* config/mips/tm-mips.h (COERCE_FLOAT_TO_DOUBLE): Only prefer
[deliverable/binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
5 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include <bfd.h>
24 #include "coff/sym.h" /* Needed for PDR below. */
25 #include "coff/symconst.h"
26
27 #if !defined (TARGET_BYTE_ORDER)
28 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
29 #endif
30
31 #if !defined (GDB_TARGET_IS_MIPS64)
32 #define GDB_TARGET_IS_MIPS64 0
33 #endif
34
35 #if !defined (TARGET_MONITOR_PROMPT)
36 #define TARGET_MONITOR_PROMPT "<IDT>"
37 #endif
38
39 /* Floating point is IEEE compliant */
40 #define IEEE_FLOAT
41
42 /* Some MIPS boards are provided both with and without a floating
43 point coprocessor. The MIPS R4650 chip has only single precision
44 floating point. We provide a user settable variable to tell gdb
45 what type of floating point to use. */
46
47 enum mips_fpu_type
48 {
49 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
50 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
51 MIPS_FPU_NONE /* No floating point. */
52 };
53
54 extern enum mips_fpu_type mips_fpu;
55
56 /* The name of the usual type of MIPS processor that is in the target
57 system. */
58
59 #define DEFAULT_MIPS_TYPE "generic"
60
61 /* Offset from address of function to start of its code.
62 Zero on most machines. */
63
64 #define FUNCTION_START_OFFSET 0
65
66 /* Advance PC across any function entry prologue instructions
67 to reach some "real" code. */
68
69 #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue (pc, 0)
70 extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
71
72 /* Return non-zero if PC points to an instruction which will cause a step
73 to execute both the instruction at PC and an instruction at PC+4. */
74 #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
75
76 /* Immediately after a function call, return the saved pc.
77 Can't always go through the frames for this because on some machines
78 the new frame is not set up until the new function executes
79 some instructions. */
80
81 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
82
83 /* Are we currently handling a signal */
84
85 extern int in_sigtramp PARAMS ((CORE_ADDR, char *));
86 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
87
88 /* Stack grows downward. */
89
90 #define INNER_THAN <
91
92 #define BIG_ENDIAN 4321
93 #if TARGET_BYTE_ORDER == BIG_ENDIAN
94 #define BREAKPOINT {0, 0x5, 0, 0xd}
95 #else
96 #define BREAKPOINT {0xd, 0, 0x5, 0}
97 #endif
98
99 /* Amount PC must be decremented by after a breakpoint.
100 This is often the number of bytes in BREAKPOINT
101 but not always. */
102
103 #define DECR_PC_AFTER_BREAK 0
104
105 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
106
107 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
108
109 /* Say how long (ordinary) registers are. This is a piece of bogosity
110 used in push_word and a few other places; REGISTER_RAW_SIZE is the
111 real way to know how big a register is. */
112
113 #define REGISTER_SIZE 4
114
115 /* The size of a register. This is predefined in tm-mips64.h. We
116 can't use REGISTER_SIZE because that is used for various other
117 things. */
118
119 #ifndef MIPS_REGSIZE
120 #define MIPS_REGSIZE 4
121 #endif
122
123 /* Number of machine registers */
124
125 #define NUM_REGS 90
126
127 /* Initializer for an array of names of registers.
128 There should be NUM_REGS strings in this initializer. */
129
130 #define REGISTER_NAMES \
131 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
132 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
133 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
134 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
135 "sr", "lo", "hi", "bad", "cause","pc", \
136 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
137 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
138 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
139 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
140 "fsr", "fir", "fp", "", \
141 "", "", "", "", "", "", "", "", \
142 "", "", "", "", "", "", "", "", \
143 }
144
145 /* Register numbers of various important registers.
146 Note that some of these values are "real" register numbers,
147 and correspond to the general registers of the machine,
148 and some are "phony" register numbers which are too large
149 to be actual register numbers as far as the user is concerned
150 but do serve to get the desired values when passed to read_register. */
151
152 #define ZERO_REGNUM 0 /* read-only register, always 0 */
153 #define V0_REGNUM 2 /* Function integer return value */
154 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
155 #define SP_REGNUM 29 /* Contains address of top of stack */
156 #define RA_REGNUM 31 /* Contains return address value */
157 #define PS_REGNUM 32 /* Contains processor status */
158 #define HI_REGNUM 34 /* Multiple/divide temp */
159 #define LO_REGNUM 33 /* ... */
160 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
161 #define CAUSE_REGNUM 36 /* describes last exception */
162 #define PC_REGNUM 37 /* Contains program counter */
163 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
164 #define FCRCS_REGNUM 70 /* FP control/status */
165 #define FCRIR_REGNUM 71 /* FP implementation/revision */
166 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
167 #define UNUSED_REGNUM 73 /* Never used, FIXME */
168 #define FIRST_EMBED_REGNUM 74 /* First CP0 register for embedded use */
169 #define PRID_REGNUM 89 /* Processor ID */
170 #define LAST_EMBED_REGNUM 89 /* Last one */
171
172 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
173 of register dumps. */
174
175 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
176
177 /* Total amount of space needed to store our copies of the machine's
178 register state, the array `registers'. */
179
180 #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
181
182 /* Index within `registers' of the first byte of the space for
183 register N. */
184
185 #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
186
187 /* Number of bytes of storage in the actual machine representation
188 for register N. On mips, all regs are the same size. */
189
190 #define REGISTER_RAW_SIZE(N) MIPS_REGSIZE
191
192 /* Number of bytes of storage in the program's representation
193 for register N. On mips, all regs are the same size. */
194
195 #define REGISTER_VIRTUAL_SIZE(N) MIPS_REGSIZE
196
197 /* Largest value REGISTER_RAW_SIZE can have. */
198
199 #define MAX_REGISTER_RAW_SIZE 8
200
201 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
202
203 #define MAX_REGISTER_VIRTUAL_SIZE 8
204
205 /* Return the GDB type object for the "standard" data type
206 of data in register N. */
207
208 #ifndef REGISTER_VIRTUAL_TYPE
209 #define REGISTER_VIRTUAL_TYPE(N) \
210 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \
211 ? builtin_type_float : builtin_type_int)
212 #endif
213
214 #if HOST_BYTE_ORDER == BIG_ENDIAN
215 /* All mips targets store doubles in a register pair with the least
216 significant register in the lower numbered register.
217 If the host is big endian, double register values need conversion between
218 memory and register formats. */
219
220 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
221 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
222 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
223 char __temp[4]; \
224 memcpy (__temp, ((char *)(buffer))+4, 4); \
225 memcpy (((char *)(buffer))+4, (buffer), 4); \
226 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
227
228 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
229 do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
230 TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
231 char __temp[4]; \
232 memcpy (__temp, ((char *)(buffer))+4, 4); \
233 memcpy (((char *)(buffer))+4, (buffer), 4); \
234 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
235 #endif
236
237 /* Store the address of the place in which to copy the structure the
238 subroutine will return. Handled by mips_push_arguments. */
239
240 #define STORE_STRUCT_RETURN(addr, sp) /**/
241
242 /* Extract from an array REGBUF containing the (raw) register state
243 a function return value of type TYPE, and copy that, in virtual format,
244 into VALBUF. XXX floats */
245
246 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
247 mips_extract_return_value(TYPE, REGBUF, VALBUF)
248
249 /* Write into appropriate registers a function return value
250 of type TYPE, given in virtual format. */
251
252 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
253 mips_store_return_value(TYPE, VALBUF)
254
255 /* Extract from an array REGBUF containing the (raw) register state
256 the address in which a function should return its structure value,
257 as a CORE_ADDR (or an expression that can be used as one). */
258 /* The address is passed in a0 upon entry to the function, but when
259 the function exits, the compiler has copied the value to v0. This
260 convention is specified by the System V ABI, so I think we can rely
261 on it. */
262
263 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
264 (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
265 REGISTER_RAW_SIZE (V0_REGNUM)))
266
267 /* Structures are returned by ref in extra arg0 */
268 #define USE_STRUCT_CONVENTION(gcc_p, type) 1
269
270 \f
271 /* Describe the pointer in each stack frame to the previous stack frame
272 (its caller). */
273
274 /* FRAME_CHAIN takes a frame's nominal address
275 and produces the frame's chain-pointer. */
276
277 #define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
278
279 /* Define other aspects of the stack frame. */
280
281
282 /* A macro that tells us whether the function invocation represented
283 by FI does not have a frame on the stack associated with it. If it
284 does not, FRAMELESS is set to 1, else 0. */
285 /* We handle this differently for mips, and maybe we should not */
286
287 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
288
289 /* Saved Pc. */
290
291 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
292
293 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
294
295 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
296
297 /* Return number of args passed to a frame.
298 Can return -1, meaning no way to tell. */
299
300 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
301
302 /* Return number of bytes at start of arglist that are not really args. */
303
304 #define FRAME_ARGS_SKIP 0
305
306 /* Put here the code to store, into a struct frame_saved_regs,
307 the addresses of the saved registers of frame described by FRAME_INFO.
308 This includes special registers such as pc and fp saved in special
309 ways in the stack frame. sp is even more special:
310 the address we return for it IS the sp for the next frame. */
311
312 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
313 do { \
314 if ((frame_info)->saved_regs == NULL) \
315 mips_find_saved_regs (frame_info); \
316 (frame_saved_regs) = *(frame_info)->saved_regs; \
317 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame; \
318 } while (0)
319
320 \f
321 /* Things needed for making the inferior call functions. */
322
323 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
324 to take care of it. */
325 /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
326
327 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
328 sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
329
330 /* Push an empty stack frame, to record the current PC, etc. */
331
332 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
333
334 /* Discard from the stack the innermost frame, restoring all registers. */
335
336 #define POP_FRAME mips_pop_frame()
337
338 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
339 #ifndef OP_LDFPR
340 #define OP_LDFPR 061 /* lwc1 */
341 #endif
342 #ifndef OP_LDGPR
343 #define OP_LDGPR 043 /* lw */
344 #endif
345 #define CALL_DUMMY_SIZE (16*4)
346 #define Dest_Reg 2
347 #define CALL_DUMMY {\
348 MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
349 0, /* nop # ... to stop raw backtrace*/\
350 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
351 /* Start here; reload FP regs, then GP regs: */\
352 MK_OP(OP_LDFPR,SP_REGNUM,12,0 ), /* l[wd]c1 $f12,0(sp) */\
353 MK_OP(OP_LDFPR,SP_REGNUM,13, MIPS_REGSIZE), /* l[wd]c1 $f13,{4,8}(sp) */\
354 MK_OP(OP_LDFPR,SP_REGNUM,14,2*MIPS_REGSIZE), /* l[wd]c1 $f14,{8,16}(sp) */\
355 MK_OP(OP_LDFPR,SP_REGNUM,15,3*MIPS_REGSIZE), /* l[wd]c1 $f15,{12,24}(sp) */\
356 MK_OP(OP_LDGPR,SP_REGNUM, 4,0 ), /* l[wd] $r4,0(sp) */\
357 MK_OP(OP_LDGPR,SP_REGNUM, 5, MIPS_REGSIZE), /* l[wd] $r5,{4,8}(sp) */\
358 MK_OP(OP_LDGPR,SP_REGNUM, 6,2*MIPS_REGSIZE), /* l[wd] $r6,{8,16}(sp) */\
359 MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
360 (017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
361 MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
362 (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
363 MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
364 0x5000d, /* bpt */\
365 }
366
367 #define CALL_DUMMY_START_OFFSET 12
368
369 #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (12 * 4))
370
371 /* Insert the specified number of args and function address
372 into a call sequence of the above form stored at DUMMYNAME. */
373
374 /* For big endian mips machines we need to switch the order of the
375 words with a floating-point value (it was already coerced to a double
376 by mips_push_arguments). */
377 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
378 do \
379 { \
380 store_unsigned_integer \
381 (dummyname + 11 * 4, 4, \
382 (extract_unsigned_integer (dummyname + 11 * 4, 4) \
383 | (((fun) >> 16) & 0xffff))); \
384 store_unsigned_integer \
385 (dummyname + 12 * 4, 4, \
386 (extract_unsigned_integer (dummyname + 12 * 4, 4) \
387 | ((fun) & 0xffff))); \
388 if (mips_fpu == MIPS_FPU_NONE) \
389 { \
390 store_unsigned_integer (dummyname + 3 * 4, 4, \
391 (unsigned LONGEST) 0); \
392 store_unsigned_integer (dummyname + 4 * 4, 4, \
393 (unsigned LONGEST) 0); \
394 store_unsigned_integer (dummyname + 5 * 4, 4, \
395 (unsigned LONGEST) 0); \
396 store_unsigned_integer (dummyname + 6 * 4, 4, \
397 (unsigned LONGEST) 0); \
398 } \
399 else if (mips_fpu == MIPS_FPU_SINGLE) \
400 { \
401 /* This isn't right. mips_push_arguments will call \
402 value_arg_coerce, which will convert all float arguments \
403 to doubles. If the function prototype is float, though, \
404 it will be expecting a float argument in a float \
405 register. */ \
406 store_unsigned_integer (dummyname + 4 * 4, 4, \
407 (unsigned LONGEST) 0); \
408 store_unsigned_integer (dummyname + 6 * 4, 4, \
409 (unsigned LONGEST) 0); \
410 } \
411 else if (TARGET_BYTE_ORDER == BIG_ENDIAN \
412 && ! GDB_TARGET_IS_MIPS64) \
413 { \
414 if (nargs > 0 \
415 && TYPE_CODE (VALUE_TYPE (args[0])) == TYPE_CODE_FLT) \
416 { \
417 if (TYPE_LENGTH (VALUE_TYPE (args[0])) > 8) \
418 error ("floating point value too large to pass to function");\
419 store_unsigned_integer \
420 (dummyname + 3 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 12, 4));\
421 store_unsigned_integer \
422 (dummyname + 4 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 13, 0));\
423 } \
424 if (nargs > 1 \
425 && TYPE_CODE (VALUE_TYPE (args[1])) == TYPE_CODE_FLT) \
426 { \
427 if (TYPE_LENGTH (VALUE_TYPE (args[1])) > 8) \
428 error ("floating point value too large to pass to function");\
429 store_unsigned_integer \
430 (dummyname + 5 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 14, 12));\
431 store_unsigned_integer \
432 (dummyname + 6 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 15, 8));\
433 } \
434 } \
435 } \
436 while (0)
437
438 /* There's a mess in stack frame creation. See comments in blockframe.c
439 near reference to INIT_FRAME_PC_FIRST. */
440
441 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
442
443 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
444 (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
445 (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
446
447 /* Special symbol found in blocks associated with routines. We can hang
448 mips_extra_func_info_t's off of this. */
449
450 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
451
452 /* Specific information about a procedure.
453 This overlays the MIPS's PDR records,
454 mipsread.c (ab)uses this to save memory */
455
456 typedef struct mips_extra_func_info {
457 long numargs; /* number of args to procedure (was iopt) */
458 PDR pdr; /* Procedure descriptor record */
459 } *mips_extra_func_info_t;
460
461 #define EXTRA_FRAME_INFO \
462 mips_extra_func_info_t proc_desc; \
463 int num_args;\
464 struct frame_saved_regs *saved_regs;
465
466 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
467
468 #define PRINT_EXTRA_FRAME_INFO(fi) \
469 { \
470 if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
471 printf_filtered (" frame pointer is at %s+%d\n", \
472 reg_names[fi->proc_desc->pdr.framereg], \
473 fi->proc_desc->pdr.frameoffset); \
474 }
475
476 /* It takes two values to specify a frame on the MIPS.
477
478 In fact, the *PC* is the primary value that sets up a frame. The
479 PC is looked up to see what function it's in; symbol information
480 from that function tells us which register is the frame pointer
481 base, and what offset from there is the "virtual frame pointer".
482 (This is usually an offset from SP.) On most non-MIPS machines,
483 the primary value is the SP, and the PC, if needed, disambiguates
484 multiple functions with the same SP. But on the MIPS we can't do
485 that since the PC is not stored in the same part of the frame every
486 time. This does not seem to be a very clever way to set up frames,
487 but there is nothing we can do about that). */
488
489 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
490 extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
491
492 /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
493
494 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
495
496 /* Convert a ecoff register number to a gdb REGNUM */
497
498 #define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
499
500 /* If the current gcc for for this target does not produce correct debugging
501 information for float parameters, both prototyped and unprototyped, then
502 define this macro. This forces gdb to always assume that floats are
503 passed as doubles and then converted in the callee.
504
505 For the mips chip, it appears that the debug info marks the parameters as
506 floats regardless of whether the function is prototyped, but the actual
507 values are passed as doubles for the non-prototyped case and floats for
508 the prototyped case. Thus we choose to make the non-prototyped case work
509 for C and break the prototyped case, since the non-prototyped case is
510 probably much more common. (FIXME). */
511
512 #define COERCE_FLOAT_TO_DOUBLE (current_language -> la_language == language_c)
This page took 0.04379 seconds and 5 git commands to generate.