* gdb.base/a1-selftest.exp: Change x86 linux setup_xfails to
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for MItsubishi D10V, for GDB.
2 Copyright (C) 1996 Free Software Foundation, Inc.
3 This file is part of GDB.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12 You should have received a copy of the GNU General Public License
13 along with this program; if not, write to the Free Software
14 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
15
16 /* Contributed by Martin Hunt, hunt@cygnus.com */
17
18 #include "defs.h"
19 #include "frame.h"
20 #include "obstack.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcmd.h"
24 #include "gdbcore.h"
25 #include "gdb_string.h"
26 #include "value.h"
27 #include "inferior.h"
28 #include "dis-asm.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31
32 void d10v_frame_find_saved_regs PARAMS ((struct frame_info *fi, struct frame_saved_regs *fsr));
33 static void d10v_pop_dummy_frame PARAMS ((struct frame_info *fi));
34
35 /* Discard from the stack the innermost frame,
36 restoring all saved registers. */
37
38 void
39 d10v_pop_frame ()
40 {
41 struct frame_info *frame = get_current_frame ();
42 CORE_ADDR fp;
43 int regnum;
44 struct frame_saved_regs fsr;
45 char raw_buffer[8];
46
47 fp = FRAME_FP (frame);
48 if (frame->dummy)
49 {
50 d10v_pop_dummy_frame(frame);
51 return;
52 }
53
54 /* fill out fsr with the address of where each */
55 /* register was stored in the frame */
56 get_frame_saved_regs (frame, &fsr);
57
58 /* now update the current registers with the old values */
59 for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
60 {
61 if (fsr.regs[regnum])
62 {
63 read_memory (fsr.regs[regnum], raw_buffer, 8);
64 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
65 }
66 }
67 for (regnum = 0; regnum < SP_REGNUM; regnum++)
68 {
69 if (fsr.regs[regnum])
70 {
71 write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 2));
72 }
73 }
74 if (fsr.regs[PSW_REGNUM])
75 {
76 write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 2));
77 }
78
79 write_register (PC_REGNUM, read_register(13));
80 write_register (SP_REGNUM, fp + frame->size);
81 target_store_registers (-1);
82 flush_cached_frames ();
83 }
84
85 static int
86 check_prologue (op)
87 unsigned short op;
88 {
89 /* st rn, @-sp */
90 if ((op & 0x7E1F) == 0x6C1F)
91 return 1;
92
93 /* st2w rn, @-sp */
94 if ((op & 0x7E3F) == 0x6E1F)
95 return 1;
96
97 /* subi sp, n */
98 if ((op & 0x7FE1) == 0x01E1)
99 return 1;
100
101 /* mv r11, sp */
102 if (op == 0x417E)
103 return 1;
104
105 /* nop */
106 if (op == 0x5E00)
107 return 1;
108
109 /* st rn, @sp */
110 if ((op & 0x7E1F) == 0x681E)
111 return 1;
112
113 /* st2w rn, @sp */
114 if ((op & 0x7E3F) == 0x3A1E)
115 return 1;
116
117 return 0;
118 }
119
120 CORE_ADDR
121 d10v_skip_prologue (pc)
122 CORE_ADDR pc;
123 {
124 unsigned long op;
125 unsigned short op1, op2;
126 CORE_ADDR func_addr, func_end;
127 struct symtab_and_line sal;
128
129 /* If we have line debugging information, then the end of the */
130 /* prologue should the first assembly instruction of the first source line */
131 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
132 {
133 sal = find_pc_line (func_addr, 0);
134 if (sal.end < func_end)
135 return sal.end;
136 }
137
138 if (target_read_memory (pc, (char *)&op, 4))
139 return pc; /* Can't access it -- assume no prologue. */
140
141 while (1)
142 {
143 op = (unsigned long)read_memory_integer (pc, 4);
144 if ((op & 0xC0000000) == 0xC0000000)
145 {
146 /* long instruction */
147 if ( ((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
148 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
149 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
150 break;
151 }
152 else
153 {
154 /* short instructions */
155 if ((op & 0xC0000000) == 0x80000000)
156 {
157 op2 = (op & 0x3FFF8000) >> 15;
158 op1 = op & 0x7FFF;
159 }
160 else
161 {
162 op1 = (op & 0x3FFF8000) >> 15;
163 op2 = op & 0x7FFF;
164 }
165 if (check_prologue(op1))
166 {
167 if (!check_prologue(op2))
168 {
169 /* if the previous opcode was really part of the prologue */
170 /* and not just a NOP, then we want to break after both instructions */
171 if (op1 != 0x5E00)
172 pc += 4;
173 break;
174 }
175 }
176 else
177 break;
178 }
179 pc += 4;
180 }
181 return pc;
182 }
183
184 /* Given a GDB frame, determine the address of the calling function's frame.
185 This will be used to create a new GDB frame struct, and then
186 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
187 */
188
189 CORE_ADDR
190 d10v_frame_chain (frame)
191 struct frame_info *frame;
192 {
193 struct frame_saved_regs fsr;
194
195 d10v_frame_find_saved_regs (frame, &fsr);
196
197 if (frame->return_pc == IMEM_START)
198 return (CORE_ADDR)0;
199
200 if (!fsr.regs[FP_REGNUM])
201 {
202 if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
203 return (CORE_ADDR)0;
204
205 return fsr.regs[SP_REGNUM];
206 }
207
208 if (!read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2))
209 return (CORE_ADDR)0;
210
211 return read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2)| DMEM_START;
212 }
213
214 static int next_addr, uses_frame;
215
216 static int
217 prologue_find_regs (op, fsr, addr)
218 unsigned short op;
219 struct frame_saved_regs *fsr;
220 CORE_ADDR addr;
221 {
222 int n;
223
224 /* st rn, @-sp */
225 if ((op & 0x7E1F) == 0x6C1F)
226 {
227 n = (op & 0x1E0) >> 5;
228 next_addr -= 2;
229 fsr->regs[n] = next_addr;
230 return 1;
231 }
232
233 /* st2w rn, @-sp */
234 else if ((op & 0x7E3F) == 0x6E1F)
235 {
236 n = (op & 0x1E0) >> 5;
237 next_addr -= 4;
238 fsr->regs[n] = next_addr;
239 fsr->regs[n+1] = next_addr+2;
240 return 1;
241 }
242
243 /* subi sp, n */
244 if ((op & 0x7FE1) == 0x01E1)
245 {
246 n = (op & 0x1E) >> 1;
247 if (n == 0)
248 n = 16;
249 next_addr -= n;
250 return 1;
251 }
252
253 /* mv r11, sp */
254 if (op == 0x417E)
255 {
256 uses_frame = 1;
257 return 1;
258 }
259
260 /* nop */
261 if (op == 0x5E00)
262 return 1;
263
264 /* st rn, @sp */
265 if ((op & 0x7E1F) == 0x681E)
266 {
267 n = (op & 0x1E0) >> 5;
268 fsr->regs[n] = next_addr;
269 return 1;
270 }
271
272 /* st2w rn, @sp */
273 if ((op & 0x7E3F) == 0x3A1E)
274 {
275 n = (op & 0x1E0) >> 5;
276 fsr->regs[n] = next_addr;
277 fsr->regs[n+1] = next_addr+2;
278 return 1;
279 }
280
281 return 0;
282 }
283
284 /* Put here the code to store, into a struct frame_saved_regs, the
285 addresses of the saved registers of frame described by FRAME_INFO.
286 This includes special registers such as pc and fp saved in special
287 ways in the stack frame. sp is even more special: the address we
288 return for it IS the sp for the next frame. */
289 void
290 d10v_frame_find_saved_regs (fi, fsr)
291 struct frame_info *fi;
292 struct frame_saved_regs *fsr;
293 {
294 CORE_ADDR fp, pc;
295 unsigned long op;
296 unsigned short op1, op2;
297 int i;
298
299 fp = fi->frame;
300 memset (fsr, 0, sizeof (*fsr));
301 next_addr = 0;
302
303 pc = get_pc_function_start (fi->pc);
304
305 uses_frame = 0;
306 while (1)
307 {
308 op = (unsigned long)read_memory_integer (pc, 4);
309 if ((op & 0xC0000000) == 0xC0000000)
310 {
311 /* long instruction */
312 if ((op & 0x3FFF0000) == 0x01FF0000)
313 {
314 /* add3 sp,sp,n */
315 short n = op & 0xFFFF;
316 next_addr += n;
317 }
318 else if ((op & 0x3F0F0000) == 0x340F0000)
319 {
320 /* st rn, @(offset,sp) */
321 short offset = op & 0xFFFF;
322 short n = (op >> 20) & 0xF;
323 fsr->regs[n] = next_addr + offset;
324 }
325 else if ((op & 0x3F1F0000) == 0x350F0000)
326 {
327 /* st2w rn, @(offset,sp) */
328 short offset = op & 0xFFFF;
329 short n = (op >> 20) & 0xF;
330 fsr->regs[n] = next_addr + offset;
331 fsr->regs[n+1] = next_addr + offset + 2;
332 }
333 else
334 break;
335 }
336 else
337 {
338 /* short instructions */
339 if ((op & 0xC0000000) == 0x80000000)
340 {
341 op2 = (op & 0x3FFF8000) >> 15;
342 op1 = op & 0x7FFF;
343 }
344 else
345 {
346 op1 = (op & 0x3FFF8000) >> 15;
347 op2 = op & 0x7FFF;
348 }
349 if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
350 break;
351 }
352 pc += 4;
353 }
354
355 fi->size = -next_addr;
356
357 if (!(fp & 0xffff))
358 fp = read_register(SP_REGNUM) | DMEM_START;
359
360 for (i=0; i<NUM_REGS-1; i++)
361 if (fsr->regs[i])
362 {
363 fsr->regs[i] = fp - (next_addr - fsr->regs[i]);
364 }
365
366 if (fsr->regs[LR_REGNUM])
367 fi->return_pc = ((read_memory_unsigned_integer(fsr->regs[LR_REGNUM],2) - 1) << 2) | IMEM_START;
368 else
369 fi->return_pc = ((read_register(LR_REGNUM) - 1) << 2) | IMEM_START;
370
371 /* th SP is not normally (ever?) saved, but check anyway */
372 if (!fsr->regs[SP_REGNUM])
373 {
374 /* if the FP was saved, that means the current FP is valid, */
375 /* otherwise, it isn't being used, so we use the SP instead */
376 if (uses_frame)
377 fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
378 else
379 {
380 fsr->regs[SP_REGNUM] = fp + fi->size;
381 fi->frameless = 1;
382 fsr->regs[FP_REGNUM] = 0;
383 }
384 }
385 }
386
387 void
388 d10v_init_extra_frame_info (fromleaf, fi)
389 int fromleaf;
390 struct frame_info *fi;
391 {
392 struct frame_saved_regs dummy;
393
394 if (fi->next && ((fi->pc & 0xffff) == 0))
395 fi->pc = fi->next->return_pc;
396
397 d10v_frame_find_saved_regs (fi, &dummy);
398 }
399
400 static void
401 show_regs (args, from_tty)
402 char *args;
403 int from_tty;
404 {
405 long long num1, num2;
406 printf_filtered ("PC=%04x (0x%x) PSW=%04x RPT_S=%04x RPT_E=%04x RPT_C=%04x\n",
407 read_register (PC_REGNUM), (read_register (PC_REGNUM) << 2) + IMEM_START,
408 read_register (PSW_REGNUM),
409 read_register (24),
410 read_register (25),
411 read_register (23));
412 printf_filtered ("R0-R7 %04x %04x %04x %04x %04x %04x %04x %04x\n",
413 read_register (0),
414 read_register (1),
415 read_register (2),
416 read_register (3),
417 read_register (4),
418 read_register (5),
419 read_register (6),
420 read_register (7));
421 printf_filtered ("R8-R15 %04x %04x %04x %04x %04x %04x %04x %04x\n",
422 read_register (8),
423 read_register (9),
424 read_register (10),
425 read_register (11),
426 read_register (12),
427 read_register (13),
428 read_register (14),
429 read_register (15));
430 printf_filtered ("IMAP0 %04x IMAP1 %04x DMAP %04x\n",
431 read_register (IMAP0_REGNUM),
432 read_register (IMAP1_REGNUM),
433 read_register (DMAP_REGNUM));
434 read_register_gen (A0_REGNUM, (char *)&num1);
435 read_register_gen (A0_REGNUM+1, (char *)&num2);
436 printf_filtered ("A0-A1 %010llx %010llx\n",num1, num2);
437 }
438
439 void
440 _initialize_d10v_tdep ()
441 {
442 tm_print_insn = print_insn_d10v;
443 add_com ("regs", class_vars, show_regs, "Print all registers");
444 }
445
446 static CORE_ADDR
447 d10v_xlate_addr (addr)
448 int addr;
449 {
450 int imap;
451
452 if (addr < 0x20000)
453 imap = (int)read_register(IMAP0_REGNUM);
454 else
455 imap = (int)read_register(IMAP1_REGNUM);
456
457 if (imap & 0x1000)
458 return (CORE_ADDR)(addr + 0x1000000);
459 return (CORE_ADDR)(addr + (imap & 0xff)*0x20000);
460 }
461
462
463 CORE_ADDR
464 d10v_read_pc (pid)
465 int pid;
466 {
467 int save_pid, retval;
468
469 save_pid = inferior_pid;
470 inferior_pid = pid;
471 retval = (int)read_register (PC_REGNUM);
472 inferior_pid = save_pid;
473 return d10v_xlate_addr(retval << 2);
474 }
475
476 void
477 d10v_write_pc (val, pid)
478 CORE_ADDR val;
479 int pid;
480 {
481 int save_pid;
482
483 save_pid = inferior_pid;
484 inferior_pid = pid;
485 write_register (PC_REGNUM, (val & 0x3ffff) >> 2);
486 inferior_pid = save_pid;
487 }
488
489 CORE_ADDR
490 d10v_read_sp ()
491 {
492 return (read_register(SP_REGNUM) | DMEM_START);
493 }
494
495 void
496 d10v_write_sp (val)
497 CORE_ADDR val;
498 {
499 write_register (SP_REGNUM, (LONGEST)(val & 0xffff));
500 }
501
502 CORE_ADDR
503 d10v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
504 char *dummyname;
505 CORE_ADDR start_sp;
506 CORE_ADDR fun;
507 int nargs;
508 value_ptr *args;
509 struct type *type;
510 int gcc_p;
511 {
512 int regnum;
513 CORE_ADDR sp;
514 char buffer[MAX_REGISTER_RAW_SIZE];
515 struct frame_info *frame = get_current_frame ();
516 frame->dummy = start_sp;
517 start_sp |= DMEM_START;
518
519 sp = start_sp;
520 for (regnum = 0; regnum < NUM_REGS; regnum++)
521 {
522 sp -= REGISTER_RAW_SIZE(regnum);
523 store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
524 write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
525 }
526 write_register (SP_REGNUM, (LONGEST)(sp & 0xffff));
527 /* now we need to load LR with the return address */
528 write_register (LR_REGNUM, (LONGEST)(d10v_call_dummy_address() & 0xffff) >> 2);
529 return sp;
530 }
531
532 static void
533 d10v_pop_dummy_frame (fi)
534 struct frame_info *fi;
535 {
536 CORE_ADDR sp = fi->dummy;
537 int regnum;
538
539 for (regnum = 0; regnum < NUM_REGS; regnum++)
540 {
541 sp -= REGISTER_RAW_SIZE(regnum);
542 write_register(regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE(regnum)));
543 }
544 flush_cached_frames (); /* needed? */
545 }
546
547
548 CORE_ADDR
549 d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
550 int nargs;
551 value_ptr *args;
552 CORE_ADDR sp;
553 int struct_return;
554 CORE_ADDR struct_addr;
555 {
556 int i, len, index=0, regnum=2;
557 char buffer[4], *contents;
558 LONGEST val;
559 CORE_ADDR ptrs[10];
560
561 /* Pass 1. Put all large args on stack */
562 for (i = 0; i < nargs; i++)
563 {
564 value_ptr arg = args[i];
565 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
566 len = TYPE_LENGTH (arg_type);
567 contents = VALUE_CONTENTS(arg);
568 val = extract_signed_integer (contents, len);
569 if (len > 4)
570 {
571 /* put on stack and pass pointers */
572 sp -= len;
573 write_memory (sp, contents, len);
574 ptrs[index++] = sp;
575 }
576 }
577
578 index = 0;
579
580 for (i = 0; i < nargs; i++)
581 {
582 value_ptr arg = args[i];
583 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
584 len = TYPE_LENGTH (arg_type);
585 contents = VALUE_CONTENTS(arg);
586 val = extract_signed_integer (contents, len);
587 if (len > 4)
588 {
589 /* use a pointer to previously saved data */
590 if (regnum < 6)
591 write_register (regnum++, ptrs[index++]);
592 else
593 {
594 /* no more registers available. put it on the stack */
595 sp -= 2;
596 store_address (buffer, 2, ptrs[index++]);
597 write_memory (sp, buffer, 2);
598 }
599 }
600 else
601 {
602 if (regnum < 6 )
603 {
604 if (len == 4)
605 write_register (regnum++, val>>16);
606 write_register (regnum++, val & 0xffff);
607 }
608 else
609 {
610 sp -= len;
611 store_address (buffer, len, val);
612 write_memory (sp, buffer, len);
613 }
614 }
615 }
616 return sp;
617 }
618
619
620 /* pick an out-of-the-way place to set the return value */
621 /* for an inferior function call. The link register is set to this */
622 /* value and a momentary breakpoint is set there. When the breakpoint */
623 /* is hit, the dummy frame is popped and the previous environment is */
624 /* restored. */
625
626 CORE_ADDR
627 d10v_call_dummy_address ()
628 {
629 CORE_ADDR entry;
630 struct minimal_symbol *sym;
631
632 entry = entry_point_address ();
633
634 if (entry != 0)
635 return entry;
636
637 sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
638
639 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
640 return 0;
641 else
642 return SYMBOL_VALUE_ADDRESS (sym);
643 }
644
645 /* Given a return value in `regbuf' with a type `valtype',
646 extract and copy its value into `valbuf'. */
647
648 void
649 d10v_extract_return_value (valtype, regbuf, valbuf)
650 struct type *valtype;
651 char regbuf[REGISTER_BYTES];
652 char *valbuf;
653 {
654 memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
655 }
This page took 0.043807 seconds and 4 git commands to generate.