* mips-tdep.c: Remove isa_NAN; it assumed sizeof(host int) == 4 and
[deliverable/binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
4 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "coff/sym.h" /* Needed for PDR below. */
23 #include "coff/symconst.h"
24
25 #if !defined (TARGET_BYTE_ORDER)
26 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
27 #endif
28
29 /* Floating point is IEEE compliant */
30 #define IEEE_FLOAT
31
32 /* Some MIPS boards are provided both with and without a floating
33 point coprocessor; we provide a user settable variable to tell gdb
34 whether there is one or not. */
35 extern int mips_fpu;
36
37 /* Offset from address of function to start of its code.
38 Zero on most machines. */
39
40 #define FUNCTION_START_OFFSET 0
41
42 /* Advance PC across any function entry prologue instructions
43 to reach some "real" code. */
44
45 #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue(pc)
46
47 /* Immediately after a function call, return the saved pc.
48 Can't always go through the frames for this because on some machines
49 the new frame is not set up until the new function executes
50 some instructions. */
51
52 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
53
54 /* Are we currently handling a signal */
55
56 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
57
58 /* Address of end of stack space. */
59
60 #define STACK_END_ADDR (0x7ffff000)
61
62 /* Stack grows downward. */
63
64 #define INNER_THAN <
65
66 #define BIG_ENDIAN 4321
67 #if TARGET_BYTE_ORDER == BIG_ENDIAN
68 #define BREAKPOINT {0, 0x5, 0, 0xd}
69 #else
70 #define BREAKPOINT {0xd, 0, 0x5, 0}
71 #endif
72
73 /* Amount PC must be decremented by after a breakpoint.
74 This is often the number of bytes in BREAKPOINT
75 but not always. */
76
77 #define DECR_PC_AFTER_BREAK 0
78
79 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
80
81 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
82
83 /* This is taken care of in print_floating [IEEE_FLOAT]. */
84
85 #define INVALID_FLOAT(p,l) 0
86
87 /* Say how long (all) registers are. */
88
89 #define REGISTER_TYPE long
90
91 /* Number of machine registers */
92
93 #define NUM_REGS 80
94
95 /* Initializer for an array of names of registers.
96 There should be NUM_REGS strings in this initializer. */
97
98 #define REGISTER_NAMES \
99 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
100 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
101 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
102 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
103 "sr", "lo", "hi", "bad", "cause","pc", \
104 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
105 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
106 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
107 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
108 "fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\
109 "epc", "prid"\
110 }
111
112 /* Register numbers of various important registers.
113 Note that some of these values are "real" register numbers,
114 and correspond to the general registers of the machine,
115 and some are "phony" register numbers which are too large
116 to be actual register numbers as far as the user is concerned
117 but do serve to get the desired values when passed to read_register. */
118
119 #define ZERO_REGNUM 0 /* read-only register, always 0 */
120 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
121 #define SP_REGNUM 29 /* Contains address of top of stack */
122 #define RA_REGNUM 31 /* Contains return address value */
123 #define PS_REGNUM 32 /* Contains processor status */
124 #define HI_REGNUM 34 /* Multiple/divide temp */
125 #define LO_REGNUM 33 /* ... */
126 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
127 #define CAUSE_REGNUM 36 /* describes last exception */
128 #define PC_REGNUM 37 /* Contains program counter */
129 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
130 #define FCRCS_REGNUM 70 /* FP control/status */
131 #define FCRIR_REGNUM 71 /* FP implementation/revision */
132 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
133 #define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */
134 #define LAST_EMBED_REGNUM 79 /* Last one */
135
136 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
137 of register dumps. */
138
139 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
140
141 /* Total amount of space needed to store our copies of the machine's
142 register state, the array `registers'. */
143 #define REGISTER_BYTES (NUM_REGS*4)
144
145 /* Index within `registers' of the first byte of the space for
146 register N. */
147
148 #define REGISTER_BYTE(N) ((N) * 4)
149
150 /* Number of bytes of storage in the actual machine representation
151 for register N. On mips, all regs are 4 bytes. */
152
153 #define REGISTER_RAW_SIZE(N) 4
154
155 /* Number of bytes of storage in the program's representation
156 for register N. On mips, all regs are 4 bytes. */
157
158 #define REGISTER_VIRTUAL_SIZE(N) 4
159
160 /* Largest value REGISTER_RAW_SIZE can have. */
161
162 #define MAX_REGISTER_RAW_SIZE 8
163
164 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
165
166 #define MAX_REGISTER_VIRTUAL_SIZE 8
167
168 /* Nonzero if register N requires conversion
169 from raw format to virtual format. */
170
171 #define REGISTER_CONVERTIBLE(N) 0
172
173 /* Convert data from raw format for register REGNUM
174 to virtual format for register REGNUM. */
175
176 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
177 bcopy ((FROM), (TO), 4);
178
179 /* Convert data from virtual format for register REGNUM
180 to raw format for register REGNUM. */
181
182 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
183 bcopy ((FROM), (TO), 4);
184
185 /* Return the GDB type object for the "standard" data type
186 of data in register N. */
187
188 #define REGISTER_VIRTUAL_TYPE(N) \
189 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \
190 ? builtin_type_float : builtin_type_int) \
191
192 #if HOST_BYTE_ORDER == BIG_ENDIAN
193 /* All mips targets store doubles in a register pair with the least
194 significant register in the lower numbered register.
195 If the host is big endian, double register values need conversion between
196 memory and register formats. */
197
198 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
199 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
200 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
201 char __temp[4]; \
202 memcpy (__temp, ((char *)(buffer))+4, 4); \
203 memcpy (((char *)(buffer))+4, (buffer), 4); \
204 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
205
206 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
207 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
208 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
209 char __temp[4]; \
210 memcpy (__temp, ((char *)(buffer))+4, 4); \
211 memcpy (((char *)(buffer))+4, (buffer), 4); \
212 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
213 #endif
214
215 /* Store the address of the place in which to copy the structure the
216 subroutine will return. This is called from call_function. */
217
218 #define STORE_STRUCT_RETURN(addr, sp) \
219 { sp = push_word(sp, addr);}
220
221 /* Extract from an array REGBUF containing the (raw) register state
222 a function return value of type TYPE, and copy that, in virtual format,
223 into VALBUF. XXX floats */
224
225 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
226 mips_extract_return_value(TYPE, REGBUF, VALBUF)
227
228 /* Write into appropriate registers a function return value
229 of type TYPE, given in virtual format. */
230
231 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
232 mips_store_return_value(TYPE, VALBUF)
233
234 /* Extract from an array REGBUF containing the (raw) register state
235 the address in which a function should return its structure value,
236 as a CORE_ADDR (or an expression that can be used as one). */
237
238 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF+16))
239
240 /* Structures are returned by ref in extra arg0 */
241 #define USE_STRUCT_CONVENTION(gcc_p, type) 1
242
243 \f
244 /* Describe the pointer in each stack frame to the previous stack frame
245 (its caller). */
246
247 /* FRAME_CHAIN takes a frame's nominal address
248 and produces the frame's chain-pointer. */
249
250 #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
251
252 /* Define other aspects of the stack frame. */
253
254
255 /* A macro that tells us whether the function invocation represented
256 by FI does not have a frame on the stack associated with it. If it
257 does not, FRAMELESS is set to 1, else 0. */
258 /* We handle this differently for mips, and maybe we should not */
259
260 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
261
262 /* Saved Pc. */
263
264 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
265
266 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
267
268 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
269
270 /* Return number of args passed to a frame.
271 Can return -1, meaning no way to tell. */
272
273 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
274
275 /* Return number of bytes at start of arglist that are not really args. */
276
277 #define FRAME_ARGS_SKIP 0
278
279 /* Put here the code to store, into a struct frame_saved_regs,
280 the addresses of the saved registers of frame described by FRAME_INFO.
281 This includes special registers such as pc and fp saved in special
282 ways in the stack frame. sp is even more special:
283 the address we return for it IS the sp for the next frame. */
284
285 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) ( \
286 (frame_saved_regs) = *(frame_info)->saved_regs, \
287 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame)
288
289 \f
290 /* Things needed for making the inferior call functions. */
291
292 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
293 to take care of it. */
294 /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
295
296 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
297 sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
298
299 /* Push an empty stack frame, to record the current PC, etc. */
300
301 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
302
303 /* Discard from the stack the innermost frame, restoring all registers. */
304
305 #define POP_FRAME mips_pop_frame()
306
307 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
308 #define CALL_DUMMY_SIZE (16*4)
309 #define Dest_Reg 2
310 #define CALL_DUMMY {\
311 MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
312 0, /* nop # ... to stop raw backtrace*/\
313 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
314 /* Start here: */\
315 MK_OP(061,SP_REGNUM,12,0), /* lwc1 $f12,0(sp) # Reload FP regs*/\
316 MK_OP(061,SP_REGNUM,13,4), /* lwc1 $f13,4(sp) */\
317 MK_OP(061,SP_REGNUM,14,8), /* lwc1 $f14,8(sp) */\
318 MK_OP(061,SP_REGNUM,15,12), /* lwc1 $f15,12(sp) */\
319 MK_OP(043,SP_REGNUM,4,0), /* lw $r4,0(sp) # Reload first 4 args*/\
320 MK_OP(043,SP_REGNUM,5,4), /* lw $r5,4(sp) */\
321 MK_OP(043,SP_REGNUM,6,8), /* lw $r6,8(sp) */\
322 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
323 (017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
324 MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
325 (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
326 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
327 0x5000d, /* bpt */\
328 }
329
330 #define CALL_DUMMY_START_OFFSET 12
331
332 /* Insert the specified number of args and function address
333 into a call sequence of the above form stored at DUMMYNAME. */
334
335 #if TARGET_BYTE_ORDER == BIG_ENDIAN
336 /* For big endian mips machines the loading of FP values depends on whether
337 they are single or double precision. */
338 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
339 do { \
340 ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16; \
341 ((int*)(dummyname))[12] |= (unsigned short)(fun); \
342 if (! mips_fpu) { \
343 ((int *) (dummyname))[3] = 0; ((int *) (dummyname))[4] = 0; \
344 ((int *) (dummyname))[5] = 0; ((int *) (dummyname))[6] = 0; \
345 } else { \
346 if (nargs > 0 && \
347 TYPE_CODE(VALUE_TYPE(args[0])) == TYPE_CODE_FLT && \
348 TYPE_LENGTH(VALUE_TYPE(args[0])) == 8) { \
349 ((int *) (dummyname))[3] = MK_OP(061,SP_REGNUM,12,4); \
350 ((int *) (dummyname))[4] = MK_OP(061,SP_REGNUM,13,0); \
351 } \
352 if (nargs > 1 && \
353 TYPE_CODE(VALUE_TYPE(args[1])) == TYPE_CODE_FLT && \
354 TYPE_LENGTH(VALUE_TYPE(args[1])) == 8) { \
355 ((int *) (dummyname))[5] = MK_OP(061,SP_REGNUM,14,12); \
356 ((int *) (dummyname))[6] = MK_OP(061,SP_REGNUM,15,8); \
357 } \
358 } \
359 } while (0)
360 #else
361 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\
362 do \
363 { \
364 ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16; \
365 ((int*)(dummyname))[12] |= (unsigned short)(fun); \
366 if (! mips_fpu) \
367 { \
368 ((int *) (dummyname))[3] = 0; \
369 ((int *) (dummyname))[4] = 0; \
370 ((int *) (dummyname))[5] = 0; \
371 ((int *) (dummyname))[6] = 0; \
372 } \
373 } \
374 while (0)
375 #endif
376
377 /* There's a mess in stack frame creation. See comments in blockframe.c
378 near reference to INIT_FRAME_PC_FIRST. */
379
380 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
381
382 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
383 (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
384 (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
385
386 /* Special symbol found in blocks associated with routines. We can hang
387 mips_extra_func_info_t's off of this. */
388
389 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
390
391 /* Specific information about a procedure.
392 This overlays the MIPS's PDR records,
393 mipsread.c (ab)uses this to save memory */
394
395 typedef struct mips_extra_func_info {
396 long numargs; /* number of args to procedure (was iopt) */
397 PDR pdr; /* Procedure descriptor record */
398 } *mips_extra_func_info_t;
399
400 #define EXTRA_FRAME_INFO \
401 mips_extra_func_info_t proc_desc; \
402 int num_args;\
403 struct frame_saved_regs *saved_regs;
404
405 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
406
407 #define PRINT_EXTRA_FRAME_INFO(fi) \
408 { \
409 if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
410 printf_filtered (" frame pointer is at %s+%d\n", \
411 reg_names[fi->proc_desc->pdr.framereg], \
412 fi->proc_desc->pdr.frameoffset); \
413 }
414
415 /* It takes two values to specify a frame on the MIPS. Sigh.
416
417 In fact, at the moment, the *PC* is the primary value that sets up
418 a frame. The PC is looked up to see what function it's in; symbol
419 information from that function tells us which register is the frame
420 pointer base, and what offset from there is the "virtual frame pointer".
421 (This is usually an offset from SP.) FIXME -- this should be cleaned
422 up so that the primary value is the SP, and the PC is used to disambiguate
423 multiple functions with the same SP that are at different stack levels. */
424
425 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
426 /* FIXME: Depends on equivalence between FRAME and "struct frame_info *",
427 and equivalence between CORE_ADDR and FRAME_ADDR. */
428 extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
429
430 /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
431
432 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
This page took 0.040673 seconds and 5 git commands to generate.