Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / d-exp.y
1 /* YACC parser for D expressions, for GDB.
2
3 Copyright (C) 2014-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y, jv-exp.y. */
21
22 /* Parse a D expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54 #include "type-stack.h"
55
56 #define parse_type(ps) builtin_type (ps->gdbarch ())
57 #define parse_d_type(ps) builtin_d_type (ps->gdbarch ())
58
59 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
60 etc). */
61 #define GDB_YY_REMAP_PREFIX d_
62 #include "yy-remap.h"
63
64 /* The state of the parser, used internally when we are parsing the
65 expression. */
66
67 static struct parser_state *pstate = NULL;
68
69 /* The current type stack. */
70 static struct type_stack *type_stack;
71
72 int yyparse (void);
73
74 static int yylex (void);
75
76 static void yyerror (const char *);
77
78 static int type_aggregate_p (struct type *);
79
80 %}
81
82 /* Although the yacc "value" of an expression is not used,
83 since the result is stored in the structure being created,
84 other node types do have values. */
85
86 %union
87 {
88 struct {
89 LONGEST val;
90 struct type *type;
91 } typed_val_int;
92 struct {
93 gdb_byte val[16];
94 struct type *type;
95 } typed_val_float;
96 struct symbol *sym;
97 struct type *tval;
98 struct typed_stoken tsval;
99 struct stoken sval;
100 struct ttype tsym;
101 struct symtoken ssym;
102 int ival;
103 int voidval;
104 enum exp_opcode opcode;
105 struct stoken_vector svec;
106 }
107
108 %{
109 /* YYSTYPE gets defined by %union */
110 static int parse_number (struct parser_state *, const char *,
111 int, int, YYSTYPE *);
112 %}
113
114 %token <sval> IDENTIFIER UNKNOWN_NAME
115 %token <tsym> TYPENAME
116 %token <voidval> COMPLETE
117
118 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
119 but which would parse as a valid number in the current input radix.
120 E.g. "c" when input_radix==16. Depending on the parse, it will be
121 turned into a name or into a number. */
122
123 %token <sval> NAME_OR_INT
124
125 %token <typed_val_int> INTEGER_LITERAL
126 %token <typed_val_float> FLOAT_LITERAL
127 %token <tsval> CHARACTER_LITERAL
128 %token <tsval> STRING_LITERAL
129
130 %type <svec> StringExp
131 %type <tval> BasicType TypeExp
132 %type <sval> IdentifierExp
133 %type <ival> ArrayLiteral
134
135 %token ENTRY
136 %token ERROR
137
138 /* Keywords that have a constant value. */
139 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
140 /* Class 'super' accessor. */
141 %token SUPER_KEYWORD
142 /* Properties. */
143 %token CAST_KEYWORD SIZEOF_KEYWORD
144 %token TYPEOF_KEYWORD TYPEID_KEYWORD
145 %token INIT_KEYWORD
146 /* Comparison keywords. */
147 /* Type storage classes. */
148 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
149 /* Non-scalar type keywords. */
150 %token STRUCT_KEYWORD UNION_KEYWORD
151 %token CLASS_KEYWORD INTERFACE_KEYWORD
152 %token ENUM_KEYWORD TEMPLATE_KEYWORD
153 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
154
155 %token <sval> DOLLAR_VARIABLE
156
157 %token <opcode> ASSIGN_MODIFY
158
159 %left ','
160 %right '=' ASSIGN_MODIFY
161 %right '?'
162 %left OROR
163 %left ANDAND
164 %left '|'
165 %left '^'
166 %left '&'
167 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
168 %right LSH RSH
169 %left '+' '-'
170 %left '*' '/' '%'
171 %right HATHAT
172 %left IDENTITY NOTIDENTITY
173 %right INCREMENT DECREMENT
174 %right '.' '[' '('
175 %token DOTDOT
176
177 \f
178 %%
179
180 start :
181 Expression
182 | TypeExp
183 ;
184
185 /* Expressions, including the comma operator. */
186
187 Expression:
188 CommaExpression
189 ;
190
191 CommaExpression:
192 AssignExpression
193 | AssignExpression ',' CommaExpression
194 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
195 ;
196
197 AssignExpression:
198 ConditionalExpression
199 | ConditionalExpression '=' AssignExpression
200 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
201 | ConditionalExpression ASSIGN_MODIFY AssignExpression
202 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
203 write_exp_elt_opcode (pstate, $2);
204 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
205 ;
206
207 ConditionalExpression:
208 OrOrExpression
209 | OrOrExpression '?' Expression ':' ConditionalExpression
210 { write_exp_elt_opcode (pstate, TERNOP_COND); }
211 ;
212
213 OrOrExpression:
214 AndAndExpression
215 | OrOrExpression OROR AndAndExpression
216 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
217 ;
218
219 AndAndExpression:
220 OrExpression
221 | AndAndExpression ANDAND OrExpression
222 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
223 ;
224
225 OrExpression:
226 XorExpression
227 | OrExpression '|' XorExpression
228 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
229 ;
230
231 XorExpression:
232 AndExpression
233 | XorExpression '^' AndExpression
234 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
235 ;
236
237 AndExpression:
238 CmpExpression
239 | AndExpression '&' CmpExpression
240 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
241 ;
242
243 CmpExpression:
244 ShiftExpression
245 | EqualExpression
246 | IdentityExpression
247 | RelExpression
248 ;
249
250 EqualExpression:
251 ShiftExpression EQUAL ShiftExpression
252 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
253 | ShiftExpression NOTEQUAL ShiftExpression
254 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
255 ;
256
257 IdentityExpression:
258 ShiftExpression IDENTITY ShiftExpression
259 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
260 | ShiftExpression NOTIDENTITY ShiftExpression
261 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
262 ;
263
264 RelExpression:
265 ShiftExpression '<' ShiftExpression
266 { write_exp_elt_opcode (pstate, BINOP_LESS); }
267 | ShiftExpression LEQ ShiftExpression
268 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
269 | ShiftExpression '>' ShiftExpression
270 { write_exp_elt_opcode (pstate, BINOP_GTR); }
271 | ShiftExpression GEQ ShiftExpression
272 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
273 ;
274
275 ShiftExpression:
276 AddExpression
277 | ShiftExpression LSH AddExpression
278 { write_exp_elt_opcode (pstate, BINOP_LSH); }
279 | ShiftExpression RSH AddExpression
280 { write_exp_elt_opcode (pstate, BINOP_RSH); }
281 ;
282
283 AddExpression:
284 MulExpression
285 | AddExpression '+' MulExpression
286 { write_exp_elt_opcode (pstate, BINOP_ADD); }
287 | AddExpression '-' MulExpression
288 { write_exp_elt_opcode (pstate, BINOP_SUB); }
289 | AddExpression '~' MulExpression
290 { write_exp_elt_opcode (pstate, BINOP_CONCAT); }
291 ;
292
293 MulExpression:
294 UnaryExpression
295 | MulExpression '*' UnaryExpression
296 { write_exp_elt_opcode (pstate, BINOP_MUL); }
297 | MulExpression '/' UnaryExpression
298 { write_exp_elt_opcode (pstate, BINOP_DIV); }
299 | MulExpression '%' UnaryExpression
300 { write_exp_elt_opcode (pstate, BINOP_REM); }
301
302 UnaryExpression:
303 '&' UnaryExpression
304 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
305 | INCREMENT UnaryExpression
306 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
307 | DECREMENT UnaryExpression
308 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
309 | '*' UnaryExpression
310 { write_exp_elt_opcode (pstate, UNOP_IND); }
311 | '-' UnaryExpression
312 { write_exp_elt_opcode (pstate, UNOP_NEG); }
313 | '+' UnaryExpression
314 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
315 | '!' UnaryExpression
316 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
317 | '~' UnaryExpression
318 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
319 | TypeExp '.' SIZEOF_KEYWORD
320 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
321 | CastExpression
322 | PowExpression
323 ;
324
325 CastExpression:
326 CAST_KEYWORD '(' TypeExp ')' UnaryExpression
327 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
328 /* C style cast is illegal D, but is still recognised in
329 the grammar, so we keep this around for convenience. */
330 | '(' TypeExp ')' UnaryExpression
331 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
332
333 ;
334
335 PowExpression:
336 PostfixExpression
337 | PostfixExpression HATHAT UnaryExpression
338 { write_exp_elt_opcode (pstate, BINOP_EXP); }
339 ;
340
341 PostfixExpression:
342 PrimaryExpression
343 | PostfixExpression '.' COMPLETE
344 { struct stoken s;
345 pstate->mark_struct_expression ();
346 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
347 s.ptr = "";
348 s.length = 0;
349 write_exp_string (pstate, s);
350 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
351 | PostfixExpression '.' IDENTIFIER
352 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
353 write_exp_string (pstate, $3);
354 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
355 | PostfixExpression '.' IDENTIFIER COMPLETE
356 { pstate->mark_struct_expression ();
357 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
358 write_exp_string (pstate, $3);
359 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
360 | PostfixExpression '.' SIZEOF_KEYWORD
361 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
362 | PostfixExpression INCREMENT
363 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
364 | PostfixExpression DECREMENT
365 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
366 | CallExpression
367 | IndexExpression
368 | SliceExpression
369 ;
370
371 ArgumentList:
372 AssignExpression
373 { pstate->arglist_len = 1; }
374 | ArgumentList ',' AssignExpression
375 { pstate->arglist_len++; }
376 ;
377
378 ArgumentList_opt:
379 /* EMPTY */
380 { pstate->arglist_len = 0; }
381 | ArgumentList
382 ;
383
384 CallExpression:
385 PostfixExpression '('
386 { pstate->start_arglist (); }
387 ArgumentList_opt ')'
388 { write_exp_elt_opcode (pstate, OP_FUNCALL);
389 write_exp_elt_longcst (pstate, pstate->end_arglist ());
390 write_exp_elt_opcode (pstate, OP_FUNCALL); }
391 ;
392
393 IndexExpression:
394 PostfixExpression '[' ArgumentList ']'
395 { if (pstate->arglist_len > 0)
396 {
397 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
398 write_exp_elt_longcst (pstate, pstate->arglist_len);
399 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
400 }
401 else
402 write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
403 }
404 ;
405
406 SliceExpression:
407 PostfixExpression '[' ']'
408 { /* Do nothing. */ }
409 | PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
410 { write_exp_elt_opcode (pstate, TERNOP_SLICE); }
411 ;
412
413 PrimaryExpression:
414 '(' Expression ')'
415 { /* Do nothing. */ }
416 | IdentifierExp
417 { struct bound_minimal_symbol msymbol;
418 std::string copy = copy_name ($1);
419 struct field_of_this_result is_a_field_of_this;
420 struct block_symbol sym;
421
422 /* Handle VAR, which could be local or global. */
423 sym = lookup_symbol (copy.c_str (),
424 pstate->expression_context_block,
425 VAR_DOMAIN, &is_a_field_of_this);
426 if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
427 {
428 if (symbol_read_needs_frame (sym.symbol))
429 pstate->block_tracker->update (sym);
430 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
431 write_exp_elt_block (pstate, sym.block);
432 write_exp_elt_sym (pstate, sym.symbol);
433 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
434 }
435 else if (is_a_field_of_this.type != NULL)
436 {
437 /* It hangs off of `this'. Must not inadvertently convert from a
438 method call to data ref. */
439 pstate->block_tracker->update (sym);
440 write_exp_elt_opcode (pstate, OP_THIS);
441 write_exp_elt_opcode (pstate, OP_THIS);
442 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
443 write_exp_string (pstate, $1);
444 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
445 }
446 else
447 {
448 /* Lookup foreign name in global static symbols. */
449 msymbol = lookup_bound_minimal_symbol (copy.c_str ());
450 if (msymbol.minsym != NULL)
451 write_exp_msymbol (pstate, msymbol);
452 else if (!have_full_symbols () && !have_partial_symbols ())
453 error (_("No symbol table is loaded. Use the \"file\" command"));
454 else
455 error (_("No symbol \"%s\" in current context."),
456 copy.c_str ());
457 }
458 }
459 | TypeExp '.' IdentifierExp
460 { struct type *type = check_typedef ($1);
461
462 /* Check if the qualified name is in the global
463 context. However if the symbol has not already
464 been resolved, it's not likely to be found. */
465 if (TYPE_CODE (type) == TYPE_CODE_MODULE)
466 {
467 struct bound_minimal_symbol msymbol;
468 struct block_symbol sym;
469 const char *type_name = TYPE_SAFE_NAME (type);
470 int type_name_len = strlen (type_name);
471 std::string name
472 = string_printf ("%.*s.%.*s",
473 type_name_len, type_name,
474 $3.length, $3.ptr);
475
476 sym =
477 lookup_symbol (name.c_str (),
478 (const struct block *) NULL,
479 VAR_DOMAIN, NULL);
480 if (sym.symbol)
481 {
482 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
483 write_exp_elt_block (pstate, sym.block);
484 write_exp_elt_sym (pstate, sym.symbol);
485 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
486 break;
487 }
488
489 msymbol = lookup_bound_minimal_symbol (name.c_str ());
490 if (msymbol.minsym != NULL)
491 write_exp_msymbol (pstate, msymbol);
492 else if (!have_full_symbols () && !have_partial_symbols ())
493 error (_("No symbol table is loaded. Use the \"file\" command."));
494 else
495 error (_("No symbol \"%s\" in current context."),
496 name.c_str ());
497 }
498
499 /* Check if the qualified name resolves as a member
500 of an aggregate or an enum type. */
501 if (!type_aggregate_p (type))
502 error (_("`%s' is not defined as an aggregate type."),
503 TYPE_SAFE_NAME (type));
504
505 write_exp_elt_opcode (pstate, OP_SCOPE);
506 write_exp_elt_type (pstate, type);
507 write_exp_string (pstate, $3);
508 write_exp_elt_opcode (pstate, OP_SCOPE);
509 }
510 | DOLLAR_VARIABLE
511 { write_dollar_variable (pstate, $1); }
512 | NAME_OR_INT
513 { YYSTYPE val;
514 parse_number (pstate, $1.ptr, $1.length, 0, &val);
515 write_exp_elt_opcode (pstate, OP_LONG);
516 write_exp_elt_type (pstate, val.typed_val_int.type);
517 write_exp_elt_longcst (pstate,
518 (LONGEST) val.typed_val_int.val);
519 write_exp_elt_opcode (pstate, OP_LONG); }
520 | NULL_KEYWORD
521 { struct type *type = parse_d_type (pstate)->builtin_void;
522 type = lookup_pointer_type (type);
523 write_exp_elt_opcode (pstate, OP_LONG);
524 write_exp_elt_type (pstate, type);
525 write_exp_elt_longcst (pstate, (LONGEST) 0);
526 write_exp_elt_opcode (pstate, OP_LONG); }
527 | TRUE_KEYWORD
528 { write_exp_elt_opcode (pstate, OP_BOOL);
529 write_exp_elt_longcst (pstate, (LONGEST) 1);
530 write_exp_elt_opcode (pstate, OP_BOOL); }
531 | FALSE_KEYWORD
532 { write_exp_elt_opcode (pstate, OP_BOOL);
533 write_exp_elt_longcst (pstate, (LONGEST) 0);
534 write_exp_elt_opcode (pstate, OP_BOOL); }
535 | INTEGER_LITERAL
536 { write_exp_elt_opcode (pstate, OP_LONG);
537 write_exp_elt_type (pstate, $1.type);
538 write_exp_elt_longcst (pstate, (LONGEST)($1.val));
539 write_exp_elt_opcode (pstate, OP_LONG); }
540 | FLOAT_LITERAL
541 { write_exp_elt_opcode (pstate, OP_FLOAT);
542 write_exp_elt_type (pstate, $1.type);
543 write_exp_elt_floatcst (pstate, $1.val);
544 write_exp_elt_opcode (pstate, OP_FLOAT); }
545 | CHARACTER_LITERAL
546 { struct stoken_vector vec;
547 vec.len = 1;
548 vec.tokens = &$1;
549 write_exp_string_vector (pstate, $1.type, &vec); }
550 | StringExp
551 { int i;
552 write_exp_string_vector (pstate, 0, &$1);
553 for (i = 0; i < $1.len; ++i)
554 free ($1.tokens[i].ptr);
555 free ($1.tokens); }
556 | ArrayLiteral
557 { write_exp_elt_opcode (pstate, OP_ARRAY);
558 write_exp_elt_longcst (pstate, (LONGEST) 0);
559 write_exp_elt_longcst (pstate, (LONGEST) $1 - 1);
560 write_exp_elt_opcode (pstate, OP_ARRAY); }
561 | TYPEOF_KEYWORD '(' Expression ')'
562 { write_exp_elt_opcode (pstate, OP_TYPEOF); }
563 ;
564
565 ArrayLiteral:
566 '[' ArgumentList_opt ']'
567 { $$ = pstate->arglist_len; }
568 ;
569
570 IdentifierExp:
571 IDENTIFIER
572 ;
573
574 StringExp:
575 STRING_LITERAL
576 { /* We copy the string here, and not in the
577 lexer, to guarantee that we do not leak a
578 string. Note that we follow the
579 NUL-termination convention of the
580 lexer. */
581 struct typed_stoken *vec = XNEW (struct typed_stoken);
582 $$.len = 1;
583 $$.tokens = vec;
584
585 vec->type = $1.type;
586 vec->length = $1.length;
587 vec->ptr = (char *) malloc ($1.length + 1);
588 memcpy (vec->ptr, $1.ptr, $1.length + 1);
589 }
590 | StringExp STRING_LITERAL
591 { /* Note that we NUL-terminate here, but just
592 for convenience. */
593 char *p;
594 ++$$.len;
595 $$.tokens
596 = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
597
598 p = (char *) malloc ($2.length + 1);
599 memcpy (p, $2.ptr, $2.length + 1);
600
601 $$.tokens[$$.len - 1].type = $2.type;
602 $$.tokens[$$.len - 1].length = $2.length;
603 $$.tokens[$$.len - 1].ptr = p;
604 }
605 ;
606
607 TypeExp:
608 '(' TypeExp ')'
609 { /* Do nothing. */ }
610 | BasicType
611 { write_exp_elt_opcode (pstate, OP_TYPE);
612 write_exp_elt_type (pstate, $1);
613 write_exp_elt_opcode (pstate, OP_TYPE); }
614 | BasicType BasicType2
615 { $$ = type_stack->follow_types ($1);
616 write_exp_elt_opcode (pstate, OP_TYPE);
617 write_exp_elt_type (pstate, $$);
618 write_exp_elt_opcode (pstate, OP_TYPE);
619 }
620 ;
621
622 BasicType2:
623 '*'
624 { type_stack->push (tp_pointer); }
625 | '*' BasicType2
626 { type_stack->push (tp_pointer); }
627 | '[' INTEGER_LITERAL ']'
628 { type_stack->push ($2.val);
629 type_stack->push (tp_array); }
630 | '[' INTEGER_LITERAL ']' BasicType2
631 { type_stack->push ($2.val);
632 type_stack->push (tp_array); }
633 ;
634
635 BasicType:
636 TYPENAME
637 { $$ = $1.type; }
638 ;
639
640 %%
641
642 /* Return true if the type is aggregate-like. */
643
644 static int
645 type_aggregate_p (struct type *type)
646 {
647 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
648 || TYPE_CODE (type) == TYPE_CODE_UNION
649 || TYPE_CODE (type) == TYPE_CODE_MODULE
650 || (TYPE_CODE (type) == TYPE_CODE_ENUM
651 && TYPE_DECLARED_CLASS (type)));
652 }
653
654 /* Take care of parsing a number (anything that starts with a digit).
655 Set yylval and return the token type; update lexptr.
656 LEN is the number of characters in it. */
657
658 /*** Needs some error checking for the float case ***/
659
660 static int
661 parse_number (struct parser_state *ps, const char *p,
662 int len, int parsed_float, YYSTYPE *putithere)
663 {
664 ULONGEST n = 0;
665 ULONGEST prevn = 0;
666 ULONGEST un;
667
668 int i = 0;
669 int c;
670 int base = input_radix;
671 int unsigned_p = 0;
672 int long_p = 0;
673
674 /* We have found a "L" or "U" suffix. */
675 int found_suffix = 0;
676
677 ULONGEST high_bit;
678 struct type *signed_type;
679 struct type *unsigned_type;
680
681 if (parsed_float)
682 {
683 char *s, *sp;
684
685 /* Strip out all embedded '_' before passing to parse_float. */
686 s = (char *) alloca (len + 1);
687 sp = s;
688 while (len-- > 0)
689 {
690 if (*p != '_')
691 *sp++ = *p;
692 p++;
693 }
694 *sp = '\0';
695 len = strlen (s);
696
697 /* Check suffix for `i' , `fi' or `li' (idouble, ifloat or ireal). */
698 if (len >= 1 && tolower (s[len - 1]) == 'i')
699 {
700 if (len >= 2 && tolower (s[len - 2]) == 'f')
701 {
702 putithere->typed_val_float.type
703 = parse_d_type (ps)->builtin_ifloat;
704 len -= 2;
705 }
706 else if (len >= 2 && tolower (s[len - 2]) == 'l')
707 {
708 putithere->typed_val_float.type
709 = parse_d_type (ps)->builtin_ireal;
710 len -= 2;
711 }
712 else
713 {
714 putithere->typed_val_float.type
715 = parse_d_type (ps)->builtin_idouble;
716 len -= 1;
717 }
718 }
719 /* Check suffix for `f' or `l'' (float or real). */
720 else if (len >= 1 && tolower (s[len - 1]) == 'f')
721 {
722 putithere->typed_val_float.type
723 = parse_d_type (ps)->builtin_float;
724 len -= 1;
725 }
726 else if (len >= 1 && tolower (s[len - 1]) == 'l')
727 {
728 putithere->typed_val_float.type
729 = parse_d_type (ps)->builtin_real;
730 len -= 1;
731 }
732 /* Default type if no suffix. */
733 else
734 {
735 putithere->typed_val_float.type
736 = parse_d_type (ps)->builtin_double;
737 }
738
739 if (!parse_float (s, len,
740 putithere->typed_val_float.type,
741 putithere->typed_val_float.val))
742 return ERROR;
743
744 return FLOAT_LITERAL;
745 }
746
747 /* Handle base-switching prefixes 0x, 0b, 0 */
748 if (p[0] == '0')
749 switch (p[1])
750 {
751 case 'x':
752 case 'X':
753 if (len >= 3)
754 {
755 p += 2;
756 base = 16;
757 len -= 2;
758 }
759 break;
760
761 case 'b':
762 case 'B':
763 if (len >= 3)
764 {
765 p += 2;
766 base = 2;
767 len -= 2;
768 }
769 break;
770
771 default:
772 base = 8;
773 break;
774 }
775
776 while (len-- > 0)
777 {
778 c = *p++;
779 if (c == '_')
780 continue; /* Ignore embedded '_'. */
781 if (c >= 'A' && c <= 'Z')
782 c += 'a' - 'A';
783 if (c != 'l' && c != 'u')
784 n *= base;
785 if (c >= '0' && c <= '9')
786 {
787 if (found_suffix)
788 return ERROR;
789 n += i = c - '0';
790 }
791 else
792 {
793 if (base > 10 && c >= 'a' && c <= 'f')
794 {
795 if (found_suffix)
796 return ERROR;
797 n += i = c - 'a' + 10;
798 }
799 else if (c == 'l' && long_p == 0)
800 {
801 long_p = 1;
802 found_suffix = 1;
803 }
804 else if (c == 'u' && unsigned_p == 0)
805 {
806 unsigned_p = 1;
807 found_suffix = 1;
808 }
809 else
810 return ERROR; /* Char not a digit */
811 }
812 if (i >= base)
813 return ERROR; /* Invalid digit in this base. */
814 /* Portably test for integer overflow. */
815 if (c != 'l' && c != 'u')
816 {
817 ULONGEST n2 = prevn * base;
818 if ((n2 / base != prevn) || (n2 + i < prevn))
819 error (_("Numeric constant too large."));
820 }
821 prevn = n;
822 }
823
824 /* An integer constant is an int or a long. An L suffix forces it to
825 be long, and a U suffix forces it to be unsigned. To figure out
826 whether it fits, we shift it right and see whether anything remains.
827 Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
828 more in one operation, because many compilers will warn about such a
829 shift (which always produces a zero result). To deal with the case
830 where it is we just always shift the value more than once, with fewer
831 bits each time. */
832 un = (ULONGEST) n >> 2;
833 if (long_p == 0 && (un >> 30) == 0)
834 {
835 high_bit = ((ULONGEST) 1) << 31;
836 signed_type = parse_d_type (ps)->builtin_int;
837 /* For decimal notation, keep the sign of the worked out type. */
838 if (base == 10 && !unsigned_p)
839 unsigned_type = parse_d_type (ps)->builtin_long;
840 else
841 unsigned_type = parse_d_type (ps)->builtin_uint;
842 }
843 else
844 {
845 int shift;
846 if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
847 /* A long long does not fit in a LONGEST. */
848 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
849 else
850 shift = 63;
851 high_bit = (ULONGEST) 1 << shift;
852 signed_type = parse_d_type (ps)->builtin_long;
853 unsigned_type = parse_d_type (ps)->builtin_ulong;
854 }
855
856 putithere->typed_val_int.val = n;
857
858 /* If the high bit of the worked out type is set then this number
859 has to be unsigned_type. */
860 if (unsigned_p || (n & high_bit))
861 putithere->typed_val_int.type = unsigned_type;
862 else
863 putithere->typed_val_int.type = signed_type;
864
865 return INTEGER_LITERAL;
866 }
867
868 /* Temporary obstack used for holding strings. */
869 static struct obstack tempbuf;
870 static int tempbuf_init;
871
872 /* Parse a string or character literal from TOKPTR. The string or
873 character may be wide or unicode. *OUTPTR is set to just after the
874 end of the literal in the input string. The resulting token is
875 stored in VALUE. This returns a token value, either STRING or
876 CHAR, depending on what was parsed. *HOST_CHARS is set to the
877 number of host characters in the literal. */
878
879 static int
880 parse_string_or_char (const char *tokptr, const char **outptr,
881 struct typed_stoken *value, int *host_chars)
882 {
883 int quote;
884
885 /* Build the gdb internal form of the input string in tempbuf. Note
886 that the buffer is null byte terminated *only* for the
887 convenience of debugging gdb itself and printing the buffer
888 contents when the buffer contains no embedded nulls. Gdb does
889 not depend upon the buffer being null byte terminated, it uses
890 the length string instead. This allows gdb to handle C strings
891 (as well as strings in other languages) with embedded null
892 bytes */
893
894 if (!tempbuf_init)
895 tempbuf_init = 1;
896 else
897 obstack_free (&tempbuf, NULL);
898 obstack_init (&tempbuf);
899
900 /* Skip the quote. */
901 quote = *tokptr;
902 ++tokptr;
903
904 *host_chars = 0;
905
906 while (*tokptr)
907 {
908 char c = *tokptr;
909 if (c == '\\')
910 {
911 ++tokptr;
912 *host_chars += c_parse_escape (&tokptr, &tempbuf);
913 }
914 else if (c == quote)
915 break;
916 else
917 {
918 obstack_1grow (&tempbuf, c);
919 ++tokptr;
920 /* FIXME: this does the wrong thing with multi-byte host
921 characters. We could use mbrlen here, but that would
922 make "set host-charset" a bit less useful. */
923 ++*host_chars;
924 }
925 }
926
927 if (*tokptr != quote)
928 {
929 if (quote == '"' || quote == '`')
930 error (_("Unterminated string in expression."));
931 else
932 error (_("Unmatched single quote."));
933 }
934 ++tokptr;
935
936 /* FIXME: should instead use own language string_type enum
937 and handle D-specific string suffixes here. */
938 if (quote == '\'')
939 value->type = C_CHAR;
940 else
941 value->type = C_STRING;
942
943 value->ptr = (char *) obstack_base (&tempbuf);
944 value->length = obstack_object_size (&tempbuf);
945
946 *outptr = tokptr;
947
948 return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
949 }
950
951 struct token
952 {
953 const char *oper;
954 int token;
955 enum exp_opcode opcode;
956 };
957
958 static const struct token tokentab3[] =
959 {
960 {"^^=", ASSIGN_MODIFY, BINOP_EXP},
961 {"<<=", ASSIGN_MODIFY, BINOP_LSH},
962 {">>=", ASSIGN_MODIFY, BINOP_RSH},
963 };
964
965 static const struct token tokentab2[] =
966 {
967 {"+=", ASSIGN_MODIFY, BINOP_ADD},
968 {"-=", ASSIGN_MODIFY, BINOP_SUB},
969 {"*=", ASSIGN_MODIFY, BINOP_MUL},
970 {"/=", ASSIGN_MODIFY, BINOP_DIV},
971 {"%=", ASSIGN_MODIFY, BINOP_REM},
972 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
973 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
974 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
975 {"++", INCREMENT, BINOP_END},
976 {"--", DECREMENT, BINOP_END},
977 {"&&", ANDAND, BINOP_END},
978 {"||", OROR, BINOP_END},
979 {"^^", HATHAT, BINOP_END},
980 {"<<", LSH, BINOP_END},
981 {">>", RSH, BINOP_END},
982 {"==", EQUAL, BINOP_END},
983 {"!=", NOTEQUAL, BINOP_END},
984 {"<=", LEQ, BINOP_END},
985 {">=", GEQ, BINOP_END},
986 {"..", DOTDOT, BINOP_END},
987 };
988
989 /* Identifier-like tokens. */
990 static const struct token ident_tokens[] =
991 {
992 {"is", IDENTITY, BINOP_END},
993 {"!is", NOTIDENTITY, BINOP_END},
994
995 {"cast", CAST_KEYWORD, OP_NULL},
996 {"const", CONST_KEYWORD, OP_NULL},
997 {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
998 {"shared", SHARED_KEYWORD, OP_NULL},
999 {"super", SUPER_KEYWORD, OP_NULL},
1000
1001 {"null", NULL_KEYWORD, OP_NULL},
1002 {"true", TRUE_KEYWORD, OP_NULL},
1003 {"false", FALSE_KEYWORD, OP_NULL},
1004
1005 {"init", INIT_KEYWORD, OP_NULL},
1006 {"sizeof", SIZEOF_KEYWORD, OP_NULL},
1007 {"typeof", TYPEOF_KEYWORD, OP_NULL},
1008 {"typeid", TYPEID_KEYWORD, OP_NULL},
1009
1010 {"delegate", DELEGATE_KEYWORD, OP_NULL},
1011 {"function", FUNCTION_KEYWORD, OP_NULL},
1012 {"struct", STRUCT_KEYWORD, OP_NULL},
1013 {"union", UNION_KEYWORD, OP_NULL},
1014 {"class", CLASS_KEYWORD, OP_NULL},
1015 {"interface", INTERFACE_KEYWORD, OP_NULL},
1016 {"enum", ENUM_KEYWORD, OP_NULL},
1017 {"template", TEMPLATE_KEYWORD, OP_NULL},
1018 };
1019
1020 /* This is set if a NAME token appeared at the very end of the input
1021 string, with no whitespace separating the name from the EOF. This
1022 is used only when parsing to do field name completion. */
1023 static int saw_name_at_eof;
1024
1025 /* This is set if the previously-returned token was a structure operator.
1026 This is used only when parsing to do field name completion. */
1027 static int last_was_structop;
1028
1029 /* Depth of parentheses. */
1030 static int paren_depth;
1031
1032 /* Read one token, getting characters through lexptr. */
1033
1034 static int
1035 lex_one_token (struct parser_state *par_state)
1036 {
1037 int c;
1038 int namelen;
1039 unsigned int i;
1040 const char *tokstart;
1041 int saw_structop = last_was_structop;
1042
1043 last_was_structop = 0;
1044
1045 retry:
1046
1047 pstate->prev_lexptr = pstate->lexptr;
1048
1049 tokstart = pstate->lexptr;
1050 /* See if it is a special token of length 3. */
1051 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1052 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
1053 {
1054 pstate->lexptr += 3;
1055 yylval.opcode = tokentab3[i].opcode;
1056 return tokentab3[i].token;
1057 }
1058
1059 /* See if it is a special token of length 2. */
1060 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1061 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
1062 {
1063 pstate->lexptr += 2;
1064 yylval.opcode = tokentab2[i].opcode;
1065 return tokentab2[i].token;
1066 }
1067
1068 switch (c = *tokstart)
1069 {
1070 case 0:
1071 /* If we're parsing for field name completion, and the previous
1072 token allows such completion, return a COMPLETE token.
1073 Otherwise, we were already scanning the original text, and
1074 we're really done. */
1075 if (saw_name_at_eof)
1076 {
1077 saw_name_at_eof = 0;
1078 return COMPLETE;
1079 }
1080 else if (saw_structop)
1081 return COMPLETE;
1082 else
1083 return 0;
1084
1085 case ' ':
1086 case '\t':
1087 case '\n':
1088 pstate->lexptr++;
1089 goto retry;
1090
1091 case '[':
1092 case '(':
1093 paren_depth++;
1094 pstate->lexptr++;
1095 return c;
1096
1097 case ']':
1098 case ')':
1099 if (paren_depth == 0)
1100 return 0;
1101 paren_depth--;
1102 pstate->lexptr++;
1103 return c;
1104
1105 case ',':
1106 if (pstate->comma_terminates && paren_depth == 0)
1107 return 0;
1108 pstate->lexptr++;
1109 return c;
1110
1111 case '.':
1112 /* Might be a floating point number. */
1113 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
1114 {
1115 if (pstate->parse_completion)
1116 last_was_structop = 1;
1117 goto symbol; /* Nope, must be a symbol. */
1118 }
1119 /* FALL THRU. */
1120
1121 case '0':
1122 case '1':
1123 case '2':
1124 case '3':
1125 case '4':
1126 case '5':
1127 case '6':
1128 case '7':
1129 case '8':
1130 case '9':
1131 {
1132 /* It's a number. */
1133 int got_dot = 0, got_e = 0, toktype;
1134 const char *p = tokstart;
1135 int hex = input_radix > 10;
1136
1137 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1138 {
1139 p += 2;
1140 hex = 1;
1141 }
1142
1143 for (;; ++p)
1144 {
1145 /* Hex exponents start with 'p', because 'e' is a valid hex
1146 digit and thus does not indicate a floating point number
1147 when the radix is hex. */
1148 if ((!hex && !got_e && tolower (p[0]) == 'e')
1149 || (hex && !got_e && tolower (p[0] == 'p')))
1150 got_dot = got_e = 1;
1151 /* A '.' always indicates a decimal floating point number
1152 regardless of the radix. If we have a '..' then its the
1153 end of the number and the beginning of a slice. */
1154 else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1155 got_dot = 1;
1156 /* This is the sign of the exponent, not the end of the number. */
1157 else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1158 && (*p == '-' || *p == '+'))
1159 continue;
1160 /* We will take any letters or digits, ignoring any embedded '_'.
1161 parse_number will complain if past the radix, or if L or U are
1162 not final. */
1163 else if ((*p < '0' || *p > '9') && (*p != '_')
1164 && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1165 break;
1166 }
1167
1168 toktype = parse_number (par_state, tokstart, p - tokstart,
1169 got_dot|got_e, &yylval);
1170 if (toktype == ERROR)
1171 {
1172 char *err_copy = (char *) alloca (p - tokstart + 1);
1173
1174 memcpy (err_copy, tokstart, p - tokstart);
1175 err_copy[p - tokstart] = 0;
1176 error (_("Invalid number \"%s\"."), err_copy);
1177 }
1178 pstate->lexptr = p;
1179 return toktype;
1180 }
1181
1182 case '@':
1183 {
1184 const char *p = &tokstart[1];
1185 size_t len = strlen ("entry");
1186
1187 while (isspace (*p))
1188 p++;
1189 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1190 && p[len] != '_')
1191 {
1192 pstate->lexptr = &p[len];
1193 return ENTRY;
1194 }
1195 }
1196 /* FALLTHRU */
1197 case '+':
1198 case '-':
1199 case '*':
1200 case '/':
1201 case '%':
1202 case '|':
1203 case '&':
1204 case '^':
1205 case '~':
1206 case '!':
1207 case '<':
1208 case '>':
1209 case '?':
1210 case ':':
1211 case '=':
1212 case '{':
1213 case '}':
1214 symbol:
1215 pstate->lexptr++;
1216 return c;
1217
1218 case '\'':
1219 case '"':
1220 case '`':
1221 {
1222 int host_len;
1223 int result = parse_string_or_char (tokstart, &pstate->lexptr,
1224 &yylval.tsval, &host_len);
1225 if (result == CHARACTER_LITERAL)
1226 {
1227 if (host_len == 0)
1228 error (_("Empty character constant."));
1229 else if (host_len > 2 && c == '\'')
1230 {
1231 ++tokstart;
1232 namelen = pstate->lexptr - tokstart - 1;
1233 goto tryname;
1234 }
1235 else if (host_len > 1)
1236 error (_("Invalid character constant."));
1237 }
1238 return result;
1239 }
1240 }
1241
1242 if (!(c == '_' || c == '$'
1243 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1244 /* We must have come across a bad character (e.g. ';'). */
1245 error (_("Invalid character '%c' in expression"), c);
1246
1247 /* It's a name. See how long it is. */
1248 namelen = 0;
1249 for (c = tokstart[namelen];
1250 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1251 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1252 c = tokstart[++namelen];
1253
1254 /* The token "if" terminates the expression and is NOT
1255 removed from the input stream. */
1256 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1257 return 0;
1258
1259 /* For the same reason (breakpoint conditions), "thread N"
1260 terminates the expression. "thread" could be an identifier, but
1261 an identifier is never followed by a number without intervening
1262 punctuation. "task" is similar. Handle abbreviations of these,
1263 similarly to breakpoint.c:find_condition_and_thread. */
1264 if (namelen >= 1
1265 && (strncmp (tokstart, "thread", namelen) == 0
1266 || strncmp (tokstart, "task", namelen) == 0)
1267 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1268 {
1269 const char *p = tokstart + namelen + 1;
1270
1271 while (*p == ' ' || *p == '\t')
1272 p++;
1273 if (*p >= '0' && *p <= '9')
1274 return 0;
1275 }
1276
1277 pstate->lexptr += namelen;
1278
1279 tryname:
1280
1281 yylval.sval.ptr = tokstart;
1282 yylval.sval.length = namelen;
1283
1284 /* Catch specific keywords. */
1285 std::string copy = copy_name (yylval.sval);
1286 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
1287 if (copy == ident_tokens[i].oper)
1288 {
1289 /* It is ok to always set this, even though we don't always
1290 strictly need to. */
1291 yylval.opcode = ident_tokens[i].opcode;
1292 return ident_tokens[i].token;
1293 }
1294
1295 if (*tokstart == '$')
1296 return DOLLAR_VARIABLE;
1297
1298 yylval.tsym.type
1299 = language_lookup_primitive_type (par_state->language (),
1300 par_state->gdbarch (), copy.c_str ());
1301 if (yylval.tsym.type != NULL)
1302 return TYPENAME;
1303
1304 /* Input names that aren't symbols but ARE valid hex numbers,
1305 when the input radix permits them, can be names or numbers
1306 depending on the parse. Note we support radixes > 16 here. */
1307 if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1308 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1309 {
1310 YYSTYPE newlval; /* Its value is ignored. */
1311 int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1312 if (hextype == INTEGER_LITERAL)
1313 return NAME_OR_INT;
1314 }
1315
1316 if (pstate->parse_completion && *pstate->lexptr == '\0')
1317 saw_name_at_eof = 1;
1318
1319 return IDENTIFIER;
1320 }
1321
1322 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
1323 struct token_and_value
1324 {
1325 int token;
1326 YYSTYPE value;
1327 };
1328
1329
1330 /* A FIFO of tokens that have been read but not yet returned to the
1331 parser. */
1332 static std::vector<token_and_value> token_fifo;
1333
1334 /* Non-zero if the lexer should return tokens from the FIFO. */
1335 static int popping;
1336
1337 /* Temporary storage for yylex; this holds symbol names as they are
1338 built up. */
1339 static auto_obstack name_obstack;
1340
1341 /* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
1342 Updates yylval and returns the new token type. BLOCK is the block
1343 in which lookups start; this can be NULL to mean the global scope. */
1344
1345 static int
1346 classify_name (struct parser_state *par_state, const struct block *block)
1347 {
1348 struct block_symbol sym;
1349 struct field_of_this_result is_a_field_of_this;
1350
1351 std::string copy = copy_name (yylval.sval);
1352
1353 sym = lookup_symbol (copy.c_str (), block, VAR_DOMAIN, &is_a_field_of_this);
1354 if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
1355 {
1356 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1357 return TYPENAME;
1358 }
1359 else if (sym.symbol == NULL)
1360 {
1361 /* Look-up first for a module name, then a type. */
1362 sym = lookup_symbol (copy.c_str (), block, MODULE_DOMAIN, NULL);
1363 if (sym.symbol == NULL)
1364 sym = lookup_symbol (copy.c_str (), block, STRUCT_DOMAIN, NULL);
1365
1366 if (sym.symbol != NULL)
1367 {
1368 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1369 return TYPENAME;
1370 }
1371
1372 return UNKNOWN_NAME;
1373 }
1374
1375 return IDENTIFIER;
1376 }
1377
1378 /* Like classify_name, but used by the inner loop of the lexer, when a
1379 name might have already been seen. CONTEXT is the context type, or
1380 NULL if this is the first component of a name. */
1381
1382 static int
1383 classify_inner_name (struct parser_state *par_state,
1384 const struct block *block, struct type *context)
1385 {
1386 struct type *type;
1387
1388 if (context == NULL)
1389 return classify_name (par_state, block);
1390
1391 type = check_typedef (context);
1392 if (!type_aggregate_p (type))
1393 return ERROR;
1394
1395 std::string copy = copy_name (yylval.ssym.stoken);
1396 yylval.ssym.sym = d_lookup_nested_symbol (type, copy.c_str (), block);
1397
1398 if (yylval.ssym.sym.symbol == NULL)
1399 return ERROR;
1400
1401 if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
1402 {
1403 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
1404 return TYPENAME;
1405 }
1406
1407 return IDENTIFIER;
1408 }
1409
1410 /* The outer level of a two-level lexer. This calls the inner lexer
1411 to return tokens. It then either returns these tokens, or
1412 aggregates them into a larger token. This lets us work around a
1413 problem in our parsing approach, where the parser could not
1414 distinguish between qualified names and qualified types at the
1415 right point. */
1416
1417 static int
1418 yylex (void)
1419 {
1420 token_and_value current;
1421 int last_was_dot;
1422 struct type *context_type = NULL;
1423 int last_to_examine, next_to_examine, checkpoint;
1424 const struct block *search_block;
1425
1426 if (popping && !token_fifo.empty ())
1427 goto do_pop;
1428 popping = 0;
1429
1430 /* Read the first token and decide what to do. */
1431 current.token = lex_one_token (pstate);
1432 if (current.token != IDENTIFIER && current.token != '.')
1433 return current.token;
1434
1435 /* Read any sequence of alternating "." and identifier tokens into
1436 the token FIFO. */
1437 current.value = yylval;
1438 token_fifo.push_back (current);
1439 last_was_dot = current.token == '.';
1440
1441 while (1)
1442 {
1443 current.token = lex_one_token (pstate);
1444 current.value = yylval;
1445 token_fifo.push_back (current);
1446
1447 if ((last_was_dot && current.token != IDENTIFIER)
1448 || (!last_was_dot && current.token != '.'))
1449 break;
1450
1451 last_was_dot = !last_was_dot;
1452 }
1453 popping = 1;
1454
1455 /* We always read one extra token, so compute the number of tokens
1456 to examine accordingly. */
1457 last_to_examine = token_fifo.size () - 2;
1458 next_to_examine = 0;
1459
1460 current = token_fifo[next_to_examine];
1461 ++next_to_examine;
1462
1463 /* If we are not dealing with a typename, now is the time to find out. */
1464 if (current.token == IDENTIFIER)
1465 {
1466 yylval = current.value;
1467 current.token = classify_name (pstate, pstate->expression_context_block);
1468 current.value = yylval;
1469 }
1470
1471 /* If the IDENTIFIER is not known, it could be a package symbol,
1472 first try building up a name until we find the qualified module. */
1473 if (current.token == UNKNOWN_NAME)
1474 {
1475 name_obstack.clear ();
1476 obstack_grow (&name_obstack, current.value.sval.ptr,
1477 current.value.sval.length);
1478
1479 last_was_dot = 0;
1480
1481 while (next_to_examine <= last_to_examine)
1482 {
1483 token_and_value next;
1484
1485 next = token_fifo[next_to_examine];
1486 ++next_to_examine;
1487
1488 if (next.token == IDENTIFIER && last_was_dot)
1489 {
1490 /* Update the partial name we are constructing. */
1491 obstack_grow_str (&name_obstack, ".");
1492 obstack_grow (&name_obstack, next.value.sval.ptr,
1493 next.value.sval.length);
1494
1495 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1496 yylval.sval.length = obstack_object_size (&name_obstack);
1497
1498 current.token = classify_name (pstate,
1499 pstate->expression_context_block);
1500 current.value = yylval;
1501
1502 /* We keep going until we find a TYPENAME. */
1503 if (current.token == TYPENAME)
1504 {
1505 /* Install it as the first token in the FIFO. */
1506 token_fifo[0] = current;
1507 token_fifo.erase (token_fifo.begin () + 1,
1508 token_fifo.begin () + next_to_examine);
1509 break;
1510 }
1511 }
1512 else if (next.token == '.' && !last_was_dot)
1513 last_was_dot = 1;
1514 else
1515 {
1516 /* We've reached the end of the name. */
1517 break;
1518 }
1519 }
1520
1521 /* Reset our current token back to the start, if we found nothing
1522 this means that we will just jump to do pop. */
1523 current = token_fifo[0];
1524 next_to_examine = 1;
1525 }
1526 if (current.token != TYPENAME && current.token != '.')
1527 goto do_pop;
1528
1529 name_obstack.clear ();
1530 checkpoint = 0;
1531 if (current.token == '.')
1532 search_block = NULL;
1533 else
1534 {
1535 gdb_assert (current.token == TYPENAME);
1536 search_block = pstate->expression_context_block;
1537 obstack_grow (&name_obstack, current.value.sval.ptr,
1538 current.value.sval.length);
1539 context_type = current.value.tsym.type;
1540 checkpoint = 1;
1541 }
1542
1543 last_was_dot = current.token == '.';
1544
1545 while (next_to_examine <= last_to_examine)
1546 {
1547 token_and_value next;
1548
1549 next = token_fifo[next_to_examine];
1550 ++next_to_examine;
1551
1552 if (next.token == IDENTIFIER && last_was_dot)
1553 {
1554 int classification;
1555
1556 yylval = next.value;
1557 classification = classify_inner_name (pstate, search_block,
1558 context_type);
1559 /* We keep going until we either run out of names, or until
1560 we have a qualified name which is not a type. */
1561 if (classification != TYPENAME && classification != IDENTIFIER)
1562 break;
1563
1564 /* Accept up to this token. */
1565 checkpoint = next_to_examine;
1566
1567 /* Update the partial name we are constructing. */
1568 if (context_type != NULL)
1569 {
1570 /* We don't want to put a leading "." into the name. */
1571 obstack_grow_str (&name_obstack, ".");
1572 }
1573 obstack_grow (&name_obstack, next.value.sval.ptr,
1574 next.value.sval.length);
1575
1576 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1577 yylval.sval.length = obstack_object_size (&name_obstack);
1578 current.value = yylval;
1579 current.token = classification;
1580
1581 last_was_dot = 0;
1582
1583 if (classification == IDENTIFIER)
1584 break;
1585
1586 context_type = yylval.tsym.type;
1587 }
1588 else if (next.token == '.' && !last_was_dot)
1589 last_was_dot = 1;
1590 else
1591 {
1592 /* We've reached the end of the name. */
1593 break;
1594 }
1595 }
1596
1597 /* If we have a replacement token, install it as the first token in
1598 the FIFO, and delete the other constituent tokens. */
1599 if (checkpoint > 0)
1600 {
1601 token_fifo[0] = current;
1602 if (checkpoint > 1)
1603 token_fifo.erase (token_fifo.begin () + 1,
1604 token_fifo.begin () + checkpoint);
1605 }
1606
1607 do_pop:
1608 current = token_fifo[0];
1609 token_fifo.erase (token_fifo.begin ());
1610 yylval = current.value;
1611 return current.token;
1612 }
1613
1614 int
1615 d_parse (struct parser_state *par_state)
1616 {
1617 /* Setting up the parser state. */
1618 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1619 gdb_assert (par_state != NULL);
1620 pstate = par_state;
1621
1622 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1623 parser_debug);
1624
1625 struct type_stack stack;
1626 scoped_restore restore_type_stack = make_scoped_restore (&type_stack,
1627 &stack);
1628
1629 /* Initialize some state used by the lexer. */
1630 last_was_structop = 0;
1631 saw_name_at_eof = 0;
1632 paren_depth = 0;
1633
1634 token_fifo.clear ();
1635 popping = 0;
1636 name_obstack.clear ();
1637
1638 return yyparse ();
1639 }
1640
1641 static void
1642 yyerror (const char *msg)
1643 {
1644 if (pstate->prev_lexptr)
1645 pstate->lexptr = pstate->prev_lexptr;
1646
1647 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
1648 }
1649
This page took 0.063316 seconds and 4 git commands to generate.