From J. Law:
[deliverable/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 /* Target system byte order. */
25
26 #define TARGET_BYTE_ORDER BIG_ENDIAN
27
28 /* Get at various relevent fields of an instruction word. */
29
30 #define MASK_5 0x1f
31 #define MASK_11 0x7ff
32 #define MASK_14 0x3fff
33 #define MASK_21 0x1fffff
34
35 /* This macro gets bit fields using HP's numbering (MSB = 0) */
36
37 #define GET_FIELD(X, FROM, TO) \
38 ((X) >> 31 - (TO) & (1 << ((TO) - (FROM) + 1)) - 1)
39
40 /* Watch out for NaNs */
41
42 #define IEEE_FLOAT
43
44 /* When passing a structure to a function, GCC passes the address
45 in a register, not the structure itself. */
46
47 /* FIXME: I believe this is wrong. I believe passing the address
48 depends only on the size of the argument being > 8, not on its type
49 (which is a much more sane way than the REG_STRUCT_HAS_ADDR way,
50 IMHO). Also, as far as I know it is not dependent on it being
51 passed in a register. This should be verified before changing
52 anything (in fact, printing structure arguments of
53 2,4,6,8,12,16,and 20 bytes should all be in the test suite). */
54
55 #define REG_STRUCT_HAS_ADDR(gcc_p) (1)
56
57 /* Offset from address of function to start of its code.
58 Zero on most machines. */
59
60 #define FUNCTION_START_OFFSET 0
61
62 /* Advance PC across any function entry prologue instructions
63 to reach some "real" code. */
64
65 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
66 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
67
68 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
69
70 /* If PC is in some function-call trampoline code, return the PC
71 where the function itself actually starts. If not, return NULL. */
72
73 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
74
75 /* Return non-zero if we are in some sort of a trampoline. */
76
77 #define IN_SOLIB_TRAMPOLINE(pc, name) skip_trampoline_code (pc, name)
78
79 /* Immediately after a function call, return the saved pc.
80 Can't go through the frames for this because on some machines
81 the new frame is not set up until the new function executes
82 some instructions. */
83
84 #undef SAVED_PC_AFTER_CALL
85 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
86
87 /* Stack grows upward */
88
89 #define INNER_THAN >
90
91
92 /* Sequence of bytes for breakpoint instruction. */
93
94 /*#define BREAKPOINT {0x00, 0x00, 0x00, 0x00}*/
95 #ifdef KERNELDEBUG /* XXX */
96 #define BREAKPOINT {0x00, 0x00, 0xa0, 0x00}
97 #else
98 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
99 #endif
100
101 /* Amount PC must be decremented by after a breakpoint.
102 This is often the number of bytes in BREAKPOINT
103 but not always.
104
105 Not on the PA-RISC */
106
107 #define DECR_PC_AFTER_BREAK 0
108
109 /* return instruction is bv r0(rp) or bv,n r0(rp)*/
110
111 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
112
113 /* Return 1 if P points to an invalid floating point value. */
114
115 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
116
117 /* Largest integer type */
118 #define LONGEST long
119
120 /* Name of the builtin type for the LONGEST type above. */
121 #define BUILTIN_TYPE_LONGEST builtin_type_long
122
123 /* Say how long (ordinary) registers are. */
124
125 #define REGISTER_TYPE long
126
127 /* Number of machine registers */
128
129 #define NUM_REGS 100
130
131 /* Initializer for an array of names of registers.
132 There should be NUM_REGS strings in this initializer. */
133
134 #define REGISTER_NAMES \
135 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
136 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
137 "r20", "r21", "r22", "arg3", "arg2", "arg1", "arg0", "dp", "ret0", "ret1", \
138 "sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
139 "eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
140 "sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
141 "cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
142 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
143 "fr4", "fr5", "fr6", "fr7", "fr8", \
144 "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
145 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
146 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31"}
147
148 /* Register numbers of various important registers.
149 Note that some of these values are "real" register numbers,
150 and correspond to the general registers of the machine,
151 and some are "phony" register numbers which are too large
152 to be actual register numbers as far as the user is concerned
153 but do serve to get the desired values when passed to read_register. */
154
155 #define FLAGS_REGNUM 0 /* Various status flags */
156 #define RP_REGNUM 2 /* return pointer */
157 #define FP_REGNUM 4 /* Contains address of executing stack */
158 /* frame */
159 #define SP_REGNUM 30 /* Contains address of top of stack */
160 #define SAR_REGNUM 32 /* shift amount register */
161 #define IPSW_REGNUM 41 /* processor status word. ? */
162 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
163 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
164 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
165 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
166 #define FP0_REGNUM 64 /* floating point reg. 0 */
167 #define FP4_REGNUM 72
168
169 /* compatibility with the rest of gdb. */
170 #define PC_REGNUM PCOQ_HEAD_REGNUM
171 #define NPC_REGNUM PCOQ_TAIL_REGNUM
172
173 /* When fetching register values from an inferior or a core file,
174 clean them up using this macro. BUF is a char pointer to
175 the raw value of the register in the registers[] array. */
176
177 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
178 do { \
179 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
180 (buf)[3] &= ~0x3; \
181 } while (0)
182
183 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
184 of register dumps. */
185
186 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
187
188 /* PA specific macro to see if the current instruction is nullified. */
189 #define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
190
191 /* Total amount of space needed to store our copies of the machine's
192 register state, the array `registers'. */
193 #define REGISTER_BYTES (32 * 4 + 11 * 4 + 8 * 4 + 12 * 4 + 4 + 32 * 8)
194
195 /* Index within `registers' of the first byte of the space for
196 register N. */
197
198 #define REGISTER_BYTE(N) \
199 ((N) >= FP4_REGNUM ? ((N) - FP4_REGNUM) * 8 + 288 : (N) * 4)
200
201 /* Number of bytes of storage in the actual machine representation
202 for register N. On the PA-RISC, all regs are 4 bytes
203 except the floating point regs which are 8 bytes. */
204
205 #define REGISTER_RAW_SIZE(N) ((N) < FP4_REGNUM ? 4 : 8)
206
207 /* Number of bytes of storage in the program's representation
208 for register N. */
209
210 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
211
212 /* Largest value REGISTER_RAW_SIZE can have. */
213
214 #define MAX_REGISTER_RAW_SIZE 8
215
216 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
217
218 #define MAX_REGISTER_VIRTUAL_SIZE 8
219
220 /* Nonzero if register N requires conversion
221 from raw format to virtual format. */
222
223 #define REGISTER_CONVERTIBLE(N) 0
224
225 /* Convert data from raw format for register REGNUM
226 to virtual format for register REGNUM. */
227
228 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM, FROM, TO) \
229 { memcpy ((TO), (FROM), (REGNUM) < FP4_REGNUM ? 4 : 8); }
230
231 /* Convert data from virtual format for register REGNUM
232 to raw format for register REGNUM. */
233
234 #define REGISTER_CONVERT_TO_RAW(REGNUM, FROM, TO) \
235 { memcpy ((TO), (FROM), (REGNUM) < FP4_REGNUM ? 4 : 8); }
236
237 /* Return the GDB type object for the "standard" data type
238 of data in register N. */
239
240 #define REGISTER_VIRTUAL_TYPE(N) \
241 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_double)
242
243 /* Store the address of the place in which to copy the structure the
244 subroutine will return. This is called from call_function. */
245
246 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
247
248 /* Extract from an array REGBUF containing the (raw) register state
249 a function return value of type TYPE, and copy that, in virtual format,
250 into VALBUF. */
251
252 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
253 bcopy ((REGBUF) + REGISTER_BYTE(TYPE_LENGTH(TYPE) > 4 ? \
254 FP4_REGNUM :28), VALBUF, TYPE_LENGTH (TYPE))
255
256 /* Write into appropriate registers a function return value
257 of type TYPE, given in virtual format. */
258
259 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
260 write_register_bytes (TYPE_LENGTH(TYPE) > 4 ? FP4_REGNUM :28, \
261 VALBUF, TYPE_LENGTH (TYPE))
262
263 /* Extract from an array REGBUF containing the (raw) register state
264 the address in which a function should return its structure value,
265 as a CORE_ADDR (or an expression that can be used as one). */
266
267 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)((REGBUF) + 28))
268
269 /*
270 * This macro defines the register numbers (from REGISTER_NAMES) that
271 * are effectively unavailable to the user through ptrace(). It allows
272 * us to include the whole register set in REGISTER_NAMES (inorder to
273 * better support remote debugging). If it is used in
274 * fetch/store_inferior_registers() gdb will not complain about I/O errors
275 * on fetching these registers. If all registers in REGISTER_NAMES
276 * are available, then return false (0).
277 */
278
279 #define CANNOT_STORE_REGISTER(regno) \
280 ((regno) == 0) || \
281 ((regno) == PCSQ_HEAD_REGNUM) || \
282 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
283 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
284
285 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
286
287 /* Describe the pointer in each stack frame to the previous stack frame
288 (its caller). */
289
290 /* FRAME_CHAIN takes a frame's nominal address
291 and produces the frame's chain-pointer.
292
293 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
294 and produces the nominal address of the caller frame.
295
296 However, if FRAME_CHAIN_VALID returns zero,
297 it means the given frame is the outermost one and has no caller.
298 In that case, FRAME_CHAIN_COMBINE is not used. */
299
300 /* In the case of the PA-RISC, the frame's nominal address
301 is the address of a 4-byte word containing the calling frame's
302 address (previous FP). */
303
304 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
305
306 #define FRAME_CHAIN_VALID(chain, thisframe) \
307 frame_chain_valid (chain, thisframe)
308
309 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
310
311 /* Define other aspects of the stack frame. */
312
313 /* A macro that tells us whether the function invocation represented
314 by FI does not have a frame on the stack associated with it. If it
315 does not, FRAMELESS is set to 1, else 0. */
316 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
317 (FRAMELESS) = frameless_function_invocation(FI)
318
319 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
320
321 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
322
323 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
324 /* Set VAL to the number of args passed to frame described by FI.
325 Can set VAL to -1, meaning no way to tell. */
326
327 /* We can't tell how many args there are
328 now that the C compiler delays popping them. */
329 #define FRAME_NUM_ARGS(val,fi) (val = -1)
330
331 /* Return number of bytes at start of arglist that are not really args. */
332
333 #define FRAME_ARGS_SKIP 0
334
335 /* Put here the code to store, into a struct frame_saved_regs,
336 the addresses of the saved registers of frame described by FRAME_INFO.
337 This includes special registers such as pc and fp saved in special
338 ways in the stack frame. sp is even more special:
339 the address we return for it IS the sp for the next frame. */
340
341 /* Deal with dummy functions later. */
342
343 #define STW_P(INSN) (((INSN) & 0xfc000000) == 0x68000000)
344 #define ADDIL_P(INSN) (((INSN) & 0xfc000000) == 0x28000000)
345 #define LDO_P(INSN) (((INSN) & 0xfc00c000) == 0x34000000)
346
347 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
348 { register int regnum; \
349 register CORE_ADDR next_addr; \
350 register CORE_ADDR pc; \
351 unsigned this_insn; \
352 unsigned address; \
353 \
354 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
355 if ((frame_info->pc >= (frame_info)->frame \
356 && (frame_info)->pc <= ((frame_info)->frame + CALL_DUMMY_LENGTH \
357 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 \
358 + 6 * 4))) \
359 find_dummy_frame_regs ((frame_info), &(frame_saved_regs)); \
360 else \
361 { pc = get_pc_function_start ((frame_info)->pc); \
362 if (read_memory_integer (pc, 4) == 0x6BC23FD9) \
363 { (frame_saved_regs).regs[RP_REGNUM] = (frame_info)->frame - 20;\
364 pc = pc + 4; \
365 } \
366 if (read_memory_integer (pc, 4) != 0x8040241) goto lose; \
367 pc += 8; /* skip "copy 4,1; copy 30, 4" */ \
368 /* skip either "stw 1,0(4);addil L'fsize,30;ldo R'fsize(1),30" \
369 or "stwm 1,fsize(30)" */ \
370 if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
371 pc += 12; \
372 else \
373 pc += 4; \
374 while (1) \
375 { this_insn = read_memory_integer(pc, 4); \
376 if (STW_P (this_insn)) /* stw */ \
377 { regnum = GET_FIELD (this_insn, 11, 15); \
378 if (!regnum) goto lose; \
379 (frame_saved_regs).regs[regnum] = (frame_info)->frame + \
380 extract_14 (this_insn); \
381 pc += 4; \
382 } \
383 else if (ADDIL_P (this_insn)) /* addil */ \
384 { int next_insn; \
385 next_insn = read_memory_integer(pc + 4, 4); \
386 if (STW_P (next_insn)) /* stw */ \
387 { regnum = GET_FIELD (this_insn, 6, 10); \
388 if (!regnum) goto lose; \
389 (frame_saved_regs).regs[regnum] = (frame_info)->frame +\
390 (extract_21 (this_insn) << 11) + extract_14 (next_insn);\
391 pc += 8; \
392 } \
393 else \
394 break; \
395 } \
396 else \
397 { pc += 4; \
398 break; \
399 } \
400 } \
401 this_insn = read_memory_integer (pc, 4); \
402 if (LDO_P (this_insn)) \
403 { next_addr = (frame_info)->frame + extract_14 (this_insn); \
404 pc += 4; \
405 } \
406 else if (ADDIL_P (this_insn)) \
407 { next_addr = (frame_info)->frame + (extract_21 (this_insn) << 11)\
408 + extract_14 (read_memory_integer (pc + 4, 4)); \
409 pc += 8; \
410 } \
411 while (1) \
412 { this_insn = read_memory_integer (pc, 4); \
413 if ((this_insn & 0xfc001fe0) == 0x2c001220) /* fstds,ma */ \
414 { regnum = GET_FIELD (this_insn, 27, 31); \
415 (frame_saved_regs).regs[regnum + FP0_REGNUM] = next_addr; \
416 next_addr += 8; \
417 pc += 4; \
418 } \
419 else \
420 break; \
421 } \
422 lose: \
423 (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
424 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame -4; \
425 }}
426 \f
427 /* Things needed for making the inferior call functions. */
428
429 /* Push an empty stack frame, to record the current PC, etc. */
430
431 #define PUSH_DUMMY_FRAME push_dummy_frame ()
432
433 /* Discard from the stack the innermost frame,
434 restoring all saved registers. */
435 #define POP_FRAME hppa_pop_frame ()
436
437 /* This sequence of words is the instructions
438
439 ; Call stack frame has already been built by gdb. Since we could be calling
440 ; a varargs function, and we do not have the benefit of a stub to put things in
441 ; the right place, we load the first 4 word of arguments into both the general
442 ; and fp registers.
443 call_dummy
444 ldw -36(sp), arg0
445 ldw -40(sp), arg1
446 ldw -44(sp), arg2
447 ldw -48(sp), arg3
448 ldo -36(sp), r1
449 fldws 0(0, r1), fr4
450 fldds -4(0, r1), fr5
451 fldws -8(0, r1), fr6
452 fldds -12(0, r1), fr7
453 ldil 0, r22 ; target will be placed here.
454 ldo 0(r22), r22
455 ldsid (0,r22), r3
456 ldil 0, r1 ; _sr4export will be placed here.
457 ldo 0(r1), r1
458 ldsid (0,r1), r19
459 combt,=,n r3, r19, text_space ; If target is in data space, do a
460 ble 0(sr5, r22) ; "normal" procedure call
461 copy r31, r2
462 break 4, 8
463 mtsp r21, sr0
464 ble,n 0(sr0, r22)
465 text_space ; Otherwise, go through _sr4export,
466 ble (sr4, r1) ; which will return back here.
467 stw 31,-24(r30)
468 break 4, 8
469 mtsp r21, sr0
470 ble,n 0(sr0, r22)
471
472 The dummy decides if the target is in text space or data space. If
473 it's in data space, there's no problem because the target can
474 return back to the dummy. However, if the target is in text space,
475 the dummy calls the secret, undocumented routine _sr4export, which
476 calls a function in text space and can return to any space. Instead
477 of including fake instructions to represent saved registers, we
478 know that the frame is associated with the call dummy and treat it
479 specially. */
480
481 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
482 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
483 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A3,\
484 0x20200000, 0x34210000, 0x002010b3, 0x82632022,\
485 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
486 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
487 0x00151820, 0xe6c00002}
488
489 #define CALL_DUMMY_LENGTH 104
490 #define CALL_DUMMY_START_OFFSET 0
491
492 /*
493 * Insert the specified number of args and function address
494 * into a call sequence of the above form stored at DUMMYNAME.
495 *
496 * On the hppa we need to call the stack dummy through $$dyncall.
497 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
498 * real_pc, which is the location where gdb should start up the
499 * inferior to do the function call.
500 */
501
502 #define FIX_CALL_DUMMY hppa_fix_call_dummy
503
504 CORE_ADDR hppa_fix_call_dummy();
505
506 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
507 sp = hppa_push_arguments(nargs, args, sp, struct_return, struct_addr)
508
509 /* Symbol files have two symbol tables. Rather than do this right,
510 like the ELF symbol reading code, massive hackery was added
511 to dbxread.c and partial-stab.h. This flag turns on that
512 hackery, which should all go away FIXME FIXME FIXME FIXME now. */
513
514 #define GDB_TARGET_IS_HPPA
515
516 #define BELIEVE_PCC_PROMOTION 1
517
518 /*
519 * Unwind table and descriptor.
520 */
521
522 struct unwind_table_entry {
523 unsigned int region_start;
524 unsigned int region_end;
525
526 unsigned int Cannot_unwind : 1;
527 unsigned int Millicode : 1;
528 unsigned int Millicode_save_sr0 : 1;
529 unsigned int Region_description : 2;
530 unsigned int reserverd1 : 1;
531 unsigned int Entry_SR : 1;
532 unsigned int Entry_FR : 4; /* number saved */
533 unsigned int Entry_GR : 5; /* number saved */
534 unsigned int Args_stored : 1;
535 unsigned int Variable_Frame : 1;
536 unsigned int Separate_Package_Body : 1;
537 unsigned int Frame_Extension_Millicode:1;
538 unsigned int Stack_Overflow_Check : 1;
539 unsigned int Two_Instruction_SP_Increment:1;
540 unsigned int Ada_Region : 1;
541 unsigned int reserved2 : 4;
542 unsigned int Save_SP : 1;
543 unsigned int Save_RP : 1;
544 unsigned int Save_MRP_in_frame : 1;
545 unsigned int extn_ptr_defined : 1;
546 unsigned int Cleanup_defined : 1;
547
548 unsigned int MPE_XL_interrupt_marker: 1;
549 unsigned int HP_UX_interrupt_marker: 1;
550 unsigned int Large_frame : 1;
551 unsigned int reserved4 : 2;
552 unsigned int Total_frame_size : 27;
553 };
554
555 /* Info about the unwind table associated with an object file. This is hung
556 off of the objfile->obj_private pointer, and is allocated in the objfile's
557 psymbol obstack. This allows us to have unique unwind info for each
558 executable and shared library that we are debugging. */
559
560 struct obj_unwind_info {
561 struct unwind_table_entry *table; /* Pointer to unwind info */
562 struct unwind_table_entry *cache; /* Pointer to last entry we found */
563 int last; /* Index of last entry */
564 };
565
566 #define OBJ_UNWIND_INFO(obj) ((struct obj_unwind_info *)obj->obj_private)
567
568 #define TARGET_READ_PC() target_read_pc ()
This page took 0.041688 seconds and 4 git commands to generate.