* gdbtypes.h (builtin_type_f_character, builtin_type_f_logical,
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dwarf2-frame.h"
32 #include "symtab.h"
33 #include "inferior.h"
34 #include "gdbtypes.h"
35 #include "gdbcore.h"
36 #include "gdbcmd.h"
37 #include "target.h"
38 #include "value.h"
39 #include "opcode/cris.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "gdb_assert.h"
43
44 /* To get entry_point_address. */
45 #include "objfiles.h"
46
47 #include "solib.h" /* Support for shared libraries. */
48 #include "solib-svr4.h"
49 #include "gdb_string.h"
50 #include "dis-asm.h"
51
52 enum cris_num_regs
53 {
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
55 NUM_FREGS = 0,
56
57 /* There are 16 general registers. */
58 NUM_GENREGS = 16,
59
60 /* There are 16 special registers. */
61 NUM_SPECREGS = 16,
62
63 /* CRISv32 has a pseudo PC register, not noted here. */
64
65 /* CRISv32 has 16 support registers. */
66 NUM_SUPPREGS = 16
67 };
68
69 /* Register numbers of various important registers.
70 CRIS_FP_REGNUM Contains address of executing stack frame.
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
81
82 enum cris_regnums
83 {
84 /* Enums with respect to the general registers, valid for all
85 CRIS versions. The frame pointer is always in R8. */
86 CRIS_FP_REGNUM = 8,
87 /* ABI related registers. */
88 STR_REGNUM = 9,
89 RET_REGNUM = 10,
90 ARG1_REGNUM = 10,
91 ARG2_REGNUM = 11,
92 ARG3_REGNUM = 12,
93 ARG4_REGNUM = 13,
94
95 /* Registers which happen to be common. */
96 VR_REGNUM = 17,
97 MOF_REGNUM = 23,
98 SRP_REGNUM = 27,
99
100 /* CRISv10 et. al. specific registers. */
101 P0_REGNUM = 16,
102 P4_REGNUM = 20,
103 CCR_REGNUM = 21,
104 P8_REGNUM = 24,
105 IBR_REGNUM = 25,
106 IRP_REGNUM = 26,
107 BAR_REGNUM = 28,
108 DCCR_REGNUM = 29,
109 BRP_REGNUM = 30,
110 USP_REGNUM = 31,
111
112 /* CRISv32 specific registers. */
113 ACR_REGNUM = 15,
114 BZ_REGNUM = 16,
115 PID_REGNUM = 18,
116 SRS_REGNUM = 19,
117 WZ_REGNUM = 20,
118 EXS_REGNUM = 21,
119 EDA_REGNUM = 22,
120 DZ_REGNUM = 24,
121 EBP_REGNUM = 25,
122 ERP_REGNUM = 26,
123 NRP_REGNUM = 28,
124 CCS_REGNUM = 29,
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 SPC_REGNUM = 31,
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
128
129 S0_REGNUM = 33,
130 S1_REGNUM = 34,
131 S2_REGNUM = 35,
132 S3_REGNUM = 36,
133 S4_REGNUM = 37,
134 S5_REGNUM = 38,
135 S6_REGNUM = 39,
136 S7_REGNUM = 40,
137 S8_REGNUM = 41,
138 S9_REGNUM = 42,
139 S10_REGNUM = 43,
140 S11_REGNUM = 44,
141 S12_REGNUM = 45,
142 S13_REGNUM = 46,
143 S14_REGNUM = 47,
144 S15_REGNUM = 48,
145 };
146
147 extern const struct cris_spec_reg cris_spec_regs[];
148
149 /* CRIS version, set via the user command 'set cris-version'. Affects
150 register names and sizes. */
151 static int usr_cmd_cris_version;
152
153 /* Indicates whether to trust the above variable. */
154 static int usr_cmd_cris_version_valid = 0;
155
156 static const char cris_mode_normal[] = "normal";
157 static const char cris_mode_guru[] = "guru";
158 static const char *cris_modes[] = {
159 cris_mode_normal,
160 cris_mode_guru,
161 0
162 };
163
164 /* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166 static const char *usr_cmd_cris_mode = cris_mode_normal;
167
168 /* Whether to make use of Dwarf-2 CFI (default on). */
169 static int usr_cmd_cris_dwarf2_cfi = 1;
170
171 /* CRIS architecture specific information. */
172 struct gdbarch_tdep
173 {
174 int cris_version;
175 const char *cris_mode;
176 int cris_dwarf2_cfi;
177 };
178
179 /* Functions for accessing target dependent data. */
180
181 static int
182 cris_version (void)
183 {
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
185 }
186
187 static const char *
188 cris_mode (void)
189 {
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
191 }
192
193 /* Sigtramp identification code copied from i386-linux-tdep.c. */
194
195 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196 #define SIGTRAMP_OFFSET0 0
197 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
198 #define SIGTRAMP_OFFSET1 4
199
200 static const unsigned short sigtramp_code[] =
201 {
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
204 };
205
206 #define SIGTRAMP_LEN (sizeof sigtramp_code)
207
208 /* Note: same length as normal sigtramp code. */
209
210 static const unsigned short rt_sigtramp_code[] =
211 {
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
214 };
215
216 /* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
218
219 static CORE_ADDR
220 cris_sigtramp_start (struct frame_info *next_frame)
221 {
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
223 gdb_byte buf[SIGTRAMP_LEN];
224
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
226 return 0;
227
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
229 {
230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
231 return 0;
232
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
235 return 0;
236 }
237
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
239 return 0;
240
241 return pc;
242 }
243
244 /* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
246
247 static CORE_ADDR
248 cris_rt_sigtramp_start (struct frame_info *next_frame)
249 {
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
251 gdb_byte buf[SIGTRAMP_LEN];
252
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
254 return 0;
255
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
257 {
258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
259 return 0;
260
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
263 return 0;
264 }
265
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
267 return 0;
268
269 return pc;
270 }
271
272 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
274
275 static CORE_ADDR
276 cris_sigcontext_addr (struct frame_info *next_frame)
277 {
278 CORE_ADDR pc;
279 CORE_ADDR sp;
280 char buf[4];
281
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
284
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
287 if (pc)
288 {
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
291 it already. */
292 return sp;
293 }
294
295 pc = cris_rt_sigtramp_start (next_frame);
296 if (pc)
297 {
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
300 Magic digging:
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
303 return (sp + 156);
304 }
305
306 error (_("Couldn't recognize signal trampoline."));
307 return 0;
308 }
309
310 struct cris_unwind_cache
311 {
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
314 CORE_ADDR prev_sp;
315 /* The frame's base, optionally used by the high-level debug info. */
316 CORE_ADDR base;
317 int size;
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
320 pointer). */
321 LONGEST sp_offset;
322 LONGEST r8_offset;
323 int uses_frame;
324
325 /* From old frame_extra_info struct. */
326 CORE_ADDR return_pc;
327 int leaf_function;
328
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
331 };
332
333 static struct cris_unwind_cache *
334 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
335 void **this_cache)
336 {
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
390 }
391 else
392 {
393 /* CRISv32. */
394 /* R0 to R13 are stored in order at offset (1 * 4) in
395 struct pt_regs. */
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
413
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
419 }
420
421 return info;
422 }
423
424 static void
425 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
427 {
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
431 }
432
433 /* Forward declaration. */
434
435 static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
439 int *realnump, gdb_byte *bufferp);
440 static void
441 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 void **this_cache,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
445 int *realnump, gdb_byte *valuep)
446 {
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
451 }
452
453 static const struct frame_unwind cris_sigtramp_frame_unwind =
454 {
455 SIGTRAMP_FRAME,
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
458 };
459
460 static const struct frame_unwind *
461 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462 {
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
466
467 return NULL;
468 }
469
470 int
471 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
473 {
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 ULONGEST erp;
476 int ret = 0;
477 char buf[4];
478
479 if (cris_mode () == cris_mode_guru)
480 {
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
482 }
483 else
484 {
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
486 }
487
488 erp = extract_unsigned_integer (buf, 4);
489
490 if (erp & 0x1)
491 {
492 /* In delay slot - check if there's a breakpoint at the preceding
493 instruction. */
494 if (breakpoint_here_p (erp & ~0x1))
495 ret = 1;
496 }
497 return ret;
498 }
499
500 /* Hardware watchpoint support. */
501
502 /* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
504
505 int
506 cris_can_use_hardware_watchpoint (int type, int count, int other)
507 {
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511
512 if (tdep->cris_version != 32)
513 return 0;
514 else
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
519 }
520
521 /* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
523
524 int
525 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
526 {
527 return 1;
528 }
529
530 /* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
532 zero. */
533
534 CORE_ADDR
535 cris_stopped_data_address (void)
536 {
537 CORE_ADDR eda;
538 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
539 return eda;
540 }
541
542 /* The instruction environment needed to find single-step breakpoints. */
543
544 typedef
545 struct instruction_environment
546 {
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
552 int branch_found;
553 int prefix_found;
554 int invalid;
555 int slot_needed;
556 int delay_slot_pc_active;
557 int xflag_found;
558 int disable_interrupt;
559 } inst_env_type;
560
561 /* Machine-dependencies in CRIS for opcodes. */
562
563 /* Instruction sizes. */
564 enum cris_instruction_sizes
565 {
566 INST_BYTE_SIZE = 0,
567 INST_WORD_SIZE = 1,
568 INST_DWORD_SIZE = 2
569 };
570
571 /* Addressing modes. */
572 enum cris_addressing_modes
573 {
574 REGISTER_MODE = 1,
575 INDIRECT_MODE = 2,
576 AUTOINC_MODE = 3
577 };
578
579 /* Prefix addressing modes. */
580 enum cris_prefix_addressing_modes
581 {
582 PREFIX_INDEX_MODE = 2,
583 PREFIX_ASSIGN_MODE = 3,
584
585 /* Handle immediate byte offset addressing mode prefix format. */
586 PREFIX_OFFSET_MODE = 2
587 };
588
589 /* Masks for opcodes. */
590 enum cris_opcode_masks
591 {
592 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
593 SIGNED_EXTEND_BIT_MASK = 0x2,
594 SIGNED_BYTE_MASK = 0x80,
595 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
596 SIGNED_WORD_MASK = 0x8000,
597 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
598 SIGNED_DWORD_MASK = 0x80000000,
599 SIGNED_QUICK_VALUE_MASK = 0x20,
600 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
601 };
602
603 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
604 Bit 15 - 12 Operand2
605 11 - 10 Mode
606 9 - 6 Opcode
607 5 - 4 Size
608 3 - 0 Operand1 */
609
610 static int
611 cris_get_operand2 (unsigned short insn)
612 {
613 return ((insn & 0xF000) >> 12);
614 }
615
616 static int
617 cris_get_mode (unsigned short insn)
618 {
619 return ((insn & 0x0C00) >> 10);
620 }
621
622 static int
623 cris_get_opcode (unsigned short insn)
624 {
625 return ((insn & 0x03C0) >> 6);
626 }
627
628 static int
629 cris_get_size (unsigned short insn)
630 {
631 return ((insn & 0x0030) >> 4);
632 }
633
634 static int
635 cris_get_operand1 (unsigned short insn)
636 {
637 return (insn & 0x000F);
638 }
639
640 /* Additional functions in order to handle opcodes. */
641
642 static int
643 cris_get_quick_value (unsigned short insn)
644 {
645 return (insn & 0x003F);
646 }
647
648 static int
649 cris_get_bdap_quick_offset (unsigned short insn)
650 {
651 return (insn & 0x00FF);
652 }
653
654 static int
655 cris_get_branch_short_offset (unsigned short insn)
656 {
657 return (insn & 0x00FF);
658 }
659
660 static int
661 cris_get_asr_shift_steps (unsigned long value)
662 {
663 return (value & 0x3F);
664 }
665
666 static int
667 cris_get_clear_size (unsigned short insn)
668 {
669 return ((insn) & 0xC000);
670 }
671
672 static int
673 cris_is_signed_extend_bit_on (unsigned short insn)
674 {
675 return (((insn) & 0x20) == 0x20);
676 }
677
678 static int
679 cris_is_xflag_bit_on (unsigned short insn)
680 {
681 return (((insn) & 0x1000) == 0x1000);
682 }
683
684 static void
685 cris_set_size_to_dword (unsigned short *insn)
686 {
687 *insn &= 0xFFCF;
688 *insn |= 0x20;
689 }
690
691 static signed char
692 cris_get_signed_offset (unsigned short insn)
693 {
694 return ((signed char) (insn & 0x00FF));
695 }
696
697 /* Calls an op function given the op-type, working on the insn and the
698 inst_env. */
699 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
700
701 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
702 struct gdbarch_list *);
703
704 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
705
706 static void set_cris_version (char *ignore_args, int from_tty,
707 struct cmd_list_element *c);
708
709 static void set_cris_mode (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
711
712 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
714
715 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
716 struct frame_info *next_frame,
717 struct cris_unwind_cache *info);
718
719 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
722
723 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
724 struct frame_info *next_frame);
725
726 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
728
729 /* When arguments must be pushed onto the stack, they go on in reverse
730 order. The below implements a FILO (stack) to do this.
731 Copied from d10v-tdep.c. */
732
733 struct stack_item
734 {
735 int len;
736 struct stack_item *prev;
737 void *data;
738 };
739
740 static struct stack_item *
741 push_stack_item (struct stack_item *prev, void *contents, int len)
742 {
743 struct stack_item *si;
744 si = xmalloc (sizeof (struct stack_item));
745 si->data = xmalloc (len);
746 si->len = len;
747 si->prev = prev;
748 memcpy (si->data, contents, len);
749 return si;
750 }
751
752 static struct stack_item *
753 pop_stack_item (struct stack_item *si)
754 {
755 struct stack_item *dead = si;
756 si = si->prev;
757 xfree (dead->data);
758 xfree (dead);
759 return si;
760 }
761
762 /* Put here the code to store, into fi->saved_regs, the addresses of
763 the saved registers of frame described by FRAME_INFO. This
764 includes special registers such as pc and fp saved in special ways
765 in the stack frame. sp is even more special: the address we return
766 for it IS the sp for the next frame. */
767
768 struct cris_unwind_cache *
769 cris_frame_unwind_cache (struct frame_info *next_frame,
770 void **this_prologue_cache)
771 {
772 CORE_ADDR pc;
773 struct cris_unwind_cache *info;
774 int i;
775
776 if ((*this_prologue_cache))
777 return (*this_prologue_cache);
778
779 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
780 (*this_prologue_cache) = info;
781 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
782
783 /* Zero all fields. */
784 info->prev_sp = 0;
785 info->base = 0;
786 info->size = 0;
787 info->sp_offset = 0;
788 info->r8_offset = 0;
789 info->uses_frame = 0;
790 info->return_pc = 0;
791 info->leaf_function = 0;
792
793 /* Prologue analysis does the rest... */
794 if (cris_version () == 32)
795 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
796 next_frame, info);
797 else
798 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
799 next_frame, info);
800
801 return info;
802 }
803
804 /* Given a GDB frame, determine the address of the calling function's
805 frame. This will be used to create a new GDB frame struct. */
806
807 static void
808 cris_frame_this_id (struct frame_info *next_frame,
809 void **this_prologue_cache,
810 struct frame_id *this_id)
811 {
812 struct cris_unwind_cache *info
813 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
814 CORE_ADDR base;
815 CORE_ADDR func;
816 struct frame_id id;
817
818 /* The FUNC is easy. */
819 func = frame_func_unwind (next_frame, NORMAL_FRAME);
820
821 /* Hopefully the prologue analysis either correctly determined the
822 frame's base (which is the SP from the previous frame), or set
823 that base to "NULL". */
824 base = info->prev_sp;
825 if (base == 0)
826 return;
827
828 id = frame_id_build (base, func);
829
830 (*this_id) = id;
831 }
832
833 static void
834 cris_frame_prev_register (struct frame_info *next_frame,
835 void **this_prologue_cache,
836 int regnum, int *optimizedp,
837 enum lval_type *lvalp, CORE_ADDR *addrp,
838 int *realnump, gdb_byte *bufferp)
839 {
840 struct cris_unwind_cache *info
841 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
842 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
843 optimizedp, lvalp, addrp, realnump, bufferp);
844 }
845
846 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
847 dummy frame. The frame ID's base needs to match the TOS value
848 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
849 breakpoint. */
850
851 static struct frame_id
852 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
853 {
854 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
855 frame_pc_unwind (next_frame));
856 }
857
858 static CORE_ADDR
859 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
860 {
861 /* Align to the size of an instruction (so that they can safely be
862 pushed onto the stack). */
863 return sp & ~3;
864 }
865
866 static CORE_ADDR
867 cris_push_dummy_code (struct gdbarch *gdbarch,
868 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
869 struct value **args, int nargs,
870 struct type *value_type,
871 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
872 struct regcache *regcache)
873 {
874 /* Allocate space sufficient for a breakpoint. */
875 sp = (sp - 4) & ~3;
876 /* Store the address of that breakpoint */
877 *bp_addr = sp;
878 /* CRIS always starts the call at the callee's entry point. */
879 *real_pc = funaddr;
880 return sp;
881 }
882
883 static CORE_ADDR
884 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
885 struct regcache *regcache, CORE_ADDR bp_addr,
886 int nargs, struct value **args, CORE_ADDR sp,
887 int struct_return, CORE_ADDR struct_addr)
888 {
889 int stack_alloc;
890 int stack_offset;
891 int argreg;
892 int argnum;
893
894 CORE_ADDR regval;
895
896 /* The function's arguments and memory allocated by gdb for the arguments to
897 point at reside in separate areas on the stack.
898 Both frame pointers grow toward higher addresses. */
899 CORE_ADDR fp_arg;
900 CORE_ADDR fp_mem;
901
902 struct stack_item *si = NULL;
903
904 /* Push the return address. */
905 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
906
907 /* Are we returning a value using a structure return or a normal value
908 return? struct_addr is the address of the reserved space for the return
909 structure to be written on the stack. */
910 if (struct_return)
911 {
912 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
913 }
914
915 /* Now load as many as possible of the first arguments into registers,
916 and push the rest onto the stack. */
917 argreg = ARG1_REGNUM;
918 stack_offset = 0;
919
920 for (argnum = 0; argnum < nargs; argnum++)
921 {
922 int len;
923 char *val;
924 int reg_demand;
925 int i;
926
927 len = TYPE_LENGTH (value_type (args[argnum]));
928 val = (char *) value_contents (args[argnum]);
929
930 /* How may registers worth of storage do we need for this argument? */
931 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
932
933 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
934 {
935 /* Data passed by value. Fits in available register(s). */
936 for (i = 0; i < reg_demand; i++)
937 {
938 regcache_cooked_write_unsigned (regcache, argreg,
939 *(unsigned long *) val);
940 argreg++;
941 val += 4;
942 }
943 }
944 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
945 {
946 /* Data passed by value. Does not fit in available register(s).
947 Use the register(s) first, then the stack. */
948 for (i = 0; i < reg_demand; i++)
949 {
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg,
953 *(unsigned long *) val);
954 argreg++;
955 val += 4;
956 }
957 else
958 {
959 /* Push item for later so that pushed arguments
960 come in the right order. */
961 si = push_stack_item (si, val, 4);
962 val += 4;
963 }
964 }
965 }
966 else if (len > (2 * 4))
967 {
968 /* FIXME */
969 internal_error (__FILE__, __LINE__, _("We don't do this"));
970 }
971 else
972 {
973 /* Data passed by value. No available registers. Put it on
974 the stack. */
975 si = push_stack_item (si, val, len);
976 }
977 }
978
979 while (si)
980 {
981 /* fp_arg must be word-aligned (i.e., don't += len) to match
982 the function prologue. */
983 sp = (sp - si->len) & ~3;
984 write_memory (sp, si->data, si->len);
985 si = pop_stack_item (si);
986 }
987
988 /* Finally, update the SP register. */
989 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
990
991 return sp;
992 }
993
994 static const struct frame_unwind cris_frame_unwind =
995 {
996 NORMAL_FRAME,
997 cris_frame_this_id,
998 cris_frame_prev_register
999 };
1000
1001 const struct frame_unwind *
1002 cris_frame_sniffer (struct frame_info *next_frame)
1003 {
1004 return &cris_frame_unwind;
1005 }
1006
1007 static CORE_ADDR
1008 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1009 {
1010 struct cris_unwind_cache *info
1011 = cris_frame_unwind_cache (next_frame, this_cache);
1012 return info->base;
1013 }
1014
1015 static const struct frame_base cris_frame_base =
1016 {
1017 &cris_frame_unwind,
1018 cris_frame_base_address,
1019 cris_frame_base_address,
1020 cris_frame_base_address
1021 };
1022
1023 /* Frames information. The definition of the struct frame_info is
1024
1025 CORE_ADDR frame
1026 CORE_ADDR pc
1027 enum frame_type type;
1028 CORE_ADDR return_pc
1029 int leaf_function
1030
1031 If the compilation option -fno-omit-frame-pointer is present the
1032 variable frame will be set to the content of R8 which is the frame
1033 pointer register.
1034
1035 The variable pc contains the address where execution is performed
1036 in the present frame. The innermost frame contains the current content
1037 of the register PC. All other frames contain the content of the
1038 register PC in the next frame.
1039
1040 The variable `type' indicates the frame's type: normal, SIGTRAMP
1041 (associated with a signal handler), dummy (associated with a dummy
1042 frame).
1043
1044 The variable return_pc contains the address where execution should be
1045 resumed when the present frame has finished, the return address.
1046
1047 The variable leaf_function is 1 if the return address is in the register
1048 SRP, and 0 if it is on the stack.
1049
1050 Prologue instructions C-code.
1051 The prologue may consist of (-fno-omit-frame-pointer)
1052 1) 2)
1053 push srp
1054 push r8 push r8
1055 move.d sp,r8 move.d sp,r8
1056 subq X,sp subq X,sp
1057 movem rY,[sp] movem rY,[sp]
1058 move.S rZ,[r8-U] move.S rZ,[r8-U]
1059
1060 where 1 is a non-terminal function, and 2 is a leaf-function.
1061
1062 Note that this assumption is extremely brittle, and will break at the
1063 slightest change in GCC's prologue.
1064
1065 If local variables are declared or register contents are saved on stack
1066 the subq-instruction will be present with X as the number of bytes
1067 needed for storage. The reshuffle with respect to r8 may be performed
1068 with any size S (b, w, d) and any of the general registers Z={0..13}.
1069 The offset U should be representable by a signed 8-bit value in all cases.
1070 Thus, the prefix word is assumed to be immediate byte offset mode followed
1071 by another word containing the instruction.
1072
1073 Degenerate cases:
1074 3)
1075 push r8
1076 move.d sp,r8
1077 move.d r8,sp
1078 pop r8
1079
1080 Prologue instructions C++-code.
1081 Case 1) and 2) in the C-code may be followed by
1082
1083 move.d r10,rS ; this
1084 move.d r11,rT ; P1
1085 move.d r12,rU ; P2
1086 move.d r13,rV ; P3
1087 move.S [r8+U],rZ ; P4
1088
1089 if any of the call parameters are stored. The host expects these
1090 instructions to be executed in order to get the call parameters right. */
1091
1092 /* Examine the prologue of a function. The variable ip is the address of
1093 the first instruction of the prologue. The variable limit is the address
1094 of the first instruction after the prologue. The variable fi contains the
1095 information in struct frame_info. The variable frameless_p controls whether
1096 the entire prologue is examined (0) or just enough instructions to
1097 determine that it is a prologue (1). */
1098
1099 static CORE_ADDR
1100 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1101 struct cris_unwind_cache *info)
1102 {
1103 /* Present instruction. */
1104 unsigned short insn;
1105
1106 /* Next instruction, lookahead. */
1107 unsigned short insn_next;
1108 int regno;
1109
1110 /* Is there a push fp? */
1111 int have_fp;
1112
1113 /* Number of byte on stack used for local variables and movem. */
1114 int val;
1115
1116 /* Highest register number in a movem. */
1117 int regsave;
1118
1119 /* move.d r<source_register>,rS */
1120 short source_register;
1121
1122 /* Scan limit. */
1123 int limit;
1124
1125 /* This frame is with respect to a leaf until a push srp is found. */
1126 if (info)
1127 {
1128 info->leaf_function = 1;
1129 }
1130
1131 /* Assume nothing on stack. */
1132 val = 0;
1133 regsave = -1;
1134
1135 /* If we were called without a next_frame, that means we were called
1136 from cris_skip_prologue which already tried to find the end of the
1137 prologue through the symbol information. 64 instructions past current
1138 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1139 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1140
1141 /* Find the prologue instructions. */
1142 while (pc > 0 && pc < limit)
1143 {
1144 insn = read_memory_unsigned_integer (pc, 2);
1145 pc += 2;
1146 if (insn == 0xE1FC)
1147 {
1148 /* push <reg> 32 bit instruction */
1149 insn_next = read_memory_unsigned_integer (pc, 2);
1150 pc += 2;
1151 regno = cris_get_operand2 (insn_next);
1152 if (info)
1153 {
1154 info->sp_offset += 4;
1155 }
1156 /* This check, meant to recognize srp, used to be regno ==
1157 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1158 if (insn_next == 0xBE7E)
1159 {
1160 if (info)
1161 {
1162 info->leaf_function = 0;
1163 }
1164 }
1165 else if (insn_next == 0x8FEE)
1166 {
1167 /* push $r8 */
1168 if (info)
1169 {
1170 info->r8_offset = info->sp_offset;
1171 }
1172 }
1173 }
1174 else if (insn == 0x866E)
1175 {
1176 /* move.d sp,r8 */
1177 if (info)
1178 {
1179 info->uses_frame = 1;
1180 }
1181 continue;
1182 }
1183 else if (cris_get_operand2 (insn) == SP_REGNUM
1184 && cris_get_mode (insn) == 0x0000
1185 && cris_get_opcode (insn) == 0x000A)
1186 {
1187 /* subq <val>,sp */
1188 if (info)
1189 {
1190 info->sp_offset += cris_get_quick_value (insn);
1191 }
1192 }
1193 else if (cris_get_mode (insn) == 0x0002
1194 && cris_get_opcode (insn) == 0x000F
1195 && cris_get_size (insn) == 0x0003
1196 && cris_get_operand1 (insn) == SP_REGNUM)
1197 {
1198 /* movem r<regsave>,[sp] */
1199 regsave = cris_get_operand2 (insn);
1200 }
1201 else if (cris_get_operand2 (insn) == SP_REGNUM
1202 && ((insn & 0x0F00) >> 8) == 0x0001
1203 && (cris_get_signed_offset (insn) < 0))
1204 {
1205 /* Immediate byte offset addressing prefix word with sp as base
1206 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1207 is between 64 and 128.
1208 movem r<regsave>,[sp=sp-<val>] */
1209 if (info)
1210 {
1211 info->sp_offset += -cris_get_signed_offset (insn);
1212 }
1213 insn_next = read_memory_unsigned_integer (pc, 2);
1214 pc += 2;
1215 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1216 && cris_get_opcode (insn_next) == 0x000F
1217 && cris_get_size (insn_next) == 0x0003
1218 && cris_get_operand1 (insn_next) == SP_REGNUM)
1219 {
1220 regsave = cris_get_operand2 (insn_next);
1221 }
1222 else
1223 {
1224 /* The prologue ended before the limit was reached. */
1225 pc -= 4;
1226 break;
1227 }
1228 }
1229 else if (cris_get_mode (insn) == 0x0001
1230 && cris_get_opcode (insn) == 0x0009
1231 && cris_get_size (insn) == 0x0002)
1232 {
1233 /* move.d r<10..13>,r<0..15> */
1234 source_register = cris_get_operand1 (insn);
1235
1236 /* FIXME? In the glibc solibs, the prologue might contain something
1237 like (this example taken from relocate_doit):
1238 move.d $pc,$r0
1239 sub.d 0xfffef426,$r0
1240 which isn't covered by the source_register check below. Question
1241 is whether to add a check for this combo, or make better use of
1242 the limit variable instead. */
1243 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1244 {
1245 /* The prologue ended before the limit was reached. */
1246 pc -= 2;
1247 break;
1248 }
1249 }
1250 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1251 /* The size is a fixed-size. */
1252 && ((insn & 0x0F00) >> 8) == 0x0001
1253 /* A negative offset. */
1254 && (cris_get_signed_offset (insn) < 0))
1255 {
1256 /* move.S rZ,[r8-U] (?) */
1257 insn_next = read_memory_unsigned_integer (pc, 2);
1258 pc += 2;
1259 regno = cris_get_operand2 (insn_next);
1260 if ((regno >= 0 && regno < SP_REGNUM)
1261 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1262 && cris_get_opcode (insn_next) == 0x000F)
1263 {
1264 /* move.S rZ,[r8-U] */
1265 continue;
1266 }
1267 else
1268 {
1269 /* The prologue ended before the limit was reached. */
1270 pc -= 4;
1271 break;
1272 }
1273 }
1274 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1275 /* The size is a fixed-size. */
1276 && ((insn & 0x0F00) >> 8) == 0x0001
1277 /* A positive offset. */
1278 && (cris_get_signed_offset (insn) > 0))
1279 {
1280 /* move.S [r8+U],rZ (?) */
1281 insn_next = read_memory_unsigned_integer (pc, 2);
1282 pc += 2;
1283 regno = cris_get_operand2 (insn_next);
1284 if ((regno >= 0 && regno < SP_REGNUM)
1285 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1286 && cris_get_opcode (insn_next) == 0x0009
1287 && cris_get_operand1 (insn_next) == regno)
1288 {
1289 /* move.S [r8+U],rZ */
1290 continue;
1291 }
1292 else
1293 {
1294 /* The prologue ended before the limit was reached. */
1295 pc -= 4;
1296 break;
1297 }
1298 }
1299 else
1300 {
1301 /* The prologue ended before the limit was reached. */
1302 pc -= 2;
1303 break;
1304 }
1305 }
1306
1307 /* We only want to know the end of the prologue when next_frame and info
1308 are NULL (called from cris_skip_prologue i.e.). */
1309 if (next_frame == NULL && info == NULL)
1310 {
1311 return pc;
1312 }
1313
1314 info->size = info->sp_offset;
1315
1316 /* Compute the previous frame's stack pointer (which is also the
1317 frame's ID's stack address), and this frame's base pointer. */
1318 if (info->uses_frame)
1319 {
1320 ULONGEST this_base;
1321 /* The SP was moved to the FP. This indicates that a new frame
1322 was created. Get THIS frame's FP value by unwinding it from
1323 the next frame. */
1324 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1325 &this_base);
1326 info->base = this_base;
1327 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1328
1329 /* The FP points at the last saved register. Adjust the FP back
1330 to before the first saved register giving the SP. */
1331 info->prev_sp = info->base + info->r8_offset;
1332 }
1333 else
1334 {
1335 ULONGEST this_base;
1336 /* Assume that the FP is this frame's SP but with that pushed
1337 stack space added back. */
1338 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1339 info->base = this_base;
1340 info->prev_sp = info->base + info->size;
1341 }
1342
1343 /* Calculate the addresses for the saved registers on the stack. */
1344 /* FIXME: The address calculation should really be done on the fly while
1345 we're analyzing the prologue (we only hold one regsave value as it is
1346 now). */
1347 val = info->sp_offset;
1348
1349 for (regno = regsave; regno >= 0; regno--)
1350 {
1351 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1352 val -= 4;
1353 }
1354
1355 /* The previous frame's SP needed to be computed. Save the computed
1356 value. */
1357 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1358
1359 if (!info->leaf_function)
1360 {
1361 /* SRP saved on the stack. But where? */
1362 if (info->r8_offset == 0)
1363 {
1364 /* R8 not pushed yet. */
1365 info->saved_regs[SRP_REGNUM].addr = info->base;
1366 }
1367 else
1368 {
1369 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1370 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1371 }
1372 }
1373
1374 /* The PC is found in SRP (the actual register or located on the stack). */
1375 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1376
1377 return pc;
1378 }
1379
1380 static CORE_ADDR
1381 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1382 struct cris_unwind_cache *info)
1383 {
1384 ULONGEST this_base;
1385
1386 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1387 meant to be a full-fledged prologue scanner. It is only needed for
1388 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1389
1390 * PLT stubs (library calls)
1391 * call dummys
1392 * signal trampolines
1393
1394 For those cases, it is assumed that there is no actual prologue; that
1395 the stack pointer is not adjusted, and (as a consequence) the return
1396 address is not pushed onto the stack. */
1397
1398 /* We only want to know the end of the prologue when next_frame and info
1399 are NULL (called from cris_skip_prologue i.e.). */
1400 if (next_frame == NULL && info == NULL)
1401 {
1402 return pc;
1403 }
1404
1405 /* The SP is assumed to be unaltered. */
1406 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1407 info->base = this_base;
1408 info->prev_sp = this_base;
1409
1410 /* The PC is assumed to be found in SRP. */
1411 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1412
1413 return pc;
1414 }
1415
1416 /* Advance pc beyond any function entry prologue instructions at pc
1417 to reach some "real" code. */
1418
1419 /* Given a PC value corresponding to the start of a function, return the PC
1420 of the first instruction after the function prologue. */
1421
1422 static CORE_ADDR
1423 cris_skip_prologue (CORE_ADDR pc)
1424 {
1425 CORE_ADDR func_addr, func_end;
1426 struct symtab_and_line sal;
1427 CORE_ADDR pc_after_prologue;
1428
1429 /* If we have line debugging information, then the end of the prologue
1430 should the first assembly instruction of the first source line. */
1431 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1432 {
1433 sal = find_pc_line (func_addr, 0);
1434 if (sal.end > 0 && sal.end < func_end)
1435 return sal.end;
1436 }
1437
1438 if (cris_version () == 32)
1439 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1440 else
1441 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1442
1443 return pc_after_prologue;
1444 }
1445
1446 static CORE_ADDR
1447 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1448 {
1449 ULONGEST pc;
1450 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1451 return pc;
1452 }
1453
1454 static CORE_ADDR
1455 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1456 {
1457 ULONGEST sp;
1458 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1459 return sp;
1460 }
1461
1462 /* Use the program counter to determine the contents and size of a breakpoint
1463 instruction. It returns a pointer to a string of bytes that encode a
1464 breakpoint instruction, stores the length of the string to *lenptr, and
1465 adjusts pcptr (if necessary) to point to the actual memory location where
1466 the breakpoint should be inserted. */
1467
1468 static const unsigned char *
1469 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1470 {
1471 static unsigned char break8_insn[] = {0x38, 0xe9};
1472 static unsigned char break15_insn[] = {0x3f, 0xe9};
1473 *lenptr = 2;
1474
1475 if (cris_mode () == cris_mode_guru)
1476 return break15_insn;
1477 else
1478 return break8_insn;
1479 }
1480
1481 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1482 0 otherwise. */
1483
1484 static int
1485 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1486 {
1487 int version = cris_version ();
1488
1489 switch (spec_reg.applicable_version)
1490 {
1491 case cris_ver_version_all:
1492 return 1;
1493 case cris_ver_warning:
1494 /* Indeterminate/obsolete. */
1495 return 0;
1496 case cris_ver_v0_3:
1497 return (version >= 0 && version <= 3);
1498 case cris_ver_v3p:
1499 return (version >= 3);
1500 case cris_ver_v8:
1501 return (version == 8 || version == 9);
1502 case cris_ver_v8p:
1503 return (version >= 8);
1504 case cris_ver_v0_10:
1505 return (version >= 0 && version <= 10);
1506 case cris_ver_v3_10:
1507 return (version >= 3 && version <= 10);
1508 case cris_ver_v8_10:
1509 return (version >= 8 && version <= 10);
1510 case cris_ver_v10:
1511 return (version == 10);
1512 case cris_ver_v10p:
1513 return (version >= 10);
1514 case cris_ver_v32p:
1515 return (version >= 32);
1516 default:
1517 /* Invalid cris version. */
1518 return 0;
1519 }
1520 }
1521
1522 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1523 register, -1 for an invalid register. */
1524
1525 static int
1526 cris_register_size (int regno)
1527 {
1528 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1529 int i;
1530 int spec_regno;
1531
1532 if (regno >= 0 && regno < NUM_GENREGS)
1533 {
1534 /* General registers (R0 - R15) are 32 bits. */
1535 return 4;
1536 }
1537 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1538 {
1539 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1540 Adjust regno accordingly. */
1541 spec_regno = regno - NUM_GENREGS;
1542
1543 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1544 {
1545 if (cris_spec_regs[i].number == spec_regno
1546 && cris_spec_reg_applicable (cris_spec_regs[i]))
1547 /* Go with the first applicable register. */
1548 return cris_spec_regs[i].reg_size;
1549 }
1550 /* Special register not applicable to this CRIS version. */
1551 return 0;
1552 }
1553 else if (regno >= PC_REGNUM && regno < gdbarch_num_regs (current_gdbarch))
1554 {
1555 /* This will apply to CRISv32 only where there are additional registers
1556 after the special registers (pseudo PC and support registers). */
1557 return 4;
1558 }
1559
1560
1561 return -1;
1562 }
1563
1564 /* Nonzero if regno should not be fetched from the target. This is the case
1565 for unimplemented (size 0) and non-existant registers. */
1566
1567 static int
1568 cris_cannot_fetch_register (int regno)
1569 {
1570 return ((regno < 0 || regno >= gdbarch_num_regs (current_gdbarch))
1571 || (cris_register_size (regno) == 0));
1572 }
1573
1574 /* Nonzero if regno should not be written to the target, for various
1575 reasons. */
1576
1577 static int
1578 cris_cannot_store_register (int regno)
1579 {
1580 /* There are three kinds of registers we refuse to write to.
1581 1. Those that not implemented.
1582 2. Those that are read-only (depends on the processor mode).
1583 3. Those registers to which a write has no effect.
1584 */
1585
1586 if (regno < 0
1587 || regno >= gdbarch_num_regs (current_gdbarch)
1588 || cris_register_size (regno) == 0)
1589 /* Not implemented. */
1590 return 1;
1591
1592 else if (regno == VR_REGNUM)
1593 /* Read-only. */
1594 return 1;
1595
1596 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1597 /* Writing has no effect. */
1598 return 1;
1599
1600 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1601 agent decide whether they are writable. */
1602
1603 return 0;
1604 }
1605
1606 /* Nonzero if regno should not be fetched from the target. This is the case
1607 for unimplemented (size 0) and non-existant registers. */
1608
1609 static int
1610 crisv32_cannot_fetch_register (int regno)
1611 {
1612 return ((regno < 0 || regno >= gdbarch_num_regs (current_gdbarch))
1613 || (cris_register_size (regno) == 0));
1614 }
1615
1616 /* Nonzero if regno should not be written to the target, for various
1617 reasons. */
1618
1619 static int
1620 crisv32_cannot_store_register (int regno)
1621 {
1622 /* There are three kinds of registers we refuse to write to.
1623 1. Those that not implemented.
1624 2. Those that are read-only (depends on the processor mode).
1625 3. Those registers to which a write has no effect.
1626 */
1627
1628 if (regno < 0
1629 || regno >= gdbarch_num_regs (current_gdbarch)
1630 || cris_register_size (regno) == 0)
1631 /* Not implemented. */
1632 return 1;
1633
1634 else if (regno == VR_REGNUM)
1635 /* Read-only. */
1636 return 1;
1637
1638 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1639 /* Writing has no effect. */
1640 return 1;
1641
1642 /* Many special registers are read-only in user mode. Let the debug
1643 agent decide whether they are writable. */
1644
1645 return 0;
1646 }
1647
1648 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1649 of data in register regno. */
1650
1651 static struct type *
1652 cris_register_type (struct gdbarch *gdbarch, int regno)
1653 {
1654 if (regno == PC_REGNUM)
1655 return builtin_type_void_func_ptr;
1656 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1657 return builtin_type_void_data_ptr;
1658 else if ((regno >= 0 && regno < SP_REGNUM)
1659 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1660 /* Note: R8 taken care of previous clause. */
1661 return builtin_type_uint32;
1662 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1663 return builtin_type_uint16;
1664 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1665 return builtin_type_uint8;
1666 else
1667 /* Invalid (unimplemented) register. */
1668 return builtin_type_int0;
1669 }
1670
1671 static struct type *
1672 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1673 {
1674 if (regno == PC_REGNUM)
1675 return builtin_type_void_func_ptr;
1676 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1677 return builtin_type_void_data_ptr;
1678 else if ((regno >= 0 && regno <= ACR_REGNUM)
1679 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1680 || (regno == PID_REGNUM)
1681 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1682 /* Note: R8 and SP taken care of by previous clause. */
1683 return builtin_type_uint32;
1684 else if (regno == WZ_REGNUM)
1685 return builtin_type_uint16;
1686 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1687 return builtin_type_uint8;
1688 else
1689 {
1690 /* Invalid (unimplemented) register. Should not happen as there are
1691 no unimplemented CRISv32 registers. */
1692 warning (_("crisv32_register_type: unknown regno %d"), regno);
1693 return builtin_type_int0;
1694 }
1695 }
1696
1697 /* Stores a function return value of type type, where valbuf is the address
1698 of the value to be stored. */
1699
1700 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1701
1702 static void
1703 cris_store_return_value (struct type *type, struct regcache *regcache,
1704 const void *valbuf)
1705 {
1706 ULONGEST val;
1707 int len = TYPE_LENGTH (type);
1708
1709 if (len <= 4)
1710 {
1711 /* Put the return value in R10. */
1712 val = extract_unsigned_integer (valbuf, len);
1713 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1714 }
1715 else if (len <= 8)
1716 {
1717 /* Put the return value in R10 and R11. */
1718 val = extract_unsigned_integer (valbuf, 4);
1719 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1720 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1721 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1722 }
1723 else
1724 error (_("cris_store_return_value: type length too large."));
1725 }
1726
1727 /* Return the name of register regno as a string. Return NULL for an invalid or
1728 unimplemented register. */
1729
1730 static const char *
1731 cris_special_register_name (int regno)
1732 {
1733 int spec_regno;
1734 int i;
1735
1736 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1737 Adjust regno accordingly. */
1738 spec_regno = regno - NUM_GENREGS;
1739
1740 /* Assume nothing about the layout of the cris_spec_regs struct
1741 when searching. */
1742 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1743 {
1744 if (cris_spec_regs[i].number == spec_regno
1745 && cris_spec_reg_applicable (cris_spec_regs[i]))
1746 /* Go with the first applicable register. */
1747 return cris_spec_regs[i].name;
1748 }
1749 /* Special register not applicable to this CRIS version. */
1750 return NULL;
1751 }
1752
1753 static const char *
1754 cris_register_name (int regno)
1755 {
1756 static char *cris_genreg_names[] =
1757 { "r0", "r1", "r2", "r3", \
1758 "r4", "r5", "r6", "r7", \
1759 "r8", "r9", "r10", "r11", \
1760 "r12", "r13", "sp", "pc" };
1761
1762 if (regno >= 0 && regno < NUM_GENREGS)
1763 {
1764 /* General register. */
1765 return cris_genreg_names[regno];
1766 }
1767 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (current_gdbarch))
1768 {
1769 return cris_special_register_name (regno);
1770 }
1771 else
1772 {
1773 /* Invalid register. */
1774 return NULL;
1775 }
1776 }
1777
1778 static const char *
1779 crisv32_register_name (int regno)
1780 {
1781 static char *crisv32_genreg_names[] =
1782 { "r0", "r1", "r2", "r3", \
1783 "r4", "r5", "r6", "r7", \
1784 "r8", "r9", "r10", "r11", \
1785 "r12", "r13", "sp", "acr"
1786 };
1787
1788 static char *crisv32_sreg_names[] =
1789 { "s0", "s1", "s2", "s3", \
1790 "s4", "s5", "s6", "s7", \
1791 "s8", "s9", "s10", "s11", \
1792 "s12", "s13", "s14", "s15"
1793 };
1794
1795 if (regno >= 0 && regno < NUM_GENREGS)
1796 {
1797 /* General register. */
1798 return crisv32_genreg_names[regno];
1799 }
1800 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1801 {
1802 return cris_special_register_name (regno);
1803 }
1804 else if (regno == PC_REGNUM)
1805 {
1806 return "pc";
1807 }
1808 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1809 {
1810 return crisv32_sreg_names[regno - S0_REGNUM];
1811 }
1812 else
1813 {
1814 /* Invalid register. */
1815 return NULL;
1816 }
1817 }
1818
1819 /* Convert DWARF register number REG to the appropriate register
1820 number used by GDB. */
1821
1822 static int
1823 cris_dwarf2_reg_to_regnum (int reg)
1824 {
1825 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1826 numbering, MOF is 18).
1827 Adapted from gcc/config/cris/cris.h. */
1828 static int cris_dwarf_regmap[] = {
1829 0, 1, 2, 3,
1830 4, 5, 6, 7,
1831 8, 9, 10, 11,
1832 12, 13, 14, 15,
1833 27, -1, -1, -1,
1834 -1, -1, -1, 23,
1835 -1, -1, -1, 27,
1836 -1, -1, -1, -1
1837 };
1838 int regnum = -1;
1839
1840 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1841 regnum = cris_dwarf_regmap[reg];
1842
1843 if (regnum == -1)
1844 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1845
1846 return regnum;
1847 }
1848
1849 /* DWARF-2 frame support. */
1850
1851 static void
1852 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1853 struct dwarf2_frame_state_reg *reg,
1854 struct frame_info *next_frame)
1855 {
1856 /* The return address column. */
1857 if (regnum == PC_REGNUM)
1858 reg->how = DWARF2_FRAME_REG_RA;
1859
1860 /* The call frame address. */
1861 else if (regnum == SP_REGNUM)
1862 reg->how = DWARF2_FRAME_REG_CFA;
1863 }
1864
1865 /* Extract from an array regbuf containing the raw register state a function
1866 return value of type type, and copy that, in virtual format, into
1867 valbuf. */
1868
1869 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1870
1871 static void
1872 cris_extract_return_value (struct type *type, struct regcache *regcache,
1873 void *valbuf)
1874 {
1875 ULONGEST val;
1876 int len = TYPE_LENGTH (type);
1877
1878 if (len <= 4)
1879 {
1880 /* Get the return value from R10. */
1881 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1882 store_unsigned_integer (valbuf, len, val);
1883 }
1884 else if (len <= 8)
1885 {
1886 /* Get the return value from R10 and R11. */
1887 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1888 store_unsigned_integer (valbuf, 4, val);
1889 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1890 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1891 }
1892 else
1893 error (_("cris_extract_return_value: type length too large"));
1894 }
1895
1896 /* Handle the CRIS return value convention. */
1897
1898 static enum return_value_convention
1899 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1900 struct regcache *regcache, gdb_byte *readbuf,
1901 const gdb_byte *writebuf)
1902 {
1903 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1904 || TYPE_CODE (type) == TYPE_CODE_UNION
1905 || TYPE_LENGTH (type) > 8)
1906 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1907 goes on the stack. */
1908 return RETURN_VALUE_STRUCT_CONVENTION;
1909
1910 if (readbuf)
1911 cris_extract_return_value (type, regcache, readbuf);
1912 if (writebuf)
1913 cris_store_return_value (type, regcache, writebuf);
1914
1915 return RETURN_VALUE_REGISTER_CONVENTION;
1916 }
1917
1918 /* Returns 1 if the given type will be passed by pointer rather than
1919 directly. */
1920
1921 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1922 by value. */
1923
1924 static int
1925 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1926 {
1927 return (TYPE_LENGTH (type) > 8);
1928 }
1929
1930 /* Calculates a value that measures how good inst_args constraints an
1931 instruction. It stems from cris_constraint, found in cris-dis.c. */
1932
1933 static int
1934 constraint (unsigned int insn, const signed char *inst_args,
1935 inst_env_type *inst_env)
1936 {
1937 int retval = 0;
1938 int tmp, i;
1939
1940 const char *s = inst_args;
1941
1942 for (; *s; s++)
1943 switch (*s)
1944 {
1945 case 'm':
1946 if ((insn & 0x30) == 0x30)
1947 return -1;
1948 break;
1949
1950 case 'S':
1951 /* A prefix operand. */
1952 if (inst_env->prefix_found)
1953 break;
1954 else
1955 return -1;
1956
1957 case 'B':
1958 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1959 valid "push" size. In case of special register, it may be != 4. */
1960 if (inst_env->prefix_found)
1961 break;
1962 else
1963 return -1;
1964
1965 case 'D':
1966 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1967 if (!retval)
1968 return -1;
1969 else
1970 retval += 4;
1971 break;
1972
1973 case 'P':
1974 tmp = (insn >> 0xC) & 0xF;
1975
1976 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1977 {
1978 /* Since we match four bits, we will give a value of
1979 4 - 1 = 3 in a match. If there is a corresponding
1980 exact match of a special register in another pattern, it
1981 will get a value of 4, which will be higher. This should
1982 be correct in that an exact pattern would match better that
1983 a general pattern.
1984 Note that there is a reason for not returning zero; the
1985 pattern for "clear" is partly matched in the bit-pattern
1986 (the two lower bits must be zero), while the bit-pattern
1987 for a move from a special register is matched in the
1988 register constraint.
1989 This also means we will will have a race condition if
1990 there is a partly match in three bits in the bit pattern. */
1991 if (tmp == cris_spec_regs[i].number)
1992 {
1993 retval += 3;
1994 break;
1995 }
1996 }
1997
1998 if (cris_spec_regs[i].name == NULL)
1999 return -1;
2000 break;
2001 }
2002 return retval;
2003 }
2004
2005 /* Returns the number of bits set in the variable value. */
2006
2007 static int
2008 number_of_bits (unsigned int value)
2009 {
2010 int number_of_bits = 0;
2011
2012 while (value != 0)
2013 {
2014 number_of_bits += 1;
2015 value &= (value - 1);
2016 }
2017 return number_of_bits;
2018 }
2019
2020 /* Finds the address that should contain the single step breakpoint(s).
2021 It stems from code in cris-dis.c. */
2022
2023 static int
2024 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2025 {
2026 int i;
2027 int max_level_of_match = -1;
2028 int max_matched = -1;
2029 int level_of_match;
2030
2031 for (i = 0; cris_opcodes[i].name != NULL; i++)
2032 {
2033 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2034 && ((cris_opcodes[i].lose & insn) == 0)
2035 /* Only CRISv10 instructions, please. */
2036 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2037 {
2038 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2039 if (level_of_match >= 0)
2040 {
2041 level_of_match +=
2042 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2043 if (level_of_match > max_level_of_match)
2044 {
2045 max_matched = i;
2046 max_level_of_match = level_of_match;
2047 if (level_of_match == 16)
2048 {
2049 /* All bits matched, cannot find better. */
2050 break;
2051 }
2052 }
2053 }
2054 }
2055 }
2056 return max_matched;
2057 }
2058
2059 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2060 actually an internal error. */
2061
2062 static int
2063 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2064 {
2065 int i;
2066 int offset;
2067 unsigned short insn;
2068
2069 /* Create a local register image and set the initial state. */
2070 for (i = 0; i < NUM_GENREGS; i++)
2071 {
2072 inst_env->reg[i] =
2073 (unsigned long) get_frame_register_unsigned (frame, i);
2074 }
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2077 {
2078 inst_env->preg[i] =
2079 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2080 }
2081 inst_env->branch_found = 0;
2082 inst_env->slot_needed = 0;
2083 inst_env->delay_slot_pc_active = 0;
2084 inst_env->prefix_found = 0;
2085 inst_env->invalid = 0;
2086 inst_env->xflag_found = 0;
2087 inst_env->disable_interrupt = 0;
2088
2089 /* Look for a step target. */
2090 do
2091 {
2092 /* Read an instruction from the client. */
2093 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2094
2095 /* If the instruction is not in a delay slot the new content of the
2096 PC is [PC] + 2. If the instruction is in a delay slot it is not
2097 that simple. Since a instruction in a delay slot cannot change
2098 the content of the PC, it does not matter what value PC will have.
2099 Just make sure it is a valid instruction. */
2100 if (!inst_env->delay_slot_pc_active)
2101 {
2102 inst_env->reg[PC_REGNUM] += 2;
2103 }
2104 else
2105 {
2106 inst_env->delay_slot_pc_active = 0;
2107 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2108 }
2109 /* Analyse the present instruction. */
2110 i = find_cris_op (insn, inst_env);
2111 if (i == -1)
2112 {
2113 inst_env->invalid = 1;
2114 }
2115 else
2116 {
2117 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2118 }
2119 } while (!inst_env->invalid
2120 && (inst_env->prefix_found || inst_env->xflag_found
2121 || inst_env->slot_needed));
2122 return i;
2123 }
2124
2125 /* There is no hardware single-step support. The function find_step_target
2126 digs through the opcodes in order to find all possible targets.
2127 Either one ordinary target or two targets for branches may be found. */
2128
2129 static int
2130 cris_software_single_step (struct frame_info *frame)
2131 {
2132 inst_env_type inst_env;
2133
2134 /* Analyse the present instruction environment and insert
2135 breakpoints. */
2136 int status = find_step_target (frame, &inst_env);
2137 if (status == -1)
2138 {
2139 /* Could not find a target. Things are likely to go downhill
2140 from here. */
2141 warning (_("CRIS software single step could not find a step target."));
2142 }
2143 else
2144 {
2145 /* Insert at most two breakpoints. One for the next PC content
2146 and possibly another one for a branch, jump, etc. */
2147 CORE_ADDR next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2148 insert_single_step_breakpoint (next_pc);
2149 if (inst_env.branch_found
2150 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2151 {
2152 CORE_ADDR branch_target_address
2153 = (CORE_ADDR) inst_env.branch_break_address;
2154 insert_single_step_breakpoint (branch_target_address);
2155 }
2156 }
2157
2158 return 1;
2159 }
2160
2161 /* Calculates the prefix value for quick offset addressing mode. */
2162
2163 static void
2164 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2165 {
2166 /* It's invalid to be in a delay slot. You can't have a prefix to this
2167 instruction (not 100% sure). */
2168 if (inst_env->slot_needed || inst_env->prefix_found)
2169 {
2170 inst_env->invalid = 1;
2171 return;
2172 }
2173
2174 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2175 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2176
2177 /* A prefix doesn't change the xflag_found. But the rest of the flags
2178 need updating. */
2179 inst_env->slot_needed = 0;
2180 inst_env->prefix_found = 1;
2181 }
2182
2183 /* Updates the autoincrement register. The size of the increment is derived
2184 from the size of the operation. The PC is always kept aligned on even
2185 word addresses. */
2186
2187 static void
2188 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2189 {
2190 if (size == INST_BYTE_SIZE)
2191 {
2192 inst_env->reg[cris_get_operand1 (inst)] += 1;
2193
2194 /* The PC must be word aligned, so increase the PC with one
2195 word even if the size is byte. */
2196 if (cris_get_operand1 (inst) == REG_PC)
2197 {
2198 inst_env->reg[REG_PC] += 1;
2199 }
2200 }
2201 else if (size == INST_WORD_SIZE)
2202 {
2203 inst_env->reg[cris_get_operand1 (inst)] += 2;
2204 }
2205 else if (size == INST_DWORD_SIZE)
2206 {
2207 inst_env->reg[cris_get_operand1 (inst)] += 4;
2208 }
2209 else
2210 {
2211 /* Invalid size. */
2212 inst_env->invalid = 1;
2213 }
2214 }
2215
2216 /* Just a forward declaration. */
2217
2218 static unsigned long get_data_from_address (unsigned short *inst,
2219 CORE_ADDR address);
2220
2221 /* Calculates the prefix value for the general case of offset addressing
2222 mode. */
2223
2224 static void
2225 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2226 {
2227
2228 long offset;
2229
2230 /* It's invalid to be in a delay slot. */
2231 if (inst_env->slot_needed || inst_env->prefix_found)
2232 {
2233 inst_env->invalid = 1;
2234 return;
2235 }
2236
2237 /* The calculation of prefix_value used to be after process_autoincrement,
2238 but that fails for an instruction such as jsr [$r0+12] which is encoded
2239 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2240 mustn't be incremented until we have read it and what it points at. */
2241 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2242
2243 /* The offset is an indirection of the contents of the operand1 register. */
2244 inst_env->prefix_value +=
2245 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2246
2247 if (cris_get_mode (inst) == AUTOINC_MODE)
2248 {
2249 process_autoincrement (cris_get_size (inst), inst, inst_env);
2250 }
2251
2252 /* A prefix doesn't change the xflag_found. But the rest of the flags
2253 need updating. */
2254 inst_env->slot_needed = 0;
2255 inst_env->prefix_found = 1;
2256 }
2257
2258 /* Calculates the prefix value for the index addressing mode. */
2259
2260 static void
2261 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2262 {
2263 /* It's invalid to be in a delay slot. I can't see that it's possible to
2264 have a prefix to this instruction. So I will treat this as invalid. */
2265 if (inst_env->slot_needed || inst_env->prefix_found)
2266 {
2267 inst_env->invalid = 1;
2268 return;
2269 }
2270
2271 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2272
2273 /* The offset is the operand2 value shifted the size of the instruction
2274 to the left. */
2275 inst_env->prefix_value +=
2276 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2277
2278 /* If the PC is operand1 (base) the address used is the address after
2279 the main instruction, i.e. address + 2 (the PC is already compensated
2280 for the prefix operation). */
2281 if (cris_get_operand1 (inst) == REG_PC)
2282 {
2283 inst_env->prefix_value += 2;
2284 }
2285
2286 /* A prefix doesn't change the xflag_found. But the rest of the flags
2287 need updating. */
2288 inst_env->slot_needed = 0;
2289 inst_env->xflag_found = 0;
2290 inst_env->prefix_found = 1;
2291 }
2292
2293 /* Calculates the prefix value for the double indirect addressing mode. */
2294
2295 static void
2296 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2297 {
2298
2299 CORE_ADDR address;
2300
2301 /* It's invalid to be in a delay slot. */
2302 if (inst_env->slot_needed || inst_env->prefix_found)
2303 {
2304 inst_env->invalid = 1;
2305 return;
2306 }
2307
2308 /* The prefix value is one dereference of the contents of the operand1
2309 register. */
2310 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2311 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2312
2313 /* Check if the mode is autoincrement. */
2314 if (cris_get_mode (inst) == AUTOINC_MODE)
2315 {
2316 inst_env->reg[cris_get_operand1 (inst)] += 4;
2317 }
2318
2319 /* A prefix doesn't change the xflag_found. But the rest of the flags
2320 need updating. */
2321 inst_env->slot_needed = 0;
2322 inst_env->xflag_found = 0;
2323 inst_env->prefix_found = 1;
2324 }
2325
2326 /* Finds the destination for a branch with 8-bits offset. */
2327
2328 static void
2329 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2330 {
2331
2332 short offset;
2333
2334 /* If we have a prefix or are in a delay slot it's bad. */
2335 if (inst_env->slot_needed || inst_env->prefix_found)
2336 {
2337 inst_env->invalid = 1;
2338 return;
2339 }
2340
2341 /* We have a branch, find out where the branch will land. */
2342 offset = cris_get_branch_short_offset (inst);
2343
2344 /* Check if the offset is signed. */
2345 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2346 {
2347 offset |= 0xFF00;
2348 }
2349
2350 /* The offset ends with the sign bit, set it to zero. The address
2351 should always be word aligned. */
2352 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2353
2354 inst_env->branch_found = 1;
2355 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2356
2357 inst_env->slot_needed = 1;
2358 inst_env->prefix_found = 0;
2359 inst_env->xflag_found = 0;
2360 inst_env->disable_interrupt = 1;
2361 }
2362
2363 /* Finds the destination for a branch with 16-bits offset. */
2364
2365 static void
2366 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2367 {
2368 short offset;
2369
2370 /* If we have a prefix or is in a delay slot it's bad. */
2371 if (inst_env->slot_needed || inst_env->prefix_found)
2372 {
2373 inst_env->invalid = 1;
2374 return;
2375 }
2376
2377 /* We have a branch, find out the offset for the branch. */
2378 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2379
2380 /* The instruction is one word longer than normal, so add one word
2381 to the PC. */
2382 inst_env->reg[REG_PC] += 2;
2383
2384 inst_env->branch_found = 1;
2385 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2386
2387
2388 inst_env->slot_needed = 1;
2389 inst_env->prefix_found = 0;
2390 inst_env->xflag_found = 0;
2391 inst_env->disable_interrupt = 1;
2392 }
2393
2394 /* Handles the ABS instruction. */
2395
2396 static void
2397 abs_op (unsigned short inst, inst_env_type *inst_env)
2398 {
2399
2400 long value;
2401
2402 /* ABS can't have a prefix, so it's bad if it does. */
2403 if (inst_env->prefix_found)
2404 {
2405 inst_env->invalid = 1;
2406 return;
2407 }
2408
2409 /* Check if the operation affects the PC. */
2410 if (cris_get_operand2 (inst) == REG_PC)
2411 {
2412
2413 /* It's invalid to change to the PC if we are in a delay slot. */
2414 if (inst_env->slot_needed)
2415 {
2416 inst_env->invalid = 1;
2417 return;
2418 }
2419
2420 value = (long) inst_env->reg[REG_PC];
2421
2422 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2423 if (value != SIGNED_DWORD_MASK)
2424 {
2425 value = -value;
2426 inst_env->reg[REG_PC] = (long) value;
2427 }
2428 }
2429
2430 inst_env->slot_needed = 0;
2431 inst_env->prefix_found = 0;
2432 inst_env->xflag_found = 0;
2433 inst_env->disable_interrupt = 0;
2434 }
2435
2436 /* Handles the ADDI instruction. */
2437
2438 static void
2439 addi_op (unsigned short inst, inst_env_type *inst_env)
2440 {
2441 /* It's invalid to have the PC as base register. And ADDI can't have
2442 a prefix. */
2443 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2444 {
2445 inst_env->invalid = 1;
2446 return;
2447 }
2448
2449 inst_env->slot_needed = 0;
2450 inst_env->prefix_found = 0;
2451 inst_env->xflag_found = 0;
2452 inst_env->disable_interrupt = 0;
2453 }
2454
2455 /* Handles the ASR instruction. */
2456
2457 static void
2458 asr_op (unsigned short inst, inst_env_type *inst_env)
2459 {
2460 int shift_steps;
2461 unsigned long value;
2462 unsigned long signed_extend_mask = 0;
2463
2464 /* ASR can't have a prefix, so check that it doesn't. */
2465 if (inst_env->prefix_found)
2466 {
2467 inst_env->invalid = 1;
2468 return;
2469 }
2470
2471 /* Check if the PC is the target register. */
2472 if (cris_get_operand2 (inst) == REG_PC)
2473 {
2474 /* It's invalid to change the PC in a delay slot. */
2475 if (inst_env->slot_needed)
2476 {
2477 inst_env->invalid = 1;
2478 return;
2479 }
2480 /* Get the number of bits to shift. */
2481 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2482 value = inst_env->reg[REG_PC];
2483
2484 /* Find out how many bits the operation should apply to. */
2485 if (cris_get_size (inst) == INST_BYTE_SIZE)
2486 {
2487 if (value & SIGNED_BYTE_MASK)
2488 {
2489 signed_extend_mask = 0xFF;
2490 signed_extend_mask = signed_extend_mask >> shift_steps;
2491 signed_extend_mask = ~signed_extend_mask;
2492 }
2493 value = value >> shift_steps;
2494 value |= signed_extend_mask;
2495 value &= 0xFF;
2496 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2497 inst_env->reg[REG_PC] |= value;
2498 }
2499 else if (cris_get_size (inst) == INST_WORD_SIZE)
2500 {
2501 if (value & SIGNED_WORD_MASK)
2502 {
2503 signed_extend_mask = 0xFFFF;
2504 signed_extend_mask = signed_extend_mask >> shift_steps;
2505 signed_extend_mask = ~signed_extend_mask;
2506 }
2507 value = value >> shift_steps;
2508 value |= signed_extend_mask;
2509 value &= 0xFFFF;
2510 inst_env->reg[REG_PC] &= 0xFFFF0000;
2511 inst_env->reg[REG_PC] |= value;
2512 }
2513 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2514 {
2515 if (value & SIGNED_DWORD_MASK)
2516 {
2517 signed_extend_mask = 0xFFFFFFFF;
2518 signed_extend_mask = signed_extend_mask >> shift_steps;
2519 signed_extend_mask = ~signed_extend_mask;
2520 }
2521 value = value >> shift_steps;
2522 value |= signed_extend_mask;
2523 inst_env->reg[REG_PC] = value;
2524 }
2525 }
2526 inst_env->slot_needed = 0;
2527 inst_env->prefix_found = 0;
2528 inst_env->xflag_found = 0;
2529 inst_env->disable_interrupt = 0;
2530 }
2531
2532 /* Handles the ASRQ instruction. */
2533
2534 static void
2535 asrq_op (unsigned short inst, inst_env_type *inst_env)
2536 {
2537
2538 int shift_steps;
2539 unsigned long value;
2540 unsigned long signed_extend_mask = 0;
2541
2542 /* ASRQ can't have a prefix, so check that it doesn't. */
2543 if (inst_env->prefix_found)
2544 {
2545 inst_env->invalid = 1;
2546 return;
2547 }
2548
2549 /* Check if the PC is the target register. */
2550 if (cris_get_operand2 (inst) == REG_PC)
2551 {
2552
2553 /* It's invalid to change the PC in a delay slot. */
2554 if (inst_env->slot_needed)
2555 {
2556 inst_env->invalid = 1;
2557 return;
2558 }
2559 /* The shift size is given as a 5 bit quick value, i.e. we don't
2560 want the the sign bit of the quick value. */
2561 shift_steps = cris_get_asr_shift_steps (inst);
2562 value = inst_env->reg[REG_PC];
2563 if (value & SIGNED_DWORD_MASK)
2564 {
2565 signed_extend_mask = 0xFFFFFFFF;
2566 signed_extend_mask = signed_extend_mask >> shift_steps;
2567 signed_extend_mask = ~signed_extend_mask;
2568 }
2569 value = value >> shift_steps;
2570 value |= signed_extend_mask;
2571 inst_env->reg[REG_PC] = value;
2572 }
2573 inst_env->slot_needed = 0;
2574 inst_env->prefix_found = 0;
2575 inst_env->xflag_found = 0;
2576 inst_env->disable_interrupt = 0;
2577 }
2578
2579 /* Handles the AX, EI and SETF instruction. */
2580
2581 static void
2582 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2583 {
2584 if (inst_env->prefix_found)
2585 {
2586 inst_env->invalid = 1;
2587 return;
2588 }
2589 /* Check if the instruction is setting the X flag. */
2590 if (cris_is_xflag_bit_on (inst))
2591 {
2592 inst_env->xflag_found = 1;
2593 }
2594 else
2595 {
2596 inst_env->xflag_found = 0;
2597 }
2598 inst_env->slot_needed = 0;
2599 inst_env->prefix_found = 0;
2600 inst_env->disable_interrupt = 1;
2601 }
2602
2603 /* Checks if the instruction is in assign mode. If so, it updates the assign
2604 register. Note that check_assign assumes that the caller has checked that
2605 there is a prefix to this instruction. The mode check depends on this. */
2606
2607 static void
2608 check_assign (unsigned short inst, inst_env_type *inst_env)
2609 {
2610 /* Check if it's an assign addressing mode. */
2611 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2612 {
2613 /* Assign the prefix value to operand 1. */
2614 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2615 }
2616 }
2617
2618 /* Handles the 2-operand BOUND instruction. */
2619
2620 static void
2621 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2622 {
2623 /* It's invalid to have the PC as the index operand. */
2624 if (cris_get_operand2 (inst) == REG_PC)
2625 {
2626 inst_env->invalid = 1;
2627 return;
2628 }
2629 /* Check if we have a prefix. */
2630 if (inst_env->prefix_found)
2631 {
2632 check_assign (inst, inst_env);
2633 }
2634 /* Check if this is an autoincrement mode. */
2635 else if (cris_get_mode (inst) == AUTOINC_MODE)
2636 {
2637 /* It's invalid to change the PC in a delay slot. */
2638 if (inst_env->slot_needed)
2639 {
2640 inst_env->invalid = 1;
2641 return;
2642 }
2643 process_autoincrement (cris_get_size (inst), inst, inst_env);
2644 }
2645 inst_env->slot_needed = 0;
2646 inst_env->prefix_found = 0;
2647 inst_env->xflag_found = 0;
2648 inst_env->disable_interrupt = 0;
2649 }
2650
2651 /* Handles the 3-operand BOUND instruction. */
2652
2653 static void
2654 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2655 {
2656 /* It's an error if we haven't got a prefix. And it's also an error
2657 if the PC is the destination register. */
2658 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2659 {
2660 inst_env->invalid = 1;
2661 return;
2662 }
2663 inst_env->slot_needed = 0;
2664 inst_env->prefix_found = 0;
2665 inst_env->xflag_found = 0;
2666 inst_env->disable_interrupt = 0;
2667 }
2668
2669 /* Clears the status flags in inst_env. */
2670
2671 static void
2672 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2673 {
2674 /* It's an error if we have got a prefix. */
2675 if (inst_env->prefix_found)
2676 {
2677 inst_env->invalid = 1;
2678 return;
2679 }
2680
2681 inst_env->slot_needed = 0;
2682 inst_env->prefix_found = 0;
2683 inst_env->xflag_found = 0;
2684 inst_env->disable_interrupt = 0;
2685 }
2686
2687 /* Clears the status flags in inst_env. */
2688
2689 static void
2690 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2691 {
2692 /* It's an error if we have got a prefix. */
2693 if (inst_env->prefix_found)
2694 {
2695 inst_env->invalid = 1;
2696 return;
2697 }
2698
2699 inst_env->slot_needed = 0;
2700 inst_env->prefix_found = 0;
2701 inst_env->xflag_found = 0;
2702 inst_env->disable_interrupt = 1;
2703 }
2704
2705 /* Handles the CLEAR instruction if it's in register mode. */
2706
2707 static void
2708 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2709 {
2710 /* Check if the target is the PC. */
2711 if (cris_get_operand2 (inst) == REG_PC)
2712 {
2713 /* The instruction will clear the instruction's size bits. */
2714 int clear_size = cris_get_clear_size (inst);
2715 if (clear_size == INST_BYTE_SIZE)
2716 {
2717 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2718 }
2719 if (clear_size == INST_WORD_SIZE)
2720 {
2721 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2722 }
2723 if (clear_size == INST_DWORD_SIZE)
2724 {
2725 inst_env->delay_slot_pc = 0x0;
2726 }
2727 /* The jump will be delayed with one delay slot. So we need a delay
2728 slot. */
2729 inst_env->slot_needed = 1;
2730 inst_env->delay_slot_pc_active = 1;
2731 }
2732 else
2733 {
2734 /* The PC will not change => no delay slot. */
2735 inst_env->slot_needed = 0;
2736 }
2737 inst_env->prefix_found = 0;
2738 inst_env->xflag_found = 0;
2739 inst_env->disable_interrupt = 0;
2740 }
2741
2742 /* Handles the TEST instruction if it's in register mode. */
2743
2744 static void
2745 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2746 {
2747 /* It's an error if we have got a prefix. */
2748 if (inst_env->prefix_found)
2749 {
2750 inst_env->invalid = 1;
2751 return;
2752 }
2753 inst_env->slot_needed = 0;
2754 inst_env->prefix_found = 0;
2755 inst_env->xflag_found = 0;
2756 inst_env->disable_interrupt = 0;
2757
2758 }
2759
2760 /* Handles the CLEAR and TEST instruction if the instruction isn't
2761 in register mode. */
2762
2763 static void
2764 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2765 {
2766 /* Check if we are in a prefix mode. */
2767 if (inst_env->prefix_found)
2768 {
2769 /* The only way the PC can change is if this instruction is in
2770 assign addressing mode. */
2771 check_assign (inst, inst_env);
2772 }
2773 /* Indirect mode can't change the PC so just check if the mode is
2774 autoincrement. */
2775 else if (cris_get_mode (inst) == AUTOINC_MODE)
2776 {
2777 process_autoincrement (cris_get_size (inst), inst, inst_env);
2778 }
2779 inst_env->slot_needed = 0;
2780 inst_env->prefix_found = 0;
2781 inst_env->xflag_found = 0;
2782 inst_env->disable_interrupt = 0;
2783 }
2784
2785 /* Checks that the PC isn't the destination register or the instructions has
2786 a prefix. */
2787
2788 static void
2789 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2790 {
2791 /* It's invalid to have the PC as the destination. The instruction can't
2792 have a prefix. */
2793 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2794 {
2795 inst_env->invalid = 1;
2796 return;
2797 }
2798
2799 inst_env->slot_needed = 0;
2800 inst_env->prefix_found = 0;
2801 inst_env->xflag_found = 0;
2802 inst_env->disable_interrupt = 0;
2803 }
2804
2805 /* Checks that the instruction doesn't have a prefix. */
2806
2807 static void
2808 break_op (unsigned short inst, inst_env_type *inst_env)
2809 {
2810 /* The instruction can't have a prefix. */
2811 if (inst_env->prefix_found)
2812 {
2813 inst_env->invalid = 1;
2814 return;
2815 }
2816
2817 inst_env->slot_needed = 0;
2818 inst_env->prefix_found = 0;
2819 inst_env->xflag_found = 0;
2820 inst_env->disable_interrupt = 1;
2821 }
2822
2823 /* Checks that the PC isn't the destination register and that the instruction
2824 doesn't have a prefix. */
2825
2826 static void
2827 scc_op (unsigned short inst, inst_env_type *inst_env)
2828 {
2829 /* It's invalid to have the PC as the destination. The instruction can't
2830 have a prefix. */
2831 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2832 {
2833 inst_env->invalid = 1;
2834 return;
2835 }
2836
2837 inst_env->slot_needed = 0;
2838 inst_env->prefix_found = 0;
2839 inst_env->xflag_found = 0;
2840 inst_env->disable_interrupt = 1;
2841 }
2842
2843 /* Handles the register mode JUMP instruction. */
2844
2845 static void
2846 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2847 {
2848 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2849 you can't have a prefix. */
2850 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2851 {
2852 inst_env->invalid = 1;
2853 return;
2854 }
2855
2856 /* Just change the PC. */
2857 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2858 inst_env->slot_needed = 0;
2859 inst_env->prefix_found = 0;
2860 inst_env->xflag_found = 0;
2861 inst_env->disable_interrupt = 1;
2862 }
2863
2864 /* Handles the JUMP instruction for all modes except register. */
2865
2866 static void
2867 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2868 {
2869 unsigned long newpc;
2870 CORE_ADDR address;
2871
2872 /* It's invalid to do a JUMP in a delay slot. */
2873 if (inst_env->slot_needed)
2874 {
2875 inst_env->invalid = 1;
2876 }
2877 else
2878 {
2879 /* Check if we have a prefix. */
2880 if (inst_env->prefix_found)
2881 {
2882 check_assign (inst, inst_env);
2883
2884 /* Get the new value for the the PC. */
2885 newpc =
2886 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2887 4);
2888 }
2889 else
2890 {
2891 /* Get the new value for the PC. */
2892 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2893 newpc = read_memory_unsigned_integer (address, 4);
2894
2895 /* Check if we should increment a register. */
2896 if (cris_get_mode (inst) == AUTOINC_MODE)
2897 {
2898 inst_env->reg[cris_get_operand1 (inst)] += 4;
2899 }
2900 }
2901 inst_env->reg[REG_PC] = newpc;
2902 }
2903 inst_env->slot_needed = 0;
2904 inst_env->prefix_found = 0;
2905 inst_env->xflag_found = 0;
2906 inst_env->disable_interrupt = 1;
2907 }
2908
2909 /* Handles moves to special registers (aka P-register) for all modes. */
2910
2911 static void
2912 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2913 {
2914 if (inst_env->prefix_found)
2915 {
2916 /* The instruction has a prefix that means we are only interested if
2917 the instruction is in assign mode. */
2918 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2919 {
2920 /* The prefix handles the problem if we are in a delay slot. */
2921 if (cris_get_operand1 (inst) == REG_PC)
2922 {
2923 /* Just take care of the assign. */
2924 check_assign (inst, inst_env);
2925 }
2926 }
2927 }
2928 else if (cris_get_mode (inst) == AUTOINC_MODE)
2929 {
2930 /* The instruction doesn't have a prefix, the only case left that we
2931 are interested in is the autoincrement mode. */
2932 if (cris_get_operand1 (inst) == REG_PC)
2933 {
2934 /* If the PC is to be incremented it's invalid to be in a
2935 delay slot. */
2936 if (inst_env->slot_needed)
2937 {
2938 inst_env->invalid = 1;
2939 return;
2940 }
2941
2942 /* The increment depends on the size of the special register. */
2943 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2944 {
2945 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2946 }
2947 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2948 {
2949 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2950 }
2951 else
2952 {
2953 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2954 }
2955 }
2956 }
2957 inst_env->slot_needed = 0;
2958 inst_env->prefix_found = 0;
2959 inst_env->xflag_found = 0;
2960 inst_env->disable_interrupt = 1;
2961 }
2962
2963 /* Handles moves from special registers (aka P-register) for all modes
2964 except register. */
2965
2966 static void
2967 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2968 {
2969 if (inst_env->prefix_found)
2970 {
2971 /* The instruction has a prefix that means we are only interested if
2972 the instruction is in assign mode. */
2973 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2974 {
2975 /* The prefix handles the problem if we are in a delay slot. */
2976 if (cris_get_operand1 (inst) == REG_PC)
2977 {
2978 /* Just take care of the assign. */
2979 check_assign (inst, inst_env);
2980 }
2981 }
2982 }
2983 /* The instruction doesn't have a prefix, the only case left that we
2984 are interested in is the autoincrement mode. */
2985 else if (cris_get_mode (inst) == AUTOINC_MODE)
2986 {
2987 if (cris_get_operand1 (inst) == REG_PC)
2988 {
2989 /* If the PC is to be incremented it's invalid to be in a
2990 delay slot. */
2991 if (inst_env->slot_needed)
2992 {
2993 inst_env->invalid = 1;
2994 return;
2995 }
2996
2997 /* The increment depends on the size of the special register. */
2998 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2999 {
3000 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3001 }
3002 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
3003 {
3004 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3005 }
3006 else
3007 {
3008 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3009 }
3010 }
3011 }
3012 inst_env->slot_needed = 0;
3013 inst_env->prefix_found = 0;
3014 inst_env->xflag_found = 0;
3015 inst_env->disable_interrupt = 1;
3016 }
3017
3018 /* Handles moves from special registers (aka P-register) when the mode
3019 is register. */
3020
3021 static void
3022 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3023 {
3024 /* Register mode move from special register can't have a prefix. */
3025 if (inst_env->prefix_found)
3026 {
3027 inst_env->invalid = 1;
3028 return;
3029 }
3030
3031 if (cris_get_operand1 (inst) == REG_PC)
3032 {
3033 /* It's invalid to change the PC in a delay slot. */
3034 if (inst_env->slot_needed)
3035 {
3036 inst_env->invalid = 1;
3037 return;
3038 }
3039 /* The destination is the PC, the jump will have a delay slot. */
3040 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3041 inst_env->slot_needed = 1;
3042 inst_env->delay_slot_pc_active = 1;
3043 }
3044 else
3045 {
3046 /* If the destination isn't PC, there will be no jump. */
3047 inst_env->slot_needed = 0;
3048 }
3049 inst_env->prefix_found = 0;
3050 inst_env->xflag_found = 0;
3051 inst_env->disable_interrupt = 1;
3052 }
3053
3054 /* Handles the MOVEM from memory to general register instruction. */
3055
3056 static void
3057 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3058 {
3059 if (inst_env->prefix_found)
3060 {
3061 /* The prefix handles the problem if we are in a delay slot. Is the
3062 MOVEM instruction going to change the PC? */
3063 if (cris_get_operand2 (inst) >= REG_PC)
3064 {
3065 inst_env->reg[REG_PC] =
3066 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3067 }
3068 /* The assign value is the value after the increment. Normally, the
3069 assign value is the value before the increment. */
3070 if ((cris_get_operand1 (inst) == REG_PC)
3071 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3072 {
3073 inst_env->reg[REG_PC] = inst_env->prefix_value;
3074 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3075 }
3076 }
3077 else
3078 {
3079 /* Is the MOVEM instruction going to change the PC? */
3080 if (cris_get_operand2 (inst) == REG_PC)
3081 {
3082 /* It's invalid to change the PC in a delay slot. */
3083 if (inst_env->slot_needed)
3084 {
3085 inst_env->invalid = 1;
3086 return;
3087 }
3088 inst_env->reg[REG_PC] =
3089 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3090 4);
3091 }
3092 /* The increment is not depending on the size, instead it's depending
3093 on the number of registers loaded from memory. */
3094 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3095 {
3096 /* It's invalid to change the PC in a delay slot. */
3097 if (inst_env->slot_needed)
3098 {
3099 inst_env->invalid = 1;
3100 return;
3101 }
3102 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3103 }
3104 }
3105 inst_env->slot_needed = 0;
3106 inst_env->prefix_found = 0;
3107 inst_env->xflag_found = 0;
3108 inst_env->disable_interrupt = 0;
3109 }
3110
3111 /* Handles the MOVEM to memory from general register instruction. */
3112
3113 static void
3114 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3115 {
3116 if (inst_env->prefix_found)
3117 {
3118 /* The assign value is the value after the increment. Normally, the
3119 assign value is the value before the increment. */
3120 if ((cris_get_operand1 (inst) == REG_PC) &&
3121 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3122 {
3123 /* The prefix handles the problem if we are in a delay slot. */
3124 inst_env->reg[REG_PC] = inst_env->prefix_value;
3125 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3126 }
3127 }
3128 else
3129 {
3130 /* The increment is not depending on the size, instead it's depending
3131 on the number of registers loaded to memory. */
3132 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3133 {
3134 /* It's invalid to change the PC in a delay slot. */
3135 if (inst_env->slot_needed)
3136 {
3137 inst_env->invalid = 1;
3138 return;
3139 }
3140 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3141 }
3142 }
3143 inst_env->slot_needed = 0;
3144 inst_env->prefix_found = 0;
3145 inst_env->xflag_found = 0;
3146 inst_env->disable_interrupt = 0;
3147 }
3148
3149 /* Handles the intructions that's not yet implemented, by setting
3150 inst_env->invalid to true. */
3151
3152 static void
3153 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3154 {
3155 inst_env->invalid = 1;
3156 }
3157
3158 /* Handles the XOR instruction. */
3159
3160 static void
3161 xor_op (unsigned short inst, inst_env_type *inst_env)
3162 {
3163 /* XOR can't have a prefix. */
3164 if (inst_env->prefix_found)
3165 {
3166 inst_env->invalid = 1;
3167 return;
3168 }
3169
3170 /* Check if the PC is the target. */
3171 if (cris_get_operand2 (inst) == REG_PC)
3172 {
3173 /* It's invalid to change the PC in a delay slot. */
3174 if (inst_env->slot_needed)
3175 {
3176 inst_env->invalid = 1;
3177 return;
3178 }
3179 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3180 }
3181 inst_env->slot_needed = 0;
3182 inst_env->prefix_found = 0;
3183 inst_env->xflag_found = 0;
3184 inst_env->disable_interrupt = 0;
3185 }
3186
3187 /* Handles the MULS instruction. */
3188
3189 static void
3190 muls_op (unsigned short inst, inst_env_type *inst_env)
3191 {
3192 /* MULS/U can't have a prefix. */
3193 if (inst_env->prefix_found)
3194 {
3195 inst_env->invalid = 1;
3196 return;
3197 }
3198
3199 /* Consider it invalid if the PC is the target. */
3200 if (cris_get_operand2 (inst) == REG_PC)
3201 {
3202 inst_env->invalid = 1;
3203 return;
3204 }
3205 inst_env->slot_needed = 0;
3206 inst_env->prefix_found = 0;
3207 inst_env->xflag_found = 0;
3208 inst_env->disable_interrupt = 0;
3209 }
3210
3211 /* Handles the MULU instruction. */
3212
3213 static void
3214 mulu_op (unsigned short inst, inst_env_type *inst_env)
3215 {
3216 /* MULS/U can't have a prefix. */
3217 if (inst_env->prefix_found)
3218 {
3219 inst_env->invalid = 1;
3220 return;
3221 }
3222
3223 /* Consider it invalid if the PC is the target. */
3224 if (cris_get_operand2 (inst) == REG_PC)
3225 {
3226 inst_env->invalid = 1;
3227 return;
3228 }
3229 inst_env->slot_needed = 0;
3230 inst_env->prefix_found = 0;
3231 inst_env->xflag_found = 0;
3232 inst_env->disable_interrupt = 0;
3233 }
3234
3235 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3236 The MOVE instruction is the move from source to register. */
3237
3238 static void
3239 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3240 unsigned long source1, unsigned long source2)
3241 {
3242 unsigned long pc_mask;
3243 unsigned long operation_mask;
3244
3245 /* Find out how many bits the operation should apply to. */
3246 if (cris_get_size (inst) == INST_BYTE_SIZE)
3247 {
3248 pc_mask = 0xFFFFFF00;
3249 operation_mask = 0xFF;
3250 }
3251 else if (cris_get_size (inst) == INST_WORD_SIZE)
3252 {
3253 pc_mask = 0xFFFF0000;
3254 operation_mask = 0xFFFF;
3255 }
3256 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3257 {
3258 pc_mask = 0x0;
3259 operation_mask = 0xFFFFFFFF;
3260 }
3261 else
3262 {
3263 /* The size is out of range. */
3264 inst_env->invalid = 1;
3265 return;
3266 }
3267
3268 /* The instruction just works on uw_operation_mask bits. */
3269 source2 &= operation_mask;
3270 source1 &= operation_mask;
3271
3272 /* Now calculate the result. The opcode's 3 first bits separates
3273 the different actions. */
3274 switch (cris_get_opcode (inst) & 7)
3275 {
3276 case 0: /* add */
3277 source1 += source2;
3278 break;
3279
3280 case 1: /* move */
3281 source1 = source2;
3282 break;
3283
3284 case 2: /* subtract */
3285 source1 -= source2;
3286 break;
3287
3288 case 3: /* compare */
3289 break;
3290
3291 case 4: /* and */
3292 source1 &= source2;
3293 break;
3294
3295 case 5: /* or */
3296 source1 |= source2;
3297 break;
3298
3299 default:
3300 inst_env->invalid = 1;
3301 return;
3302
3303 break;
3304 }
3305
3306 /* Make sure that the result doesn't contain more than the instruction
3307 size bits. */
3308 source2 &= operation_mask;
3309
3310 /* Calculate the new breakpoint address. */
3311 inst_env->reg[REG_PC] &= pc_mask;
3312 inst_env->reg[REG_PC] |= source1;
3313
3314 }
3315
3316 /* Extends the value from either byte or word size to a dword. If the mode
3317 is zero extend then the value is extended with zero. If instead the mode
3318 is signed extend the sign bit of the value is taken into consideration. */
3319
3320 static unsigned long
3321 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3322 {
3323 /* The size can be either byte or word, check which one it is.
3324 Don't check the highest bit, it's indicating if it's a zero
3325 or sign extend. */
3326 if (cris_get_size (*inst) & INST_WORD_SIZE)
3327 {
3328 /* Word size. */
3329 value &= 0xFFFF;
3330
3331 /* Check if the instruction is signed extend. If so, check if value has
3332 the sign bit on. */
3333 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3334 {
3335 value |= SIGNED_WORD_EXTEND_MASK;
3336 }
3337 }
3338 else
3339 {
3340 /* Byte size. */
3341 value &= 0xFF;
3342
3343 /* Check if the instruction is signed extend. If so, check if value has
3344 the sign bit on. */
3345 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3346 {
3347 value |= SIGNED_BYTE_EXTEND_MASK;
3348 }
3349 }
3350 /* The size should now be dword. */
3351 cris_set_size_to_dword (inst);
3352 return value;
3353 }
3354
3355 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3356 instruction. The MOVE instruction is the move from source to register. */
3357
3358 static void
3359 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3360 inst_env_type *inst_env)
3361 {
3362 unsigned long operand1;
3363 unsigned long operand2;
3364
3365 /* It's invalid to have a prefix to the instruction. This is a register
3366 mode instruction and can't have a prefix. */
3367 if (inst_env->prefix_found)
3368 {
3369 inst_env->invalid = 1;
3370 return;
3371 }
3372 /* Check if the instruction has PC as its target. */
3373 if (cris_get_operand2 (inst) == REG_PC)
3374 {
3375 if (inst_env->slot_needed)
3376 {
3377 inst_env->invalid = 1;
3378 return;
3379 }
3380 /* The instruction has the PC as its target register. */
3381 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3382 operand2 = inst_env->reg[REG_PC];
3383
3384 /* Check if it's a extend, signed or zero instruction. */
3385 if (cris_get_opcode (inst) < 4)
3386 {
3387 operand1 = do_sign_or_zero_extend (operand1, &inst);
3388 }
3389 /* Calculate the PC value after the instruction, i.e. where the
3390 breakpoint should be. The order of the udw_operands is vital. */
3391 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3392 }
3393 inst_env->slot_needed = 0;
3394 inst_env->prefix_found = 0;
3395 inst_env->xflag_found = 0;
3396 inst_env->disable_interrupt = 0;
3397 }
3398
3399 /* Returns the data contained at address. The size of the data is derived from
3400 the size of the operation. If the instruction is a zero or signed
3401 extend instruction, the size field is changed in instruction. */
3402
3403 static unsigned long
3404 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3405 {
3406 int size = cris_get_size (*inst);
3407 unsigned long value;
3408
3409 /* If it's an extend instruction we don't want the signed extend bit,
3410 because it influences the size. */
3411 if (cris_get_opcode (*inst) < 4)
3412 {
3413 size &= ~SIGNED_EXTEND_BIT_MASK;
3414 }
3415 /* Is there a need for checking the size? Size should contain the number of
3416 bytes to read. */
3417 size = 1 << size;
3418 value = read_memory_unsigned_integer (address, size);
3419
3420 /* Check if it's an extend, signed or zero instruction. */
3421 if (cris_get_opcode (*inst) < 4)
3422 {
3423 value = do_sign_or_zero_extend (value, inst);
3424 }
3425 return value;
3426 }
3427
3428 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3429 instructions. The MOVE instruction is the move from source to register. */
3430
3431 static void
3432 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3433 inst_env_type *inst_env)
3434 {
3435 unsigned long operand2;
3436 unsigned long operand3;
3437
3438 check_assign (inst, inst_env);
3439 if (cris_get_operand2 (inst) == REG_PC)
3440 {
3441 operand2 = inst_env->reg[REG_PC];
3442
3443 /* Get the value of the third operand. */
3444 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3445
3446 /* Calculate the PC value after the instruction, i.e. where the
3447 breakpoint should be. The order of the udw_operands is vital. */
3448 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3449 }
3450 inst_env->slot_needed = 0;
3451 inst_env->prefix_found = 0;
3452 inst_env->xflag_found = 0;
3453 inst_env->disable_interrupt = 0;
3454 }
3455
3456 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3457 OR instructions. Note that for this to work as expected, the calling
3458 function must have made sure that there is a prefix to this instruction. */
3459
3460 static void
3461 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3462 inst_env_type *inst_env)
3463 {
3464 unsigned long operand2;
3465 unsigned long operand3;
3466
3467 if (cris_get_operand1 (inst) == REG_PC)
3468 {
3469 /* The PC will be changed by the instruction. */
3470 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3471
3472 /* Get the value of the third operand. */
3473 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3474
3475 /* Calculate the PC value after the instruction, i.e. where the
3476 breakpoint should be. */
3477 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3478 }
3479 inst_env->slot_needed = 0;
3480 inst_env->prefix_found = 0;
3481 inst_env->xflag_found = 0;
3482 inst_env->disable_interrupt = 0;
3483 }
3484
3485 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3486 instructions. The MOVE instruction is the move from source to register. */
3487
3488 static void
3489 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3490 inst_env_type *inst_env)
3491 {
3492 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3493 {
3494 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3495 SUB, AND or OR something weird is going on (if everything works these
3496 instructions should end up in the three operand version). */
3497 inst_env->invalid = 1;
3498 return;
3499 }
3500 else
3501 {
3502 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3503 so use it. */
3504 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3505 }
3506 inst_env->slot_needed = 0;
3507 inst_env->prefix_found = 0;
3508 inst_env->xflag_found = 0;
3509 inst_env->disable_interrupt = 0;
3510 }
3511
3512 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3513 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3514 source to register. */
3515
3516 static void
3517 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3518 inst_env_type *inst_env)
3519 {
3520 unsigned long operand1;
3521 unsigned long operand2;
3522 unsigned long operand3;
3523 int size;
3524
3525 /* The instruction is either an indirect or autoincrement addressing mode.
3526 Check if the destination register is the PC. */
3527 if (cris_get_operand2 (inst) == REG_PC)
3528 {
3529 /* Must be done here, get_data_from_address may change the size
3530 field. */
3531 size = cris_get_size (inst);
3532 operand2 = inst_env->reg[REG_PC];
3533
3534 /* Get the value of the third operand, i.e. the indirect operand. */
3535 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3536 operand3 = get_data_from_address (&inst, operand1);
3537
3538 /* Calculate the PC value after the instruction, i.e. where the
3539 breakpoint should be. The order of the udw_operands is vital. */
3540 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3541 }
3542 /* If this is an autoincrement addressing mode, check if the increment
3543 changes the PC. */
3544 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3545 {
3546 /* Get the size field. */
3547 size = cris_get_size (inst);
3548
3549 /* If it's an extend instruction we don't want the signed extend bit,
3550 because it influences the size. */
3551 if (cris_get_opcode (inst) < 4)
3552 {
3553 size &= ~SIGNED_EXTEND_BIT_MASK;
3554 }
3555 process_autoincrement (size, inst, inst_env);
3556 }
3557 inst_env->slot_needed = 0;
3558 inst_env->prefix_found = 0;
3559 inst_env->xflag_found = 0;
3560 inst_env->disable_interrupt = 0;
3561 }
3562
3563 /* Handles the two-operand addressing mode, all modes except register, for
3564 the ADD, SUB CMP, AND and OR instruction. */
3565
3566 static void
3567 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3568 inst_env_type *inst_env)
3569 {
3570 if (inst_env->prefix_found)
3571 {
3572 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3573 {
3574 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3575 }
3576 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3577 {
3578 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3579 }
3580 else
3581 {
3582 /* The mode is invalid for a prefixed base instruction. */
3583 inst_env->invalid = 1;
3584 return;
3585 }
3586 }
3587 else
3588 {
3589 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3590 }
3591 }
3592
3593 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3594
3595 static void
3596 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3597 {
3598 unsigned long operand1;
3599 unsigned long operand2;
3600
3601 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3602 instruction and can't have a prefix. */
3603 if (inst_env->prefix_found)
3604 {
3605 inst_env->invalid = 1;
3606 return;
3607 }
3608
3609 /* Check if the instruction has PC as its target. */
3610 if (cris_get_operand2 (inst) == REG_PC)
3611 {
3612 if (inst_env->slot_needed)
3613 {
3614 inst_env->invalid = 1;
3615 return;
3616 }
3617 operand1 = cris_get_quick_value (inst);
3618 operand2 = inst_env->reg[REG_PC];
3619
3620 /* The size should now be dword. */
3621 cris_set_size_to_dword (&inst);
3622
3623 /* Calculate the PC value after the instruction, i.e. where the
3624 breakpoint should be. */
3625 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3626 }
3627 inst_env->slot_needed = 0;
3628 inst_env->prefix_found = 0;
3629 inst_env->xflag_found = 0;
3630 inst_env->disable_interrupt = 0;
3631 }
3632
3633 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3634
3635 static void
3636 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3637 {
3638 unsigned long operand1;
3639 unsigned long operand2;
3640
3641 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3642 instruction and can't have a prefix. */
3643 if (inst_env->prefix_found)
3644 {
3645 inst_env->invalid = 1;
3646 return;
3647 }
3648 /* Check if the instruction has PC as its target. */
3649 if (cris_get_operand2 (inst) == REG_PC)
3650 {
3651 if (inst_env->slot_needed)
3652 {
3653 inst_env->invalid = 1;
3654 return;
3655 }
3656 /* The instruction has the PC as its target register. */
3657 operand1 = cris_get_quick_value (inst);
3658 operand2 = inst_env->reg[REG_PC];
3659
3660 /* The quick value is signed, so check if we must do a signed extend. */
3661 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3662 {
3663 /* sign extend */
3664 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3665 }
3666 /* The size should now be dword. */
3667 cris_set_size_to_dword (&inst);
3668
3669 /* Calculate the PC value after the instruction, i.e. where the
3670 breakpoint should be. */
3671 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3672 }
3673 inst_env->slot_needed = 0;
3674 inst_env->prefix_found = 0;
3675 inst_env->xflag_found = 0;
3676 inst_env->disable_interrupt = 0;
3677 }
3678
3679 /* Translate op_type to a function and call it. */
3680
3681 static void
3682 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3683 inst_env_type *inst_env)
3684 {
3685 switch (op_type)
3686 {
3687 case cris_not_implemented_op:
3688 not_implemented_op (inst, inst_env);
3689 break;
3690
3691 case cris_abs_op:
3692 abs_op (inst, inst_env);
3693 break;
3694
3695 case cris_addi_op:
3696 addi_op (inst, inst_env);
3697 break;
3698
3699 case cris_asr_op:
3700 asr_op (inst, inst_env);
3701 break;
3702
3703 case cris_asrq_op:
3704 asrq_op (inst, inst_env);
3705 break;
3706
3707 case cris_ax_ei_setf_op:
3708 ax_ei_setf_op (inst, inst_env);
3709 break;
3710
3711 case cris_bdap_prefix:
3712 bdap_prefix (inst, inst_env);
3713 break;
3714
3715 case cris_biap_prefix:
3716 biap_prefix (inst, inst_env);
3717 break;
3718
3719 case cris_break_op:
3720 break_op (inst, inst_env);
3721 break;
3722
3723 case cris_btst_nop_op:
3724 btst_nop_op (inst, inst_env);
3725 break;
3726
3727 case cris_clearf_di_op:
3728 clearf_di_op (inst, inst_env);
3729 break;
3730
3731 case cris_dip_prefix:
3732 dip_prefix (inst, inst_env);
3733 break;
3734
3735 case cris_dstep_logshift_mstep_neg_not_op:
3736 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3737 break;
3738
3739 case cris_eight_bit_offset_branch_op:
3740 eight_bit_offset_branch_op (inst, inst_env);
3741 break;
3742
3743 case cris_move_mem_to_reg_movem_op:
3744 move_mem_to_reg_movem_op (inst, inst_env);
3745 break;
3746
3747 case cris_move_reg_to_mem_movem_op:
3748 move_reg_to_mem_movem_op (inst, inst_env);
3749 break;
3750
3751 case cris_move_to_preg_op:
3752 move_to_preg_op (inst, inst_env);
3753 break;
3754
3755 case cris_muls_op:
3756 muls_op (inst, inst_env);
3757 break;
3758
3759 case cris_mulu_op:
3760 mulu_op (inst, inst_env);
3761 break;
3762
3763 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3764 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3765 break;
3766
3767 case cris_none_reg_mode_clear_test_op:
3768 none_reg_mode_clear_test_op (inst, inst_env);
3769 break;
3770
3771 case cris_none_reg_mode_jump_op:
3772 none_reg_mode_jump_op (inst, inst_env);
3773 break;
3774
3775 case cris_none_reg_mode_move_from_preg_op:
3776 none_reg_mode_move_from_preg_op (inst, inst_env);
3777 break;
3778
3779 case cris_quick_mode_add_sub_op:
3780 quick_mode_add_sub_op (inst, inst_env);
3781 break;
3782
3783 case cris_quick_mode_and_cmp_move_or_op:
3784 quick_mode_and_cmp_move_or_op (inst, inst_env);
3785 break;
3786
3787 case cris_quick_mode_bdap_prefix:
3788 quick_mode_bdap_prefix (inst, inst_env);
3789 break;
3790
3791 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3792 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3793 break;
3794
3795 case cris_reg_mode_clear_op:
3796 reg_mode_clear_op (inst, inst_env);
3797 break;
3798
3799 case cris_reg_mode_jump_op:
3800 reg_mode_jump_op (inst, inst_env);
3801 break;
3802
3803 case cris_reg_mode_move_from_preg_op:
3804 reg_mode_move_from_preg_op (inst, inst_env);
3805 break;
3806
3807 case cris_reg_mode_test_op:
3808 reg_mode_test_op (inst, inst_env);
3809 break;
3810
3811 case cris_scc_op:
3812 scc_op (inst, inst_env);
3813 break;
3814
3815 case cris_sixteen_bit_offset_branch_op:
3816 sixteen_bit_offset_branch_op (inst, inst_env);
3817 break;
3818
3819 case cris_three_operand_add_sub_cmp_and_or_op:
3820 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3821 break;
3822
3823 case cris_three_operand_bound_op:
3824 three_operand_bound_op (inst, inst_env);
3825 break;
3826
3827 case cris_two_operand_bound_op:
3828 two_operand_bound_op (inst, inst_env);
3829 break;
3830
3831 case cris_xor_op:
3832 xor_op (inst, inst_env);
3833 break;
3834 }
3835 }
3836
3837 /* This wrapper is to avoid cris_get_assembler being called before
3838 exec_bfd has been set. */
3839
3840 static int
3841 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3842 {
3843 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3844 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3845 disassembler, even when there is no BFD. Does something like
3846 "gdb; target remote; disassmeble *0x123" work? */
3847 gdb_assert (exec_bfd != NULL);
3848 print_insn = cris_get_disassembler (exec_bfd);
3849 gdb_assert (print_insn != NULL);
3850 return print_insn (addr, info);
3851 }
3852
3853 /* Copied from <asm/elf.h>. */
3854 typedef unsigned long elf_greg_t;
3855
3856 /* Same as user_regs_struct struct in <asm/user.h>. */
3857 #define CRISV10_ELF_NGREG 35
3858 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3859
3860 #define CRISV32_ELF_NGREG 32
3861 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3862
3863 /* Unpack an elf_gregset_t into GDB's register cache. */
3864
3865 static void
3866 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3867 {
3868 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3869 int i;
3870 elf_greg_t *regp = *gregsetp;
3871 static char zerobuf[4] = {0};
3872
3873 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3874 knows about the actual size of each register so that's no problem. */
3875 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3876 {
3877 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3878 }
3879
3880 if (tdep->cris_version == 32)
3881 {
3882 /* Needed to set pseudo-register PC for CRISv32. */
3883 /* FIXME: If ERP is in a delay slot at this point then the PC will
3884 be wrong. Issue a warning to alert the user. */
3885 regcache_raw_supply (regcache, PC_REGNUM,
3886 (char *)&regp[ERP_REGNUM]);
3887
3888 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3889 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3890 }
3891 }
3892
3893 /* Use a local version of this function to get the correct types for
3894 regsets, until multi-arch core support is ready. */
3895
3896 static void
3897 fetch_core_registers (struct regcache *regcache,
3898 char *core_reg_sect, unsigned core_reg_size,
3899 int which, CORE_ADDR reg_addr)
3900 {
3901 elf_gregset_t gregset;
3902
3903 switch (which)
3904 {
3905 case 0:
3906 if (core_reg_size != sizeof (elf_gregset_t)
3907 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3908 {
3909 warning (_("wrong size gregset struct in core file"));
3910 }
3911 else
3912 {
3913 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3914 cris_supply_gregset (regcache, &gregset);
3915 }
3916
3917 default:
3918 /* We've covered all the kinds of registers we know about here,
3919 so this must be something we wouldn't know what to do with
3920 anyway. Just ignore it. */
3921 break;
3922 }
3923 }
3924
3925 static struct core_fns cris_elf_core_fns =
3926 {
3927 bfd_target_elf_flavour, /* core_flavour */
3928 default_check_format, /* check_format */
3929 default_core_sniffer, /* core_sniffer */
3930 fetch_core_registers, /* core_read_registers */
3931 NULL /* next */
3932 };
3933
3934 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3935
3936 void
3937 _initialize_cris_tdep (void)
3938 {
3939 static struct cmd_list_element *cris_set_cmdlist;
3940 static struct cmd_list_element *cris_show_cmdlist;
3941
3942 struct cmd_list_element *c;
3943
3944 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3945
3946 /* CRIS-specific user-commands. */
3947 add_setshow_uinteger_cmd ("cris-version", class_support,
3948 &usr_cmd_cris_version,
3949 _("Set the current CRIS version."),
3950 _("Show the current CRIS version."),
3951 _("\
3952 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3953 Defaults to 10. "),
3954 set_cris_version,
3955 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3956 &setlist, &showlist);
3957
3958 add_setshow_enum_cmd ("cris-mode", class_support,
3959 cris_modes, &usr_cmd_cris_mode,
3960 _("Set the current CRIS mode."),
3961 _("Show the current CRIS mode."),
3962 _("\
3963 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3964 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3965 set_cris_mode,
3966 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3967 &setlist, &showlist);
3968
3969 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3970 &usr_cmd_cris_dwarf2_cfi,
3971 _("Set the usage of Dwarf-2 CFI for CRIS."),
3972 _("Show the usage of Dwarf-2 CFI for CRIS."),
3973 _("Set this to \"off\" if using gcc-cris < R59."),
3974 set_cris_dwarf2_cfi,
3975 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3976 &setlist, &showlist);
3977
3978 deprecated_add_core_fns (&cris_elf_core_fns);
3979 }
3980
3981 /* Prints out all target specific values. */
3982
3983 static void
3984 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3985 {
3986 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3987 if (tdep != NULL)
3988 {
3989 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3990 tdep->cris_version);
3991 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3992 tdep->cris_mode);
3993 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3994 tdep->cris_dwarf2_cfi);
3995 }
3996 }
3997
3998 static void
3999 set_cris_version (char *ignore_args, int from_tty,
4000 struct cmd_list_element *c)
4001 {
4002 struct gdbarch_info info;
4003
4004 usr_cmd_cris_version_valid = 1;
4005
4006 /* Update the current architecture, if needed. */
4007 gdbarch_info_init (&info);
4008 if (!gdbarch_update_p (info))
4009 internal_error (__FILE__, __LINE__,
4010 _("cris_gdbarch_update: failed to update architecture."));
4011 }
4012
4013 static void
4014 set_cris_mode (char *ignore_args, int from_tty,
4015 struct cmd_list_element *c)
4016 {
4017 struct gdbarch_info info;
4018
4019 /* Update the current architecture, if needed. */
4020 gdbarch_info_init (&info);
4021 if (!gdbarch_update_p (info))
4022 internal_error (__FILE__, __LINE__,
4023 "cris_gdbarch_update: failed to update architecture.");
4024 }
4025
4026 static void
4027 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4028 struct cmd_list_element *c)
4029 {
4030 struct gdbarch_info info;
4031
4032 /* Update the current architecture, if needed. */
4033 gdbarch_info_init (&info);
4034 if (!gdbarch_update_p (info))
4035 internal_error (__FILE__, __LINE__,
4036 _("cris_gdbarch_update: failed to update architecture."));
4037 }
4038
4039 static struct gdbarch *
4040 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4041 {
4042 struct gdbarch *gdbarch;
4043 struct gdbarch_tdep *tdep;
4044 int cris_version;
4045
4046 if (usr_cmd_cris_version_valid)
4047 {
4048 /* Trust the user's CRIS version setting. */
4049 cris_version = usr_cmd_cris_version;
4050 }
4051 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4052 {
4053 cris_version = 32;
4054 }
4055 else
4056 {
4057 /* Assume it's CRIS version 10. */
4058 cris_version = 10;
4059 }
4060
4061 /* Make the current settings visible to the user. */
4062 usr_cmd_cris_version = cris_version;
4063
4064 /* Find a candidate among the list of pre-declared architectures. */
4065 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4066 arches != NULL;
4067 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4068 {
4069 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4070 == usr_cmd_cris_version)
4071 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4072 == usr_cmd_cris_mode)
4073 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4074 == usr_cmd_cris_dwarf2_cfi))
4075 return arches->gdbarch;
4076 }
4077
4078 /* No matching architecture was found. Create a new one. */
4079 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4080 gdbarch = gdbarch_alloc (&info, tdep);
4081
4082 tdep->cris_version = usr_cmd_cris_version;
4083 tdep->cris_mode = usr_cmd_cris_mode;
4084 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4085
4086 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4087 switch (info.byte_order)
4088 {
4089 case BFD_ENDIAN_LITTLE:
4090 /* Ok. */
4091 break;
4092
4093 case BFD_ENDIAN_BIG:
4094 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4095 break;
4096
4097 default:
4098 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4099 }
4100
4101 set_gdbarch_return_value (gdbarch, cris_return_value);
4102 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4103 cris_reg_struct_has_addr);
4104 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4105
4106 set_gdbarch_sp_regnum (gdbarch, 14);
4107
4108 /* Length of ordinary registers used in push_word and a few other
4109 places. register_size() is the real way to know how big a
4110 register is. */
4111
4112 set_gdbarch_double_bit (gdbarch, 64);
4113 /* The default definition of a long double is 2 * gdbarch_double_bit,
4114 which means we have to set this explicitly. */
4115 set_gdbarch_long_double_bit (gdbarch, 64);
4116
4117 /* The total amount of space needed to store (in an array called registers)
4118 GDB's copy of the machine's register state. Note: We can not use
4119 cris_register_size at this point, since it relies on current_gdbarch
4120 being set. */
4121 switch (tdep->cris_version)
4122 {
4123 case 0:
4124 case 1:
4125 case 2:
4126 case 3:
4127 case 8:
4128 case 9:
4129 /* Old versions; not supported. */
4130 internal_error (__FILE__, __LINE__,
4131 _("cris_gdbarch_init: unsupported CRIS version"));
4132 break;
4133
4134 case 10:
4135 case 11:
4136 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4137 P7 (32 bits), and P15 (32 bits) have been implemented. */
4138 set_gdbarch_pc_regnum (gdbarch, 15);
4139 set_gdbarch_register_type (gdbarch, cris_register_type);
4140 /* There are 32 registers (some of which may not be implemented). */
4141 set_gdbarch_num_regs (gdbarch, 32);
4142 set_gdbarch_register_name (gdbarch, cris_register_name);
4143 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4144 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4145
4146 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4147 break;
4148
4149 case 32:
4150 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4151 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4152 and pseudo-register PC (32 bits). */
4153 set_gdbarch_pc_regnum (gdbarch, 32);
4154 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4155 /* 32 registers + pseudo-register PC + 16 support registers. */
4156 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4157 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4158
4159 set_gdbarch_cannot_store_register
4160 (gdbarch, crisv32_cannot_store_register);
4161 set_gdbarch_cannot_fetch_register
4162 (gdbarch, crisv32_cannot_fetch_register);
4163
4164 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4165
4166 set_gdbarch_single_step_through_delay
4167 (gdbarch, crisv32_single_step_through_delay);
4168
4169 break;
4170
4171 default:
4172 internal_error (__FILE__, __LINE__,
4173 _("cris_gdbarch_init: unknown CRIS version"));
4174 }
4175
4176 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4177 have the same ABI). */
4178 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4179 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4180 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4181 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4182
4183 /* The stack grows downward. */
4184 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4185
4186 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4187
4188 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4189 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4190 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4191
4192 if (tdep->cris_dwarf2_cfi == 1)
4193 {
4194 /* Hook in the Dwarf-2 frame sniffer. */
4195 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4196 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4197 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4198 }
4199
4200 if (tdep->cris_mode != cris_mode_guru)
4201 {
4202 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4203 }
4204
4205 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4206 frame_base_set_default (gdbarch, &cris_frame_base);
4207
4208 set_solib_svr4_fetch_link_map_offsets
4209 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4210
4211 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4212 disassembler, even when there is no BFD. Does something like
4213 "gdb; target remote; disassmeble *0x123" work? */
4214 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4215
4216 return gdbarch;
4217 }
This page took 0.235372 seconds and 4 git commands to generate.