* valops.c (call_function_by_hand, push_word), defs.h (push_word),
[deliverable/binutils-gdb.git] / gdb / config / ns32k / tm-umax.h
1 /* Definitions to make GDB run on an encore under umax 4.2
2 Copyright 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* This is also included by tm-ns32km3.h, as well as being used by umax. */
21
22 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
23
24 /* Need to get function ends by adding this to epilogue address from .bf
25 record, not using x_fsize field. */
26 #define FUNCTION_EPILOGUE_SIZE 4
27
28 /* Offset from address of function to start of its code.
29 Zero on most machines. */
30
31 #define FUNCTION_START_OFFSET 0
32
33 /* Advance PC across any function entry prologue instructions
34 to reach some "real" code. */
35
36 #define SKIP_PROLOGUE(pc) \
37 { register unsigned char op = read_memory_integer (pc, 1); \
38 if (op == 0x82) { op = read_memory_integer (pc+2,1); \
39 if ((op & 0x80) == 0) pc += 3; \
40 else if ((op & 0xc0) == 0x80) pc += 4; \
41 else pc += 6; \
42 } \
43 }
44
45 /* Immediately after a function call, return the saved pc.
46 Can't always go through the frames for this because on some machines
47 the new frame is not set up until the new function executes
48 some instructions. */
49
50 #define SAVED_PC_AFTER_CALL(frame) \
51 read_memory_integer (read_register (SP_REGNUM), 4)
52
53 /* Address of end of stack space. */
54
55 #ifndef STACK_END_ADDR
56 #define STACK_END_ADDR (0xfffff000)
57 #endif
58
59 /* Stack grows downward. */
60
61 #define INNER_THAN <
62
63 /* Sequence of bytes for breakpoint instruction. */
64
65 #define BREAKPOINT {0xf2}
66
67 /* Amount PC must be decremented by after a breakpoint.
68 This is often the number of bytes in BREAKPOINT
69 but not always. */
70
71 #define DECR_PC_AFTER_BREAK 0
72
73 /* Nonzero if instruction at PC is a return instruction. */
74
75 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
76
77 #ifndef INVALID_FLOAT
78 #ifndef NaN
79 #include <nan.h>
80 #endif NaN
81
82 /* Return 1 if P points to an invalid floating point value. */
83 /* Surely wrong for cross-debugging. */
84 #define INVALID_FLOAT(p, s) \
85 ((s == sizeof (float))? \
86 NaF (*(float *) p) : \
87 NaD (*(double *) p))
88 #endif /* INVALID_FLOAT */
89
90 /* Say how long (ordinary) registers are. This is a piece of bogosity
91 used in push_word and a few other places; REGISTER_RAW_SIZE is the
92 real way to know how big a register is. */
93
94 #define REGISTER_SIZE 4
95
96 /* Number of machine registers */
97
98 #define NUM_REGS 25
99
100 #define NUM_GENERAL_REGS 8
101
102 /* Initializer for an array of names of registers.
103 There should be NUM_REGS strings in this initializer. */
104
105 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
106 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
107 "sp", "fp", "pc", "ps", \
108 "fsr", \
109 "l0", "l1", "l2", "l3", "xx", \
110 }
111
112 /* Register numbers of various important registers.
113 Note that some of these values are "real" register numbers,
114 and correspond to the general registers of the machine,
115 and some are "phony" register numbers which are too large
116 to be actual register numbers as far as the user is concerned
117 but do serve to get the desired values when passed to read_register. */
118
119 #define R0_REGNUM 0 /* General register 0 */
120 #define FP0_REGNUM 8 /* Floating point register 0 */
121 #define SP_REGNUM 16 /* Contains address of top of stack */
122 #define AP_REGNUM FP_REGNUM
123 #define FP_REGNUM 17 /* Contains address of executing stack frame */
124 #define PC_REGNUM 18 /* Contains program counter */
125 #define PS_REGNUM 19 /* Contains processor status */
126 #define FPS_REGNUM 20 /* Floating point status register */
127 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
128
129 /* Total amount of space needed to store our copies of the machine's
130 register state, the array `registers'. */
131 #define REGISTER_BYTES \
132 ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \
133 + 4 * REGISTER_RAW_SIZE(LP0_REGNUM))
134
135 /* Index within `registers' of the first byte of the space for
136 register N. */
137
138 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
139 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
140
141 /* Number of bytes of storage in the actual machine representation
142 for register N. On the 32000, all regs are 4 bytes
143 except for the doubled floating registers. */
144
145 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
146
147 /* Number of bytes of storage in the program's representation
148 for register N. On the 32000, all regs are 4 bytes
149 except for the doubled floating registers. */
150
151 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
152
153 /* Largest value REGISTER_RAW_SIZE can have. */
154
155 #define MAX_REGISTER_RAW_SIZE 8
156
157 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
158
159 #define MAX_REGISTER_VIRTUAL_SIZE 8
160
161 /* Return the GDB type object for the "standard" data type
162 of data in register N. */
163
164 #define REGISTER_VIRTUAL_TYPE(N) \
165 (((N) < FP0_REGNUM) ? \
166 builtin_type_int : \
167 ((N) < FP0_REGNUM + 8) ? \
168 builtin_type_float : \
169 ((N) < LP0_REGNUM) ? \
170 builtin_type_int : \
171 builtin_type_double)
172
173 /* Store the address of the place in which to copy the structure the
174 subroutine will return. This is called from call_function.
175
176 On this machine this is a no-op, because gcc isn't used on it
177 yet. So this calling convention is not used. */
178
179 #define STORE_STRUCT_RETURN(ADDR, SP)
180
181 /* Extract from an array REGBUF containing the (raw) register state
182 a function return value of type TYPE, and copy that, in virtual format,
183 into VALBUF. */
184
185 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
186 memcpy (VALBUF, REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (TYPE))
187
188 /* Write into appropriate registers a function return value
189 of type TYPE, given in virtual format. */
190
191 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
192 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
193
194 /* Extract from an array REGBUF containing the (raw) register state
195 the address in which a function should return its structure value,
196 as a CORE_ADDR (or an expression that can be used as one). */
197
198 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
199 \f
200 /* Describe the pointer in each stack frame to the previous stack frame
201 (its caller). */
202
203 /* FRAME_CHAIN takes a frame's nominal address
204 and produces the frame's chain-pointer. */
205
206 /* In the case of the ns32000 series, the frame's nominal address is the FP
207 value, and at that address is saved previous FP value as a 4-byte word. */
208
209 #define FRAME_CHAIN(thisframe) \
210 (!inside_entry_file ((thisframe)->pc) ? \
211 read_memory_integer ((thisframe)->frame, 4) :\
212 0)
213
214 /* Define other aspects of the stack frame. */
215
216 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
217
218 /* Compute base of arguments. */
219
220 #define FRAME_ARGS_ADDRESS(fi) \
221 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
222 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
223
224 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
225
226 /* Get the address of the enter opcode for this function, if it is active.
227 Returns positive address > 1 if pc is between enter/exit,
228 1 if pc before enter or after exit, 0 otherwise. */
229
230 extern CORE_ADDR ns32k_get_enter_addr ();
231
232 /* Return number of args passed to a frame.
233 Can return -1, meaning no way to tell.
234 Encore's C compiler often reuses same area on stack for args,
235 so this will often not work properly. If the arg names
236 are known, it's likely most of them will be printed. */
237
238 #define FRAME_NUM_ARGS(numargs, fi) \
239 { CORE_ADDR pc; \
240 CORE_ADDR enter_addr; \
241 unsigned int insn; \
242 unsigned int addr_mode; \
243 int width; \
244 \
245 numargs = -1; \
246 enter_addr = ns32k_get_enter_addr ((fi)->pc); \
247 if (enter_addr > 0) \
248 { \
249 pc = (enter_addr == 1) ? \
250 SAVED_PC_AFTER_CALL (fi) : \
251 FRAME_SAVED_PC (fi); \
252 insn = read_memory_integer (pc,2); \
253 addr_mode = (insn >> 11) & 0x1f; \
254 insn = insn & 0x7ff; \
255 if ((insn & 0x7fc) == 0x57c && \
256 addr_mode == 0x14) /* immediate */ \
257 { \
258 if (insn == 0x57c) /* adjspb */ \
259 width = 1; \
260 else if (insn == 0x57d) /* adjspw */ \
261 width = 2; \
262 else if (insn == 0x57f) /* adjspd */ \
263 width = 4; \
264 numargs = read_memory_integer (pc+2,width); \
265 if (width > 1) \
266 flip_bytes (&numargs, width); \
267 numargs = - sign_extend (numargs, width*8) / 4;\
268 } \
269 } \
270 }
271
272 /* Return number of bytes at start of arglist that are not really args. */
273
274 #define FRAME_ARGS_SKIP 8
275
276 /* Put here the code to store, into a struct frame_saved_regs,
277 the addresses of the saved registers of frame described by FRAME_INFO.
278 This includes special registers such as pc and fp saved in special
279 ways in the stack frame. sp is even more special:
280 the address we return for it IS the sp for the next frame. */
281
282 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
283 { \
284 register int regmask, regnum; \
285 int localcount; \
286 register CORE_ADDR enter_addr; \
287 register CORE_ADDR next_addr; \
288 \
289 memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \
290 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
291 if (enter_addr > 1) \
292 { \
293 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
294 localcount = ns32k_localcount (enter_addr); \
295 next_addr = (frame_info)->frame + localcount; \
296 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
297 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
298 (next_addr -= 4) : 0; \
299 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
300 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
301 (frame_saved_regs).regs[FP_REGNUM] = \
302 (read_memory_integer ((frame_info)->frame, 4));\
303 } \
304 else if (enter_addr == 1) \
305 { \
306 CORE_ADDR sp = read_register (SP_REGNUM); \
307 (frame_saved_regs).regs[PC_REGNUM] = sp; \
308 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
309 } \
310 }
311 \f
312 /* Things needed for making the inferior call functions. */
313
314 /* Push an empty stack frame, to record the current PC, etc. */
315
316 #define PUSH_DUMMY_FRAME \
317 { register CORE_ADDR sp = read_register (SP_REGNUM);\
318 register int regnum; \
319 sp = push_word (sp, read_register (PC_REGNUM)); \
320 sp = push_word (sp, read_register (FP_REGNUM)); \
321 write_register (FP_REGNUM, sp); \
322 for (regnum = 0; regnum < 8; regnum++) \
323 sp = push_word (sp, read_register (regnum)); \
324 write_register (SP_REGNUM, sp); \
325 }
326
327 /* Discard from the stack the innermost frame, restoring all registers. */
328
329 #define POP_FRAME \
330 { register FRAME frame = get_current_frame (); \
331 register CORE_ADDR fp; \
332 register int regnum; \
333 struct frame_saved_regs fsr; \
334 struct frame_info *fi; \
335 fi = get_frame_info (frame); \
336 fp = fi->frame; \
337 get_frame_saved_regs (fi, &fsr); \
338 for (regnum = 0; regnum < 8; regnum++) \
339 if (fsr.regs[regnum]) \
340 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
341 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
342 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
343 write_register (SP_REGNUM, fp + 8); \
344 flush_cached_frames (); \
345 set_current_frame (create_new_frame (read_register (FP_REGNUM),\
346 read_pc ())); }
347
348 /* This sequence of words is the instructions
349 enter 0xff,0 82 ff 00
350 jsr @0x00010203 7f ae c0 01 02 03
351 adjspd 0x69696969 7f a5 01 02 03 04
352 bpt f2
353 Note this is 16 bytes. */
354
355 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
356
357 #define CALL_DUMMY_START_OFFSET 3
358 #define CALL_DUMMY_LENGTH 16
359 #define CALL_DUMMY_ADDR 5
360 #define CALL_DUMMY_NARGS 11
361
362 /* Insert the specified number of args and function address
363 into a call sequence of the above form stored at DUMMYNAME. */
364
365 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
366 { \
367 int flipped; \
368 flipped = fun | 0xc0000000; \
369 flip_bytes (&flipped, 4); \
370 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
371 flipped = - nargs * 4; \
372 flip_bytes (&flipped, 4); \
373 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
374 }
This page took 0.038788 seconds and 5 git commands to generate.