Include regcache.h
[deliverable/binutils-gdb.git] / gdb / config / ns32k / tm-umax.h
1 /* Definitions to make GDB run on an encore under umax 4.2
2 Copyright 1987, 1989, 1991, 1993, 1994, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "regcache.h"
23
24 /* This is also included by tm-ns32km3.h, as well as being used by umax. */
25
26 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
27
28 /* Need to get function ends by adding this to epilogue address from .bf
29 record, not using x_fsize field. */
30 #define FUNCTION_EPILOGUE_SIZE 4
31
32 /* Offset from address of function to start of its code.
33 Zero on most machines. */
34
35 #define FUNCTION_START_OFFSET 0
36
37 /* Advance PC across any function entry prologue instructions
38 to reach some "real" code. */
39
40 extern CORE_ADDR umax_skip_prologue (CORE_ADDR);
41 #define SKIP_PROLOGUE(pc) (umax_skip_prologue (pc))
42
43 /* Immediately after a function call, return the saved pc.
44 Can't always go through the frames for this because on some machines
45 the new frame is not set up until the new function executes
46 some instructions. */
47
48 #define SAVED_PC_AFTER_CALL(frame) \
49 read_memory_integer (read_register (SP_REGNUM), 4)
50
51 /* Address of end of stack space. */
52
53 #ifndef STACK_END_ADDR
54 #define STACK_END_ADDR (0xfffff000)
55 #endif
56
57 /* Stack grows downward. */
58
59 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
60
61 /* Sequence of bytes for breakpoint instruction. */
62
63 #define BREAKPOINT {0xf2}
64
65 /* Amount PC must be decremented by after a breakpoint.
66 This is often the number of bytes in BREAKPOINT
67 but not always. */
68
69 #define DECR_PC_AFTER_BREAK 0
70
71 #if 0 /* Disable until fixed *correctly*. */
72 #ifndef INVALID_FLOAT
73 #ifndef NaN
74 #include <nan.h>
75 #endif /* NaN */
76
77 /* Return 1 if P points to an invalid floating point value. */
78 /* Surely wrong for cross-debugging. */
79 #define INVALID_FLOAT(p, s) \
80 ((s == sizeof (float))? \
81 NaF (*(float *) p) : \
82 NaD (*(double *) p))
83 #endif /* INVALID_FLOAT */
84 #endif
85
86 /* Say how long (ordinary) registers are. This is a piece of bogosity
87 used in push_word and a few other places; REGISTER_RAW_SIZE is the
88 real way to know how big a register is. */
89
90 #define REGISTER_SIZE 4
91
92 /* Number of machine registers */
93
94 #define NUM_REGS 25
95
96 #define NUM_GENERAL_REGS 8
97
98 /* Initializer for an array of names of registers.
99 There should be NUM_REGS strings in this initializer. */
100
101 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
102 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
103 "sp", "fp", "pc", "ps", \
104 "fsr", \
105 "l0", "l1", "l2", "l3", "xx", \
106 }
107
108 /* Register numbers of various important registers.
109 Note that some of these values are "real" register numbers,
110 and correspond to the general registers of the machine,
111 and some are "phony" register numbers which are too large
112 to be actual register numbers as far as the user is concerned
113 but do serve to get the desired values when passed to read_register. */
114
115 #define R0_REGNUM 0 /* General register 0 */
116 #define FP0_REGNUM 8 /* Floating point register 0 */
117 #define SP_REGNUM 16 /* Contains address of top of stack */
118 #define AP_REGNUM FP_REGNUM
119 #define FP_REGNUM 17 /* Contains address of executing stack frame */
120 #define PC_REGNUM 18 /* Contains program counter */
121 #define PS_REGNUM 19 /* Contains processor status */
122 #define FPS_REGNUM 20 /* Floating point status register */
123 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
124
125 /* Total amount of space needed to store our copies of the machine's
126 register state, the array `registers'. */
127 #define REGISTER_BYTES \
128 ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \
129 + 4 * REGISTER_RAW_SIZE(LP0_REGNUM))
130
131 /* Index within `registers' of the first byte of the space for
132 register N. */
133
134 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
135 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
136
137 /* Number of bytes of storage in the actual machine representation
138 for register N. On the 32000, all regs are 4 bytes
139 except for the doubled floating registers. */
140
141 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
142
143 /* Number of bytes of storage in the program's representation
144 for register N. On the 32000, all regs are 4 bytes
145 except for the doubled floating registers. */
146
147 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
148
149 /* Largest value REGISTER_RAW_SIZE can have. */
150
151 #define MAX_REGISTER_RAW_SIZE 8
152
153 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
154
155 #define MAX_REGISTER_VIRTUAL_SIZE 8
156
157 /* Return the GDB type object for the "standard" data type
158 of data in register N. */
159
160 #define REGISTER_VIRTUAL_TYPE(N) \
161 (((N) < FP0_REGNUM) ? \
162 builtin_type_int : \
163 ((N) < FP0_REGNUM + 8) ? \
164 builtin_type_float : \
165 ((N) < LP0_REGNUM) ? \
166 builtin_type_int : \
167 builtin_type_double)
168
169 /* Store the address of the place in which to copy the structure the
170 subroutine will return. This is called from call_function.
171
172 On this machine this is a no-op, because gcc isn't used on it
173 yet. So this calling convention is not used. */
174
175 #define STORE_STRUCT_RETURN(ADDR, SP)
176
177 /* Extract from an array REGBUF containing the (raw) register state
178 a function return value of type TYPE, and copy that, in virtual format,
179 into VALBUF. */
180
181 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
182 memcpy (VALBUF, REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (TYPE))
183
184 /* Write into appropriate registers a function return value
185 of type TYPE, given in virtual format. */
186
187 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
188 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
189
190 /* Extract from an array REGBUF containing the (raw) register state
191 the address in which a function should return its structure value,
192 as a CORE_ADDR (or an expression that can be used as one). */
193
194 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
195 \f
196 /* Describe the pointer in each stack frame to the previous stack frame
197 (its caller). */
198
199 /* FRAME_CHAIN takes a frame's nominal address
200 and produces the frame's chain-pointer. */
201
202 /* In the case of the ns32000 series, the frame's nominal address is the FP
203 value, and at that address is saved previous FP value as a 4-byte word. */
204
205 #define FRAME_CHAIN(thisframe) \
206 (!inside_entry_file ((thisframe)->pc) ? \
207 read_memory_integer ((thisframe)->frame, 4) :\
208 0)
209
210 /* Define other aspects of the stack frame. */
211
212 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
213
214 /* Compute base of arguments. */
215
216 #define FRAME_ARGS_ADDRESS(fi) \
217 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
218 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
219
220 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
221
222 /* Get the address of the enter opcode for this function, if it is active.
223 Returns positive address > 1 if pc is between enter/exit,
224 1 if pc before enter or after exit, 0 otherwise. */
225
226 extern CORE_ADDR ns32k_get_enter_addr ();
227
228 /* Return number of args passed to a frame.
229 Can return -1, meaning no way to tell. */
230
231 extern int umax_frame_num_args (struct frame_info *fi);
232 #define FRAME_NUM_ARGS(fi) (umax_frame_num_args ((fi)))
233
234 /* Return number of bytes at start of arglist that are not really args. */
235
236 #define FRAME_ARGS_SKIP 8
237
238 /* Put here the code to store, into a struct frame_saved_regs,
239 the addresses of the saved registers of frame described by FRAME_INFO.
240 This includes special registers such as pc and fp saved in special
241 ways in the stack frame. sp is even more special:
242 the address we return for it IS the sp for the next frame. */
243
244 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
245 { \
246 register int regmask, regnum; \
247 int localcount; \
248 register CORE_ADDR enter_addr; \
249 register CORE_ADDR next_addr; \
250 \
251 memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \
252 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
253 if (enter_addr > 1) \
254 { \
255 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
256 localcount = ns32k_localcount (enter_addr); \
257 next_addr = (frame_info)->frame + localcount; \
258 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
259 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
260 (next_addr -= 4) : 0; \
261 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
262 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
263 (frame_saved_regs).regs[FP_REGNUM] = \
264 (read_memory_integer ((frame_info)->frame, 4));\
265 } \
266 else if (enter_addr == 1) \
267 { \
268 CORE_ADDR sp = read_register (SP_REGNUM); \
269 (frame_saved_regs).regs[PC_REGNUM] = sp; \
270 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
271 } \
272 }
273 \f
274 /* Things needed for making the inferior call functions. */
275
276 /* Push an empty stack frame, to record the current PC, etc. */
277
278 #define PUSH_DUMMY_FRAME \
279 { register CORE_ADDR sp = read_register (SP_REGNUM);\
280 register int regnum; \
281 sp = push_word (sp, read_register (PC_REGNUM)); \
282 sp = push_word (sp, read_register (FP_REGNUM)); \
283 write_register (FP_REGNUM, sp); \
284 for (regnum = 0; regnum < 8; regnum++) \
285 sp = push_word (sp, read_register (regnum)); \
286 write_register (SP_REGNUM, sp); \
287 }
288
289 /* Discard from the stack the innermost frame, restoring all registers. */
290
291 #define POP_FRAME \
292 { register struct frame_info *frame = get_current_frame (); \
293 register CORE_ADDR fp; \
294 register int regnum; \
295 struct frame_saved_regs fsr; \
296 struct frame_info *fi; \
297 fp = frame->frame; \
298 get_frame_saved_regs (frame, &fsr); \
299 for (regnum = 0; regnum < 8; regnum++) \
300 if (fsr.regs[regnum]) \
301 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
302 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
303 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
304 write_register (SP_REGNUM, fp + 8); \
305 flush_cached_frames (); \
306 }
307
308 /* This sequence of words is the instructions
309 enter 0xff,0 82 ff 00
310 jsr @0x00010203 7f ae c0 01 02 03
311 adjspd 0x69696969 7f a5 01 02 03 04
312 bpt f2
313 Note this is 16 bytes. */
314
315 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
316
317 #define CALL_DUMMY_START_OFFSET 3
318 #define CALL_DUMMY_LENGTH 16
319 #define CALL_DUMMY_ADDR 5
320 #define CALL_DUMMY_NARGS 11
321
322 /* Insert the specified number of args and function address
323 into a call sequence of the above form stored at DUMMYNAME. */
324
325 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
326 { \
327 int flipped; \
328 flipped = fun | 0xc0000000; \
329 flip_bytes (&flipped, 4); \
330 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
331 flipped = - nargs * 4; \
332 flip_bytes (&flipped, 4); \
333 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
334 }
This page took 0.035994 seconds and 4 git commands to generate.