gdb/x86: Fix write out of mxcsr register for xsave targets
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
54 bfd *abfd);
55
56 /* The core file target. */
57
58 static const target_info core_target_info = {
59 "core",
60 N_("Local core dump file"),
61 N_("Use a core file as a target. Specify the filename of the core file.")
62 };
63
64 class core_target final : public target_ops
65 {
66 public:
67 core_target ();
68 ~core_target () override;
69
70 const target_info &info () const override
71 { return core_target_info; }
72
73 void close () override;
74 void detach (inferior *, int) override;
75 void fetch_registers (struct regcache *, int) override;
76
77 enum target_xfer_status xfer_partial (enum target_object object,
78 const char *annex,
79 gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, ULONGEST len,
82 ULONGEST *xfered_len) override;
83 void files_info () override;
84
85 bool thread_alive (ptid_t ptid) override;
86 const struct target_desc *read_description () override;
87
88 const char *pid_to_str (ptid_t) override;
89
90 const char *thread_name (struct thread_info *) override;
91
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool info_proc (const char *, enum info_proc_what) override;
96
97 /* A few helpers. */
98
99 /* Getter, see variable definition. */
100 struct gdbarch *core_gdbarch ()
101 {
102 return m_core_gdbarch;
103 }
104
105 /* See definition. */
106 void get_core_register_section (struct regcache *regcache,
107 const struct regset *regset,
108 const char *name,
109 int min_size,
110 int which,
111 const char *human_name,
112 bool required);
113
114 private: /* per-core data */
115
116 /* The core's section table. Note that these target sections are
117 *not* mapped in the current address spaces' set of target
118 sections --- those should come only from pure executable or
119 shared library bfds. The core bfd sections are an implementation
120 detail of the core target, just like ptrace is for unix child
121 targets. */
122 target_section_table m_core_section_table {};
123
124 /* The core_fns for a core file handler that is prepared to read the
125 core file currently open on core_bfd. */
126 core_fns *m_core_vec = NULL;
127
128 /* FIXME: kettenis/20031023: Eventually this field should
129 disappear. */
130 struct gdbarch *m_core_gdbarch = NULL;
131 };
132
133 core_target::core_target ()
134 {
135 to_stratum = process_stratum;
136
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 int pid = ptid_get_pid (inferior_ptid);
264 inferior_ptid = null_ptid; /* Avoid confusion from thread
265 stuff. */
266 if (pid != 0)
267 exit_inferior_silent (pid);
268
269 /* Clear out solib state while the bfd is still open. See
270 comments in clear_solib in solib.c. */
271 clear_solib ();
272
273 gdb_bfd_unref (core_bfd);
274 core_bfd = NULL;
275 }
276
277 /* Core targets are heap-allocated (see core_target_open), so here
278 we delete ourselves. */
279 delete this;
280 }
281
282 /* Look for sections whose names start with `.reg/' so that we can
283 extract the list of threads in a core file. */
284
285 static void
286 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
287 {
288 ptid_t ptid;
289 int core_tid;
290 int pid, lwpid;
291 asection *reg_sect = (asection *) reg_sect_arg;
292 int fake_pid_p = 0;
293 struct inferior *inf;
294
295 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
296 return;
297
298 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
299
300 pid = bfd_core_file_pid (core_bfd);
301 if (pid == 0)
302 {
303 fake_pid_p = 1;
304 pid = CORELOW_PID;
305 }
306
307 lwpid = core_tid;
308
309 inf = current_inferior ();
310 if (inf->pid == 0)
311 {
312 inferior_appeared (inf, pid);
313 inf->fake_pid_p = fake_pid_p;
314 }
315
316 ptid = ptid_build (pid, lwpid, 0);
317
318 add_thread (ptid);
319
320 /* Warning, Will Robinson, looking at BFD private data! */
321
322 if (reg_sect != NULL
323 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
324 inferior_ptid = ptid; /* Yes, make it current. */
325 }
326
327 /* Issue a message saying we have no core to debug, if FROM_TTY. */
328
329 static void
330 maybe_say_no_core_file_now (int from_tty)
331 {
332 if (from_tty)
333 printf_filtered (_("No core file now.\n"));
334 }
335
336 /* Backward compatability with old way of specifying core files. */
337
338 void
339 core_file_command (const char *filename, int from_tty)
340 {
341 dont_repeat (); /* Either way, seems bogus. */
342
343 if (filename == NULL)
344 {
345 if (core_bfd != NULL)
346 {
347 target_detach (current_inferior (), from_tty);
348 gdb_assert (core_bfd == NULL);
349 }
350 else
351 maybe_say_no_core_file_now (from_tty);
352 }
353 else
354 core_target_open (filename, from_tty);
355 }
356
357 /* See gdbcore.h. */
358
359 void
360 core_target_open (const char *arg, int from_tty)
361 {
362 const char *p;
363 int siggy;
364 struct cleanup *old_chain;
365 int scratch_chan;
366 int flags;
367
368 target_preopen (from_tty);
369 if (!arg)
370 {
371 if (core_bfd)
372 error (_("No core file specified. (Use `detach' "
373 "to stop debugging a core file.)"));
374 else
375 error (_("No core file specified."));
376 }
377
378 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
379 if (!IS_ABSOLUTE_PATH (filename.get ()))
380 filename.reset (concat (current_directory, "/",
381 filename.get (), (char *) NULL));
382
383 flags = O_BINARY | O_LARGEFILE;
384 if (write_files)
385 flags |= O_RDWR;
386 else
387 flags |= O_RDONLY;
388 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
389 if (scratch_chan < 0)
390 perror_with_name (filename.get ());
391
392 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
393 write_files ? FOPEN_RUB : FOPEN_RB,
394 scratch_chan));
395 if (temp_bfd == NULL)
396 perror_with_name (filename.get ());
397
398 if (!bfd_check_format (temp_bfd.get (), bfd_core)
399 && !gdb_check_format (temp_bfd.get ()))
400 {
401 /* Do it after the err msg */
402 /* FIXME: should be checking for errors from bfd_close (for one
403 thing, on error it does not free all the storage associated
404 with the bfd). */
405 error (_("\"%s\" is not a core dump: %s"),
406 filename.get (), bfd_errmsg (bfd_get_error ()));
407 }
408
409 core_bfd = temp_bfd.release ();
410
411 core_target *target = new core_target ();
412
413 /* Own the target until it is successfully pushed. */
414 target_ops_up target_holder (target);
415
416 validate_files ();
417
418 /* If we have no exec file, try to set the architecture from the
419 core file. We don't do this unconditionally since an exec file
420 typically contains more information that helps us determine the
421 architecture than a core file. */
422 if (!exec_bfd)
423 set_gdbarch_from_file (core_bfd);
424
425 push_target (target);
426 target_holder.release ();
427
428 /* Do this before acknowledging the inferior, so if
429 post_create_inferior throws (can happen easilly if you're loading
430 a core file with the wrong exec), we aren't left with threads
431 from the previous inferior. */
432 init_thread_list ();
433
434 inferior_ptid = null_ptid;
435
436 /* Need to flush the register cache (and the frame cache) from a
437 previous debug session. If inferior_ptid ends up the same as the
438 last debug session --- e.g., b foo; run; gcore core1; step; gcore
439 core2; core core1; core core2 --- then there's potential for
440 get_current_regcache to return the cached regcache of the
441 previous session, and the frame cache being stale. */
442 registers_changed ();
443
444 /* Build up thread list from BFD sections, and possibly set the
445 current thread to the .reg/NN section matching the .reg
446 section. */
447 bfd_map_over_sections (core_bfd, add_to_thread_list,
448 bfd_get_section_by_name (core_bfd, ".reg"));
449
450 if (ptid_equal (inferior_ptid, null_ptid))
451 {
452 /* Either we found no .reg/NN section, and hence we have a
453 non-threaded core (single-threaded, from gdb's perspective),
454 or for some reason add_to_thread_list couldn't determine
455 which was the "main" thread. The latter case shouldn't
456 usually happen, but we're dealing with input here, which can
457 always be broken in different ways. */
458 struct thread_info *thread = first_thread_of_process (-1);
459
460 if (thread == NULL)
461 {
462 inferior_appeared (current_inferior (), CORELOW_PID);
463 inferior_ptid = pid_to_ptid (CORELOW_PID);
464 add_thread_silent (inferior_ptid);
465 }
466 else
467 switch_to_thread (thread->ptid);
468 }
469
470 post_create_inferior (target, from_tty);
471
472 /* Now go through the target stack looking for threads since there
473 may be a thread_stratum target loaded on top of target core by
474 now. The layer above should claim threads found in the BFD
475 sections. */
476 TRY
477 {
478 target_update_thread_list ();
479 }
480
481 CATCH (except, RETURN_MASK_ERROR)
482 {
483 exception_print (gdb_stderr, except);
484 }
485 END_CATCH
486
487 p = bfd_core_file_failing_command (core_bfd);
488 if (p)
489 printf_filtered (_("Core was generated by `%s'.\n"), p);
490
491 /* Clearing any previous state of convenience variables. */
492 clear_exit_convenience_vars ();
493
494 siggy = bfd_core_file_failing_signal (core_bfd);
495 if (siggy > 0)
496 {
497 gdbarch *core_gdbarch = target->core_gdbarch ();
498
499 /* If we don't have a CORE_GDBARCH to work with, assume a native
500 core (map gdb_signal from host signals). If we do have
501 CORE_GDBARCH to work with, but no gdb_signal_from_target
502 implementation for that gdbarch, as a fallback measure,
503 assume the host signal mapping. It'll be correct for native
504 cores, but most likely incorrect for cross-cores. */
505 enum gdb_signal sig = (core_gdbarch != NULL
506 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
507 ? gdbarch_gdb_signal_from_target (core_gdbarch,
508 siggy)
509 : gdb_signal_from_host (siggy));
510
511 printf_filtered (_("Program terminated with signal %s, %s.\n"),
512 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
513
514 /* Set the value of the internal variable $_exitsignal,
515 which holds the signal uncaught by the inferior. */
516 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
517 siggy);
518 }
519
520 /* Fetch all registers from core file. */
521 target_fetch_registers (get_current_regcache (), -1);
522
523 /* Now, set up the frame cache, and print the top of stack. */
524 reinit_frame_cache ();
525 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
526
527 /* Current thread should be NUM 1 but the user does not know that.
528 If a program is single threaded gdb in general does not mention
529 anything about threads. That is why the test is >= 2. */
530 if (thread_count () >= 2)
531 {
532 TRY
533 {
534 thread_command (NULL, from_tty);
535 }
536 CATCH (except, RETURN_MASK_ERROR)
537 {
538 exception_print (gdb_stderr, except);
539 }
540 END_CATCH
541 }
542 }
543
544 void
545 core_target::detach (inferior *inf, int from_tty)
546 {
547 /* Note that 'this' is dangling after this call. unpush_target
548 closes the target, and our close implementation deletes
549 'this'. */
550 unpush_target (this);
551
552 reinit_frame_cache ();
553 maybe_say_no_core_file_now (from_tty);
554 }
555
556 /* Try to retrieve registers from a section in core_bfd, and supply
557 them to m_core_vec->core_read_registers, as the register set
558 numbered WHICH.
559
560 If ptid's lwp member is zero, do the single-threaded
561 thing: look for a section named NAME. If ptid's lwp
562 member is non-zero, do the multi-threaded thing: look for a section
563 named "NAME/LWP", where LWP is the shortest ASCII decimal
564 representation of ptid's lwp member.
565
566 HUMAN_NAME is a human-readable name for the kind of registers the
567 NAME section contains, for use in error messages.
568
569 If REQUIRED is true, print an error if the core file doesn't have a
570 section by the appropriate name. Otherwise, just do nothing. */
571
572 void
573 core_target::get_core_register_section (struct regcache *regcache,
574 const struct regset *regset,
575 const char *name,
576 int min_size,
577 int which,
578 const char *human_name,
579 bool required)
580 {
581 struct bfd_section *section;
582 bfd_size_type size;
583 char *contents;
584 bool variable_size_section = (regset != NULL
585 && regset->flags & REGSET_VARIABLE_SIZE);
586
587 thread_section_name section_name (name, regcache->ptid ());
588
589 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
590 if (! section)
591 {
592 if (required)
593 warning (_("Couldn't find %s registers in core file."),
594 human_name);
595 return;
596 }
597
598 size = bfd_section_size (core_bfd, section);
599 if (size < min_size)
600 {
601 warning (_("Section `%s' in core file too small."),
602 section_name.c_str ());
603 return;
604 }
605 if (size != min_size && !variable_size_section)
606 {
607 warning (_("Unexpected size of section `%s' in core file."),
608 section_name.c_str ());
609 }
610
611 contents = (char *) alloca (size);
612 if (! bfd_get_section_contents (core_bfd, section, contents,
613 (file_ptr) 0, size))
614 {
615 warning (_("Couldn't read %s registers from `%s' section in core file."),
616 human_name, section_name.c_str ());
617 return;
618 }
619
620 if (regset != NULL)
621 {
622 regset->supply_regset (regset, regcache, -1, contents, size);
623 return;
624 }
625
626 gdb_assert (m_core_vec != nullptr);
627 m_core_vec->core_read_registers (regcache, contents, size, which,
628 ((CORE_ADDR)
629 bfd_section_vma (core_bfd, section)));
630 }
631
632 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
633 struct get_core_registers_cb_data
634 {
635 core_target *target;
636 struct regcache *regcache;
637 };
638
639 /* Callback for get_core_registers that handles a single core file
640 register note section. */
641
642 static void
643 get_core_registers_cb (const char *sect_name, int size,
644 const struct regset *regset,
645 const char *human_name, void *cb_data)
646 {
647 auto *data = (get_core_registers_cb_data *) cb_data;
648 bool required = false;
649
650 if (strcmp (sect_name, ".reg") == 0)
651 {
652 required = true;
653 if (human_name == NULL)
654 human_name = "general-purpose";
655 }
656 else if (strcmp (sect_name, ".reg2") == 0)
657 {
658 if (human_name == NULL)
659 human_name = "floating-point";
660 }
661
662 /* The 'which' parameter is only used when no regset is provided.
663 Thus we just set it to -1. */
664 data->target->get_core_register_section (data->regcache, regset, sect_name,
665 size, -1, human_name, required);
666 }
667
668 /* Get the registers out of a core file. This is the machine-
669 independent part. Fetch_core_registers is the machine-dependent
670 part, typically implemented in the xm-file for each
671 architecture. */
672
673 /* We just get all the registers, so we don't use regno. */
674
675 void
676 core_target::fetch_registers (struct regcache *regcache, int regno)
677 {
678 int i;
679 struct gdbarch *gdbarch;
680
681 if (!(m_core_gdbarch != nullptr
682 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
683 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
684 {
685 fprintf_filtered (gdb_stderr,
686 "Can't fetch registers from this type of core file\n");
687 return;
688 }
689
690 gdbarch = regcache->arch ();
691 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
692 {
693 get_core_registers_cb_data data = { this, regcache };
694 gdbarch_iterate_over_regset_sections (gdbarch,
695 get_core_registers_cb,
696 (void *) &data, NULL);
697 }
698 else
699 {
700 get_core_register_section (regcache, NULL,
701 ".reg", 0, 0, "general-purpose", 1);
702 get_core_register_section (regcache, NULL,
703 ".reg2", 0, 2, "floating-point", 0);
704 }
705
706 /* Mark all registers not found in the core as unavailable. */
707 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
708 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
709 regcache_raw_supply (regcache, i, NULL);
710 }
711
712 void
713 core_target::files_info ()
714 {
715 print_section_info (&m_core_section_table, core_bfd);
716 }
717 \f
718 struct spuid_list
719 {
720 gdb_byte *buf;
721 ULONGEST offset;
722 LONGEST len;
723 ULONGEST pos;
724 ULONGEST written;
725 };
726
727 static void
728 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
729 {
730 struct spuid_list *list = (struct spuid_list *) list_p;
731 enum bfd_endian byte_order
732 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
733 int fd, pos = 0;
734
735 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
736 if (pos == 0)
737 return;
738
739 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
740 {
741 store_unsigned_integer (list->buf + list->pos - list->offset,
742 4, byte_order, fd);
743 list->written += 4;
744 }
745 list->pos += 4;
746 }
747
748 enum target_xfer_status
749 core_target::xfer_partial (enum target_object object, const char *annex,
750 gdb_byte *readbuf, const gdb_byte *writebuf,
751 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
752 {
753 switch (object)
754 {
755 case TARGET_OBJECT_MEMORY:
756 return (section_table_xfer_memory_partial
757 (readbuf, writebuf,
758 offset, len, xfered_len,
759 m_core_section_table.sections,
760 m_core_section_table.sections_end,
761 NULL));
762
763 case TARGET_OBJECT_AUXV:
764 if (readbuf)
765 {
766 /* When the aux vector is stored in core file, BFD
767 represents this with a fake section called ".auxv". */
768
769 struct bfd_section *section;
770 bfd_size_type size;
771
772 section = bfd_get_section_by_name (core_bfd, ".auxv");
773 if (section == NULL)
774 return TARGET_XFER_E_IO;
775
776 size = bfd_section_size (core_bfd, section);
777 if (offset >= size)
778 return TARGET_XFER_EOF;
779 size -= offset;
780 if (size > len)
781 size = len;
782
783 if (size == 0)
784 return TARGET_XFER_EOF;
785 if (!bfd_get_section_contents (core_bfd, section, readbuf,
786 (file_ptr) offset, size))
787 {
788 warning (_("Couldn't read NT_AUXV note in core file."));
789 return TARGET_XFER_E_IO;
790 }
791
792 *xfered_len = (ULONGEST) size;
793 return TARGET_XFER_OK;
794 }
795 return TARGET_XFER_E_IO;
796
797 case TARGET_OBJECT_WCOOKIE:
798 if (readbuf)
799 {
800 /* When the StackGhost cookie is stored in core file, BFD
801 represents this with a fake section called
802 ".wcookie". */
803
804 struct bfd_section *section;
805 bfd_size_type size;
806
807 section = bfd_get_section_by_name (core_bfd, ".wcookie");
808 if (section == NULL)
809 return TARGET_XFER_E_IO;
810
811 size = bfd_section_size (core_bfd, section);
812 if (offset >= size)
813 return TARGET_XFER_EOF;
814 size -= offset;
815 if (size > len)
816 size = len;
817
818 if (size == 0)
819 return TARGET_XFER_EOF;
820 if (!bfd_get_section_contents (core_bfd, section, readbuf,
821 (file_ptr) offset, size))
822 {
823 warning (_("Couldn't read StackGhost cookie in core file."));
824 return TARGET_XFER_E_IO;
825 }
826
827 *xfered_len = (ULONGEST) size;
828 return TARGET_XFER_OK;
829
830 }
831 return TARGET_XFER_E_IO;
832
833 case TARGET_OBJECT_LIBRARIES:
834 if (m_core_gdbarch != nullptr
835 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
836 {
837 if (writebuf)
838 return TARGET_XFER_E_IO;
839 else
840 {
841 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
842 readbuf,
843 offset, len);
844
845 if (*xfered_len == 0)
846 return TARGET_XFER_EOF;
847 else
848 return TARGET_XFER_OK;
849 }
850 }
851 /* FALL THROUGH */
852
853 case TARGET_OBJECT_LIBRARIES_AIX:
854 if (m_core_gdbarch != nullptr
855 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
856 {
857 if (writebuf)
858 return TARGET_XFER_E_IO;
859 else
860 {
861 *xfered_len
862 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
863 readbuf, offset,
864 len);
865
866 if (*xfered_len == 0)
867 return TARGET_XFER_EOF;
868 else
869 return TARGET_XFER_OK;
870 }
871 }
872 /* FALL THROUGH */
873
874 case TARGET_OBJECT_SPU:
875 if (readbuf && annex)
876 {
877 /* When the SPU contexts are stored in a core file, BFD
878 represents this with a fake section called
879 "SPU/<annex>". */
880
881 struct bfd_section *section;
882 bfd_size_type size;
883 char sectionstr[100];
884
885 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
886
887 section = bfd_get_section_by_name (core_bfd, sectionstr);
888 if (section == NULL)
889 return TARGET_XFER_E_IO;
890
891 size = bfd_section_size (core_bfd, section);
892 if (offset >= size)
893 return TARGET_XFER_EOF;
894 size -= offset;
895 if (size > len)
896 size = len;
897
898 if (size == 0)
899 return TARGET_XFER_EOF;
900 if (!bfd_get_section_contents (core_bfd, section, readbuf,
901 (file_ptr) offset, size))
902 {
903 warning (_("Couldn't read SPU section in core file."));
904 return TARGET_XFER_E_IO;
905 }
906
907 *xfered_len = (ULONGEST) size;
908 return TARGET_XFER_OK;
909 }
910 else if (readbuf)
911 {
912 /* NULL annex requests list of all present spuids. */
913 struct spuid_list list;
914
915 list.buf = readbuf;
916 list.offset = offset;
917 list.len = len;
918 list.pos = 0;
919 list.written = 0;
920 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
921
922 if (list.written == 0)
923 return TARGET_XFER_EOF;
924 else
925 {
926 *xfered_len = (ULONGEST) list.written;
927 return TARGET_XFER_OK;
928 }
929 }
930 return TARGET_XFER_E_IO;
931
932 case TARGET_OBJECT_SIGNAL_INFO:
933 if (readbuf)
934 {
935 if (m_core_gdbarch != nullptr
936 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
937 {
938 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
939 offset, len);
940
941 if (l >= 0)
942 {
943 *xfered_len = l;
944 if (l == 0)
945 return TARGET_XFER_EOF;
946 else
947 return TARGET_XFER_OK;
948 }
949 }
950 }
951 return TARGET_XFER_E_IO;
952
953 default:
954 return this->beneath->xfer_partial (object, annex, readbuf,
955 writebuf, offset, len,
956 xfered_len);
957 }
958 }
959
960 \f
961
962 /* Okay, let's be honest: threads gleaned from a core file aren't
963 exactly lively, are they? On the other hand, if we don't claim
964 that each & every one is alive, then we don't get any of them
965 to appear in an "info thread" command, which is quite a useful
966 behaviour.
967 */
968 bool
969 core_target::thread_alive (ptid_t ptid)
970 {
971 return true;
972 }
973
974 /* Ask the current architecture what it knows about this core file.
975 That will be used, in turn, to pick a better architecture. This
976 wrapper could be avoided if targets got a chance to specialize
977 core_target. */
978
979 const struct target_desc *
980 core_target::read_description ()
981 {
982 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
983 {
984 const struct target_desc *result;
985
986 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
987 if (result != NULL)
988 return result;
989 }
990
991 return this->beneath->read_description ();
992 }
993
994 const char *
995 core_target::pid_to_str (ptid_t ptid)
996 {
997 static char buf[64];
998 struct inferior *inf;
999 int pid;
1000
1001 /* The preferred way is to have a gdbarch/OS specific
1002 implementation. */
1003 if (m_core_gdbarch != nullptr
1004 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1005 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1006
1007 /* Otherwise, if we don't have one, we'll just fallback to
1008 "process", with normal_pid_to_str. */
1009
1010 /* Try the LWPID field first. */
1011 pid = ptid_get_lwp (ptid);
1012 if (pid != 0)
1013 return normal_pid_to_str (pid_to_ptid (pid));
1014
1015 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1016 only if it isn't a fake PID. */
1017 inf = find_inferior_ptid (ptid);
1018 if (inf != NULL && !inf->fake_pid_p)
1019 return normal_pid_to_str (ptid);
1020
1021 /* No luck. We simply don't have a valid PID to print. */
1022 xsnprintf (buf, sizeof buf, "<main task>");
1023 return buf;
1024 }
1025
1026 const char *
1027 core_target::thread_name (struct thread_info *thr)
1028 {
1029 if (m_core_gdbarch != nullptr
1030 && gdbarch_core_thread_name_p (m_core_gdbarch))
1031 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1032 return NULL;
1033 }
1034
1035 bool
1036 core_target::has_memory ()
1037 {
1038 return (core_bfd != NULL);
1039 }
1040
1041 bool
1042 core_target::has_stack ()
1043 {
1044 return (core_bfd != NULL);
1045 }
1046
1047 bool
1048 core_target::has_registers ()
1049 {
1050 return (core_bfd != NULL);
1051 }
1052
1053 /* Implement the to_info_proc method. */
1054
1055 bool
1056 core_target::info_proc (const char *args, enum info_proc_what request)
1057 {
1058 struct gdbarch *gdbarch = get_current_arch ();
1059
1060 /* Since this is the core file target, call the 'core_info_proc'
1061 method on gdbarch, not 'info_proc'. */
1062 if (gdbarch_core_info_proc_p (gdbarch))
1063 gdbarch_core_info_proc (gdbarch, args, request);
1064
1065 return true;
1066 }
1067
1068 void
1069 _initialize_corelow (void)
1070 {
1071 add_target (core_target_info, core_target_open, filename_completer);
1072 }
This page took 0.049903 seconds and 4 git commands to generate.