Include "arch-utils.h".
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Contributed by Martin Hunt, hunt@cygnus.com */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "obstack.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "value.h"
32 #include "inferior.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38
39 #include "sim-d10v.h"
40
41 #undef XMALLOC
42 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
43
44 struct frame_extra_info
45 {
46 CORE_ADDR return_pc;
47 int frameless;
48 int size;
49 };
50
51 struct gdbarch_tdep
52 {
53 int a0_regnum;
54 int nr_dmap_regs;
55 unsigned long (*dmap_register) (int nr);
56 unsigned long (*imap_register) (int nr);
57 int (*register_sim_regno) (int nr);
58 };
59
60 /* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
62
63 #define DMEM_START 0x2000000
64 #define IMEM_START 0x1000000
65 #define STACK_START 0x0007ffe
66
67 /* d10v register names. */
68
69 enum
70 {
71 R0_REGNUM = 0,
72 LR_REGNUM = 13,
73 PSW_REGNUM = 16,
74 NR_IMAP_REGS = 2,
75 NR_A_REGS = 2
76 };
77 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
78 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
79
80 /* d10v calling convention. */
81
82 #define ARG1_REGNUM R0_REGNUM
83 #define ARGN_REGNUM 3
84 #define RET1_REGNUM R0_REGNUM
85
86 /* Local functions */
87
88 extern void _initialize_d10v_tdep PARAMS ((void));
89
90 static void d10v_eva_prepare_to_trace PARAMS ((void));
91
92 static void d10v_eva_get_trace_data PARAMS ((void));
93
94 static int prologue_find_regs PARAMS ((unsigned short op, struct frame_info * fi, CORE_ADDR addr));
95
96 extern void d10v_frame_init_saved_regs PARAMS ((struct frame_info *));
97
98 static void do_d10v_pop_frame PARAMS ((struct frame_info * fi));
99
100 int
101 d10v_frame_chain_valid (chain, frame)
102 CORE_ADDR chain;
103 struct frame_info *frame; /* not used here */
104 {
105 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
106 }
107
108 static CORE_ADDR
109 d10v_stack_align (CORE_ADDR len)
110 {
111 return (len + 1) & ~1;
112 }
113
114 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
115 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
116 and TYPE is the type (which is known to be struct, union or array).
117
118 The d10v returns anything less than 8 bytes in size in
119 registers. */
120
121 int
122 d10v_use_struct_convention (gcc_p, type)
123 int gcc_p;
124 struct type *type;
125 {
126 return (TYPE_LENGTH (type) > 8);
127 }
128
129
130 unsigned char *
131 d10v_breakpoint_from_pc (pcptr, lenptr)
132 CORE_ADDR *pcptr;
133 int *lenptr;
134 {
135 static unsigned char breakpoint[] =
136 {0x2f, 0x90, 0x5e, 0x00};
137 *lenptr = sizeof (breakpoint);
138 return breakpoint;
139 }
140
141 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
142 when the reg_nr isn't valid. */
143
144 enum ts2_regnums
145 {
146 TS2_IMAP0_REGNUM = 32,
147 TS2_DMAP_REGNUM = 34,
148 TS2_NR_DMAP_REGS = 1,
149 TS2_A0_REGNUM = 35
150 };
151
152 static char *
153 d10v_ts2_register_name (int reg_nr)
154 {
155 static char *register_names[] =
156 {
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
160 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
161 "imap0", "imap1", "dmap", "a0", "a1"
162 };
163 if (reg_nr < 0)
164 return NULL;
165 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
166 return NULL;
167 return register_names[reg_nr];
168 }
169
170 enum ts3_regnums
171 {
172 TS3_IMAP0_REGNUM = 36,
173 TS3_DMAP0_REGNUM = 38,
174 TS3_NR_DMAP_REGS = 4,
175 TS3_A0_REGNUM = 32
176 };
177
178 static char *
179 d10v_ts3_register_name (int reg_nr)
180 {
181 static char *register_names[] =
182 {
183 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
184 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
185 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
186 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
187 "a0", "a1",
188 "spi", "spu",
189 "imap0", "imap1",
190 "dmap0", "dmap1", "dmap2", "dmap3"
191 };
192 if (reg_nr < 0)
193 return NULL;
194 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
195 return NULL;
196 return register_names[reg_nr];
197 }
198
199 /* Access the DMAP/IMAP registers in a target independant way. */
200
201 static unsigned long
202 d10v_ts2_dmap_register (int reg_nr)
203 {
204 switch (reg_nr)
205 {
206 case 0:
207 case 1:
208 return 0x2000;
209 case 2:
210 return read_register (TS2_DMAP_REGNUM);
211 default:
212 return 0;
213 }
214 }
215
216 static unsigned long
217 d10v_ts3_dmap_register (int reg_nr)
218 {
219 return read_register (TS3_DMAP0_REGNUM + reg_nr);
220 }
221
222 static unsigned long
223 d10v_dmap_register (int reg_nr)
224 {
225 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
226 }
227
228 static unsigned long
229 d10v_ts2_imap_register (int reg_nr)
230 {
231 return read_register (TS2_IMAP0_REGNUM + reg_nr);
232 }
233
234 static unsigned long
235 d10v_ts3_imap_register (int reg_nr)
236 {
237 return read_register (TS3_IMAP0_REGNUM + reg_nr);
238 }
239
240 static unsigned long
241 d10v_imap_register (int reg_nr)
242 {
243 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
244 }
245
246 /* MAP GDB's internal register numbering (determined by the layout fo
247 the REGISTER_BYTE array) onto the simulator's register
248 numbering. */
249
250 static int
251 d10v_ts2_register_sim_regno (int nr)
252 {
253 if (nr >= TS2_IMAP0_REGNUM
254 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
255 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
256 if (nr == TS2_DMAP_REGNUM)
257 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
258 if (nr >= TS2_A0_REGNUM
259 && nr < TS2_A0_REGNUM + NR_A_REGS)
260 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
261 return nr;
262 }
263
264 static int
265 d10v_ts3_register_sim_regno (int nr)
266 {
267 if (nr >= TS3_IMAP0_REGNUM
268 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
269 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
270 if (nr >= TS3_DMAP0_REGNUM
271 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
272 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
273 if (nr >= TS3_A0_REGNUM
274 && nr < TS3_A0_REGNUM + NR_A_REGS)
275 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
276 return nr;
277 }
278
279 int
280 d10v_register_sim_regno (int nr)
281 {
282 return gdbarch_tdep (current_gdbarch)->register_sim_regno (nr);
283 }
284
285 /* Index within `registers' of the first byte of the space for
286 register REG_NR. */
287
288 int
289 d10v_register_byte (reg_nr)
290 int reg_nr;
291 {
292 if (reg_nr < A0_REGNUM)
293 return (reg_nr * 2);
294 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
295 return (A0_REGNUM * 2
296 + (reg_nr - A0_REGNUM) * 8);
297 else
298 return (A0_REGNUM * 2
299 + NR_A_REGS * 8
300 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
301 }
302
303 /* Number of bytes of storage in the actual machine representation for
304 register REG_NR. */
305
306 int
307 d10v_register_raw_size (reg_nr)
308 int reg_nr;
309 {
310 if (reg_nr < A0_REGNUM)
311 return 2;
312 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
313 return 8;
314 else
315 return 2;
316 }
317
318 /* Number of bytes of storage in the program's representation
319 for register N. */
320
321 int
322 d10v_register_virtual_size (reg_nr)
323 int reg_nr;
324 {
325 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
326 }
327
328 /* Return the GDB type object for the "standard" data type
329 of data in register N. */
330
331 struct type *
332 d10v_register_virtual_type (reg_nr)
333 int reg_nr;
334 {
335 if (reg_nr >= A0_REGNUM
336 && reg_nr < (A0_REGNUM + NR_A_REGS))
337 return builtin_type_int64;
338 else if (reg_nr == PC_REGNUM
339 || reg_nr == SP_REGNUM)
340 return builtin_type_int32;
341 else
342 return builtin_type_int16;
343 }
344
345 /* convert $pc and $sp to/from virtual addresses */
346 int
347 d10v_register_convertible (nr)
348 int nr;
349 {
350 return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
351 }
352
353 void
354 d10v_register_convert_to_virtual (regnum, type, from, to)
355 int regnum;
356 struct type *type;
357 char *from;
358 char *to;
359 {
360 ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
361 if (regnum == PC_REGNUM)
362 x = (x << 2) | IMEM_START;
363 else
364 x |= DMEM_START;
365 store_unsigned_integer (to, TYPE_LENGTH (type), x);
366 }
367
368 void
369 d10v_register_convert_to_raw (type, regnum, from, to)
370 struct type *type;
371 int regnum;
372 char *from;
373 char *to;
374 {
375 ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
376 x &= 0x3ffff;
377 if (regnum == PC_REGNUM)
378 x >>= 2;
379 store_unsigned_integer (to, 2, x);
380 }
381
382
383 CORE_ADDR
384 d10v_make_daddr (x)
385 CORE_ADDR x;
386 {
387 return ((x) | DMEM_START);
388 }
389
390 CORE_ADDR
391 d10v_make_iaddr (x)
392 CORE_ADDR x;
393 {
394 return (((x) << 2) | IMEM_START);
395 }
396
397 int
398 d10v_daddr_p (x)
399 CORE_ADDR x;
400 {
401 return (((x) & 0x3000000) == DMEM_START);
402 }
403
404 int
405 d10v_iaddr_p (x)
406 CORE_ADDR x;
407 {
408 return (((x) & 0x3000000) == IMEM_START);
409 }
410
411
412 CORE_ADDR
413 d10v_convert_iaddr_to_raw (x)
414 CORE_ADDR x;
415 {
416 return (((x) >> 2) & 0xffff);
417 }
418
419 CORE_ADDR
420 d10v_convert_daddr_to_raw (x)
421 CORE_ADDR x;
422 {
423 return ((x) & 0xffff);
424 }
425
426 /* Store the address of the place in which to copy the structure the
427 subroutine will return. This is called from call_function.
428
429 We store structs through a pointer passed in the first Argument
430 register. */
431
432 void
433 d10v_store_struct_return (addr, sp)
434 CORE_ADDR addr;
435 CORE_ADDR sp;
436 {
437 write_register (ARG1_REGNUM, (addr));
438 }
439
440 /* Write into appropriate registers a function return value
441 of type TYPE, given in virtual format.
442
443 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
444
445 void
446 d10v_store_return_value (type, valbuf)
447 struct type *type;
448 char *valbuf;
449 {
450 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
451 valbuf,
452 TYPE_LENGTH (type));
453 }
454
455 /* Extract from an array REGBUF containing the (raw) register state
456 the address in which a function should return its structure value,
457 as a CORE_ADDR (or an expression that can be used as one). */
458
459 CORE_ADDR
460 d10v_extract_struct_value_address (regbuf)
461 char *regbuf;
462 {
463 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
464 REGISTER_RAW_SIZE (ARG1_REGNUM))
465 | DMEM_START);
466 }
467
468 CORE_ADDR
469 d10v_frame_saved_pc (frame)
470 struct frame_info *frame;
471 {
472 return ((frame)->extra_info->return_pc);
473 }
474
475 CORE_ADDR
476 d10v_frame_args_address (fi)
477 struct frame_info *fi;
478 {
479 return (fi)->frame;
480 }
481
482 CORE_ADDR
483 d10v_frame_locals_address (fi)
484 struct frame_info *fi;
485 {
486 return (fi)->frame;
487 }
488
489 /* Immediately after a function call, return the saved pc. We can't
490 use frame->return_pc beause that is determined by reading R13 off
491 the stack and that may not be written yet. */
492
493 CORE_ADDR
494 d10v_saved_pc_after_call (frame)
495 struct frame_info *frame;
496 {
497 return ((read_register (LR_REGNUM) << 2)
498 | IMEM_START);
499 }
500
501 /* Discard from the stack the innermost frame, restoring all saved
502 registers. */
503
504 void
505 d10v_pop_frame ()
506 {
507 generic_pop_current_frame (do_d10v_pop_frame);
508 }
509
510 static void
511 do_d10v_pop_frame (fi)
512 struct frame_info *fi;
513 {
514 CORE_ADDR fp;
515 int regnum;
516 char raw_buffer[8];
517
518 fp = FRAME_FP (fi);
519 /* fill out fsr with the address of where each */
520 /* register was stored in the frame */
521 d10v_frame_init_saved_regs (fi);
522
523 /* now update the current registers with the old values */
524 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
525 {
526 if (fi->saved_regs[regnum])
527 {
528 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
529 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
530 }
531 }
532 for (regnum = 0; regnum < SP_REGNUM; regnum++)
533 {
534 if (fi->saved_regs[regnum])
535 {
536 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
537 }
538 }
539 if (fi->saved_regs[PSW_REGNUM])
540 {
541 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
542 }
543
544 write_register (PC_REGNUM, read_register (LR_REGNUM));
545 write_register (SP_REGNUM, fp + fi->extra_info->size);
546 target_store_registers (-1);
547 flush_cached_frames ();
548 }
549
550 static int
551 check_prologue (op)
552 unsigned short op;
553 {
554 /* st rn, @-sp */
555 if ((op & 0x7E1F) == 0x6C1F)
556 return 1;
557
558 /* st2w rn, @-sp */
559 if ((op & 0x7E3F) == 0x6E1F)
560 return 1;
561
562 /* subi sp, n */
563 if ((op & 0x7FE1) == 0x01E1)
564 return 1;
565
566 /* mv r11, sp */
567 if (op == 0x417E)
568 return 1;
569
570 /* nop */
571 if (op == 0x5E00)
572 return 1;
573
574 /* st rn, @sp */
575 if ((op & 0x7E1F) == 0x681E)
576 return 1;
577
578 /* st2w rn, @sp */
579 if ((op & 0x7E3F) == 0x3A1E)
580 return 1;
581
582 return 0;
583 }
584
585 CORE_ADDR
586 d10v_skip_prologue (pc)
587 CORE_ADDR pc;
588 {
589 unsigned long op;
590 unsigned short op1, op2;
591 CORE_ADDR func_addr, func_end;
592 struct symtab_and_line sal;
593
594 /* If we have line debugging information, then the end of the */
595 /* prologue should the first assembly instruction of the first source line */
596 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
597 {
598 sal = find_pc_line (func_addr, 0);
599 if (sal.end && sal.end < func_end)
600 return sal.end;
601 }
602
603 if (target_read_memory (pc, (char *) &op, 4))
604 return pc; /* Can't access it -- assume no prologue. */
605
606 while (1)
607 {
608 op = (unsigned long) read_memory_integer (pc, 4);
609 if ((op & 0xC0000000) == 0xC0000000)
610 {
611 /* long instruction */
612 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
613 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
614 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
615 break;
616 }
617 else
618 {
619 /* short instructions */
620 if ((op & 0xC0000000) == 0x80000000)
621 {
622 op2 = (op & 0x3FFF8000) >> 15;
623 op1 = op & 0x7FFF;
624 }
625 else
626 {
627 op1 = (op & 0x3FFF8000) >> 15;
628 op2 = op & 0x7FFF;
629 }
630 if (check_prologue (op1))
631 {
632 if (!check_prologue (op2))
633 {
634 /* if the previous opcode was really part of the prologue */
635 /* and not just a NOP, then we want to break after both instructions */
636 if (op1 != 0x5E00)
637 pc += 4;
638 break;
639 }
640 }
641 else
642 break;
643 }
644 pc += 4;
645 }
646 return pc;
647 }
648
649 /* Given a GDB frame, determine the address of the calling function's frame.
650 This will be used to create a new GDB frame struct, and then
651 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
652 */
653
654 CORE_ADDR
655 d10v_frame_chain (fi)
656 struct frame_info *fi;
657 {
658 d10v_frame_init_saved_regs (fi);
659
660 if (fi->extra_info->return_pc == IMEM_START
661 || inside_entry_file (fi->extra_info->return_pc))
662 return (CORE_ADDR) 0;
663
664 if (!fi->saved_regs[FP_REGNUM])
665 {
666 if (!fi->saved_regs[SP_REGNUM]
667 || fi->saved_regs[SP_REGNUM] == STACK_START)
668 return (CORE_ADDR) 0;
669
670 return fi->saved_regs[SP_REGNUM];
671 }
672
673 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
674 REGISTER_RAW_SIZE (FP_REGNUM)))
675 return (CORE_ADDR) 0;
676
677 return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
678 REGISTER_RAW_SIZE (FP_REGNUM)));
679 }
680
681 static int next_addr, uses_frame;
682
683 static int
684 prologue_find_regs (op, fi, addr)
685 unsigned short op;
686 struct frame_info *fi;
687 CORE_ADDR addr;
688 {
689 int n;
690
691 /* st rn, @-sp */
692 if ((op & 0x7E1F) == 0x6C1F)
693 {
694 n = (op & 0x1E0) >> 5;
695 next_addr -= 2;
696 fi->saved_regs[n] = next_addr;
697 return 1;
698 }
699
700 /* st2w rn, @-sp */
701 else if ((op & 0x7E3F) == 0x6E1F)
702 {
703 n = (op & 0x1E0) >> 5;
704 next_addr -= 4;
705 fi->saved_regs[n] = next_addr;
706 fi->saved_regs[n + 1] = next_addr + 2;
707 return 1;
708 }
709
710 /* subi sp, n */
711 if ((op & 0x7FE1) == 0x01E1)
712 {
713 n = (op & 0x1E) >> 1;
714 if (n == 0)
715 n = 16;
716 next_addr -= n;
717 return 1;
718 }
719
720 /* mv r11, sp */
721 if (op == 0x417E)
722 {
723 uses_frame = 1;
724 return 1;
725 }
726
727 /* nop */
728 if (op == 0x5E00)
729 return 1;
730
731 /* st rn, @sp */
732 if ((op & 0x7E1F) == 0x681E)
733 {
734 n = (op & 0x1E0) >> 5;
735 fi->saved_regs[n] = next_addr;
736 return 1;
737 }
738
739 /* st2w rn, @sp */
740 if ((op & 0x7E3F) == 0x3A1E)
741 {
742 n = (op & 0x1E0) >> 5;
743 fi->saved_regs[n] = next_addr;
744 fi->saved_regs[n + 1] = next_addr + 2;
745 return 1;
746 }
747
748 return 0;
749 }
750
751 /* Put here the code to store, into fi->saved_regs, the addresses of
752 the saved registers of frame described by FRAME_INFO. This
753 includes special registers such as pc and fp saved in special ways
754 in the stack frame. sp is even more special: the address we return
755 for it IS the sp for the next frame. */
756
757 void
758 d10v_frame_init_saved_regs (fi)
759 struct frame_info *fi;
760 {
761 CORE_ADDR fp, pc;
762 unsigned long op;
763 unsigned short op1, op2;
764 int i;
765
766 fp = fi->frame;
767 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
768 next_addr = 0;
769
770 pc = get_pc_function_start (fi->pc);
771
772 uses_frame = 0;
773 while (1)
774 {
775 op = (unsigned long) read_memory_integer (pc, 4);
776 if ((op & 0xC0000000) == 0xC0000000)
777 {
778 /* long instruction */
779 if ((op & 0x3FFF0000) == 0x01FF0000)
780 {
781 /* add3 sp,sp,n */
782 short n = op & 0xFFFF;
783 next_addr += n;
784 }
785 else if ((op & 0x3F0F0000) == 0x340F0000)
786 {
787 /* st rn, @(offset,sp) */
788 short offset = op & 0xFFFF;
789 short n = (op >> 20) & 0xF;
790 fi->saved_regs[n] = next_addr + offset;
791 }
792 else if ((op & 0x3F1F0000) == 0x350F0000)
793 {
794 /* st2w rn, @(offset,sp) */
795 short offset = op & 0xFFFF;
796 short n = (op >> 20) & 0xF;
797 fi->saved_regs[n] = next_addr + offset;
798 fi->saved_regs[n + 1] = next_addr + offset + 2;
799 }
800 else
801 break;
802 }
803 else
804 {
805 /* short instructions */
806 if ((op & 0xC0000000) == 0x80000000)
807 {
808 op2 = (op & 0x3FFF8000) >> 15;
809 op1 = op & 0x7FFF;
810 }
811 else
812 {
813 op1 = (op & 0x3FFF8000) >> 15;
814 op2 = op & 0x7FFF;
815 }
816 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
817 break;
818 }
819 pc += 4;
820 }
821
822 fi->extra_info->size = -next_addr;
823
824 if (!(fp & 0xffff))
825 fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
826
827 for (i = 0; i < NUM_REGS - 1; i++)
828 if (fi->saved_regs[i])
829 {
830 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
831 }
832
833 if (fi->saved_regs[LR_REGNUM])
834 {
835 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
836 fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
837 }
838 else
839 {
840 fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
841 }
842
843 /* th SP is not normally (ever?) saved, but check anyway */
844 if (!fi->saved_regs[SP_REGNUM])
845 {
846 /* if the FP was saved, that means the current FP is valid, */
847 /* otherwise, it isn't being used, so we use the SP instead */
848 if (uses_frame)
849 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
850 else
851 {
852 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
853 fi->extra_info->frameless = 1;
854 fi->saved_regs[FP_REGNUM] = 0;
855 }
856 }
857 }
858
859 void
860 d10v_init_extra_frame_info (fromleaf, fi)
861 int fromleaf;
862 struct frame_info *fi;
863 {
864 fi->extra_info = (struct frame_extra_info *)
865 frame_obstack_alloc (sizeof (struct frame_extra_info));
866 frame_saved_regs_zalloc (fi);
867
868 fi->extra_info->frameless = 0;
869 fi->extra_info->size = 0;
870 fi->extra_info->return_pc = 0;
871
872 /* The call dummy doesn't save any registers on the stack, so we can
873 return now. */
874 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
875 {
876 return;
877 }
878 else
879 {
880 d10v_frame_init_saved_regs (fi);
881 }
882 }
883
884 static void
885 show_regs (args, from_tty)
886 char *args;
887 int from_tty;
888 {
889 int a;
890 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
891 (long) read_register (PC_REGNUM),
892 (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
893 (long) read_register (PSW_REGNUM),
894 (long) read_register (24),
895 (long) read_register (25),
896 (long) read_register (23));
897 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
898 (long) read_register (0),
899 (long) read_register (1),
900 (long) read_register (2),
901 (long) read_register (3),
902 (long) read_register (4),
903 (long) read_register (5),
904 (long) read_register (6),
905 (long) read_register (7));
906 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
907 (long) read_register (8),
908 (long) read_register (9),
909 (long) read_register (10),
910 (long) read_register (11),
911 (long) read_register (12),
912 (long) read_register (13),
913 (long) read_register (14),
914 (long) read_register (15));
915 for (a = 0; a < NR_IMAP_REGS; a++)
916 {
917 if (a > 0)
918 printf_filtered (" ");
919 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
920 }
921 if (NR_DMAP_REGS == 1)
922 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
923 else
924 {
925 for (a = 0; a < NR_DMAP_REGS; a++)
926 {
927 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
928 }
929 printf_filtered ("\n");
930 }
931 printf_filtered ("A0-A%d", NR_A_REGS - 1);
932 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
933 {
934 char num[MAX_REGISTER_RAW_SIZE];
935 int i;
936 printf_filtered (" ");
937 read_register_gen (a, (char *) &num);
938 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
939 {
940 printf_filtered ("%02x", (num[i] & 0xff));
941 }
942 }
943 printf_filtered ("\n");
944 }
945
946 CORE_ADDR
947 d10v_read_pc (pid)
948 int pid;
949 {
950 int save_pid;
951 CORE_ADDR pc;
952 CORE_ADDR retval;
953
954 save_pid = inferior_pid;
955 inferior_pid = pid;
956 pc = (int) read_register (PC_REGNUM);
957 inferior_pid = save_pid;
958 retval = D10V_MAKE_IADDR (pc);
959 return retval;
960 }
961
962 void
963 d10v_write_pc (val, pid)
964 CORE_ADDR val;
965 int pid;
966 {
967 int save_pid;
968
969 save_pid = inferior_pid;
970 inferior_pid = pid;
971 write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
972 inferior_pid = save_pid;
973 }
974
975 CORE_ADDR
976 d10v_read_sp ()
977 {
978 return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
979 }
980
981 void
982 d10v_write_sp (val)
983 CORE_ADDR val;
984 {
985 write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
986 }
987
988 void
989 d10v_write_fp (val)
990 CORE_ADDR val;
991 {
992 write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
993 }
994
995 CORE_ADDR
996 d10v_read_fp ()
997 {
998 return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
999 }
1000
1001 /* Function: push_return_address (pc)
1002 Set up the return address for the inferior function call.
1003 Needed for targets where we don't actually execute a JSR/BSR instruction */
1004
1005 CORE_ADDR
1006 d10v_push_return_address (pc, sp)
1007 CORE_ADDR pc;
1008 CORE_ADDR sp;
1009 {
1010 write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
1011 return sp;
1012 }
1013
1014
1015 /* When arguments must be pushed onto the stack, they go on in reverse
1016 order. The below implements a FILO (stack) to do this. */
1017
1018 struct stack_item
1019 {
1020 int len;
1021 struct stack_item *prev;
1022 void *data;
1023 };
1024
1025 static struct stack_item *push_stack_item PARAMS ((struct stack_item * prev, void *contents, int len));
1026 static struct stack_item *
1027 push_stack_item (prev, contents, len)
1028 struct stack_item *prev;
1029 void *contents;
1030 int len;
1031 {
1032 struct stack_item *si;
1033 si = xmalloc (sizeof (struct stack_item));
1034 si->data = xmalloc (len);
1035 si->len = len;
1036 si->prev = prev;
1037 memcpy (si->data, contents, len);
1038 return si;
1039 }
1040
1041 static struct stack_item *pop_stack_item PARAMS ((struct stack_item * si));
1042 static struct stack_item *
1043 pop_stack_item (si)
1044 struct stack_item *si;
1045 {
1046 struct stack_item *dead = si;
1047 si = si->prev;
1048 free (dead->data);
1049 free (dead);
1050 return si;
1051 }
1052
1053
1054 CORE_ADDR
1055 d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
1056 int nargs;
1057 value_ptr *args;
1058 CORE_ADDR sp;
1059 int struct_return;
1060 CORE_ADDR struct_addr;
1061 {
1062 int i;
1063 int regnum = ARG1_REGNUM;
1064 struct stack_item *si = NULL;
1065
1066 /* Fill in registers and arg lists */
1067 for (i = 0; i < nargs; i++)
1068 {
1069 value_ptr arg = args[i];
1070 struct type *type = check_typedef (VALUE_TYPE (arg));
1071 char *contents = VALUE_CONTENTS (arg);
1072 int len = TYPE_LENGTH (type);
1073 /* printf ("push: type=%d len=%d\n", type->code, len); */
1074 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1075 {
1076 /* pointers require special handling - first convert and
1077 then store */
1078 long val = extract_signed_integer (contents, len);
1079 len = 2;
1080 if (TYPE_TARGET_TYPE (type)
1081 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1082 {
1083 /* function pointer */
1084 val = D10V_CONVERT_IADDR_TO_RAW (val);
1085 }
1086 else if (D10V_IADDR_P (val))
1087 {
1088 /* also function pointer! */
1089 val = D10V_CONVERT_DADDR_TO_RAW (val);
1090 }
1091 else
1092 {
1093 /* data pointer */
1094 val &= 0xFFFF;
1095 }
1096 if (regnum <= ARGN_REGNUM)
1097 write_register (regnum++, val & 0xffff);
1098 else
1099 {
1100 char ptr[2];
1101 /* arg will go onto stack */
1102 store_address (ptr, 2, val & 0xffff);
1103 si = push_stack_item (si, ptr, 2);
1104 }
1105 }
1106 else
1107 {
1108 int aligned_regnum = (regnum + 1) & ~1;
1109 if (len <= 2 && regnum <= ARGN_REGNUM)
1110 /* fits in a single register, do not align */
1111 {
1112 long val = extract_unsigned_integer (contents, len);
1113 write_register (regnum++, val);
1114 }
1115 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1116 /* value fits in remaining registers, store keeping left
1117 aligned */
1118 {
1119 int b;
1120 regnum = aligned_regnum;
1121 for (b = 0; b < (len & ~1); b += 2)
1122 {
1123 long val = extract_unsigned_integer (&contents[b], 2);
1124 write_register (regnum++, val);
1125 }
1126 if (b < len)
1127 {
1128 long val = extract_unsigned_integer (&contents[b], 1);
1129 write_register (regnum++, (val << 8));
1130 }
1131 }
1132 else
1133 {
1134 /* arg will go onto stack */
1135 regnum = ARGN_REGNUM + 1;
1136 si = push_stack_item (si, contents, len);
1137 }
1138 }
1139 }
1140
1141 while (si)
1142 {
1143 sp = (sp - si->len) & ~1;
1144 write_memory (sp, si->data, si->len);
1145 si = pop_stack_item (si);
1146 }
1147
1148 return sp;
1149 }
1150
1151
1152 /* Given a return value in `regbuf' with a type `valtype',
1153 extract and copy its value into `valbuf'. */
1154
1155 void
1156 d10v_extract_return_value (type, regbuf, valbuf)
1157 struct type *type;
1158 char regbuf[REGISTER_BYTES];
1159 char *valbuf;
1160 {
1161 int len;
1162 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1163 if (TYPE_CODE (type) == TYPE_CODE_PTR
1164 && TYPE_TARGET_TYPE (type)
1165 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1166 {
1167 /* pointer to function */
1168 int num;
1169 short snum;
1170 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1171 store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
1172 }
1173 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
1174 {
1175 /* pointer to data */
1176 int num;
1177 short snum;
1178 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1179 store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
1180 }
1181 else
1182 {
1183 len = TYPE_LENGTH (type);
1184 if (len == 1)
1185 {
1186 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1187 store_unsigned_integer (valbuf, 1, c);
1188 }
1189 else if ((len & 1) == 0)
1190 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1191 else
1192 {
1193 /* For return values of odd size, the first byte is in the
1194 least significant part of the first register. The
1195 remaining bytes in remaining registers. Interestingly,
1196 when such values are passed in, the last byte is in the
1197 most significant byte of that same register - wierd. */
1198 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1199 }
1200 }
1201 }
1202
1203 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1204 understands. Returns number of bytes that can be transfered
1205 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1206 (segmentation fault). Since the simulator knows all about how the
1207 VM system works, we just call that to do the translation. */
1208
1209 static void
1210 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1211 CORE_ADDR *targ_addr, int *targ_len)
1212 {
1213 long out_addr;
1214 long out_len;
1215 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1216 &out_addr,
1217 d10v_dmap_register,
1218 d10v_imap_register);
1219 *targ_addr = out_addr;
1220 *targ_len = out_len;
1221 }
1222
1223
1224 /* The following code implements access to, and display of, the D10V's
1225 instruction trace buffer. The buffer consists of 64K or more
1226 4-byte words of data, of which each words includes an 8-bit count,
1227 an 8-bit segment number, and a 16-bit instruction address.
1228
1229 In theory, the trace buffer is continuously capturing instruction
1230 data that the CPU presents on its "debug bus", but in practice, the
1231 ROMified GDB stub only enables tracing when it continues or steps
1232 the program, and stops tracing when the program stops; so it
1233 actually works for GDB to read the buffer counter out of memory and
1234 then read each trace word. The counter records where the tracing
1235 stops, but there is no record of where it started, so we remember
1236 the PC when we resumed and then search backwards in the trace
1237 buffer for a word that includes that address. This is not perfect,
1238 because you will miss trace data if the resumption PC is the target
1239 of a branch. (The value of the buffer counter is semi-random, any
1240 trace data from a previous program stop is gone.) */
1241
1242 /* The address of the last word recorded in the trace buffer. */
1243
1244 #define DBBC_ADDR (0xd80000)
1245
1246 /* The base of the trace buffer, at least for the "Board_0". */
1247
1248 #define TRACE_BUFFER_BASE (0xf40000)
1249
1250 static void trace_command PARAMS ((char *, int));
1251
1252 static void untrace_command PARAMS ((char *, int));
1253
1254 static void trace_info PARAMS ((char *, int));
1255
1256 static void tdisassemble_command PARAMS ((char *, int));
1257
1258 static void display_trace PARAMS ((int, int));
1259
1260 /* True when instruction traces are being collected. */
1261
1262 static int tracing;
1263
1264 /* Remembered PC. */
1265
1266 static CORE_ADDR last_pc;
1267
1268 /* True when trace output should be displayed whenever program stops. */
1269
1270 static int trace_display;
1271
1272 /* True when trace listing should include source lines. */
1273
1274 static int default_trace_show_source = 1;
1275
1276 struct trace_buffer
1277 {
1278 int size;
1279 short *counts;
1280 CORE_ADDR *addrs;
1281 }
1282 trace_data;
1283
1284 static void
1285 trace_command (args, from_tty)
1286 char *args;
1287 int from_tty;
1288 {
1289 /* Clear the host-side trace buffer, allocating space if needed. */
1290 trace_data.size = 0;
1291 if (trace_data.counts == NULL)
1292 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1293 if (trace_data.addrs == NULL)
1294 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1295
1296 tracing = 1;
1297
1298 printf_filtered ("Tracing is now on.\n");
1299 }
1300
1301 static void
1302 untrace_command (args, from_tty)
1303 char *args;
1304 int from_tty;
1305 {
1306 tracing = 0;
1307
1308 printf_filtered ("Tracing is now off.\n");
1309 }
1310
1311 static void
1312 trace_info (args, from_tty)
1313 char *args;
1314 int from_tty;
1315 {
1316 int i;
1317
1318 if (trace_data.size)
1319 {
1320 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1321
1322 for (i = 0; i < trace_data.size; ++i)
1323 {
1324 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1325 i,
1326 trace_data.counts[i],
1327 (trace_data.counts[i] == 1 ? "" : "s"),
1328 paddr_nz (trace_data.addrs[i]));
1329 }
1330 }
1331 else
1332 printf_filtered ("No entries in trace buffer.\n");
1333
1334 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1335 }
1336
1337 /* Print the instruction at address MEMADDR in debugged memory,
1338 on STREAM. Returns length of the instruction, in bytes. */
1339
1340 static int
1341 print_insn (memaddr, stream)
1342 CORE_ADDR memaddr;
1343 struct ui_file *stream;
1344 {
1345 /* If there's no disassembler, something is very wrong. */
1346 if (tm_print_insn == NULL)
1347 internal_error ("print_insn: no disassembler");
1348
1349 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1350 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1351 else
1352 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1353 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
1354 }
1355
1356 static void
1357 d10v_eva_prepare_to_trace ()
1358 {
1359 if (!tracing)
1360 return;
1361
1362 last_pc = read_register (PC_REGNUM);
1363 }
1364
1365 /* Collect trace data from the target board and format it into a form
1366 more useful for display. */
1367
1368 static void
1369 d10v_eva_get_trace_data ()
1370 {
1371 int count, i, j, oldsize;
1372 int trace_addr, trace_seg, trace_cnt, next_cnt;
1373 unsigned int last_trace, trace_word, next_word;
1374 unsigned int *tmpspace;
1375
1376 if (!tracing)
1377 return;
1378
1379 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1380
1381 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1382
1383 /* Collect buffer contents from the target, stopping when we reach
1384 the word recorded when execution resumed. */
1385
1386 count = 0;
1387 while (last_trace > 0)
1388 {
1389 QUIT;
1390 trace_word =
1391 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1392 trace_addr = trace_word & 0xffff;
1393 last_trace -= 4;
1394 /* Ignore an apparently nonsensical entry. */
1395 if (trace_addr == 0xffd5)
1396 continue;
1397 tmpspace[count++] = trace_word;
1398 if (trace_addr == last_pc)
1399 break;
1400 if (count > 65535)
1401 break;
1402 }
1403
1404 /* Move the data to the host-side trace buffer, adjusting counts to
1405 include the last instruction executed and transforming the address
1406 into something that GDB likes. */
1407
1408 for (i = 0; i < count; ++i)
1409 {
1410 trace_word = tmpspace[i];
1411 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1412 trace_addr = trace_word & 0xffff;
1413 next_cnt = (next_word >> 24) & 0xff;
1414 j = trace_data.size + count - i - 1;
1415 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1416 trace_data.counts[j] = next_cnt + 1;
1417 }
1418
1419 oldsize = trace_data.size;
1420 trace_data.size += count;
1421
1422 free (tmpspace);
1423
1424 if (trace_display)
1425 display_trace (oldsize, trace_data.size);
1426 }
1427
1428 static void
1429 tdisassemble_command (arg, from_tty)
1430 char *arg;
1431 int from_tty;
1432 {
1433 int i, count;
1434 CORE_ADDR low, high;
1435 char *space_index;
1436
1437 if (!arg)
1438 {
1439 low = 0;
1440 high = trace_data.size;
1441 }
1442 else if (!(space_index = (char *) strchr (arg, ' ')))
1443 {
1444 low = parse_and_eval_address (arg);
1445 high = low + 5;
1446 }
1447 else
1448 {
1449 /* Two arguments. */
1450 *space_index = '\0';
1451 low = parse_and_eval_address (arg);
1452 high = parse_and_eval_address (space_index + 1);
1453 if (high < low)
1454 high = low;
1455 }
1456
1457 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1458
1459 display_trace (low, high);
1460
1461 printf_filtered ("End of trace dump.\n");
1462 gdb_flush (gdb_stdout);
1463 }
1464
1465 static void
1466 display_trace (low, high)
1467 int low, high;
1468 {
1469 int i, count, trace_show_source, first, suppress;
1470 CORE_ADDR next_address;
1471
1472 trace_show_source = default_trace_show_source;
1473 if (!have_full_symbols () && !have_partial_symbols ())
1474 {
1475 trace_show_source = 0;
1476 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1477 printf_filtered ("Trace will not display any source.\n");
1478 }
1479
1480 first = 1;
1481 suppress = 0;
1482 for (i = low; i < high; ++i)
1483 {
1484 next_address = trace_data.addrs[i];
1485 count = trace_data.counts[i];
1486 while (count-- > 0)
1487 {
1488 QUIT;
1489 if (trace_show_source)
1490 {
1491 struct symtab_and_line sal, sal_prev;
1492
1493 sal_prev = find_pc_line (next_address - 4, 0);
1494 sal = find_pc_line (next_address, 0);
1495
1496 if (sal.symtab)
1497 {
1498 if (first || sal.line != sal_prev.line)
1499 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1500 suppress = 0;
1501 }
1502 else
1503 {
1504 if (!suppress)
1505 /* FIXME-32x64--assumes sal.pc fits in long. */
1506 printf_filtered ("No source file for address %s.\n",
1507 local_hex_string ((unsigned long) sal.pc));
1508 suppress = 1;
1509 }
1510 }
1511 first = 0;
1512 print_address (next_address, gdb_stdout);
1513 printf_filtered (":");
1514 printf_filtered ("\t");
1515 wrap_here (" ");
1516 next_address = next_address + print_insn (next_address, gdb_stdout);
1517 printf_filtered ("\n");
1518 gdb_flush (gdb_stdout);
1519 }
1520 }
1521 }
1522
1523
1524 static gdbarch_init_ftype d10v_gdbarch_init;
1525
1526 static struct gdbarch *
1527 d10v_gdbarch_init (info, arches)
1528 struct gdbarch_info info;
1529 struct gdbarch_list *arches;
1530 {
1531 static LONGEST d10v_call_dummy_words[] =
1532 {0};
1533 struct gdbarch *gdbarch;
1534 int d10v_num_regs;
1535 struct gdbarch_tdep *tdep;
1536 gdbarch_register_name_ftype *d10v_register_name;
1537
1538 /* Find a candidate among the list of pre-declared architectures. */
1539 arches = gdbarch_list_lookup_by_info (arches, &info);
1540 if (arches != NULL)
1541 return arches->gdbarch;
1542
1543 /* None found, create a new architecture from the information
1544 provided. */
1545 tdep = XMALLOC (struct gdbarch_tdep);
1546 gdbarch = gdbarch_alloc (&info, tdep);
1547
1548 switch (info.bfd_arch_info->mach)
1549 {
1550 case bfd_mach_d10v_ts2:
1551 d10v_num_regs = 37;
1552 d10v_register_name = d10v_ts2_register_name;
1553 tdep->a0_regnum = TS2_A0_REGNUM;
1554 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1555 tdep->register_sim_regno = d10v_ts2_register_sim_regno;
1556 tdep->dmap_register = d10v_ts2_dmap_register;
1557 tdep->imap_register = d10v_ts2_imap_register;
1558 break;
1559 default:
1560 case bfd_mach_d10v_ts3:
1561 d10v_num_regs = 42;
1562 d10v_register_name = d10v_ts3_register_name;
1563 tdep->a0_regnum = TS3_A0_REGNUM;
1564 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1565 tdep->register_sim_regno = d10v_ts3_register_sim_regno;
1566 tdep->dmap_register = d10v_ts3_dmap_register;
1567 tdep->imap_register = d10v_ts3_imap_register;
1568 break;
1569 }
1570
1571 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1572 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1573 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1574 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1575 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1576 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1577
1578 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1579 set_gdbarch_sp_regnum (gdbarch, 15);
1580 set_gdbarch_fp_regnum (gdbarch, 11);
1581 set_gdbarch_pc_regnum (gdbarch, 18);
1582 set_gdbarch_register_name (gdbarch, d10v_register_name);
1583 set_gdbarch_register_size (gdbarch, 2);
1584 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1585 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1586 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1587 set_gdbarch_max_register_raw_size (gdbarch, 8);
1588 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1589 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1590 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1591
1592 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1593 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1594 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1595 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1596 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1597 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1598 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1599 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1600
1601 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1602 set_gdbarch_call_dummy_length (gdbarch, 0);
1603 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1604 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1605 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1606 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1607 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1608 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1609 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1610 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1611 set_gdbarch_call_dummy_p (gdbarch, 1);
1612 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1613 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1614 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1615
1616 set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
1617 set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
1618 set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
1619
1620 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1621 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1622 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1623 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1624
1625 set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
1626 set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
1627 set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
1628 set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
1629 set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
1630 set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
1631
1632 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1633 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1634 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1635 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1636
1637 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1638 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1639
1640 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1641
1642 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1643 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1644 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1645 set_gdbarch_function_start_offset (gdbarch, 0);
1646 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1647
1648 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1649
1650 set_gdbarch_frame_args_skip (gdbarch, 0);
1651 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1652 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1653 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1654 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1655 set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address);
1656 set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address);
1657 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1658 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1659 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1660
1661 return gdbarch;
1662 }
1663
1664
1665 extern void (*target_resume_hook) PARAMS ((void));
1666 extern void (*target_wait_loop_hook) PARAMS ((void));
1667
1668 void
1669 _initialize_d10v_tdep ()
1670 {
1671 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1672
1673 tm_print_insn = print_insn_d10v;
1674
1675 target_resume_hook = d10v_eva_prepare_to_trace;
1676 target_wait_loop_hook = d10v_eva_get_trace_data;
1677
1678 add_com ("regs", class_vars, show_regs, "Print all registers");
1679
1680 add_com ("itrace", class_support, trace_command,
1681 "Enable tracing of instruction execution.");
1682
1683 add_com ("iuntrace", class_support, untrace_command,
1684 "Disable tracing of instruction execution.");
1685
1686 add_com ("itdisassemble", class_vars, tdisassemble_command,
1687 "Disassemble the trace buffer.\n\
1688 Two optional arguments specify a range of trace buffer entries\n\
1689 as reported by info trace (NOT addresses!).");
1690
1691 add_info ("itrace", trace_info,
1692 "Display info about the trace data buffer.");
1693
1694 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1695 var_integer, (char *) &trace_display,
1696 "Set automatic display of trace.\n", &setlist),
1697 &showlist);
1698 add_show_from_set (add_set_cmd ("itracesource", no_class,
1699 var_integer, (char *) &default_trace_show_source,
1700 "Set display of source code with trace.\n", &setlist),
1701 &showlist);
1702
1703 }
This page took 0.06407 seconds and 5 git commands to generate.