Add new search_symbols_multiple API
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
54 bfd *abfd);
55
56 /* The core file target. */
57
58 static const target_info core_target_info = {
59 "core",
60 N_("Local core dump file"),
61 N_("Use a core file as a target. Specify the filename of the core file.")
62 };
63
64 class core_target final : public target_ops
65 {
66 public:
67 core_target ();
68 ~core_target () override;
69
70 const target_info &info () const override
71 { return core_target_info; }
72
73 void close () override;
74 void detach (inferior *, int) override;
75 void fetch_registers (struct regcache *, int) override;
76
77 enum target_xfer_status xfer_partial (enum target_object object,
78 const char *annex,
79 gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, ULONGEST len,
82 ULONGEST *xfered_len) override;
83 void files_info () override;
84
85 bool thread_alive (ptid_t ptid) override;
86 const struct target_desc *read_description () override;
87
88 const char *pid_to_str (ptid_t) override;
89
90 const char *thread_name (struct thread_info *) override;
91
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool info_proc (const char *, enum info_proc_what) override;
96
97 /* A few helpers. */
98
99 /* Getter, see variable definition. */
100 struct gdbarch *core_gdbarch ()
101 {
102 return m_core_gdbarch;
103 }
104
105 /* See definition. */
106 void get_core_register_section (struct regcache *regcache,
107 const struct regset *regset,
108 const char *name,
109 int section_min_size,
110 int which,
111 const char *human_name,
112 bool required);
113
114 private: /* per-core data */
115
116 /* The core's section table. Note that these target sections are
117 *not* mapped in the current address spaces' set of target
118 sections --- those should come only from pure executable or
119 shared library bfds. The core bfd sections are an implementation
120 detail of the core target, just like ptrace is for unix child
121 targets. */
122 target_section_table m_core_section_table {};
123
124 /* The core_fns for a core file handler that is prepared to read the
125 core file currently open on core_bfd. */
126 core_fns *m_core_vec = NULL;
127
128 /* FIXME: kettenis/20031023: Eventually this field should
129 disappear. */
130 struct gdbarch *m_core_gdbarch = NULL;
131 };
132
133 core_target::core_target ()
134 {
135 to_stratum = process_stratum;
136
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 inferior_ptid = null_ptid; /* Avoid confusion from thread
264 stuff. */
265 exit_inferior_silent (current_inferior ());
266
267 /* Clear out solib state while the bfd is still open. See
268 comments in clear_solib in solib.c. */
269 clear_solib ();
270
271 current_program_space->cbfd.reset (nullptr);
272 }
273
274 /* Core targets are heap-allocated (see core_target_open), so here
275 we delete ourselves. */
276 delete this;
277 }
278
279 /* Look for sections whose names start with `.reg/' so that we can
280 extract the list of threads in a core file. */
281
282 static void
283 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
284 {
285 ptid_t ptid;
286 int core_tid;
287 int pid, lwpid;
288 asection *reg_sect = (asection *) reg_sect_arg;
289 int fake_pid_p = 0;
290 struct inferior *inf;
291
292 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
293 return;
294
295 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
296
297 pid = bfd_core_file_pid (core_bfd);
298 if (pid == 0)
299 {
300 fake_pid_p = 1;
301 pid = CORELOW_PID;
302 }
303
304 lwpid = core_tid;
305
306 inf = current_inferior ();
307 if (inf->pid == 0)
308 {
309 inferior_appeared (inf, pid);
310 inf->fake_pid_p = fake_pid_p;
311 }
312
313 ptid = ptid_t (pid, lwpid, 0);
314
315 add_thread (ptid);
316
317 /* Warning, Will Robinson, looking at BFD private data! */
318
319 if (reg_sect != NULL
320 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
321 inferior_ptid = ptid; /* Yes, make it current. */
322 }
323
324 /* Issue a message saying we have no core to debug, if FROM_TTY. */
325
326 static void
327 maybe_say_no_core_file_now (int from_tty)
328 {
329 if (from_tty)
330 printf_filtered (_("No core file now.\n"));
331 }
332
333 /* Backward compatability with old way of specifying core files. */
334
335 void
336 core_file_command (const char *filename, int from_tty)
337 {
338 dont_repeat (); /* Either way, seems bogus. */
339
340 if (filename == NULL)
341 {
342 if (core_bfd != NULL)
343 {
344 target_detach (current_inferior (), from_tty);
345 gdb_assert (core_bfd == NULL);
346 }
347 else
348 maybe_say_no_core_file_now (from_tty);
349 }
350 else
351 core_target_open (filename, from_tty);
352 }
353
354 /* See gdbcore.h. */
355
356 void
357 core_target_open (const char *arg, int from_tty)
358 {
359 const char *p;
360 int siggy;
361 int scratch_chan;
362 int flags;
363
364 target_preopen (from_tty);
365 if (!arg)
366 {
367 if (core_bfd)
368 error (_("No core file specified. (Use `detach' "
369 "to stop debugging a core file.)"));
370 else
371 error (_("No core file specified."));
372 }
373
374 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
375 if (!IS_ABSOLUTE_PATH (filename.get ()))
376 filename.reset (concat (current_directory, "/",
377 filename.get (), (char *) NULL));
378
379 flags = O_BINARY | O_LARGEFILE;
380 if (write_files)
381 flags |= O_RDWR;
382 else
383 flags |= O_RDONLY;
384 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
385 if (scratch_chan < 0)
386 perror_with_name (filename.get ());
387
388 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
389 write_files ? FOPEN_RUB : FOPEN_RB,
390 scratch_chan));
391 if (temp_bfd == NULL)
392 perror_with_name (filename.get ());
393
394 if (!bfd_check_format (temp_bfd.get (), bfd_core)
395 && !gdb_check_format (temp_bfd.get ()))
396 {
397 /* Do it after the err msg */
398 /* FIXME: should be checking for errors from bfd_close (for one
399 thing, on error it does not free all the storage associated
400 with the bfd). */
401 error (_("\"%s\" is not a core dump: %s"),
402 filename.get (), bfd_errmsg (bfd_get_error ()));
403 }
404
405 current_program_space->cbfd = std::move (temp_bfd);
406
407 core_target *target = new core_target ();
408
409 /* Own the target until it is successfully pushed. */
410 target_ops_up target_holder (target);
411
412 validate_files ();
413
414 /* If we have no exec file, try to set the architecture from the
415 core file. We don't do this unconditionally since an exec file
416 typically contains more information that helps us determine the
417 architecture than a core file. */
418 if (!exec_bfd)
419 set_gdbarch_from_file (core_bfd);
420
421 push_target (target);
422 target_holder.release ();
423
424 /* Do this before acknowledging the inferior, so if
425 post_create_inferior throws (can happen easilly if you're loading
426 a core file with the wrong exec), we aren't left with threads
427 from the previous inferior. */
428 init_thread_list ();
429
430 inferior_ptid = null_ptid;
431
432 /* Need to flush the register cache (and the frame cache) from a
433 previous debug session. If inferior_ptid ends up the same as the
434 last debug session --- e.g., b foo; run; gcore core1; step; gcore
435 core2; core core1; core core2 --- then there's potential for
436 get_current_regcache to return the cached regcache of the
437 previous session, and the frame cache being stale. */
438 registers_changed ();
439
440 /* Build up thread list from BFD sections, and possibly set the
441 current thread to the .reg/NN section matching the .reg
442 section. */
443 bfd_map_over_sections (core_bfd, add_to_thread_list,
444 bfd_get_section_by_name (core_bfd, ".reg"));
445
446 if (inferior_ptid == null_ptid)
447 {
448 /* Either we found no .reg/NN section, and hence we have a
449 non-threaded core (single-threaded, from gdb's perspective),
450 or for some reason add_to_thread_list couldn't determine
451 which was the "main" thread. The latter case shouldn't
452 usually happen, but we're dealing with input here, which can
453 always be broken in different ways. */
454 thread_info *thread = first_thread_of_inferior (current_inferior ());
455
456 if (thread == NULL)
457 {
458 inferior_appeared (current_inferior (), CORELOW_PID);
459 inferior_ptid = ptid_t (CORELOW_PID);
460 add_thread_silent (inferior_ptid);
461 }
462 else
463 switch_to_thread (thread);
464 }
465
466 post_create_inferior (target, from_tty);
467
468 /* Now go through the target stack looking for threads since there
469 may be a thread_stratum target loaded on top of target core by
470 now. The layer above should claim threads found in the BFD
471 sections. */
472 TRY
473 {
474 target_update_thread_list ();
475 }
476
477 CATCH (except, RETURN_MASK_ERROR)
478 {
479 exception_print (gdb_stderr, except);
480 }
481 END_CATCH
482
483 p = bfd_core_file_failing_command (core_bfd);
484 if (p)
485 printf_filtered (_("Core was generated by `%s'.\n"), p);
486
487 /* Clearing any previous state of convenience variables. */
488 clear_exit_convenience_vars ();
489
490 siggy = bfd_core_file_failing_signal (core_bfd);
491 if (siggy > 0)
492 {
493 gdbarch *core_gdbarch = target->core_gdbarch ();
494
495 /* If we don't have a CORE_GDBARCH to work with, assume a native
496 core (map gdb_signal from host signals). If we do have
497 CORE_GDBARCH to work with, but no gdb_signal_from_target
498 implementation for that gdbarch, as a fallback measure,
499 assume the host signal mapping. It'll be correct for native
500 cores, but most likely incorrect for cross-cores. */
501 enum gdb_signal sig = (core_gdbarch != NULL
502 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
503 ? gdbarch_gdb_signal_from_target (core_gdbarch,
504 siggy)
505 : gdb_signal_from_host (siggy));
506
507 printf_filtered (_("Program terminated with signal %s, %s.\n"),
508 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
509
510 /* Set the value of the internal variable $_exitsignal,
511 which holds the signal uncaught by the inferior. */
512 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
513 siggy);
514 }
515
516 /* Fetch all registers from core file. */
517 target_fetch_registers (get_current_regcache (), -1);
518
519 /* Now, set up the frame cache, and print the top of stack. */
520 reinit_frame_cache ();
521 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
522
523 /* Current thread should be NUM 1 but the user does not know that.
524 If a program is single threaded gdb in general does not mention
525 anything about threads. That is why the test is >= 2. */
526 if (thread_count () >= 2)
527 {
528 TRY
529 {
530 thread_command (NULL, from_tty);
531 }
532 CATCH (except, RETURN_MASK_ERROR)
533 {
534 exception_print (gdb_stderr, except);
535 }
536 END_CATCH
537 }
538 }
539
540 void
541 core_target::detach (inferior *inf, int from_tty)
542 {
543 /* Note that 'this' is dangling after this call. unpush_target
544 closes the target, and our close implementation deletes
545 'this'. */
546 unpush_target (this);
547
548 reinit_frame_cache ();
549 maybe_say_no_core_file_now (from_tty);
550 }
551
552 /* Try to retrieve registers from a section in core_bfd, and supply
553 them to m_core_vec->core_read_registers, as the register set
554 numbered WHICH.
555
556 If ptid's lwp member is zero, do the single-threaded
557 thing: look for a section named NAME. If ptid's lwp
558 member is non-zero, do the multi-threaded thing: look for a section
559 named "NAME/LWP", where LWP is the shortest ASCII decimal
560 representation of ptid's lwp member.
561
562 HUMAN_NAME is a human-readable name for the kind of registers the
563 NAME section contains, for use in error messages.
564
565 If REQUIRED is true, print an error if the core file doesn't have a
566 section by the appropriate name. Otherwise, just do nothing. */
567
568 void
569 core_target::get_core_register_section (struct regcache *regcache,
570 const struct regset *regset,
571 const char *name,
572 int section_min_size,
573 int which,
574 const char *human_name,
575 bool required)
576 {
577 struct bfd_section *section;
578 bfd_size_type size;
579 char *contents;
580 bool variable_size_section = (regset != NULL
581 && regset->flags & REGSET_VARIABLE_SIZE);
582
583 thread_section_name section_name (name, regcache->ptid ());
584
585 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
586 if (! section)
587 {
588 if (required)
589 warning (_("Couldn't find %s registers in core file."),
590 human_name);
591 return;
592 }
593
594 size = bfd_section_size (core_bfd, section);
595 if (size < section_min_size)
596 {
597 warning (_("Section `%s' in core file too small."),
598 section_name.c_str ());
599 return;
600 }
601 if (size != section_min_size && !variable_size_section)
602 {
603 warning (_("Unexpected size of section `%s' in core file."),
604 section_name.c_str ());
605 }
606
607 contents = (char *) alloca (size);
608 if (! bfd_get_section_contents (core_bfd, section, contents,
609 (file_ptr) 0, size))
610 {
611 warning (_("Couldn't read %s registers from `%s' section in core file."),
612 human_name, section_name.c_str ());
613 return;
614 }
615
616 if (regset != NULL)
617 {
618 regset->supply_regset (regset, regcache, -1, contents, size);
619 return;
620 }
621
622 gdb_assert (m_core_vec != nullptr);
623 m_core_vec->core_read_registers (regcache, contents, size, which,
624 ((CORE_ADDR)
625 bfd_section_vma (core_bfd, section)));
626 }
627
628 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
629 struct get_core_registers_cb_data
630 {
631 core_target *target;
632 struct regcache *regcache;
633 };
634
635 /* Callback for get_core_registers that handles a single core file
636 register note section. */
637
638 static void
639 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
640 const struct regset *regset,
641 const char *human_name, void *cb_data)
642 {
643 auto *data = (get_core_registers_cb_data *) cb_data;
644 bool required = false;
645 bool variable_size_section = (regset != NULL
646 && regset->flags & REGSET_VARIABLE_SIZE);
647
648 if (!variable_size_section)
649 gdb_assert (supply_size == collect_size);
650
651 if (strcmp (sect_name, ".reg") == 0)
652 {
653 required = true;
654 if (human_name == NULL)
655 human_name = "general-purpose";
656 }
657 else if (strcmp (sect_name, ".reg2") == 0)
658 {
659 if (human_name == NULL)
660 human_name = "floating-point";
661 }
662
663 /* The 'which' parameter is only used when no regset is provided.
664 Thus we just set it to -1. */
665 data->target->get_core_register_section (data->regcache, regset, sect_name,
666 supply_size, -1, human_name,
667 required);
668 }
669
670 /* Get the registers out of a core file. This is the machine-
671 independent part. Fetch_core_registers is the machine-dependent
672 part, typically implemented in the xm-file for each
673 architecture. */
674
675 /* We just get all the registers, so we don't use regno. */
676
677 void
678 core_target::fetch_registers (struct regcache *regcache, int regno)
679 {
680 int i;
681 struct gdbarch *gdbarch;
682
683 if (!(m_core_gdbarch != nullptr
684 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
685 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
686 {
687 fprintf_filtered (gdb_stderr,
688 "Can't fetch registers from this type of core file\n");
689 return;
690 }
691
692 gdbarch = regcache->arch ();
693 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
694 {
695 get_core_registers_cb_data data = { this, regcache };
696 gdbarch_iterate_over_regset_sections (gdbarch,
697 get_core_registers_cb,
698 (void *) &data, NULL);
699 }
700 else
701 {
702 get_core_register_section (regcache, NULL,
703 ".reg", 0, 0, "general-purpose", 1);
704 get_core_register_section (regcache, NULL,
705 ".reg2", 0, 2, "floating-point", 0);
706 }
707
708 /* Mark all registers not found in the core as unavailable. */
709 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
710 if (regcache->get_register_status (i) == REG_UNKNOWN)
711 regcache->raw_supply (i, NULL);
712 }
713
714 void
715 core_target::files_info ()
716 {
717 print_section_info (&m_core_section_table, core_bfd);
718 }
719 \f
720 struct spuid_list
721 {
722 gdb_byte *buf;
723 ULONGEST offset;
724 LONGEST len;
725 ULONGEST pos;
726 ULONGEST written;
727 };
728
729 static void
730 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
731 {
732 struct spuid_list *list = (struct spuid_list *) list_p;
733 enum bfd_endian byte_order
734 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
735 int fd, pos = 0;
736
737 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
738 if (pos == 0)
739 return;
740
741 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
742 {
743 store_unsigned_integer (list->buf + list->pos - list->offset,
744 4, byte_order, fd);
745 list->written += 4;
746 }
747 list->pos += 4;
748 }
749
750 enum target_xfer_status
751 core_target::xfer_partial (enum target_object object, const char *annex,
752 gdb_byte *readbuf, const gdb_byte *writebuf,
753 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
754 {
755 switch (object)
756 {
757 case TARGET_OBJECT_MEMORY:
758 return (section_table_xfer_memory_partial
759 (readbuf, writebuf,
760 offset, len, xfered_len,
761 m_core_section_table.sections,
762 m_core_section_table.sections_end,
763 NULL));
764
765 case TARGET_OBJECT_AUXV:
766 if (readbuf)
767 {
768 /* When the aux vector is stored in core file, BFD
769 represents this with a fake section called ".auxv". */
770
771 struct bfd_section *section;
772 bfd_size_type size;
773
774 section = bfd_get_section_by_name (core_bfd, ".auxv");
775 if (section == NULL)
776 return TARGET_XFER_E_IO;
777
778 size = bfd_section_size (core_bfd, section);
779 if (offset >= size)
780 return TARGET_XFER_EOF;
781 size -= offset;
782 if (size > len)
783 size = len;
784
785 if (size == 0)
786 return TARGET_XFER_EOF;
787 if (!bfd_get_section_contents (core_bfd, section, readbuf,
788 (file_ptr) offset, size))
789 {
790 warning (_("Couldn't read NT_AUXV note in core file."));
791 return TARGET_XFER_E_IO;
792 }
793
794 *xfered_len = (ULONGEST) size;
795 return TARGET_XFER_OK;
796 }
797 return TARGET_XFER_E_IO;
798
799 case TARGET_OBJECT_WCOOKIE:
800 if (readbuf)
801 {
802 /* When the StackGhost cookie is stored in core file, BFD
803 represents this with a fake section called
804 ".wcookie". */
805
806 struct bfd_section *section;
807 bfd_size_type size;
808
809 section = bfd_get_section_by_name (core_bfd, ".wcookie");
810 if (section == NULL)
811 return TARGET_XFER_E_IO;
812
813 size = bfd_section_size (core_bfd, section);
814 if (offset >= size)
815 return TARGET_XFER_EOF;
816 size -= offset;
817 if (size > len)
818 size = len;
819
820 if (size == 0)
821 return TARGET_XFER_EOF;
822 if (!bfd_get_section_contents (core_bfd, section, readbuf,
823 (file_ptr) offset, size))
824 {
825 warning (_("Couldn't read StackGhost cookie in core file."));
826 return TARGET_XFER_E_IO;
827 }
828
829 *xfered_len = (ULONGEST) size;
830 return TARGET_XFER_OK;
831
832 }
833 return TARGET_XFER_E_IO;
834
835 case TARGET_OBJECT_LIBRARIES:
836 if (m_core_gdbarch != nullptr
837 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
838 {
839 if (writebuf)
840 return TARGET_XFER_E_IO;
841 else
842 {
843 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
844 readbuf,
845 offset, len);
846
847 if (*xfered_len == 0)
848 return TARGET_XFER_EOF;
849 else
850 return TARGET_XFER_OK;
851 }
852 }
853 /* FALL THROUGH */
854
855 case TARGET_OBJECT_LIBRARIES_AIX:
856 if (m_core_gdbarch != nullptr
857 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
858 {
859 if (writebuf)
860 return TARGET_XFER_E_IO;
861 else
862 {
863 *xfered_len
864 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
865 readbuf, offset,
866 len);
867
868 if (*xfered_len == 0)
869 return TARGET_XFER_EOF;
870 else
871 return TARGET_XFER_OK;
872 }
873 }
874 /* FALL THROUGH */
875
876 case TARGET_OBJECT_SPU:
877 if (readbuf && annex)
878 {
879 /* When the SPU contexts are stored in a core file, BFD
880 represents this with a fake section called
881 "SPU/<annex>". */
882
883 struct bfd_section *section;
884 bfd_size_type size;
885 char sectionstr[100];
886
887 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
888
889 section = bfd_get_section_by_name (core_bfd, sectionstr);
890 if (section == NULL)
891 return TARGET_XFER_E_IO;
892
893 size = bfd_section_size (core_bfd, section);
894 if (offset >= size)
895 return TARGET_XFER_EOF;
896 size -= offset;
897 if (size > len)
898 size = len;
899
900 if (size == 0)
901 return TARGET_XFER_EOF;
902 if (!bfd_get_section_contents (core_bfd, section, readbuf,
903 (file_ptr) offset, size))
904 {
905 warning (_("Couldn't read SPU section in core file."));
906 return TARGET_XFER_E_IO;
907 }
908
909 *xfered_len = (ULONGEST) size;
910 return TARGET_XFER_OK;
911 }
912 else if (readbuf)
913 {
914 /* NULL annex requests list of all present spuids. */
915 struct spuid_list list;
916
917 list.buf = readbuf;
918 list.offset = offset;
919 list.len = len;
920 list.pos = 0;
921 list.written = 0;
922 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
923
924 if (list.written == 0)
925 return TARGET_XFER_EOF;
926 else
927 {
928 *xfered_len = (ULONGEST) list.written;
929 return TARGET_XFER_OK;
930 }
931 }
932 return TARGET_XFER_E_IO;
933
934 case TARGET_OBJECT_SIGNAL_INFO:
935 if (readbuf)
936 {
937 if (m_core_gdbarch != nullptr
938 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
939 {
940 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
941 offset, len);
942
943 if (l >= 0)
944 {
945 *xfered_len = l;
946 if (l == 0)
947 return TARGET_XFER_EOF;
948 else
949 return TARGET_XFER_OK;
950 }
951 }
952 }
953 return TARGET_XFER_E_IO;
954
955 default:
956 return this->beneath ()->xfer_partial (object, annex, readbuf,
957 writebuf, offset, len,
958 xfered_len);
959 }
960 }
961
962 \f
963
964 /* Okay, let's be honest: threads gleaned from a core file aren't
965 exactly lively, are they? On the other hand, if we don't claim
966 that each & every one is alive, then we don't get any of them
967 to appear in an "info thread" command, which is quite a useful
968 behaviour.
969 */
970 bool
971 core_target::thread_alive (ptid_t ptid)
972 {
973 return true;
974 }
975
976 /* Ask the current architecture what it knows about this core file.
977 That will be used, in turn, to pick a better architecture. This
978 wrapper could be avoided if targets got a chance to specialize
979 core_target. */
980
981 const struct target_desc *
982 core_target::read_description ()
983 {
984 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
985 {
986 const struct target_desc *result;
987
988 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
989 if (result != NULL)
990 return result;
991 }
992
993 return this->beneath ()->read_description ();
994 }
995
996 const char *
997 core_target::pid_to_str (ptid_t ptid)
998 {
999 static char buf[64];
1000 struct inferior *inf;
1001 int pid;
1002
1003 /* The preferred way is to have a gdbarch/OS specific
1004 implementation. */
1005 if (m_core_gdbarch != nullptr
1006 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1007 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1008
1009 /* Otherwise, if we don't have one, we'll just fallback to
1010 "process", with normal_pid_to_str. */
1011
1012 /* Try the LWPID field first. */
1013 pid = ptid.lwp ();
1014 if (pid != 0)
1015 return normal_pid_to_str (ptid_t (pid));
1016
1017 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1018 only if it isn't a fake PID. */
1019 inf = find_inferior_ptid (ptid);
1020 if (inf != NULL && !inf->fake_pid_p)
1021 return normal_pid_to_str (ptid);
1022
1023 /* No luck. We simply don't have a valid PID to print. */
1024 xsnprintf (buf, sizeof buf, "<main task>");
1025 return buf;
1026 }
1027
1028 const char *
1029 core_target::thread_name (struct thread_info *thr)
1030 {
1031 if (m_core_gdbarch != nullptr
1032 && gdbarch_core_thread_name_p (m_core_gdbarch))
1033 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1034 return NULL;
1035 }
1036
1037 bool
1038 core_target::has_memory ()
1039 {
1040 return (core_bfd != NULL);
1041 }
1042
1043 bool
1044 core_target::has_stack ()
1045 {
1046 return (core_bfd != NULL);
1047 }
1048
1049 bool
1050 core_target::has_registers ()
1051 {
1052 return (core_bfd != NULL);
1053 }
1054
1055 /* Implement the to_info_proc method. */
1056
1057 bool
1058 core_target::info_proc (const char *args, enum info_proc_what request)
1059 {
1060 struct gdbarch *gdbarch = get_current_arch ();
1061
1062 /* Since this is the core file target, call the 'core_info_proc'
1063 method on gdbarch, not 'info_proc'. */
1064 if (gdbarch_core_info_proc_p (gdbarch))
1065 gdbarch_core_info_proc (gdbarch, args, request);
1066
1067 return true;
1068 }
1069
1070 void
1071 _initialize_corelow (void)
1072 {
1073 add_target (core_target_info, core_target_open, filename_completer);
1074 }
This page took 0.052163 seconds and 4 git commands to generate.