* config/mips/tm-mips.h (SETUP_ARBITRARY_FRAME): Revise comment
[deliverable/binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
4 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include <bfd.h>
23 #include "coff/sym.h" /* Needed for PDR below. */
24 #include "coff/symconst.h"
25
26 #if !defined (TARGET_BYTE_ORDER)
27 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
28 #endif
29
30 /* Floating point is IEEE compliant */
31 #define IEEE_FLOAT
32
33 /* Some MIPS boards are provided both with and without a floating
34 point coprocessor; we provide a user settable variable to tell gdb
35 whether there is one or not. */
36 extern int mips_fpu;
37
38 /* Offset from address of function to start of its code.
39 Zero on most machines. */
40
41 #define FUNCTION_START_OFFSET 0
42
43 /* Advance PC across any function entry prologue instructions
44 to reach some "real" code. */
45
46 #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue (pc, 0)
47 extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
48
49 /* Return non-zero if PC points to an instruction which will cause a step
50 to execute both the instruction at PC and an instruction at PC+4. */
51 #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
52
53 /* Immediately after a function call, return the saved pc.
54 Can't always go through the frames for this because on some machines
55 the new frame is not set up until the new function executes
56 some instructions. */
57
58 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
59
60 /* Are we currently handling a signal */
61
62 extern int in_sigtramp PARAMS ((CORE_ADDR, char *));
63 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
64
65 /* Stack grows downward. */
66
67 #define INNER_THAN <
68
69 #define BIG_ENDIAN 4321
70 #if TARGET_BYTE_ORDER == BIG_ENDIAN
71 #define BREAKPOINT {0, 0x5, 0, 0xd}
72 #else
73 #define BREAKPOINT {0xd, 0, 0x5, 0}
74 #endif
75
76 /* Amount PC must be decremented by after a breakpoint.
77 This is often the number of bytes in BREAKPOINT
78 but not always. */
79
80 #define DECR_PC_AFTER_BREAK 0
81
82 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
83
84 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
85
86 /* This is taken care of in print_floating [IEEE_FLOAT]. */
87
88 #define INVALID_FLOAT(p,l) 0
89
90 /* Say how long (ordinary) registers are. This is a piece of bogosity
91 used in push_word and a few other places; REGISTER_RAW_SIZE is the
92 real way to know how big a register is. */
93
94 #define REGISTER_SIZE 4
95
96 /* The size of a register. This is predefined in tm-mips64.h. We
97 can't use REGISTER_SIZE because that is used for various other
98 things. */
99
100 #ifndef MIPS_REGSIZE
101 #define MIPS_REGSIZE 4
102 #endif
103
104 /* Number of machine registers */
105
106 #define NUM_REGS 80
107
108 /* Initializer for an array of names of registers.
109 There should be NUM_REGS strings in this initializer. */
110
111 #define REGISTER_NAMES \
112 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
113 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
114 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
115 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
116 "sr", "lo", "hi", "bad", "cause","pc", \
117 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
118 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
119 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
120 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
121 "fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\
122 "epc", "prid"\
123 }
124
125 /* Register numbers of various important registers.
126 Note that some of these values are "real" register numbers,
127 and correspond to the general registers of the machine,
128 and some are "phony" register numbers which are too large
129 to be actual register numbers as far as the user is concerned
130 but do serve to get the desired values when passed to read_register. */
131
132 #define ZERO_REGNUM 0 /* read-only register, always 0 */
133 #define V0_REGNUM 2 /* Function integer return value */
134 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
135 #define SP_REGNUM 29 /* Contains address of top of stack */
136 #define RA_REGNUM 31 /* Contains return address value */
137 #define PS_REGNUM 32 /* Contains processor status */
138 #define HI_REGNUM 34 /* Multiple/divide temp */
139 #define LO_REGNUM 33 /* ... */
140 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
141 #define CAUSE_REGNUM 36 /* describes last exception */
142 #define PC_REGNUM 37 /* Contains program counter */
143 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
144 #define FCRCS_REGNUM 70 /* FP control/status */
145 #define FCRIR_REGNUM 71 /* FP implementation/revision */
146 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
147 #define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */
148 #define LAST_EMBED_REGNUM 79 /* Last one */
149
150 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
151 of register dumps. */
152
153 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
154
155 /* Total amount of space needed to store our copies of the machine's
156 register state, the array `registers'. */
157 #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
158
159 /* Index within `registers' of the first byte of the space for
160 register N. */
161
162 #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
163
164 /* Number of bytes of storage in the actual machine representation
165 for register N. On mips, all regs are the same size. */
166
167 #define REGISTER_RAW_SIZE(N) MIPS_REGSIZE
168
169 /* Number of bytes of storage in the program's representation
170 for register N. On mips, all regs are the same size. */
171
172 #define REGISTER_VIRTUAL_SIZE(N) MIPS_REGSIZE
173
174 /* Largest value REGISTER_RAW_SIZE can have. */
175
176 #define MAX_REGISTER_RAW_SIZE 8
177
178 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
179
180 #define MAX_REGISTER_VIRTUAL_SIZE 8
181
182 /* Return the GDB type object for the "standard" data type
183 of data in register N. */
184
185 #ifndef REGISTER_VIRTUAL_TYPE
186 #define REGISTER_VIRTUAL_TYPE(N) \
187 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \
188 ? builtin_type_float : builtin_type_int)
189 #endif
190
191 #if HOST_BYTE_ORDER == BIG_ENDIAN
192 /* All mips targets store doubles in a register pair with the least
193 significant register in the lower numbered register.
194 If the host is big endian, double register values need conversion between
195 memory and register formats. */
196
197 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
198 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
199 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
200 char __temp[4]; \
201 memcpy (__temp, ((char *)(buffer))+4, 4); \
202 memcpy (((char *)(buffer))+4, (buffer), 4); \
203 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
204
205 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
206 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
207 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
208 char __temp[4]; \
209 memcpy (__temp, ((char *)(buffer))+4, 4); \
210 memcpy (((char *)(buffer))+4, (buffer), 4); \
211 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
212 #endif
213
214 /* Store the address of the place in which to copy the structure the
215 subroutine will return. Handled by mips_push_arguments. */
216
217 #define STORE_STRUCT_RETURN(addr, sp) /**/
218
219 /* Extract from an array REGBUF containing the (raw) register state
220 a function return value of type TYPE, and copy that, in virtual format,
221 into VALBUF. XXX floats */
222
223 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
224 mips_extract_return_value(TYPE, REGBUF, VALBUF)
225
226 /* Write into appropriate registers a function return value
227 of type TYPE, given in virtual format. */
228
229 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
230 mips_store_return_value(TYPE, VALBUF)
231
232 /* Extract from an array REGBUF containing the (raw) register state
233 the address in which a function should return its structure value,
234 as a CORE_ADDR (or an expression that can be used as one). */
235 /* The address is passed in a0 upon entry to the function, but when
236 the function exits, the compiler has copied the value to v0. This
237 convention is specified by the System V ABI, so I think we can rely
238 on it. */
239
240 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
241 (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
242 REGISTER_RAW_SIZE (V0_REGNUM)))
243
244 /* Structures are returned by ref in extra arg0 */
245 #define USE_STRUCT_CONVENTION(gcc_p, type) 1
246
247 \f
248 /* Describe the pointer in each stack frame to the previous stack frame
249 (its caller). */
250
251 /* FRAME_CHAIN takes a frame's nominal address
252 and produces the frame's chain-pointer. */
253
254 #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
255
256 /* Define other aspects of the stack frame. */
257
258
259 /* A macro that tells us whether the function invocation represented
260 by FI does not have a frame on the stack associated with it. If it
261 does not, FRAMELESS is set to 1, else 0. */
262 /* We handle this differently for mips, and maybe we should not */
263
264 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
265
266 /* Saved Pc. */
267
268 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
269
270 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
271
272 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
273
274 /* Return number of args passed to a frame.
275 Can return -1, meaning no way to tell. */
276
277 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
278
279 /* Return number of bytes at start of arglist that are not really args. */
280
281 #define FRAME_ARGS_SKIP 0
282
283 /* Put here the code to store, into a struct frame_saved_regs,
284 the addresses of the saved registers of frame described by FRAME_INFO.
285 This includes special registers such as pc and fp saved in special
286 ways in the stack frame. sp is even more special:
287 the address we return for it IS the sp for the next frame. */
288
289 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
290 do { \
291 if ((frame_info)->saved_regs == NULL) \
292 mips_find_saved_regs (frame_info); \
293 (frame_saved_regs) = *(frame_info)->saved_regs; \
294 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame; \
295 } while (0)
296
297 \f
298 /* Things needed for making the inferior call functions. */
299
300 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
301 to take care of it. */
302 /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
303
304 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
305 sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
306
307 /* Push an empty stack frame, to record the current PC, etc. */
308
309 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
310
311 /* Discard from the stack the innermost frame, restoring all registers. */
312
313 #define POP_FRAME mips_pop_frame()
314
315 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
316 #ifndef OP_LDFPR
317 #define OP_LDFPR 061 /* lwc1 */
318 #endif
319 #ifndef OP_LDGPR
320 #define OP_LDGPR 043 /* lw */
321 #endif
322 #define CALL_DUMMY_SIZE (16*4)
323 #define Dest_Reg 2
324 #define CALL_DUMMY {\
325 MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
326 0, /* nop # ... to stop raw backtrace*/\
327 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
328 /* Start here; reload FP regs, then GP regs: */\
329 MK_OP(OP_LDFPR,SP_REGNUM,12,0 ), /* l[wd]c1 $f12,0(sp) */\
330 MK_OP(OP_LDFPR,SP_REGNUM,13, MIPS_REGSIZE), /* l[wd]c1 $f13,{4,8}(sp) */\
331 MK_OP(OP_LDFPR,SP_REGNUM,14,2*MIPS_REGSIZE), /* l[wd]c1 $f14,{8,16}(sp) */\
332 MK_OP(OP_LDFPR,SP_REGNUM,15,3*MIPS_REGSIZE), /* l[wd]c1 $f15,{12,24}(sp) */\
333 MK_OP(OP_LDGPR,SP_REGNUM, 4,0 ), /* l[wd] $r4,0(sp) */\
334 MK_OP(OP_LDGPR,SP_REGNUM, 5, MIPS_REGSIZE), /* l[wd] $r5,{4,8}(sp) */\
335 MK_OP(OP_LDGPR,SP_REGNUM, 6,2*MIPS_REGSIZE), /* l[wd] $r6,{8,16}(sp) */\
336 MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
337 (017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
338 MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
339 (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
340 MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
341 0x5000d, /* bpt */\
342 }
343
344 #define CALL_DUMMY_START_OFFSET 12
345
346 #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (12 * 4))
347
348 /* Insert the specified number of args and function address
349 into a call sequence of the above form stored at DUMMYNAME. */
350
351 #if TARGET_BYTE_ORDER == BIG_ENDIAN && ! defined (GDB_TARGET_IS_MIPS64)
352 /* For big endian mips machines we need to switch the order of the
353 words with a floating-point value (it was already coerced to a double
354 by mips_push_arguments). */
355 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
356 do { \
357 ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16; \
358 ((int*)(dummyname))[12] |= (unsigned short)(fun); \
359 if (! mips_fpu) { \
360 ((int *) (dummyname))[3] = 0; ((int *) (dummyname))[4] = 0; \
361 ((int *) (dummyname))[5] = 0; ((int *) (dummyname))[6] = 0; \
362 } else { \
363 if (nargs > 0 && \
364 TYPE_CODE(VALUE_TYPE(args[0])) == TYPE_CODE_FLT) { \
365 if (TYPE_LENGTH(VALUE_TYPE(args[0])) > 8) \
366 error ("Can't pass floating point value of more than 8 bytes to a function"); \
367 ((int *) (dummyname))[3] = MK_OP(OP_LDFPR,SP_REGNUM,12,4); \
368 ((int *) (dummyname))[4] = MK_OP(OP_LDFPR,SP_REGNUM,13,0); \
369 } \
370 if (nargs > 1 && \
371 TYPE_CODE(VALUE_TYPE(args[1])) == TYPE_CODE_FLT) { \
372 if (TYPE_LENGTH(VALUE_TYPE(args[1])) > 8) \
373 error ("Can't pass floating point value of more than 8 bytes to a function"); \
374 ((int *) (dummyname))[5] = MK_OP(OP_LDFPR,SP_REGNUM,14,12); \
375 ((int *) (dummyname))[6] = MK_OP(OP_LDFPR,SP_REGNUM,15,8); \
376 } \
377 } \
378 } while (0)
379 #else
380 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\
381 do \
382 { \
383 ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16; \
384 ((int*)(dummyname))[12] |= (unsigned short)(fun); \
385 if (! mips_fpu) \
386 { \
387 ((int *) (dummyname))[3] = 0; \
388 ((int *) (dummyname))[4] = 0; \
389 ((int *) (dummyname))[5] = 0; \
390 ((int *) (dummyname))[6] = 0; \
391 } \
392 } \
393 while (0)
394 #endif
395
396 /* There's a mess in stack frame creation. See comments in blockframe.c
397 near reference to INIT_FRAME_PC_FIRST. */
398
399 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
400
401 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
402 (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
403 (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
404
405 /* Special symbol found in blocks associated with routines. We can hang
406 mips_extra_func_info_t's off of this. */
407
408 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
409
410 /* Specific information about a procedure.
411 This overlays the MIPS's PDR records,
412 mipsread.c (ab)uses this to save memory */
413
414 typedef struct mips_extra_func_info {
415 long numargs; /* number of args to procedure (was iopt) */
416 PDR pdr; /* Procedure descriptor record */
417 } *mips_extra_func_info_t;
418
419 #define EXTRA_FRAME_INFO \
420 mips_extra_func_info_t proc_desc; \
421 int num_args;\
422 struct frame_saved_regs *saved_regs;
423
424 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
425
426 #define PRINT_EXTRA_FRAME_INFO(fi) \
427 { \
428 if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
429 printf_filtered (" frame pointer is at %s+%d\n", \
430 reg_names[fi->proc_desc->pdr.framereg], \
431 fi->proc_desc->pdr.frameoffset); \
432 }
433
434 /* It takes two values to specify a frame on the MIPS.
435
436 In fact, the *PC* is the primary value that sets up a frame. The
437 PC is looked up to see what function it's in; symbol information
438 from that function tells us which register is the frame pointer
439 base, and what offset from there is the "virtual frame pointer".
440 (This is usually an offset from SP.) On most non-MIPS machines,
441 the primary value is the SP, and the PC, if needed, disambiguates
442 multiple functions with the same SP. But on the MIPS we can't do
443 that since the PC is not stored in the same part of the frame every
444 time. This does not seem to be a very clever way to set up frames,
445 but there is nothing we can do about that). */
446
447 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
448 /* FIXME: Depends on equivalence between FRAME and "struct frame_info *",
449 and equivalence between CORE_ADDR and FRAME_ADDR. */
450 extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
451
452 /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
453
454 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
455
456 /* Convert a ecoff register number to a gdb REGNUM */
457
458 #define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
This page took 0.038202 seconds and 4 git commands to generate.