing a breakpoint. ARM Linux, RISC iX,
98 and NetBSD will all use a software interrupt rather than an
99 undefined instruction to force a trap. This can be handled by
100 redefining some or all of the following in a target dependent
101 fashion. */
102
103 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
104 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
105 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
106 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
107
108 /* Stack grows downward. */
109
110 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
111
112 /* !!!! if we're using RDP, then we're inserting breakpoints and
113 storing their handles instread of what was in memory. It is nice
114 that this is the same size as a handle - otherwise remote-rdp will
115 have to change. */
116
117 /* BREAKPOINT_FROM_PC uses the program counter value to determine
118 whether a 16- or 32-bit breakpoint should be used. It returns a
119 pointer to a string of bytes that encode a breakpoint instruction,
120 stores the length of the string to *lenptr, and adjusts the pc (if
121 necessary) to point to the actual memory location where the
122 breakpoint should be inserted. */
123
124 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
125 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
126
127 /* Amount PC must be decremented by after a breakpoint. This is often
128 the number of bytes in BREAKPOINT but not always. */
129
130 #define DECR_PC_AFTER_BREAK 0
131
132 /* Code to execute to print interesting information about the floating
133 point processor (if any) or emulator. No need to define if there
134 is nothing to do. */
135 extern void arm_float_info (void);
136
137 #define FLOAT_INFO { arm_float_info (); }
138
139 /* Say how long (ordinary) registers are. This is a piece of bogosity
140 used in push_word and a few other places; REGISTER_RAW_SIZE is the
141 real way to know how big a register is. */
142
143 #define REGISTER_SIZE 4
144
145 /* Say how long FP registers are. Used for documentation purposes and
146 code readability in this header. IEEE extended doubles are 80
147 bits. DWORD aligned they use 96 bits. */
148 #define FP_REGISTER_RAW_SIZE 12
149
150 /* GCC doesn't support long doubles (extended IEEE values). The FP
151 register virtual size is therefore 64 bits. Used for documentation
152 purposes and code readability in this header. */
153 #define FP_REGISTER_VIRTUAL_SIZE 8
154
155 /* Status registers are the same size as general purpose registers.
156 Used for documentation purposes and code readability in this
157 header. */
158 #define STATUS_REGISTER_SIZE REGISTER_SIZE
159
160 /* Number of machine registers. The only define actually required
161 is NUM_REGS. The other definitions are used for documentation
162 purposes and code readability. */
163 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
164 (and called PS for processor status) so the status bits can be cleared
165 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
166 in PS. */
167 #define NUM_FREGS 8 /* Number of floating point registers. */
168 #define NUM_SREGS 2 /* Number of status registers. */
169 #define NUM_GREGS 16 /* Number of general purpose registers. */
170 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
171
172 /* An array of names of registers. */
173 extern char **arm_register_names;
174
175 #define REGISTER_NAME(i) arm_register_names[i]
176
177 /* Register numbers of various important registers. Note that some of
178 these values are "real" register numbers, and correspond to the
179 general registers of the machine, and some are "phony" register
180 numbers which are too large to be actual register numbers as far as
181 the user is concerned but do serve to get the desired values when
182 passed to read_register. */
183
184 #define A1_REGNUM 0 /* first integer-like argument */
185 #define A4_REGNUM 3 /* last integer-like argument */
186 #define AP_REGNUM 11
187 #define FP_REGNUM 11 /* Contains address of executing stack frame */
188 #define SP_REGNUM 13 /* Contains address of top of stack */
189 #define LR_REGNUM 14 /* address to return to from a function call */
190 #define PC_REGNUM 15 /* Contains program counter */
191 #define F0_REGNUM 16 /* first floating point register */
192 #define F3_REGNUM 19 /* last floating point argument register */
193 #define F7_REGNUM 23 /* last floating point register */
194 #define FPS_REGNUM 24 /* floating point status register */
195 #define PS_REGNUM 25 /* Contains processor status */
196
197 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
198
199 #define ARM_NUM_ARG_REGS 4
200 #define ARM_LAST_ARG_REGNUM A4_REGNUM
201 #define ARM_NUM_FP_ARG_REGS 4
202 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
203
204 /* Instruction condition field values. */
205 #define INST_EQ 0x0
206 #define INST_NE 0x1
207 #define INST_CS 0x2
208 #define INST_CC 0x3
209 #define INST_MI 0x4
210 #define INST_PL 0x5
211 #define INST_VS 0x6
212 #define INST_VC 0x7
213 #define INST_HI 0x8
214 #define INST_LS 0x9
215 #define INST_GE 0xa
216 #define INST_LT 0xb
217 #define INST_GT 0xc
218 #define INST_LE 0xd
219 #define INST_AL 0xe
220 #define INST_NV 0xf
221
222 #define FLAG_N 0x80000000
223 #define FLAG_Z 0x40000000
224 #define FLAG_C 0x20000000
225 #define FLAG_V 0x10000000
226
227
228
229 /* Total amount of space needed to store our copies of the machine's
230 register state, the array `registers'. */
231
232 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
233 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
234 (NUM_SREGS * STATUS_REGISTER_SIZE))
235
236 /* Index within `registers' of the first byte of the space for
237 register N. */
238
239 #define REGISTER_BYTE(N) \
240 ((N) < F0_REGNUM \
241 ? (N) * REGISTER_SIZE \
242 : ((N) < PS_REGNUM \
243 ? (NUM_GREGS * REGISTER_SIZE + \
244 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
245 : (NUM_GREGS * REGISTER_SIZE + \
246 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
247 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
248
249 /* Number of bytes of storage in the actual machine representation for
250 register N. All registers are 4 bytes, except fp0 - fp7, which are
251 12 bytes in length. */
252 #define REGISTER_RAW_SIZE(N) \
253 ((N) < F0_REGNUM ? REGISTER_SIZE : \
254 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
255
256 /* Number of bytes of storage in a program's representation
257 for register N. */
258 #define REGISTER_VIRTUAL_SIZE(N) \
259 ((N) < F0_REGNUM ? REGISTER_SIZE : \
260 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
261
262 /* Largest value REGISTER_RAW_SIZE can have. */
263
264 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
265
266 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
267 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
268
269 /* Return the GDB type object for the "standard" data type of data in
270 register N. */
271
272 extern struct type *arm_register_type (int regnum);
273 #define REGISTER_VIRTUAL_TYPE(N) arm_register_type (N)
274
275 /* The system C compiler uses a similar structure return convention to gcc */
276 extern use_struct_convention_fn arm_use_struct_convention;
277 #define USE_STRUCT_CONVENTION(gcc_p, type) \
278 arm_use_struct_convention (gcc_p, type)
279
280 /* Store the address of the place in which to copy the structure the
281 subroutine will return. This is called from call_function. */
282
283 #define STORE_STRUCT_RETURN(ADDR, SP) \
284 write_register (A1_REGNUM, (ADDR))
285
286 /* Extract from an array REGBUF containing the (raw) register state a
287 function return value of type TYPE, and copy that, in virtual
288 format, into VALBUF. */
289
290 extern void arm_extract_return_value (struct type *, char[], char *);
291 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
292 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
293
294 /* Write into appropriate registers a function return value of type
295 TYPE, given in virtual format. */
296
297 extern void convert_to_extended (void *dbl, void *ptr);
298 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
299 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
300 char _buf[MAX_REGISTER_RAW_SIZE]; \
301 convert_to_extended (VALBUF, _buf); \
302 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
303 } else \
304 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
305
306 /* Extract from an array REGBUF containing the (raw) register state
307 the address in which a function should return its structure value,
308 as a CORE_ADDR (or an expression that can be used as one). */
309
310 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
311 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
312
313 /* Specify that for the native compiler variables for a particular
314 lexical context are listed after the beginning LBRAC instead of
315 before in the executables list of symbols. */
316 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
317 \f
318
319 /* Define other aspects of the stack frame. We keep the offsets of
320 all saved registers, 'cause we need 'em a lot! We also keep the
321 current size of the stack frame, and the offset of the frame
322 pointer from the stack pointer (for frameless functions, and when
323 we're still in the prologue of a function with a frame) */
324
325 #define EXTRA_FRAME_INFO \
326 struct frame_saved_regs fsr; \
327 int framesize; \
328 int frameoffset; \
329 int framereg;
330
331 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
332 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
333 arm_init_extra_frame_info ((fromleaf), (fi))
334
335 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
336 CORE_ADDR arm_target_read_fp (void);
337 #define TARGET_READ_FP() arm_target_read_fp ()
338
339 /* Describe the pointer in each stack frame to the previous stack
340 frame (its caller). */
341
342 /* FRAME_CHAIN takes a frame's nominal address and produces the
343 frame's chain-pointer.
344
345 However, if FRAME_CHAIN_VALID returns zero,
346 it means the given frame is the outermost one and has no caller. */
347
348 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
349 extern CORE_ADDR arm_frame_chain (struct frame_info *);
350
351 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
352 #define FRAME_CHAIN_VALID(chain, thisframe) \
353 arm_frame_chain_valid (chain, thisframe)
354
355 /* Define other aspects of the stack frame. */
356
357 /* A macro that tells us whether the function invocation represented
358 by FI does not have a frame on the stack associated with it. If it
359 does not, FRAMELESS is set to 1, else 0.
360
361 Sometimes we have functions that do a little setup (like saving the
362 vN registers with the stmdb instruction, but DO NOT set up a frame.
363 The symbol table will report this as a prologue. However, it is
364 important not to try to parse these partial frames as frames, or we
365 will get really confused.
366
367 So I will demand 3 instructions between the start & end of the
368 prologue before I call it a real prologue, i.e. at least
369 mov ip, sp,
370 stmdb sp!, {}
371 sub sp, ip, #4. */
372
373 extern int arm_frameless_function_invocation (struct frame_info *fi);
374 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
375 (arm_frameless_function_invocation (FI))
376
377 /* Saved Pc. */
378
379 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
380 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
381
382 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
383
384 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
385
386 /* Return number of args passed to a frame.
387 Can return -1, meaning no way to tell. */
388
389 #define FRAME_NUM_ARGS(fi) (-1)
390
391 /* Return number of bytes at start of arglist that are not really args. */
392
393 #define FRAME_ARGS_SKIP 0
394
395 /* Put here the code to store, into a struct frame_saved_regs, the
396 addresses of the saved registers of frame described by FRAME_INFO.
397 This includes special registers such as pc and fp saved in special
398 ways in the stack frame. sp is even more special: the address we
399 return for it IS the sp for the next frame. */
400
401 struct frame_saved_regs;
402 struct frame_info;
403 void arm_frame_find_saved_regs (struct frame_info * fi,
404 struct frame_saved_regs * fsr);
405
406 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
407 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
408
409 /* Things needed for making the inferior call functions. */
410
411 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
412 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
413 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
414 CORE_ADDR);
415
416 /* Push an empty stack frame, to record the current PC, etc. */
417
418 void arm_push_dummy_frame (void);
419
420 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
421
422 /* Discard from the stack the innermost frame, restoring all registers. */
423
424 void arm_pop_frame (void);
425
426 #define POP_FRAME arm_pop_frame ()
427
428 /* This sequence of words is the instructions
429
430 mov lr,pc
431 mov pc,r4
432 illegal
433
434 Note this is 12 bytes. */
435
436 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
437 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
438
439 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
440 extern int arm_call_dummy_breakpoint_offset (void);
441
442 /* Insert the specified number of args and function address into a
443 call sequence of the above form stored at DUMMYNAME. */
444
445 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
446 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
447
448 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
449 int nargs, struct value ** args,
450 struct type * type, int gcc_p);
451
452 /* Most ARMs don't have single stepping capability, so provide a
453 single-stepping mechanism by default */
454 #undef SOFTWARE_SINGLE_STEP_P
455 #define SOFTWARE_SINGLE_STEP_P() 1
456
457 #define SOFTWARE_SINGLE_STEP(sig,bpt) arm_software_single_step((sig), (bpt))
458 void arm_software_single_step (int, int);
459
460 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
461
462 /* Macros for setting and testing a bit in a minimal symbol that marks
463 it as Thumb function. The MSB of the minimal symbol's "info" field
464 is used for this purpose. This field is already being used to store
465 the symbol size, so the assumption is that the symbol size cannot
466 exceed 2^31.
467
468 COFF_MAKE_MSYMBOL_SPECIAL
469 ELF_MAKE_MSYMBOL_SPECIAL
470
471 These macros test whether the COFF or ELF symbol corresponds to a
472 thumb function, and set a "special" bit in a minimal symbol to
473 indicate that it does.
474
475 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
476 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
477 MSYMBOL_SIZE Returns the size of the minimal symbol,
478 i.e. the "info" field with the "special" bit
479 masked out
480 */
481
482 extern int coff_sym_is_thumb (int val);
483
484 #define MSYMBOL_SET_SPECIAL(msym) \
485 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
486 #define MSYMBOL_IS_SPECIAL(msym) \
487 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
488 #define MSYMBOL_SIZE(msym) \
489 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
490
491 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
492 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
493 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
494 MSYMBOL_SET_SPECIAL(msym); }
495
496 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
497 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
498
499 /* The first 0x20 bytes are the trap vectors. */
500 #define LOWEST_PC 0x20
501
502 /* Function to determine whether MEMADDR is in a Thumb function. */
503 extern int arm_pc_is_thumb (bfd_vma memaddr);
504
505 /* Function to determine whether MEMADDR is in a call dummy called from
506 a Thumb function. */
507 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
508
509 #endif /* TM_ARM_H */
This page took 0.038965 seconds and 4 git commands to generate.