Move the thread_section_name class to gdbcore.h.
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 int scratch_chan;
279 int flags;
280 char *filename;
281
282 target_preopen (from_tty);
283 if (!arg)
284 {
285 if (core_bfd)
286 error (_("No core file specified. (Use `detach' "
287 "to stop debugging a core file.)"));
288 else
289 error (_("No core file specified."));
290 }
291
292 filename = tilde_expand (arg);
293 if (!IS_ABSOLUTE_PATH (filename))
294 {
295 temp = concat (current_directory, "/",
296 filename, (char *) NULL);
297 xfree (filename);
298 filename = temp;
299 }
300
301 old_chain = make_cleanup (xfree, filename);
302
303 flags = O_BINARY | O_LARGEFILE;
304 if (write_files)
305 flags |= O_RDWR;
306 else
307 flags |= O_RDONLY;
308 scratch_chan = gdb_open_cloexec (filename, flags, 0);
309 if (scratch_chan < 0)
310 perror_with_name (filename);
311
312 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename, gnutarget,
313 write_files ? FOPEN_RUB : FOPEN_RB,
314 scratch_chan));
315 if (temp_bfd == NULL)
316 perror_with_name (filename);
317
318 if (!bfd_check_format (temp_bfd.get (), bfd_core)
319 && !gdb_check_format (temp_bfd.get ()))
320 {
321 /* Do it after the err msg */
322 /* FIXME: should be checking for errors from bfd_close (for one
323 thing, on error it does not free all the storage associated
324 with the bfd). */
325 error (_("\"%s\" is not a core dump: %s"),
326 filename, bfd_errmsg (bfd_get_error ()));
327 }
328
329 /* Looks semi-reasonable. Toss the old core file and work on the
330 new. */
331
332 do_cleanups (old_chain);
333 unpush_target (&core_ops);
334 core_bfd = temp_bfd.release ();
335 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
336
337 core_gdbarch = gdbarch_from_bfd (core_bfd);
338
339 /* Find a suitable core file handler to munch on core_bfd */
340 core_vec = sniff_core_bfd (core_bfd);
341
342 validate_files ();
343
344 core_data = XCNEW (struct target_section_table);
345
346 /* Find the data section */
347 if (build_section_table (core_bfd,
348 &core_data->sections,
349 &core_data->sections_end))
350 error (_("\"%s\": Can't find sections: %s"),
351 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
352
353 /* If we have no exec file, try to set the architecture from the
354 core file. We don't do this unconditionally since an exec file
355 typically contains more information that helps us determine the
356 architecture than a core file. */
357 if (!exec_bfd)
358 set_gdbarch_from_file (core_bfd);
359
360 push_target (&core_ops);
361 discard_cleanups (old_chain);
362
363 /* Do this before acknowledging the inferior, so if
364 post_create_inferior throws (can happen easilly if you're loading
365 a core file with the wrong exec), we aren't left with threads
366 from the previous inferior. */
367 init_thread_list ();
368
369 inferior_ptid = null_ptid;
370
371 /* Need to flush the register cache (and the frame cache) from a
372 previous debug session. If inferior_ptid ends up the same as the
373 last debug session --- e.g., b foo; run; gcore core1; step; gcore
374 core2; core core1; core core2 --- then there's potential for
375 get_current_regcache to return the cached regcache of the
376 previous session, and the frame cache being stale. */
377 registers_changed ();
378
379 /* Build up thread list from BFD sections, and possibly set the
380 current thread to the .reg/NN section matching the .reg
381 section. */
382 bfd_map_over_sections (core_bfd, add_to_thread_list,
383 bfd_get_section_by_name (core_bfd, ".reg"));
384
385 if (ptid_equal (inferior_ptid, null_ptid))
386 {
387 /* Either we found no .reg/NN section, and hence we have a
388 non-threaded core (single-threaded, from gdb's perspective),
389 or for some reason add_to_thread_list couldn't determine
390 which was the "main" thread. The latter case shouldn't
391 usually happen, but we're dealing with input here, which can
392 always be broken in different ways. */
393 struct thread_info *thread = first_thread_of_process (-1);
394
395 if (thread == NULL)
396 {
397 inferior_appeared (current_inferior (), CORELOW_PID);
398 inferior_ptid = pid_to_ptid (CORELOW_PID);
399 add_thread_silent (inferior_ptid);
400 }
401 else
402 switch_to_thread (thread->ptid);
403 }
404
405 post_create_inferior (&core_ops, from_tty);
406
407 /* Now go through the target stack looking for threads since there
408 may be a thread_stratum target loaded on top of target core by
409 now. The layer above should claim threads found in the BFD
410 sections. */
411 TRY
412 {
413 target_update_thread_list ();
414 }
415
416 CATCH (except, RETURN_MASK_ERROR)
417 {
418 exception_print (gdb_stderr, except);
419 }
420 END_CATCH
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459
460 /* Current thread should be NUM 1 but the user does not know that.
461 If a program is single threaded gdb in general does not mention
462 anything about threads. That is why the test is >= 2. */
463 if (thread_count () >= 2)
464 {
465 TRY
466 {
467 thread_command (NULL, from_tty);
468 }
469 CATCH (except, RETURN_MASK_ERROR)
470 {
471 exception_print (gdb_stderr, except);
472 }
473 END_CATCH
474 }
475 }
476
477 static void
478 core_detach (struct target_ops *ops, const char *args, int from_tty)
479 {
480 if (args)
481 error (_("Too many arguments"));
482 unpush_target (ops);
483 reinit_frame_cache ();
484 if (from_tty)
485 printf_filtered (_("No core file now.\n"));
486 }
487
488 /* Try to retrieve registers from a section in core_bfd, and supply
489 them to core_vec->core_read_registers, as the register set numbered
490 WHICH.
491
492 If ptid's lwp member is zero, do the single-threaded
493 thing: look for a section named NAME. If ptid's lwp
494 member is non-zero, do the multi-threaded thing: look for a section
495 named "NAME/LWP", where LWP is the shortest ASCII decimal
496 representation of ptid's lwp member.
497
498 HUMAN_NAME is a human-readable name for the kind of registers the
499 NAME section contains, for use in error messages.
500
501 If REQUIRED is non-zero, print an error if the core file doesn't
502 have a section by the appropriate name. Otherwise, just do
503 nothing. */
504
505 static void
506 get_core_register_section (struct regcache *regcache,
507 const struct regset *regset,
508 const char *name,
509 int min_size,
510 int which,
511 const char *human_name,
512 int required)
513 {
514 struct bfd_section *section;
515 bfd_size_type size;
516 char *contents;
517 bool variable_size_section = (regset != NULL
518 && regset->flags & REGSET_VARIABLE_SIZE);
519
520 thread_section_name section_name (name, regcache->ptid ());
521
522 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
523 if (! section)
524 {
525 if (required)
526 warning (_("Couldn't find %s registers in core file."),
527 human_name);
528 return;
529 }
530
531 size = bfd_section_size (core_bfd, section);
532 if (size < min_size)
533 {
534 warning (_("Section `%s' in core file too small."),
535 section_name.c_str ());
536 return;
537 }
538 if (size != min_size && !variable_size_section)
539 {
540 warning (_("Unexpected size of section `%s' in core file."),
541 section_name.c_str ());
542 }
543
544 contents = (char *) alloca (size);
545 if (! bfd_get_section_contents (core_bfd, section, contents,
546 (file_ptr) 0, size))
547 {
548 warning (_("Couldn't read %s registers from `%s' section in core file."),
549 human_name, section_name.c_str ());
550 return;
551 }
552
553 if (regset != NULL)
554 {
555 regset->supply_regset (regset, regcache, -1, contents, size);
556 return;
557 }
558
559 gdb_assert (core_vec);
560 core_vec->core_read_registers (regcache, contents, size, which,
561 ((CORE_ADDR)
562 bfd_section_vma (core_bfd, section)));
563 }
564
565 /* Callback for get_core_registers that handles a single core file
566 register note section. */
567
568 static void
569 get_core_registers_cb (const char *sect_name, int size,
570 const struct regset *regset,
571 const char *human_name, void *cb_data)
572 {
573 struct regcache *regcache = (struct regcache *) cb_data;
574 int required = 0;
575
576 if (strcmp (sect_name, ".reg") == 0)
577 {
578 required = 1;
579 if (human_name == NULL)
580 human_name = "general-purpose";
581 }
582 else if (strcmp (sect_name, ".reg2") == 0)
583 {
584 if (human_name == NULL)
585 human_name = "floating-point";
586 }
587
588 /* The 'which' parameter is only used when no regset is provided.
589 Thus we just set it to -1. */
590 get_core_register_section (regcache, regset, sect_name,
591 size, -1, human_name, required);
592 }
593
594 /* Get the registers out of a core file. This is the machine-
595 independent part. Fetch_core_registers is the machine-dependent
596 part, typically implemented in the xm-file for each
597 architecture. */
598
599 /* We just get all the registers, so we don't use regno. */
600
601 static void
602 get_core_registers (struct target_ops *ops,
603 struct regcache *regcache, int regno)
604 {
605 int i;
606 struct gdbarch *gdbarch;
607
608 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
609 && (core_vec == NULL || core_vec->core_read_registers == NULL))
610 {
611 fprintf_filtered (gdb_stderr,
612 "Can't fetch registers from this type of core file\n");
613 return;
614 }
615
616 gdbarch = get_regcache_arch (regcache);
617 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
618 gdbarch_iterate_over_regset_sections (gdbarch,
619 get_core_registers_cb,
620 (void *) regcache, NULL);
621 else
622 {
623 get_core_register_section (regcache, NULL,
624 ".reg", 0, 0, "general-purpose", 1);
625 get_core_register_section (regcache, NULL,
626 ".reg2", 0, 2, "floating-point", 0);
627 }
628
629 /* Mark all registers not found in the core as unavailable. */
630 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
631 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
632 regcache_raw_supply (regcache, i, NULL);
633 }
634
635 static void
636 core_files_info (struct target_ops *t)
637 {
638 print_section_info (core_data, core_bfd);
639 }
640 \f
641 struct spuid_list
642 {
643 gdb_byte *buf;
644 ULONGEST offset;
645 LONGEST len;
646 ULONGEST pos;
647 ULONGEST written;
648 };
649
650 static void
651 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
652 {
653 struct spuid_list *list = (struct spuid_list *) list_p;
654 enum bfd_endian byte_order
655 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
656 int fd, pos = 0;
657
658 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
659 if (pos == 0)
660 return;
661
662 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
663 {
664 store_unsigned_integer (list->buf + list->pos - list->offset,
665 4, byte_order, fd);
666 list->written += 4;
667 }
668 list->pos += 4;
669 }
670
671 /* Read siginfo data from the core, if possible. Returns -1 on
672 failure. Otherwise, returns the number of bytes read. ABFD is the
673 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
674 the to_xfer_partial interface. */
675
676 static LONGEST
677 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
678 {
679 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
680 asection *section = bfd_get_section_by_name (abfd, section_name.c_str ());
681 if (section == NULL)
682 return -1;
683
684 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
685 return -1;
686
687 return len;
688 }
689
690 static enum target_xfer_status
691 core_xfer_partial (struct target_ops *ops, enum target_object object,
692 const char *annex, gdb_byte *readbuf,
693 const gdb_byte *writebuf, ULONGEST offset,
694 ULONGEST len, ULONGEST *xfered_len)
695 {
696 switch (object)
697 {
698 case TARGET_OBJECT_MEMORY:
699 return section_table_xfer_memory_partial (readbuf, writebuf,
700 offset, len, xfered_len,
701 core_data->sections,
702 core_data->sections_end,
703 NULL);
704
705 case TARGET_OBJECT_AUXV:
706 if (readbuf)
707 {
708 /* When the aux vector is stored in core file, BFD
709 represents this with a fake section called ".auxv". */
710
711 struct bfd_section *section;
712 bfd_size_type size;
713
714 section = bfd_get_section_by_name (core_bfd, ".auxv");
715 if (section == NULL)
716 return TARGET_XFER_E_IO;
717
718 size = bfd_section_size (core_bfd, section);
719 if (offset >= size)
720 return TARGET_XFER_EOF;
721 size -= offset;
722 if (size > len)
723 size = len;
724
725 if (size == 0)
726 return TARGET_XFER_EOF;
727 if (!bfd_get_section_contents (core_bfd, section, readbuf,
728 (file_ptr) offset, size))
729 {
730 warning (_("Couldn't read NT_AUXV note in core file."));
731 return TARGET_XFER_E_IO;
732 }
733
734 *xfered_len = (ULONGEST) size;
735 return TARGET_XFER_OK;
736 }
737 return TARGET_XFER_E_IO;
738
739 case TARGET_OBJECT_WCOOKIE:
740 if (readbuf)
741 {
742 /* When the StackGhost cookie is stored in core file, BFD
743 represents this with a fake section called
744 ".wcookie". */
745
746 struct bfd_section *section;
747 bfd_size_type size;
748
749 section = bfd_get_section_by_name (core_bfd, ".wcookie");
750 if (section == NULL)
751 return TARGET_XFER_E_IO;
752
753 size = bfd_section_size (core_bfd, section);
754 if (offset >= size)
755 return TARGET_XFER_EOF;
756 size -= offset;
757 if (size > len)
758 size = len;
759
760 if (size == 0)
761 return TARGET_XFER_EOF;
762 if (!bfd_get_section_contents (core_bfd, section, readbuf,
763 (file_ptr) offset, size))
764 {
765 warning (_("Couldn't read StackGhost cookie in core file."));
766 return TARGET_XFER_E_IO;
767 }
768
769 *xfered_len = (ULONGEST) size;
770 return TARGET_XFER_OK;
771
772 }
773 return TARGET_XFER_E_IO;
774
775 case TARGET_OBJECT_LIBRARIES:
776 if (core_gdbarch
777 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
778 {
779 if (writebuf)
780 return TARGET_XFER_E_IO;
781 else
782 {
783 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
784 readbuf,
785 offset, len);
786
787 if (*xfered_len == 0)
788 return TARGET_XFER_EOF;
789 else
790 return TARGET_XFER_OK;
791 }
792 }
793 /* FALL THROUGH */
794
795 case TARGET_OBJECT_LIBRARIES_AIX:
796 if (core_gdbarch
797 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
798 {
799 if (writebuf)
800 return TARGET_XFER_E_IO;
801 else
802 {
803 *xfered_len
804 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
805 readbuf, offset,
806 len);
807
808 if (*xfered_len == 0)
809 return TARGET_XFER_EOF;
810 else
811 return TARGET_XFER_OK;
812 }
813 }
814 /* FALL THROUGH */
815
816 case TARGET_OBJECT_SPU:
817 if (readbuf && annex)
818 {
819 /* When the SPU contexts are stored in a core file, BFD
820 represents this with a fake section called
821 "SPU/<annex>". */
822
823 struct bfd_section *section;
824 bfd_size_type size;
825 char sectionstr[100];
826
827 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
828
829 section = bfd_get_section_by_name (core_bfd, sectionstr);
830 if (section == NULL)
831 return TARGET_XFER_E_IO;
832
833 size = bfd_section_size (core_bfd, section);
834 if (offset >= size)
835 return TARGET_XFER_EOF;
836 size -= offset;
837 if (size > len)
838 size = len;
839
840 if (size == 0)
841 return TARGET_XFER_EOF;
842 if (!bfd_get_section_contents (core_bfd, section, readbuf,
843 (file_ptr) offset, size))
844 {
845 warning (_("Couldn't read SPU section in core file."));
846 return TARGET_XFER_E_IO;
847 }
848
849 *xfered_len = (ULONGEST) size;
850 return TARGET_XFER_OK;
851 }
852 else if (readbuf)
853 {
854 /* NULL annex requests list of all present spuids. */
855 struct spuid_list list;
856
857 list.buf = readbuf;
858 list.offset = offset;
859 list.len = len;
860 list.pos = 0;
861 list.written = 0;
862 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
863
864 if (list.written == 0)
865 return TARGET_XFER_EOF;
866 else
867 {
868 *xfered_len = (ULONGEST) list.written;
869 return TARGET_XFER_OK;
870 }
871 }
872 return TARGET_XFER_E_IO;
873
874 case TARGET_OBJECT_SIGNAL_INFO:
875 if (readbuf)
876 {
877 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
878
879 if (l > 0)
880 {
881 *xfered_len = len;
882 return TARGET_XFER_OK;
883 }
884 }
885 return TARGET_XFER_E_IO;
886
887 default:
888 return ops->beneath->to_xfer_partial (ops->beneath, object,
889 annex, readbuf,
890 writebuf, offset, len,
891 xfered_len);
892 }
893 }
894
895 \f
896 /* If mourn is being called in all the right places, this could be say
897 `gdb internal error' (since generic_mourn calls
898 breakpoint_init_inferior). */
899
900 static int
901 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
902 struct bp_target_info *bp_tgt)
903 {
904 return 0;
905 }
906
907 /* Implement the to_remove_breakpoint method. */
908
909 static int
910 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
911 struct bp_target_info *bp_tgt,
912 enum remove_bp_reason reason)
913 {
914 return 0;
915 }
916
917
918 /* Okay, let's be honest: threads gleaned from a core file aren't
919 exactly lively, are they? On the other hand, if we don't claim
920 that each & every one is alive, then we don't get any of them
921 to appear in an "info thread" command, which is quite a useful
922 behaviour.
923 */
924 static int
925 core_thread_alive (struct target_ops *ops, ptid_t ptid)
926 {
927 return 1;
928 }
929
930 /* Ask the current architecture what it knows about this core file.
931 That will be used, in turn, to pick a better architecture. This
932 wrapper could be avoided if targets got a chance to specialize
933 core_ops. */
934
935 static const struct target_desc *
936 core_read_description (struct target_ops *target)
937 {
938 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
939 {
940 const struct target_desc *result;
941
942 result = gdbarch_core_read_description (core_gdbarch,
943 target, core_bfd);
944 if (result != NULL)
945 return result;
946 }
947
948 return target->beneath->to_read_description (target->beneath);
949 }
950
951 static const char *
952 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
953 {
954 static char buf[64];
955 struct inferior *inf;
956 int pid;
957
958 /* The preferred way is to have a gdbarch/OS specific
959 implementation. */
960 if (core_gdbarch
961 && gdbarch_core_pid_to_str_p (core_gdbarch))
962 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
963
964 /* Otherwise, if we don't have one, we'll just fallback to
965 "process", with normal_pid_to_str. */
966
967 /* Try the LWPID field first. */
968 pid = ptid_get_lwp (ptid);
969 if (pid != 0)
970 return normal_pid_to_str (pid_to_ptid (pid));
971
972 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
973 only if it isn't a fake PID. */
974 inf = find_inferior_ptid (ptid);
975 if (inf != NULL && !inf->fake_pid_p)
976 return normal_pid_to_str (ptid);
977
978 /* No luck. We simply don't have a valid PID to print. */
979 xsnprintf (buf, sizeof buf, "<main task>");
980 return buf;
981 }
982
983 static const char *
984 core_thread_name (struct target_ops *self, struct thread_info *thr)
985 {
986 if (core_gdbarch
987 && gdbarch_core_thread_name_p (core_gdbarch))
988 return gdbarch_core_thread_name (core_gdbarch, thr);
989 return NULL;
990 }
991
992 static int
993 core_has_memory (struct target_ops *ops)
994 {
995 return (core_bfd != NULL);
996 }
997
998 static int
999 core_has_stack (struct target_ops *ops)
1000 {
1001 return (core_bfd != NULL);
1002 }
1003
1004 static int
1005 core_has_registers (struct target_ops *ops)
1006 {
1007 return (core_bfd != NULL);
1008 }
1009
1010 /* Implement the to_info_proc method. */
1011
1012 static void
1013 core_info_proc (struct target_ops *ops, const char *args,
1014 enum info_proc_what request)
1015 {
1016 struct gdbarch *gdbarch = get_current_arch ();
1017
1018 /* Since this is the core file target, call the 'core_info_proc'
1019 method on gdbarch, not 'info_proc'. */
1020 if (gdbarch_core_info_proc_p (gdbarch))
1021 gdbarch_core_info_proc (gdbarch, args, request);
1022 }
1023
1024 /* Fill in core_ops with its defined operations and properties. */
1025
1026 static void
1027 init_core_ops (void)
1028 {
1029 core_ops.to_shortname = "core";
1030 core_ops.to_longname = "Local core dump file";
1031 core_ops.to_doc =
1032 "Use a core file as a target. Specify the filename of the core file.";
1033 core_ops.to_open = core_open;
1034 core_ops.to_close = core_close;
1035 core_ops.to_detach = core_detach;
1036 core_ops.to_fetch_registers = get_core_registers;
1037 core_ops.to_xfer_partial = core_xfer_partial;
1038 core_ops.to_files_info = core_files_info;
1039 core_ops.to_insert_breakpoint = ignore;
1040 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1041 core_ops.to_thread_alive = core_thread_alive;
1042 core_ops.to_read_description = core_read_description;
1043 core_ops.to_pid_to_str = core_pid_to_str;
1044 core_ops.to_thread_name = core_thread_name;
1045 core_ops.to_stratum = process_stratum;
1046 core_ops.to_has_memory = core_has_memory;
1047 core_ops.to_has_stack = core_has_stack;
1048 core_ops.to_has_registers = core_has_registers;
1049 core_ops.to_info_proc = core_info_proc;
1050 core_ops.to_magic = OPS_MAGIC;
1051
1052 if (core_target)
1053 internal_error (__FILE__, __LINE__,
1054 _("init_core_ops: core target already exists (\"%s\")."),
1055 core_target->to_longname);
1056 core_target = &core_ops;
1057 }
1058
1059 void
1060 _initialize_corelow (void)
1061 {
1062 init_core_ops ();
1063
1064 add_target_with_completer (&core_ops, filename_completer);
1065 }
This page took 0.051483 seconds and 5 git commands to generate.