Fix ia64-linux fortran common linking problem.
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Martin Hunt, hunt@cygnus.com */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "obstack.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "floatformat.h"
42 #include "sim-d10v.h"
43
44 #undef XMALLOC
45 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
46
47 struct frame_extra_info
48 {
49 CORE_ADDR return_pc;
50 int frameless;
51 int size;
52 };
53
54 struct gdbarch_tdep
55 {
56 int a0_regnum;
57 int nr_dmap_regs;
58 unsigned long (*dmap_register) (int nr);
59 unsigned long (*imap_register) (int nr);
60 };
61
62 /* These are the addresses the D10V-EVA board maps data and
63 instruction memory to. */
64
65 #define DMEM_START 0x2000000
66 #define IMEM_START 0x1000000
67 #define STACK_START 0x0007ffe
68
69 /* d10v register names. */
70
71 enum
72 {
73 R0_REGNUM = 0,
74 LR_REGNUM = 13,
75 PSW_REGNUM = 16,
76 NR_IMAP_REGS = 2,
77 NR_A_REGS = 2
78 };
79 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
80 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
81
82 /* d10v calling convention. */
83
84 #define ARG1_REGNUM R0_REGNUM
85 #define ARGN_REGNUM 3
86 #define RET1_REGNUM R0_REGNUM
87
88 /* Local functions */
89
90 extern void _initialize_d10v_tdep (void);
91
92 static void d10v_eva_prepare_to_trace (void);
93
94 static void d10v_eva_get_trace_data (void);
95
96 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
97 CORE_ADDR addr);
98
99 static void d10v_frame_init_saved_regs (struct frame_info *);
100
101 static void do_d10v_pop_frame (struct frame_info *fi);
102
103 static int
104 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
105 {
106 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
107 }
108
109 static CORE_ADDR
110 d10v_stack_align (CORE_ADDR len)
111 {
112 return (len + 1) & ~1;
113 }
114
115 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
116 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
117 and TYPE is the type (which is known to be struct, union or array).
118
119 The d10v returns anything less than 8 bytes in size in
120 registers. */
121
122 static int
123 d10v_use_struct_convention (int gcc_p, struct type *type)
124 {
125 return (TYPE_LENGTH (type) > 8);
126 }
127
128
129 static unsigned char *
130 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
131 {
132 static unsigned char breakpoint[] =
133 {0x2f, 0x90, 0x5e, 0x00};
134 *lenptr = sizeof (breakpoint);
135 return breakpoint;
136 }
137
138 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
139 when the reg_nr isn't valid. */
140
141 enum ts2_regnums
142 {
143 TS2_IMAP0_REGNUM = 32,
144 TS2_DMAP_REGNUM = 34,
145 TS2_NR_DMAP_REGS = 1,
146 TS2_A0_REGNUM = 35
147 };
148
149 static char *
150 d10v_ts2_register_name (int reg_nr)
151 {
152 static char *register_names[] =
153 {
154 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
155 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
156 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
157 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
158 "imap0", "imap1", "dmap", "a0", "a1"
159 };
160 if (reg_nr < 0)
161 return NULL;
162 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
163 return NULL;
164 return register_names[reg_nr];
165 }
166
167 enum ts3_regnums
168 {
169 TS3_IMAP0_REGNUM = 36,
170 TS3_DMAP0_REGNUM = 38,
171 TS3_NR_DMAP_REGS = 4,
172 TS3_A0_REGNUM = 32
173 };
174
175 static char *
176 d10v_ts3_register_name (int reg_nr)
177 {
178 static char *register_names[] =
179 {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
183 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
184 "a0", "a1",
185 "spi", "spu",
186 "imap0", "imap1",
187 "dmap0", "dmap1", "dmap2", "dmap3"
188 };
189 if (reg_nr < 0)
190 return NULL;
191 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
192 return NULL;
193 return register_names[reg_nr];
194 }
195
196 /* Access the DMAP/IMAP registers in a target independent way.
197
198 Divide the D10V's 64k data space into four 16k segments:
199 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
200 0xc000 -- 0xffff.
201
202 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
203 0x7fff) always map to the on-chip data RAM, and the fourth always
204 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
205 unified memory or instruction memory, under the control of the
206 single DMAP register.
207
208 On the TS3, there are four DMAP registers, each of which controls
209 one of the segments. */
210
211 static unsigned long
212 d10v_ts2_dmap_register (int reg_nr)
213 {
214 switch (reg_nr)
215 {
216 case 0:
217 case 1:
218 return 0x2000;
219 case 2:
220 return read_register (TS2_DMAP_REGNUM);
221 default:
222 return 0;
223 }
224 }
225
226 static unsigned long
227 d10v_ts3_dmap_register (int reg_nr)
228 {
229 return read_register (TS3_DMAP0_REGNUM + reg_nr);
230 }
231
232 static unsigned long
233 d10v_dmap_register (int reg_nr)
234 {
235 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
236 }
237
238 static unsigned long
239 d10v_ts2_imap_register (int reg_nr)
240 {
241 return read_register (TS2_IMAP0_REGNUM + reg_nr);
242 }
243
244 static unsigned long
245 d10v_ts3_imap_register (int reg_nr)
246 {
247 return read_register (TS3_IMAP0_REGNUM + reg_nr);
248 }
249
250 static unsigned long
251 d10v_imap_register (int reg_nr)
252 {
253 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
254 }
255
256 /* MAP GDB's internal register numbering (determined by the layout fo
257 the REGISTER_BYTE array) onto the simulator's register
258 numbering. */
259
260 static int
261 d10v_ts2_register_sim_regno (int nr)
262 {
263 if (nr >= TS2_IMAP0_REGNUM
264 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
265 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
266 if (nr == TS2_DMAP_REGNUM)
267 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
268 if (nr >= TS2_A0_REGNUM
269 && nr < TS2_A0_REGNUM + NR_A_REGS)
270 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
271 return nr;
272 }
273
274 static int
275 d10v_ts3_register_sim_regno (int nr)
276 {
277 if (nr >= TS3_IMAP0_REGNUM
278 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
279 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
280 if (nr >= TS3_DMAP0_REGNUM
281 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
282 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
283 if (nr >= TS3_A0_REGNUM
284 && nr < TS3_A0_REGNUM + NR_A_REGS)
285 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
286 return nr;
287 }
288
289 /* Index within `registers' of the first byte of the space for
290 register REG_NR. */
291
292 static int
293 d10v_register_byte (int reg_nr)
294 {
295 if (reg_nr < A0_REGNUM)
296 return (reg_nr * 2);
297 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
298 return (A0_REGNUM * 2
299 + (reg_nr - A0_REGNUM) * 8);
300 else
301 return (A0_REGNUM * 2
302 + NR_A_REGS * 8
303 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
304 }
305
306 /* Number of bytes of storage in the actual machine representation for
307 register REG_NR. */
308
309 static int
310 d10v_register_raw_size (int reg_nr)
311 {
312 if (reg_nr < A0_REGNUM)
313 return 2;
314 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
315 return 8;
316 else
317 return 2;
318 }
319
320 /* Number of bytes of storage in the program's representation
321 for register N. */
322
323 static int
324 d10v_register_virtual_size (int reg_nr)
325 {
326 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
327 }
328
329 /* Return the GDB type object for the "standard" data type
330 of data in register N. */
331
332 static struct type *
333 d10v_register_virtual_type (int reg_nr)
334 {
335 if (reg_nr >= A0_REGNUM
336 && reg_nr < (A0_REGNUM + NR_A_REGS))
337 return builtin_type_int64;
338 else if (reg_nr == PC_REGNUM
339 || reg_nr == SP_REGNUM)
340 return builtin_type_int32;
341 else
342 return builtin_type_int16;
343 }
344
345 /* convert $pc and $sp to/from virtual addresses */
346 static int
347 d10v_register_convertible (int nr)
348 {
349 return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
350 }
351
352 static void
353 d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
354 char *to)
355 {
356 ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
357 if (regnum == PC_REGNUM)
358 x = (x << 2) | IMEM_START;
359 else
360 x |= DMEM_START;
361 store_unsigned_integer (to, TYPE_LENGTH (type), x);
362 }
363
364 static void
365 d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
366 char *to)
367 {
368 ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
369 x &= 0x3ffff;
370 if (regnum == PC_REGNUM)
371 x >>= 2;
372 store_unsigned_integer (to, 2, x);
373 }
374
375
376 static CORE_ADDR
377 d10v_make_daddr (CORE_ADDR x)
378 {
379 return ((x) | DMEM_START);
380 }
381
382 static CORE_ADDR
383 d10v_make_iaddr (CORE_ADDR x)
384 {
385 return (((x) << 2) | IMEM_START);
386 }
387
388 static int
389 d10v_daddr_p (CORE_ADDR x)
390 {
391 return (((x) & 0x3000000) == DMEM_START);
392 }
393
394 static int
395 d10v_iaddr_p (CORE_ADDR x)
396 {
397 return (((x) & 0x3000000) == IMEM_START);
398 }
399
400
401 static CORE_ADDR
402 d10v_convert_iaddr_to_raw (CORE_ADDR x)
403 {
404 return (((x) >> 2) & 0xffff);
405 }
406
407 static CORE_ADDR
408 d10v_convert_daddr_to_raw (CORE_ADDR x)
409 {
410 return ((x) & 0xffff);
411 }
412
413 /* Store the address of the place in which to copy the structure the
414 subroutine will return. This is called from call_function.
415
416 We store structs through a pointer passed in the first Argument
417 register. */
418
419 static void
420 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
421 {
422 write_register (ARG1_REGNUM, (addr));
423 }
424
425 /* Write into appropriate registers a function return value
426 of type TYPE, given in virtual format.
427
428 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
429
430 static void
431 d10v_store_return_value (struct type *type, char *valbuf)
432 {
433 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
434 valbuf,
435 TYPE_LENGTH (type));
436 }
437
438 /* Extract from an array REGBUF containing the (raw) register state
439 the address in which a function should return its structure value,
440 as a CORE_ADDR (or an expression that can be used as one). */
441
442 static CORE_ADDR
443 d10v_extract_struct_value_address (char *regbuf)
444 {
445 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
446 REGISTER_RAW_SIZE (ARG1_REGNUM))
447 | DMEM_START);
448 }
449
450 static CORE_ADDR
451 d10v_frame_saved_pc (struct frame_info *frame)
452 {
453 return ((frame)->extra_info->return_pc);
454 }
455
456 /* Immediately after a function call, return the saved pc. We can't
457 use frame->return_pc beause that is determined by reading R13 off
458 the stack and that may not be written yet. */
459
460 static CORE_ADDR
461 d10v_saved_pc_after_call (struct frame_info *frame)
462 {
463 return ((read_register (LR_REGNUM) << 2)
464 | IMEM_START);
465 }
466
467 /* Discard from the stack the innermost frame, restoring all saved
468 registers. */
469
470 static void
471 d10v_pop_frame (void)
472 {
473 generic_pop_current_frame (do_d10v_pop_frame);
474 }
475
476 static void
477 do_d10v_pop_frame (struct frame_info *fi)
478 {
479 CORE_ADDR fp;
480 int regnum;
481 char raw_buffer[8];
482
483 fp = FRAME_FP (fi);
484 /* fill out fsr with the address of where each */
485 /* register was stored in the frame */
486 d10v_frame_init_saved_regs (fi);
487
488 /* now update the current registers with the old values */
489 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
490 {
491 if (fi->saved_regs[regnum])
492 {
493 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
494 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
495 }
496 }
497 for (regnum = 0; regnum < SP_REGNUM; regnum++)
498 {
499 if (fi->saved_regs[regnum])
500 {
501 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
502 }
503 }
504 if (fi->saved_regs[PSW_REGNUM])
505 {
506 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
507 }
508
509 write_register (PC_REGNUM, read_register (LR_REGNUM));
510 write_register (SP_REGNUM, fp + fi->extra_info->size);
511 target_store_registers (-1);
512 flush_cached_frames ();
513 }
514
515 static int
516 check_prologue (unsigned short op)
517 {
518 /* st rn, @-sp */
519 if ((op & 0x7E1F) == 0x6C1F)
520 return 1;
521
522 /* st2w rn, @-sp */
523 if ((op & 0x7E3F) == 0x6E1F)
524 return 1;
525
526 /* subi sp, n */
527 if ((op & 0x7FE1) == 0x01E1)
528 return 1;
529
530 /* mv r11, sp */
531 if (op == 0x417E)
532 return 1;
533
534 /* nop */
535 if (op == 0x5E00)
536 return 1;
537
538 /* st rn, @sp */
539 if ((op & 0x7E1F) == 0x681E)
540 return 1;
541
542 /* st2w rn, @sp */
543 if ((op & 0x7E3F) == 0x3A1E)
544 return 1;
545
546 return 0;
547 }
548
549 static CORE_ADDR
550 d10v_skip_prologue (CORE_ADDR pc)
551 {
552 unsigned long op;
553 unsigned short op1, op2;
554 CORE_ADDR func_addr, func_end;
555 struct symtab_and_line sal;
556
557 /* If we have line debugging information, then the end of the */
558 /* prologue should the first assembly instruction of the first source line */
559 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
560 {
561 sal = find_pc_line (func_addr, 0);
562 if (sal.end && sal.end < func_end)
563 return sal.end;
564 }
565
566 if (target_read_memory (pc, (char *) &op, 4))
567 return pc; /* Can't access it -- assume no prologue. */
568
569 while (1)
570 {
571 op = (unsigned long) read_memory_integer (pc, 4);
572 if ((op & 0xC0000000) == 0xC0000000)
573 {
574 /* long instruction */
575 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
576 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
577 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
578 break;
579 }
580 else
581 {
582 /* short instructions */
583 if ((op & 0xC0000000) == 0x80000000)
584 {
585 op2 = (op & 0x3FFF8000) >> 15;
586 op1 = op & 0x7FFF;
587 }
588 else
589 {
590 op1 = (op & 0x3FFF8000) >> 15;
591 op2 = op & 0x7FFF;
592 }
593 if (check_prologue (op1))
594 {
595 if (!check_prologue (op2))
596 {
597 /* if the previous opcode was really part of the prologue */
598 /* and not just a NOP, then we want to break after both instructions */
599 if (op1 != 0x5E00)
600 pc += 4;
601 break;
602 }
603 }
604 else
605 break;
606 }
607 pc += 4;
608 }
609 return pc;
610 }
611
612 /* Given a GDB frame, determine the address of the calling function's frame.
613 This will be used to create a new GDB frame struct, and then
614 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
615 */
616
617 static CORE_ADDR
618 d10v_frame_chain (struct frame_info *fi)
619 {
620 d10v_frame_init_saved_regs (fi);
621
622 if (fi->extra_info->return_pc == IMEM_START
623 || inside_entry_file (fi->extra_info->return_pc))
624 return (CORE_ADDR) 0;
625
626 if (!fi->saved_regs[FP_REGNUM])
627 {
628 if (!fi->saved_regs[SP_REGNUM]
629 || fi->saved_regs[SP_REGNUM] == STACK_START)
630 return (CORE_ADDR) 0;
631
632 return fi->saved_regs[SP_REGNUM];
633 }
634
635 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
636 REGISTER_RAW_SIZE (FP_REGNUM)))
637 return (CORE_ADDR) 0;
638
639 return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
640 REGISTER_RAW_SIZE (FP_REGNUM)));
641 }
642
643 static int next_addr, uses_frame;
644
645 static int
646 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
647 {
648 int n;
649
650 /* st rn, @-sp */
651 if ((op & 0x7E1F) == 0x6C1F)
652 {
653 n = (op & 0x1E0) >> 5;
654 next_addr -= 2;
655 fi->saved_regs[n] = next_addr;
656 return 1;
657 }
658
659 /* st2w rn, @-sp */
660 else if ((op & 0x7E3F) == 0x6E1F)
661 {
662 n = (op & 0x1E0) >> 5;
663 next_addr -= 4;
664 fi->saved_regs[n] = next_addr;
665 fi->saved_regs[n + 1] = next_addr + 2;
666 return 1;
667 }
668
669 /* subi sp, n */
670 if ((op & 0x7FE1) == 0x01E1)
671 {
672 n = (op & 0x1E) >> 1;
673 if (n == 0)
674 n = 16;
675 next_addr -= n;
676 return 1;
677 }
678
679 /* mv r11, sp */
680 if (op == 0x417E)
681 {
682 uses_frame = 1;
683 return 1;
684 }
685
686 /* nop */
687 if (op == 0x5E00)
688 return 1;
689
690 /* st rn, @sp */
691 if ((op & 0x7E1F) == 0x681E)
692 {
693 n = (op & 0x1E0) >> 5;
694 fi->saved_regs[n] = next_addr;
695 return 1;
696 }
697
698 /* st2w rn, @sp */
699 if ((op & 0x7E3F) == 0x3A1E)
700 {
701 n = (op & 0x1E0) >> 5;
702 fi->saved_regs[n] = next_addr;
703 fi->saved_regs[n + 1] = next_addr + 2;
704 return 1;
705 }
706
707 return 0;
708 }
709
710 /* Put here the code to store, into fi->saved_regs, the addresses of
711 the saved registers of frame described by FRAME_INFO. This
712 includes special registers such as pc and fp saved in special ways
713 in the stack frame. sp is even more special: the address we return
714 for it IS the sp for the next frame. */
715
716 static void
717 d10v_frame_init_saved_regs (struct frame_info *fi)
718 {
719 CORE_ADDR fp, pc;
720 unsigned long op;
721 unsigned short op1, op2;
722 int i;
723
724 fp = fi->frame;
725 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
726 next_addr = 0;
727
728 pc = get_pc_function_start (fi->pc);
729
730 uses_frame = 0;
731 while (1)
732 {
733 op = (unsigned long) read_memory_integer (pc, 4);
734 if ((op & 0xC0000000) == 0xC0000000)
735 {
736 /* long instruction */
737 if ((op & 0x3FFF0000) == 0x01FF0000)
738 {
739 /* add3 sp,sp,n */
740 short n = op & 0xFFFF;
741 next_addr += n;
742 }
743 else if ((op & 0x3F0F0000) == 0x340F0000)
744 {
745 /* st rn, @(offset,sp) */
746 short offset = op & 0xFFFF;
747 short n = (op >> 20) & 0xF;
748 fi->saved_regs[n] = next_addr + offset;
749 }
750 else if ((op & 0x3F1F0000) == 0x350F0000)
751 {
752 /* st2w rn, @(offset,sp) */
753 short offset = op & 0xFFFF;
754 short n = (op >> 20) & 0xF;
755 fi->saved_regs[n] = next_addr + offset;
756 fi->saved_regs[n + 1] = next_addr + offset + 2;
757 }
758 else
759 break;
760 }
761 else
762 {
763 /* short instructions */
764 if ((op & 0xC0000000) == 0x80000000)
765 {
766 op2 = (op & 0x3FFF8000) >> 15;
767 op1 = op & 0x7FFF;
768 }
769 else
770 {
771 op1 = (op & 0x3FFF8000) >> 15;
772 op2 = op & 0x7FFF;
773 }
774 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
775 break;
776 }
777 pc += 4;
778 }
779
780 fi->extra_info->size = -next_addr;
781
782 if (!(fp & 0xffff))
783 fp = d10v_make_daddr (read_register (SP_REGNUM));
784
785 for (i = 0; i < NUM_REGS - 1; i++)
786 if (fi->saved_regs[i])
787 {
788 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
789 }
790
791 if (fi->saved_regs[LR_REGNUM])
792 {
793 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
794 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
795 }
796 else
797 {
798 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
799 }
800
801 /* th SP is not normally (ever?) saved, but check anyway */
802 if (!fi->saved_regs[SP_REGNUM])
803 {
804 /* if the FP was saved, that means the current FP is valid, */
805 /* otherwise, it isn't being used, so we use the SP instead */
806 if (uses_frame)
807 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
808 else
809 {
810 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
811 fi->extra_info->frameless = 1;
812 fi->saved_regs[FP_REGNUM] = 0;
813 }
814 }
815 }
816
817 static void
818 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
819 {
820 fi->extra_info = (struct frame_extra_info *)
821 frame_obstack_alloc (sizeof (struct frame_extra_info));
822 frame_saved_regs_zalloc (fi);
823
824 fi->extra_info->frameless = 0;
825 fi->extra_info->size = 0;
826 fi->extra_info->return_pc = 0;
827
828 /* The call dummy doesn't save any registers on the stack, so we can
829 return now. */
830 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
831 {
832 return;
833 }
834 else
835 {
836 d10v_frame_init_saved_regs (fi);
837 }
838 }
839
840 static void
841 show_regs (char *args, int from_tty)
842 {
843 int a;
844 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
845 (long) read_register (PC_REGNUM),
846 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
847 (long) read_register (PSW_REGNUM),
848 (long) read_register (24),
849 (long) read_register (25),
850 (long) read_register (23));
851 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
852 (long) read_register (0),
853 (long) read_register (1),
854 (long) read_register (2),
855 (long) read_register (3),
856 (long) read_register (4),
857 (long) read_register (5),
858 (long) read_register (6),
859 (long) read_register (7));
860 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
861 (long) read_register (8),
862 (long) read_register (9),
863 (long) read_register (10),
864 (long) read_register (11),
865 (long) read_register (12),
866 (long) read_register (13),
867 (long) read_register (14),
868 (long) read_register (15));
869 for (a = 0; a < NR_IMAP_REGS; a++)
870 {
871 if (a > 0)
872 printf_filtered (" ");
873 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
874 }
875 if (NR_DMAP_REGS == 1)
876 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
877 else
878 {
879 for (a = 0; a < NR_DMAP_REGS; a++)
880 {
881 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
882 }
883 printf_filtered ("\n");
884 }
885 printf_filtered ("A0-A%d", NR_A_REGS - 1);
886 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
887 {
888 char num[MAX_REGISTER_RAW_SIZE];
889 int i;
890 printf_filtered (" ");
891 read_register_gen (a, (char *) &num);
892 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
893 {
894 printf_filtered ("%02x", (num[i] & 0xff));
895 }
896 }
897 printf_filtered ("\n");
898 }
899
900 static CORE_ADDR
901 d10v_read_pc (ptid_t ptid)
902 {
903 ptid_t save_ptid;
904 CORE_ADDR pc;
905 CORE_ADDR retval;
906
907 save_ptid = inferior_ptid;
908 inferior_ptid = ptid;
909 pc = (int) read_register (PC_REGNUM);
910 inferior_ptid = save_ptid;
911 retval = d10v_make_iaddr (pc);
912 return retval;
913 }
914
915 static void
916 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
917 {
918 ptid_t save_ptid;
919
920 save_ptid = inferior_ptid;
921 inferior_ptid = ptid;
922 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
923 inferior_ptid = save_ptid;
924 }
925
926 static CORE_ADDR
927 d10v_read_sp (void)
928 {
929 return (d10v_make_daddr (read_register (SP_REGNUM)));
930 }
931
932 static void
933 d10v_write_sp (CORE_ADDR val)
934 {
935 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
936 }
937
938 static void
939 d10v_write_fp (CORE_ADDR val)
940 {
941 write_register (FP_REGNUM, d10v_convert_daddr_to_raw (val));
942 }
943
944 static CORE_ADDR
945 d10v_read_fp (void)
946 {
947 return (d10v_make_daddr (read_register (FP_REGNUM)));
948 }
949
950 /* Function: push_return_address (pc)
951 Set up the return address for the inferior function call.
952 Needed for targets where we don't actually execute a JSR/BSR instruction */
953
954 static CORE_ADDR
955 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
956 {
957 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
958 return sp;
959 }
960
961
962 /* When arguments must be pushed onto the stack, they go on in reverse
963 order. The below implements a FILO (stack) to do this. */
964
965 struct stack_item
966 {
967 int len;
968 struct stack_item *prev;
969 void *data;
970 };
971
972 static struct stack_item *push_stack_item (struct stack_item *prev,
973 void *contents, int len);
974 static struct stack_item *
975 push_stack_item (struct stack_item *prev, void *contents, int len)
976 {
977 struct stack_item *si;
978 si = xmalloc (sizeof (struct stack_item));
979 si->data = xmalloc (len);
980 si->len = len;
981 si->prev = prev;
982 memcpy (si->data, contents, len);
983 return si;
984 }
985
986 static struct stack_item *pop_stack_item (struct stack_item *si);
987 static struct stack_item *
988 pop_stack_item (struct stack_item *si)
989 {
990 struct stack_item *dead = si;
991 si = si->prev;
992 xfree (dead->data);
993 xfree (dead);
994 return si;
995 }
996
997
998 static CORE_ADDR
999 d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1000 int struct_return, CORE_ADDR struct_addr)
1001 {
1002 int i;
1003 int regnum = ARG1_REGNUM;
1004 struct stack_item *si = NULL;
1005
1006 /* Fill in registers and arg lists */
1007 for (i = 0; i < nargs; i++)
1008 {
1009 value_ptr arg = args[i];
1010 struct type *type = check_typedef (VALUE_TYPE (arg));
1011 char *contents = VALUE_CONTENTS (arg);
1012 int len = TYPE_LENGTH (type);
1013 /* printf ("push: type=%d len=%d\n", type->code, len); */
1014 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1015 {
1016 /* pointers require special handling - first convert and
1017 then store */
1018 long val = extract_signed_integer (contents, len);
1019 len = 2;
1020 if (TYPE_TARGET_TYPE (type)
1021 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1022 {
1023 /* function pointer */
1024 val = d10v_convert_iaddr_to_raw (val);
1025 }
1026 else if (d10v_iaddr_p (val))
1027 {
1028 /* also function pointer! */
1029 val = d10v_convert_daddr_to_raw (val);
1030 }
1031 else
1032 {
1033 /* data pointer */
1034 val &= 0xFFFF;
1035 }
1036 if (regnum <= ARGN_REGNUM)
1037 write_register (regnum++, val & 0xffff);
1038 else
1039 {
1040 char ptr[2];
1041 /* arg will go onto stack */
1042 store_address (ptr, 2, val & 0xffff);
1043 si = push_stack_item (si, ptr, 2);
1044 }
1045 }
1046 else
1047 {
1048 int aligned_regnum = (regnum + 1) & ~1;
1049 if (len <= 2 && regnum <= ARGN_REGNUM)
1050 /* fits in a single register, do not align */
1051 {
1052 long val = extract_unsigned_integer (contents, len);
1053 write_register (regnum++, val);
1054 }
1055 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1056 /* value fits in remaining registers, store keeping left
1057 aligned */
1058 {
1059 int b;
1060 regnum = aligned_regnum;
1061 for (b = 0; b < (len & ~1); b += 2)
1062 {
1063 long val = extract_unsigned_integer (&contents[b], 2);
1064 write_register (regnum++, val);
1065 }
1066 if (b < len)
1067 {
1068 long val = extract_unsigned_integer (&contents[b], 1);
1069 write_register (regnum++, (val << 8));
1070 }
1071 }
1072 else
1073 {
1074 /* arg will go onto stack */
1075 regnum = ARGN_REGNUM + 1;
1076 si = push_stack_item (si, contents, len);
1077 }
1078 }
1079 }
1080
1081 while (si)
1082 {
1083 sp = (sp - si->len) & ~1;
1084 write_memory (sp, si->data, si->len);
1085 si = pop_stack_item (si);
1086 }
1087
1088 return sp;
1089 }
1090
1091
1092 /* Given a return value in `regbuf' with a type `valtype',
1093 extract and copy its value into `valbuf'. */
1094
1095 static void
1096 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1097 char *valbuf)
1098 {
1099 int len;
1100 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1101 if (TYPE_CODE (type) == TYPE_CODE_PTR
1102 && TYPE_TARGET_TYPE (type)
1103 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1104 {
1105 /* pointer to function */
1106 int num;
1107 short snum;
1108 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1109 store_address (valbuf, 4, d10v_make_iaddr (snum));
1110 }
1111 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
1112 {
1113 /* pointer to data */
1114 int num;
1115 short snum;
1116 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1117 store_address (valbuf, 4, d10v_make_daddr (snum));
1118 }
1119 else
1120 {
1121 len = TYPE_LENGTH (type);
1122 if (len == 1)
1123 {
1124 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1125 store_unsigned_integer (valbuf, 1, c);
1126 }
1127 else if ((len & 1) == 0)
1128 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1129 else
1130 {
1131 /* For return values of odd size, the first byte is in the
1132 least significant part of the first register. The
1133 remaining bytes in remaining registers. Interestingly,
1134 when such values are passed in, the last byte is in the
1135 most significant byte of that same register - wierd. */
1136 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1137 }
1138 }
1139 }
1140
1141 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1142 understands. Returns number of bytes that can be transfered
1143 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1144 (segmentation fault). Since the simulator knows all about how the
1145 VM system works, we just call that to do the translation. */
1146
1147 static void
1148 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1149 CORE_ADDR *targ_addr, int *targ_len)
1150 {
1151 long out_addr;
1152 long out_len;
1153 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1154 &out_addr,
1155 d10v_dmap_register,
1156 d10v_imap_register);
1157 *targ_addr = out_addr;
1158 *targ_len = out_len;
1159 }
1160
1161
1162 /* The following code implements access to, and display of, the D10V's
1163 instruction trace buffer. The buffer consists of 64K or more
1164 4-byte words of data, of which each words includes an 8-bit count,
1165 an 8-bit segment number, and a 16-bit instruction address.
1166
1167 In theory, the trace buffer is continuously capturing instruction
1168 data that the CPU presents on its "debug bus", but in practice, the
1169 ROMified GDB stub only enables tracing when it continues or steps
1170 the program, and stops tracing when the program stops; so it
1171 actually works for GDB to read the buffer counter out of memory and
1172 then read each trace word. The counter records where the tracing
1173 stops, but there is no record of where it started, so we remember
1174 the PC when we resumed and then search backwards in the trace
1175 buffer for a word that includes that address. This is not perfect,
1176 because you will miss trace data if the resumption PC is the target
1177 of a branch. (The value of the buffer counter is semi-random, any
1178 trace data from a previous program stop is gone.) */
1179
1180 /* The address of the last word recorded in the trace buffer. */
1181
1182 #define DBBC_ADDR (0xd80000)
1183
1184 /* The base of the trace buffer, at least for the "Board_0". */
1185
1186 #define TRACE_BUFFER_BASE (0xf40000)
1187
1188 static void trace_command (char *, int);
1189
1190 static void untrace_command (char *, int);
1191
1192 static void trace_info (char *, int);
1193
1194 static void tdisassemble_command (char *, int);
1195
1196 static void display_trace (int, int);
1197
1198 /* True when instruction traces are being collected. */
1199
1200 static int tracing;
1201
1202 /* Remembered PC. */
1203
1204 static CORE_ADDR last_pc;
1205
1206 /* True when trace output should be displayed whenever program stops. */
1207
1208 static int trace_display;
1209
1210 /* True when trace listing should include source lines. */
1211
1212 static int default_trace_show_source = 1;
1213
1214 struct trace_buffer
1215 {
1216 int size;
1217 short *counts;
1218 CORE_ADDR *addrs;
1219 }
1220 trace_data;
1221
1222 static void
1223 trace_command (char *args, int from_tty)
1224 {
1225 /* Clear the host-side trace buffer, allocating space if needed. */
1226 trace_data.size = 0;
1227 if (trace_data.counts == NULL)
1228 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1229 if (trace_data.addrs == NULL)
1230 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1231
1232 tracing = 1;
1233
1234 printf_filtered ("Tracing is now on.\n");
1235 }
1236
1237 static void
1238 untrace_command (char *args, int from_tty)
1239 {
1240 tracing = 0;
1241
1242 printf_filtered ("Tracing is now off.\n");
1243 }
1244
1245 static void
1246 trace_info (char *args, int from_tty)
1247 {
1248 int i;
1249
1250 if (trace_data.size)
1251 {
1252 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1253
1254 for (i = 0; i < trace_data.size; ++i)
1255 {
1256 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1257 i,
1258 trace_data.counts[i],
1259 (trace_data.counts[i] == 1 ? "" : "s"),
1260 paddr_nz (trace_data.addrs[i]));
1261 }
1262 }
1263 else
1264 printf_filtered ("No entries in trace buffer.\n");
1265
1266 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1267 }
1268
1269 /* Print the instruction at address MEMADDR in debugged memory,
1270 on STREAM. Returns length of the instruction, in bytes. */
1271
1272 static int
1273 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1274 {
1275 /* If there's no disassembler, something is very wrong. */
1276 if (tm_print_insn == NULL)
1277 internal_error (__FILE__, __LINE__,
1278 "print_insn: no disassembler");
1279
1280 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1281 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1282 else
1283 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1284 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
1285 }
1286
1287 static void
1288 d10v_eva_prepare_to_trace (void)
1289 {
1290 if (!tracing)
1291 return;
1292
1293 last_pc = read_register (PC_REGNUM);
1294 }
1295
1296 /* Collect trace data from the target board and format it into a form
1297 more useful for display. */
1298
1299 static void
1300 d10v_eva_get_trace_data (void)
1301 {
1302 int count, i, j, oldsize;
1303 int trace_addr, trace_seg, trace_cnt, next_cnt;
1304 unsigned int last_trace, trace_word, next_word;
1305 unsigned int *tmpspace;
1306
1307 if (!tracing)
1308 return;
1309
1310 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1311
1312 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1313
1314 /* Collect buffer contents from the target, stopping when we reach
1315 the word recorded when execution resumed. */
1316
1317 count = 0;
1318 while (last_trace > 0)
1319 {
1320 QUIT;
1321 trace_word =
1322 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1323 trace_addr = trace_word & 0xffff;
1324 last_trace -= 4;
1325 /* Ignore an apparently nonsensical entry. */
1326 if (trace_addr == 0xffd5)
1327 continue;
1328 tmpspace[count++] = trace_word;
1329 if (trace_addr == last_pc)
1330 break;
1331 if (count > 65535)
1332 break;
1333 }
1334
1335 /* Move the data to the host-side trace buffer, adjusting counts to
1336 include the last instruction executed and transforming the address
1337 into something that GDB likes. */
1338
1339 for (i = 0; i < count; ++i)
1340 {
1341 trace_word = tmpspace[i];
1342 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1343 trace_addr = trace_word & 0xffff;
1344 next_cnt = (next_word >> 24) & 0xff;
1345 j = trace_data.size + count - i - 1;
1346 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1347 trace_data.counts[j] = next_cnt + 1;
1348 }
1349
1350 oldsize = trace_data.size;
1351 trace_data.size += count;
1352
1353 xfree (tmpspace);
1354
1355 if (trace_display)
1356 display_trace (oldsize, trace_data.size);
1357 }
1358
1359 static void
1360 tdisassemble_command (char *arg, int from_tty)
1361 {
1362 int i, count;
1363 CORE_ADDR low, high;
1364 char *space_index;
1365
1366 if (!arg)
1367 {
1368 low = 0;
1369 high = trace_data.size;
1370 }
1371 else if (!(space_index = (char *) strchr (arg, ' ')))
1372 {
1373 low = parse_and_eval_address (arg);
1374 high = low + 5;
1375 }
1376 else
1377 {
1378 /* Two arguments. */
1379 *space_index = '\0';
1380 low = parse_and_eval_address (arg);
1381 high = parse_and_eval_address (space_index + 1);
1382 if (high < low)
1383 high = low;
1384 }
1385
1386 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1387
1388 display_trace (low, high);
1389
1390 printf_filtered ("End of trace dump.\n");
1391 gdb_flush (gdb_stdout);
1392 }
1393
1394 static void
1395 display_trace (int low, int high)
1396 {
1397 int i, count, trace_show_source, first, suppress;
1398 CORE_ADDR next_address;
1399
1400 trace_show_source = default_trace_show_source;
1401 if (!have_full_symbols () && !have_partial_symbols ())
1402 {
1403 trace_show_source = 0;
1404 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1405 printf_filtered ("Trace will not display any source.\n");
1406 }
1407
1408 first = 1;
1409 suppress = 0;
1410 for (i = low; i < high; ++i)
1411 {
1412 next_address = trace_data.addrs[i];
1413 count = trace_data.counts[i];
1414 while (count-- > 0)
1415 {
1416 QUIT;
1417 if (trace_show_source)
1418 {
1419 struct symtab_and_line sal, sal_prev;
1420
1421 sal_prev = find_pc_line (next_address - 4, 0);
1422 sal = find_pc_line (next_address, 0);
1423
1424 if (sal.symtab)
1425 {
1426 if (first || sal.line != sal_prev.line)
1427 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1428 suppress = 0;
1429 }
1430 else
1431 {
1432 if (!suppress)
1433 /* FIXME-32x64--assumes sal.pc fits in long. */
1434 printf_filtered ("No source file for address %s.\n",
1435 local_hex_string ((unsigned long) sal.pc));
1436 suppress = 1;
1437 }
1438 }
1439 first = 0;
1440 print_address (next_address, gdb_stdout);
1441 printf_filtered (":");
1442 printf_filtered ("\t");
1443 wrap_here (" ");
1444 next_address = next_address + print_insn (next_address, gdb_stdout);
1445 printf_filtered ("\n");
1446 gdb_flush (gdb_stdout);
1447 }
1448 }
1449 }
1450
1451
1452 static gdbarch_init_ftype d10v_gdbarch_init;
1453
1454 static struct gdbarch *
1455 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1456 {
1457 static LONGEST d10v_call_dummy_words[] =
1458 {0};
1459 struct gdbarch *gdbarch;
1460 int d10v_num_regs;
1461 struct gdbarch_tdep *tdep;
1462 gdbarch_register_name_ftype *d10v_register_name;
1463 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1464
1465 /* Find a candidate among the list of pre-declared architectures. */
1466 arches = gdbarch_list_lookup_by_info (arches, &info);
1467 if (arches != NULL)
1468 return arches->gdbarch;
1469
1470 /* None found, create a new architecture from the information
1471 provided. */
1472 tdep = XMALLOC (struct gdbarch_tdep);
1473 gdbarch = gdbarch_alloc (&info, tdep);
1474
1475 switch (info.bfd_arch_info->mach)
1476 {
1477 case bfd_mach_d10v_ts2:
1478 d10v_num_regs = 37;
1479 d10v_register_name = d10v_ts2_register_name;
1480 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1481 tdep->a0_regnum = TS2_A0_REGNUM;
1482 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1483 tdep->dmap_register = d10v_ts2_dmap_register;
1484 tdep->imap_register = d10v_ts2_imap_register;
1485 break;
1486 default:
1487 case bfd_mach_d10v_ts3:
1488 d10v_num_regs = 42;
1489 d10v_register_name = d10v_ts3_register_name;
1490 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1491 tdep->a0_regnum = TS3_A0_REGNUM;
1492 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1493 tdep->dmap_register = d10v_ts3_dmap_register;
1494 tdep->imap_register = d10v_ts3_imap_register;
1495 break;
1496 }
1497
1498 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1499 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1500 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1501 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1502 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1503 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1504
1505 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1506 set_gdbarch_sp_regnum (gdbarch, 15);
1507 set_gdbarch_fp_regnum (gdbarch, 11);
1508 set_gdbarch_pc_regnum (gdbarch, 18);
1509 set_gdbarch_register_name (gdbarch, d10v_register_name);
1510 set_gdbarch_register_size (gdbarch, 2);
1511 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1512 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1513 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1514 set_gdbarch_max_register_raw_size (gdbarch, 8);
1515 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1516 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1517 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1518
1519 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1520 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1521 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1522 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1523 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1524 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1525 double'' is 64 bits. */
1526 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1527 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1528 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1529 switch (info.byte_order)
1530 {
1531 case BIG_ENDIAN:
1532 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1533 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1534 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1535 break;
1536 case LITTLE_ENDIAN:
1537 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1538 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1539 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1540 break;
1541 default:
1542 internal_error (__FILE__, __LINE__,
1543 "d10v_gdbarch_init: bad byte order for float format");
1544 }
1545
1546 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1547 set_gdbarch_call_dummy_length (gdbarch, 0);
1548 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1549 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1550 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1551 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1552 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1553 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1554 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1555 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1556 set_gdbarch_call_dummy_p (gdbarch, 1);
1557 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1558 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1559 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1560
1561 set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
1562 set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
1563 set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
1564
1565 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1566 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1567 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1568 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1569
1570 set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
1571 set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
1572 set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
1573 set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
1574 set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
1575 set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
1576
1577 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1578 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1579 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1580 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1581
1582 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1583 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1584
1585 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1586
1587 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1588 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1589 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1590 set_gdbarch_function_start_offset (gdbarch, 0);
1591 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1592
1593 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1594
1595 set_gdbarch_frame_args_skip (gdbarch, 0);
1596 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1597 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1598 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1599 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1600 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1601 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1602 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1603 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1604 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1605
1606 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1607 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1608
1609 return gdbarch;
1610 }
1611
1612
1613 extern void (*target_resume_hook) (void);
1614 extern void (*target_wait_loop_hook) (void);
1615
1616 void
1617 _initialize_d10v_tdep (void)
1618 {
1619 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1620
1621 tm_print_insn = print_insn_d10v;
1622
1623 target_resume_hook = d10v_eva_prepare_to_trace;
1624 target_wait_loop_hook = d10v_eva_get_trace_data;
1625
1626 add_com ("regs", class_vars, show_regs, "Print all registers");
1627
1628 add_com ("itrace", class_support, trace_command,
1629 "Enable tracing of instruction execution.");
1630
1631 add_com ("iuntrace", class_support, untrace_command,
1632 "Disable tracing of instruction execution.");
1633
1634 add_com ("itdisassemble", class_vars, tdisassemble_command,
1635 "Disassemble the trace buffer.\n\
1636 Two optional arguments specify a range of trace buffer entries\n\
1637 as reported by info trace (NOT addresses!).");
1638
1639 add_info ("itrace", trace_info,
1640 "Display info about the trace data buffer.");
1641
1642 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1643 var_integer, (char *) &trace_display,
1644 "Set automatic display of trace.\n", &setlist),
1645 &showlist);
1646 add_show_from_set (add_set_cmd ("itracesource", no_class,
1647 var_integer, (char *) &default_trace_show_source,
1648 "Set display of source code with trace.\n", &setlist),
1649 &showlist);
1650
1651 }
This page took 0.065291 seconds and 4 git commands to generate.