Put in place the framework necessary for multiarching the hppa targets.
[deliverable/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "regcache.h"
26
27 #define GDB_MULTI_ARCH 0
28
29 /* Forward declarations of some types we use in prototypes */
30
31 struct frame_info;
32 struct frame_saved_regs;
33 struct value;
34 struct type;
35 struct inferior_status;
36
37 /* By default assume we don't have to worry about software floating point. */
38 #ifndef SOFT_FLOAT
39 #define SOFT_FLOAT 0
40 #endif
41
42 /* Get at various relevent fields of an instruction word. */
43
44 #define MASK_5 0x1f
45 #define MASK_11 0x7ff
46 #define MASK_14 0x3fff
47 #define MASK_21 0x1fffff
48
49 /* This macro gets bit fields using HP's numbering (MSB = 0) */
50 #ifndef GET_FIELD
51 #define GET_FIELD(X, FROM, TO) \
52 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
53 #endif
54
55 /* On the PA, any pass-by-value structure > 8 bytes is actually
56 passed via a pointer regardless of its type or the compiler
57 used. */
58
59 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
60 (TYPE_LENGTH (type) > 8)
61
62 /* Offset from address of function to start of its code.
63 Zero on most machines. */
64
65 #define FUNCTION_START_OFFSET 0
66
67 /* Advance PC across any function entry prologue instructions
68 to reach some "real" code. */
69
70 extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
71 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
72
73 /* If PC is in some function-call trampoline code, return the PC
74 where the function itself actually starts. If not, return NULL. */
75
76 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
77 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
78
79 /* Return non-zero if we are in an appropriate trampoline. */
80
81 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
82 in_solib_call_trampoline (pc, name)
83 extern int in_solib_call_trampoline (CORE_ADDR, char *);
84
85 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
86 in_solib_return_trampoline (pc, name)
87 extern int in_solib_return_trampoline (CORE_ADDR, char *);
88
89 /* Immediately after a function call, return the saved pc.
90 Can't go through the frames for this because on some machines
91 the new frame is not set up until the new function executes
92 some instructions. */
93
94 #undef SAVED_PC_AFTER_CALL
95 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
96 extern CORE_ADDR saved_pc_after_call (struct frame_info *);
97
98 /* Stack grows upward */
99 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
100
101 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
102 This is used in valops.c, when the sp is adjusted.
103 On hppa the sp must always be kept 64-bit aligned */
104
105 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
106 #define EXTRA_STACK_ALIGNMENT_NEEDED 0
107
108 /* Sequence of bytes for breakpoint instruction. */
109
110 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
111 #define BREAKPOINT32 0x10004
112
113 /* Amount PC must be decremented by after a breakpoint.
114 This is often the number of bytes in BREAKPOINT
115 but not always.
116
117 Not on the PA-RISC */
118
119 #define DECR_PC_AFTER_BREAK 0
120
121 /* Sometimes we may pluck out a minimal symbol that has a negative
122 address.
123
124 An example of this occurs when an a.out is linked against a foo.sl.
125 The foo.sl defines a global bar(), and the a.out declares a signature
126 for bar(). However, the a.out doesn't directly call bar(), but passes
127 its address in another call.
128
129 If you have this scenario and attempt to "break bar" before running,
130 gdb will find a minimal symbol for bar() in the a.out. But that
131 symbol's address will be negative. What this appears to denote is
132 an index backwards from the base of the procedure linkage table (PLT)
133 into the data linkage table (DLT), the end of which is contiguous
134 with the start of the PLT. This is clearly not a valid address for
135 us to set a breakpoint on.
136
137 Note that one must be careful in how one checks for a negative address.
138 0xc0000000 is a legitimate address of something in a shared text
139 segment, for example. Since I don't know what the possible range
140 is of these "really, truly negative" addresses that come from the
141 minimal symbols, I'm resorting to the gross hack of checking the
142 top byte of the address for all 1's. Sigh.
143 */
144 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
145 (! target_has_stack && (pc & 0xFF000000))
146
147 /* return instruction is bv r0(rp) or bv,n r0(rp) */
148
149 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
150
151 /* Say how long (ordinary) registers are. This is a piece of bogosity
152 used in push_word and a few other places; REGISTER_RAW_SIZE is the
153 real way to know how big a register is. */
154
155 #define REGISTER_SIZE 4
156
157 /* Number of machine registers */
158
159 #define NUM_REGS 128
160
161 /* Initializer for an array of names of registers.
162 There should be NUM_REGS strings in this initializer.
163 They are in rows of eight entries */
164
165 #define REGISTER_NAMES \
166 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
169 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
170 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
171 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
172 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
173 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
174 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
175 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
176 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
177 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
178 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
179 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
180 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
181 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
182
183 /* Register numbers of various important registers.
184 Note that some of these values are "real" register numbers,
185 and correspond to the general registers of the machine,
186 and some are "phony" register numbers which are too large
187 to be actual register numbers as far as the user is concerned
188 but do serve to get the desired values when passed to read_register. */
189
190 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
191 other r registers. */
192 #define FLAGS_REGNUM 0 /* Various status flags */
193 #define RP_REGNUM 2 /* return pointer */
194 #define FP_REGNUM 3 /* Contains address of executing stack */
195 /* frame */
196 #define SP_REGNUM 30 /* Contains address of top of stack */
197 #define SAR_REGNUM 32 /* Shift Amount Register */
198 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
199 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
200 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
201 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
202 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
203 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
204 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
205 #define IOR_REGNUM 40 /* Interrupt Offset Register */
206 #define SR4_REGNUM 43 /* space register 4 */
207 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
208 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
209 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
210 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
211 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
212 #define FP4_REGNUM 72
213
214 #define ARG0_REGNUM 26 /* The first argument of a callee. */
215 #define ARG1_REGNUM 25 /* The second argument of a callee. */
216 #define ARG2_REGNUM 24 /* The third argument of a callee. */
217 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
218
219 /* compatibility with the rest of gdb. */
220 #define PC_REGNUM PCOQ_HEAD_REGNUM
221 #define NPC_REGNUM PCOQ_TAIL_REGNUM
222
223 /*
224 * Processor Status Word Masks
225 */
226
227 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
228 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
229 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
230 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
231 #define PSW_X 0x00100000 /* Data Memory Break Disable */
232 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
233 #define PSW_C 0x00040000 /* Code Address Translation Enable */
234 #define PSW_V 0x00020000 /* Divide Step Correction */
235 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
236 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
237 #define PSW_R 0x00000010 /* Recovery Counter Enable */
238 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
239 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
240 #define PSW_D 0x00000002 /* Data Address Translation Enable */
241 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
242 /* Machine Check Interruption Enable */
243
244 /* When fetching register values from an inferior or a core file,
245 clean them up using this macro. BUF is a char pointer to
246 the raw value of the register in the registers[] array. */
247
248 #define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
249 do { \
250 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
251 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
252 } while (0)
253
254 /* Define DEPRECATED_REGISTERS_INFO() to do machine-specific formatting
255 of register dumps. */
256
257 #define DEPRECATED_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
258 extern void pa_do_registers_info (int, int);
259
260 #if 0
261 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
262 extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
263 #endif
264
265 /* PA specific macro to see if the current instruction is nullified. */
266 #ifndef INSTRUCTION_NULLIFIED
267 #define INSTRUCTION_NULLIFIED \
268 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
269 !((int)read_register (FLAGS_REGNUM) & 0x2))
270 #endif
271
272 /* Number of bytes of storage in the actual machine representation
273 for register N. On the PA-RISC, all regs are 4 bytes, including
274 the FP registers (they're accessed as two 4 byte halves). */
275
276 #define REGISTER_RAW_SIZE(N) 4
277
278 /* Total amount of space needed to store our copies of the machine's
279 register state, the array `registers'. */
280 #define REGISTER_BYTES (NUM_REGS * 4)
281
282 /* Index within `registers' of the first byte of the space for
283 register N. */
284
285 #define REGISTER_BYTE(N) (N) * 4
286
287 /* Number of bytes of storage in the program's representation
288 for register N. */
289
290 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
291
292 /* Largest value REGISTER_RAW_SIZE can have. */
293
294 #define MAX_REGISTER_RAW_SIZE 4
295
296 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
297
298 #define MAX_REGISTER_VIRTUAL_SIZE 8
299
300 /* Return the GDB type object for the "standard" data type
301 of data in register N. */
302
303 #define REGISTER_VIRTUAL_TYPE(N) \
304 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
305
306 /* Store the address of the place in which to copy the structure the
307 subroutine will return. This is called from call_function. */
308
309 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
310
311 /* Extract from an array REGBUF containing the (raw) register state
312 a function return value of type TYPE, and copy that, in virtual format,
313 into VALBUF. */
314
315 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
316 #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
317 hppa_extract_return_value (TYPE, REGBUF, VALBUF);
318
319 /* elz: decide whether the function returning a value of type type
320 will put it on the stack or in the registers.
321 The pa calling convention says that:
322 register 28 (called ret0 by gdb) contains any ASCII char,
323 and any non_floating point value up to 32-bits.
324 reg 28 and 29 contain non-floating point up tp 64 bits and larger
325 than 32 bits. (higer order word in reg 28).
326 fr4: floating point up to 64 bits
327 sr1: space identifier (32-bit)
328 stack: any lager than 64-bit, with the address in r28
329 */
330 extern use_struct_convention_fn hppa_use_struct_convention;
331 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
332
333 /* Write into appropriate registers a function return value
334 of type TYPE, given in virtual format. */
335
336
337 extern void hppa_store_return_value (struct type *type, char *valbuf);
338 #define DEPRECATED_STORE_RETURN_VALUE(TYPE,VALBUF) \
339 hppa_store_return_value (TYPE, VALBUF);
340
341 /* Extract from an array REGBUF containing the (raw) register state
342 the address in which a function should return its structure value,
343 as a CORE_ADDR (or an expression that can be used as one). */
344
345 #define DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
346 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
347
348 /* elz: Return a large value, which is stored on the stack at addr.
349 This is defined only for the hppa, at this moment. The above macro
350 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
351 because it assumes that on exit from a called function which
352 returns a large structure on the stack, the address of the ret
353 structure is still in register 28. Unfortunately this register is
354 usually overwritten by the called function itself, on hppa. This is
355 specified in the calling convention doc. As far as I know, the only
356 way to get the return value is to have the caller tell us where it
357 told the callee to put it, rather than have the callee tell us. */
358 struct value *hppa_value_returned_from_stack (register struct type *valtype,
359 CORE_ADDR addr);
360 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
361 hppa_value_returned_from_stack (valtype, addr)
362
363 /*
364 * This macro defines the register numbers (from REGISTER_NAMES) that
365 * are effectively unavailable to the user through ptrace(). It allows
366 * us to include the whole register set in REGISTER_NAMES (inorder to
367 * better support remote debugging). If it is used in
368 * fetch/store_inferior_registers() gdb will not complain about I/O errors
369 * on fetching these registers. If all registers in REGISTER_NAMES
370 * are available, then return false (0).
371 */
372
373 #define CANNOT_STORE_REGISTER(regno) \
374 ((regno) == 0) || \
375 ((regno) == PCSQ_HEAD_REGNUM) || \
376 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
377 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
378
379 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
380 extern void init_extra_frame_info (int, struct frame_info *);
381
382 /* Describe the pointer in each stack frame to the previous stack frame
383 (its caller). */
384
385 /* FRAME_CHAIN takes a frame's nominal address and produces the
386 frame's chain-pointer. */
387
388 /* In the case of the PA-RISC, the frame's nominal address
389 is the address of a 4-byte word containing the calling frame's
390 address (previous FP). */
391
392 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
393 extern CORE_ADDR frame_chain (struct frame_info *);
394
395 extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
396 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
397
398 /* Define other aspects of the stack frame. */
399
400 /* A macro that tells us whether the function invocation represented
401 by FI does not have a frame on the stack associated with it. If it
402 does not, FRAMELESS is set to 1, else 0. */
403 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
404 (frameless_function_invocation (FI))
405 extern int frameless_function_invocation (struct frame_info *);
406
407 extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
408 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
409
410 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
411
412 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
413 /* Set VAL to the number of args passed to frame described by FI.
414 Can set VAL to -1, meaning no way to tell. */
415
416 /* We can't tell how many args there are
417 now that the C compiler delays popping them. */
418 #define FRAME_NUM_ARGS(fi) (-1)
419
420 /* Return number of bytes at start of arglist that are not really args. */
421
422 #define FRAME_ARGS_SKIP 0
423
424 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
425 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
426 extern void
427 hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
428 \f
429
430 /* Things needed for making the inferior call functions. */
431
432 /* Push an empty stack frame, to record the current PC, etc. */
433
434 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
435 extern void push_dummy_frame (struct inferior_status *);
436
437 /* Discard from the stack the innermost frame,
438 restoring all saved registers. */
439 #define POP_FRAME hppa_pop_frame ()
440 extern void hppa_pop_frame (void);
441
442 #define INSTRUCTION_SIZE 4
443
444 #ifndef PA_LEVEL_0
445
446 /* Non-level zero PA's have space registers (but they don't always have
447 floating-point, do they???? */
448
449 /* This sequence of words is the instructions
450
451 ; Call stack frame has already been built by gdb. Since we could be calling
452 ; a varargs function, and we do not have the benefit of a stub to put things in
453 ; the right place, we load the first 4 word of arguments into both the general
454 ; and fp registers.
455 call_dummy
456 ldw -36(sp), arg0
457 ldw -40(sp), arg1
458 ldw -44(sp), arg2
459 ldw -48(sp), arg3
460 ldo -36(sp), r1
461 fldws 0(0, r1), fr4
462 fldds -4(0, r1), fr5
463 fldws -8(0, r1), fr6
464 fldds -12(0, r1), fr7
465 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
466 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
467 ldsid (0,r22), r4
468 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
469 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
470 ldsid (0,r1), r20
471 combt,=,n r4, r20, text_space ; If target is in data space, do a
472 ble 0(sr5, r22) ; "normal" procedure call
473 copy r31, r2
474 break 4, 8
475 mtsp r21, sr0
476 ble,n 0(sr0, r22)
477 text_space ; Otherwise, go through _sr4export,
478 ble (sr4, r1) ; which will return back here.
479 stw r31,-24(r30)
480 break 4, 8
481 mtsp r21, sr0
482 ble,n 0(sr0, r22)
483 nop ; To avoid kernel bugs
484 nop ; and keep the dummy 8 byte aligned
485
486 The dummy decides if the target is in text space or data space. If
487 it's in data space, there's no problem because the target can
488 return back to the dummy. However, if the target is in text space,
489 the dummy calls the secret, undocumented routine _sr4export, which
490 calls a function in text space and can return to any space. Instead
491 of including fake instructions to represent saved registers, we
492 know that the frame is associated with the call dummy and treat it
493 specially.
494
495 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
496 kernels. If the memory at the location pointed to by the PC is
497 0xffffffff then a ptrace step call will fail (even if the instruction
498 is nullified).
499
500 The code to pop a dummy frame single steps three instructions
501 starting with the last mtsp. This includes the nullified "instruction"
502 following the ble (which is uninitialized junk). If the
503 "instruction" following the last BLE is 0xffffffff, then the ptrace
504 will fail and the dummy frame is not correctly popped.
505
506 By placing a NOP in the delay slot of the BLE instruction we can be
507 sure that we never try to execute a 0xffffffff instruction and
508 avoid the kernel bug. The second NOP is needed to keep the call
509 dummy 8 byte aligned. */
510
511 /* Define offsets into the call dummy for the target function address */
512 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
513 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
514
515 /* Define offsets into the call dummy for the _sr4export address */
516 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
517 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
518
519 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
520 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
521 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
522 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
523 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
524 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
525 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
526
527 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
528 #define REG_PARM_STACK_SPACE 16
529
530 #else /* defined PA_LEVEL_0 */
531
532 /* This is the call dummy for a level 0 PA. Level 0's don't have space
533 registers (or floating point?), so we skip all that inter-space call stuff,
534 and avoid touching the fp regs.
535
536 call_dummy
537
538 ldw -36(%sp), %arg0
539 ldw -40(%sp), %arg1
540 ldw -44(%sp), %arg2
541 ldw -48(%sp), %arg3
542 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
543 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
544 ble 0(%sr0, %r31)
545 copy %r31, %r2
546 break 4, 8
547 nop ; restore_pc_queue expects these
548 bv,n 0(%r22) ; instructions to be here...
549 nop
550 */
551
552 /* Define offsets into the call dummy for the target function address */
553 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
554 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
555
556 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
557 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
558 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
559
560 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
561
562 #endif
563
564 #define CALL_DUMMY_START_OFFSET 0
565
566 /* If we've reached a trap instruction within the call dummy, then
567 we'll consider that to mean that we've reached the call dummy's
568 end after its successful completion. */
569 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
570 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
571 (read_memory_integer((pc), 4) == BREAKPOINT32))
572
573 /*
574 * Insert the specified number of args and function address
575 * into a call sequence of the above form stored at DUMMYNAME.
576 *
577 * On the hppa we need to call the stack dummy through $$dyncall.
578 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
579 * real_pc, which is the location where gdb should start up the
580 * inferior to do the function call.
581 */
582
583 #define FIX_CALL_DUMMY hppa_fix_call_dummy
584
585 extern CORE_ADDR
586 hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
587 struct value **, struct type *, int);
588
589 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
590 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
591 extern CORE_ADDR
592 hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
593 \f
594 /* The low two bits of the PC on the PA contain the privilege level. Some
595 genius implementing a (non-GCC) compiler apparently decided this means
596 that "addresses" in a text section therefore include a privilege level,
597 and thus symbol tables should contain these bits. This seems like a
598 bonehead thing to do--anyway, it seems to work for our purposes to just
599 ignore those bits. */
600 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
601
602 #define GDB_TARGET_IS_HPPA
603
604 #define BELIEVE_PCC_PROMOTION 1
605
606 /*
607 * Unwind table and descriptor.
608 */
609
610 struct unwind_table_entry
611 {
612 CORE_ADDR region_start;
613 CORE_ADDR region_end;
614
615 unsigned int Cannot_unwind:1; /* 0 */
616 unsigned int Millicode:1; /* 1 */
617 unsigned int Millicode_save_sr0:1; /* 2 */
618 unsigned int Region_description:2; /* 3..4 */
619 unsigned int reserved1:1; /* 5 */
620 unsigned int Entry_SR:1; /* 6 */
621 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
622 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
623 unsigned int Args_stored:1; /* 16 */
624 unsigned int Variable_Frame:1; /* 17 */
625 unsigned int Separate_Package_Body:1; /* 18 */
626 unsigned int Frame_Extension_Millicode:1; /* 19 */
627 unsigned int Stack_Overflow_Check:1; /* 20 */
628 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
629 unsigned int Ada_Region:1; /* 22 */
630 unsigned int cxx_info:1; /* 23 */
631 unsigned int cxx_try_catch:1; /* 24 */
632 unsigned int sched_entry_seq:1; /* 25 */
633 unsigned int reserved2:1; /* 26 */
634 unsigned int Save_SP:1; /* 27 */
635 unsigned int Save_RP:1; /* 28 */
636 unsigned int Save_MRP_in_frame:1; /* 29 */
637 unsigned int extn_ptr_defined:1; /* 30 */
638 unsigned int Cleanup_defined:1; /* 31 */
639
640 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
641 unsigned int HP_UX_interrupt_marker:1; /* 1 */
642 unsigned int Large_frame:1; /* 2 */
643 unsigned int Pseudo_SP_Set:1; /* 3 */
644 unsigned int reserved4:1; /* 4 */
645 unsigned int Total_frame_size:27; /* 5..31 */
646
647 /* This is *NOT* part of an actual unwind_descriptor in an object
648 file. It is *ONLY* part of the "internalized" descriptors that
649 we create from those in a file.
650 */
651 struct
652 {
653 unsigned int stub_type:4; /* 0..3 */
654 unsigned int padding:28; /* 4..31 */
655 }
656 stub_unwind;
657 };
658
659 /* HP linkers also generate unwinds for various linker-generated stubs.
660 GDB reads in the stubs from the $UNWIND_END$ subspace, then
661 "converts" them into normal unwind entries using some of the reserved
662 fields to store the stub type. */
663
664 struct stub_unwind_entry
665 {
666 /* The offset within the executable for the associated stub. */
667 unsigned stub_offset;
668
669 /* The type of stub this unwind entry describes. */
670 char type;
671
672 /* Unknown. Not needed by GDB at this time. */
673 char prs_info;
674
675 /* Length (in instructions) of the associated stub. */
676 short stub_length;
677 };
678
679 /* Sizes (in bytes) of the native unwind entries. */
680 #define UNWIND_ENTRY_SIZE 16
681 #define STUB_UNWIND_ENTRY_SIZE 8
682
683 /* The gaps represent linker stubs used in MPE and space for future
684 expansion. */
685 enum unwind_stub_types
686 {
687 LONG_BRANCH = 1,
688 PARAMETER_RELOCATION = 2,
689 EXPORT = 10,
690 IMPORT = 11,
691 IMPORT_SHLIB = 12,
692 };
693
694 /* We use the objfile->obj_private pointer for two things:
695
696 * 1. An unwind table;
697 *
698 * 2. A pointer to any associated shared library object.
699 *
700 * #defines are used to help refer to these objects.
701 */
702
703 /* Info about the unwind table associated with an object file.
704
705 * This is hung off of the "objfile->obj_private" pointer, and
706 * is allocated in the objfile's psymbol obstack. This allows
707 * us to have unique unwind info for each executable and shared
708 * library that we are debugging.
709 */
710 struct obj_unwind_info
711 {
712 struct unwind_table_entry *table; /* Pointer to unwind info */
713 struct unwind_table_entry *cache; /* Pointer to last entry we found */
714 int last; /* Index of last entry */
715 };
716
717 typedef struct obj_private_struct
718 {
719 struct obj_unwind_info *unwind_info; /* a pointer */
720 struct so_list *so_info; /* a pointer */
721 CORE_ADDR dp;
722 }
723 obj_private_data_t;
724
725 #if 0
726 extern void target_write_pc (CORE_ADDR, int);
727 extern CORE_ADDR target_read_pc (int);
728 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
729 #endif
730
731 #define TARGET_READ_PC(pid) target_read_pc (pid)
732 extern CORE_ADDR target_read_pc (ptid_t);
733
734 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
735 extern void target_write_pc (CORE_ADDR, ptid_t);
736
737 #define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
738 extern CORE_ADDR target_read_fp (int);
739
740 /* For a number of horrible reasons we may have to adjust the location
741 of variables on the stack. Ugh. */
742 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
743
744 extern int hpread_adjust_stack_address (CORE_ADDR);
745
746 /* If the current gcc for for this target does not produce correct debugging
747 information for float parameters, both prototyped and unprototyped, then
748 define this macro. This forces gdb to always assume that floats are
749 passed as doubles and then converted in the callee.
750
751 For the pa, it appears that the debug info marks the parameters as
752 floats regardless of whether the function is prototyped, but the actual
753 values are passed as doubles for the non-prototyped case and floats for
754 the prototyped case. Thus we choose to make the non-prototyped case work
755 for C and break the prototyped case, since the non-prototyped case is
756 probably much more common. (FIXME). */
757
758 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
759
760 /* Here's how to step off a permanent breakpoint. */
761 #define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
762 extern void hppa_skip_permanent_breakpoint (void);
763
764 /* On HP-UX, certain system routines (millicode) have names beginning
765 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
766 calls on PA-RISC. Tell the expression parser to check for those
767 when parsing tokens that begin with "$". */
768 #define SYMBOLS_CAN_START_WITH_DOLLAR (1)
This page took 0.053363 seconds and 5 git commands to generate.