* i386-dis.c (dis386): Recognize icebp (0xf1).
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Contributed by Martin Hunt, hunt@cygnus.com */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "floatformat.h"
43 #include "gdb/sim-d10v.h"
44 #include "sim-regno.h"
45
46 #include "gdb_assert.h"
47
48 struct gdbarch_tdep
49 {
50 int a0_regnum;
51 int nr_dmap_regs;
52 unsigned long (*dmap_register) (int nr);
53 unsigned long (*imap_register) (int nr);
54 };
55
56 /* These are the addresses the D10V-EVA board maps data and
57 instruction memory to. */
58
59 enum memspace {
60 DMEM_START = 0x2000000,
61 IMEM_START = 0x1000000,
62 STACK_START = 0x200bffe
63 };
64
65 /* d10v register names. */
66
67 enum
68 {
69 R0_REGNUM = 0,
70 R3_REGNUM = 3,
71 _FP_REGNUM = 11,
72 LR_REGNUM = 13,
73 _SP_REGNUM = 15,
74 PSW_REGNUM = 16,
75 _PC_REGNUM = 18,
76 NR_IMAP_REGS = 2,
77 NR_A_REGS = 2,
78 TS2_NUM_REGS = 37,
79 TS3_NUM_REGS = 42,
80 /* d10v calling convention. */
81 ARG1_REGNUM = R0_REGNUM,
82 ARGN_REGNUM = R3_REGNUM,
83 RET1_REGNUM = R0_REGNUM,
84 };
85
86 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
87 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
88
89 /* Local functions */
90
91 extern void _initialize_d10v_tdep (void);
92
93 static CORE_ADDR d10v_read_sp (void);
94
95 static CORE_ADDR d10v_read_fp (void);
96
97 static void d10v_eva_prepare_to_trace (void);
98
99 static void d10v_eva_get_trace_data (void);
100
101 static CORE_ADDR
102 d10v_stack_align (CORE_ADDR len)
103 {
104 return (len + 1) & ~1;
105 }
106
107 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
108 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
109 and TYPE is the type (which is known to be struct, union or array).
110
111 The d10v returns anything less than 8 bytes in size in
112 registers. */
113
114 static int
115 d10v_use_struct_convention (int gcc_p, struct type *type)
116 {
117 long alignment;
118 int i;
119 /* The d10v only passes a struct in a register when that structure
120 has an alignment that matches the size of a register. */
121 /* If the structure doesn't fit in 4 registers, put it on the
122 stack. */
123 if (TYPE_LENGTH (type) > 8)
124 return 1;
125 /* If the struct contains only one field, don't put it on the stack
126 - gcc can fit it in one or more registers. */
127 if (TYPE_NFIELDS (type) == 1)
128 return 0;
129 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
130 for (i = 1; i < TYPE_NFIELDS (type); i++)
131 {
132 /* If the alignment changes, just assume it goes on the
133 stack. */
134 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
135 return 1;
136 }
137 /* If the alignment is suitable for the d10v's 16 bit registers,
138 don't put it on the stack. */
139 if (alignment == 2 || alignment == 4)
140 return 0;
141 return 1;
142 }
143
144
145 static const unsigned char *
146 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
147 {
148 static unsigned char breakpoint[] =
149 {0x2f, 0x90, 0x5e, 0x00};
150 *lenptr = sizeof (breakpoint);
151 return breakpoint;
152 }
153
154 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
155 when the reg_nr isn't valid. */
156
157 enum ts2_regnums
158 {
159 TS2_IMAP0_REGNUM = 32,
160 TS2_DMAP_REGNUM = 34,
161 TS2_NR_DMAP_REGS = 1,
162 TS2_A0_REGNUM = 35
163 };
164
165 static const char *
166 d10v_ts2_register_name (int reg_nr)
167 {
168 static char *register_names[] =
169 {
170 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
171 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
172 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
173 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
174 "imap0", "imap1", "dmap", "a0", "a1"
175 };
176 if (reg_nr < 0)
177 return NULL;
178 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
179 return NULL;
180 return register_names[reg_nr];
181 }
182
183 enum ts3_regnums
184 {
185 TS3_IMAP0_REGNUM = 36,
186 TS3_DMAP0_REGNUM = 38,
187 TS3_NR_DMAP_REGS = 4,
188 TS3_A0_REGNUM = 32
189 };
190
191 static const char *
192 d10v_ts3_register_name (int reg_nr)
193 {
194 static char *register_names[] =
195 {
196 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
197 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
198 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
199 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
200 "a0", "a1",
201 "spi", "spu",
202 "imap0", "imap1",
203 "dmap0", "dmap1", "dmap2", "dmap3"
204 };
205 if (reg_nr < 0)
206 return NULL;
207 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
208 return NULL;
209 return register_names[reg_nr];
210 }
211
212 /* Access the DMAP/IMAP registers in a target independent way.
213
214 Divide the D10V's 64k data space into four 16k segments:
215 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
216 0xc000 -- 0xffff.
217
218 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
219 0x7fff) always map to the on-chip data RAM, and the fourth always
220 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
221 unified memory or instruction memory, under the control of the
222 single DMAP register.
223
224 On the TS3, there are four DMAP registers, each of which controls
225 one of the segments. */
226
227 static unsigned long
228 d10v_ts2_dmap_register (int reg_nr)
229 {
230 switch (reg_nr)
231 {
232 case 0:
233 case 1:
234 return 0x2000;
235 case 2:
236 return read_register (TS2_DMAP_REGNUM);
237 default:
238 return 0;
239 }
240 }
241
242 static unsigned long
243 d10v_ts3_dmap_register (int reg_nr)
244 {
245 return read_register (TS3_DMAP0_REGNUM + reg_nr);
246 }
247
248 static unsigned long
249 d10v_dmap_register (int reg_nr)
250 {
251 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
252 }
253
254 static unsigned long
255 d10v_ts2_imap_register (int reg_nr)
256 {
257 return read_register (TS2_IMAP0_REGNUM + reg_nr);
258 }
259
260 static unsigned long
261 d10v_ts3_imap_register (int reg_nr)
262 {
263 return read_register (TS3_IMAP0_REGNUM + reg_nr);
264 }
265
266 static unsigned long
267 d10v_imap_register (int reg_nr)
268 {
269 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
270 }
271
272 /* MAP GDB's internal register numbering (determined by the layout fo
273 the REGISTER_BYTE array) onto the simulator's register
274 numbering. */
275
276 static int
277 d10v_ts2_register_sim_regno (int nr)
278 {
279 if (legacy_register_sim_regno (nr) < 0)
280 return legacy_register_sim_regno (nr);
281 if (nr >= TS2_IMAP0_REGNUM
282 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
283 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
284 if (nr == TS2_DMAP_REGNUM)
285 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
286 if (nr >= TS2_A0_REGNUM
287 && nr < TS2_A0_REGNUM + NR_A_REGS)
288 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
289 return nr;
290 }
291
292 static int
293 d10v_ts3_register_sim_regno (int nr)
294 {
295 if (legacy_register_sim_regno (nr) < 0)
296 return legacy_register_sim_regno (nr);
297 if (nr >= TS3_IMAP0_REGNUM
298 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
299 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
300 if (nr >= TS3_DMAP0_REGNUM
301 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
302 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
303 if (nr >= TS3_A0_REGNUM
304 && nr < TS3_A0_REGNUM + NR_A_REGS)
305 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
306 return nr;
307 }
308
309 /* Index within `registers' of the first byte of the space for
310 register REG_NR. */
311
312 static int
313 d10v_register_byte (int reg_nr)
314 {
315 if (reg_nr < A0_REGNUM)
316 return (reg_nr * 2);
317 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
318 return (A0_REGNUM * 2
319 + (reg_nr - A0_REGNUM) * 8);
320 else
321 return (A0_REGNUM * 2
322 + NR_A_REGS * 8
323 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
324 }
325
326 /* Number of bytes of storage in the actual machine representation for
327 register REG_NR. */
328
329 static int
330 d10v_register_raw_size (int reg_nr)
331 {
332 if (reg_nr < A0_REGNUM)
333 return 2;
334 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
335 return 8;
336 else
337 return 2;
338 }
339
340 /* Return the GDB type object for the "standard" data type
341 of data in register N. */
342
343 static struct type *
344 d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
345 {
346 if (reg_nr == PC_REGNUM)
347 return builtin_type_void_func_ptr;
348 if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
349 return builtin_type_void_data_ptr;
350 else if (reg_nr >= A0_REGNUM
351 && reg_nr < (A0_REGNUM + NR_A_REGS))
352 return builtin_type_int64;
353 else
354 return builtin_type_int16;
355 }
356
357 static int
358 d10v_daddr_p (CORE_ADDR x)
359 {
360 return (((x) & 0x3000000) == DMEM_START);
361 }
362
363 static int
364 d10v_iaddr_p (CORE_ADDR x)
365 {
366 return (((x) & 0x3000000) == IMEM_START);
367 }
368
369 static CORE_ADDR
370 d10v_make_daddr (CORE_ADDR x)
371 {
372 return ((x) | DMEM_START);
373 }
374
375 static CORE_ADDR
376 d10v_make_iaddr (CORE_ADDR x)
377 {
378 if (d10v_iaddr_p (x))
379 return x; /* Idempotency -- x is already in the IMEM space. */
380 else
381 return (((x) << 2) | IMEM_START);
382 }
383
384 static CORE_ADDR
385 d10v_convert_iaddr_to_raw (CORE_ADDR x)
386 {
387 return (((x) >> 2) & 0xffff);
388 }
389
390 static CORE_ADDR
391 d10v_convert_daddr_to_raw (CORE_ADDR x)
392 {
393 return ((x) & 0xffff);
394 }
395
396 static void
397 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
398 {
399 /* Is it a code address? */
400 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
401 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
402 {
403 store_unsigned_integer (buf, TYPE_LENGTH (type),
404 d10v_convert_iaddr_to_raw (addr));
405 }
406 else
407 {
408 /* Strip off any upper segment bits. */
409 store_unsigned_integer (buf, TYPE_LENGTH (type),
410 d10v_convert_daddr_to_raw (addr));
411 }
412 }
413
414 static CORE_ADDR
415 d10v_pointer_to_address (struct type *type, const void *buf)
416 {
417 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
418
419 /* Is it a code address? */
420 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
421 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
422 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
423 return d10v_make_iaddr (addr);
424 else
425 return d10v_make_daddr (addr);
426 }
427
428 /* Don't do anything if we have an integer, this way users can type 'x
429 <addr>' w/o having gdb outsmart them. The internal gdb conversions
430 to the correct space are taken care of in the pointer_to_address
431 function. If we don't do this, 'x $fp' wouldn't work. */
432 static CORE_ADDR
433 d10v_integer_to_address (struct type *type, void *buf)
434 {
435 LONGEST val;
436 val = unpack_long (type, buf);
437 return val;
438 }
439
440 /* Store the address of the place in which to copy the structure the
441 subroutine will return. This is called from call_function.
442
443 We store structs through a pointer passed in the first Argument
444 register. */
445
446 static void
447 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
448 {
449 write_register (ARG1_REGNUM, (addr));
450 }
451
452 /* Write into appropriate registers a function return value
453 of type TYPE, given in virtual format.
454
455 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
456
457 static void
458 d10v_store_return_value (struct type *type, struct regcache *regcache,
459 const void *valbuf)
460 {
461 /* Only char return values need to be shifted right within the first
462 regnum. */
463 if (TYPE_LENGTH (type) == 1
464 && TYPE_CODE (type) == TYPE_CODE_INT)
465 {
466 bfd_byte tmp[2];
467 tmp[1] = *(bfd_byte *)valbuf;
468 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
469 }
470 else
471 {
472 int reg;
473 /* A structure is never more than 8 bytes long. See
474 use_struct_convention(). */
475 gdb_assert (TYPE_LENGTH (type) <= 8);
476 /* Write out most registers, stop loop before trying to write
477 out any dangling byte at the end of the buffer. */
478 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
479 {
480 regcache_cooked_write (regcache, RET1_REGNUM + reg,
481 (bfd_byte *) valbuf + reg * 2);
482 }
483 /* Write out any dangling byte at the end of the buffer. */
484 if ((reg * 2) + 1 == TYPE_LENGTH (type))
485 regcache_cooked_write_part (regcache, reg, 0, 1,
486 (bfd_byte *) valbuf + reg * 2);
487 }
488 }
489
490 /* Extract from an array REGBUF containing the (raw) register state
491 the address in which a function should return its structure value,
492 as a CORE_ADDR (or an expression that can be used as one). */
493
494 static CORE_ADDR
495 d10v_extract_struct_value_address (struct regcache *regcache)
496 {
497 ULONGEST addr;
498 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
499 return (addr | DMEM_START);
500 }
501
502 /* Immediately after a function call, return the saved pc. We can't
503 use frame->return_pc beause that is determined by reading R13 off
504 the stack and that may not be written yet. */
505
506 static CORE_ADDR
507 d10v_saved_pc_after_call (struct frame_info *frame)
508 {
509 return ((read_register (LR_REGNUM) << 2)
510 | IMEM_START);
511 }
512
513 static int
514 check_prologue (unsigned short op)
515 {
516 /* st rn, @-sp */
517 if ((op & 0x7E1F) == 0x6C1F)
518 return 1;
519
520 /* st2w rn, @-sp */
521 if ((op & 0x7E3F) == 0x6E1F)
522 return 1;
523
524 /* subi sp, n */
525 if ((op & 0x7FE1) == 0x01E1)
526 return 1;
527
528 /* mv r11, sp */
529 if (op == 0x417E)
530 return 1;
531
532 /* nop */
533 if (op == 0x5E00)
534 return 1;
535
536 /* st rn, @sp */
537 if ((op & 0x7E1F) == 0x681E)
538 return 1;
539
540 /* st2w rn, @sp */
541 if ((op & 0x7E3F) == 0x3A1E)
542 return 1;
543
544 return 0;
545 }
546
547 static CORE_ADDR
548 d10v_skip_prologue (CORE_ADDR pc)
549 {
550 unsigned long op;
551 unsigned short op1, op2;
552 CORE_ADDR func_addr, func_end;
553 struct symtab_and_line sal;
554
555 /* If we have line debugging information, then the end of the */
556 /* prologue should the first assembly instruction of the first source line */
557 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
558 {
559 sal = find_pc_line (func_addr, 0);
560 if (sal.end && sal.end < func_end)
561 return sal.end;
562 }
563
564 if (target_read_memory (pc, (char *) &op, 4))
565 return pc; /* Can't access it -- assume no prologue. */
566
567 while (1)
568 {
569 op = (unsigned long) read_memory_integer (pc, 4);
570 if ((op & 0xC0000000) == 0xC0000000)
571 {
572 /* long instruction */
573 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
574 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
575 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
576 break;
577 }
578 else
579 {
580 /* short instructions */
581 if ((op & 0xC0000000) == 0x80000000)
582 {
583 op2 = (op & 0x3FFF8000) >> 15;
584 op1 = op & 0x7FFF;
585 }
586 else
587 {
588 op1 = (op & 0x3FFF8000) >> 15;
589 op2 = op & 0x7FFF;
590 }
591 if (check_prologue (op1))
592 {
593 if (!check_prologue (op2))
594 {
595 /* if the previous opcode was really part of the prologue */
596 /* and not just a NOP, then we want to break after both instructions */
597 if (op1 != 0x5E00)
598 pc += 4;
599 break;
600 }
601 }
602 else
603 break;
604 }
605 pc += 4;
606 }
607 return pc;
608 }
609
610 struct d10v_unwind_cache
611 {
612 CORE_ADDR return_pc;
613 /* The frame's base. Used when constructing a frame ID. */
614 CORE_ADDR base;
615 int size;
616 CORE_ADDR *saved_regs;
617 /* How far the SP and r11 (FP) have been offset from the start of
618 the stack frame (as defined by the previous frame's stack
619 pointer). */
620 LONGEST sp_offset;
621 LONGEST r11_offset;
622 int uses_frame;
623 void **regs;
624 };
625
626 static int
627 prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
628 CORE_ADDR addr)
629 {
630 int n;
631
632 /* st rn, @-sp */
633 if ((op & 0x7E1F) == 0x6C1F)
634 {
635 n = (op & 0x1E0) >> 5;
636 info->sp_offset -= 2;
637 info->saved_regs[n] = info->sp_offset;
638 return 1;
639 }
640
641 /* st2w rn, @-sp */
642 else if ((op & 0x7E3F) == 0x6E1F)
643 {
644 n = (op & 0x1E0) >> 5;
645 info->sp_offset -= 4;
646 info->saved_regs[n] = info->sp_offset;
647 info->saved_regs[n + 1] = info->sp_offset + 2;
648 return 1;
649 }
650
651 /* subi sp, n */
652 if ((op & 0x7FE1) == 0x01E1)
653 {
654 n = (op & 0x1E) >> 1;
655 if (n == 0)
656 n = 16;
657 info->sp_offset -= n;
658 return 1;
659 }
660
661 /* mv r11, sp */
662 if (op == 0x417E)
663 {
664 info->uses_frame = 1;
665 info->r11_offset = info->sp_offset;
666 return 1;
667 }
668
669 /* st rn, @r11 */
670 if ((op & 0x7E1F) == 0x6816)
671 {
672 n = (op & 0x1E0) >> 5;
673 info->saved_regs[n] = info->r11_offset;
674 return 1;
675 }
676
677 /* nop */
678 if (op == 0x5E00)
679 return 1;
680
681 /* st rn, @sp */
682 if ((op & 0x7E1F) == 0x681E)
683 {
684 n = (op & 0x1E0) >> 5;
685 info->saved_regs[n] = info->sp_offset;
686 return 1;
687 }
688
689 /* st2w rn, @sp */
690 if ((op & 0x7E3F) == 0x3A1E)
691 {
692 n = (op & 0x1E0) >> 5;
693 info->saved_regs[n] = info->sp_offset;
694 info->saved_regs[n + 1] = info->sp_offset + 2;
695 return 1;
696 }
697
698 return 0;
699 }
700
701 /* Put here the code to store, into fi->saved_regs, the addresses of
702 the saved registers of frame described by FRAME_INFO. This
703 includes special registers such as pc and fp saved in special ways
704 in the stack frame. sp is even more special: the address we return
705 for it IS the sp for the next frame. */
706
707 struct d10v_unwind_cache *
708 d10v_frame_unwind_cache (struct frame_info *next_frame,
709 void **this_prologue_cache)
710 {
711 CORE_ADDR pc;
712 ULONGEST prev_sp;
713 ULONGEST this_base;
714 unsigned long op;
715 unsigned short op1, op2;
716 int i;
717 struct d10v_unwind_cache *info;
718
719 if ((*this_prologue_cache))
720 return (*this_prologue_cache);
721
722 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
723 (*this_prologue_cache) = info;
724 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
725
726 info->size = 0;
727 info->return_pc = 0;
728 info->sp_offset = 0;
729
730 pc = get_pc_function_start (frame_pc_unwind (next_frame));
731
732 info->uses_frame = 0;
733 while (1)
734 {
735 op = (unsigned long) read_memory_integer (pc, 4);
736 if ((op & 0xC0000000) == 0xC0000000)
737 {
738 /* long instruction */
739 if ((op & 0x3FFF0000) == 0x01FF0000)
740 {
741 /* add3 sp,sp,n */
742 short n = op & 0xFFFF;
743 info->sp_offset += n;
744 }
745 else if ((op & 0x3F0F0000) == 0x340F0000)
746 {
747 /* st rn, @(offset,sp) */
748 short offset = op & 0xFFFF;
749 short n = (op >> 20) & 0xF;
750 info->saved_regs[n] = info->sp_offset + offset;
751 }
752 else if ((op & 0x3F1F0000) == 0x350F0000)
753 {
754 /* st2w rn, @(offset,sp) */
755 short offset = op & 0xFFFF;
756 short n = (op >> 20) & 0xF;
757 info->saved_regs[n] = info->sp_offset + offset;
758 info->saved_regs[n + 1] = info->sp_offset + offset + 2;
759 }
760 else
761 break;
762 }
763 else
764 {
765 /* short instructions */
766 if ((op & 0xC0000000) == 0x80000000)
767 {
768 op2 = (op & 0x3FFF8000) >> 15;
769 op1 = op & 0x7FFF;
770 }
771 else
772 {
773 op1 = (op & 0x3FFF8000) >> 15;
774 op2 = op & 0x7FFF;
775 }
776 if (!prologue_find_regs (info, op1, pc)
777 || !prologue_find_regs (info, op2, pc))
778 break;
779 }
780 pc += 4;
781 }
782
783 info->size = -info->sp_offset;
784
785 /* Compute the frame's base, and the previous frame's SP. */
786 if (info->uses_frame)
787 {
788 /* The SP was moved to the FP. This indicates that a new frame
789 was created. Get THIS frame's FP value by unwinding it from
790 the next frame. */
791 frame_unwind_unsigned_register (next_frame, FP_REGNUM, &this_base);
792 /* The FP points at the last saved register. Adjust the FP back
793 to before the first saved register giving the SP. */
794 prev_sp = this_base + info->size;
795 }
796 else if (info->saved_regs[SP_REGNUM])
797 {
798 /* The SP was saved (which is very unusual), the frame base is
799 just the PREV's frame's TOP-OF-STACK. */
800 this_base = read_memory_unsigned_integer (info->saved_regs[SP_REGNUM],
801 register_size (current_gdbarch,
802 SP_REGNUM));
803 prev_sp = this_base;
804 }
805 else
806 {
807 /* Assume that the FP is this frame's SP but with that pushed
808 stack space added back. */
809 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
810 prev_sp = this_base + info->size;
811 }
812
813 info->base = d10v_make_daddr (this_base);
814 prev_sp = d10v_make_daddr (prev_sp);
815
816 /* Adjust all the saved registers so that they contain addresses and
817 not offsets. */
818 for (i = 0; i < NUM_REGS - 1; i++)
819 if (info->saved_regs[i])
820 {
821 info->saved_regs[i] = (prev_sp + info->saved_regs[i]);
822 }
823
824 if (info->saved_regs[LR_REGNUM])
825 {
826 CORE_ADDR return_pc
827 = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
828 register_size (current_gdbarch, LR_REGNUM));
829 info->return_pc = d10v_make_iaddr (return_pc);
830 }
831 else
832 {
833 ULONGEST return_pc;
834 frame_unwind_unsigned_register (next_frame, LR_REGNUM, &return_pc);
835 info->return_pc = d10v_make_iaddr (return_pc);
836 }
837
838 /* The SP_REGNUM is special. Instead of the address of the SP, the
839 previous frame's SP value is saved. */
840 info->saved_regs[SP_REGNUM] = prev_sp;
841
842 return info;
843 }
844
845 static void
846 d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
847 struct frame_info *frame, int regnum, int all)
848 {
849 if (regnum >= 0)
850 {
851 default_print_registers_info (gdbarch, file, frame, regnum, all);
852 return;
853 }
854
855 {
856 ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
857 frame_read_unsigned_register (frame, PC_REGNUM, &pc);
858 frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
859 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
860 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
861 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
862 fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
863 (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
864 (long) rpt_s, (long) rpt_e, (long) rpt_c);
865 }
866
867 {
868 int group;
869 for (group = 0; group < 16; group += 8)
870 {
871 int r;
872 fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
873 for (r = group; r < group + 8; r++)
874 {
875 ULONGEST tmp;
876 frame_read_unsigned_register (frame, r, &tmp);
877 fprintf_filtered (file, " %04lx", (long) tmp);
878 }
879 fprintf_filtered (file, "\n");
880 }
881 }
882
883 /* Note: The IMAP/DMAP registers don't participate in function
884 calls. Don't bother trying to unwind them. */
885
886 {
887 int a;
888 for (a = 0; a < NR_IMAP_REGS; a++)
889 {
890 if (a > 0)
891 fprintf_filtered (file, " ");
892 fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
893 }
894 if (NR_DMAP_REGS == 1)
895 /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
896 fprintf_filtered (file, " DMAP %04lx\n", d10v_dmap_register (2));
897 else
898 {
899 for (a = 0; a < NR_DMAP_REGS; a++)
900 {
901 fprintf_filtered (file, " DMAP%d %04lx", a, d10v_dmap_register (a));
902 }
903 fprintf_filtered (file, "\n");
904 }
905 }
906
907 {
908 char *num = alloca (max_register_size (gdbarch));
909 int a;
910 fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
911 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
912 {
913 int i;
914 fprintf_filtered (file, " ");
915 frame_register_read (frame, a, num);
916 for (i = 0; i < max_register_size (current_gdbarch); i++)
917 {
918 fprintf_filtered (file, "%02x", (num[i] & 0xff));
919 }
920 }
921 }
922 fprintf_filtered (file, "\n");
923 }
924
925 static void
926 show_regs (char *args, int from_tty)
927 {
928 d10v_print_registers_info (current_gdbarch, gdb_stdout,
929 get_current_frame (), -1, 1);
930 }
931
932 static CORE_ADDR
933 d10v_read_pc (ptid_t ptid)
934 {
935 ptid_t save_ptid;
936 CORE_ADDR pc;
937 CORE_ADDR retval;
938
939 save_ptid = inferior_ptid;
940 inferior_ptid = ptid;
941 pc = (int) read_register (PC_REGNUM);
942 inferior_ptid = save_ptid;
943 retval = d10v_make_iaddr (pc);
944 return retval;
945 }
946
947 static void
948 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
949 {
950 ptid_t save_ptid;
951
952 save_ptid = inferior_ptid;
953 inferior_ptid = ptid;
954 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
955 inferior_ptid = save_ptid;
956 }
957
958 static CORE_ADDR
959 d10v_read_sp (void)
960 {
961 return (d10v_make_daddr (read_register (SP_REGNUM)));
962 }
963
964 static void
965 d10v_write_sp (CORE_ADDR val)
966 {
967 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
968 }
969
970 static CORE_ADDR
971 d10v_read_fp (void)
972 {
973 return (d10v_make_daddr (read_register (FP_REGNUM)));
974 }
975
976 /* Function: push_return_address (pc)
977 Set up the return address for the inferior function call.
978 Needed for targets where we don't actually execute a JSR/BSR instruction */
979
980 static CORE_ADDR
981 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
982 {
983 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
984 return sp;
985 }
986
987
988 /* When arguments must be pushed onto the stack, they go on in reverse
989 order. The below implements a FILO (stack) to do this. */
990
991 struct stack_item
992 {
993 int len;
994 struct stack_item *prev;
995 void *data;
996 };
997
998 static struct stack_item *push_stack_item (struct stack_item *prev,
999 void *contents, int len);
1000 static struct stack_item *
1001 push_stack_item (struct stack_item *prev, void *contents, int len)
1002 {
1003 struct stack_item *si;
1004 si = xmalloc (sizeof (struct stack_item));
1005 si->data = xmalloc (len);
1006 si->len = len;
1007 si->prev = prev;
1008 memcpy (si->data, contents, len);
1009 return si;
1010 }
1011
1012 static struct stack_item *pop_stack_item (struct stack_item *si);
1013 static struct stack_item *
1014 pop_stack_item (struct stack_item *si)
1015 {
1016 struct stack_item *dead = si;
1017 si = si->prev;
1018 xfree (dead->data);
1019 xfree (dead);
1020 return si;
1021 }
1022
1023
1024 static CORE_ADDR
1025 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1026 int struct_return, CORE_ADDR struct_addr)
1027 {
1028 int i;
1029 int regnum = ARG1_REGNUM;
1030 struct stack_item *si = NULL;
1031 long val;
1032
1033 /* If struct_return is true, then the struct return address will
1034 consume one argument-passing register. No need to actually
1035 write the value to the register -- that's done by
1036 d10v_store_struct_return(). */
1037
1038 if (struct_return)
1039 regnum++;
1040
1041 /* Fill in registers and arg lists */
1042 for (i = 0; i < nargs; i++)
1043 {
1044 struct value *arg = args[i];
1045 struct type *type = check_typedef (VALUE_TYPE (arg));
1046 char *contents = VALUE_CONTENTS (arg);
1047 int len = TYPE_LENGTH (type);
1048 int aligned_regnum = (regnum + 1) & ~1;
1049
1050 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
1051 if (len <= 2 && regnum <= ARGN_REGNUM)
1052 /* fits in a single register, do not align */
1053 {
1054 val = extract_unsigned_integer (contents, len);
1055 write_register (regnum++, val);
1056 }
1057 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1058 /* value fits in remaining registers, store keeping left
1059 aligned */
1060 {
1061 int b;
1062 regnum = aligned_regnum;
1063 for (b = 0; b < (len & ~1); b += 2)
1064 {
1065 val = extract_unsigned_integer (&contents[b], 2);
1066 write_register (regnum++, val);
1067 }
1068 if (b < len)
1069 {
1070 val = extract_unsigned_integer (&contents[b], 1);
1071 write_register (regnum++, (val << 8));
1072 }
1073 }
1074 else
1075 {
1076 /* arg will go onto stack */
1077 regnum = ARGN_REGNUM + 1;
1078 si = push_stack_item (si, contents, len);
1079 }
1080 }
1081
1082 while (si)
1083 {
1084 sp = (sp - si->len) & ~1;
1085 write_memory (sp, si->data, si->len);
1086 si = pop_stack_item (si);
1087 }
1088
1089 return sp;
1090 }
1091
1092
1093 /* Given a return value in `regbuf' with a type `valtype',
1094 extract and copy its value into `valbuf'. */
1095
1096 static void
1097 d10v_extract_return_value (struct type *type, struct regcache *regcache,
1098 void *valbuf)
1099 {
1100 int len;
1101 #if 0
1102 printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
1103 TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
1104 (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
1105 register_size (current_gdbarch, RET1_REGNUM)));
1106 #endif
1107 if (TYPE_LENGTH (type) == 1)
1108 {
1109 ULONGEST c;
1110 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
1111 store_unsigned_integer (valbuf, 1, c);
1112 }
1113 else
1114 {
1115 /* For return values of odd size, the first byte is in the
1116 least significant part of the first register. The
1117 remaining bytes in remaining registers. Interestingly, when
1118 such values are passed in, the last byte is in the most
1119 significant byte of that same register - wierd. */
1120 int reg = RET1_REGNUM;
1121 int off = 0;
1122 if (TYPE_LENGTH (type) & 1)
1123 {
1124 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1125 (bfd_byte *)valbuf + off);
1126 off++;
1127 reg++;
1128 }
1129 /* Transfer the remaining registers. */
1130 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1131 {
1132 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1133 (bfd_byte *) valbuf + off);
1134 }
1135 }
1136 }
1137
1138 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1139 understands. Returns number of bytes that can be transfered
1140 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1141 (segmentation fault). Since the simulator knows all about how the
1142 VM system works, we just call that to do the translation. */
1143
1144 static void
1145 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1146 CORE_ADDR *targ_addr, int *targ_len)
1147 {
1148 long out_addr;
1149 long out_len;
1150 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1151 &out_addr,
1152 d10v_dmap_register,
1153 d10v_imap_register);
1154 *targ_addr = out_addr;
1155 *targ_len = out_len;
1156 }
1157
1158
1159 /* The following code implements access to, and display of, the D10V's
1160 instruction trace buffer. The buffer consists of 64K or more
1161 4-byte words of data, of which each words includes an 8-bit count,
1162 an 8-bit segment number, and a 16-bit instruction address.
1163
1164 In theory, the trace buffer is continuously capturing instruction
1165 data that the CPU presents on its "debug bus", but in practice, the
1166 ROMified GDB stub only enables tracing when it continues or steps
1167 the program, and stops tracing when the program stops; so it
1168 actually works for GDB to read the buffer counter out of memory and
1169 then read each trace word. The counter records where the tracing
1170 stops, but there is no record of where it started, so we remember
1171 the PC when we resumed and then search backwards in the trace
1172 buffer for a word that includes that address. This is not perfect,
1173 because you will miss trace data if the resumption PC is the target
1174 of a branch. (The value of the buffer counter is semi-random, any
1175 trace data from a previous program stop is gone.) */
1176
1177 /* The address of the last word recorded in the trace buffer. */
1178
1179 #define DBBC_ADDR (0xd80000)
1180
1181 /* The base of the trace buffer, at least for the "Board_0". */
1182
1183 #define TRACE_BUFFER_BASE (0xf40000)
1184
1185 static void trace_command (char *, int);
1186
1187 static void untrace_command (char *, int);
1188
1189 static void trace_info (char *, int);
1190
1191 static void tdisassemble_command (char *, int);
1192
1193 static void display_trace (int, int);
1194
1195 /* True when instruction traces are being collected. */
1196
1197 static int tracing;
1198
1199 /* Remembered PC. */
1200
1201 static CORE_ADDR last_pc;
1202
1203 /* True when trace output should be displayed whenever program stops. */
1204
1205 static int trace_display;
1206
1207 /* True when trace listing should include source lines. */
1208
1209 static int default_trace_show_source = 1;
1210
1211 struct trace_buffer
1212 {
1213 int size;
1214 short *counts;
1215 CORE_ADDR *addrs;
1216 }
1217 trace_data;
1218
1219 static void
1220 trace_command (char *args, int from_tty)
1221 {
1222 /* Clear the host-side trace buffer, allocating space if needed. */
1223 trace_data.size = 0;
1224 if (trace_data.counts == NULL)
1225 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1226 if (trace_data.addrs == NULL)
1227 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1228
1229 tracing = 1;
1230
1231 printf_filtered ("Tracing is now on.\n");
1232 }
1233
1234 static void
1235 untrace_command (char *args, int from_tty)
1236 {
1237 tracing = 0;
1238
1239 printf_filtered ("Tracing is now off.\n");
1240 }
1241
1242 static void
1243 trace_info (char *args, int from_tty)
1244 {
1245 int i;
1246
1247 if (trace_data.size)
1248 {
1249 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1250
1251 for (i = 0; i < trace_data.size; ++i)
1252 {
1253 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1254 i,
1255 trace_data.counts[i],
1256 (trace_data.counts[i] == 1 ? "" : "s"),
1257 paddr_nz (trace_data.addrs[i]));
1258 }
1259 }
1260 else
1261 printf_filtered ("No entries in trace buffer.\n");
1262
1263 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1264 }
1265
1266 /* Print the instruction at address MEMADDR in debugged memory,
1267 on STREAM. Returns length of the instruction, in bytes. */
1268
1269 static int
1270 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1271 {
1272 /* If there's no disassembler, something is very wrong. */
1273 if (tm_print_insn == NULL)
1274 internal_error (__FILE__, __LINE__,
1275 "print_insn: no disassembler");
1276
1277 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1278 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1279 else
1280 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1281 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1282 }
1283
1284 static void
1285 d10v_eva_prepare_to_trace (void)
1286 {
1287 if (!tracing)
1288 return;
1289
1290 last_pc = read_register (PC_REGNUM);
1291 }
1292
1293 /* Collect trace data from the target board and format it into a form
1294 more useful for display. */
1295
1296 static void
1297 d10v_eva_get_trace_data (void)
1298 {
1299 int count, i, j, oldsize;
1300 int trace_addr, trace_seg, trace_cnt, next_cnt;
1301 unsigned int last_trace, trace_word, next_word;
1302 unsigned int *tmpspace;
1303
1304 if (!tracing)
1305 return;
1306
1307 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1308
1309 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1310
1311 /* Collect buffer contents from the target, stopping when we reach
1312 the word recorded when execution resumed. */
1313
1314 count = 0;
1315 while (last_trace > 0)
1316 {
1317 QUIT;
1318 trace_word =
1319 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1320 trace_addr = trace_word & 0xffff;
1321 last_trace -= 4;
1322 /* Ignore an apparently nonsensical entry. */
1323 if (trace_addr == 0xffd5)
1324 continue;
1325 tmpspace[count++] = trace_word;
1326 if (trace_addr == last_pc)
1327 break;
1328 if (count > 65535)
1329 break;
1330 }
1331
1332 /* Move the data to the host-side trace buffer, adjusting counts to
1333 include the last instruction executed and transforming the address
1334 into something that GDB likes. */
1335
1336 for (i = 0; i < count; ++i)
1337 {
1338 trace_word = tmpspace[i];
1339 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1340 trace_addr = trace_word & 0xffff;
1341 next_cnt = (next_word >> 24) & 0xff;
1342 j = trace_data.size + count - i - 1;
1343 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1344 trace_data.counts[j] = next_cnt + 1;
1345 }
1346
1347 oldsize = trace_data.size;
1348 trace_data.size += count;
1349
1350 xfree (tmpspace);
1351
1352 if (trace_display)
1353 display_trace (oldsize, trace_data.size);
1354 }
1355
1356 static void
1357 tdisassemble_command (char *arg, int from_tty)
1358 {
1359 int i, count;
1360 CORE_ADDR low, high;
1361 char *space_index;
1362
1363 if (!arg)
1364 {
1365 low = 0;
1366 high = trace_data.size;
1367 }
1368 else if (!(space_index = (char *) strchr (arg, ' ')))
1369 {
1370 low = parse_and_eval_address (arg);
1371 high = low + 5;
1372 }
1373 else
1374 {
1375 /* Two arguments. */
1376 *space_index = '\0';
1377 low = parse_and_eval_address (arg);
1378 high = parse_and_eval_address (space_index + 1);
1379 if (high < low)
1380 high = low;
1381 }
1382
1383 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1384
1385 display_trace (low, high);
1386
1387 printf_filtered ("End of trace dump.\n");
1388 gdb_flush (gdb_stdout);
1389 }
1390
1391 static void
1392 display_trace (int low, int high)
1393 {
1394 int i, count, trace_show_source, first, suppress;
1395 CORE_ADDR next_address;
1396
1397 trace_show_source = default_trace_show_source;
1398 if (!have_full_symbols () && !have_partial_symbols ())
1399 {
1400 trace_show_source = 0;
1401 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1402 printf_filtered ("Trace will not display any source.\n");
1403 }
1404
1405 first = 1;
1406 suppress = 0;
1407 for (i = low; i < high; ++i)
1408 {
1409 next_address = trace_data.addrs[i];
1410 count = trace_data.counts[i];
1411 while (count-- > 0)
1412 {
1413 QUIT;
1414 if (trace_show_source)
1415 {
1416 struct symtab_and_line sal, sal_prev;
1417
1418 sal_prev = find_pc_line (next_address - 4, 0);
1419 sal = find_pc_line (next_address, 0);
1420
1421 if (sal.symtab)
1422 {
1423 if (first || sal.line != sal_prev.line)
1424 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1425 suppress = 0;
1426 }
1427 else
1428 {
1429 if (!suppress)
1430 /* FIXME-32x64--assumes sal.pc fits in long. */
1431 printf_filtered ("No source file for address %s.\n",
1432 local_hex_string ((unsigned long) sal.pc));
1433 suppress = 1;
1434 }
1435 }
1436 first = 0;
1437 print_address (next_address, gdb_stdout);
1438 printf_filtered (":");
1439 printf_filtered ("\t");
1440 wrap_here (" ");
1441 next_address = next_address + print_insn (next_address, gdb_stdout);
1442 printf_filtered ("\n");
1443 gdb_flush (gdb_stdout);
1444 }
1445 }
1446 }
1447
1448 static CORE_ADDR
1449 d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1450 {
1451 ULONGEST pc;
1452 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1453 return d10v_make_iaddr (pc);
1454 }
1455
1456 /* Given a GDB frame, determine the address of the calling function's
1457 frame. This will be used to create a new GDB frame struct. */
1458
1459 static void
1460 d10v_frame_this_id (struct frame_info *next_frame,
1461 void **this_prologue_cache,
1462 struct frame_id *this_id)
1463 {
1464 struct d10v_unwind_cache *info
1465 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1466 CORE_ADDR base;
1467 CORE_ADDR pc;
1468
1469 /* Start with a NULL frame ID. */
1470 (*this_id) = null_frame_id;
1471
1472 /* The PC is easy. */
1473 pc = frame_pc_unwind (next_frame);
1474
1475 /* This is meant to halt the backtrace at "_start". Make sure we
1476 don't halt it at a generic dummy frame. */
1477 if (pc == IMEM_START || pc <= IMEM_START || inside_entry_file (pc))
1478 return;
1479
1480 /* Hopefully the prologue analysis either correctly determined the
1481 frame's base (which is the SP from the previous frame), or set
1482 that base to "NULL". */
1483 base = info->base;
1484 if (base == STACK_START || base == 0)
1485 return;
1486
1487 /* Check that we're not going round in circles with the same frame
1488 ID (but avoid applying the test to sentinel frames which do go
1489 round in circles). Can't use frame_id_eq() as that doesn't yet
1490 compare the frame's PC value. */
1491 if (frame_relative_level (next_frame) >= 0
1492 && get_frame_type (next_frame) != DUMMY_FRAME
1493 && get_frame_id (next_frame).pc == pc
1494 && get_frame_id (next_frame).base == base)
1495 return;
1496
1497 this_id->base = base;
1498 this_id->pc = pc;
1499 }
1500
1501 static void
1502 saved_regs_unwinder (struct frame_info *next_frame,
1503 CORE_ADDR *this_saved_regs,
1504 int regnum, int *optimizedp,
1505 enum lval_type *lvalp, CORE_ADDR *addrp,
1506 int *realnump, void *bufferp)
1507 {
1508 if (this_saved_regs[regnum] != 0)
1509 {
1510 if (regnum == SP_REGNUM)
1511 {
1512 /* SP register treated specially. */
1513 *optimizedp = 0;
1514 *lvalp = not_lval;
1515 *addrp = 0;
1516 *realnump = -1;
1517 if (bufferp != NULL)
1518 store_address (bufferp, register_size (current_gdbarch, regnum),
1519 this_saved_regs[regnum]);
1520 }
1521 else
1522 {
1523 /* Any other register is saved in memory, fetch it but cache
1524 a local copy of its value. */
1525 *optimizedp = 0;
1526 *lvalp = lval_memory;
1527 *addrp = this_saved_regs[regnum];
1528 *realnump = -1;
1529 if (bufferp != NULL)
1530 {
1531 /* Read the value in from memory. */
1532 read_memory (this_saved_regs[regnum], bufferp,
1533 register_size (current_gdbarch, regnum));
1534 }
1535 }
1536 return;
1537 }
1538
1539 /* No luck, assume this and the next frame have the same register
1540 value. If a value is needed, pass the request on down the chain;
1541 otherwise just return an indication that the value is in the same
1542 register as the next frame. */
1543 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
1544 realnump, bufferp);
1545 }
1546
1547
1548 static void
1549 d10v_frame_prev_register (struct frame_info *next_frame,
1550 void **this_prologue_cache,
1551 int regnum, int *optimizedp,
1552 enum lval_type *lvalp, CORE_ADDR *addrp,
1553 int *realnump, void *bufferp)
1554 {
1555 struct d10v_unwind_cache *info
1556 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1557 if (regnum == PC_REGNUM)
1558 {
1559 /* The call instruction saves the caller's PC in LR. The
1560 function prologue of the callee may then save the LR on the
1561 stack. Find that possibly saved LR value and return it. */
1562 saved_regs_unwinder (next_frame, info->saved_regs, LR_REGNUM, optimizedp,
1563 lvalp, addrp, realnump, bufferp);
1564 }
1565 else
1566 {
1567 saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
1568 lvalp, addrp, realnump, bufferp);
1569 }
1570 }
1571
1572
1573 static struct frame_unwind d10v_frame_unwind = {
1574 d10v_frame_this_id,
1575 d10v_frame_prev_register
1576 };
1577
1578 const struct frame_unwind *
1579 d10v_frame_p (CORE_ADDR pc)
1580 {
1581 return &d10v_frame_unwind;
1582 }
1583
1584 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1585 dummy frame. The frame ID's base needs to match the TOS value
1586 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1587 breakpoint. */
1588
1589 static struct frame_id
1590 d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1591 {
1592 ULONGEST base;
1593 struct frame_id id;
1594 id.pc = frame_pc_unwind (next_frame);
1595 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &base);
1596 id.base = d10v_make_daddr (base);
1597 return id;
1598 }
1599
1600 static gdbarch_init_ftype d10v_gdbarch_init;
1601
1602 static struct gdbarch *
1603 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1604 {
1605 static LONGEST d10v_call_dummy_words[] =
1606 {0};
1607 struct gdbarch *gdbarch;
1608 int d10v_num_regs;
1609 struct gdbarch_tdep *tdep;
1610 gdbarch_register_name_ftype *d10v_register_name;
1611 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1612
1613 /* Find a candidate among the list of pre-declared architectures. */
1614 arches = gdbarch_list_lookup_by_info (arches, &info);
1615 if (arches != NULL)
1616 return arches->gdbarch;
1617
1618 /* None found, create a new architecture from the information
1619 provided. */
1620 tdep = XMALLOC (struct gdbarch_tdep);
1621 gdbarch = gdbarch_alloc (&info, tdep);
1622
1623 switch (info.bfd_arch_info->mach)
1624 {
1625 case bfd_mach_d10v_ts2:
1626 d10v_num_regs = 37;
1627 d10v_register_name = d10v_ts2_register_name;
1628 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1629 tdep->a0_regnum = TS2_A0_REGNUM;
1630 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1631 tdep->dmap_register = d10v_ts2_dmap_register;
1632 tdep->imap_register = d10v_ts2_imap_register;
1633 break;
1634 default:
1635 case bfd_mach_d10v_ts3:
1636 d10v_num_regs = 42;
1637 d10v_register_name = d10v_ts3_register_name;
1638 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1639 tdep->a0_regnum = TS3_A0_REGNUM;
1640 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1641 tdep->dmap_register = d10v_ts3_dmap_register;
1642 tdep->imap_register = d10v_ts3_imap_register;
1643 break;
1644 }
1645
1646 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1647 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1648 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1649 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1650 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1651
1652 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1653 set_gdbarch_sp_regnum (gdbarch, 15);
1654 set_gdbarch_fp_regnum (gdbarch, 11);
1655 set_gdbarch_pc_regnum (gdbarch, 18);
1656 set_gdbarch_register_name (gdbarch, d10v_register_name);
1657 set_gdbarch_register_size (gdbarch, 2);
1658 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1659 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1660 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1661 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
1662 set_gdbarch_register_type (gdbarch, d10v_register_type);
1663
1664 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1665 set_gdbarch_addr_bit (gdbarch, 32);
1666 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1667 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1668 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1669 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1670 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1671 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1672 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1673 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1674 double'' is 64 bits. */
1675 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1676 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1677 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1678 switch (info.byte_order)
1679 {
1680 case BFD_ENDIAN_BIG:
1681 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1682 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1683 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1684 break;
1685 case BFD_ENDIAN_LITTLE:
1686 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1687 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1688 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1689 break;
1690 default:
1691 internal_error (__FILE__, __LINE__,
1692 "d10v_gdbarch_init: bad byte order for float format");
1693 }
1694
1695 set_gdbarch_call_dummy_length (gdbarch, 0);
1696 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1697 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1698 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1699 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1700 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1701 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1702 set_gdbarch_call_dummy_p (gdbarch, 1);
1703 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1704 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1705
1706 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1707 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1708 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1709
1710 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1711 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1712 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1713 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1714
1715 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1716 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1717 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1718 set_gdbarch_function_start_offset (gdbarch, 0);
1719 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1720
1721 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1722
1723 set_gdbarch_frame_args_skip (gdbarch, 0);
1724 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1725
1726 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1727 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1728 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1729
1730 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1731 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1732
1733 set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1734
1735 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
1736
1737 /* Methods for saving / extracting a dummy frame's ID. */
1738 set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
1739 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1740
1741 /* Return the unwound PC value. */
1742 set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
1743
1744 return gdbarch;
1745 }
1746
1747
1748 extern void (*target_resume_hook) (void);
1749 extern void (*target_wait_loop_hook) (void);
1750
1751 void
1752 _initialize_d10v_tdep (void)
1753 {
1754 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1755
1756 tm_print_insn = print_insn_d10v;
1757
1758 target_resume_hook = d10v_eva_prepare_to_trace;
1759 target_wait_loop_hook = d10v_eva_get_trace_data;
1760
1761 deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
1762 "info registers");
1763
1764 add_com ("itrace", class_support, trace_command,
1765 "Enable tracing of instruction execution.");
1766
1767 add_com ("iuntrace", class_support, untrace_command,
1768 "Disable tracing of instruction execution.");
1769
1770 add_com ("itdisassemble", class_vars, tdisassemble_command,
1771 "Disassemble the trace buffer.\n\
1772 Two optional arguments specify a range of trace buffer entries\n\
1773 as reported by info trace (NOT addresses!).");
1774
1775 add_info ("itrace", trace_info,
1776 "Display info about the trace data buffer.");
1777
1778 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1779 var_integer, (char *) &trace_display,
1780 "Set automatic display of trace.\n", &setlist),
1781 &showlist);
1782 add_show_from_set (add_set_cmd ("itracesource", no_class,
1783 var_integer, (char *) &default_trace_show_source,
1784 "Set display of source code with trace.\n", &setlist),
1785 &showlist);
1786
1787 }
This page took 0.068165 seconds and 4 git commands to generate.