bfd/
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h> /* needed for F_OK and friends */
28 #endif
29 #include "frame.h" /* required by inferior.h */
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "command.h"
33 #include "bfd.h"
34 #include "target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "gdb_assert.h"
43 #include "exceptions.h"
44 #include "solib.h"
45 #include "filenames.h"
46 #include "progspace.h"
47 #include "objfiles.h"
48 #include "gdb_bfd.h"
49 #include "completer.h"
50 #include "filestuff.h"
51
52 #ifndef O_LARGEFILE
53 #define O_LARGEFILE 0
54 #endif
55
56 /* List of all available core_fns. On gdb startup, each core file
57 register reader calls deprecated_add_core_fns() to register
58 information on each core format it is prepared to read. */
59
60 static struct core_fns *core_file_fns = NULL;
61
62 /* The core_fns for a core file handler that is prepared to read the
63 core file currently open on core_bfd. */
64
65 static struct core_fns *core_vec = NULL;
66
67 /* FIXME: kettenis/20031023: Eventually this variable should
68 disappear. */
69
70 struct gdbarch *core_gdbarch = NULL;
71
72 /* Per-core data. Currently, only the section table. Note that these
73 target sections are *not* mapped in the current address spaces' set
74 of target sections --- those should come only from pure executable
75 or shared library bfds. The core bfd sections are an
76 implementation detail of the core target, just like ptrace is for
77 unix child targets. */
78 static struct target_section_table *core_data;
79
80 static void core_files_info (struct target_ops *);
81
82 static struct core_fns *sniff_core_bfd (bfd *);
83
84 static int gdb_check_format (bfd *);
85
86 static void core_open (char *, int);
87
88 static void core_detach (struct target_ops *ops, char *, int);
89
90 static void core_close (void);
91
92 static void core_close_cleanup (void *ignore);
93
94 static void add_to_thread_list (bfd *, asection *, void *);
95
96 static void init_core_ops (void);
97
98 void _initialize_corelow (void);
99
100 static struct target_ops core_ops;
101
102 /* An arbitrary identifier for the core inferior. */
103 #define CORELOW_PID 1
104
105 /* Link a new core_fns into the global core_file_fns list. Called on
106 gdb startup by the _initialize routine in each core file register
107 reader, to register information about each format the reader is
108 prepared to handle. */
109
110 void
111 deprecated_add_core_fns (struct core_fns *cf)
112 {
113 cf->next = core_file_fns;
114 core_file_fns = cf;
115 }
116
117 /* The default function that core file handlers can use to examine a
118 core file BFD and decide whether or not to accept the job of
119 reading the core file. */
120
121 int
122 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
123 {
124 int result;
125
126 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
127 return (result);
128 }
129
130 /* Walk through the list of core functions to find a set that can
131 handle the core file open on ABFD. Returns pointer to set that is
132 selected. */
133
134 static struct core_fns *
135 sniff_core_bfd (bfd *abfd)
136 {
137 struct core_fns *cf;
138 struct core_fns *yummy = NULL;
139 int matches = 0;;
140
141 /* Don't sniff if we have support for register sets in
142 CORE_GDBARCH. */
143 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
144 return NULL;
145
146 for (cf = core_file_fns; cf != NULL; cf = cf->next)
147 {
148 if (cf->core_sniffer (cf, abfd))
149 {
150 yummy = cf;
151 matches++;
152 }
153 }
154 if (matches > 1)
155 {
156 warning (_("\"%s\": ambiguous core format, %d handlers match"),
157 bfd_get_filename (abfd), matches);
158 }
159 else if (matches == 0)
160 error (_("\"%s\": no core file handler recognizes format"),
161 bfd_get_filename (abfd));
162
163 return (yummy);
164 }
165
166 /* The default is to reject every core file format we see. Either
167 BFD has to recognize it, or we have to provide a function in the
168 core file handler that recognizes it. */
169
170 int
171 default_check_format (bfd *abfd)
172 {
173 return (0);
174 }
175
176 /* Attempt to recognize core file formats that BFD rejects. */
177
178 static int
179 gdb_check_format (bfd *abfd)
180 {
181 struct core_fns *cf;
182
183 for (cf = core_file_fns; cf != NULL; cf = cf->next)
184 {
185 if (cf->check_format (abfd))
186 {
187 return (1);
188 }
189 }
190 return (0);
191 }
192
193 /* Discard all vestiges of any previous core file and mark data and
194 stack spaces as empty. */
195
196 static void
197 core_close (void)
198 {
199 if (core_bfd)
200 {
201 int pid = ptid_get_pid (inferior_ptid);
202 inferior_ptid = null_ptid; /* Avoid confusion from thread
203 stuff. */
204 if (pid != 0)
205 exit_inferior_silent (pid);
206
207 /* Clear out solib state while the bfd is still open. See
208 comments in clear_solib in solib.c. */
209 clear_solib ();
210
211 if (core_data)
212 {
213 xfree (core_data->sections);
214 xfree (core_data);
215 core_data = NULL;
216 }
217
218 gdb_bfd_unref (core_bfd);
219 core_bfd = NULL;
220 }
221 core_vec = NULL;
222 core_gdbarch = NULL;
223 }
224
225 static void
226 core_close_cleanup (void *ignore)
227 {
228 core_close ();
229 }
230
231 /* Look for sections whose names start with `.reg/' so that we can
232 extract the list of threads in a core file. */
233
234 static void
235 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
236 {
237 ptid_t ptid;
238 int core_tid;
239 int pid, lwpid;
240 asection *reg_sect = (asection *) reg_sect_arg;
241 int fake_pid_p = 0;
242 struct inferior *inf;
243
244 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
245 return;
246
247 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
248
249 pid = bfd_core_file_pid (core_bfd);
250 if (pid == 0)
251 {
252 fake_pid_p = 1;
253 pid = CORELOW_PID;
254 }
255
256 lwpid = core_tid;
257
258 inf = current_inferior ();
259 if (inf->pid == 0)
260 {
261 inferior_appeared (inf, pid);
262 inf->fake_pid_p = fake_pid_p;
263 }
264
265 ptid = ptid_build (pid, lwpid, 0);
266
267 add_thread (ptid);
268
269 /* Warning, Will Robinson, looking at BFD private data! */
270
271 if (reg_sect != NULL
272 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
273 inferior_ptid = ptid; /* Yes, make it current. */
274 }
275
276 /* This routine opens and sets up the core file bfd. */
277
278 static void
279 core_open (char *filename, int from_tty)
280 {
281 const char *p;
282 int siggy;
283 struct cleanup *old_chain;
284 char *temp;
285 bfd *temp_bfd;
286 int scratch_chan;
287 int flags;
288 volatile struct gdb_exception except;
289
290 target_preopen (from_tty);
291 if (!filename)
292 {
293 if (core_bfd)
294 error (_("No core file specified. (Use `detach' "
295 "to stop debugging a core file.)"));
296 else
297 error (_("No core file specified."));
298 }
299
300 filename = tilde_expand (filename);
301 if (!IS_ABSOLUTE_PATH (filename))
302 {
303 temp = concat (current_directory, "/",
304 filename, (char *) NULL);
305 xfree (filename);
306 filename = temp;
307 }
308
309 old_chain = make_cleanup (xfree, filename);
310
311 flags = O_BINARY | O_LARGEFILE;
312 if (write_files)
313 flags |= O_RDWR;
314 else
315 flags |= O_RDONLY;
316 scratch_chan = gdb_open_cloexec (filename, flags, 0);
317 if (scratch_chan < 0)
318 perror_with_name (filename);
319
320 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
321 write_files ? FOPEN_RUB : FOPEN_RB,
322 scratch_chan);
323 if (temp_bfd == NULL)
324 perror_with_name (filename);
325
326 if (!bfd_check_format (temp_bfd, bfd_core)
327 && !gdb_check_format (temp_bfd))
328 {
329 /* Do it after the err msg */
330 /* FIXME: should be checking for errors from bfd_close (for one
331 thing, on error it does not free all the storage associated
332 with the bfd). */
333 make_cleanup_bfd_unref (temp_bfd);
334 error (_("\"%s\" is not a core dump: %s"),
335 filename, bfd_errmsg (bfd_get_error ()));
336 }
337
338 /* Looks semi-reasonable. Toss the old core file and work on the
339 new. */
340
341 do_cleanups (old_chain);
342 unpush_target (&core_ops);
343 core_bfd = temp_bfd;
344 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
345
346 core_gdbarch = gdbarch_from_bfd (core_bfd);
347
348 /* Find a suitable core file handler to munch on core_bfd */
349 core_vec = sniff_core_bfd (core_bfd);
350
351 validate_files ();
352
353 core_data = XZALLOC (struct target_section_table);
354
355 /* Find the data section */
356 if (build_section_table (core_bfd,
357 &core_data->sections,
358 &core_data->sections_end))
359 error (_("\"%s\": Can't find sections: %s"),
360 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
361
362 /* If we have no exec file, try to set the architecture from the
363 core file. We don't do this unconditionally since an exec file
364 typically contains more information that helps us determine the
365 architecture than a core file. */
366 if (!exec_bfd)
367 set_gdbarch_from_file (core_bfd);
368
369 push_target (&core_ops);
370 discard_cleanups (old_chain);
371
372 /* Do this before acknowledging the inferior, so if
373 post_create_inferior throws (can happen easilly if you're loading
374 a core file with the wrong exec), we aren't left with threads
375 from the previous inferior. */
376 init_thread_list ();
377
378 inferior_ptid = null_ptid;
379
380 /* Need to flush the register cache (and the frame cache) from a
381 previous debug session. If inferior_ptid ends up the same as the
382 last debug session --- e.g., b foo; run; gcore core1; step; gcore
383 core2; core core1; core core2 --- then there's potential for
384 get_current_regcache to return the cached regcache of the
385 previous session, and the frame cache being stale. */
386 registers_changed ();
387
388 /* Build up thread list from BFD sections, and possibly set the
389 current thread to the .reg/NN section matching the .reg
390 section. */
391 bfd_map_over_sections (core_bfd, add_to_thread_list,
392 bfd_get_section_by_name (core_bfd, ".reg"));
393
394 if (ptid_equal (inferior_ptid, null_ptid))
395 {
396 /* Either we found no .reg/NN section, and hence we have a
397 non-threaded core (single-threaded, from gdb's perspective),
398 or for some reason add_to_thread_list couldn't determine
399 which was the "main" thread. The latter case shouldn't
400 usually happen, but we're dealing with input here, which can
401 always be broken in different ways. */
402 struct thread_info *thread = first_thread_of_process (-1);
403
404 if (thread == NULL)
405 {
406 inferior_appeared (current_inferior (), CORELOW_PID);
407 inferior_ptid = pid_to_ptid (CORELOW_PID);
408 add_thread_silent (inferior_ptid);
409 }
410 else
411 switch_to_thread (thread->ptid);
412 }
413
414 post_create_inferior (&core_ops, from_tty);
415
416 /* Now go through the target stack looking for threads since there
417 may be a thread_stratum target loaded on top of target core by
418 now. The layer above should claim threads found in the BFD
419 sections. */
420 TRY_CATCH (except, RETURN_MASK_ERROR)
421 {
422 target_find_new_threads ();
423 }
424
425 if (except.reason < 0)
426 exception_print (gdb_stderr, except);
427
428 p = bfd_core_file_failing_command (core_bfd);
429 if (p)
430 printf_filtered (_("Core was generated by `%s'.\n"), p);
431
432 siggy = bfd_core_file_failing_signal (core_bfd);
433 if (siggy > 0)
434 {
435 /* If we don't have a CORE_GDBARCH to work with, assume a native
436 core (map gdb_signal from host signals). If we do have
437 CORE_GDBARCH to work with, but no gdb_signal_from_target
438 implementation for that gdbarch, as a fallback measure,
439 assume the host signal mapping. It'll be correct for native
440 cores, but most likely incorrect for cross-cores. */
441 enum gdb_signal sig = (core_gdbarch != NULL
442 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
443 ? gdbarch_gdb_signal_from_target (core_gdbarch,
444 siggy)
445 : gdb_signal_from_host (siggy));
446
447 printf_filtered (_("Program terminated with signal %d, %s.\n"),
448 siggy, gdb_signal_to_string (sig));
449 }
450
451 /* Fetch all registers from core file. */
452 target_fetch_registers (get_current_regcache (), -1);
453
454 /* Now, set up the frame cache, and print the top of stack. */
455 reinit_frame_cache ();
456 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
457 }
458
459 static void
460 core_detach (struct target_ops *ops, char *args, int from_tty)
461 {
462 if (args)
463 error (_("Too many arguments"));
464 unpush_target (ops);
465 reinit_frame_cache ();
466 if (from_tty)
467 printf_filtered (_("No core file now.\n"));
468 }
469
470 #ifdef DEPRECATED_IBM6000_TARGET
471
472 /* Resize the core memory's section table, by NUM_ADDED. Returns a
473 pointer into the first new slot. This will not be necessary when
474 the rs6000 target is converted to use the standard solib
475 framework. */
476
477 struct target_section *
478 deprecated_core_resize_section_table (int num_added)
479 {
480 int old_count;
481
482 old_count = resize_section_table (core_data, num_added);
483 return core_data->sections + old_count;
484 }
485
486 #endif
487
488 /* Try to retrieve registers from a section in core_bfd, and supply
489 them to core_vec->core_read_registers, as the register set numbered
490 WHICH.
491
492 If inferior_ptid's lwp member is zero, do the single-threaded
493 thing: look for a section named NAME. If inferior_ptid's lwp
494 member is non-zero, do the multi-threaded thing: look for a section
495 named "NAME/LWP", where LWP is the shortest ASCII decimal
496 representation of inferior_ptid's lwp member.
497
498 HUMAN_NAME is a human-readable name for the kind of registers the
499 NAME section contains, for use in error messages.
500
501 If REQUIRED is non-zero, print an error if the core file doesn't
502 have a section by the appropriate name. Otherwise, just do
503 nothing. */
504
505 static void
506 get_core_register_section (struct regcache *regcache,
507 const char *name,
508 int which,
509 const char *human_name,
510 int required)
511 {
512 static char *section_name = NULL;
513 struct bfd_section *section;
514 bfd_size_type size;
515 char *contents;
516
517 xfree (section_name);
518
519 if (ptid_get_lwp (inferior_ptid))
520 section_name = xstrprintf ("%s/%ld", name,
521 ptid_get_lwp (inferior_ptid));
522 else
523 section_name = xstrdup (name);
524
525 section = bfd_get_section_by_name (core_bfd, section_name);
526 if (! section)
527 {
528 if (required)
529 warning (_("Couldn't find %s registers in core file."),
530 human_name);
531 return;
532 }
533
534 size = bfd_section_size (core_bfd, section);
535 contents = alloca (size);
536 if (! bfd_get_section_contents (core_bfd, section, contents,
537 (file_ptr) 0, size))
538 {
539 warning (_("Couldn't read %s registers from `%s' section in core file."),
540 human_name, name);
541 return;
542 }
543
544 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
545 {
546 const struct regset *regset;
547
548 regset = gdbarch_regset_from_core_section (core_gdbarch,
549 name, size);
550 if (regset == NULL)
551 {
552 if (required)
553 warning (_("Couldn't recognize %s registers in core file."),
554 human_name);
555 return;
556 }
557
558 regset->supply_regset (regset, regcache, -1, contents, size);
559 return;
560 }
561
562 gdb_assert (core_vec);
563 core_vec->core_read_registers (regcache, contents, size, which,
564 ((CORE_ADDR)
565 bfd_section_vma (core_bfd, section)));
566 }
567
568
569 /* Get the registers out of a core file. This is the machine-
570 independent part. Fetch_core_registers is the machine-dependent
571 part, typically implemented in the xm-file for each
572 architecture. */
573
574 /* We just get all the registers, so we don't use regno. */
575
576 static void
577 get_core_registers (struct target_ops *ops,
578 struct regcache *regcache, int regno)
579 {
580 struct core_regset_section *sect_list;
581 int i;
582
583 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
584 && (core_vec == NULL || core_vec->core_read_registers == NULL))
585 {
586 fprintf_filtered (gdb_stderr,
587 "Can't fetch registers from this type of core file\n");
588 return;
589 }
590
591 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
592 if (sect_list)
593 while (sect_list->sect_name != NULL)
594 {
595 if (strcmp (sect_list->sect_name, ".reg") == 0)
596 get_core_register_section (regcache, sect_list->sect_name,
597 0, sect_list->human_name, 1);
598 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
599 get_core_register_section (regcache, sect_list->sect_name,
600 2, sect_list->human_name, 0);
601 else
602 get_core_register_section (regcache, sect_list->sect_name,
603 3, sect_list->human_name, 0);
604
605 sect_list++;
606 }
607
608 else
609 {
610 get_core_register_section (regcache,
611 ".reg", 0, "general-purpose", 1);
612 get_core_register_section (regcache,
613 ".reg2", 2, "floating-point", 0);
614 }
615
616 /* Mark all registers not found in the core as unavailable. */
617 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
618 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
619 regcache_raw_supply (regcache, i, NULL);
620 }
621
622 static void
623 core_files_info (struct target_ops *t)
624 {
625 print_section_info (core_data, core_bfd);
626 }
627 \f
628 struct spuid_list
629 {
630 gdb_byte *buf;
631 ULONGEST offset;
632 LONGEST len;
633 ULONGEST pos;
634 ULONGEST written;
635 };
636
637 static void
638 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
639 {
640 struct spuid_list *list = list_p;
641 enum bfd_endian byte_order
642 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
643 int fd, pos = 0;
644
645 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
646 if (pos == 0)
647 return;
648
649 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
650 {
651 store_unsigned_integer (list->buf + list->pos - list->offset,
652 4, byte_order, fd);
653 list->written += 4;
654 }
655 list->pos += 4;
656 }
657
658 /* Read siginfo data from the core, if possible. Returns -1 on
659 failure. Otherwise, returns the number of bytes read. ABFD is the
660 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
661 the to_xfer_partial interface. */
662
663 static LONGEST
664 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, LONGEST len)
665 {
666 asection *section;
667 char *section_name;
668 const char *name = ".note.linuxcore.siginfo";
669
670 if (ptid_get_lwp (inferior_ptid))
671 section_name = xstrprintf ("%s/%ld", name,
672 ptid_get_lwp (inferior_ptid));
673 else
674 section_name = xstrdup (name);
675
676 section = bfd_get_section_by_name (abfd, section_name);
677 xfree (section_name);
678 if (section == NULL)
679 return -1;
680
681 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
682 return -1;
683
684 return len;
685 }
686
687 static LONGEST
688 core_xfer_partial (struct target_ops *ops, enum target_object object,
689 const char *annex, gdb_byte *readbuf,
690 const gdb_byte *writebuf, ULONGEST offset,
691 LONGEST len)
692 {
693 switch (object)
694 {
695 case TARGET_OBJECT_MEMORY:
696 return section_table_xfer_memory_partial (readbuf, writebuf,
697 offset, len,
698 core_data->sections,
699 core_data->sections_end,
700 NULL);
701
702 case TARGET_OBJECT_AUXV:
703 if (readbuf)
704 {
705 /* When the aux vector is stored in core file, BFD
706 represents this with a fake section called ".auxv". */
707
708 struct bfd_section *section;
709 bfd_size_type size;
710
711 section = bfd_get_section_by_name (core_bfd, ".auxv");
712 if (section == NULL)
713 return -1;
714
715 size = bfd_section_size (core_bfd, section);
716 if (offset >= size)
717 return 0;
718 size -= offset;
719 if (size > len)
720 size = len;
721 if (size > 0
722 && !bfd_get_section_contents (core_bfd, section, readbuf,
723 (file_ptr) offset, size))
724 {
725 warning (_("Couldn't read NT_AUXV note in core file."));
726 return -1;
727 }
728
729 return size;
730 }
731 return -1;
732
733 case TARGET_OBJECT_WCOOKIE:
734 if (readbuf)
735 {
736 /* When the StackGhost cookie is stored in core file, BFD
737 represents this with a fake section called
738 ".wcookie". */
739
740 struct bfd_section *section;
741 bfd_size_type size;
742
743 section = bfd_get_section_by_name (core_bfd, ".wcookie");
744 if (section == NULL)
745 return -1;
746
747 size = bfd_section_size (core_bfd, section);
748 if (offset >= size)
749 return 0;
750 size -= offset;
751 if (size > len)
752 size = len;
753 if (size > 0
754 && !bfd_get_section_contents (core_bfd, section, readbuf,
755 (file_ptr) offset, size))
756 {
757 warning (_("Couldn't read StackGhost cookie in core file."));
758 return -1;
759 }
760
761 return size;
762 }
763 return -1;
764
765 case TARGET_OBJECT_LIBRARIES:
766 if (core_gdbarch
767 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
768 {
769 if (writebuf)
770 return -1;
771 return
772 gdbarch_core_xfer_shared_libraries (core_gdbarch,
773 readbuf, offset, len);
774 }
775 /* FALL THROUGH */
776
777 case TARGET_OBJECT_SPU:
778 if (readbuf && annex)
779 {
780 /* When the SPU contexts are stored in a core file, BFD
781 represents this with a fake section called
782 "SPU/<annex>". */
783
784 struct bfd_section *section;
785 bfd_size_type size;
786 char sectionstr[100];
787
788 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
789
790 section = bfd_get_section_by_name (core_bfd, sectionstr);
791 if (section == NULL)
792 return -1;
793
794 size = bfd_section_size (core_bfd, section);
795 if (offset >= size)
796 return 0;
797 size -= offset;
798 if (size > len)
799 size = len;
800 if (size > 0
801 && !bfd_get_section_contents (core_bfd, section, readbuf,
802 (file_ptr) offset, size))
803 {
804 warning (_("Couldn't read SPU section in core file."));
805 return -1;
806 }
807
808 return size;
809 }
810 else if (readbuf)
811 {
812 /* NULL annex requests list of all present spuids. */
813 struct spuid_list list;
814
815 list.buf = readbuf;
816 list.offset = offset;
817 list.len = len;
818 list.pos = 0;
819 list.written = 0;
820 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
821 return list.written;
822 }
823 return -1;
824
825 case TARGET_OBJECT_SIGNAL_INFO:
826 if (readbuf)
827 return get_core_siginfo (core_bfd, readbuf, offset, len);
828 return -1;
829
830 default:
831 if (ops->beneath != NULL)
832 return ops->beneath->to_xfer_partial (ops->beneath, object,
833 annex, readbuf,
834 writebuf, offset, len);
835 return -1;
836 }
837 }
838
839 \f
840 /* If mourn is being called in all the right places, this could be say
841 `gdb internal error' (since generic_mourn calls
842 breakpoint_init_inferior). */
843
844 static int
845 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
846 {
847 return 0;
848 }
849
850
851 /* Okay, let's be honest: threads gleaned from a core file aren't
852 exactly lively, are they? On the other hand, if we don't claim
853 that each & every one is alive, then we don't get any of them
854 to appear in an "info thread" command, which is quite a useful
855 behaviour.
856 */
857 static int
858 core_thread_alive (struct target_ops *ops, ptid_t ptid)
859 {
860 return 1;
861 }
862
863 /* Ask the current architecture what it knows about this core file.
864 That will be used, in turn, to pick a better architecture. This
865 wrapper could be avoided if targets got a chance to specialize
866 core_ops. */
867
868 static const struct target_desc *
869 core_read_description (struct target_ops *target)
870 {
871 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
872 return gdbarch_core_read_description (core_gdbarch,
873 target, core_bfd);
874
875 return NULL;
876 }
877
878 static char *
879 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
880 {
881 static char buf[64];
882 struct inferior *inf;
883 int pid;
884
885 /* The preferred way is to have a gdbarch/OS specific
886 implementation. */
887 if (core_gdbarch
888 && gdbarch_core_pid_to_str_p (core_gdbarch))
889 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
890
891 /* Otherwise, if we don't have one, we'll just fallback to
892 "process", with normal_pid_to_str. */
893
894 /* Try the LWPID field first. */
895 pid = ptid_get_lwp (ptid);
896 if (pid != 0)
897 return normal_pid_to_str (pid_to_ptid (pid));
898
899 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
900 only if it isn't a fake PID. */
901 inf = find_inferior_pid (ptid_get_pid (ptid));
902 if (inf != NULL && !inf->fake_pid_p)
903 return normal_pid_to_str (ptid);
904
905 /* No luck. We simply don't have a valid PID to print. */
906 xsnprintf (buf, sizeof buf, "<main task>");
907 return buf;
908 }
909
910 static int
911 core_has_memory (struct target_ops *ops)
912 {
913 return (core_bfd != NULL);
914 }
915
916 static int
917 core_has_stack (struct target_ops *ops)
918 {
919 return (core_bfd != NULL);
920 }
921
922 static int
923 core_has_registers (struct target_ops *ops)
924 {
925 return (core_bfd != NULL);
926 }
927
928 /* Implement the to_info_proc method. */
929
930 static void
931 core_info_proc (struct target_ops *ops, char *args, enum info_proc_what request)
932 {
933 struct gdbarch *gdbarch = get_current_arch ();
934
935 /* Since this is the core file target, call the 'core_info_proc'
936 method on gdbarch, not 'info_proc'. */
937 if (gdbarch_core_info_proc_p (gdbarch))
938 gdbarch_core_info_proc (gdbarch, args, request);
939 }
940
941 /* Fill in core_ops with its defined operations and properties. */
942
943 static void
944 init_core_ops (void)
945 {
946 core_ops.to_shortname = "core";
947 core_ops.to_longname = "Local core dump file";
948 core_ops.to_doc =
949 "Use a core file as a target. Specify the filename of the core file.";
950 core_ops.to_open = core_open;
951 core_ops.to_close = core_close;
952 core_ops.to_attach = find_default_attach;
953 core_ops.to_detach = core_detach;
954 core_ops.to_fetch_registers = get_core_registers;
955 core_ops.to_xfer_partial = core_xfer_partial;
956 core_ops.to_files_info = core_files_info;
957 core_ops.to_insert_breakpoint = ignore;
958 core_ops.to_remove_breakpoint = ignore;
959 core_ops.to_create_inferior = find_default_create_inferior;
960 core_ops.to_thread_alive = core_thread_alive;
961 core_ops.to_read_description = core_read_description;
962 core_ops.to_pid_to_str = core_pid_to_str;
963 core_ops.to_stratum = process_stratum;
964 core_ops.to_has_memory = core_has_memory;
965 core_ops.to_has_stack = core_has_stack;
966 core_ops.to_has_registers = core_has_registers;
967 core_ops.to_info_proc = core_info_proc;
968 core_ops.to_magic = OPS_MAGIC;
969
970 if (core_target)
971 internal_error (__FILE__, __LINE__,
972 _("init_core_ops: core target already exists (\"%s\")."),
973 core_target->to_longname);
974 core_target = &core_ops;
975 }
976
977 void
978 _initialize_corelow (void)
979 {
980 init_core_ops ();
981
982 add_target_with_completer (&core_ops, filename_completer);
983 }
This page took 0.064636 seconds and 4 git commands to generate.