Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "dis-asm.h"
46
47 #include "cris-tdep.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static unsigned int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *const cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171 #define SIGTRAMP_OFFSET0 0
172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
173 #define SIGTRAMP_OFFSET1 4
174
175 static const unsigned short sigtramp_code[] =
176 {
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179 };
180
181 #define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183 /* Note: same length as normal sigtramp code. */
184
185 static const unsigned short rt_sigtramp_code[] =
186 {
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189 };
190
191 /* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 cris_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[SIGTRAMP_LEN];
199
200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
201 return 0;
202
203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
204 {
205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217 }
218
219 /* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222 static CORE_ADDR
223 cris_rt_sigtramp_start (struct frame_info *this_frame)
224 {
225 CORE_ADDR pc = get_frame_pc (this_frame);
226 gdb_byte buf[SIGTRAMP_LEN];
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
229 return 0;
230
231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
232 {
233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245 }
246
247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
249
250 static CORE_ADDR
251 cris_sigcontext_addr (struct frame_info *this_frame)
252 {
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
255 CORE_ADDR pc;
256 CORE_ADDR sp;
257 gdb_byte buf[4];
258
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
261
262 /* Look for normal sigtramp frame first. */
263 pc = cris_sigtramp_start (this_frame);
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
272 pc = cris_rt_sigtramp_start (this_frame);
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
283 error (_("Couldn't recognize signal trampoline."));
284 return 0;
285 }
286
287 struct cris_unwind_cache
288 {
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
303 CORE_ADDR return_pc;
304 int leaf_function;
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
308 };
309
310 static struct cris_unwind_cache *
311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
312 void **this_cache)
313 {
314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 struct cris_unwind_cache *info;
318 CORE_ADDR addr;
319 gdb_byte buf[4];
320 int i;
321
322 if ((*this_cache))
323 return (struct cris_unwind_cache *) (*this_cache);
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
340 info->base = extract_unsigned_integer (buf, 4, byte_order);
341
342 addr = cris_sigcontext_addr (this_frame);
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
366 = info->saved_regs[IRP_REGNUM];
367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
390 the signal is received while in a delay slot.
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
395 = info->saved_regs[ERP_REGNUM];
396
397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
398 = addr + (25 * 4);
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 SIGTRAMP_FRAME,
441 default_frame_unwind_stop_reason,
442 cris_sigtramp_frame_this_id,
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
446 };
447
448 static int
449 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451 {
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 ULONGEST erp;
454 int ret = 0;
455
456 if (tdep->cris_mode == cris_mode_guru)
457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
458 else
459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
466 ret = 1;
467 }
468 return ret;
469 }
470
471 /* The instruction environment needed to find single-step breakpoints. */
472
473 typedef
474 struct instruction_environment
475 {
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
488 enum bfd_endian byte_order;
489 } inst_env_type;
490
491 /* Machine-dependencies in CRIS for opcodes. */
492
493 /* Instruction sizes. */
494 enum cris_instruction_sizes
495 {
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499 };
500
501 /* Addressing modes. */
502 enum cris_addressing_modes
503 {
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507 };
508
509 /* Prefix addressing modes. */
510 enum cris_prefix_addressing_modes
511 {
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517 };
518
519 /* Masks for opcodes. */
520 enum cris_opcode_masks
521 {
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531 };
532
533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540 static int
541 cris_get_operand2 (unsigned short insn)
542 {
543 return ((insn & 0xF000) >> 12);
544 }
545
546 static int
547 cris_get_mode (unsigned short insn)
548 {
549 return ((insn & 0x0C00) >> 10);
550 }
551
552 static int
553 cris_get_opcode (unsigned short insn)
554 {
555 return ((insn & 0x03C0) >> 6);
556 }
557
558 static int
559 cris_get_size (unsigned short insn)
560 {
561 return ((insn & 0x0030) >> 4);
562 }
563
564 static int
565 cris_get_operand1 (unsigned short insn)
566 {
567 return (insn & 0x000F);
568 }
569
570 /* Additional functions in order to handle opcodes. */
571
572 static int
573 cris_get_quick_value (unsigned short insn)
574 {
575 return (insn & 0x003F);
576 }
577
578 static int
579 cris_get_bdap_quick_offset (unsigned short insn)
580 {
581 return (insn & 0x00FF);
582 }
583
584 static int
585 cris_get_branch_short_offset (unsigned short insn)
586 {
587 return (insn & 0x00FF);
588 }
589
590 static int
591 cris_get_asr_shift_steps (unsigned long value)
592 {
593 return (value & 0x3F);
594 }
595
596 static int
597 cris_get_clear_size (unsigned short insn)
598 {
599 return ((insn) & 0xC000);
600 }
601
602 static int
603 cris_is_signed_extend_bit_on (unsigned short insn)
604 {
605 return (((insn) & 0x20) == 0x20);
606 }
607
608 static int
609 cris_is_xflag_bit_on (unsigned short insn)
610 {
611 return (((insn) & 0x1000) == 0x1000);
612 }
613
614 static void
615 cris_set_size_to_dword (unsigned short *insn)
616 {
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619 }
620
621 static signed char
622 cris_get_signed_offset (unsigned short insn)
623 {
624 return ((signed char) (insn & 0x00FF));
625 }
626
627 /* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
631
632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
637 static void set_cris_version (char *ignore_args, int from_tty,
638 struct cmd_list_element *c);
639
640 static void set_cris_mode (char *ignore_args, int from_tty,
641 struct cmd_list_element *c);
642
643 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
644 struct cmd_list_element *c);
645
646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
647 struct frame_info *this_frame,
648 struct cris_unwind_cache *info);
649
650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
651 struct frame_info *this_frame,
652 struct cris_unwind_cache *info);
653
654 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
655 struct frame_info *next_frame);
656
657 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
658 struct frame_info *next_frame);
659
660 /* When arguments must be pushed onto the stack, they go on in reverse
661 order. The below implements a FILO (stack) to do this.
662 Copied from d10v-tdep.c. */
663
664 struct stack_item
665 {
666 int len;
667 struct stack_item *prev;
668 gdb_byte *data;
669 };
670
671 static struct stack_item *
672 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
673 {
674 struct stack_item *si = XNEW (struct stack_item);
675 si->data = (gdb_byte *) xmalloc (len);
676 si->len = len;
677 si->prev = prev;
678 memcpy (si->data, contents, len);
679 return si;
680 }
681
682 static struct stack_item *
683 pop_stack_item (struct stack_item *si)
684 {
685 struct stack_item *dead = si;
686 si = si->prev;
687 xfree (dead->data);
688 xfree (dead);
689 return si;
690 }
691
692 /* Put here the code to store, into fi->saved_regs, the addresses of
693 the saved registers of frame described by FRAME_INFO. This
694 includes special registers such as pc and fp saved in special ways
695 in the stack frame. sp is even more special: the address we return
696 for it IS the sp for the next frame. */
697
698 static struct cris_unwind_cache *
699 cris_frame_unwind_cache (struct frame_info *this_frame,
700 void **this_prologue_cache)
701 {
702 struct gdbarch *gdbarch = get_frame_arch (this_frame);
703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
704 struct cris_unwind_cache *info;
705
706 if ((*this_prologue_cache))
707 return (struct cris_unwind_cache *) (*this_prologue_cache);
708
709 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
710 (*this_prologue_cache) = info;
711 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
712
713 /* Zero all fields. */
714 info->prev_sp = 0;
715 info->base = 0;
716 info->size = 0;
717 info->sp_offset = 0;
718 info->r8_offset = 0;
719 info->uses_frame = 0;
720 info->return_pc = 0;
721 info->leaf_function = 0;
722
723 /* Prologue analysis does the rest... */
724 if (tdep->cris_version == 32)
725 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
726 else
727 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
728
729 return info;
730 }
731
732 /* Given a GDB frame, determine the address of the calling function's
733 frame. This will be used to create a new GDB frame struct. */
734
735 static void
736 cris_frame_this_id (struct frame_info *this_frame,
737 void **this_prologue_cache,
738 struct frame_id *this_id)
739 {
740 struct cris_unwind_cache *info
741 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
742 CORE_ADDR base;
743 CORE_ADDR func;
744 struct frame_id id;
745
746 /* The FUNC is easy. */
747 func = get_frame_func (this_frame);
748
749 /* Hopefully the prologue analysis either correctly determined the
750 frame's base (which is the SP from the previous frame), or set
751 that base to "NULL". */
752 base = info->prev_sp;
753 if (base == 0)
754 return;
755
756 id = frame_id_build (base, func);
757
758 (*this_id) = id;
759 }
760
761 static struct value *
762 cris_frame_prev_register (struct frame_info *this_frame,
763 void **this_prologue_cache, int regnum)
764 {
765 struct cris_unwind_cache *info
766 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
767 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
768 }
769
770 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
771 frame. The frame ID's base needs to match the TOS value saved by
772 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
773
774 static struct frame_id
775 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
776 {
777 CORE_ADDR sp;
778 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
779 return frame_id_build (sp, get_frame_pc (this_frame));
780 }
781
782 static CORE_ADDR
783 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
784 {
785 /* Align to the size of an instruction (so that they can safely be
786 pushed onto the stack). */
787 return sp & ~3;
788 }
789
790 static CORE_ADDR
791 cris_push_dummy_code (struct gdbarch *gdbarch,
792 CORE_ADDR sp, CORE_ADDR funaddr,
793 struct value **args, int nargs,
794 struct type *value_type,
795 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
796 struct regcache *regcache)
797 {
798 /* Allocate space sufficient for a breakpoint. */
799 sp = (sp - 4) & ~3;
800 /* Store the address of that breakpoint */
801 *bp_addr = sp;
802 /* CRIS always starts the call at the callee's entry point. */
803 *real_pc = funaddr;
804 return sp;
805 }
806
807 static CORE_ADDR
808 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
809 struct regcache *regcache, CORE_ADDR bp_addr,
810 int nargs, struct value **args, CORE_ADDR sp,
811 int struct_return, CORE_ADDR struct_addr)
812 {
813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
814 int argreg;
815 int argnum;
816
817 struct stack_item *si = NULL;
818
819 /* Push the return address. */
820 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
821
822 /* Are we returning a value using a structure return or a normal value
823 return? struct_addr is the address of the reserved space for the return
824 structure to be written on the stack. */
825 if (struct_return)
826 {
827 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
828 }
829
830 /* Now load as many as possible of the first arguments into registers,
831 and push the rest onto the stack. */
832 argreg = ARG1_REGNUM;
833
834 for (argnum = 0; argnum < nargs; argnum++)
835 {
836 int len;
837 const gdb_byte *val;
838 int reg_demand;
839 int i;
840
841 len = TYPE_LENGTH (value_type (args[argnum]));
842 val = value_contents (args[argnum]);
843
844 /* How may registers worth of storage do we need for this argument? */
845 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
846
847 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
848 {
849 /* Data passed by value. Fits in available register(s). */
850 for (i = 0; i < reg_demand; i++)
851 {
852 regcache_cooked_write (regcache, argreg, val);
853 argreg++;
854 val += 4;
855 }
856 }
857 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
858 {
859 /* Data passed by value. Does not fit in available register(s).
860 Use the register(s) first, then the stack. */
861 for (i = 0; i < reg_demand; i++)
862 {
863 if (argreg <= ARG4_REGNUM)
864 {
865 regcache_cooked_write (regcache, argreg, val);
866 argreg++;
867 val += 4;
868 }
869 else
870 {
871 /* Push item for later so that pushed arguments
872 come in the right order. */
873 si = push_stack_item (si, val, 4);
874 val += 4;
875 }
876 }
877 }
878 else if (len > (2 * 4))
879 {
880 /* Data passed by reference. Push copy of data onto stack
881 and pass pointer to this copy as argument. */
882 sp = (sp - len) & ~3;
883 write_memory (sp, val, len);
884
885 if (argreg <= ARG4_REGNUM)
886 {
887 regcache_cooked_write_unsigned (regcache, argreg, sp);
888 argreg++;
889 }
890 else
891 {
892 gdb_byte buf[4];
893 store_unsigned_integer (buf, 4, byte_order, sp);
894 si = push_stack_item (si, buf, 4);
895 }
896 }
897 else
898 {
899 /* Data passed by value. No available registers. Put it on
900 the stack. */
901 si = push_stack_item (si, val, len);
902 }
903 }
904
905 while (si)
906 {
907 /* fp_arg must be word-aligned (i.e., don't += len) to match
908 the function prologue. */
909 sp = (sp - si->len) & ~3;
910 write_memory (sp, si->data, si->len);
911 si = pop_stack_item (si);
912 }
913
914 /* Finally, update the SP register. */
915 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
916
917 return sp;
918 }
919
920 static const struct frame_unwind cris_frame_unwind =
921 {
922 NORMAL_FRAME,
923 default_frame_unwind_stop_reason,
924 cris_frame_this_id,
925 cris_frame_prev_register,
926 NULL,
927 default_frame_sniffer
928 };
929
930 static CORE_ADDR
931 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
932 {
933 struct cris_unwind_cache *info
934 = cris_frame_unwind_cache (this_frame, this_cache);
935 return info->base;
936 }
937
938 static const struct frame_base cris_frame_base =
939 {
940 &cris_frame_unwind,
941 cris_frame_base_address,
942 cris_frame_base_address,
943 cris_frame_base_address
944 };
945
946 /* Frames information. The definition of the struct frame_info is
947
948 CORE_ADDR frame
949 CORE_ADDR pc
950 enum frame_type type;
951 CORE_ADDR return_pc
952 int leaf_function
953
954 If the compilation option -fno-omit-frame-pointer is present the
955 variable frame will be set to the content of R8 which is the frame
956 pointer register.
957
958 The variable pc contains the address where execution is performed
959 in the present frame. The innermost frame contains the current content
960 of the register PC. All other frames contain the content of the
961 register PC in the next frame.
962
963 The variable `type' indicates the frame's type: normal, SIGTRAMP
964 (associated with a signal handler), dummy (associated with a dummy
965 frame).
966
967 The variable return_pc contains the address where execution should be
968 resumed when the present frame has finished, the return address.
969
970 The variable leaf_function is 1 if the return address is in the register
971 SRP, and 0 if it is on the stack.
972
973 Prologue instructions C-code.
974 The prologue may consist of (-fno-omit-frame-pointer)
975 1) 2)
976 push srp
977 push r8 push r8
978 move.d sp,r8 move.d sp,r8
979 subq X,sp subq X,sp
980 movem rY,[sp] movem rY,[sp]
981 move.S rZ,[r8-U] move.S rZ,[r8-U]
982
983 where 1 is a non-terminal function, and 2 is a leaf-function.
984
985 Note that this assumption is extremely brittle, and will break at the
986 slightest change in GCC's prologue.
987
988 If local variables are declared or register contents are saved on stack
989 the subq-instruction will be present with X as the number of bytes
990 needed for storage. The reshuffle with respect to r8 may be performed
991 with any size S (b, w, d) and any of the general registers Z={0..13}.
992 The offset U should be representable by a signed 8-bit value in all cases.
993 Thus, the prefix word is assumed to be immediate byte offset mode followed
994 by another word containing the instruction.
995
996 Degenerate cases:
997 3)
998 push r8
999 move.d sp,r8
1000 move.d r8,sp
1001 pop r8
1002
1003 Prologue instructions C++-code.
1004 Case 1) and 2) in the C-code may be followed by
1005
1006 move.d r10,rS ; this
1007 move.d r11,rT ; P1
1008 move.d r12,rU ; P2
1009 move.d r13,rV ; P3
1010 move.S [r8+U],rZ ; P4
1011
1012 if any of the call parameters are stored. The host expects these
1013 instructions to be executed in order to get the call parameters right. */
1014
1015 /* Examine the prologue of a function. The variable ip is the address of
1016 the first instruction of the prologue. The variable limit is the address
1017 of the first instruction after the prologue. The variable fi contains the
1018 information in struct frame_info. The variable frameless_p controls whether
1019 the entire prologue is examined (0) or just enough instructions to
1020 determine that it is a prologue (1). */
1021
1022 static CORE_ADDR
1023 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1024 struct cris_unwind_cache *info)
1025 {
1026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1028
1029 /* Present instruction. */
1030 unsigned short insn;
1031
1032 /* Next instruction, lookahead. */
1033 unsigned short insn_next;
1034 int regno;
1035
1036 /* Number of byte on stack used for local variables and movem. */
1037 int val;
1038
1039 /* Highest register number in a movem. */
1040 int regsave;
1041
1042 /* move.d r<source_register>,rS */
1043 short source_register;
1044
1045 /* Scan limit. */
1046 int limit;
1047
1048 /* This frame is with respect to a leaf until a push srp is found. */
1049 if (info)
1050 {
1051 info->leaf_function = 1;
1052 }
1053
1054 /* Assume nothing on stack. */
1055 val = 0;
1056 regsave = -1;
1057
1058 /* If we were called without a this_frame, that means we were called
1059 from cris_skip_prologue which already tried to find the end of the
1060 prologue through the symbol information. 64 instructions past current
1061 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1062 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1063
1064 /* Find the prologue instructions. */
1065 while (pc > 0 && pc < limit)
1066 {
1067 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1068 pc += 2;
1069 if (insn == 0xE1FC)
1070 {
1071 /* push <reg> 32 bit instruction. */
1072 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1073 pc += 2;
1074 regno = cris_get_operand2 (insn_next);
1075 if (info)
1076 {
1077 info->sp_offset += 4;
1078 }
1079 /* This check, meant to recognize srp, used to be regno ==
1080 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1081 if (insn_next == 0xBE7E)
1082 {
1083 if (info)
1084 {
1085 info->leaf_function = 0;
1086 }
1087 }
1088 else if (insn_next == 0x8FEE)
1089 {
1090 /* push $r8 */
1091 if (info)
1092 {
1093 info->r8_offset = info->sp_offset;
1094 }
1095 }
1096 }
1097 else if (insn == 0x866E)
1098 {
1099 /* move.d sp,r8 */
1100 if (info)
1101 {
1102 info->uses_frame = 1;
1103 }
1104 continue;
1105 }
1106 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1107 && cris_get_mode (insn) == 0x0000
1108 && cris_get_opcode (insn) == 0x000A)
1109 {
1110 /* subq <val>,sp */
1111 if (info)
1112 {
1113 info->sp_offset += cris_get_quick_value (insn);
1114 }
1115 }
1116 else if (cris_get_mode (insn) == 0x0002
1117 && cris_get_opcode (insn) == 0x000F
1118 && cris_get_size (insn) == 0x0003
1119 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1120 {
1121 /* movem r<regsave>,[sp] */
1122 regsave = cris_get_operand2 (insn);
1123 }
1124 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1125 && ((insn & 0x0F00) >> 8) == 0x0001
1126 && (cris_get_signed_offset (insn) < 0))
1127 {
1128 /* Immediate byte offset addressing prefix word with sp as base
1129 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1130 is between 64 and 128.
1131 movem r<regsave>,[sp=sp-<val>] */
1132 if (info)
1133 {
1134 info->sp_offset += -cris_get_signed_offset (insn);
1135 }
1136 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1137 pc += 2;
1138 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1139 && cris_get_opcode (insn_next) == 0x000F
1140 && cris_get_size (insn_next) == 0x0003
1141 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1142 (gdbarch))
1143 {
1144 regsave = cris_get_operand2 (insn_next);
1145 }
1146 else
1147 {
1148 /* The prologue ended before the limit was reached. */
1149 pc -= 4;
1150 break;
1151 }
1152 }
1153 else if (cris_get_mode (insn) == 0x0001
1154 && cris_get_opcode (insn) == 0x0009
1155 && cris_get_size (insn) == 0x0002)
1156 {
1157 /* move.d r<10..13>,r<0..15> */
1158 source_register = cris_get_operand1 (insn);
1159
1160 /* FIXME? In the glibc solibs, the prologue might contain something
1161 like (this example taken from relocate_doit):
1162 move.d $pc,$r0
1163 sub.d 0xfffef426,$r0
1164 which isn't covered by the source_register check below. Question
1165 is whether to add a check for this combo, or make better use of
1166 the limit variable instead. */
1167 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1168 {
1169 /* The prologue ended before the limit was reached. */
1170 pc -= 2;
1171 break;
1172 }
1173 }
1174 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1175 /* The size is a fixed-size. */
1176 && ((insn & 0x0F00) >> 8) == 0x0001
1177 /* A negative offset. */
1178 && (cris_get_signed_offset (insn) < 0))
1179 {
1180 /* move.S rZ,[r8-U] (?) */
1181 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1182 pc += 2;
1183 regno = cris_get_operand2 (insn_next);
1184 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1185 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1186 && cris_get_opcode (insn_next) == 0x000F)
1187 {
1188 /* move.S rZ,[r8-U] */
1189 continue;
1190 }
1191 else
1192 {
1193 /* The prologue ended before the limit was reached. */
1194 pc -= 4;
1195 break;
1196 }
1197 }
1198 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1199 /* The size is a fixed-size. */
1200 && ((insn & 0x0F00) >> 8) == 0x0001
1201 /* A positive offset. */
1202 && (cris_get_signed_offset (insn) > 0))
1203 {
1204 /* move.S [r8+U],rZ (?) */
1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1206 pc += 2;
1207 regno = cris_get_operand2 (insn_next);
1208 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1209 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1210 && cris_get_opcode (insn_next) == 0x0009
1211 && cris_get_operand1 (insn_next) == regno)
1212 {
1213 /* move.S [r8+U],rZ */
1214 continue;
1215 }
1216 else
1217 {
1218 /* The prologue ended before the limit was reached. */
1219 pc -= 4;
1220 break;
1221 }
1222 }
1223 else
1224 {
1225 /* The prologue ended before the limit was reached. */
1226 pc -= 2;
1227 break;
1228 }
1229 }
1230
1231 /* We only want to know the end of the prologue when this_frame and info
1232 are NULL (called from cris_skip_prologue i.e.). */
1233 if (this_frame == NULL && info == NULL)
1234 {
1235 return pc;
1236 }
1237
1238 info->size = info->sp_offset;
1239
1240 /* Compute the previous frame's stack pointer (which is also the
1241 frame's ID's stack address), and this frame's base pointer. */
1242 if (info->uses_frame)
1243 {
1244 ULONGEST this_base;
1245 /* The SP was moved to the FP. This indicates that a new frame
1246 was created. Get THIS frame's FP value by unwinding it from
1247 the next frame. */
1248 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1249 info->base = this_base;
1250 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1251
1252 /* The FP points at the last saved register. Adjust the FP back
1253 to before the first saved register giving the SP. */
1254 info->prev_sp = info->base + info->r8_offset;
1255 }
1256 else
1257 {
1258 ULONGEST this_base;
1259 /* Assume that the FP is this frame's SP but with that pushed
1260 stack space added back. */
1261 this_base = get_frame_register_unsigned (this_frame,
1262 gdbarch_sp_regnum (gdbarch));
1263 info->base = this_base;
1264 info->prev_sp = info->base + info->size;
1265 }
1266
1267 /* Calculate the addresses for the saved registers on the stack. */
1268 /* FIXME: The address calculation should really be done on the fly while
1269 we're analyzing the prologue (we only hold one regsave value as it is
1270 now). */
1271 val = info->sp_offset;
1272
1273 for (regno = regsave; regno >= 0; regno--)
1274 {
1275 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1276 val -= 4;
1277 }
1278
1279 /* The previous frame's SP needed to be computed. Save the computed
1280 value. */
1281 trad_frame_set_value (info->saved_regs,
1282 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1283
1284 if (!info->leaf_function)
1285 {
1286 /* SRP saved on the stack. But where? */
1287 if (info->r8_offset == 0)
1288 {
1289 /* R8 not pushed yet. */
1290 info->saved_regs[SRP_REGNUM].addr = info->base;
1291 }
1292 else
1293 {
1294 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1295 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1296 }
1297 }
1298
1299 /* The PC is found in SRP (the actual register or located on the stack). */
1300 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1301 = info->saved_regs[SRP_REGNUM];
1302
1303 return pc;
1304 }
1305
1306 static CORE_ADDR
1307 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1308 struct cris_unwind_cache *info)
1309 {
1310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1311 ULONGEST this_base;
1312
1313 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1314 meant to be a full-fledged prologue scanner. It is only needed for
1315 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1316
1317 * PLT stubs (library calls)
1318 * call dummys
1319 * signal trampolines
1320
1321 For those cases, it is assumed that there is no actual prologue; that
1322 the stack pointer is not adjusted, and (as a consequence) the return
1323 address is not pushed onto the stack. */
1324
1325 /* We only want to know the end of the prologue when this_frame and info
1326 are NULL (called from cris_skip_prologue i.e.). */
1327 if (this_frame == NULL && info == NULL)
1328 {
1329 return pc;
1330 }
1331
1332 /* The SP is assumed to be unaltered. */
1333 this_base = get_frame_register_unsigned (this_frame,
1334 gdbarch_sp_regnum (gdbarch));
1335 info->base = this_base;
1336 info->prev_sp = this_base;
1337
1338 /* The PC is assumed to be found in SRP. */
1339 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1340 = info->saved_regs[SRP_REGNUM];
1341
1342 return pc;
1343 }
1344
1345 /* Advance pc beyond any function entry prologue instructions at pc
1346 to reach some "real" code. */
1347
1348 /* Given a PC value corresponding to the start of a function, return the PC
1349 of the first instruction after the function prologue. */
1350
1351 static CORE_ADDR
1352 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1353 {
1354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1355 CORE_ADDR func_addr, func_end;
1356 struct symtab_and_line sal;
1357 CORE_ADDR pc_after_prologue;
1358
1359 /* If we have line debugging information, then the end of the prologue
1360 should the first assembly instruction of the first source line. */
1361 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1362 {
1363 sal = find_pc_line (func_addr, 0);
1364 if (sal.end > 0 && sal.end < func_end)
1365 return sal.end;
1366 }
1367
1368 if (tdep->cris_version == 32)
1369 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1370 else
1371 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1372
1373 return pc_after_prologue;
1374 }
1375
1376 static CORE_ADDR
1377 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1378 {
1379 ULONGEST pc;
1380 pc = frame_unwind_register_unsigned (next_frame,
1381 gdbarch_pc_regnum (gdbarch));
1382 return pc;
1383 }
1384
1385 static CORE_ADDR
1386 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1387 {
1388 ULONGEST sp;
1389 sp = frame_unwind_register_unsigned (next_frame,
1390 gdbarch_sp_regnum (gdbarch));
1391 return sp;
1392 }
1393
1394 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1395
1396 static int
1397 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1398 {
1399 return 2;
1400 }
1401
1402 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1403
1404 static const gdb_byte *
1405 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1406 {
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1408 static unsigned char break8_insn[] = {0x38, 0xe9};
1409 static unsigned char break15_insn[] = {0x3f, 0xe9};
1410
1411 *size = kind;
1412
1413 if (tdep->cris_mode == cris_mode_guru)
1414 return break15_insn;
1415 else
1416 return break8_insn;
1417 }
1418
1419 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1420 0 otherwise. */
1421
1422 static int
1423 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1424 struct cris_spec_reg spec_reg)
1425 {
1426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1427 unsigned int version = tdep->cris_version;
1428
1429 switch (spec_reg.applicable_version)
1430 {
1431 case cris_ver_version_all:
1432 return 1;
1433 case cris_ver_warning:
1434 /* Indeterminate/obsolete. */
1435 return 0;
1436 case cris_ver_v0_3:
1437 return (version >= 0 && version <= 3);
1438 case cris_ver_v3p:
1439 return (version >= 3);
1440 case cris_ver_v8:
1441 return (version == 8 || version == 9);
1442 case cris_ver_v8p:
1443 return (version >= 8);
1444 case cris_ver_v0_10:
1445 return (version >= 0 && version <= 10);
1446 case cris_ver_v3_10:
1447 return (version >= 3 && version <= 10);
1448 case cris_ver_v8_10:
1449 return (version >= 8 && version <= 10);
1450 case cris_ver_v10:
1451 return (version == 10);
1452 case cris_ver_v10p:
1453 return (version >= 10);
1454 case cris_ver_v32p:
1455 return (version >= 32);
1456 default:
1457 /* Invalid cris version. */
1458 return 0;
1459 }
1460 }
1461
1462 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1463 register, -1 for an invalid register. */
1464
1465 static int
1466 cris_register_size (struct gdbarch *gdbarch, int regno)
1467 {
1468 int i;
1469 int spec_regno;
1470
1471 if (regno >= 0 && regno < NUM_GENREGS)
1472 {
1473 /* General registers (R0 - R15) are 32 bits. */
1474 return 4;
1475 }
1476 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1477 {
1478 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1479 Adjust regno accordingly. */
1480 spec_regno = regno - NUM_GENREGS;
1481
1482 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1483 {
1484 if (cris_spec_regs[i].number == spec_regno
1485 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1486 /* Go with the first applicable register. */
1487 return cris_spec_regs[i].reg_size;
1488 }
1489 /* Special register not applicable to this CRIS version. */
1490 return 0;
1491 }
1492 else if (regno >= gdbarch_pc_regnum (gdbarch)
1493 && regno < gdbarch_num_regs (gdbarch))
1494 {
1495 /* This will apply to CRISv32 only where there are additional registers
1496 after the special registers (pseudo PC and support registers). */
1497 return 4;
1498 }
1499
1500
1501 return -1;
1502 }
1503
1504 /* Nonzero if regno should not be fetched from the target. This is the case
1505 for unimplemented (size 0) and non-existant registers. */
1506
1507 static int
1508 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1509 {
1510 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1511 || (cris_register_size (gdbarch, regno) == 0));
1512 }
1513
1514 /* Nonzero if regno should not be written to the target, for various
1515 reasons. */
1516
1517 static int
1518 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1519 {
1520 /* There are three kinds of registers we refuse to write to.
1521 1. Those that not implemented.
1522 2. Those that are read-only (depends on the processor mode).
1523 3. Those registers to which a write has no effect. */
1524
1525 if (regno < 0
1526 || regno >= gdbarch_num_regs (gdbarch)
1527 || cris_register_size (gdbarch, regno) == 0)
1528 /* Not implemented. */
1529 return 1;
1530
1531 else if (regno == VR_REGNUM)
1532 /* Read-only. */
1533 return 1;
1534
1535 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1536 /* Writing has no effect. */
1537 return 1;
1538
1539 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1540 agent decide whether they are writable. */
1541
1542 return 0;
1543 }
1544
1545 /* Nonzero if regno should not be fetched from the target. This is the case
1546 for unimplemented (size 0) and non-existant registers. */
1547
1548 static int
1549 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1550 {
1551 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1552 || (cris_register_size (gdbarch, regno) == 0));
1553 }
1554
1555 /* Nonzero if regno should not be written to the target, for various
1556 reasons. */
1557
1558 static int
1559 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1560 {
1561 /* There are three kinds of registers we refuse to write to.
1562 1. Those that not implemented.
1563 2. Those that are read-only (depends on the processor mode).
1564 3. Those registers to which a write has no effect. */
1565
1566 if (regno < 0
1567 || regno >= gdbarch_num_regs (gdbarch)
1568 || cris_register_size (gdbarch, regno) == 0)
1569 /* Not implemented. */
1570 return 1;
1571
1572 else if (regno == VR_REGNUM)
1573 /* Read-only. */
1574 return 1;
1575
1576 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1577 /* Writing has no effect. */
1578 return 1;
1579
1580 /* Many special registers are read-only in user mode. Let the debug
1581 agent decide whether they are writable. */
1582
1583 return 0;
1584 }
1585
1586 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1587 of data in register regno. */
1588
1589 static struct type *
1590 cris_register_type (struct gdbarch *gdbarch, int regno)
1591 {
1592 if (regno == gdbarch_pc_regnum (gdbarch))
1593 return builtin_type (gdbarch)->builtin_func_ptr;
1594 else if (regno == gdbarch_sp_regnum (gdbarch)
1595 || regno == CRIS_FP_REGNUM)
1596 return builtin_type (gdbarch)->builtin_data_ptr;
1597 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1598 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1599 /* Note: R8 taken care of previous clause. */
1600 return builtin_type (gdbarch)->builtin_uint32;
1601 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1602 return builtin_type (gdbarch)->builtin_uint16;
1603 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1604 return builtin_type (gdbarch)->builtin_uint8;
1605 else
1606 /* Invalid (unimplemented) register. */
1607 return builtin_type (gdbarch)->builtin_int0;
1608 }
1609
1610 static struct type *
1611 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1612 {
1613 if (regno == gdbarch_pc_regnum (gdbarch))
1614 return builtin_type (gdbarch)->builtin_func_ptr;
1615 else if (regno == gdbarch_sp_regnum (gdbarch)
1616 || regno == CRIS_FP_REGNUM)
1617 return builtin_type (gdbarch)->builtin_data_ptr;
1618 else if ((regno >= 0 && regno <= ACR_REGNUM)
1619 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1620 || (regno == PID_REGNUM)
1621 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1622 /* Note: R8 and SP taken care of by previous clause. */
1623 return builtin_type (gdbarch)->builtin_uint32;
1624 else if (regno == WZ_REGNUM)
1625 return builtin_type (gdbarch)->builtin_uint16;
1626 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1627 return builtin_type (gdbarch)->builtin_uint8;
1628 else
1629 {
1630 /* Invalid (unimplemented) register. Should not happen as there are
1631 no unimplemented CRISv32 registers. */
1632 warning (_("crisv32_register_type: unknown regno %d"), regno);
1633 return builtin_type (gdbarch)->builtin_int0;
1634 }
1635 }
1636
1637 /* Stores a function return value of type type, where valbuf is the address
1638 of the value to be stored. */
1639
1640 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1641
1642 static void
1643 cris_store_return_value (struct type *type, struct regcache *regcache,
1644 const gdb_byte *valbuf)
1645 {
1646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1648 ULONGEST val;
1649 int len = TYPE_LENGTH (type);
1650
1651 if (len <= 4)
1652 {
1653 /* Put the return value in R10. */
1654 val = extract_unsigned_integer (valbuf, len, byte_order);
1655 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1656 }
1657 else if (len <= 8)
1658 {
1659 /* Put the return value in R10 and R11. */
1660 val = extract_unsigned_integer (valbuf, 4, byte_order);
1661 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1662 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1663 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1664 }
1665 else
1666 error (_("cris_store_return_value: type length too large."));
1667 }
1668
1669 /* Return the name of register regno as a string. Return NULL for an
1670 invalid or unimplemented register. */
1671
1672 static const char *
1673 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1674 {
1675 int spec_regno;
1676 int i;
1677
1678 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1679 Adjust regno accordingly. */
1680 spec_regno = regno - NUM_GENREGS;
1681
1682 /* Assume nothing about the layout of the cris_spec_regs struct
1683 when searching. */
1684 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1685 {
1686 if (cris_spec_regs[i].number == spec_regno
1687 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1688 /* Go with the first applicable register. */
1689 return cris_spec_regs[i].name;
1690 }
1691 /* Special register not applicable to this CRIS version. */
1692 return NULL;
1693 }
1694
1695 static const char *
1696 cris_register_name (struct gdbarch *gdbarch, int regno)
1697 {
1698 static char *cris_genreg_names[] =
1699 { "r0", "r1", "r2", "r3", \
1700 "r4", "r5", "r6", "r7", \
1701 "r8", "r9", "r10", "r11", \
1702 "r12", "r13", "sp", "pc" };
1703
1704 if (regno >= 0 && regno < NUM_GENREGS)
1705 {
1706 /* General register. */
1707 return cris_genreg_names[regno];
1708 }
1709 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1710 {
1711 return cris_special_register_name (gdbarch, regno);
1712 }
1713 else
1714 {
1715 /* Invalid register. */
1716 return NULL;
1717 }
1718 }
1719
1720 static const char *
1721 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1722 {
1723 static char *crisv32_genreg_names[] =
1724 { "r0", "r1", "r2", "r3", \
1725 "r4", "r5", "r6", "r7", \
1726 "r8", "r9", "r10", "r11", \
1727 "r12", "r13", "sp", "acr"
1728 };
1729
1730 static char *crisv32_sreg_names[] =
1731 { "s0", "s1", "s2", "s3", \
1732 "s4", "s5", "s6", "s7", \
1733 "s8", "s9", "s10", "s11", \
1734 "s12", "s13", "s14", "s15"
1735 };
1736
1737 if (regno >= 0 && regno < NUM_GENREGS)
1738 {
1739 /* General register. */
1740 return crisv32_genreg_names[regno];
1741 }
1742 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1743 {
1744 return cris_special_register_name (gdbarch, regno);
1745 }
1746 else if (regno == gdbarch_pc_regnum (gdbarch))
1747 {
1748 return "pc";
1749 }
1750 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1751 {
1752 return crisv32_sreg_names[regno - S0_REGNUM];
1753 }
1754 else
1755 {
1756 /* Invalid register. */
1757 return NULL;
1758 }
1759 }
1760
1761 /* Convert DWARF register number REG to the appropriate register
1762 number used by GDB. */
1763
1764 static int
1765 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1766 {
1767 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1768 numbering, MOF is 18).
1769 Adapted from gcc/config/cris/cris.h. */
1770 static int cris_dwarf_regmap[] = {
1771 0, 1, 2, 3,
1772 4, 5, 6, 7,
1773 8, 9, 10, 11,
1774 12, 13, 14, 15,
1775 27, -1, -1, -1,
1776 -1, -1, -1, 23,
1777 -1, -1, -1, 27,
1778 -1, -1, -1, -1
1779 };
1780 int regnum = -1;
1781
1782 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1783 regnum = cris_dwarf_regmap[reg];
1784
1785 return regnum;
1786 }
1787
1788 /* DWARF-2 frame support. */
1789
1790 static void
1791 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1792 struct dwarf2_frame_state_reg *reg,
1793 struct frame_info *this_frame)
1794 {
1795 /* The return address column. */
1796 if (regnum == gdbarch_pc_regnum (gdbarch))
1797 reg->how = DWARF2_FRAME_REG_RA;
1798
1799 /* The call frame address. */
1800 else if (regnum == gdbarch_sp_regnum (gdbarch))
1801 reg->how = DWARF2_FRAME_REG_CFA;
1802 }
1803
1804 /* Extract from an array regbuf containing the raw register state a function
1805 return value of type type, and copy that, in virtual format, into
1806 valbuf. */
1807
1808 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1809
1810 static void
1811 cris_extract_return_value (struct type *type, struct regcache *regcache,
1812 gdb_byte *valbuf)
1813 {
1814 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1815 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1816 ULONGEST val;
1817 int len = TYPE_LENGTH (type);
1818
1819 if (len <= 4)
1820 {
1821 /* Get the return value from R10. */
1822 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1823 store_unsigned_integer (valbuf, len, byte_order, val);
1824 }
1825 else if (len <= 8)
1826 {
1827 /* Get the return value from R10 and R11. */
1828 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1829 store_unsigned_integer (valbuf, 4, byte_order, val);
1830 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1831 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1832 }
1833 else
1834 error (_("cris_extract_return_value: type length too large"));
1835 }
1836
1837 /* Handle the CRIS return value convention. */
1838
1839 static enum return_value_convention
1840 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1841 struct type *type, struct regcache *regcache,
1842 gdb_byte *readbuf, const gdb_byte *writebuf)
1843 {
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1845 || TYPE_CODE (type) == TYPE_CODE_UNION
1846 || TYPE_LENGTH (type) > 8)
1847 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1848 goes on the stack. */
1849 return RETURN_VALUE_STRUCT_CONVENTION;
1850
1851 if (readbuf)
1852 cris_extract_return_value (type, regcache, readbuf);
1853 if (writebuf)
1854 cris_store_return_value (type, regcache, writebuf);
1855
1856 return RETURN_VALUE_REGISTER_CONVENTION;
1857 }
1858
1859 /* Calculates a value that measures how good inst_args constraints an
1860 instruction. It stems from cris_constraint, found in cris-dis.c. */
1861
1862 static int
1863 constraint (unsigned int insn, const char *inst_args,
1864 inst_env_type *inst_env)
1865 {
1866 int retval = 0;
1867 int tmp, i;
1868
1869 const gdb_byte *s = (const gdb_byte *) inst_args;
1870
1871 for (; *s; s++)
1872 switch (*s)
1873 {
1874 case 'm':
1875 if ((insn & 0x30) == 0x30)
1876 return -1;
1877 break;
1878
1879 case 'S':
1880 /* A prefix operand. */
1881 if (inst_env->prefix_found)
1882 break;
1883 else
1884 return -1;
1885
1886 case 'B':
1887 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1888 valid "push" size. In case of special register, it may be != 4. */
1889 if (inst_env->prefix_found)
1890 break;
1891 else
1892 return -1;
1893
1894 case 'D':
1895 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1896 if (!retval)
1897 return -1;
1898 else
1899 retval += 4;
1900 break;
1901
1902 case 'P':
1903 tmp = (insn >> 0xC) & 0xF;
1904
1905 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1906 {
1907 /* Since we match four bits, we will give a value of
1908 4 - 1 = 3 in a match. If there is a corresponding
1909 exact match of a special register in another pattern, it
1910 will get a value of 4, which will be higher. This should
1911 be correct in that an exact pattern would match better that
1912 a general pattern.
1913 Note that there is a reason for not returning zero; the
1914 pattern for "clear" is partly matched in the bit-pattern
1915 (the two lower bits must be zero), while the bit-pattern
1916 for a move from a special register is matched in the
1917 register constraint.
1918 This also means we will will have a race condition if
1919 there is a partly match in three bits in the bit pattern. */
1920 if (tmp == cris_spec_regs[i].number)
1921 {
1922 retval += 3;
1923 break;
1924 }
1925 }
1926
1927 if (cris_spec_regs[i].name == NULL)
1928 return -1;
1929 break;
1930 }
1931 return retval;
1932 }
1933
1934 /* Returns the number of bits set in the variable value. */
1935
1936 static int
1937 number_of_bits (unsigned int value)
1938 {
1939 int number_of_bits = 0;
1940
1941 while (value != 0)
1942 {
1943 number_of_bits += 1;
1944 value &= (value - 1);
1945 }
1946 return number_of_bits;
1947 }
1948
1949 /* Finds the address that should contain the single step breakpoint(s).
1950 It stems from code in cris-dis.c. */
1951
1952 static int
1953 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1954 {
1955 int i;
1956 int max_level_of_match = -1;
1957 int max_matched = -1;
1958 int level_of_match;
1959
1960 for (i = 0; cris_opcodes[i].name != NULL; i++)
1961 {
1962 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1963 && ((cris_opcodes[i].lose & insn) == 0)
1964 /* Only CRISv10 instructions, please. */
1965 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1966 {
1967 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1968 if (level_of_match >= 0)
1969 {
1970 level_of_match +=
1971 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1972 if (level_of_match > max_level_of_match)
1973 {
1974 max_matched = i;
1975 max_level_of_match = level_of_match;
1976 if (level_of_match == 16)
1977 {
1978 /* All bits matched, cannot find better. */
1979 break;
1980 }
1981 }
1982 }
1983 }
1984 }
1985 return max_matched;
1986 }
1987
1988 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1989 actually an internal error. */
1990
1991 static int
1992 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
1993 {
1994 int i;
1995 int offset;
1996 unsigned short insn;
1997 struct gdbarch *gdbarch = get_frame_arch (frame);
1998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1999
2000 /* Create a local register image and set the initial state. */
2001 for (i = 0; i < NUM_GENREGS; i++)
2002 {
2003 inst_env->reg[i] =
2004 (unsigned long) get_frame_register_unsigned (frame, i);
2005 }
2006 offset = NUM_GENREGS;
2007 for (i = 0; i < NUM_SPECREGS; i++)
2008 {
2009 inst_env->preg[i] =
2010 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2011 }
2012 inst_env->branch_found = 0;
2013 inst_env->slot_needed = 0;
2014 inst_env->delay_slot_pc_active = 0;
2015 inst_env->prefix_found = 0;
2016 inst_env->invalid = 0;
2017 inst_env->xflag_found = 0;
2018 inst_env->disable_interrupt = 0;
2019 inst_env->byte_order = byte_order;
2020
2021 /* Look for a step target. */
2022 do
2023 {
2024 /* Read an instruction from the client. */
2025 insn = read_memory_unsigned_integer
2026 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2027
2028 /* If the instruction is not in a delay slot the new content of the
2029 PC is [PC] + 2. If the instruction is in a delay slot it is not
2030 that simple. Since a instruction in a delay slot cannot change
2031 the content of the PC, it does not matter what value PC will have.
2032 Just make sure it is a valid instruction. */
2033 if (!inst_env->delay_slot_pc_active)
2034 {
2035 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2036 }
2037 else
2038 {
2039 inst_env->delay_slot_pc_active = 0;
2040 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2041 = inst_env->delay_slot_pc;
2042 }
2043 /* Analyse the present instruction. */
2044 i = find_cris_op (insn, inst_env);
2045 if (i == -1)
2046 {
2047 inst_env->invalid = 1;
2048 }
2049 else
2050 {
2051 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2052 }
2053 } while (!inst_env->invalid
2054 && (inst_env->prefix_found || inst_env->xflag_found
2055 || inst_env->slot_needed));
2056 return i;
2057 }
2058
2059 /* There is no hardware single-step support. The function find_step_target
2060 digs through the opcodes in order to find all possible targets.
2061 Either one ordinary target or two targets for branches may be found. */
2062
2063 static int
2064 cris_software_single_step (struct frame_info *frame)
2065 {
2066 struct gdbarch *gdbarch = get_frame_arch (frame);
2067 struct address_space *aspace = get_frame_address_space (frame);
2068 inst_env_type inst_env;
2069
2070 /* Analyse the present instruction environment and insert
2071 breakpoints. */
2072 int status = find_step_target (frame, &inst_env);
2073 if (status == -1)
2074 {
2075 /* Could not find a target. Things are likely to go downhill
2076 from here. */
2077 warning (_("CRIS software single step could not find a step target."));
2078 }
2079 else
2080 {
2081 /* Insert at most two breakpoints. One for the next PC content
2082 and possibly another one for a branch, jump, etc. */
2083 CORE_ADDR next_pc
2084 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2085 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2086 if (inst_env.branch_found
2087 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2088 {
2089 CORE_ADDR branch_target_address
2090 = (CORE_ADDR) inst_env.branch_break_address;
2091 insert_single_step_breakpoint (gdbarch,
2092 aspace, branch_target_address);
2093 }
2094 }
2095
2096 return 1;
2097 }
2098
2099 /* Calculates the prefix value for quick offset addressing mode. */
2100
2101 static void
2102 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2103 {
2104 /* It's invalid to be in a delay slot. You can't have a prefix to this
2105 instruction (not 100% sure). */
2106 if (inst_env->slot_needed || inst_env->prefix_found)
2107 {
2108 inst_env->invalid = 1;
2109 return;
2110 }
2111
2112 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2113 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2114
2115 /* A prefix doesn't change the xflag_found. But the rest of the flags
2116 need updating. */
2117 inst_env->slot_needed = 0;
2118 inst_env->prefix_found = 1;
2119 }
2120
2121 /* Updates the autoincrement register. The size of the increment is derived
2122 from the size of the operation. The PC is always kept aligned on even
2123 word addresses. */
2124
2125 static void
2126 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2127 {
2128 if (size == INST_BYTE_SIZE)
2129 {
2130 inst_env->reg[cris_get_operand1 (inst)] += 1;
2131
2132 /* The PC must be word aligned, so increase the PC with one
2133 word even if the size is byte. */
2134 if (cris_get_operand1 (inst) == REG_PC)
2135 {
2136 inst_env->reg[REG_PC] += 1;
2137 }
2138 }
2139 else if (size == INST_WORD_SIZE)
2140 {
2141 inst_env->reg[cris_get_operand1 (inst)] += 2;
2142 }
2143 else if (size == INST_DWORD_SIZE)
2144 {
2145 inst_env->reg[cris_get_operand1 (inst)] += 4;
2146 }
2147 else
2148 {
2149 /* Invalid size. */
2150 inst_env->invalid = 1;
2151 }
2152 }
2153
2154 /* Just a forward declaration. */
2155
2156 static unsigned long get_data_from_address (unsigned short *inst,
2157 CORE_ADDR address,
2158 enum bfd_endian byte_order);
2159
2160 /* Calculates the prefix value for the general case of offset addressing
2161 mode. */
2162
2163 static void
2164 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2165 {
2166 /* It's invalid to be in a delay slot. */
2167 if (inst_env->slot_needed || inst_env->prefix_found)
2168 {
2169 inst_env->invalid = 1;
2170 return;
2171 }
2172
2173 /* The calculation of prefix_value used to be after process_autoincrement,
2174 but that fails for an instruction such as jsr [$r0+12] which is encoded
2175 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2176 mustn't be incremented until we have read it and what it points at. */
2177 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2178
2179 /* The offset is an indirection of the contents of the operand1 register. */
2180 inst_env->prefix_value +=
2181 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2182 inst_env->byte_order);
2183
2184 if (cris_get_mode (inst) == AUTOINC_MODE)
2185 {
2186 process_autoincrement (cris_get_size (inst), inst, inst_env);
2187 }
2188
2189 /* A prefix doesn't change the xflag_found. But the rest of the flags
2190 need updating. */
2191 inst_env->slot_needed = 0;
2192 inst_env->prefix_found = 1;
2193 }
2194
2195 /* Calculates the prefix value for the index addressing mode. */
2196
2197 static void
2198 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2199 {
2200 /* It's invalid to be in a delay slot. I can't see that it's possible to
2201 have a prefix to this instruction. So I will treat this as invalid. */
2202 if (inst_env->slot_needed || inst_env->prefix_found)
2203 {
2204 inst_env->invalid = 1;
2205 return;
2206 }
2207
2208 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2209
2210 /* The offset is the operand2 value shifted the size of the instruction
2211 to the left. */
2212 inst_env->prefix_value +=
2213 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2214
2215 /* If the PC is operand1 (base) the address used is the address after
2216 the main instruction, i.e. address + 2 (the PC is already compensated
2217 for the prefix operation). */
2218 if (cris_get_operand1 (inst) == REG_PC)
2219 {
2220 inst_env->prefix_value += 2;
2221 }
2222
2223 /* A prefix doesn't change the xflag_found. But the rest of the flags
2224 need updating. */
2225 inst_env->slot_needed = 0;
2226 inst_env->xflag_found = 0;
2227 inst_env->prefix_found = 1;
2228 }
2229
2230 /* Calculates the prefix value for the double indirect addressing mode. */
2231
2232 static void
2233 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2234 {
2235
2236 CORE_ADDR address;
2237
2238 /* It's invalid to be in a delay slot. */
2239 if (inst_env->slot_needed || inst_env->prefix_found)
2240 {
2241 inst_env->invalid = 1;
2242 return;
2243 }
2244
2245 /* The prefix value is one dereference of the contents of the operand1
2246 register. */
2247 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2248 inst_env->prefix_value
2249 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2250
2251 /* Check if the mode is autoincrement. */
2252 if (cris_get_mode (inst) == AUTOINC_MODE)
2253 {
2254 inst_env->reg[cris_get_operand1 (inst)] += 4;
2255 }
2256
2257 /* A prefix doesn't change the xflag_found. But the rest of the flags
2258 need updating. */
2259 inst_env->slot_needed = 0;
2260 inst_env->xflag_found = 0;
2261 inst_env->prefix_found = 1;
2262 }
2263
2264 /* Finds the destination for a branch with 8-bits offset. */
2265
2266 static void
2267 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2268 {
2269
2270 short offset;
2271
2272 /* If we have a prefix or are in a delay slot it's bad. */
2273 if (inst_env->slot_needed || inst_env->prefix_found)
2274 {
2275 inst_env->invalid = 1;
2276 return;
2277 }
2278
2279 /* We have a branch, find out where the branch will land. */
2280 offset = cris_get_branch_short_offset (inst);
2281
2282 /* Check if the offset is signed. */
2283 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2284 {
2285 offset |= 0xFF00;
2286 }
2287
2288 /* The offset ends with the sign bit, set it to zero. The address
2289 should always be word aligned. */
2290 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2291
2292 inst_env->branch_found = 1;
2293 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2294
2295 inst_env->slot_needed = 1;
2296 inst_env->prefix_found = 0;
2297 inst_env->xflag_found = 0;
2298 inst_env->disable_interrupt = 1;
2299 }
2300
2301 /* Finds the destination for a branch with 16-bits offset. */
2302
2303 static void
2304 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2305 {
2306 short offset;
2307
2308 /* If we have a prefix or is in a delay slot it's bad. */
2309 if (inst_env->slot_needed || inst_env->prefix_found)
2310 {
2311 inst_env->invalid = 1;
2312 return;
2313 }
2314
2315 /* We have a branch, find out the offset for the branch. */
2316 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2317 inst_env->byte_order);
2318
2319 /* The instruction is one word longer than normal, so add one word
2320 to the PC. */
2321 inst_env->reg[REG_PC] += 2;
2322
2323 inst_env->branch_found = 1;
2324 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2325
2326
2327 inst_env->slot_needed = 1;
2328 inst_env->prefix_found = 0;
2329 inst_env->xflag_found = 0;
2330 inst_env->disable_interrupt = 1;
2331 }
2332
2333 /* Handles the ABS instruction. */
2334
2335 static void
2336 abs_op (unsigned short inst, inst_env_type *inst_env)
2337 {
2338
2339 long value;
2340
2341 /* ABS can't have a prefix, so it's bad if it does. */
2342 if (inst_env->prefix_found)
2343 {
2344 inst_env->invalid = 1;
2345 return;
2346 }
2347
2348 /* Check if the operation affects the PC. */
2349 if (cris_get_operand2 (inst) == REG_PC)
2350 {
2351
2352 /* It's invalid to change to the PC if we are in a delay slot. */
2353 if (inst_env->slot_needed)
2354 {
2355 inst_env->invalid = 1;
2356 return;
2357 }
2358
2359 value = (long) inst_env->reg[REG_PC];
2360
2361 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2362 if (value != SIGNED_DWORD_MASK)
2363 {
2364 value = -value;
2365 inst_env->reg[REG_PC] = (long) value;
2366 }
2367 }
2368
2369 inst_env->slot_needed = 0;
2370 inst_env->prefix_found = 0;
2371 inst_env->xflag_found = 0;
2372 inst_env->disable_interrupt = 0;
2373 }
2374
2375 /* Handles the ADDI instruction. */
2376
2377 static void
2378 addi_op (unsigned short inst, inst_env_type *inst_env)
2379 {
2380 /* It's invalid to have the PC as base register. And ADDI can't have
2381 a prefix. */
2382 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2383 {
2384 inst_env->invalid = 1;
2385 return;
2386 }
2387
2388 inst_env->slot_needed = 0;
2389 inst_env->prefix_found = 0;
2390 inst_env->xflag_found = 0;
2391 inst_env->disable_interrupt = 0;
2392 }
2393
2394 /* Handles the ASR instruction. */
2395
2396 static void
2397 asr_op (unsigned short inst, inst_env_type *inst_env)
2398 {
2399 int shift_steps;
2400 unsigned long value;
2401 unsigned long signed_extend_mask = 0;
2402
2403 /* ASR can't have a prefix, so check that it doesn't. */
2404 if (inst_env->prefix_found)
2405 {
2406 inst_env->invalid = 1;
2407 return;
2408 }
2409
2410 /* Check if the PC is the target register. */
2411 if (cris_get_operand2 (inst) == REG_PC)
2412 {
2413 /* It's invalid to change the PC in a delay slot. */
2414 if (inst_env->slot_needed)
2415 {
2416 inst_env->invalid = 1;
2417 return;
2418 }
2419 /* Get the number of bits to shift. */
2420 shift_steps
2421 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2422 value = inst_env->reg[REG_PC];
2423
2424 /* Find out how many bits the operation should apply to. */
2425 if (cris_get_size (inst) == INST_BYTE_SIZE)
2426 {
2427 if (value & SIGNED_BYTE_MASK)
2428 {
2429 signed_extend_mask = 0xFF;
2430 signed_extend_mask = signed_extend_mask >> shift_steps;
2431 signed_extend_mask = ~signed_extend_mask;
2432 }
2433 value = value >> shift_steps;
2434 value |= signed_extend_mask;
2435 value &= 0xFF;
2436 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2437 inst_env->reg[REG_PC] |= value;
2438 }
2439 else if (cris_get_size (inst) == INST_WORD_SIZE)
2440 {
2441 if (value & SIGNED_WORD_MASK)
2442 {
2443 signed_extend_mask = 0xFFFF;
2444 signed_extend_mask = signed_extend_mask >> shift_steps;
2445 signed_extend_mask = ~signed_extend_mask;
2446 }
2447 value = value >> shift_steps;
2448 value |= signed_extend_mask;
2449 value &= 0xFFFF;
2450 inst_env->reg[REG_PC] &= 0xFFFF0000;
2451 inst_env->reg[REG_PC] |= value;
2452 }
2453 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2454 {
2455 if (value & SIGNED_DWORD_MASK)
2456 {
2457 signed_extend_mask = 0xFFFFFFFF;
2458 signed_extend_mask = signed_extend_mask >> shift_steps;
2459 signed_extend_mask = ~signed_extend_mask;
2460 }
2461 value = value >> shift_steps;
2462 value |= signed_extend_mask;
2463 inst_env->reg[REG_PC] = value;
2464 }
2465 }
2466 inst_env->slot_needed = 0;
2467 inst_env->prefix_found = 0;
2468 inst_env->xflag_found = 0;
2469 inst_env->disable_interrupt = 0;
2470 }
2471
2472 /* Handles the ASRQ instruction. */
2473
2474 static void
2475 asrq_op (unsigned short inst, inst_env_type *inst_env)
2476 {
2477
2478 int shift_steps;
2479 unsigned long value;
2480 unsigned long signed_extend_mask = 0;
2481
2482 /* ASRQ can't have a prefix, so check that it doesn't. */
2483 if (inst_env->prefix_found)
2484 {
2485 inst_env->invalid = 1;
2486 return;
2487 }
2488
2489 /* Check if the PC is the target register. */
2490 if (cris_get_operand2 (inst) == REG_PC)
2491 {
2492
2493 /* It's invalid to change the PC in a delay slot. */
2494 if (inst_env->slot_needed)
2495 {
2496 inst_env->invalid = 1;
2497 return;
2498 }
2499 /* The shift size is given as a 5 bit quick value, i.e. we don't
2500 want the sign bit of the quick value. */
2501 shift_steps = cris_get_asr_shift_steps (inst);
2502 value = inst_env->reg[REG_PC];
2503 if (value & SIGNED_DWORD_MASK)
2504 {
2505 signed_extend_mask = 0xFFFFFFFF;
2506 signed_extend_mask = signed_extend_mask >> shift_steps;
2507 signed_extend_mask = ~signed_extend_mask;
2508 }
2509 value = value >> shift_steps;
2510 value |= signed_extend_mask;
2511 inst_env->reg[REG_PC] = value;
2512 }
2513 inst_env->slot_needed = 0;
2514 inst_env->prefix_found = 0;
2515 inst_env->xflag_found = 0;
2516 inst_env->disable_interrupt = 0;
2517 }
2518
2519 /* Handles the AX, EI and SETF instruction. */
2520
2521 static void
2522 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2523 {
2524 if (inst_env->prefix_found)
2525 {
2526 inst_env->invalid = 1;
2527 return;
2528 }
2529 /* Check if the instruction is setting the X flag. */
2530 if (cris_is_xflag_bit_on (inst))
2531 {
2532 inst_env->xflag_found = 1;
2533 }
2534 else
2535 {
2536 inst_env->xflag_found = 0;
2537 }
2538 inst_env->slot_needed = 0;
2539 inst_env->prefix_found = 0;
2540 inst_env->disable_interrupt = 1;
2541 }
2542
2543 /* Checks if the instruction is in assign mode. If so, it updates the assign
2544 register. Note that check_assign assumes that the caller has checked that
2545 there is a prefix to this instruction. The mode check depends on this. */
2546
2547 static void
2548 check_assign (unsigned short inst, inst_env_type *inst_env)
2549 {
2550 /* Check if it's an assign addressing mode. */
2551 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2552 {
2553 /* Assign the prefix value to operand 1. */
2554 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2555 }
2556 }
2557
2558 /* Handles the 2-operand BOUND instruction. */
2559
2560 static void
2561 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2562 {
2563 /* It's invalid to have the PC as the index operand. */
2564 if (cris_get_operand2 (inst) == REG_PC)
2565 {
2566 inst_env->invalid = 1;
2567 return;
2568 }
2569 /* Check if we have a prefix. */
2570 if (inst_env->prefix_found)
2571 {
2572 check_assign (inst, inst_env);
2573 }
2574 /* Check if this is an autoincrement mode. */
2575 else if (cris_get_mode (inst) == AUTOINC_MODE)
2576 {
2577 /* It's invalid to change the PC in a delay slot. */
2578 if (inst_env->slot_needed)
2579 {
2580 inst_env->invalid = 1;
2581 return;
2582 }
2583 process_autoincrement (cris_get_size (inst), inst, inst_env);
2584 }
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2589 }
2590
2591 /* Handles the 3-operand BOUND instruction. */
2592
2593 static void
2594 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2595 {
2596 /* It's an error if we haven't got a prefix. And it's also an error
2597 if the PC is the destination register. */
2598 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2599 {
2600 inst_env->invalid = 1;
2601 return;
2602 }
2603 inst_env->slot_needed = 0;
2604 inst_env->prefix_found = 0;
2605 inst_env->xflag_found = 0;
2606 inst_env->disable_interrupt = 0;
2607 }
2608
2609 /* Clears the status flags in inst_env. */
2610
2611 static void
2612 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2613 {
2614 /* It's an error if we have got a prefix. */
2615 if (inst_env->prefix_found)
2616 {
2617 inst_env->invalid = 1;
2618 return;
2619 }
2620
2621 inst_env->slot_needed = 0;
2622 inst_env->prefix_found = 0;
2623 inst_env->xflag_found = 0;
2624 inst_env->disable_interrupt = 0;
2625 }
2626
2627 /* Clears the status flags in inst_env. */
2628
2629 static void
2630 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2631 {
2632 /* It's an error if we have got a prefix. */
2633 if (inst_env->prefix_found)
2634 {
2635 inst_env->invalid = 1;
2636 return;
2637 }
2638
2639 inst_env->slot_needed = 0;
2640 inst_env->prefix_found = 0;
2641 inst_env->xflag_found = 0;
2642 inst_env->disable_interrupt = 1;
2643 }
2644
2645 /* Handles the CLEAR instruction if it's in register mode. */
2646
2647 static void
2648 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2649 {
2650 /* Check if the target is the PC. */
2651 if (cris_get_operand2 (inst) == REG_PC)
2652 {
2653 /* The instruction will clear the instruction's size bits. */
2654 int clear_size = cris_get_clear_size (inst);
2655 if (clear_size == INST_BYTE_SIZE)
2656 {
2657 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2658 }
2659 if (clear_size == INST_WORD_SIZE)
2660 {
2661 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2662 }
2663 if (clear_size == INST_DWORD_SIZE)
2664 {
2665 inst_env->delay_slot_pc = 0x0;
2666 }
2667 /* The jump will be delayed with one delay slot. So we need a delay
2668 slot. */
2669 inst_env->slot_needed = 1;
2670 inst_env->delay_slot_pc_active = 1;
2671 }
2672 else
2673 {
2674 /* The PC will not change => no delay slot. */
2675 inst_env->slot_needed = 0;
2676 }
2677 inst_env->prefix_found = 0;
2678 inst_env->xflag_found = 0;
2679 inst_env->disable_interrupt = 0;
2680 }
2681
2682 /* Handles the TEST instruction if it's in register mode. */
2683
2684 static void
2685 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2686 {
2687 /* It's an error if we have got a prefix. */
2688 if (inst_env->prefix_found)
2689 {
2690 inst_env->invalid = 1;
2691 return;
2692 }
2693 inst_env->slot_needed = 0;
2694 inst_env->prefix_found = 0;
2695 inst_env->xflag_found = 0;
2696 inst_env->disable_interrupt = 0;
2697
2698 }
2699
2700 /* Handles the CLEAR and TEST instruction if the instruction isn't
2701 in register mode. */
2702
2703 static void
2704 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2705 {
2706 /* Check if we are in a prefix mode. */
2707 if (inst_env->prefix_found)
2708 {
2709 /* The only way the PC can change is if this instruction is in
2710 assign addressing mode. */
2711 check_assign (inst, inst_env);
2712 }
2713 /* Indirect mode can't change the PC so just check if the mode is
2714 autoincrement. */
2715 else if (cris_get_mode (inst) == AUTOINC_MODE)
2716 {
2717 process_autoincrement (cris_get_size (inst), inst, inst_env);
2718 }
2719 inst_env->slot_needed = 0;
2720 inst_env->prefix_found = 0;
2721 inst_env->xflag_found = 0;
2722 inst_env->disable_interrupt = 0;
2723 }
2724
2725 /* Checks that the PC isn't the destination register or the instructions has
2726 a prefix. */
2727
2728 static void
2729 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2730 {
2731 /* It's invalid to have the PC as the destination. The instruction can't
2732 have a prefix. */
2733 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2734 {
2735 inst_env->invalid = 1;
2736 return;
2737 }
2738
2739 inst_env->slot_needed = 0;
2740 inst_env->prefix_found = 0;
2741 inst_env->xflag_found = 0;
2742 inst_env->disable_interrupt = 0;
2743 }
2744
2745 /* Checks that the instruction doesn't have a prefix. */
2746
2747 static void
2748 break_op (unsigned short inst, inst_env_type *inst_env)
2749 {
2750 /* The instruction can't have a prefix. */
2751 if (inst_env->prefix_found)
2752 {
2753 inst_env->invalid = 1;
2754 return;
2755 }
2756
2757 inst_env->slot_needed = 0;
2758 inst_env->prefix_found = 0;
2759 inst_env->xflag_found = 0;
2760 inst_env->disable_interrupt = 1;
2761 }
2762
2763 /* Checks that the PC isn't the destination register and that the instruction
2764 doesn't have a prefix. */
2765
2766 static void
2767 scc_op (unsigned short inst, inst_env_type *inst_env)
2768 {
2769 /* It's invalid to have the PC as the destination. The instruction can't
2770 have a prefix. */
2771 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2772 {
2773 inst_env->invalid = 1;
2774 return;
2775 }
2776
2777 inst_env->slot_needed = 0;
2778 inst_env->prefix_found = 0;
2779 inst_env->xflag_found = 0;
2780 inst_env->disable_interrupt = 1;
2781 }
2782
2783 /* Handles the register mode JUMP instruction. */
2784
2785 static void
2786 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2787 {
2788 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2789 you can't have a prefix. */
2790 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2791 {
2792 inst_env->invalid = 1;
2793 return;
2794 }
2795
2796 /* Just change the PC. */
2797 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2798 inst_env->slot_needed = 0;
2799 inst_env->prefix_found = 0;
2800 inst_env->xflag_found = 0;
2801 inst_env->disable_interrupt = 1;
2802 }
2803
2804 /* Handles the JUMP instruction for all modes except register. */
2805
2806 static void
2807 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2808 {
2809 unsigned long newpc;
2810 CORE_ADDR address;
2811
2812 /* It's invalid to do a JUMP in a delay slot. */
2813 if (inst_env->slot_needed)
2814 {
2815 inst_env->invalid = 1;
2816 }
2817 else
2818 {
2819 /* Check if we have a prefix. */
2820 if (inst_env->prefix_found)
2821 {
2822 check_assign (inst, inst_env);
2823
2824 /* Get the new value for the PC. */
2825 newpc =
2826 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2827 4, inst_env->byte_order);
2828 }
2829 else
2830 {
2831 /* Get the new value for the PC. */
2832 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2833 newpc = read_memory_unsigned_integer (address,
2834 4, inst_env->byte_order);
2835
2836 /* Check if we should increment a register. */
2837 if (cris_get_mode (inst) == AUTOINC_MODE)
2838 {
2839 inst_env->reg[cris_get_operand1 (inst)] += 4;
2840 }
2841 }
2842 inst_env->reg[REG_PC] = newpc;
2843 }
2844 inst_env->slot_needed = 0;
2845 inst_env->prefix_found = 0;
2846 inst_env->xflag_found = 0;
2847 inst_env->disable_interrupt = 1;
2848 }
2849
2850 /* Handles moves to special registers (aka P-register) for all modes. */
2851
2852 static void
2853 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2854 inst_env_type *inst_env)
2855 {
2856 if (inst_env->prefix_found)
2857 {
2858 /* The instruction has a prefix that means we are only interested if
2859 the instruction is in assign mode. */
2860 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2861 {
2862 /* The prefix handles the problem if we are in a delay slot. */
2863 if (cris_get_operand1 (inst) == REG_PC)
2864 {
2865 /* Just take care of the assign. */
2866 check_assign (inst, inst_env);
2867 }
2868 }
2869 }
2870 else if (cris_get_mode (inst) == AUTOINC_MODE)
2871 {
2872 /* The instruction doesn't have a prefix, the only case left that we
2873 are interested in is the autoincrement mode. */
2874 if (cris_get_operand1 (inst) == REG_PC)
2875 {
2876 /* If the PC is to be incremented it's invalid to be in a
2877 delay slot. */
2878 if (inst_env->slot_needed)
2879 {
2880 inst_env->invalid = 1;
2881 return;
2882 }
2883
2884 /* The increment depends on the size of the special register. */
2885 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2886 {
2887 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2888 }
2889 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2890 {
2891 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2892 }
2893 else
2894 {
2895 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2896 }
2897 }
2898 }
2899 inst_env->slot_needed = 0;
2900 inst_env->prefix_found = 0;
2901 inst_env->xflag_found = 0;
2902 inst_env->disable_interrupt = 1;
2903 }
2904
2905 /* Handles moves from special registers (aka P-register) for all modes
2906 except register. */
2907
2908 static void
2909 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2910 inst_env_type *inst_env)
2911 {
2912 if (inst_env->prefix_found)
2913 {
2914 /* The instruction has a prefix that means we are only interested if
2915 the instruction is in assign mode. */
2916 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2917 {
2918 /* The prefix handles the problem if we are in a delay slot. */
2919 if (cris_get_operand1 (inst) == REG_PC)
2920 {
2921 /* Just take care of the assign. */
2922 check_assign (inst, inst_env);
2923 }
2924 }
2925 }
2926 /* The instruction doesn't have a prefix, the only case left that we
2927 are interested in is the autoincrement mode. */
2928 else if (cris_get_mode (inst) == AUTOINC_MODE)
2929 {
2930 if (cris_get_operand1 (inst) == REG_PC)
2931 {
2932 /* If the PC is to be incremented it's invalid to be in a
2933 delay slot. */
2934 if (inst_env->slot_needed)
2935 {
2936 inst_env->invalid = 1;
2937 return;
2938 }
2939
2940 /* The increment depends on the size of the special register. */
2941 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2942 {
2943 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2944 }
2945 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2946 {
2947 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2948 }
2949 else
2950 {
2951 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2952 }
2953 }
2954 }
2955 inst_env->slot_needed = 0;
2956 inst_env->prefix_found = 0;
2957 inst_env->xflag_found = 0;
2958 inst_env->disable_interrupt = 1;
2959 }
2960
2961 /* Handles moves from special registers (aka P-register) when the mode
2962 is register. */
2963
2964 static void
2965 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2966 {
2967 /* Register mode move from special register can't have a prefix. */
2968 if (inst_env->prefix_found)
2969 {
2970 inst_env->invalid = 1;
2971 return;
2972 }
2973
2974 if (cris_get_operand1 (inst) == REG_PC)
2975 {
2976 /* It's invalid to change the PC in a delay slot. */
2977 if (inst_env->slot_needed)
2978 {
2979 inst_env->invalid = 1;
2980 return;
2981 }
2982 /* The destination is the PC, the jump will have a delay slot. */
2983 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2984 inst_env->slot_needed = 1;
2985 inst_env->delay_slot_pc_active = 1;
2986 }
2987 else
2988 {
2989 /* If the destination isn't PC, there will be no jump. */
2990 inst_env->slot_needed = 0;
2991 }
2992 inst_env->prefix_found = 0;
2993 inst_env->xflag_found = 0;
2994 inst_env->disable_interrupt = 1;
2995 }
2996
2997 /* Handles the MOVEM from memory to general register instruction. */
2998
2999 static void
3000 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3001 {
3002 if (inst_env->prefix_found)
3003 {
3004 /* The prefix handles the problem if we are in a delay slot. Is the
3005 MOVEM instruction going to change the PC? */
3006 if (cris_get_operand2 (inst) >= REG_PC)
3007 {
3008 inst_env->reg[REG_PC] =
3009 read_memory_unsigned_integer (inst_env->prefix_value,
3010 4, inst_env->byte_order);
3011 }
3012 /* The assign value is the value after the increment. Normally, the
3013 assign value is the value before the increment. */
3014 if ((cris_get_operand1 (inst) == REG_PC)
3015 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3016 {
3017 inst_env->reg[REG_PC] = inst_env->prefix_value;
3018 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3019 }
3020 }
3021 else
3022 {
3023 /* Is the MOVEM instruction going to change the PC? */
3024 if (cris_get_operand2 (inst) == REG_PC)
3025 {
3026 /* It's invalid to change the PC in a delay slot. */
3027 if (inst_env->slot_needed)
3028 {
3029 inst_env->invalid = 1;
3030 return;
3031 }
3032 inst_env->reg[REG_PC] =
3033 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3034 4, inst_env->byte_order);
3035 }
3036 /* The increment is not depending on the size, instead it's depending
3037 on the number of registers loaded from memory. */
3038 if ((cris_get_operand1 (inst) == REG_PC)
3039 && (cris_get_mode (inst) == AUTOINC_MODE))
3040 {
3041 /* It's invalid to change the PC in a delay slot. */
3042 if (inst_env->slot_needed)
3043 {
3044 inst_env->invalid = 1;
3045 return;
3046 }
3047 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3048 }
3049 }
3050 inst_env->slot_needed = 0;
3051 inst_env->prefix_found = 0;
3052 inst_env->xflag_found = 0;
3053 inst_env->disable_interrupt = 0;
3054 }
3055
3056 /* Handles the MOVEM to memory from general register instruction. */
3057
3058 static void
3059 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3060 {
3061 if (inst_env->prefix_found)
3062 {
3063 /* The assign value is the value after the increment. Normally, the
3064 assign value is the value before the increment. */
3065 if ((cris_get_operand1 (inst) == REG_PC)
3066 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3067 {
3068 /* The prefix handles the problem if we are in a delay slot. */
3069 inst_env->reg[REG_PC] = inst_env->prefix_value;
3070 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3071 }
3072 }
3073 else
3074 {
3075 /* The increment is not depending on the size, instead it's depending
3076 on the number of registers loaded to memory. */
3077 if ((cris_get_operand1 (inst) == REG_PC)
3078 && (cris_get_mode (inst) == AUTOINC_MODE))
3079 {
3080 /* It's invalid to change the PC in a delay slot. */
3081 if (inst_env->slot_needed)
3082 {
3083 inst_env->invalid = 1;
3084 return;
3085 }
3086 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3087 }
3088 }
3089 inst_env->slot_needed = 0;
3090 inst_env->prefix_found = 0;
3091 inst_env->xflag_found = 0;
3092 inst_env->disable_interrupt = 0;
3093 }
3094
3095 /* Handles the intructions that's not yet implemented, by setting
3096 inst_env->invalid to true. */
3097
3098 static void
3099 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3100 {
3101 inst_env->invalid = 1;
3102 }
3103
3104 /* Handles the XOR instruction. */
3105
3106 static void
3107 xor_op (unsigned short inst, inst_env_type *inst_env)
3108 {
3109 /* XOR can't have a prefix. */
3110 if (inst_env->prefix_found)
3111 {
3112 inst_env->invalid = 1;
3113 return;
3114 }
3115
3116 /* Check if the PC is the target. */
3117 if (cris_get_operand2 (inst) == REG_PC)
3118 {
3119 /* It's invalid to change the PC in a delay slot. */
3120 if (inst_env->slot_needed)
3121 {
3122 inst_env->invalid = 1;
3123 return;
3124 }
3125 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3126 }
3127 inst_env->slot_needed = 0;
3128 inst_env->prefix_found = 0;
3129 inst_env->xflag_found = 0;
3130 inst_env->disable_interrupt = 0;
3131 }
3132
3133 /* Handles the MULS instruction. */
3134
3135 static void
3136 muls_op (unsigned short inst, inst_env_type *inst_env)
3137 {
3138 /* MULS/U can't have a prefix. */
3139 if (inst_env->prefix_found)
3140 {
3141 inst_env->invalid = 1;
3142 return;
3143 }
3144
3145 /* Consider it invalid if the PC is the target. */
3146 if (cris_get_operand2 (inst) == REG_PC)
3147 {
3148 inst_env->invalid = 1;
3149 return;
3150 }
3151 inst_env->slot_needed = 0;
3152 inst_env->prefix_found = 0;
3153 inst_env->xflag_found = 0;
3154 inst_env->disable_interrupt = 0;
3155 }
3156
3157 /* Handles the MULU instruction. */
3158
3159 static void
3160 mulu_op (unsigned short inst, inst_env_type *inst_env)
3161 {
3162 /* MULS/U can't have a prefix. */
3163 if (inst_env->prefix_found)
3164 {
3165 inst_env->invalid = 1;
3166 return;
3167 }
3168
3169 /* Consider it invalid if the PC is the target. */
3170 if (cris_get_operand2 (inst) == REG_PC)
3171 {
3172 inst_env->invalid = 1;
3173 return;
3174 }
3175 inst_env->slot_needed = 0;
3176 inst_env->prefix_found = 0;
3177 inst_env->xflag_found = 0;
3178 inst_env->disable_interrupt = 0;
3179 }
3180
3181 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3182 The MOVE instruction is the move from source to register. */
3183
3184 static void
3185 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3186 unsigned long source1, unsigned long source2)
3187 {
3188 unsigned long pc_mask;
3189 unsigned long operation_mask;
3190
3191 /* Find out how many bits the operation should apply to. */
3192 if (cris_get_size (inst) == INST_BYTE_SIZE)
3193 {
3194 pc_mask = 0xFFFFFF00;
3195 operation_mask = 0xFF;
3196 }
3197 else if (cris_get_size (inst) == INST_WORD_SIZE)
3198 {
3199 pc_mask = 0xFFFF0000;
3200 operation_mask = 0xFFFF;
3201 }
3202 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3203 {
3204 pc_mask = 0x0;
3205 operation_mask = 0xFFFFFFFF;
3206 }
3207 else
3208 {
3209 /* The size is out of range. */
3210 inst_env->invalid = 1;
3211 return;
3212 }
3213
3214 /* The instruction just works on uw_operation_mask bits. */
3215 source2 &= operation_mask;
3216 source1 &= operation_mask;
3217
3218 /* Now calculate the result. The opcode's 3 first bits separates
3219 the different actions. */
3220 switch (cris_get_opcode (inst) & 7)
3221 {
3222 case 0: /* add */
3223 source1 += source2;
3224 break;
3225
3226 case 1: /* move */
3227 source1 = source2;
3228 break;
3229
3230 case 2: /* subtract */
3231 source1 -= source2;
3232 break;
3233
3234 case 3: /* compare */
3235 break;
3236
3237 case 4: /* and */
3238 source1 &= source2;
3239 break;
3240
3241 case 5: /* or */
3242 source1 |= source2;
3243 break;
3244
3245 default:
3246 inst_env->invalid = 1;
3247 return;
3248
3249 break;
3250 }
3251
3252 /* Make sure that the result doesn't contain more than the instruction
3253 size bits. */
3254 source2 &= operation_mask;
3255
3256 /* Calculate the new breakpoint address. */
3257 inst_env->reg[REG_PC] &= pc_mask;
3258 inst_env->reg[REG_PC] |= source1;
3259
3260 }
3261
3262 /* Extends the value from either byte or word size to a dword. If the mode
3263 is zero extend then the value is extended with zero. If instead the mode
3264 is signed extend the sign bit of the value is taken into consideration. */
3265
3266 static unsigned long
3267 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3268 {
3269 /* The size can be either byte or word, check which one it is.
3270 Don't check the highest bit, it's indicating if it's a zero
3271 or sign extend. */
3272 if (cris_get_size (*inst) & INST_WORD_SIZE)
3273 {
3274 /* Word size. */
3275 value &= 0xFFFF;
3276
3277 /* Check if the instruction is signed extend. If so, check if value has
3278 the sign bit on. */
3279 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3280 {
3281 value |= SIGNED_WORD_EXTEND_MASK;
3282 }
3283 }
3284 else
3285 {
3286 /* Byte size. */
3287 value &= 0xFF;
3288
3289 /* Check if the instruction is signed extend. If so, check if value has
3290 the sign bit on. */
3291 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3292 {
3293 value |= SIGNED_BYTE_EXTEND_MASK;
3294 }
3295 }
3296 /* The size should now be dword. */
3297 cris_set_size_to_dword (inst);
3298 return value;
3299 }
3300
3301 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3302 instruction. The MOVE instruction is the move from source to register. */
3303
3304 static void
3305 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3306 inst_env_type *inst_env)
3307 {
3308 unsigned long operand1;
3309 unsigned long operand2;
3310
3311 /* It's invalid to have a prefix to the instruction. This is a register
3312 mode instruction and can't have a prefix. */
3313 if (inst_env->prefix_found)
3314 {
3315 inst_env->invalid = 1;
3316 return;
3317 }
3318 /* Check if the instruction has PC as its target. */
3319 if (cris_get_operand2 (inst) == REG_PC)
3320 {
3321 if (inst_env->slot_needed)
3322 {
3323 inst_env->invalid = 1;
3324 return;
3325 }
3326 /* The instruction has the PC as its target register. */
3327 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3328 operand2 = inst_env->reg[REG_PC];
3329
3330 /* Check if it's a extend, signed or zero instruction. */
3331 if (cris_get_opcode (inst) < 4)
3332 {
3333 operand1 = do_sign_or_zero_extend (operand1, &inst);
3334 }
3335 /* Calculate the PC value after the instruction, i.e. where the
3336 breakpoint should be. The order of the udw_operands is vital. */
3337 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3338 }
3339 inst_env->slot_needed = 0;
3340 inst_env->prefix_found = 0;
3341 inst_env->xflag_found = 0;
3342 inst_env->disable_interrupt = 0;
3343 }
3344
3345 /* Returns the data contained at address. The size of the data is derived from
3346 the size of the operation. If the instruction is a zero or signed
3347 extend instruction, the size field is changed in instruction. */
3348
3349 static unsigned long
3350 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3351 enum bfd_endian byte_order)
3352 {
3353 int size = cris_get_size (*inst);
3354 unsigned long value;
3355
3356 /* If it's an extend instruction we don't want the signed extend bit,
3357 because it influences the size. */
3358 if (cris_get_opcode (*inst) < 4)
3359 {
3360 size &= ~SIGNED_EXTEND_BIT_MASK;
3361 }
3362 /* Is there a need for checking the size? Size should contain the number of
3363 bytes to read. */
3364 size = 1 << size;
3365 value = read_memory_unsigned_integer (address, size, byte_order);
3366
3367 /* Check if it's an extend, signed or zero instruction. */
3368 if (cris_get_opcode (*inst) < 4)
3369 {
3370 value = do_sign_or_zero_extend (value, inst);
3371 }
3372 return value;
3373 }
3374
3375 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3376 instructions. The MOVE instruction is the move from source to register. */
3377
3378 static void
3379 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3380 inst_env_type *inst_env)
3381 {
3382 unsigned long operand2;
3383 unsigned long operand3;
3384
3385 check_assign (inst, inst_env);
3386 if (cris_get_operand2 (inst) == REG_PC)
3387 {
3388 operand2 = inst_env->reg[REG_PC];
3389
3390 /* Get the value of the third operand. */
3391 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3392 inst_env->byte_order);
3393
3394 /* Calculate the PC value after the instruction, i.e. where the
3395 breakpoint should be. The order of the udw_operands is vital. */
3396 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3397 }
3398 inst_env->slot_needed = 0;
3399 inst_env->prefix_found = 0;
3400 inst_env->xflag_found = 0;
3401 inst_env->disable_interrupt = 0;
3402 }
3403
3404 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3405 OR instructions. Note that for this to work as expected, the calling
3406 function must have made sure that there is a prefix to this instruction. */
3407
3408 static void
3409 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3410 inst_env_type *inst_env)
3411 {
3412 unsigned long operand2;
3413 unsigned long operand3;
3414
3415 if (cris_get_operand1 (inst) == REG_PC)
3416 {
3417 /* The PC will be changed by the instruction. */
3418 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3419
3420 /* Get the value of the third operand. */
3421 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3422 inst_env->byte_order);
3423
3424 /* Calculate the PC value after the instruction, i.e. where the
3425 breakpoint should be. */
3426 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3427 }
3428 inst_env->slot_needed = 0;
3429 inst_env->prefix_found = 0;
3430 inst_env->xflag_found = 0;
3431 inst_env->disable_interrupt = 0;
3432 }
3433
3434 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3435 instructions. The MOVE instruction is the move from source to register. */
3436
3437 static void
3438 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3439 inst_env_type *inst_env)
3440 {
3441 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3442 {
3443 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3444 SUB, AND or OR something weird is going on (if everything works these
3445 instructions should end up in the three operand version). */
3446 inst_env->invalid = 1;
3447 return;
3448 }
3449 else
3450 {
3451 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3452 so use it. */
3453 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3454 }
3455 inst_env->slot_needed = 0;
3456 inst_env->prefix_found = 0;
3457 inst_env->xflag_found = 0;
3458 inst_env->disable_interrupt = 0;
3459 }
3460
3461 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3462 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3463 source to register. */
3464
3465 static void
3466 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3467 inst_env_type *inst_env)
3468 {
3469 unsigned long operand1;
3470 unsigned long operand2;
3471 unsigned long operand3;
3472 int size;
3473
3474 /* The instruction is either an indirect or autoincrement addressing mode.
3475 Check if the destination register is the PC. */
3476 if (cris_get_operand2 (inst) == REG_PC)
3477 {
3478 /* Must be done here, get_data_from_address may change the size
3479 field. */
3480 size = cris_get_size (inst);
3481 operand2 = inst_env->reg[REG_PC];
3482
3483 /* Get the value of the third operand, i.e. the indirect operand. */
3484 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3485 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3486
3487 /* Calculate the PC value after the instruction, i.e. where the
3488 breakpoint should be. The order of the udw_operands is vital. */
3489 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3490 }
3491 /* If this is an autoincrement addressing mode, check if the increment
3492 changes the PC. */
3493 if ((cris_get_operand1 (inst) == REG_PC)
3494 && (cris_get_mode (inst) == AUTOINC_MODE))
3495 {
3496 /* Get the size field. */
3497 size = cris_get_size (inst);
3498
3499 /* If it's an extend instruction we don't want the signed extend bit,
3500 because it influences the size. */
3501 if (cris_get_opcode (inst) < 4)
3502 {
3503 size &= ~SIGNED_EXTEND_BIT_MASK;
3504 }
3505 process_autoincrement (size, inst, inst_env);
3506 }
3507 inst_env->slot_needed = 0;
3508 inst_env->prefix_found = 0;
3509 inst_env->xflag_found = 0;
3510 inst_env->disable_interrupt = 0;
3511 }
3512
3513 /* Handles the two-operand addressing mode, all modes except register, for
3514 the ADD, SUB CMP, AND and OR instruction. */
3515
3516 static void
3517 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3518 inst_env_type *inst_env)
3519 {
3520 if (inst_env->prefix_found)
3521 {
3522 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3523 {
3524 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3525 }
3526 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3527 {
3528 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3529 }
3530 else
3531 {
3532 /* The mode is invalid for a prefixed base instruction. */
3533 inst_env->invalid = 1;
3534 return;
3535 }
3536 }
3537 else
3538 {
3539 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3540 }
3541 }
3542
3543 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3544
3545 static void
3546 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3547 {
3548 unsigned long operand1;
3549 unsigned long operand2;
3550
3551 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3552 instruction and can't have a prefix. */
3553 if (inst_env->prefix_found)
3554 {
3555 inst_env->invalid = 1;
3556 return;
3557 }
3558
3559 /* Check if the instruction has PC as its target. */
3560 if (cris_get_operand2 (inst) == REG_PC)
3561 {
3562 if (inst_env->slot_needed)
3563 {
3564 inst_env->invalid = 1;
3565 return;
3566 }
3567 operand1 = cris_get_quick_value (inst);
3568 operand2 = inst_env->reg[REG_PC];
3569
3570 /* The size should now be dword. */
3571 cris_set_size_to_dword (&inst);
3572
3573 /* Calculate the PC value after the instruction, i.e. where the
3574 breakpoint should be. */
3575 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3576 }
3577 inst_env->slot_needed = 0;
3578 inst_env->prefix_found = 0;
3579 inst_env->xflag_found = 0;
3580 inst_env->disable_interrupt = 0;
3581 }
3582
3583 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3584
3585 static void
3586 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3587 {
3588 unsigned long operand1;
3589 unsigned long operand2;
3590
3591 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3592 instruction and can't have a prefix. */
3593 if (inst_env->prefix_found)
3594 {
3595 inst_env->invalid = 1;
3596 return;
3597 }
3598 /* Check if the instruction has PC as its target. */
3599 if (cris_get_operand2 (inst) == REG_PC)
3600 {
3601 if (inst_env->slot_needed)
3602 {
3603 inst_env->invalid = 1;
3604 return;
3605 }
3606 /* The instruction has the PC as its target register. */
3607 operand1 = cris_get_quick_value (inst);
3608 operand2 = inst_env->reg[REG_PC];
3609
3610 /* The quick value is signed, so check if we must do a signed extend. */
3611 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3612 {
3613 /* sign extend */
3614 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3615 }
3616 /* The size should now be dword. */
3617 cris_set_size_to_dword (&inst);
3618
3619 /* Calculate the PC value after the instruction, i.e. where the
3620 breakpoint should be. */
3621 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3622 }
3623 inst_env->slot_needed = 0;
3624 inst_env->prefix_found = 0;
3625 inst_env->xflag_found = 0;
3626 inst_env->disable_interrupt = 0;
3627 }
3628
3629 /* Translate op_type to a function and call it. */
3630
3631 static void
3632 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3633 unsigned short inst, inst_env_type *inst_env)
3634 {
3635 switch (op_type)
3636 {
3637 case cris_not_implemented_op:
3638 not_implemented_op (inst, inst_env);
3639 break;
3640
3641 case cris_abs_op:
3642 abs_op (inst, inst_env);
3643 break;
3644
3645 case cris_addi_op:
3646 addi_op (inst, inst_env);
3647 break;
3648
3649 case cris_asr_op:
3650 asr_op (inst, inst_env);
3651 break;
3652
3653 case cris_asrq_op:
3654 asrq_op (inst, inst_env);
3655 break;
3656
3657 case cris_ax_ei_setf_op:
3658 ax_ei_setf_op (inst, inst_env);
3659 break;
3660
3661 case cris_bdap_prefix:
3662 bdap_prefix (inst, inst_env);
3663 break;
3664
3665 case cris_biap_prefix:
3666 biap_prefix (inst, inst_env);
3667 break;
3668
3669 case cris_break_op:
3670 break_op (inst, inst_env);
3671 break;
3672
3673 case cris_btst_nop_op:
3674 btst_nop_op (inst, inst_env);
3675 break;
3676
3677 case cris_clearf_di_op:
3678 clearf_di_op (inst, inst_env);
3679 break;
3680
3681 case cris_dip_prefix:
3682 dip_prefix (inst, inst_env);
3683 break;
3684
3685 case cris_dstep_logshift_mstep_neg_not_op:
3686 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3687 break;
3688
3689 case cris_eight_bit_offset_branch_op:
3690 eight_bit_offset_branch_op (inst, inst_env);
3691 break;
3692
3693 case cris_move_mem_to_reg_movem_op:
3694 move_mem_to_reg_movem_op (inst, inst_env);
3695 break;
3696
3697 case cris_move_reg_to_mem_movem_op:
3698 move_reg_to_mem_movem_op (inst, inst_env);
3699 break;
3700
3701 case cris_move_to_preg_op:
3702 move_to_preg_op (gdbarch, inst, inst_env);
3703 break;
3704
3705 case cris_muls_op:
3706 muls_op (inst, inst_env);
3707 break;
3708
3709 case cris_mulu_op:
3710 mulu_op (inst, inst_env);
3711 break;
3712
3713 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3714 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3715 break;
3716
3717 case cris_none_reg_mode_clear_test_op:
3718 none_reg_mode_clear_test_op (inst, inst_env);
3719 break;
3720
3721 case cris_none_reg_mode_jump_op:
3722 none_reg_mode_jump_op (inst, inst_env);
3723 break;
3724
3725 case cris_none_reg_mode_move_from_preg_op:
3726 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3727 break;
3728
3729 case cris_quick_mode_add_sub_op:
3730 quick_mode_add_sub_op (inst, inst_env);
3731 break;
3732
3733 case cris_quick_mode_and_cmp_move_or_op:
3734 quick_mode_and_cmp_move_or_op (inst, inst_env);
3735 break;
3736
3737 case cris_quick_mode_bdap_prefix:
3738 quick_mode_bdap_prefix (inst, inst_env);
3739 break;
3740
3741 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3742 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3743 break;
3744
3745 case cris_reg_mode_clear_op:
3746 reg_mode_clear_op (inst, inst_env);
3747 break;
3748
3749 case cris_reg_mode_jump_op:
3750 reg_mode_jump_op (inst, inst_env);
3751 break;
3752
3753 case cris_reg_mode_move_from_preg_op:
3754 reg_mode_move_from_preg_op (inst, inst_env);
3755 break;
3756
3757 case cris_reg_mode_test_op:
3758 reg_mode_test_op (inst, inst_env);
3759 break;
3760
3761 case cris_scc_op:
3762 scc_op (inst, inst_env);
3763 break;
3764
3765 case cris_sixteen_bit_offset_branch_op:
3766 sixteen_bit_offset_branch_op (inst, inst_env);
3767 break;
3768
3769 case cris_three_operand_add_sub_cmp_and_or_op:
3770 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3771 break;
3772
3773 case cris_three_operand_bound_op:
3774 three_operand_bound_op (inst, inst_env);
3775 break;
3776
3777 case cris_two_operand_bound_op:
3778 two_operand_bound_op (inst, inst_env);
3779 break;
3780
3781 case cris_xor_op:
3782 xor_op (inst, inst_env);
3783 break;
3784 }
3785 }
3786
3787 /* This wrapper is to avoid cris_get_assembler being called before
3788 exec_bfd has been set. */
3789
3790 static int
3791 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3792 {
3793 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3794 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3795 disassembler, even when there is no BFD. Does something like
3796 "gdb; target remote; disassmeble *0x123" work? */
3797 gdb_assert (exec_bfd != NULL);
3798 print_insn = cris_get_disassembler (exec_bfd);
3799 gdb_assert (print_insn != NULL);
3800 return print_insn (addr, info);
3801 }
3802
3803 /* Originally from <asm/elf.h>. */
3804 typedef unsigned char cris_elf_greg_t[4];
3805
3806 /* Same as user_regs_struct struct in <asm/user.h>. */
3807 #define CRISV10_ELF_NGREG 35
3808 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3809
3810 #define CRISV32_ELF_NGREG 32
3811 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3812
3813 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3814
3815 static void
3816 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3817 {
3818 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3820 int i;
3821 cris_elf_greg_t *regp = *gregsetp;
3822
3823 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3824 knows about the actual size of each register so that's no problem. */
3825 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3826 {
3827 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3828 }
3829
3830 if (tdep->cris_version == 32)
3831 {
3832 /* Needed to set pseudo-register PC for CRISv32. */
3833 /* FIXME: If ERP is in a delay slot at this point then the PC will
3834 be wrong. Issue a warning to alert the user. */
3835 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3836 (char *)&regp[ERP_REGNUM]);
3837
3838 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3839 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3840 }
3841 }
3842
3843 /* Use a local version of this function to get the correct types for
3844 regsets, until multi-arch core support is ready. */
3845
3846 static void
3847 fetch_core_registers (struct regcache *regcache,
3848 char *core_reg_sect, unsigned core_reg_size,
3849 int which, CORE_ADDR reg_addr)
3850 {
3851 cris_elf_gregset_t gregset;
3852
3853 switch (which)
3854 {
3855 case 0:
3856 if (core_reg_size != sizeof (cris_elf_gregset_t)
3857 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3858 {
3859 warning (_("wrong size gregset struct in core file"));
3860 }
3861 else
3862 {
3863 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3864 cris_supply_gregset (regcache, &gregset);
3865 }
3866
3867 default:
3868 /* We've covered all the kinds of registers we know about here,
3869 so this must be something we wouldn't know what to do with
3870 anyway. Just ignore it. */
3871 break;
3872 }
3873 }
3874
3875 static struct core_fns cris_elf_core_fns =
3876 {
3877 bfd_target_elf_flavour, /* core_flavour */
3878 default_check_format, /* check_format */
3879 default_core_sniffer, /* core_sniffer */
3880 fetch_core_registers, /* core_read_registers */
3881 NULL /* next */
3882 };
3883
3884 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3885
3886 void
3887 _initialize_cris_tdep (void)
3888 {
3889 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3890
3891 /* CRIS-specific user-commands. */
3892 add_setshow_zuinteger_cmd ("cris-version", class_support,
3893 &usr_cmd_cris_version,
3894 _("Set the current CRIS version."),
3895 _("Show the current CRIS version."),
3896 _("\
3897 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3898 Defaults to 10. "),
3899 set_cris_version,
3900 NULL, /* FIXME: i18n: Current CRIS version
3901 is %s. */
3902 &setlist, &showlist);
3903
3904 add_setshow_enum_cmd ("cris-mode", class_support,
3905 cris_modes, &usr_cmd_cris_mode,
3906 _("Set the current CRIS mode."),
3907 _("Show the current CRIS mode."),
3908 _("\
3909 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3910 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3911 set_cris_mode,
3912 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3913 &setlist, &showlist);
3914
3915 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3916 &usr_cmd_cris_dwarf2_cfi,
3917 _("Set the usage of Dwarf-2 CFI for CRIS."),
3918 _("Show the usage of Dwarf-2 CFI for CRIS."),
3919 _("Set this to \"off\" if using gcc-cris < R59."),
3920 set_cris_dwarf2_cfi,
3921 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3922 for CRIS is %d. */
3923 &setlist, &showlist);
3924
3925 deprecated_add_core_fns (&cris_elf_core_fns);
3926 }
3927
3928 /* Prints out all target specific values. */
3929
3930 static void
3931 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3932 {
3933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3934 if (tdep != NULL)
3935 {
3936 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3937 tdep->cris_version);
3938 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3939 tdep->cris_mode);
3940 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3941 tdep->cris_dwarf2_cfi);
3942 }
3943 }
3944
3945 static void
3946 set_cris_version (char *ignore_args, int from_tty,
3947 struct cmd_list_element *c)
3948 {
3949 struct gdbarch_info info;
3950
3951 usr_cmd_cris_version_valid = 1;
3952
3953 /* Update the current architecture, if needed. */
3954 gdbarch_info_init (&info);
3955 if (!gdbarch_update_p (info))
3956 internal_error (__FILE__, __LINE__,
3957 _("cris_gdbarch_update: failed to update architecture."));
3958 }
3959
3960 static void
3961 set_cris_mode (char *ignore_args, int from_tty,
3962 struct cmd_list_element *c)
3963 {
3964 struct gdbarch_info info;
3965
3966 /* Update the current architecture, if needed. */
3967 gdbarch_info_init (&info);
3968 if (!gdbarch_update_p (info))
3969 internal_error (__FILE__, __LINE__,
3970 "cris_gdbarch_update: failed to update architecture.");
3971 }
3972
3973 static void
3974 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
3975 struct cmd_list_element *c)
3976 {
3977 struct gdbarch_info info;
3978
3979 /* Update the current architecture, if needed. */
3980 gdbarch_info_init (&info);
3981 if (!gdbarch_update_p (info))
3982 internal_error (__FILE__, __LINE__,
3983 _("cris_gdbarch_update: failed to update architecture."));
3984 }
3985
3986 static struct gdbarch *
3987 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3988 {
3989 struct gdbarch *gdbarch;
3990 struct gdbarch_tdep *tdep;
3991 unsigned int cris_version;
3992
3993 if (usr_cmd_cris_version_valid)
3994 {
3995 /* Trust the user's CRIS version setting. */
3996 cris_version = usr_cmd_cris_version;
3997 }
3998 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3999 {
4000 cris_version = 32;
4001 }
4002 else
4003 {
4004 /* Assume it's CRIS version 10. */
4005 cris_version = 10;
4006 }
4007
4008 /* Make the current settings visible to the user. */
4009 usr_cmd_cris_version = cris_version;
4010
4011 /* Find a candidate among the list of pre-declared architectures. */
4012 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4013 arches != NULL;
4014 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4015 {
4016 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4017 == usr_cmd_cris_version)
4018 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4019 == usr_cmd_cris_mode)
4020 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4021 == usr_cmd_cris_dwarf2_cfi))
4022 return arches->gdbarch;
4023 }
4024
4025 /* No matching architecture was found. Create a new one. */
4026 tdep = XNEW (struct gdbarch_tdep);
4027 gdbarch = gdbarch_alloc (&info, tdep);
4028
4029 tdep->cris_version = usr_cmd_cris_version;
4030 tdep->cris_mode = usr_cmd_cris_mode;
4031 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4032
4033 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4034 switch (info.byte_order)
4035 {
4036 case BFD_ENDIAN_LITTLE:
4037 /* Ok. */
4038 break;
4039
4040 case BFD_ENDIAN_BIG:
4041 /* Cris is always little endian, but the user could have forced
4042 big endian with "set endian". */
4043 return 0;
4044
4045 default:
4046 internal_error (__FILE__, __LINE__,
4047 _("cris_gdbarch_init: unknown byte order in info"));
4048 }
4049
4050 set_gdbarch_return_value (gdbarch, cris_return_value);
4051
4052 set_gdbarch_sp_regnum (gdbarch, 14);
4053
4054 /* Length of ordinary registers used in push_word and a few other
4055 places. register_size() is the real way to know how big a
4056 register is. */
4057
4058 set_gdbarch_double_bit (gdbarch, 64);
4059 /* The default definition of a long double is 2 * gdbarch_double_bit,
4060 which means we have to set this explicitly. */
4061 set_gdbarch_long_double_bit (gdbarch, 64);
4062
4063 /* The total amount of space needed to store (in an array called registers)
4064 GDB's copy of the machine's register state. Note: We can not use
4065 cris_register_size at this point, since it relies on gdbarch
4066 being set. */
4067 switch (tdep->cris_version)
4068 {
4069 case 0:
4070 case 1:
4071 case 2:
4072 case 3:
4073 case 8:
4074 case 9:
4075 /* Old versions; not supported. */
4076 return 0;
4077
4078 case 10:
4079 case 11:
4080 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4081 P7 (32 bits), and P15 (32 bits) have been implemented. */
4082 set_gdbarch_pc_regnum (gdbarch, 15);
4083 set_gdbarch_register_type (gdbarch, cris_register_type);
4084 /* There are 32 registers (some of which may not be implemented). */
4085 set_gdbarch_num_regs (gdbarch, 32);
4086 set_gdbarch_register_name (gdbarch, cris_register_name);
4087 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4088 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4089
4090 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4091 break;
4092
4093 case 32:
4094 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4095 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4096 and pseudo-register PC (32 bits). */
4097 set_gdbarch_pc_regnum (gdbarch, 32);
4098 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4099 /* 32 registers + pseudo-register PC + 16 support registers. */
4100 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4101 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4102
4103 set_gdbarch_cannot_store_register
4104 (gdbarch, crisv32_cannot_store_register);
4105 set_gdbarch_cannot_fetch_register
4106 (gdbarch, crisv32_cannot_fetch_register);
4107
4108 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4109
4110 set_gdbarch_single_step_through_delay
4111 (gdbarch, crisv32_single_step_through_delay);
4112
4113 break;
4114
4115 default:
4116 /* Unknown version. */
4117 return 0;
4118 }
4119
4120 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4121 have the same ABI). */
4122 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4123 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4124 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4125 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4126
4127 /* The stack grows downward. */
4128 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4129
4130 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4131 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
4132
4133 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4134 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4135 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4136
4137 if (tdep->cris_dwarf2_cfi == 1)
4138 {
4139 /* Hook in the Dwarf-2 frame sniffer. */
4140 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4141 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4142 dwarf2_append_unwinders (gdbarch);
4143 }
4144
4145 if (tdep->cris_mode != cris_mode_guru)
4146 {
4147 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4148 }
4149
4150 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4151 frame_base_set_default (gdbarch, &cris_frame_base);
4152
4153 /* Hook in ABI-specific overrides, if they have been registered. */
4154 gdbarch_init_osabi (info, gdbarch);
4155
4156 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4157 disassembler, even when there is no BFD. Does something like
4158 "gdb; target remote; disassmeble *0x123" work? */
4159 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4160
4161 return gdbarch;
4162 }
This page took 0.113382 seconds and 4 git commands to generate.