Use config.bfd to determine the default architecture and byte order.
[deliverable/binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
5 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #ifndef TM_MIPS_H
25 #define TM_MIPS_H 1
26
27 struct frame_info;
28 struct symbol;
29 struct type;
30 struct value;
31
32 #include <bfd.h>
33 #include "coff/sym.h" /* Needed for PDR below. */
34 #include "coff/symconst.h"
35
36 #if !defined (GDB_TARGET_IS_MIPS64)
37 #define GDB_TARGET_IS_MIPS64 0
38 #endif
39
40 #if !defined (MIPS_EABI)
41 #define MIPS_EABI 0
42 #endif
43
44 /* PC should be masked to remove possible MIPS16 flag */
45 #if !defined (GDB_TARGET_MASK_DISAS_PC)
46 #define GDB_TARGET_MASK_DISAS_PC(addr) UNMAKE_MIPS16_ADDR(addr)
47 #endif
48 #if !defined (GDB_TARGET_UNMASK_DISAS_PC)
49 #define GDB_TARGET_UNMASK_DISAS_PC(addr) MAKE_MIPS16_ADDR(addr)
50 #endif
51
52 /* Floating point is IEEE compliant */
53 #define IEEE_FLOAT (1)
54
55 /* The name of the usual type of MIPS processor that is in the target
56 system. */
57
58 #define DEFAULT_MIPS_TYPE "generic"
59
60 /* Remove useless bits from an instruction address. */
61
62 #define ADDR_BITS_REMOVE(addr) mips_addr_bits_remove(addr)
63 CORE_ADDR mips_addr_bits_remove (CORE_ADDR addr);
64
65 /* Remove useless bits from the stack pointer. */
66
67 #define TARGET_READ_SP() ADDR_BITS_REMOVE (read_register (SP_REGNUM))
68
69 /* Offset from address of function to start of its code.
70 Zero on most machines. */
71
72 #define FUNCTION_START_OFFSET 0
73
74 /* Advance PC across any function entry prologue instructions
75 to reach some "real" code. */
76
77 #define SKIP_PROLOGUE(pc) (mips_skip_prologue (pc, 0))
78 extern CORE_ADDR mips_skip_prologue (CORE_ADDR addr, int lenient);
79
80 /* Return non-zero if PC points to an instruction which will cause a step
81 to execute both the instruction at PC and an instruction at PC+4. */
82 extern int mips_step_skips_delay (CORE_ADDR);
83 #define STEP_SKIPS_DELAY_P (1)
84 #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
85
86 /* Immediately after a function call, return the saved pc.
87 Can't always go through the frames for this because on some machines
88 the new frame is not set up until the new function executes
89 some instructions. */
90
91 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
92
93 /* Are we currently handling a signal */
94
95 extern int in_sigtramp (CORE_ADDR, char *);
96 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
97
98 /* Stack grows downward. */
99
100 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
101
102 /* BREAKPOINT_FROM_PC uses the program counter value to determine whether a
103 16- or 32-bit breakpoint should be used. It returns a pointer
104 to a string of bytes that encode a breakpoint instruction, stores
105 the length of the string to *lenptr, and adjusts the pc (if necessary) to
106 point to the actual memory location where the breakpoint should be
107 inserted. */
108
109 extern breakpoint_from_pc_fn mips_breakpoint_from_pc;
110 #define BREAKPOINT_FROM_PC(pcptr, lenptr) mips_breakpoint_from_pc(pcptr, lenptr)
111
112 /* Amount PC must be decremented by after a breakpoint.
113 This is often the number of bytes in BREAKPOINT
114 but not always. */
115
116 #define DECR_PC_AFTER_BREAK 0
117
118 /* Say how long (ordinary) registers are. This is a piece of bogosity
119 used in push_word and a few other places; REGISTER_RAW_SIZE is the
120 real way to know how big a register is. */
121
122 #define REGISTER_SIZE 4
123
124 /* The size of a register. This is predefined in tm-mips64.h. We
125 can't use REGISTER_SIZE because that is used for various other
126 things. */
127
128 #ifndef MIPS_REGSIZE
129 #define MIPS_REGSIZE 4
130 #endif
131
132 /* The sizes of floating point registers. */
133
134 #define MIPS_FPU_SINGLE_REGSIZE 4
135 #define MIPS_FPU_DOUBLE_REGSIZE 8
136
137 /* Number of machine registers */
138
139 #ifndef NUM_REGS
140 #define NUM_REGS 90
141 #endif
142
143 /* Given the register index, return the name of the corresponding
144 register. */
145 extern char *mips_register_name (int regnr);
146 #define REGISTER_NAME(i) mips_register_name (i)
147
148 /* Initializer for an array of names of registers.
149 There should be NUM_REGS strings in this initializer. */
150
151 #ifndef MIPS_REGISTER_NAMES
152 #define MIPS_REGISTER_NAMES \
153 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
154 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
155 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
156 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
157 "sr", "lo", "hi", "bad", "cause","pc", \
158 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
159 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
160 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
161 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
162 "fsr", "fir", "fp", "", \
163 "", "", "", "", "", "", "", "", \
164 "", "", "", "", "", "", "", "", \
165 }
166 #endif
167
168 /* Register numbers of various important registers.
169 Note that some of these values are "real" register numbers,
170 and correspond to the general registers of the machine,
171 and some are "phony" register numbers which are too large
172 to be actual register numbers as far as the user is concerned
173 but do serve to get the desired values when passed to read_register. */
174
175 #define ZERO_REGNUM 0 /* read-only register, always 0 */
176 #define V0_REGNUM 2 /* Function integer return value */
177 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
178 #if MIPS_EABI
179 #define MIPS_LAST_ARG_REGNUM 11 /* EABI uses R4 through R11 for args */
180 #else
181 #define MIPS_LAST_ARG_REGNUM 7 /* old ABI uses R4 through R7 for args */
182 #endif
183 #define T9_REGNUM 25 /* Contains address of callee in PIC */
184 #define SP_REGNUM 29 /* Contains address of top of stack */
185 #define RA_REGNUM 31 /* Contains return address value */
186 #define PS_REGNUM 32 /* Contains processor status */
187 #define HI_REGNUM 34 /* Multiple/divide temp */
188 #define LO_REGNUM 33 /* ... */
189 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
190 #define CAUSE_REGNUM 36 /* describes last exception */
191 #define PC_REGNUM 37 /* Contains program counter */
192 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
193 #define FPA0_REGNUM (FP0_REGNUM+12) /* First float argument register */
194 #if MIPS_EABI /* EABI uses F12 through F19 for args */
195 #define MIPS_LAST_FP_ARG_REGNUM (FP0_REGNUM+19)
196 #else /* old ABI uses F12 through F15 for args */
197 #define MIPS_LAST_FP_ARG_REGNUM (FP0_REGNUM+15)
198 #endif
199 #define FCRCS_REGNUM 70 /* FP control/status */
200 #define FCRIR_REGNUM 71 /* FP implementation/revision */
201 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
202 #define UNUSED_REGNUM 73 /* Never used, FIXME */
203 #define FIRST_EMBED_REGNUM 74 /* First CP0 register for embedded use */
204 #define PRID_REGNUM 89 /* Processor ID */
205 #define LAST_EMBED_REGNUM 89 /* Last one */
206
207 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
208 of register dumps. */
209
210 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
211 extern void mips_do_registers_info (int, int);
212
213 /* Total amount of space needed to store our copies of the machine's
214 register state, the array `registers'. */
215
216 #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
217
218 /* Index within `registers' of the first byte of the space for
219 register N. */
220
221 #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
222
223 /* Number of bytes of storage in the actual machine representation for
224 register N. NOTE: This indirectly defines the register size
225 transfered by the GDB protocol. */
226
227 extern int mips_register_raw_size (int reg_nr);
228 #define REGISTER_RAW_SIZE(N) (mips_register_raw_size ((N)))
229
230
231 /* Covert between the RAW and VIRTUAL registers.
232
233 Some MIPS (SR, FSR, FIR) have a `raw' size of MIPS_REGSIZE but are
234 really 32 bit registers. This is a legacy of the 64 bit MIPS GDB
235 protocol which transfers 64 bits for 32 bit registers. */
236
237 extern int mips_register_convertible (int reg_nr);
238 #define REGISTER_CONVERTIBLE(N) (mips_register_convertible ((N)))
239
240
241 void mips_register_convert_to_virtual (int reg_nr, struct type *virtual_type,
242 char *raw_buf, char *virt_buf);
243 #define REGISTER_CONVERT_TO_VIRTUAL(N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF) \
244 mips_register_convert_to_virtual (N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF)
245
246 void mips_register_convert_to_raw (struct type *virtual_type, int reg_nr,
247 char *virt_buf, char *raw_buf);
248 #define REGISTER_CONVERT_TO_RAW(VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF) \
249 mips_register_convert_to_raw (VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF)
250
251 /* Number of bytes of storage in the program's representation
252 for register N. */
253
254 #define REGISTER_VIRTUAL_SIZE(N) TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (N))
255
256 /* Largest value REGISTER_RAW_SIZE can have. */
257
258 #define MAX_REGISTER_RAW_SIZE 8
259
260 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
261
262 #define MAX_REGISTER_VIRTUAL_SIZE 8
263
264 /* Return the GDB type object for the "standard" data type of data in
265 register N. */
266
267 #ifndef REGISTER_VIRTUAL_TYPE
268 #define REGISTER_VIRTUAL_TYPE(N) \
269 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) ? builtin_type_float \
270 : ((N) == 32 /*SR*/) ? builtin_type_uint32 \
271 : ((N) >= 70 && (N) <= 89) ? builtin_type_uint32 \
272 : builtin_type_int)
273 #endif
274
275 /* All mips targets store doubles in a register pair with the least
276 significant register in the lower numbered register.
277 If the target is big endian, double register values need conversion
278 between memory and register formats. */
279
280 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
281 do {if (TARGET_BYTE_ORDER == BIG_ENDIAN \
282 && REGISTER_RAW_SIZE (n) == 4 \
283 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
284 && TYPE_CODE(type) == TYPE_CODE_FLT \
285 && TYPE_LENGTH(type) == 8) { \
286 char __temp[4]; \
287 memcpy (__temp, ((char *)(buffer))+4, 4); \
288 memcpy (((char *)(buffer))+4, (buffer), 4); \
289 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
290
291 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
292 do {if (TARGET_BYTE_ORDER == BIG_ENDIAN \
293 && REGISTER_RAW_SIZE (n) == 4 \
294 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
295 && TYPE_CODE(type) == TYPE_CODE_FLT \
296 && TYPE_LENGTH(type) == 8) { \
297 char __temp[4]; \
298 memcpy (__temp, ((char *)(buffer))+4, 4); \
299 memcpy (((char *)(buffer))+4, (buffer), 4); \
300 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
301
302 /* Store the address of the place in which to copy the structure the
303 subroutine will return. Handled by mips_push_arguments. */
304
305 #define STORE_STRUCT_RETURN(addr, sp)
306 /**/
307
308 /* Extract from an array REGBUF containing the (raw) register state
309 a function return value of type TYPE, and copy that, in virtual format,
310 into VALBUF. XXX floats */
311
312 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
313 mips_extract_return_value(TYPE, REGBUF, VALBUF)
314 extern void mips_extract_return_value (struct type *, char[], char *);
315
316 /* Write into appropriate registers a function return value
317 of type TYPE, given in virtual format. */
318
319 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
320 mips_store_return_value(TYPE, VALBUF)
321 extern void mips_store_return_value (struct type *, char *);
322
323 /* Extract from an array REGBUF containing the (raw) register state
324 the address in which a function should return its structure value,
325 as a CORE_ADDR (or an expression that can be used as one). */
326 /* The address is passed in a0 upon entry to the function, but when
327 the function exits, the compiler has copied the value to v0. This
328 convention is specified by the System V ABI, so I think we can rely
329 on it. */
330
331 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
332 (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
333 REGISTER_RAW_SIZE (V0_REGNUM)))
334
335 extern use_struct_convention_fn mips_use_struct_convention;
336 #define USE_STRUCT_CONVENTION(gcc_p, type) mips_use_struct_convention (gcc_p, type)
337 \f
338 /* Describe the pointer in each stack frame to the previous stack frame
339 (its caller). */
340
341 /* FRAME_CHAIN takes a frame's nominal address
342 and produces the frame's chain-pointer. */
343
344 #define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
345 extern CORE_ADDR mips_frame_chain (struct frame_info *);
346
347 /* Define other aspects of the stack frame. */
348
349
350 /* A macro that tells us whether the function invocation represented
351 by FI does not have a frame on the stack associated with it. If it
352 does not, FRAMELESS is set to 1, else 0. */
353 /* We handle this differently for mips, and maybe we should not */
354
355 #define FRAMELESS_FUNCTION_INVOCATION(FI) (0)
356
357 /* Saved Pc. */
358
359 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
360 extern CORE_ADDR mips_frame_saved_pc (struct frame_info *);
361
362 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
363
364 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
365
366 /* Return number of args passed to a frame.
367 Can return -1, meaning no way to tell. */
368
369 #define FRAME_NUM_ARGS(fi) (mips_frame_num_args(fi))
370 extern int mips_frame_num_args (struct frame_info *);
371
372 /* Return number of bytes at start of arglist that are not really args. */
373
374 #define FRAME_ARGS_SKIP 0
375
376 /* Put here the code to store, into a struct frame_saved_regs,
377 the addresses of the saved registers of frame described by FRAME_INFO.
378 This includes special registers such as pc and fp saved in special
379 ways in the stack frame. sp is even more special:
380 the address we return for it IS the sp for the next frame. */
381
382 #define FRAME_INIT_SAVED_REGS(frame_info) \
383 do { \
384 if ((frame_info)->saved_regs == NULL) \
385 mips_find_saved_regs (frame_info); \
386 (frame_info)->saved_regs[SP_REGNUM] = (frame_info)->frame; \
387 } while (0)
388 extern void mips_find_saved_regs (struct frame_info *);
389 \f
390
391 /* Things needed for making the inferior call functions. */
392
393 /* Stack must be aligned on 32-bit boundaries when synthesizing
394 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
395 handle it. */
396
397 extern CORE_ADDR mips_push_arguments (int, struct value **, CORE_ADDR, int,
398 CORE_ADDR);
399 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
400 (mips_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
401
402 extern CORE_ADDR mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp);
403 #define PUSH_RETURN_ADDRESS(PC, SP) (mips_push_return_address ((PC), (SP)))
404
405 /* Push an empty stack frame, to record the current PC, etc. */
406
407 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
408 extern void mips_push_dummy_frame (void);
409
410 /* Discard from the stack the innermost frame, restoring all registers. */
411
412 #define POP_FRAME mips_pop_frame()
413 extern void mips_pop_frame (void);
414
415 #if !GDB_MULTI_ARCH
416 #define CALL_DUMMY { 0 }
417 #endif
418
419 #define CALL_DUMMY_START_OFFSET (0)
420
421 #define CALL_DUMMY_BREAKPOINT_OFFSET (0)
422
423 /* When calling functions on Irix 5 (or any MIPS SVR4 ABI compliant
424 platform), $t9 ($25) (Dest_Reg) contains the address of the callee
425 (used for PIC). It doesn't hurt to do this on other systems; $t9
426 will be ignored. */
427 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
428 write_register(T9_REGNUM, fun)
429
430 #define CALL_DUMMY_LOCATION AT_ENTRY_POINT
431
432 #define CALL_DUMMY_ADDRESS() (mips_call_dummy_address ())
433 extern CORE_ADDR mips_call_dummy_address (void);
434
435 /* There's a mess in stack frame creation. See comments in blockframe.c
436 near reference to INIT_FRAME_PC_FIRST. */
437
438 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
439
440 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
441 mips_init_frame_pc_first(fromleaf, prev)
442 extern void mips_init_frame_pc_first (int, struct frame_info *);
443
444 /* Special symbol found in blocks associated with routines. We can hang
445 mips_extra_func_info_t's off of this. */
446
447 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
448 extern void ecoff_relocate_efi (struct symbol *, CORE_ADDR);
449
450 /* Specific information about a procedure.
451 This overlays the MIPS's PDR records,
452 mipsread.c (ab)uses this to save memory */
453
454 typedef struct mips_extra_func_info
455 {
456 long numargs; /* number of args to procedure (was iopt) */
457 bfd_vma high_addr; /* upper address bound */
458 long frame_adjust; /* offset of FP from SP (used on MIPS16) */
459 PDR pdr; /* Procedure descriptor record */
460 }
461 *mips_extra_func_info_t;
462
463 extern void mips_init_extra_frame_info (int fromleaf, struct frame_info *);
464 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
465 mips_init_extra_frame_info(fromleaf, fci)
466
467 extern void mips_print_extra_frame_info (struct frame_info *frame);
468 #define PRINT_EXTRA_FRAME_INFO(fi) \
469 mips_print_extra_frame_info (fi)
470
471 /* It takes two values to specify a frame on the MIPS.
472
473 In fact, the *PC* is the primary value that sets up a frame. The
474 PC is looked up to see what function it's in; symbol information
475 from that function tells us which register is the frame pointer
476 base, and what offset from there is the "virtual frame pointer".
477 (This is usually an offset from SP.) On most non-MIPS machines,
478 the primary value is the SP, and the PC, if needed, disambiguates
479 multiple functions with the same SP. But on the MIPS we can't do
480 that since the PC is not stored in the same part of the frame every
481 time. This does not seem to be a very clever way to set up frames,
482 but there is nothing we can do about that). */
483
484 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
485 extern struct frame_info *setup_arbitrary_frame (int, CORE_ADDR *);
486
487 /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
488
489 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
490
491 /* Convert a ecoff register number to a gdb REGNUM */
492
493 #define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
494
495 #if !GDB_MULTI_ARCH
496 /* If the current gcc for for this target does not produce correct debugging
497 information for float parameters, both prototyped and unprototyped, then
498 define this macro. This forces gdb to always assume that floats are
499 passed as doubles and then converted in the callee.
500
501 For the mips chip, it appears that the debug info marks the parameters as
502 floats regardless of whether the function is prototyped, but the actual
503 values are passed as doubles for the non-prototyped case and floats for
504 the prototyped case. Thus we choose to make the non-prototyped case work
505 for C and break the prototyped case, since the non-prototyped case is
506 probably much more common. (FIXME). */
507
508 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
509 #endif
510
511 /* Select the default mips disassembler */
512
513 #define TM_PRINT_INSN_MACH 0
514
515
516 /* These are defined in mdebugread.c and are used in mips-tdep.c */
517 extern CORE_ADDR sigtramp_address, sigtramp_end;
518 extern void fixup_sigtramp (void);
519
520 /* Defined in mips-tdep.c and used in remote-mips.c */
521 extern char *mips_read_processor_type (void);
522
523 /* Functions for dealing with MIPS16 call and return stubs. */
524 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) mips_in_call_stub (pc, name)
525 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) mips_in_return_stub (pc, name)
526 #define SKIP_TRAMPOLINE_CODE(pc) mips_skip_stub (pc)
527 #define IGNORE_HELPER_CALL(pc) mips_ignore_helper (pc)
528 extern int mips_in_call_stub (CORE_ADDR pc, char *name);
529 extern int mips_in_return_stub (CORE_ADDR pc, char *name);
530 extern CORE_ADDR mips_skip_stub (CORE_ADDR pc);
531 extern int mips_ignore_helper (CORE_ADDR pc);
532
533 #ifndef TARGET_MIPS
534 #define TARGET_MIPS
535 #endif
536
537 /* Definitions and declarations used by mips-tdep.c and remote-mips.c */
538 #define MIPS_INSTLEN 4 /* Length of an instruction */
539 #define MIPS16_INSTLEN 2 /* Length of an instruction on MIPS16 */
540 #define MIPS_NUMREGS 32 /* Number of integer or float registers */
541 typedef unsigned long t_inst; /* Integer big enough to hold an instruction */
542
543 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
544 macros to test, set, or clear bit 0 of addresses. */
545 #define IS_MIPS16_ADDR(addr) ((addr) & 1)
546 #define MAKE_MIPS16_ADDR(addr) ((addr) | 1)
547 #define UNMAKE_MIPS16_ADDR(addr) ((addr) & ~1)
548
549 #endif /* TM_MIPS_H */
550
551 /* Macros for setting and testing a bit in a minimal symbol that
552 marks it as 16-bit function. The MSB of the minimal symbol's
553 "info" field is used for this purpose. This field is already
554 being used to store the symbol size, so the assumption is
555 that the symbol size cannot exceed 2^31.
556
557 ELF_MAKE_MSYMBOL_SPECIAL
558 tests whether an ELF symbol is "special", i.e. refers
559 to a 16-bit function, and sets a "special" bit in a
560 minimal symbol to mark it as a 16-bit function
561 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
562 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
563 the "info" field with the "special" bit masked out
564 */
565
566 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
567 { \
568 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16) { \
569 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000); \
570 SYMBOL_VALUE_ADDRESS (msym) |= 1; \
571 } \
572 }
573
574 #define MSYMBOL_IS_SPECIAL(msym) \
575 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
576 #define MSYMBOL_SIZE(msym) \
577 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
578
579
580 /* Command to set the processor type. */
581 extern void mips_set_processor_type_command (char *, int);
582
583
584 /* MIPS sign extends addresses */
585 #define POINTER_TO_ADDRESS(TYPE,BUF) (signed_pointer_to_address (TYPE, BUF))
586 #define ADDRESS_TO_POINTER(TYPE,BUF,ADDR) (address_to_signed_pointer (TYPE, BUF, ADDR))
587
588
589 /* MIPS is always bi-endian */
590 #if !GDB_MULTI_ARCH
591 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
592 #endif
This page took 0.065614 seconds and 5 git commands to generate.