Thu Nov 7 15:19:08 1996 Martin M. Hunt <hunt@pizza.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for MItsubishi D10V, for GDB.
2 Copyright (C) 1996 Free Software Foundation, Inc.
3 This file is part of GDB.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12 You should have received a copy of the GNU General Public License
13 along with this program; if not, write to the Free Software
14 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
15
16 /* Contributed by Martin Hunt, hunt@cygnus.com */
17
18 #include "defs.h"
19 #include "frame.h"
20 #include "obstack.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcmd.h"
24 #include "gdbcore.h"
25 #include "gdb_string.h"
26 #include "value.h"
27 #include "inferior.h"
28 #include "dis-asm.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31
32 void d10v_frame_find_saved_regs PARAMS ((struct frame_info *fi, struct frame_saved_regs *fsr));
33 static void d10v_pop_dummy_frame PARAMS ((struct frame_info *fi));
34
35 /* Discard from the stack the innermost frame,
36 restoring all saved registers. */
37
38 void
39 d10v_pop_frame ()
40 {
41 struct frame_info *frame = get_current_frame ();
42 CORE_ADDR fp;
43 int regnum;
44 struct frame_saved_regs fsr;
45 char raw_buffer[8];
46
47 fp = FRAME_FP (frame);
48 if (frame->dummy)
49 {
50 d10v_pop_dummy_frame(frame);
51 return;
52 }
53
54 /* fill out fsr with the address of where each */
55 /* register was stored in the frame */
56 get_frame_saved_regs (frame, &fsr);
57
58 /* now update the current registers with the old values */
59 for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
60 {
61 if (fsr.regs[regnum])
62 {
63 read_memory (fsr.regs[regnum], raw_buffer, 8);
64 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
65 }
66 }
67 for (regnum = 0; regnum < SP_REGNUM; regnum++)
68 {
69 if (fsr.regs[regnum])
70 {
71 write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 2));
72 }
73 }
74 if (fsr.regs[PSW_REGNUM])
75 {
76 write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 2));
77 }
78
79 write_register (PC_REGNUM, read_register(13));
80 write_register (SP_REGNUM, fp + frame->size);
81 target_store_registers (-1);
82 flush_cached_frames ();
83 }
84
85 static int
86 check_prologue (op)
87 unsigned short op;
88 {
89 /* st rn, @-sp */
90 if ((op & 0x7E1F) == 0x6C1F)
91 return 1;
92
93 /* st2w rn, @-sp */
94 if ((op & 0x7E3F) == 0x6E1F)
95 return 1;
96
97 /* subi sp, n */
98 if ((op & 0x7FE1) == 0x01E1)
99 return 1;
100
101 /* mv r11, sp */
102 if (op == 0x417E)
103 return 1;
104
105 /* nop */
106 if (op == 0x5E00)
107 return 1;
108
109 /* st rn, @sp */
110 if ((op & 0x7E1F) == 0x681E)
111 return 1;
112
113 /* st2w rn, @sp */
114 if ((op & 0x7E3F) == 0x3A1E)
115 return 1;
116
117 return 0;
118 }
119
120 CORE_ADDR
121 d10v_skip_prologue (pc)
122 CORE_ADDR pc;
123 {
124 unsigned long op;
125 unsigned short op1, op2;
126
127 if (target_read_memory (pc, (char *)&op, 4))
128 return pc; /* Can't access it -- assume no prologue. */
129
130 while (1)
131 {
132 op = (unsigned long)read_memory_integer (pc, 4);
133 if ((op & 0xC0000000) == 0xC0000000)
134 {
135 /* long instruction */
136 if ( ((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
137 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
138 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
139 break;
140 }
141 else
142 {
143 /* short instructions */
144 if ((op & 0xC0000000) == 0x80000000)
145 {
146 op2 = (op & 0x3FFF8000) >> 15;
147 op1 = op & 0x7FFF;
148 }
149 else
150 {
151 op1 = (op & 0x3FFF8000) >> 15;
152 op2 = op & 0x7FFF;
153 }
154 if (check_prologue(op1))
155 {
156 if (!check_prologue(op2))
157 {
158 /* if the previous opcode was really part of the prologue */
159 /* and not just a NOP, then we want to break after both instructions */
160 if (op1 != 0x5E00)
161 pc += 4;
162 break;
163 }
164 }
165 else
166 break;
167 }
168 pc += 4;
169 }
170 return pc;
171 }
172
173 /* Given a GDB frame, determine the address of the calling function's frame.
174 This will be used to create a new GDB frame struct, and then
175 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
176 */
177
178 CORE_ADDR
179 d10v_frame_chain (frame)
180 struct frame_info *frame;
181 {
182 struct frame_saved_regs fsr;
183
184 d10v_frame_find_saved_regs (frame, &fsr);
185
186 if (frame->return_pc == IMEM_START)
187 return (CORE_ADDR)0;
188
189 if (!fsr.regs[FP_REGNUM])
190 {
191 if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
192 return (CORE_ADDR)0;
193
194 return fsr.regs[SP_REGNUM];
195 }
196
197 if (!read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2))
198 return (CORE_ADDR)0;
199
200 return read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2)| DMEM_START;
201 }
202
203 static int next_addr, uses_frame;
204
205 static int
206 prologue_find_regs (op, fsr, addr)
207 unsigned short op;
208 struct frame_saved_regs *fsr;
209 CORE_ADDR addr;
210 {
211 int n;
212
213 /* st rn, @-sp */
214 if ((op & 0x7E1F) == 0x6C1F)
215 {
216 n = (op & 0x1E0) >> 5;
217 next_addr -= 2;
218 fsr->regs[n] = next_addr;
219 return 1;
220 }
221
222 /* st2w rn, @-sp */
223 else if ((op & 0x7E3F) == 0x6E1F)
224 {
225 n = (op & 0x1E0) >> 5;
226 next_addr -= 4;
227 fsr->regs[n] = next_addr;
228 fsr->regs[n+1] = next_addr+2;
229 return 1;
230 }
231
232 /* subi sp, n */
233 if ((op & 0x7FE1) == 0x01E1)
234 {
235 n = (op & 0x1E) >> 1;
236 if (n == 0)
237 n = 16;
238 next_addr -= n;
239 return 1;
240 }
241
242 /* mv r11, sp */
243 if (op == 0x417E)
244 {
245 uses_frame = 1;
246 return 1;
247 }
248
249 /* nop */
250 if (op == 0x5E00)
251 return 1;
252
253 /* st rn, @sp */
254 if ((op & 0x7E1F) == 0x681E)
255 {
256 n = (op & 0x1E0) >> 5;
257 fsr->regs[n] = next_addr;
258 return 1;
259 }
260
261 /* st2w rn, @sp */
262 if ((op & 0x7E3F) == 0x3A1E)
263 {
264 n = (op & 0x1E0) >> 5;
265 fsr->regs[n] = next_addr;
266 fsr->regs[n+1] = next_addr+2;
267 return 1;
268 }
269
270 return 0;
271 }
272
273 /* Put here the code to store, into a struct frame_saved_regs, the
274 addresses of the saved registers of frame described by FRAME_INFO.
275 This includes special registers such as pc and fp saved in special
276 ways in the stack frame. sp is even more special: the address we
277 return for it IS the sp for the next frame. */
278 void
279 d10v_frame_find_saved_regs (fi, fsr)
280 struct frame_info *fi;
281 struct frame_saved_regs *fsr;
282 {
283 CORE_ADDR fp, pc;
284 unsigned long op;
285 unsigned short op1, op2;
286 int i;
287
288 fp = fi->frame;
289 memset (fsr, 0, sizeof (*fsr));
290 next_addr = 0;
291
292 pc = get_pc_function_start (fi->pc);
293
294 uses_frame = 0;
295 while (1)
296 {
297 op = (unsigned long)read_memory_integer (pc, 4);
298 if ((op & 0xC0000000) == 0xC0000000)
299 {
300 /* long instruction */
301 if ((op & 0x3FFF0000) == 0x01FF0000)
302 {
303 /* add3 sp,sp,n */
304 short n = op & 0xFFFF;
305 next_addr += n;
306 }
307 else if ((op & 0x3F0F0000) == 0x340F0000)
308 {
309 /* st rn, @(offset,sp) */
310 short offset = op & 0xFFFF;
311 short n = (op >> 20) & 0xF;
312 fsr->regs[n] = next_addr + offset;
313 }
314 else if ((op & 0x3F1F0000) == 0x350F0000)
315 {
316 /* st2w rn, @(offset,sp) */
317 short offset = op & 0xFFFF;
318 short n = (op >> 20) & 0xF;
319 fsr->regs[n] = next_addr + offset;
320 fsr->regs[n+1] = next_addr + offset + 2;
321 }
322 else
323 break;
324 }
325 else
326 {
327 /* short instructions */
328 if ((op & 0xC0000000) == 0x80000000)
329 {
330 op2 = (op & 0x3FFF8000) >> 15;
331 op1 = op & 0x7FFF;
332 }
333 else
334 {
335 op1 = (op & 0x3FFF8000) >> 15;
336 op2 = op & 0x7FFF;
337 }
338 if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
339 break;
340 }
341 pc += 4;
342 }
343
344 fi->size = -next_addr;
345
346 if (!(fp & 0xffff))
347 fp = read_register(SP_REGNUM) | DMEM_START;
348
349 for (i=0; i<NUM_REGS-1; i++)
350 if (fsr->regs[i])
351 {
352 fsr->regs[i] = fp - (next_addr - fsr->regs[i]);
353 }
354
355 if (fsr->regs[LR_REGNUM])
356 fi->return_pc = ((read_memory_unsigned_integer(fsr->regs[LR_REGNUM],2) - 1) << 2) | IMEM_START;
357 else
358 fi->return_pc = ((read_register(LR_REGNUM) - 1) << 2) | IMEM_START;
359
360 /* th SP is not normally (ever?) saved, but check anyway */
361 if (!fsr->regs[SP_REGNUM])
362 {
363 /* if the FP was saved, that means the current FP is valid, */
364 /* otherwise, it isn't being used, so we use the SP instead */
365 if (uses_frame)
366 fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
367 else
368 {
369 fsr->regs[SP_REGNUM] = fp + fi->size;
370 fi->frameless = 1;
371 fsr->regs[FP_REGNUM] = 0;
372 }
373 }
374 }
375
376 void
377 d10v_init_extra_frame_info (fromleaf, fi)
378 int fromleaf;
379 struct frame_info *fi;
380 {
381 struct frame_saved_regs dummy;
382
383 if (fi->next && ((fi->pc & 0xffff) == 0))
384 fi->pc = fi->next->return_pc;
385
386 d10v_frame_find_saved_regs (fi, &dummy);
387 }
388
389 static void
390 show_regs (args, from_tty)
391 char *args;
392 int from_tty;
393 {
394 long long num1, num2;
395 printf_filtered ("PC=%04x (0x%x) PSW=%04x RPT_S=%04x RPT_E=%04x RPT_C=%04x\n",
396 read_register (PC_REGNUM), (read_register (PC_REGNUM) << 2) + IMEM_START,
397 read_register (PSW_REGNUM),
398 read_register (24),
399 read_register (25),
400 read_register (23));
401 printf_filtered ("R0-R7 %04x %04x %04x %04x %04x %04x %04x %04x\n",
402 read_register (0),
403 read_register (1),
404 read_register (2),
405 read_register (3),
406 read_register (4),
407 read_register (5),
408 read_register (6),
409 read_register (7));
410 printf_filtered ("R8-R15 %04x %04x %04x %04x %04x %04x %04x %04x\n",
411 read_register (8),
412 read_register (9),
413 read_register (10),
414 read_register (11),
415 read_register (12),
416 read_register (13),
417 read_register (14),
418 read_register (15));
419 printf_filtered ("IMAP0 %04x IMAP1 %04x DMAP %04x\n",
420 read_register (IMAP0_REGNUM),
421 read_register (IMAP1_REGNUM),
422 read_register (DMAP_REGNUM));
423 read_register_gen (A0_REGNUM, (char *)&num1);
424 read_register_gen (A0_REGNUM+1, (char *)&num2);
425 printf_filtered ("A0-A1 %010llx %010llx\n",num1, num2);
426 }
427
428 void
429 _initialize_d10v_tdep ()
430 {
431 tm_print_insn = print_insn_d10v;
432 add_com ("regs", class_vars, show_regs, "Print all registers");
433 }
434
435 static CORE_ADDR
436 d10v_xlate_addr (addr)
437 int addr;
438 {
439 int imap;
440
441 if (addr < 0x20000)
442 imap = (int)read_register(IMAP0_REGNUM);
443 else
444 imap = (int)read_register(IMAP1_REGNUM);
445
446 if (imap & 0x1000)
447 return (CORE_ADDR)(addr + 0x1000000);
448 return (CORE_ADDR)(addr + (imap & 0xff)*0x20000);
449 }
450
451
452 CORE_ADDR
453 d10v_read_pc (pid)
454 int pid;
455 {
456 int save_pid, retval;
457
458 save_pid = inferior_pid;
459 inferior_pid = pid;
460 retval = (int)read_register (PC_REGNUM);
461 inferior_pid = save_pid;
462 return d10v_xlate_addr(retval << 2);
463 }
464
465 void
466 d10v_write_pc (val, pid)
467 CORE_ADDR val;
468 int pid;
469 {
470 int save_pid;
471
472 save_pid = inferior_pid;
473 inferior_pid = pid;
474 write_register (PC_REGNUM, (val & 0x3ffff) >> 2);
475 inferior_pid = save_pid;
476 }
477
478 CORE_ADDR
479 d10v_read_sp ()
480 {
481 return (read_register(SP_REGNUM) | DMEM_START);
482 }
483
484 void
485 d10v_write_sp (val)
486 CORE_ADDR val;
487 {
488 write_register (SP_REGNUM, (LONGEST)(val & 0xffff));
489 }
490
491 CORE_ADDR
492 d10v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
493 char *dummyname;
494 CORE_ADDR start_sp;
495 CORE_ADDR fun;
496 int nargs;
497 value_ptr *args;
498 struct type *type;
499 int gcc_p;
500 {
501 int regnum;
502 CORE_ADDR sp;
503 char buffer[MAX_REGISTER_RAW_SIZE];
504 struct frame_info *frame = get_current_frame ();
505 frame->dummy = start_sp;
506 start_sp |= DMEM_START;
507
508 sp = start_sp;
509 for (regnum = 0; regnum < NUM_REGS; regnum++)
510 {
511 sp -= REGISTER_RAW_SIZE(regnum);
512 store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
513 write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
514 }
515 write_register (SP_REGNUM, (LONGEST)(sp & 0xffff));
516 /* now we need to load LR with the return address */
517 write_register (LR_REGNUM, (LONGEST)(d10v_call_dummy_address() & 0xffff) >> 2);
518 return sp;
519 }
520
521 static void
522 d10v_pop_dummy_frame (fi)
523 struct frame_info *fi;
524 {
525 CORE_ADDR sp = fi->dummy;
526 int regnum;
527
528 for (regnum = 0; regnum < NUM_REGS; regnum++)
529 {
530 sp -= REGISTER_RAW_SIZE(regnum);
531 write_register(regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE(regnum)));
532 }
533 flush_cached_frames (); /* needed? */
534 }
535
536
537 CORE_ADDR
538 d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
539 int nargs;
540 value_ptr *args;
541 CORE_ADDR sp;
542 int struct_return;
543 CORE_ADDR struct_addr;
544 {
545 int i, len, index=0, regnum=2;
546 char buffer[4], *contents;
547 LONGEST val;
548 CORE_ADDR ptrs[10];
549
550 /* Pass 1. Put all large args on stack */
551 for (i = 0; i < nargs; i++)
552 {
553 value_ptr arg = args[i];
554 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
555 len = TYPE_LENGTH (arg_type);
556 contents = VALUE_CONTENTS(arg);
557 val = extract_signed_integer (contents, len);
558 if (len > 4)
559 {
560 /* put on stack and pass pointers */
561 sp -= len;
562 write_memory (sp, contents, len);
563 ptrs[index++] = sp;
564 }
565 }
566
567 index = 0;
568
569 for (i = 0; i < nargs; i++)
570 {
571 value_ptr arg = args[i];
572 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
573 len = TYPE_LENGTH (arg_type);
574 contents = VALUE_CONTENTS(arg);
575 val = extract_signed_integer (contents, len);
576 if (len > 4)
577 {
578 /* use a pointer to previously saved data */
579 if (regnum < 6)
580 write_register (regnum++, ptrs[index++]);
581 else
582 {
583 /* no more registers available. put it on the stack */
584 sp -= 2;
585 store_address (buffer, 2, ptrs[index++]);
586 write_memory (sp, buffer, 2);
587 }
588 }
589 else
590 {
591 if (regnum < 6 )
592 {
593 if (len == 4)
594 write_register (regnum++, val>>16);
595 write_register (regnum++, val & 0xffff);
596 }
597 else
598 {
599 sp -= len;
600 store_address (buffer, len, val);
601 write_memory (sp, buffer, len);
602 }
603 }
604 }
605 return sp;
606 }
607
608
609 /* pick an out-of-the-way place to set the return value */
610 /* for an inferior function call. The link register is set to this */
611 /* value and a momentary breakpoint is set there. When the breakpoint */
612 /* is hit, the dummy frame is popped and the previous environment is */
613 /* restored. */
614
615 CORE_ADDR
616 d10v_call_dummy_address ()
617 {
618 CORE_ADDR entry;
619 struct minimal_symbol *sym;
620
621 entry = entry_point_address ();
622
623 if (entry != 0)
624 return entry;
625
626 sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
627
628 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
629 return 0;
630 else
631 return SYMBOL_VALUE_ADDRESS (sym);
632 }
633
634 /* Given a return value in `regbuf' with a type `valtype',
635 extract and copy its value into `valbuf'. */
636
637 void
638 d10v_extract_return_value (valtype, regbuf, valbuf)
639 struct type *valtype;
640 char regbuf[REGISTER_BYTES];
641 char *valbuf;
642 {
643 memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
644 }
This page took 0.045329 seconds and 5 git commands to generate.