*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Martin Hunt, hunt@cygnus.com */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "obstack.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "floatformat.h"
42 #include "sim-d10v.h"
43
44 #undef XMALLOC
45 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
46
47 struct frame_extra_info
48 {
49 CORE_ADDR return_pc;
50 int frameless;
51 int size;
52 };
53
54 struct gdbarch_tdep
55 {
56 int a0_regnum;
57 int nr_dmap_regs;
58 unsigned long (*dmap_register) (int nr);
59 unsigned long (*imap_register) (int nr);
60 };
61
62 /* These are the addresses the D10V-EVA board maps data and
63 instruction memory to. */
64
65 #define DMEM_START 0x2000000
66 #define IMEM_START 0x1000000
67 #define STACK_START 0x0007ffe
68
69 /* d10v register names. */
70
71 enum
72 {
73 R0_REGNUM = 0,
74 LR_REGNUM = 13,
75 PSW_REGNUM = 16,
76 NR_IMAP_REGS = 2,
77 NR_A_REGS = 2
78 };
79 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
80 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
81
82 /* d10v calling convention. */
83
84 #define ARG1_REGNUM R0_REGNUM
85 #define ARGN_REGNUM 3
86 #define RET1_REGNUM R0_REGNUM
87
88 /* Local functions */
89
90 extern void _initialize_d10v_tdep (void);
91
92 static void d10v_eva_prepare_to_trace (void);
93
94 static void d10v_eva_get_trace_data (void);
95
96 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
97 CORE_ADDR addr);
98
99 static void d10v_frame_init_saved_regs (struct frame_info *);
100
101 static void do_d10v_pop_frame (struct frame_info *fi);
102
103 static int
104 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
105 {
106 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
107 }
108
109 static CORE_ADDR
110 d10v_stack_align (CORE_ADDR len)
111 {
112 return (len + 1) & ~1;
113 }
114
115 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
116 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
117 and TYPE is the type (which is known to be struct, union or array).
118
119 The d10v returns anything less than 8 bytes in size in
120 registers. */
121
122 static int
123 d10v_use_struct_convention (int gcc_p, struct type *type)
124 {
125 return (TYPE_LENGTH (type) > 8);
126 }
127
128
129 static unsigned char *
130 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
131 {
132 static unsigned char breakpoint[] =
133 {0x2f, 0x90, 0x5e, 0x00};
134 *lenptr = sizeof (breakpoint);
135 return breakpoint;
136 }
137
138 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
139 when the reg_nr isn't valid. */
140
141 enum ts2_regnums
142 {
143 TS2_IMAP0_REGNUM = 32,
144 TS2_DMAP_REGNUM = 34,
145 TS2_NR_DMAP_REGS = 1,
146 TS2_A0_REGNUM = 35
147 };
148
149 static char *
150 d10v_ts2_register_name (int reg_nr)
151 {
152 static char *register_names[] =
153 {
154 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
155 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
156 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
157 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
158 "imap0", "imap1", "dmap", "a0", "a1"
159 };
160 if (reg_nr < 0)
161 return NULL;
162 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
163 return NULL;
164 return register_names[reg_nr];
165 }
166
167 enum ts3_regnums
168 {
169 TS3_IMAP0_REGNUM = 36,
170 TS3_DMAP0_REGNUM = 38,
171 TS3_NR_DMAP_REGS = 4,
172 TS3_A0_REGNUM = 32
173 };
174
175 static char *
176 d10v_ts3_register_name (int reg_nr)
177 {
178 static char *register_names[] =
179 {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
183 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
184 "a0", "a1",
185 "spi", "spu",
186 "imap0", "imap1",
187 "dmap0", "dmap1", "dmap2", "dmap3"
188 };
189 if (reg_nr < 0)
190 return NULL;
191 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
192 return NULL;
193 return register_names[reg_nr];
194 }
195
196 /* Access the DMAP/IMAP registers in a target independent way.
197
198 Divide the D10V's 64k data space into four 16k segments:
199 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
200 0xc000 -- 0xffff.
201
202 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
203 0x7fff) always map to the on-chip data RAM, and the fourth always
204 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
205 unified memory or instruction memory, under the control of the
206 single DMAP register.
207
208 On the TS3, there are four DMAP registers, each of which controls
209 one of the segments. */
210
211 static unsigned long
212 d10v_ts2_dmap_register (int reg_nr)
213 {
214 switch (reg_nr)
215 {
216 case 0:
217 case 1:
218 return 0x2000;
219 case 2:
220 return read_register (TS2_DMAP_REGNUM);
221 default:
222 return 0;
223 }
224 }
225
226 static unsigned long
227 d10v_ts3_dmap_register (int reg_nr)
228 {
229 return read_register (TS3_DMAP0_REGNUM + reg_nr);
230 }
231
232 static unsigned long
233 d10v_dmap_register (int reg_nr)
234 {
235 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
236 }
237
238 static unsigned long
239 d10v_ts2_imap_register (int reg_nr)
240 {
241 return read_register (TS2_IMAP0_REGNUM + reg_nr);
242 }
243
244 static unsigned long
245 d10v_ts3_imap_register (int reg_nr)
246 {
247 return read_register (TS3_IMAP0_REGNUM + reg_nr);
248 }
249
250 static unsigned long
251 d10v_imap_register (int reg_nr)
252 {
253 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
254 }
255
256 /* MAP GDB's internal register numbering (determined by the layout fo
257 the REGISTER_BYTE array) onto the simulator's register
258 numbering. */
259
260 static int
261 d10v_ts2_register_sim_regno (int nr)
262 {
263 if (nr >= TS2_IMAP0_REGNUM
264 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
265 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
266 if (nr == TS2_DMAP_REGNUM)
267 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
268 if (nr >= TS2_A0_REGNUM
269 && nr < TS2_A0_REGNUM + NR_A_REGS)
270 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
271 return nr;
272 }
273
274 static int
275 d10v_ts3_register_sim_regno (int nr)
276 {
277 if (nr >= TS3_IMAP0_REGNUM
278 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
279 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
280 if (nr >= TS3_DMAP0_REGNUM
281 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
282 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
283 if (nr >= TS3_A0_REGNUM
284 && nr < TS3_A0_REGNUM + NR_A_REGS)
285 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
286 return nr;
287 }
288
289 /* Index within `registers' of the first byte of the space for
290 register REG_NR. */
291
292 static int
293 d10v_register_byte (int reg_nr)
294 {
295 if (reg_nr < A0_REGNUM)
296 return (reg_nr * 2);
297 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
298 return (A0_REGNUM * 2
299 + (reg_nr - A0_REGNUM) * 8);
300 else
301 return (A0_REGNUM * 2
302 + NR_A_REGS * 8
303 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
304 }
305
306 /* Number of bytes of storage in the actual machine representation for
307 register REG_NR. */
308
309 static int
310 d10v_register_raw_size (int reg_nr)
311 {
312 if (reg_nr < A0_REGNUM)
313 return 2;
314 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
315 return 8;
316 else
317 return 2;
318 }
319
320 /* Number of bytes of storage in the program's representation
321 for register N. */
322
323 static int
324 d10v_register_virtual_size (int reg_nr)
325 {
326 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
327 }
328
329 /* Return the GDB type object for the "standard" data type
330 of data in register N. */
331
332 static struct type *
333 d10v_register_virtual_type (int reg_nr)
334 {
335 if (reg_nr == PC_REGNUM)
336 return builtin_type_void_func_ptr;
337 else if (reg_nr >= A0_REGNUM
338 && reg_nr < (A0_REGNUM + NR_A_REGS))
339 return builtin_type_int64;
340 else
341 return builtin_type_int16;
342 }
343
344 static CORE_ADDR
345 d10v_make_daddr (CORE_ADDR x)
346 {
347 return ((x) | DMEM_START);
348 }
349
350 static CORE_ADDR
351 d10v_make_iaddr (CORE_ADDR x)
352 {
353 return (((x) << 2) | IMEM_START);
354 }
355
356 static int
357 d10v_daddr_p (CORE_ADDR x)
358 {
359 return (((x) & 0x3000000) == DMEM_START);
360 }
361
362 static int
363 d10v_iaddr_p (CORE_ADDR x)
364 {
365 return (((x) & 0x3000000) == IMEM_START);
366 }
367
368
369 static CORE_ADDR
370 d10v_convert_iaddr_to_raw (CORE_ADDR x)
371 {
372 return (((x) >> 2) & 0xffff);
373 }
374
375 static CORE_ADDR
376 d10v_convert_daddr_to_raw (CORE_ADDR x)
377 {
378 return ((x) & 0xffff);
379 }
380
381 static void
382 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
383 {
384 /* Is it a code address? */
385 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
386 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
387 {
388 #if 0
389 if (! d10v_iaddr_p (addr))
390 {
391 warning_begin ();
392 fprintf_unfiltered (gdb_stderr, "address `");
393 print_address_numeric (addr, 1, gdb_stderr);
394 fprintf_unfiltered (gdb_stderr, "' is not a code address\n");
395 }
396 #endif
397
398 store_unsigned_integer (buf, TYPE_LENGTH (type),
399 d10v_convert_iaddr_to_raw (addr));
400 }
401 else
402 {
403 /* Strip off any upper segment bits. */
404 store_unsigned_integer (buf, TYPE_LENGTH (type),
405 d10v_convert_daddr_to_raw (addr));
406 }
407 }
408
409 static CORE_ADDR
410 d10v_pointer_to_address (struct type *type, void *buf)
411 {
412 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
413
414 /* Is it a code address? */
415 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
416 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD ||
417 (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0)
418 return d10v_make_iaddr (addr);
419 else
420 return d10v_make_daddr (addr);
421 }
422
423 static CORE_ADDR
424 d10v_integer_to_address (struct type *type, void *buf)
425 {
426 LONGEST val;
427 val = unpack_long (type, buf);
428 if (TYPE_CODE (type) == TYPE_CODE_INT
429 && TYPE_LENGTH (type) <= TYPE_LENGTH (builtin_type_void_data_ptr))
430 /* Convert small integers that would would be directly copied into
431 a pointer variable into an address pointing into data space. */
432 return d10v_make_daddr (val & 0xffff);
433 else
434 /* The value is too large to fit in a pointer. Assume this was
435 intentional and that the user in fact specified a raw address. */
436 return val;
437 }
438
439 /* Store the address of the place in which to copy the structure the
440 subroutine will return. This is called from call_function.
441
442 We store structs through a pointer passed in the first Argument
443 register. */
444
445 static void
446 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
447 {
448 write_register (ARG1_REGNUM, (addr));
449 }
450
451 /* Write into appropriate registers a function return value
452 of type TYPE, given in virtual format.
453
454 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
455
456 static void
457 d10v_store_return_value (struct type *type, char *valbuf)
458 {
459 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
460 valbuf,
461 TYPE_LENGTH (type));
462 }
463
464 /* Extract from an array REGBUF containing the (raw) register state
465 the address in which a function should return its structure value,
466 as a CORE_ADDR (or an expression that can be used as one). */
467
468 static CORE_ADDR
469 d10v_extract_struct_value_address (char *regbuf)
470 {
471 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
472 REGISTER_RAW_SIZE (ARG1_REGNUM))
473 | DMEM_START);
474 }
475
476 static CORE_ADDR
477 d10v_frame_saved_pc (struct frame_info *frame)
478 {
479 return ((frame)->extra_info->return_pc);
480 }
481
482 /* Immediately after a function call, return the saved pc. We can't
483 use frame->return_pc beause that is determined by reading R13 off
484 the stack and that may not be written yet. */
485
486 static CORE_ADDR
487 d10v_saved_pc_after_call (struct frame_info *frame)
488 {
489 return ((read_register (LR_REGNUM) << 2)
490 | IMEM_START);
491 }
492
493 /* Discard from the stack the innermost frame, restoring all saved
494 registers. */
495
496 static void
497 d10v_pop_frame (void)
498 {
499 generic_pop_current_frame (do_d10v_pop_frame);
500 }
501
502 static void
503 do_d10v_pop_frame (struct frame_info *fi)
504 {
505 CORE_ADDR fp;
506 int regnum;
507 char raw_buffer[8];
508
509 fp = FRAME_FP (fi);
510 /* fill out fsr with the address of where each */
511 /* register was stored in the frame */
512 d10v_frame_init_saved_regs (fi);
513
514 /* now update the current registers with the old values */
515 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
516 {
517 if (fi->saved_regs[regnum])
518 {
519 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
520 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
521 }
522 }
523 for (regnum = 0; regnum < SP_REGNUM; regnum++)
524 {
525 if (fi->saved_regs[regnum])
526 {
527 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
528 }
529 }
530 if (fi->saved_regs[PSW_REGNUM])
531 {
532 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
533 }
534
535 write_register (PC_REGNUM, read_register (LR_REGNUM));
536 write_register (SP_REGNUM, fp + fi->extra_info->size);
537 target_store_registers (-1);
538 flush_cached_frames ();
539 }
540
541 static int
542 check_prologue (unsigned short op)
543 {
544 /* st rn, @-sp */
545 if ((op & 0x7E1F) == 0x6C1F)
546 return 1;
547
548 /* st2w rn, @-sp */
549 if ((op & 0x7E3F) == 0x6E1F)
550 return 1;
551
552 /* subi sp, n */
553 if ((op & 0x7FE1) == 0x01E1)
554 return 1;
555
556 /* mv r11, sp */
557 if (op == 0x417E)
558 return 1;
559
560 /* nop */
561 if (op == 0x5E00)
562 return 1;
563
564 /* st rn, @sp */
565 if ((op & 0x7E1F) == 0x681E)
566 return 1;
567
568 /* st2w rn, @sp */
569 if ((op & 0x7E3F) == 0x3A1E)
570 return 1;
571
572 return 0;
573 }
574
575 static CORE_ADDR
576 d10v_skip_prologue (CORE_ADDR pc)
577 {
578 unsigned long op;
579 unsigned short op1, op2;
580 CORE_ADDR func_addr, func_end;
581 struct symtab_and_line sal;
582
583 /* If we have line debugging information, then the end of the */
584 /* prologue should the first assembly instruction of the first source line */
585 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
586 {
587 sal = find_pc_line (func_addr, 0);
588 if (sal.end && sal.end < func_end)
589 return sal.end;
590 }
591
592 if (target_read_memory (pc, (char *) &op, 4))
593 return pc; /* Can't access it -- assume no prologue. */
594
595 while (1)
596 {
597 op = (unsigned long) read_memory_integer (pc, 4);
598 if ((op & 0xC0000000) == 0xC0000000)
599 {
600 /* long instruction */
601 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
602 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
603 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
604 break;
605 }
606 else
607 {
608 /* short instructions */
609 if ((op & 0xC0000000) == 0x80000000)
610 {
611 op2 = (op & 0x3FFF8000) >> 15;
612 op1 = op & 0x7FFF;
613 }
614 else
615 {
616 op1 = (op & 0x3FFF8000) >> 15;
617 op2 = op & 0x7FFF;
618 }
619 if (check_prologue (op1))
620 {
621 if (!check_prologue (op2))
622 {
623 /* if the previous opcode was really part of the prologue */
624 /* and not just a NOP, then we want to break after both instructions */
625 if (op1 != 0x5E00)
626 pc += 4;
627 break;
628 }
629 }
630 else
631 break;
632 }
633 pc += 4;
634 }
635 return pc;
636 }
637
638 /* Given a GDB frame, determine the address of the calling function's frame.
639 This will be used to create a new GDB frame struct, and then
640 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
641 */
642
643 static CORE_ADDR
644 d10v_frame_chain (struct frame_info *fi)
645 {
646 d10v_frame_init_saved_regs (fi);
647
648 if (fi->extra_info->return_pc == IMEM_START
649 || inside_entry_file (fi->extra_info->return_pc))
650 return (CORE_ADDR) 0;
651
652 if (!fi->saved_regs[FP_REGNUM])
653 {
654 if (!fi->saved_regs[SP_REGNUM]
655 || fi->saved_regs[SP_REGNUM] == STACK_START)
656 return (CORE_ADDR) 0;
657
658 return fi->saved_regs[SP_REGNUM];
659 }
660
661 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
662 REGISTER_RAW_SIZE (FP_REGNUM)))
663 return (CORE_ADDR) 0;
664
665 return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
666 REGISTER_RAW_SIZE (FP_REGNUM)));
667 }
668
669 static int next_addr, uses_frame;
670
671 static int
672 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
673 {
674 int n;
675
676 /* st rn, @-sp */
677 if ((op & 0x7E1F) == 0x6C1F)
678 {
679 n = (op & 0x1E0) >> 5;
680 next_addr -= 2;
681 fi->saved_regs[n] = next_addr;
682 return 1;
683 }
684
685 /* st2w rn, @-sp */
686 else if ((op & 0x7E3F) == 0x6E1F)
687 {
688 n = (op & 0x1E0) >> 5;
689 next_addr -= 4;
690 fi->saved_regs[n] = next_addr;
691 fi->saved_regs[n + 1] = next_addr + 2;
692 return 1;
693 }
694
695 /* subi sp, n */
696 if ((op & 0x7FE1) == 0x01E1)
697 {
698 n = (op & 0x1E) >> 1;
699 if (n == 0)
700 n = 16;
701 next_addr -= n;
702 return 1;
703 }
704
705 /* mv r11, sp */
706 if (op == 0x417E)
707 {
708 uses_frame = 1;
709 return 1;
710 }
711
712 /* nop */
713 if (op == 0x5E00)
714 return 1;
715
716 /* st rn, @sp */
717 if ((op & 0x7E1F) == 0x681E)
718 {
719 n = (op & 0x1E0) >> 5;
720 fi->saved_regs[n] = next_addr;
721 return 1;
722 }
723
724 /* st2w rn, @sp */
725 if ((op & 0x7E3F) == 0x3A1E)
726 {
727 n = (op & 0x1E0) >> 5;
728 fi->saved_regs[n] = next_addr;
729 fi->saved_regs[n + 1] = next_addr + 2;
730 return 1;
731 }
732
733 return 0;
734 }
735
736 /* Put here the code to store, into fi->saved_regs, the addresses of
737 the saved registers of frame described by FRAME_INFO. This
738 includes special registers such as pc and fp saved in special ways
739 in the stack frame. sp is even more special: the address we return
740 for it IS the sp for the next frame. */
741
742 static void
743 d10v_frame_init_saved_regs (struct frame_info *fi)
744 {
745 CORE_ADDR fp, pc;
746 unsigned long op;
747 unsigned short op1, op2;
748 int i;
749
750 fp = fi->frame;
751 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
752 next_addr = 0;
753
754 pc = get_pc_function_start (fi->pc);
755
756 uses_frame = 0;
757 while (1)
758 {
759 op = (unsigned long) read_memory_integer (pc, 4);
760 if ((op & 0xC0000000) == 0xC0000000)
761 {
762 /* long instruction */
763 if ((op & 0x3FFF0000) == 0x01FF0000)
764 {
765 /* add3 sp,sp,n */
766 short n = op & 0xFFFF;
767 next_addr += n;
768 }
769 else if ((op & 0x3F0F0000) == 0x340F0000)
770 {
771 /* st rn, @(offset,sp) */
772 short offset = op & 0xFFFF;
773 short n = (op >> 20) & 0xF;
774 fi->saved_regs[n] = next_addr + offset;
775 }
776 else if ((op & 0x3F1F0000) == 0x350F0000)
777 {
778 /* st2w rn, @(offset,sp) */
779 short offset = op & 0xFFFF;
780 short n = (op >> 20) & 0xF;
781 fi->saved_regs[n] = next_addr + offset;
782 fi->saved_regs[n + 1] = next_addr + offset + 2;
783 }
784 else
785 break;
786 }
787 else
788 {
789 /* short instructions */
790 if ((op & 0xC0000000) == 0x80000000)
791 {
792 op2 = (op & 0x3FFF8000) >> 15;
793 op1 = op & 0x7FFF;
794 }
795 else
796 {
797 op1 = (op & 0x3FFF8000) >> 15;
798 op2 = op & 0x7FFF;
799 }
800 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
801 break;
802 }
803 pc += 4;
804 }
805
806 fi->extra_info->size = -next_addr;
807
808 if (!(fp & 0xffff))
809 fp = d10v_make_daddr (read_register (SP_REGNUM));
810
811 for (i = 0; i < NUM_REGS - 1; i++)
812 if (fi->saved_regs[i])
813 {
814 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
815 }
816
817 if (fi->saved_regs[LR_REGNUM])
818 {
819 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
820 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
821 }
822 else
823 {
824 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
825 }
826
827 /* th SP is not normally (ever?) saved, but check anyway */
828 if (!fi->saved_regs[SP_REGNUM])
829 {
830 /* if the FP was saved, that means the current FP is valid, */
831 /* otherwise, it isn't being used, so we use the SP instead */
832 if (uses_frame)
833 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
834 else
835 {
836 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
837 fi->extra_info->frameless = 1;
838 fi->saved_regs[FP_REGNUM] = 0;
839 }
840 }
841 }
842
843 static void
844 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
845 {
846 fi->extra_info = (struct frame_extra_info *)
847 frame_obstack_alloc (sizeof (struct frame_extra_info));
848 frame_saved_regs_zalloc (fi);
849
850 fi->extra_info->frameless = 0;
851 fi->extra_info->size = 0;
852 fi->extra_info->return_pc = 0;
853
854 /* The call dummy doesn't save any registers on the stack, so we can
855 return now. */
856 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
857 {
858 return;
859 }
860 else
861 {
862 d10v_frame_init_saved_regs (fi);
863 }
864 }
865
866 static void
867 show_regs (char *args, int from_tty)
868 {
869 int a;
870 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
871 (long) read_register (PC_REGNUM),
872 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
873 (long) read_register (PSW_REGNUM),
874 (long) read_register (24),
875 (long) read_register (25),
876 (long) read_register (23));
877 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
878 (long) read_register (0),
879 (long) read_register (1),
880 (long) read_register (2),
881 (long) read_register (3),
882 (long) read_register (4),
883 (long) read_register (5),
884 (long) read_register (6),
885 (long) read_register (7));
886 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
887 (long) read_register (8),
888 (long) read_register (9),
889 (long) read_register (10),
890 (long) read_register (11),
891 (long) read_register (12),
892 (long) read_register (13),
893 (long) read_register (14),
894 (long) read_register (15));
895 for (a = 0; a < NR_IMAP_REGS; a++)
896 {
897 if (a > 0)
898 printf_filtered (" ");
899 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
900 }
901 if (NR_DMAP_REGS == 1)
902 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
903 else
904 {
905 for (a = 0; a < NR_DMAP_REGS; a++)
906 {
907 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
908 }
909 printf_filtered ("\n");
910 }
911 printf_filtered ("A0-A%d", NR_A_REGS - 1);
912 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
913 {
914 char num[MAX_REGISTER_RAW_SIZE];
915 int i;
916 printf_filtered (" ");
917 read_register_gen (a, (char *) &num);
918 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
919 {
920 printf_filtered ("%02x", (num[i] & 0xff));
921 }
922 }
923 printf_filtered ("\n");
924 }
925
926 static CORE_ADDR
927 d10v_read_pc (ptid_t ptid)
928 {
929 ptid_t save_ptid;
930 CORE_ADDR pc;
931 CORE_ADDR retval;
932
933 save_ptid = inferior_ptid;
934 inferior_ptid = ptid;
935 pc = (int) read_register (PC_REGNUM);
936 inferior_ptid = save_ptid;
937 retval = d10v_make_iaddr (pc);
938 return retval;
939 }
940
941 static void
942 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
943 {
944 ptid_t save_ptid;
945
946 save_ptid = inferior_ptid;
947 inferior_ptid = ptid;
948 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
949 inferior_ptid = save_ptid;
950 }
951
952 static CORE_ADDR
953 d10v_read_sp (void)
954 {
955 return (d10v_make_daddr (read_register (SP_REGNUM)));
956 }
957
958 static void
959 d10v_write_sp (CORE_ADDR val)
960 {
961 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
962 }
963
964 static void
965 d10v_write_fp (CORE_ADDR val)
966 {
967 write_register (FP_REGNUM, d10v_convert_daddr_to_raw (val));
968 }
969
970 static CORE_ADDR
971 d10v_read_fp (void)
972 {
973 return (d10v_make_daddr (read_register (FP_REGNUM)));
974 }
975
976 /* Function: push_return_address (pc)
977 Set up the return address for the inferior function call.
978 Needed for targets where we don't actually execute a JSR/BSR instruction */
979
980 static CORE_ADDR
981 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
982 {
983 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
984 return sp;
985 }
986
987
988 /* When arguments must be pushed onto the stack, they go on in reverse
989 order. The below implements a FILO (stack) to do this. */
990
991 struct stack_item
992 {
993 int len;
994 struct stack_item *prev;
995 void *data;
996 };
997
998 static struct stack_item *push_stack_item (struct stack_item *prev,
999 void *contents, int len);
1000 static struct stack_item *
1001 push_stack_item (struct stack_item *prev, void *contents, int len)
1002 {
1003 struct stack_item *si;
1004 si = xmalloc (sizeof (struct stack_item));
1005 si->data = xmalloc (len);
1006 si->len = len;
1007 si->prev = prev;
1008 memcpy (si->data, contents, len);
1009 return si;
1010 }
1011
1012 static struct stack_item *pop_stack_item (struct stack_item *si);
1013 static struct stack_item *
1014 pop_stack_item (struct stack_item *si)
1015 {
1016 struct stack_item *dead = si;
1017 si = si->prev;
1018 xfree (dead->data);
1019 xfree (dead);
1020 return si;
1021 }
1022
1023
1024 static CORE_ADDR
1025 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1026 int struct_return, CORE_ADDR struct_addr)
1027 {
1028 int i;
1029 int regnum = ARG1_REGNUM;
1030 struct stack_item *si = NULL;
1031
1032 /* Fill in registers and arg lists */
1033 for (i = 0; i < nargs; i++)
1034 {
1035 struct value *arg = args[i];
1036 struct type *type = check_typedef (VALUE_TYPE (arg));
1037 char *contents = VALUE_CONTENTS (arg);
1038 int len = TYPE_LENGTH (type);
1039 /* printf ("push: type=%d len=%d\n", type->code, len); */
1040 {
1041 int aligned_regnum = (regnum + 1) & ~1;
1042 if (len <= 2 && regnum <= ARGN_REGNUM)
1043 /* fits in a single register, do not align */
1044 {
1045 long val = extract_unsigned_integer (contents, len);
1046 write_register (regnum++, val);
1047 }
1048 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1049 /* value fits in remaining registers, store keeping left
1050 aligned */
1051 {
1052 int b;
1053 regnum = aligned_regnum;
1054 for (b = 0; b < (len & ~1); b += 2)
1055 {
1056 long val = extract_unsigned_integer (&contents[b], 2);
1057 write_register (regnum++, val);
1058 }
1059 if (b < len)
1060 {
1061 long val = extract_unsigned_integer (&contents[b], 1);
1062 write_register (regnum++, (val << 8));
1063 }
1064 }
1065 else
1066 {
1067 /* arg will go onto stack */
1068 regnum = ARGN_REGNUM + 1;
1069 si = push_stack_item (si, contents, len);
1070 }
1071 }
1072 }
1073
1074 while (si)
1075 {
1076 sp = (sp - si->len) & ~1;
1077 write_memory (sp, si->data, si->len);
1078 si = pop_stack_item (si);
1079 }
1080
1081 return sp;
1082 }
1083
1084
1085 /* Given a return value in `regbuf' with a type `valtype',
1086 extract and copy its value into `valbuf'. */
1087
1088 static void
1089 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1090 char *valbuf)
1091 {
1092 int len;
1093 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1094 {
1095 len = TYPE_LENGTH (type);
1096 if (len == 1)
1097 {
1098 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1099 store_unsigned_integer (valbuf, 1, c);
1100 }
1101 else if ((len & 1) == 0)
1102 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1103 else
1104 {
1105 /* For return values of odd size, the first byte is in the
1106 least significant part of the first register. The
1107 remaining bytes in remaining registers. Interestingly,
1108 when such values are passed in, the last byte is in the
1109 most significant byte of that same register - wierd. */
1110 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1111 }
1112 }
1113 }
1114
1115 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1116 understands. Returns number of bytes that can be transfered
1117 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1118 (segmentation fault). Since the simulator knows all about how the
1119 VM system works, we just call that to do the translation. */
1120
1121 static void
1122 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1123 CORE_ADDR *targ_addr, int *targ_len)
1124 {
1125 long out_addr;
1126 long out_len;
1127 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1128 &out_addr,
1129 d10v_dmap_register,
1130 d10v_imap_register);
1131 *targ_addr = out_addr;
1132 *targ_len = out_len;
1133 }
1134
1135
1136 /* The following code implements access to, and display of, the D10V's
1137 instruction trace buffer. The buffer consists of 64K or more
1138 4-byte words of data, of which each words includes an 8-bit count,
1139 an 8-bit segment number, and a 16-bit instruction address.
1140
1141 In theory, the trace buffer is continuously capturing instruction
1142 data that the CPU presents on its "debug bus", but in practice, the
1143 ROMified GDB stub only enables tracing when it continues or steps
1144 the program, and stops tracing when the program stops; so it
1145 actually works for GDB to read the buffer counter out of memory and
1146 then read each trace word. The counter records where the tracing
1147 stops, but there is no record of where it started, so we remember
1148 the PC when we resumed and then search backwards in the trace
1149 buffer for a word that includes that address. This is not perfect,
1150 because you will miss trace data if the resumption PC is the target
1151 of a branch. (The value of the buffer counter is semi-random, any
1152 trace data from a previous program stop is gone.) */
1153
1154 /* The address of the last word recorded in the trace buffer. */
1155
1156 #define DBBC_ADDR (0xd80000)
1157
1158 /* The base of the trace buffer, at least for the "Board_0". */
1159
1160 #define TRACE_BUFFER_BASE (0xf40000)
1161
1162 static void trace_command (char *, int);
1163
1164 static void untrace_command (char *, int);
1165
1166 static void trace_info (char *, int);
1167
1168 static void tdisassemble_command (char *, int);
1169
1170 static void display_trace (int, int);
1171
1172 /* True when instruction traces are being collected. */
1173
1174 static int tracing;
1175
1176 /* Remembered PC. */
1177
1178 static CORE_ADDR last_pc;
1179
1180 /* True when trace output should be displayed whenever program stops. */
1181
1182 static int trace_display;
1183
1184 /* True when trace listing should include source lines. */
1185
1186 static int default_trace_show_source = 1;
1187
1188 struct trace_buffer
1189 {
1190 int size;
1191 short *counts;
1192 CORE_ADDR *addrs;
1193 }
1194 trace_data;
1195
1196 static void
1197 trace_command (char *args, int from_tty)
1198 {
1199 /* Clear the host-side trace buffer, allocating space if needed. */
1200 trace_data.size = 0;
1201 if (trace_data.counts == NULL)
1202 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1203 if (trace_data.addrs == NULL)
1204 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1205
1206 tracing = 1;
1207
1208 printf_filtered ("Tracing is now on.\n");
1209 }
1210
1211 static void
1212 untrace_command (char *args, int from_tty)
1213 {
1214 tracing = 0;
1215
1216 printf_filtered ("Tracing is now off.\n");
1217 }
1218
1219 static void
1220 trace_info (char *args, int from_tty)
1221 {
1222 int i;
1223
1224 if (trace_data.size)
1225 {
1226 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1227
1228 for (i = 0; i < trace_data.size; ++i)
1229 {
1230 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1231 i,
1232 trace_data.counts[i],
1233 (trace_data.counts[i] == 1 ? "" : "s"),
1234 paddr_nz (trace_data.addrs[i]));
1235 }
1236 }
1237 else
1238 printf_filtered ("No entries in trace buffer.\n");
1239
1240 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1241 }
1242
1243 /* Print the instruction at address MEMADDR in debugged memory,
1244 on STREAM. Returns length of the instruction, in bytes. */
1245
1246 static int
1247 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1248 {
1249 /* If there's no disassembler, something is very wrong. */
1250 if (tm_print_insn == NULL)
1251 internal_error (__FILE__, __LINE__,
1252 "print_insn: no disassembler");
1253
1254 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1255 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1256 else
1257 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1258 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1259 }
1260
1261 static void
1262 d10v_eva_prepare_to_trace (void)
1263 {
1264 if (!tracing)
1265 return;
1266
1267 last_pc = read_register (PC_REGNUM);
1268 }
1269
1270 /* Collect trace data from the target board and format it into a form
1271 more useful for display. */
1272
1273 static void
1274 d10v_eva_get_trace_data (void)
1275 {
1276 int count, i, j, oldsize;
1277 int trace_addr, trace_seg, trace_cnt, next_cnt;
1278 unsigned int last_trace, trace_word, next_word;
1279 unsigned int *tmpspace;
1280
1281 if (!tracing)
1282 return;
1283
1284 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1285
1286 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1287
1288 /* Collect buffer contents from the target, stopping when we reach
1289 the word recorded when execution resumed. */
1290
1291 count = 0;
1292 while (last_trace > 0)
1293 {
1294 QUIT;
1295 trace_word =
1296 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1297 trace_addr = trace_word & 0xffff;
1298 last_trace -= 4;
1299 /* Ignore an apparently nonsensical entry. */
1300 if (trace_addr == 0xffd5)
1301 continue;
1302 tmpspace[count++] = trace_word;
1303 if (trace_addr == last_pc)
1304 break;
1305 if (count > 65535)
1306 break;
1307 }
1308
1309 /* Move the data to the host-side trace buffer, adjusting counts to
1310 include the last instruction executed and transforming the address
1311 into something that GDB likes. */
1312
1313 for (i = 0; i < count; ++i)
1314 {
1315 trace_word = tmpspace[i];
1316 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1317 trace_addr = trace_word & 0xffff;
1318 next_cnt = (next_word >> 24) & 0xff;
1319 j = trace_data.size + count - i - 1;
1320 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1321 trace_data.counts[j] = next_cnt + 1;
1322 }
1323
1324 oldsize = trace_data.size;
1325 trace_data.size += count;
1326
1327 xfree (tmpspace);
1328
1329 if (trace_display)
1330 display_trace (oldsize, trace_data.size);
1331 }
1332
1333 static void
1334 tdisassemble_command (char *arg, int from_tty)
1335 {
1336 int i, count;
1337 CORE_ADDR low, high;
1338 char *space_index;
1339
1340 if (!arg)
1341 {
1342 low = 0;
1343 high = trace_data.size;
1344 }
1345 else if (!(space_index = (char *) strchr (arg, ' ')))
1346 {
1347 low = parse_and_eval_address (arg);
1348 high = low + 5;
1349 }
1350 else
1351 {
1352 /* Two arguments. */
1353 *space_index = '\0';
1354 low = parse_and_eval_address (arg);
1355 high = parse_and_eval_address (space_index + 1);
1356 if (high < low)
1357 high = low;
1358 }
1359
1360 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1361
1362 display_trace (low, high);
1363
1364 printf_filtered ("End of trace dump.\n");
1365 gdb_flush (gdb_stdout);
1366 }
1367
1368 static void
1369 display_trace (int low, int high)
1370 {
1371 int i, count, trace_show_source, first, suppress;
1372 CORE_ADDR next_address;
1373
1374 trace_show_source = default_trace_show_source;
1375 if (!have_full_symbols () && !have_partial_symbols ())
1376 {
1377 trace_show_source = 0;
1378 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1379 printf_filtered ("Trace will not display any source.\n");
1380 }
1381
1382 first = 1;
1383 suppress = 0;
1384 for (i = low; i < high; ++i)
1385 {
1386 next_address = trace_data.addrs[i];
1387 count = trace_data.counts[i];
1388 while (count-- > 0)
1389 {
1390 QUIT;
1391 if (trace_show_source)
1392 {
1393 struct symtab_and_line sal, sal_prev;
1394
1395 sal_prev = find_pc_line (next_address - 4, 0);
1396 sal = find_pc_line (next_address, 0);
1397
1398 if (sal.symtab)
1399 {
1400 if (first || sal.line != sal_prev.line)
1401 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1402 suppress = 0;
1403 }
1404 else
1405 {
1406 if (!suppress)
1407 /* FIXME-32x64--assumes sal.pc fits in long. */
1408 printf_filtered ("No source file for address %s.\n",
1409 local_hex_string ((unsigned long) sal.pc));
1410 suppress = 1;
1411 }
1412 }
1413 first = 0;
1414 print_address (next_address, gdb_stdout);
1415 printf_filtered (":");
1416 printf_filtered ("\t");
1417 wrap_here (" ");
1418 next_address = next_address + print_insn (next_address, gdb_stdout);
1419 printf_filtered ("\n");
1420 gdb_flush (gdb_stdout);
1421 }
1422 }
1423 }
1424
1425
1426 static gdbarch_init_ftype d10v_gdbarch_init;
1427
1428 static struct gdbarch *
1429 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1430 {
1431 static LONGEST d10v_call_dummy_words[] =
1432 {0};
1433 struct gdbarch *gdbarch;
1434 int d10v_num_regs;
1435 struct gdbarch_tdep *tdep;
1436 gdbarch_register_name_ftype *d10v_register_name;
1437 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1438
1439 /* Find a candidate among the list of pre-declared architectures. */
1440 arches = gdbarch_list_lookup_by_info (arches, &info);
1441 if (arches != NULL)
1442 return arches->gdbarch;
1443
1444 /* None found, create a new architecture from the information
1445 provided. */
1446 tdep = XMALLOC (struct gdbarch_tdep);
1447 gdbarch = gdbarch_alloc (&info, tdep);
1448
1449 switch (info.bfd_arch_info->mach)
1450 {
1451 case bfd_mach_d10v_ts2:
1452 d10v_num_regs = 37;
1453 d10v_register_name = d10v_ts2_register_name;
1454 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1455 tdep->a0_regnum = TS2_A0_REGNUM;
1456 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1457 tdep->dmap_register = d10v_ts2_dmap_register;
1458 tdep->imap_register = d10v_ts2_imap_register;
1459 break;
1460 default:
1461 case bfd_mach_d10v_ts3:
1462 d10v_num_regs = 42;
1463 d10v_register_name = d10v_ts3_register_name;
1464 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1465 tdep->a0_regnum = TS3_A0_REGNUM;
1466 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1467 tdep->dmap_register = d10v_ts3_dmap_register;
1468 tdep->imap_register = d10v_ts3_imap_register;
1469 break;
1470 }
1471
1472 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1473 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1474 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1475 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1476 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1477 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1478
1479 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1480 set_gdbarch_sp_regnum (gdbarch, 15);
1481 set_gdbarch_fp_regnum (gdbarch, 11);
1482 set_gdbarch_pc_regnum (gdbarch, 18);
1483 set_gdbarch_register_name (gdbarch, d10v_register_name);
1484 set_gdbarch_register_size (gdbarch, 2);
1485 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1486 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1487 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1488 set_gdbarch_max_register_raw_size (gdbarch, 8);
1489 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1490 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1491 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1492
1493 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1494 set_gdbarch_addr_bit (gdbarch, 32);
1495 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1496 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1497 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1498 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1499 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1500 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1501 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1502 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1503 double'' is 64 bits. */
1504 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1505 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1506 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1507 switch (info.byte_order)
1508 {
1509 case BIG_ENDIAN:
1510 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1511 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1512 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1513 break;
1514 case LITTLE_ENDIAN:
1515 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1516 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1517 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1518 break;
1519 default:
1520 internal_error (__FILE__, __LINE__,
1521 "d10v_gdbarch_init: bad byte order for float format");
1522 }
1523
1524 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1525 set_gdbarch_call_dummy_length (gdbarch, 0);
1526 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1527 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1528 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1529 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1530 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1531 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1532 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1533 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1534 set_gdbarch_call_dummy_p (gdbarch, 1);
1535 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1536 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1537 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1538
1539 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1540 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1541 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1542 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1543
1544 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1545 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1546 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1547 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1548
1549 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1550 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1551
1552 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1553
1554 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1555 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1556 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1557 set_gdbarch_function_start_offset (gdbarch, 0);
1558 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1559
1560 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1561
1562 set_gdbarch_frame_args_skip (gdbarch, 0);
1563 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1564 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1565 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1566 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1567 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1568 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1569 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1570 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1571 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1572
1573 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1574 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1575
1576 return gdbarch;
1577 }
1578
1579
1580 extern void (*target_resume_hook) (void);
1581 extern void (*target_wait_loop_hook) (void);
1582
1583 void
1584 _initialize_d10v_tdep (void)
1585 {
1586 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1587
1588 tm_print_insn = print_insn_d10v;
1589
1590 target_resume_hook = d10v_eva_prepare_to_trace;
1591 target_wait_loop_hook = d10v_eva_get_trace_data;
1592
1593 add_com ("regs", class_vars, show_regs, "Print all registers");
1594
1595 add_com ("itrace", class_support, trace_command,
1596 "Enable tracing of instruction execution.");
1597
1598 add_com ("iuntrace", class_support, untrace_command,
1599 "Disable tracing of instruction execution.");
1600
1601 add_com ("itdisassemble", class_vars, tdisassemble_command,
1602 "Disassemble the trace buffer.\n\
1603 Two optional arguments specify a range of trace buffer entries\n\
1604 as reported by info trace (NOT addresses!).");
1605
1606 add_info ("itrace", trace_info,
1607 "Display info about the trace data buffer.");
1608
1609 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1610 var_integer, (char *) &trace_display,
1611 "Set automatic display of trace.\n", &setlist),
1612 &showlist);
1613 add_show_from_set (add_set_cmd ("itracesource", no_class,
1614 var_integer, (char *) &default_trace_show_source,
1615 "Set display of source code with trace.\n", &setlist),
1616 &showlist);
1617
1618 }
This page took 0.129281 seconds and 4 git commands to generate.