* main.c (cd_command): Call dont_repeat.
[deliverable/binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19 \f
20 /* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31 /* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41 #include <stdio.h>
42 #include <string.h>
43 #include "defs.h"
44 #include "param.h"
45
46 #ifdef USG
47 #include <sys/types.h>
48 #include <fcntl.h>
49 #define L_SET 0
50 #define L_INCR 1
51 #endif
52
53 #include "a.out.gnu.h"
54 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55 #include <ctype.h>
56
57 #ifndef NO_GNU_STABS
58 /*
59 * Define specifically gnu symbols here.
60 */
61
62 /* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70 #ifndef N_INDR
71 #define N_INDR 0xa
72 #endif
73
74 /* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85 #ifndef N_SETA
86 #define N_SETA 0x14 /* Absolute set element symbol */
87 #endif /* This is input to LD, in a .o file. */
88
89 #ifndef N_SETT
90 #define N_SETT 0x16 /* Text set element symbol */
91 #endif /* This is input to LD, in a .o file. */
92
93 #ifndef N_SETD
94 #define N_SETD 0x18 /* Data set element symbol */
95 #endif /* This is input to LD, in a .o file. */
96
97 #ifndef N_SETB
98 #define N_SETB 0x1A /* Bss set element symbol */
99 #endif /* This is input to LD, in a .o file. */
100
101 /* Macros dealing with the set element symbols defined in a.out.h */
102 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105 #ifndef N_SETV
106 #define N_SETV 0x1C /* Pointer to set vector in data area. */
107 #endif /* This is output from LD. */
108
109 #ifndef N_WARNING
110 #define N_WARNING 0x1E /* Warning message to print if file included */
111 #endif /* This is input to ld */
112
113 #endif /* NO_GNU_STABS */
114
115 #include <obstack.h>
116 #include <sys/param.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include "symtab.h"
120 #include "breakpoint.h"
121 #include "command.h"
122 #include "target.h"
123 #include "gdbcore.h" /* for bfd stuff */
124 #include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125 #include "symfile.h"
126
127 struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134 };
135
136 extern void qsort ();
137 extern double atof ();
138 extern struct cmd_list_element *cmdlist;
139
140 extern void symbol_file_command ();
141
142 /* Forward declarations */
143
144 static void add_symbol_to_list ();
145 static void read_dbx_symtab ();
146 static void init_psymbol_list ();
147 static void process_one_symbol ();
148 static struct type *read_type ();
149 static struct type *read_range_type ();
150 static struct type *read_enum_type ();
151 static struct type *read_struct_type ();
152 static struct type *read_array_type ();
153 static long read_number ();
154 static void finish_block ();
155 static struct blockvector *make_blockvector ();
156 static struct symbol *define_symbol ();
157 static void start_subfile ();
158 static int hashname ();
159 static struct pending *copy_pending ();
160 static void fix_common_block ();
161 static void add_undefined_type ();
162 static void cleanup_undefined_types ();
163 static void scan_file_globals ();
164 static void read_ofile_symtab ();
165 static void dbx_psymtab_to_symtab ();
166
167 /* C++ */
168 static struct type **read_args ();
169
170 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171 static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173 /* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175 #ifndef IGNORE_SYMBOL
176 /* This code is used on Ultrix systems. Ignore it */
177 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178 #endif
179
180 /* Macro for name of symbol to indicate a file compiled with gcc. */
181 #ifndef GCC_COMPILED_FLAG_SYMBOL
182 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183 #endif
184
185 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187 #ifndef STAB_REG_TO_REGNUM
188 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189 #endif
190
191 /* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196 #ifndef BELIEVE_PCC_PROMOTION
197 #define BELIEVE_PCC_PROMOTION 0
198 #endif
199 \f
200 /* Nonzero means give verbose info on gdb action. From main.c. */
201 extern int info_verbose;
202
203 /* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206 static char *last_source_file;
207
208 /* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211 static CORE_ADDR last_source_start_addr;
212
213 /* The entry point of a file we are reading. */
214 CORE_ADDR entry_point;
215
216 /* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220 struct subfile
221 {
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229 };
230
231 static struct subfile *subfiles;
232
233 static struct subfile *current_subfile;
234
235 /* Count symbols as they are processed, for error messages. */
236
237 static unsigned int symnum;
238
239 /* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245 static struct typevector *type_vector;
246
247 /* Number of elements allocated for type_vector currently. */
248
249 static int type_vector_length;
250
251 /* Vector of line number information. */
252
253 static struct linetable *line_vector;
254
255 /* Index of next entry to go in line_vector_index. */
256
257 static int line_vector_index;
258
259 /* Last line number recorded in the line vector. */
260
261 static int prev_line_number;
262
263 /* Number of elements allocated for line_vector currently. */
264
265 static int line_vector_length;
266
267 /* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270 /* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273 #define HASHSIZE 127
274 static struct symbol *global_sym_chain[HASHSIZE];
275
276 /* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280 #define PENDINGSIZE 100
281
282 struct pending
283 {
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287 };
288
289 /* List of free `struct pending' structures for reuse. */
290 struct pending *free_pendings;
291
292 /* Here are the three lists that symbols are put on. */
293
294 struct pending *file_symbols; /* static at top level, and types */
295
296 struct pending *global_symbols; /* global functions and variables */
297
298 struct pending *local_symbols; /* everything local to lexical context */
299
300 /* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306 struct pending *common_block;
307 int common_block_i;
308
309 /* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312 struct context_stack
313 {
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320 };
321
322 struct context_stack *context_stack;
323
324 /* Index of first unused entry in context stack. */
325 int context_stack_depth;
326
327 /* Currently allocated size of context stack. */
328
329 int context_stack_size;
330
331 /* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334 int within_function;
335
336 /* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339 struct pending_block
340 {
341 struct pending_block *next;
342 struct block *block;
343 };
344
345 struct pending_block *pending_blocks;
346
347 extern CORE_ADDR startup_file_start; /* From blockframe.c */
348 extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350 /* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353 static unsigned char processing_gcc_compilation;
354
355 /* Make a list of forward references which haven't been defined. */
356 static struct type **undef_types;
357 static int undef_types_allocated, undef_types_length;
358
359 /* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363 static char *symfile_string_table;
364 static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368 #ifdef NAMES_HAVE_UNDERSCORE
369 #define HASH_OFFSET 1
370 #else
371 #define HASH_OFFSET 0
372 #endif
373
374 /* Complaints about the symbols we have encountered. */
375
376 struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379 struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382 struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385 #if 0
386 struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388 You seem to have compiled your program with \
389 \"g++ -g0\" instead of \"g++ -g\".\n\
390 Therefore GDB will not know about your class variables", 0, 0};
391 #endif
392
393 struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396 struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399 struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402 struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405 struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408 struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410 \f
411 /* Support for Sun changes to dbx symbol format */
412
413 /* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431 struct header_file
432 {
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440 };
441
442 static struct header_file *header_files = 0;
443
444 static int n_header_files;
445
446 static int n_allocated_header_files;
447
448 /* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453 struct header_file_location
454 {
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459 };
460
461 /* The actual list and controling variables */
462 static struct header_file_location *bincl_list, *next_bincl;
463 static int bincls_allocated;
464
465 /* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475 static int *this_object_header_files = 0;
476
477 static int n_this_object_header_files;
478
479 static int n_allocated_this_object_header_files;
480
481 /* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486 static int header_file_prev_index;
487
488 /* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491 void
492 free_and_init_header_files ()
493 {
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508 }
509
510 /* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513 static void
514 new_object_header_files ()
515 {
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519 }
520
521 /* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524 static void
525 add_this_object_header_file (i)
526 int i;
527 {
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537 }
538
539 /* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544 static void
545 add_old_header_file (name, instance)
546 char *name;
547 int instance;
548 {
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560 }
561
562 /* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573 static void
574 add_new_header_file (name, instance)
575 char *name;
576 int instance;
577 {
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603 }
604
605 /* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612 static struct type **
613 dbx_lookup_type (typenums)
614 int typenums[2];
615 {
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661 }
662
663 /* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666 static struct type *
667 dbx_create_type ()
668 {
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 return type;
675 }
676
677 /* Make sure there is a type allocated for type numbers TYPENUMS
678 and return the type object.
679 This can create an empty (zeroed) type object.
680 TYPENUMS may be (-1, -1) to return a new type object that is not
681 put into the type vector, and so may not be referred to by number. */
682
683 static struct type *
684 dbx_alloc_type (typenums)
685 int typenums[2];
686 {
687 register struct type **type_addr;
688 register struct type *type;
689
690 if (typenums[1] != -1)
691 {
692 type_addr = dbx_lookup_type (typenums);
693 type = *type_addr;
694 }
695 else
696 {
697 type_addr = 0;
698 type = 0;
699 }
700
701 /* If we are referring to a type not known at all yet,
702 allocate an empty type for it.
703 We will fill it in later if we find out how. */
704 if (type == 0)
705 {
706 type = dbx_create_type ();
707 if (type_addr)
708 *type_addr = type;
709 }
710
711 return type;
712 }
713
714 #if 0
715 static struct type **
716 explicit_lookup_type (real_filenum, index)
717 int real_filenum, index;
718 {
719 register struct header_file *f = &header_files[real_filenum];
720
721 if (index >= f->length)
722 {
723 f->length *= 2;
724 f->vector = (struct type **)
725 xrealloc (f->vector, f->length * sizeof (struct type *));
726 bzero (&f->vector[f->length / 2],
727 f->length * sizeof (struct type *) / 2);
728 }
729 return &f->vector[index];
730 }
731 #endif
732 \f
733 /* maintain the lists of symbols and blocks */
734
735 /* Add a symbol to one of the lists of symbols. */
736 static void
737 add_symbol_to_list (symbol, listhead)
738 struct symbol *symbol;
739 struct pending **listhead;
740 {
741 /* We keep PENDINGSIZE symbols in each link of the list.
742 If we don't have a link with room in it, add a new link. */
743 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
744 {
745 register struct pending *link;
746 if (free_pendings)
747 {
748 link = free_pendings;
749 free_pendings = link->next;
750 }
751 else
752 link = (struct pending *) xmalloc (sizeof (struct pending));
753
754 link->next = *listhead;
755 *listhead = link;
756 link->nsyms = 0;
757 }
758
759 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
760 }
761
762 /* At end of reading syms, or in case of quit,
763 really free as many `struct pending's as we can easily find. */
764
765 /* ARGSUSED */
766 static void
767 really_free_pendings (foo)
768 int foo;
769 {
770 struct pending *next, *next1;
771 struct pending_block *bnext, *bnext1;
772
773 for (next = free_pendings; next; next = next1)
774 {
775 next1 = next->next;
776 free (next);
777 }
778 free_pendings = 0;
779
780 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
781 for (bnext = pending_blocks; bnext; bnext = bnext1)
782 {
783 bnext1 = bnext->next;
784 free (bnext);
785 }
786 #endif
787 pending_blocks = 0;
788
789 for (next = file_symbols; next; next = next1)
790 {
791 next1 = next->next;
792 free (next);
793 }
794 file_symbols = 0;
795
796 for (next = global_symbols; next; next = next1)
797 {
798 next1 = next->next;
799 free (next);
800 }
801 global_symbols = 0;
802 }
803
804 /* Take one of the lists of symbols and make a block from it.
805 Keep the order the symbols have in the list (reversed from the input file).
806 Put the block on the list of pending blocks. */
807
808 static void
809 finish_block (symbol, listhead, old_blocks, start, end)
810 struct symbol *symbol;
811 struct pending **listhead;
812 struct pending_block *old_blocks;
813 CORE_ADDR start, end;
814 {
815 register struct pending *next, *next1;
816 register struct block *block;
817 register struct pending_block *pblock;
818 struct pending_block *opblock;
819 register int i;
820
821 /* Count the length of the list of symbols. */
822
823 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
824 /*EMPTY*/;
825
826 block = (struct block *) obstack_alloc (symbol_obstack,
827 (sizeof (struct block)
828 + ((i - 1)
829 * sizeof (struct symbol *))));
830
831 /* Copy the symbols into the block. */
832
833 BLOCK_NSYMS (block) = i;
834 for (next = *listhead; next; next = next->next)
835 {
836 register int j;
837 for (j = next->nsyms - 1; j >= 0; j--)
838 BLOCK_SYM (block, --i) = next->symbol[j];
839 }
840
841 BLOCK_START (block) = start;
842 BLOCK_END (block) = end;
843 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
844 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
845
846 /* Put the block in as the value of the symbol that names it. */
847
848 if (symbol)
849 {
850 SYMBOL_BLOCK_VALUE (symbol) = block;
851 BLOCK_FUNCTION (block) = symbol;
852 }
853 else
854 BLOCK_FUNCTION (block) = 0;
855
856 /* Now "free" the links of the list, and empty the list. */
857
858 for (next = *listhead; next; next = next1)
859 {
860 next1 = next->next;
861 next->next = free_pendings;
862 free_pendings = next;
863 }
864 *listhead = 0;
865
866 /* Install this block as the superblock
867 of all blocks made since the start of this scope
868 that don't have superblocks yet. */
869
870 opblock = 0;
871 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
872 {
873 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
874 #if 1
875 /* Check to be sure the blocks are nested as we receive them.
876 If the compiler/assembler/linker work, this just burns a small
877 amount of time. */
878 if (BLOCK_START (pblock->block) < BLOCK_START (block)
879 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
880 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
881 "(don't know)");
882 BLOCK_START (pblock->block) = BLOCK_START (block);
883 BLOCK_END (pblock->block) = BLOCK_END (block);
884 }
885 #endif
886 BLOCK_SUPERBLOCK (pblock->block) = block;
887 }
888 opblock = pblock;
889 }
890
891 /* Record this block on the list of all blocks in the file.
892 Put it after opblock, or at the beginning if opblock is 0.
893 This puts the block in the list after all its subblocks. */
894
895 /* Allocate in the symbol_obstack to save time.
896 It wastes a little space. */
897 pblock = (struct pending_block *)
898 obstack_alloc (symbol_obstack,
899 sizeof (struct pending_block));
900 pblock->block = block;
901 if (opblock)
902 {
903 pblock->next = opblock->next;
904 opblock->next = pblock;
905 }
906 else
907 {
908 pblock->next = pending_blocks;
909 pending_blocks = pblock;
910 }
911 }
912
913 static struct blockvector *
914 make_blockvector ()
915 {
916 register struct pending_block *next;
917 register struct blockvector *blockvector;
918 register int i;
919
920 /* Count the length of the list of blocks. */
921
922 for (next = pending_blocks, i = 0; next; next = next->next, i++);
923
924 blockvector = (struct blockvector *)
925 obstack_alloc (symbol_obstack,
926 (sizeof (struct blockvector)
927 + (i - 1) * sizeof (struct block *)));
928
929 /* Copy the blocks into the blockvector.
930 This is done in reverse order, which happens to put
931 the blocks into the proper order (ascending starting address).
932 finish_block has hair to insert each block into the list
933 after its subblocks in order to make sure this is true. */
934
935 BLOCKVECTOR_NBLOCKS (blockvector) = i;
936 for (next = pending_blocks; next; next = next->next) {
937 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
938 }
939
940 #if 0 /* Now we make the links in the obstack, so don't free them. */
941 /* Now free the links of the list, and empty the list. */
942
943 for (next = pending_blocks; next; next = next1)
944 {
945 next1 = next->next;
946 free (next);
947 }
948 #endif
949 pending_blocks = 0;
950
951 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
952 /* Some compilers output blocks in the wrong order, but we depend
953 on their being in the right order so we can binary search.
954 Check the order and moan about it. FIXME. */
955 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
956 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
957 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
958 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
959 complain (&blockvector_complaint,
960 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
961 }
962 }
963 #endif
964
965 return blockvector;
966 }
967 \f
968 /* Manage the vector of line numbers. */
969
970 static void
971 record_line (line, pc)
972 int line;
973 CORE_ADDR pc;
974 {
975 struct linetable_entry *e;
976 /* Ignore the dummy line number in libg.o */
977
978 if (line == 0xffff)
979 return;
980
981 /* Make sure line vector is big enough. */
982
983 if (line_vector_index + 1 >= line_vector_length)
984 {
985 line_vector_length *= 2;
986 line_vector = (struct linetable *)
987 xrealloc (line_vector,
988 (sizeof (struct linetable)
989 + line_vector_length * sizeof (struct linetable_entry)));
990 current_subfile->line_vector = line_vector;
991 }
992
993 e = line_vector->item + line_vector_index++;
994 e->line = line; e->pc = pc;
995 }
996 \f
997 /* Start a new symtab for a new source file.
998 This is called when a dbx symbol of type N_SO is seen;
999 it indicates the start of data for one original source file. */
1000
1001 static void
1002 start_symtab (name, dirname, start_addr)
1003 char *name;
1004 char *dirname;
1005 CORE_ADDR start_addr;
1006 {
1007
1008 last_source_file = name;
1009 last_source_start_addr = start_addr;
1010 file_symbols = 0;
1011 global_symbols = 0;
1012 within_function = 0;
1013
1014 /* Context stack is initially empty, with room for 10 levels. */
1015 context_stack
1016 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1017 context_stack_size = 10;
1018 context_stack_depth = 0;
1019
1020 new_object_header_files ();
1021
1022 type_vector_length = 160;
1023 type_vector = (struct typevector *)
1024 xmalloc (sizeof (struct typevector)
1025 + type_vector_length * sizeof (struct type *));
1026 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1027
1028 /* Initialize the list of sub source files with one entry
1029 for this file (the top-level source file). */
1030
1031 subfiles = 0;
1032 current_subfile = 0;
1033 start_subfile (name, dirname);
1034 }
1035
1036 /* Handle an N_SOL symbol, which indicates the start of
1037 code that came from an included (or otherwise merged-in)
1038 source file with a different name. */
1039
1040 static void
1041 start_subfile (name, dirname)
1042 char *name;
1043 char *dirname;
1044 {
1045 register struct subfile *subfile;
1046
1047 /* Save the current subfile's line vector data. */
1048
1049 if (current_subfile)
1050 {
1051 current_subfile->line_vector_index = line_vector_index;
1052 current_subfile->line_vector_length = line_vector_length;
1053 current_subfile->prev_line_number = prev_line_number;
1054 }
1055
1056 /* See if this subfile is already known as a subfile of the
1057 current main source file. */
1058
1059 for (subfile = subfiles; subfile; subfile = subfile->next)
1060 {
1061 if (!strcmp (subfile->name, name))
1062 {
1063 line_vector = subfile->line_vector;
1064 line_vector_index = subfile->line_vector_index;
1065 line_vector_length = subfile->line_vector_length;
1066 prev_line_number = subfile->prev_line_number;
1067 current_subfile = subfile;
1068 return;
1069 }
1070 }
1071
1072 /* This subfile is not known. Add an entry for it. */
1073
1074 line_vector_index = 0;
1075 line_vector_length = 1000;
1076 prev_line_number = -2; /* Force first line number to be explicit */
1077 line_vector = (struct linetable *)
1078 xmalloc (sizeof (struct linetable)
1079 + line_vector_length * sizeof (struct linetable_entry));
1080
1081 /* Make an entry for this subfile in the list of all subfiles
1082 of the current main source file. */
1083
1084 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1085 subfile->next = subfiles;
1086 subfile->name = obsavestring (name, strlen (name));
1087 if (dirname == NULL)
1088 subfile->dirname = NULL;
1089 else
1090 subfile->dirname = obsavestring (dirname, strlen (dirname));
1091
1092 subfile->line_vector = line_vector;
1093 subfiles = subfile;
1094 current_subfile = subfile;
1095 }
1096
1097 /* Finish the symbol definitions for one main source file,
1098 close off all the lexical contexts for that file
1099 (creating struct block's for them), then make the struct symtab
1100 for that file and put it in the list of all such.
1101
1102 END_ADDR is the address of the end of the file's text. */
1103
1104 static void
1105 end_symtab (end_addr)
1106 CORE_ADDR end_addr;
1107 {
1108 register struct symtab *symtab;
1109 register struct blockvector *blockvector;
1110 register struct subfile *subfile;
1111 register struct linetable *lv;
1112 struct subfile *nextsub;
1113
1114 /* Finish the lexical context of the last function in the file;
1115 pop the context stack. */
1116
1117 if (context_stack_depth > 0)
1118 {
1119 register struct context_stack *cstk;
1120 context_stack_depth--;
1121 cstk = &context_stack[context_stack_depth];
1122 /* Make a block for the local symbols within. */
1123 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1124 cstk->start_addr, end_addr);
1125 }
1126
1127 /* Cleanup any undefined types that have been left hanging around
1128 (this needs to be done before the finish_blocks so that
1129 file_symbols is still good). */
1130 cleanup_undefined_types ();
1131
1132 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1133 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1134 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1135 blockvector = make_blockvector ();
1136
1137 current_subfile->line_vector_index = line_vector_index;
1138
1139 /* Now create the symtab objects proper, one for each subfile. */
1140 /* (The main file is one of them.) */
1141
1142 for (subfile = subfiles; subfile; subfile = nextsub)
1143 {
1144 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1145
1146 /* Fill in its components. */
1147 symtab->blockvector = blockvector;
1148 lv = subfile->line_vector;
1149 lv->nitems = subfile->line_vector_index;
1150 symtab->linetable = (struct linetable *)
1151 xrealloc (lv, (sizeof (struct linetable)
1152 + lv->nitems * sizeof (struct linetable_entry)));
1153 type_vector->length = type_vector_length;
1154 symtab->typevector = type_vector;
1155
1156 symtab->filename = subfile->name;
1157 symtab->dirname = subfile->dirname;
1158
1159 symtab->free_code = free_linetable;
1160 symtab->free_ptr = 0;
1161 if (subfile->next == 0)
1162 symtab->free_ptr = (char *) type_vector;
1163
1164 symtab->nlines = 0;
1165 symtab->line_charpos = 0;
1166
1167 symtab->language = language_unknown;
1168 symtab->fullname = NULL;
1169
1170 /* There should never already be a symtab for this name, since
1171 any prev dups have been removed when the psymtab was read in.
1172 FIXME, there ought to be a way to check this here. */
1173 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1174
1175 /* Link the new symtab into the list of such. */
1176 symtab->next = symtab_list;
1177 symtab_list = symtab;
1178
1179 nextsub = subfile->next;
1180 free (subfile);
1181 }
1182
1183 type_vector = 0;
1184 type_vector_length = -1;
1185 line_vector = 0;
1186 line_vector_length = -1;
1187 last_source_file = 0;
1188 }
1189 \f
1190 /* Handle the N_BINCL and N_EINCL symbol types
1191 that act like N_SOL for switching source files
1192 (different subfiles, as we call them) within one object file,
1193 but using a stack rather than in an arbitrary order. */
1194
1195 struct subfile_stack
1196 {
1197 struct subfile_stack *next;
1198 char *name;
1199 int prev_index;
1200 };
1201
1202 struct subfile_stack *subfile_stack;
1203
1204 static void
1205 push_subfile ()
1206 {
1207 register struct subfile_stack *tem
1208 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1209
1210 tem->next = subfile_stack;
1211 subfile_stack = tem;
1212 if (current_subfile == 0 || current_subfile->name == 0)
1213 abort ();
1214 tem->name = current_subfile->name;
1215 tem->prev_index = header_file_prev_index;
1216 }
1217
1218 static char *
1219 pop_subfile ()
1220 {
1221 register char *name;
1222 register struct subfile_stack *link = subfile_stack;
1223
1224 if (link == 0)
1225 abort ();
1226
1227 name = link->name;
1228 subfile_stack = link->next;
1229 header_file_prev_index = link->prev_index;
1230 free (link);
1231
1232 return name;
1233 }
1234 \f
1235 void
1236 record_misc_function (name, address, type)
1237 char *name;
1238 CORE_ADDR address;
1239 int type;
1240 {
1241 enum misc_function_type misc_type =
1242 (type == (N_TEXT | N_EXT) ? mf_text :
1243 (type == (N_DATA | N_EXT)
1244 || type == (N_DATA)
1245 || type == (N_SETV | N_EXT)
1246 ) ? mf_data :
1247 type == (N_BSS | N_EXT) ? mf_bss :
1248 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1249
1250 prim_record_misc_function (obsavestring (name, strlen (name)),
1251 address, misc_type);
1252 }
1253 \f
1254 /* Scan and build partial symbols for a symbol file.
1255 We have been initialized by a call to dbx_symfile_init, which
1256 put all the relevant info into a "struct dbx_symfile_info"
1257 hung off the struct sym_fns SF.
1258
1259 ADDR is the address relative to which the symbols in it are (e.g.
1260 the base address of the text segment).
1261 MAINLINE is true if we are reading the main symbol
1262 table (as opposed to a shared lib or dynamically loaded file). */
1263
1264 void
1265 dbx_symfile_read (sf, addr, mainline)
1266 struct sym_fns *sf;
1267 CORE_ADDR addr;
1268 int mainline; /* FIXME comments above */
1269 {
1270 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1271 bfd *sym_bfd = sf->sym_bfd;
1272 int val;
1273 char *filename = bfd_get_filename (sym_bfd);
1274
1275 val = lseek (info->desc, info->symtab_offset, L_SET);
1276 if (val < 0)
1277 perror_with_name (filename);
1278
1279 /* If mainline, set global string table pointers, and reinitialize global
1280 partial symbol list. */
1281 if (mainline) {
1282 symfile_string_table = info->stringtab;
1283 symfile_string_table_size = info->stringtab_size;
1284 }
1285
1286 /* If we are reinitializing, or if we have never loaded syms yet, init */
1287 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1288 init_psymbol_list (info->symcount);
1289
1290 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1291
1292 pending_blocks = 0;
1293 make_cleanup (really_free_pendings, 0);
1294
1295 init_misc_bunches ();
1296 make_cleanup (discard_misc_bunches, 0);
1297
1298 /* Now that the symbol table data of the executable file are all in core,
1299 process them and define symbols accordingly. */
1300
1301 read_dbx_symtab (filename,
1302 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1303 info->desc, info->stringtab, info->stringtab_size,
1304 info->symcount,
1305 bfd_section_vma (sym_bfd, info->text_sect),
1306 bfd_section_size (sym_bfd, info->text_sect));
1307
1308 /* Go over the misc symbol bunches and install them in vector. */
1309
1310 condense_misc_bunches (!mainline);
1311
1312 /* Free up any memory we allocated for ourselves. */
1313
1314 if (!mainline) {
1315 free (info->stringtab); /* Stringtab is only saved for mainline */
1316 }
1317 free (info);
1318 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1319
1320 /* Call to select_source_symtab used to be here; it was using too
1321 much time. I'll make sure that list_sources can handle the lack
1322 of current_source_symtab */
1323
1324 if (!partial_symtab_list)
1325 printf_filtered ("\n(no debugging symbols found)...");
1326 }
1327
1328 /* Discard any information we have cached during the reading of a
1329 single symbol file. This should not toss global information
1330 from previous symbol files that have been read. E.g. we might
1331 be discarding info from reading a shared library, and should not
1332 throw away the info from the main file. */
1333
1334 void
1335 dbx_symfile_discard ()
1336 {
1337
1338 /* Empty the hash table of global syms looking for values. */
1339 bzero (global_sym_chain, sizeof global_sym_chain);
1340
1341 free_pendings = 0;
1342 file_symbols = 0;
1343 global_symbols = 0;
1344 }
1345
1346 /* Initialize anything that needs initializing when a completely new
1347 symbol file is specified (not just adding some symbols from another
1348 file, e.g. a shared library). */
1349
1350 void
1351 dbx_new_init ()
1352 {
1353 dbx_symfile_discard ();
1354 /* Don't put these on the cleanup chain; they need to stick around
1355 until the next call to symbol_file_command. *Then* we'll free
1356 them. */
1357 if (symfile_string_table)
1358 {
1359 free (symfile_string_table);
1360 symfile_string_table = 0;
1361 symfile_string_table_size = 0;
1362 }
1363 free_and_init_header_files ();
1364 }
1365
1366
1367 /* dbx_symfile_init ()
1368 is the dbx-specific initialization routine for reading symbols.
1369 It is passed a struct sym_fns which contains, among other things,
1370 the BFD for the file whose symbols are being read, and a slot for a pointer
1371 to "private data" which we fill with goodies.
1372
1373 We read the string table into malloc'd space and stash a pointer to it.
1374
1375 Since BFD doesn't know how to read debug symbols in a format-independent
1376 way (and may never do so...), we have to do it ourselves. We will never
1377 be called unless this is an a.out (or very similar) file.
1378 FIXME, there should be a cleaner peephole into the BFD environment here. */
1379
1380 void
1381 dbx_symfile_init (sf)
1382 struct sym_fns *sf;
1383 {
1384 int val;
1385 int desc;
1386 struct stat statbuf;
1387 bfd *sym_bfd = sf->sym_bfd;
1388 char *name = bfd_get_filename (sym_bfd);
1389 struct dbx_symfile_info *info;
1390 unsigned char size_temp[4];
1391
1392 /* Allocate struct to keep track of the symfile */
1393 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1394 info = (struct dbx_symfile_info *)sf->sym_private;
1395
1396 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1397 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1398 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1399 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1400 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1401
1402 info->desc = desc;
1403 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1404 if (!info->text_sect)
1405 abort();
1406 info->symcount = bfd_get_symcount_upper_bound(sym_bfd); /* It's exact for a.out */
1407
1408 /* Read the string table size and check it for bogosity. */
1409 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1410 if (val < 0)
1411 perror_with_name (name);
1412 if (fstat (desc, &statbuf) == -1)
1413 perror_with_name (name);
1414
1415 val = myread (desc, size_temp, sizeof (long));
1416 if (val < 0)
1417 perror_with_name (name);
1418 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1419
1420 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1421 {
1422 info->stringtab = (char *) xmalloc (info->stringtab_size);
1423 /* Caller is responsible for freeing the string table. No cleanup. */
1424 }
1425 else
1426 info->stringtab = NULL;
1427 if (info->stringtab == NULL && info->stringtab_size != 0)
1428 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1429
1430 /* Now read in the string table in one big gulp. */
1431
1432 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1433 if (val < 0)
1434 perror_with_name (name);
1435 val = myread (desc, info->stringtab, info->stringtab_size);
1436 if (val < 0)
1437 perror_with_name (name);
1438
1439 /* Record the position of the symbol table for later use. */
1440
1441 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1442 }
1443 \f
1444 /* Buffer for reading the symbol table entries. */
1445 static struct nlist symbuf[4096];
1446 static int symbuf_idx;
1447 static int symbuf_end;
1448
1449 /* I/O descriptor for reading the symbol table. */
1450 static int symtab_input_desc;
1451
1452 /* The address in memory of the string table of the object file we are
1453 reading (which might not be the "main" object file, but might be a
1454 shared library or some other dynamically loaded thing). This is set
1455 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1456 when building symtabs, and is used only by next_symbol_text. */
1457 static char *stringtab_global;
1458
1459 /* Refill the symbol table input buffer
1460 and set the variables that control fetching entries from it.
1461 Reports an error if no data available.
1462 This function can read past the end of the symbol table
1463 (into the string table) but this does no harm. */
1464
1465 static int
1466 fill_symbuf ()
1467 {
1468 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1469 if (nbytes < 0)
1470 perror_with_name ("<symbol file>");
1471 else if (nbytes == 0)
1472 error ("Premature end of file reading symbol table");
1473 symbuf_end = nbytes / sizeof (struct nlist);
1474 symbuf_idx = 0;
1475 return 1;
1476 }
1477
1478 #define SWAP_SYMBOL(symp) \
1479 { \
1480 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1481 (unsigned char *)&(symp)->n_un.n_strx); \
1482 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1483 (unsigned char *)&(symp)->n_desc); \
1484 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1485 (unsigned char *)&(symp)->n_value); \
1486 }
1487
1488 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1489 that hasn't been swapped. Swap the symbol at the same time
1490 that symbuf_idx is incremented. */
1491
1492 /* dbx allows the text of a symbol name to be continued into the
1493 next symbol name! When such a continuation is encountered
1494 (a \ at the end of the text of a name)
1495 call this function to get the continuation. */
1496
1497 static char *
1498 next_symbol_text ()
1499 {
1500 if (symbuf_idx == symbuf_end)
1501 fill_symbuf ();
1502 symnum++;
1503 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1504 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1505 }
1506 \f
1507 /* Initializes storage for all of the partial symbols that will be
1508 created by read_dbx_symtab and subsidiaries. */
1509
1510 static void
1511 init_psymbol_list (total_symbols)
1512 int total_symbols;
1513 {
1514 /* Free any previously allocated psymbol lists. */
1515 if (global_psymbols.list)
1516 free (global_psymbols.list);
1517 if (static_psymbols.list)
1518 free (static_psymbols.list);
1519
1520 /* Current best guess is that there are approximately a twentieth
1521 of the total symbols (in a debugging file) are global or static
1522 oriented symbols */
1523 global_psymbols.size = total_symbols / 10;
1524 static_psymbols.size = total_symbols / 10;
1525 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1526 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1527 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1528 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1529 }
1530
1531 /* Initialize the list of bincls to contain none and have some
1532 allocated. */
1533
1534 static void
1535 init_bincl_list (number)
1536 int number;
1537 {
1538 bincls_allocated = number;
1539 next_bincl = bincl_list = (struct header_file_location *)
1540 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1541 }
1542
1543 /* Add a bincl to the list. */
1544
1545 static void
1546 add_bincl_to_list (pst, name, instance)
1547 struct partial_symtab *pst;
1548 char *name;
1549 int instance;
1550 {
1551 if (next_bincl >= bincl_list + bincls_allocated)
1552 {
1553 int offset = next_bincl - bincl_list;
1554 bincls_allocated *= 2;
1555 bincl_list = (struct header_file_location *)
1556 xrealloc ((char *)bincl_list,
1557 bincls_allocated * sizeof (struct header_file_location));
1558 next_bincl = bincl_list + offset;
1559 }
1560 next_bincl->pst = pst;
1561 next_bincl->instance = instance;
1562 next_bincl++->name = name;
1563 }
1564
1565 /* Given a name, value pair, find the corresponding
1566 bincl in the list. Return the partial symtab associated
1567 with that header_file_location. */
1568
1569 struct partial_symtab *
1570 find_corresponding_bincl_psymtab (name, instance)
1571 char *name;
1572 int instance;
1573 {
1574 struct header_file_location *bincl;
1575
1576 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1577 if (bincl->instance == instance
1578 && !strcmp (name, bincl->name))
1579 return bincl->pst;
1580
1581 return (struct partial_symtab *) 0;
1582 }
1583
1584 /* Free the storage allocated for the bincl list. */
1585
1586 static void
1587 free_bincl_list ()
1588 {
1589 free (bincl_list);
1590 bincls_allocated = 0;
1591 }
1592
1593 static struct partial_symtab *start_psymtab ();
1594 static void end_psymtab();
1595
1596 #ifdef DEBUG
1597 /* This is normally a macro defined in read_dbx_symtab, but this
1598 is a lot easier to debug. */
1599
1600 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1601 char *NAME;
1602 int NAMELENGTH;
1603 enum namespace NAMESPACE;
1604 enum address_class CLASS;
1605 struct psymbol_allocation_list *PLIST;
1606 unsigned long VALUE;
1607 {
1608 register struct partial_symbol *psym;
1609
1610 #define LIST *PLIST
1611 do {
1612 if ((LIST).next >=
1613 (LIST).list + (LIST).size)
1614 {
1615 (LIST).list = (struct partial_symbol *)
1616 xrealloc ((LIST).list,
1617 ((LIST).size * 2
1618 * sizeof (struct partial_symbol)));
1619 /* Next assumes we only went one over. Should be good if
1620 program works correctly */
1621 (LIST).next =
1622 (LIST).list + (LIST).size;
1623 (LIST).size *= 2;
1624 }
1625 psym = (LIST).next++;
1626 #undef LIST
1627
1628 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1629 (NAMELENGTH) + 1);
1630 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1631 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1632 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1633 SYMBOL_CLASS (psym) = (CLASS);
1634 SYMBOL_VALUE (psym) = (VALUE);
1635 } while (0);
1636 }
1637
1638 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1639 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1640 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1641
1642 #endif /* DEBUG */
1643
1644 /* Given pointers to an a.out symbol table in core containing dbx
1645 style data, setup partial_symtab's describing each source file for
1646 which debugging information is available. NLISTLEN is the number
1647 of symbols in the symbol table. All symbol names are given as
1648 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1649 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1650 and ADDR is its relocated address (if incremental) or 0 (if not). */
1651
1652 static void
1653 read_dbx_symtab (symfile_name, addr,
1654 desc, stringtab, stringtab_size, nlistlen,
1655 text_addr, text_size)
1656 char *symfile_name;
1657 CORE_ADDR addr;
1658 int desc;
1659 register char *stringtab;
1660 register long stringtab_size;
1661 register int nlistlen;
1662 CORE_ADDR text_addr;
1663 int text_size;
1664 {
1665 register struct nlist *bufp;
1666 register char *namestring;
1667 register struct partial_symbol *psym;
1668 int nsl;
1669 int past_first_source_file = 0;
1670 CORE_ADDR last_o_file_start = 0;
1671 struct cleanup *old_chain;
1672 char *p;
1673
1674 /* End of the text segment of the executable file. */
1675 CORE_ADDR end_of_text_addr;
1676
1677 /* Current partial symtab */
1678 struct partial_symtab *pst;
1679
1680 /* List of current psymtab's include files */
1681 char **psymtab_include_list;
1682 int includes_allocated;
1683 int includes_used;
1684
1685 /* Index within current psymtab dependency list */
1686 struct partial_symtab **dependency_list;
1687 int dependencies_used, dependencies_allocated;
1688
1689 stringtab_global = stringtab;
1690
1691 pst = (struct partial_symtab *) 0;
1692
1693 includes_allocated = 30;
1694 includes_used = 0;
1695 psymtab_include_list = (char **) alloca (includes_allocated *
1696 sizeof (char *));
1697
1698 dependencies_allocated = 30;
1699 dependencies_used = 0;
1700 dependency_list =
1701 (struct partial_symtab **) alloca (dependencies_allocated *
1702 sizeof (struct partial_symtab *));
1703
1704 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1705 It should only blow away the psymtabs created herein. We could
1706 be reading a shared library or a dynloaded file! */
1707 old_chain = make_cleanup (free_all_psymtabs, 0);
1708
1709 /* Init bincl list */
1710 init_bincl_list (20);
1711 make_cleanup (free_bincl_list, 0);
1712
1713 last_source_file = 0;
1714
1715 #ifdef END_OF_TEXT_DEFAULT
1716 end_of_text_addr = END_OF_TEXT_DEFAULT;
1717 #else
1718 end_of_text_addr = text_addr + text_size;
1719 #endif
1720
1721 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1722 symbuf_end = symbuf_idx = 0;
1723
1724 for (symnum = 0; symnum < nlistlen; symnum++)
1725 {
1726 /* Get the symbol for this run and pull out some info */
1727 QUIT; /* allow this to be interruptable */
1728 if (symbuf_idx == symbuf_end)
1729 fill_symbuf ();
1730 bufp = &symbuf[symbuf_idx++];
1731
1732 /*
1733 * Special case to speed up readin.
1734 */
1735 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1736
1737 SWAP_SYMBOL (bufp);
1738
1739 /* Ok. There is a lot of code duplicated in the rest of this
1740 switch statement (for efficiency reasons). Since I don't
1741 like duplicating code, I will do my penance here, and
1742 describe the code which is duplicated:
1743
1744 *) The assignment to namestring.
1745 *) The call to strchr.
1746 *) The addition of a partial symbol the the two partial
1747 symbol lists. This last is a large section of code, so
1748 I've imbedded it in the following macro.
1749 */
1750
1751 /* Set namestring based on bufp. If the string table index is invalid,
1752 give a fake name, and print a single error message per symbol file read,
1753 rather than abort the symbol reading or flood the user with messages. */
1754 #define SET_NAMESTRING()\
1755 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1756 complain (&string_table_offset_complaint, symnum); \
1757 namestring = "foo"; \
1758 } else \
1759 namestring = bufp->n_un.n_strx + stringtab
1760
1761 /* Add a symbol with an integer value to a psymtab. */
1762 /* This is a macro unless we're debugging. See above this function. */
1763 #ifndef DEBUG
1764 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1765 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1766 SYMBOL_VALUE)
1767 #endif /* DEBUG */
1768
1769 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1770 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1771 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1772 SYMBOL_VALUE_ADDRESS)
1773
1774 /* Add any kind of symbol to a psymtab. */
1775 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1776 do { \
1777 if ((LIST).next >= \
1778 (LIST).list + (LIST).size) \
1779 { \
1780 (LIST).list = (struct partial_symbol *) \
1781 xrealloc ((LIST).list, \
1782 ((LIST).size * 2 \
1783 * sizeof (struct partial_symbol))); \
1784 /* Next assumes we only went one over. Should be good if \
1785 program works correctly */ \
1786 (LIST).next = \
1787 (LIST).list + (LIST).size; \
1788 (LIST).size *= 2; \
1789 } \
1790 psym = (LIST).next++; \
1791 \
1792 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1793 (NAMELENGTH) + 1); \
1794 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1795 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1796 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1797 SYMBOL_CLASS (psym) = (CLASS); \
1798 VT (psym) = (VALUE); \
1799 } while (0);
1800
1801 /* End of macro definitions, now let's handle them symbols! */
1802
1803 switch (bufp->n_type)
1804 {
1805 /*
1806 * Standard, external, non-debugger, symbols
1807 */
1808
1809 case N_TEXT | N_EXT:
1810 case N_NBTEXT | N_EXT:
1811 case N_NBDATA | N_EXT:
1812 case N_NBBSS | N_EXT:
1813 case N_SETV | N_EXT:
1814 case N_ABS | N_EXT:
1815 case N_DATA | N_EXT:
1816 case N_BSS | N_EXT:
1817
1818 bufp->n_value += addr; /* Relocate */
1819
1820 SET_NAMESTRING();
1821
1822 bss_ext_symbol:
1823 record_misc_function (namestring, bufp->n_value,
1824 bufp->n_type); /* Always */
1825
1826 continue;
1827
1828 /* Standard, local, non-debugger, symbols */
1829
1830 case N_NBTEXT:
1831
1832 /* We need to be able to deal with both N_FN or N_TEXT,
1833 because we have no way of knowing whether the sys-supplied ld
1834 or GNU ld was used to make the executable. */
1835 #if ! (N_FN & N_EXT)
1836 case N_FN:
1837 #endif
1838 case N_FN | N_EXT:
1839 case N_TEXT:
1840 bufp->n_value += addr; /* Relocate */
1841 SET_NAMESTRING();
1842 if ((namestring[0] == '-' && namestring[1] == 'l')
1843 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1844 && namestring [nsl - 2] == '.'))
1845 {
1846 if (entry_point < bufp->n_value
1847 && entry_point >= last_o_file_start
1848 && addr == 0) /* FIXME nogood nomore */
1849 {
1850 startup_file_start = last_o_file_start;
1851 startup_file_end = bufp->n_value;
1852 }
1853 if (past_first_source_file && pst
1854 /* The gould NP1 uses low values for .o and -l symbols
1855 which are not the address. */
1856 && bufp->n_value > pst->textlow)
1857 {
1858 end_psymtab (pst, psymtab_include_list, includes_used,
1859 symnum * sizeof (struct nlist), bufp->n_value,
1860 dependency_list, dependencies_used,
1861 global_psymbols.next, static_psymbols.next);
1862 pst = (struct partial_symtab *) 0;
1863 includes_used = 0;
1864 dependencies_used = 0;
1865 }
1866 else
1867 past_first_source_file = 1;
1868 last_o_file_start = bufp->n_value;
1869 }
1870 continue;
1871
1872 case N_DATA:
1873 bufp->n_value += addr; /* Relocate */
1874 SET_NAMESTRING ();
1875 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1876 Record it even if it's local, not global, so we can find it. */
1877 if (namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1878 {
1879 /* Not really a function here, but... */
1880 record_misc_function (namestring, bufp->n_value,
1881 bufp->n_type); /* Always */
1882 }
1883 continue;
1884
1885 case N_UNDF | N_EXT:
1886 if (bufp->n_value != 0) {
1887 /* This is a "Fortran COMMON" symbol. See if the target
1888 environment knows where it has been relocated to. */
1889
1890 CORE_ADDR reladdr;
1891
1892 SET_NAMESTRING();
1893 if (target_lookup_symbol (namestring, &reladdr)) {
1894 continue; /* Error in lookup; ignore symbol for now. */
1895 }
1896 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1897 bufp->n_value = reladdr;
1898 goto bss_ext_symbol;
1899 }
1900 continue; /* Just undefined, not COMMON */
1901
1902 /* Lots of symbol types we can just ignore. */
1903
1904 case N_UNDF:
1905 case N_ABS:
1906 case N_BSS:
1907 case N_NBDATA:
1908 case N_NBBSS:
1909 continue;
1910
1911 /* Keep going . . .*/
1912
1913 /*
1914 * Special symbol types for GNU
1915 */
1916 case N_INDR:
1917 case N_INDR | N_EXT:
1918 case N_SETA:
1919 case N_SETA | N_EXT:
1920 case N_SETT:
1921 case N_SETT | N_EXT:
1922 case N_SETD:
1923 case N_SETD | N_EXT:
1924 case N_SETB:
1925 case N_SETB | N_EXT:
1926 case N_SETV:
1927 continue;
1928
1929 /*
1930 * Debugger symbols
1931 */
1932
1933 case N_SO: {
1934 unsigned long valu = bufp->n_value;
1935 /* Symbol number of the first symbol of this file (i.e. the N_SO
1936 if there is just one, or the first if we have a pair). */
1937 int first_symnum = symnum;
1938
1939 /* End the current partial symtab and start a new one */
1940
1941 SET_NAMESTRING();
1942
1943 /* Peek at the next symbol. If it is also an N_SO, the
1944 first one just indicates the directory. */
1945 if (symbuf_idx == symbuf_end)
1946 fill_symbuf ();
1947 bufp = &symbuf[symbuf_idx];
1948 /* n_type is only a char, so swapping swapping is irrelevant. */
1949 if (bufp->n_type == (unsigned char)N_SO)
1950 {
1951 SWAP_SYMBOL (bufp);
1952 SET_NAMESTRING ();
1953 valu = bufp->n_value;
1954 symbuf_idx++;
1955 symnum++;
1956 }
1957 valu += addr; /* Relocate */
1958
1959 if (pst && past_first_source_file)
1960 {
1961 end_psymtab (pst, psymtab_include_list, includes_used,
1962 first_symnum * sizeof (struct nlist), valu,
1963 dependency_list, dependencies_used,
1964 global_psymbols.next, static_psymbols.next);
1965 pst = (struct partial_symtab *) 0;
1966 includes_used = 0;
1967 dependencies_used = 0;
1968 }
1969 else
1970 past_first_source_file = 1;
1971
1972 pst = start_psymtab (symfile_name, addr,
1973 namestring, valu,
1974 first_symnum * sizeof (struct nlist),
1975 global_psymbols.next, static_psymbols.next);
1976
1977 continue;
1978 }
1979
1980 case N_BINCL:
1981 /* Add this bincl to the bincl_list for future EXCLs. No
1982 need to save the string; it'll be around until
1983 read_dbx_symtab function returns */
1984
1985 SET_NAMESTRING();
1986
1987 add_bincl_to_list (pst, namestring, bufp->n_value);
1988
1989 /* Mark down an include file in the current psymtab */
1990
1991 psymtab_include_list[includes_used++] = namestring;
1992 if (includes_used >= includes_allocated)
1993 {
1994 char **orig = psymtab_include_list;
1995
1996 psymtab_include_list = (char **)
1997 alloca ((includes_allocated *= 2) *
1998 sizeof (char *));
1999 bcopy (orig, psymtab_include_list,
2000 includes_used * sizeof (char *));
2001 }
2002
2003 continue;
2004
2005 case N_SOL:
2006 /* Mark down an include file in the current psymtab */
2007
2008 SET_NAMESTRING();
2009
2010 /* In C++, one may expect the same filename to come round many
2011 times, when code is coming alternately from the main file
2012 and from inline functions in other files. So I check to see
2013 if this is a file we've seen before -- either the main
2014 source file, or a previously included file.
2015
2016 This seems to be a lot of time to be spending on N_SOL, but
2017 things like "break expread.y:435" need to work (I
2018 suppose the psymtab_include_list could be hashed or put
2019 in a binary tree, if profiling shows this is a major hog). */
2020 if (!strcmp (namestring, pst->filename))
2021 continue;
2022 {
2023 register int i;
2024 for (i = 0; i < includes_used; i++)
2025 if (!strcmp (namestring, psymtab_include_list[i]))
2026 {
2027 i = -1;
2028 break;
2029 }
2030 if (i == -1)
2031 continue;
2032 }
2033
2034 psymtab_include_list[includes_used++] = namestring;
2035 if (includes_used >= includes_allocated)
2036 {
2037 char **orig = psymtab_include_list;
2038
2039 psymtab_include_list = (char **)
2040 alloca ((includes_allocated *= 2) *
2041 sizeof (char *));
2042 bcopy (orig, psymtab_include_list,
2043 includes_used * sizeof (char *));
2044 }
2045 continue;
2046
2047 case N_LSYM: /* Typedef or automatic variable. */
2048 SET_NAMESTRING();
2049
2050 p = (char *) strchr (namestring, ':');
2051
2052 /* Skip if there is no :. */
2053 if (!p) continue;
2054
2055 switch (p[1])
2056 {
2057 case 'T':
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 STRUCT_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2061 if (p[2] == 't')
2062 {
2063 /* Also a typedef with the same name. */
2064 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2065 VAR_NAMESPACE, LOC_TYPEDEF,
2066 static_psymbols, bufp->n_value);
2067 p += 1;
2068 }
2069 goto check_enum;
2070 case 't':
2071 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2072 VAR_NAMESPACE, LOC_TYPEDEF,
2073 static_psymbols, bufp->n_value);
2074 check_enum:
2075 /* If this is an enumerated type, we need to
2076 add all the enum constants to the partial symbol
2077 table. This does not cover enums without names, e.g.
2078 "enum {a, b} c;" in C, but fortunately those are
2079 rare. There is no way for GDB to find those from the
2080 enum type without spending too much time on it. Thus
2081 to solve this problem, the compiler needs to put out separate
2082 constant symbols ('c' N_LSYMS) for enum constants in
2083 enums without names, or put out a dummy type. */
2084
2085 /* We are looking for something of the form
2086 <name> ":" ("t" | "T") [<number> "="] "e"
2087 {<constant> ":" <value> ","} ";". */
2088
2089 /* Skip over the colon and the 't' or 'T'. */
2090 p += 2;
2091 /* This type may be given a number. Skip over it. */
2092 while ((*p >= '0' && *p <= '9')
2093 || *p == '=')
2094 p++;
2095
2096 if (*p++ == 'e')
2097 {
2098 /* We have found an enumerated type. */
2099 /* According to comments in read_enum_type
2100 a comma could end it instead of a semicolon.
2101 I don't know where that happens.
2102 Accept either. */
2103 while (*p && *p != ';' && *p != ',')
2104 {
2105 char *q;
2106
2107 /* Check for and handle cretinous dbx symbol name
2108 continuation! */
2109 if (*p == '\\')
2110 p = next_symbol_text ();
2111
2112 /* Point to the character after the name
2113 of the enum constant. */
2114 for (q = p; *q && *q != ':'; q++)
2115 ;
2116 /* Note that the value doesn't matter for
2117 enum constants in psymtabs, just in symtabs. */
2118 ADD_PSYMBOL_TO_LIST (p, q - p,
2119 VAR_NAMESPACE, LOC_CONST,
2120 static_psymbols, 0);
2121 /* Point past the name. */
2122 p = q;
2123 /* Skip over the value. */
2124 while (*p && *p != ',')
2125 p++;
2126 /* Advance past the comma. */
2127 if (*p)
2128 p++;
2129 }
2130 }
2131
2132 continue;
2133 case 'c':
2134 /* Constant, e.g. from "const" in Pascal. */
2135 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2136 VAR_NAMESPACE, LOC_CONST,
2137 static_psymbols, bufp->n_value);
2138 continue;
2139 default:
2140 /* Skip if the thing following the : is
2141 not a letter (which indicates declaration of a local
2142 variable, which we aren't interested in). */
2143 continue;
2144 }
2145
2146 case N_FUN:
2147 case N_GSYM: /* Global (extern) variable; can be
2148 data or bss (sigh). */
2149 case N_STSYM: /* Data seg var -- static */
2150 case N_LCSYM: /* BSS " */
2151
2152 case N_NBSTS: /* Gould nobase. */
2153 case N_NBLCS: /* symbols. */
2154
2155 /* Following may probably be ignored; I'll leave them here
2156 for now (until I do Pascal and Modula 2 extensions). */
2157
2158 case N_PC: /* I may or may not need this; I
2159 suspect not. */
2160 case N_M2C: /* I suspect that I can ignore this here. */
2161 case N_SCOPE: /* Same. */
2162
2163 SET_NAMESTRING();
2164
2165 p = (char *) strchr (namestring, ':');
2166 if (!p)
2167 continue; /* Not a debugging symbol. */
2168
2169
2170
2171 /* Main processing section for debugging symbols which
2172 the initial read through the symbol tables needs to worry
2173 about. If we reach this point, the symbol which we are
2174 considering is definitely one we are interested in.
2175 p must also contain the (valid) index into the namestring
2176 which indicates the debugging type symbol. */
2177
2178 switch (p[1])
2179 {
2180 case 'c':
2181 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_CONST,
2183 static_psymbols, bufp->n_value);
2184 continue;
2185 case 'S':
2186 bufp->n_value += addr; /* Relocate */
2187 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2188 VAR_NAMESPACE, LOC_STATIC,
2189 static_psymbols, bufp->n_value);
2190 continue;
2191 case 'G':
2192 bufp->n_value += addr; /* Relocate */
2193 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2194 VAR_NAMESPACE, LOC_EXTERNAL,
2195 global_psymbols, bufp->n_value);
2196 continue;
2197
2198 case 't':
2199 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2200 VAR_NAMESPACE, LOC_TYPEDEF,
2201 global_psymbols, bufp->n_value);
2202 continue;
2203
2204 case 'f':
2205 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2206 VAR_NAMESPACE, LOC_BLOCK,
2207 static_psymbols, bufp->n_value);
2208 continue;
2209
2210 /* Global functions were ignored here, but now they
2211 are put into the global psymtab like one would expect.
2212 They're also in the misc fn vector...
2213 FIXME, why did it used to ignore these? That broke
2214 "i fun" on these functions. */
2215 case 'F':
2216 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2217 VAR_NAMESPACE, LOC_BLOCK,
2218 global_psymbols, bufp->n_value);
2219 continue;
2220
2221 /* Two things show up here (hopefully); static symbols of
2222 local scope (static used inside braces) or extensions
2223 of structure symbols. We can ignore both. */
2224 case 'V':
2225 case '(':
2226 case '0':
2227 case '1':
2228 case '2':
2229 case '3':
2230 case '4':
2231 case '5':
2232 case '6':
2233 case '7':
2234 case '8':
2235 case '9':
2236 continue;
2237
2238 default:
2239 /* Unexpected symbol. Ignore it; perhaps it is an extension
2240 that we don't know about.
2241
2242 Someone says sun cc puts out symbols like
2243 /foo/baz/maclib::/usr/local/bin/maclib,
2244 which would get here with a symbol type of ':'. */
2245 continue;
2246 }
2247
2248 case N_EXCL:
2249
2250 SET_NAMESTRING();
2251
2252 /* Find the corresponding bincl and mark that psymtab on the
2253 psymtab dependency list */
2254 {
2255 struct partial_symtab *needed_pst =
2256 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2257
2258 /* If this include file was defined earlier in this file,
2259 leave it alone. */
2260 if (needed_pst == pst) continue;
2261
2262 if (needed_pst)
2263 {
2264 int i;
2265 int found = 0;
2266
2267 for (i = 0; i < dependencies_used; i++)
2268 if (dependency_list[i] == needed_pst)
2269 {
2270 found = 1;
2271 break;
2272 }
2273
2274 /* If it's already in the list, skip the rest. */
2275 if (found) continue;
2276
2277 dependency_list[dependencies_used++] = needed_pst;
2278 if (dependencies_used >= dependencies_allocated)
2279 {
2280 struct partial_symtab **orig = dependency_list;
2281 dependency_list =
2282 (struct partial_symtab **)
2283 alloca ((dependencies_allocated *= 2)
2284 * sizeof (struct partial_symtab *));
2285 bcopy (orig, dependency_list,
2286 (dependencies_used
2287 * sizeof (struct partial_symtab *)));
2288 #ifdef DEBUG_INFO
2289 fprintf (stderr, "Had to reallocate dependency list.\n");
2290 fprintf (stderr, "New dependencies allocated: %d\n",
2291 dependencies_allocated);
2292 #endif
2293 }
2294 }
2295 else
2296 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2297 symnum);
2298 }
2299 continue;
2300
2301 case N_EINCL:
2302 case N_DSLINE:
2303 case N_BSLINE:
2304 case N_SSYM: /* Claim: Structure or union element.
2305 Hopefully, I can ignore this. */
2306 case N_ENTRY: /* Alternate entry point; can ignore. */
2307 case N_MAIN: /* Can definitely ignore this. */
2308 case N_CATCH: /* These are GNU C++ extensions */
2309 case N_EHDECL: /* that can safely be ignored here. */
2310 case N_LENG:
2311 case N_BCOMM:
2312 case N_ECOMM:
2313 case N_ECOML:
2314 case N_FNAME:
2315 case N_SLINE:
2316 case N_RSYM:
2317 case N_PSYM:
2318 case N_LBRAC:
2319 case N_RBRAC:
2320 case N_NSYMS: /* Ultrix 4.0: symbol count */
2321 /* These symbols aren't interesting; don't worry about them */
2322
2323 continue;
2324
2325 default:
2326 /* If we haven't found it yet, ignore it. It's probably some
2327 new type we don't know about yet. */
2328 complain (&unknown_symtype_complaint, bufp->n_type);
2329 continue;
2330 }
2331 }
2332
2333 /* If there's stuff to be cleaned up, clean it up. */
2334 if (entry_point < bufp->n_value
2335 && entry_point >= last_o_file_start)
2336 {
2337 startup_file_start = last_o_file_start;
2338 startup_file_end = bufp->n_value;
2339 }
2340
2341 if (pst)
2342 {
2343 end_psymtab (pst, psymtab_include_list, includes_used,
2344 symnum * sizeof (struct nlist), end_of_text_addr,
2345 dependency_list, dependencies_used,
2346 global_psymbols.next, static_psymbols.next);
2347 includes_used = 0;
2348 dependencies_used = 0;
2349 pst = (struct partial_symtab *) 0;
2350 }
2351
2352 free_bincl_list ();
2353 discard_cleanups (old_chain);
2354 }
2355
2356 /*
2357 * Allocate and partially fill a partial symtab. It will be
2358 * completely filled at the end of the symbol list.
2359
2360 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2361 is the address relative to which its symbols are (incremental) or 0
2362 (normal). */
2363 static struct partial_symtab *
2364 start_psymtab (symfile_name, addr,
2365 filename, textlow, ldsymoff, global_syms, static_syms)
2366 char *symfile_name;
2367 CORE_ADDR addr;
2368 char *filename;
2369 CORE_ADDR textlow;
2370 int ldsymoff;
2371 struct partial_symbol *global_syms;
2372 struct partial_symbol *static_syms;
2373 {
2374 struct partial_symtab *result =
2375 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2376 sizeof (struct partial_symtab));
2377
2378 result->addr = addr;
2379
2380 result->symfile_name =
2381 (char *) obstack_alloc (psymbol_obstack,
2382 strlen (symfile_name) + 1);
2383 strcpy (result->symfile_name, symfile_name);
2384
2385 result->filename =
2386 (char *) obstack_alloc (psymbol_obstack,
2387 strlen (filename) + 1);
2388 strcpy (result->filename, filename);
2389
2390 result->textlow = textlow;
2391 result->ldsymoff = ldsymoff;
2392
2393 result->readin = 0;
2394 result->symtab = 0;
2395 result->read_symtab = dbx_psymtab_to_symtab;
2396
2397 result->globals_offset = global_syms - global_psymbols.list;
2398 result->statics_offset = static_syms - static_psymbols.list;
2399
2400 result->n_global_syms = 0;
2401 result->n_static_syms = 0;
2402
2403
2404 return result;
2405 }
2406
2407 static int
2408 compare_psymbols (s1, s2)
2409 register struct partial_symbol *s1, *s2;
2410 {
2411 register char
2412 *st1 = SYMBOL_NAME (s1),
2413 *st2 = SYMBOL_NAME (s2);
2414
2415 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2416 strcmp (st1 + 1, st2 + 1));
2417 }
2418
2419
2420 /* Close off the current usage of a partial_symbol table entry. This
2421 involves setting the correct number of includes (with a realloc),
2422 setting the high text mark, setting the symbol length in the
2423 executable, and setting the length of the global and static lists
2424 of psymbols.
2425
2426 The global symbols and static symbols are then seperately sorted.
2427
2428 Then the partial symtab is put on the global list.
2429 *** List variables and peculiarities of same. ***
2430 */
2431 static void
2432 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2433 capping_text, dependency_list, number_dependencies,
2434 capping_global, capping_static)
2435 struct partial_symtab *pst;
2436 char **include_list;
2437 int num_includes;
2438 int capping_symbol_offset;
2439 CORE_ADDR capping_text;
2440 struct partial_symtab **dependency_list;
2441 int number_dependencies;
2442 struct partial_symbol *capping_global, *capping_static;
2443 {
2444 int i;
2445
2446 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2447 pst->texthigh = capping_text;
2448
2449 pst->n_global_syms =
2450 capping_global - (global_psymbols.list + pst->globals_offset);
2451 pst->n_static_syms =
2452 capping_static - (static_psymbols.list + pst->statics_offset);
2453
2454 pst->number_of_dependencies = number_dependencies;
2455 if (number_dependencies)
2456 {
2457 pst->dependencies = (struct partial_symtab **)
2458 obstack_alloc (psymbol_obstack,
2459 number_dependencies * sizeof (struct partial_symtab *));
2460 bcopy (dependency_list, pst->dependencies,
2461 number_dependencies * sizeof (struct partial_symtab *));
2462 }
2463 else
2464 pst->dependencies = 0;
2465
2466 for (i = 0; i < num_includes; i++)
2467 {
2468 /* Eventually, put this on obstack */
2469 struct partial_symtab *subpst =
2470 (struct partial_symtab *)
2471 obstack_alloc (psymbol_obstack,
2472 sizeof (struct partial_symtab));
2473
2474 subpst->filename =
2475 (char *) obstack_alloc (psymbol_obstack,
2476 strlen (include_list[i]) + 1);
2477 strcpy (subpst->filename, include_list[i]);
2478
2479 subpst->symfile_name = pst->symfile_name;
2480 subpst->addr = pst->addr;
2481 subpst->ldsymoff =
2482 subpst->ldsymlen =
2483 subpst->textlow =
2484 subpst->texthigh = 0;
2485
2486 /* We could save slight bits of space by only making one of these,
2487 shared by the entire set of include files. FIXME-someday. */
2488 subpst->dependencies = (struct partial_symtab **)
2489 obstack_alloc (psymbol_obstack,
2490 sizeof (struct partial_symtab *));
2491 subpst->dependencies[0] = pst;
2492 subpst->number_of_dependencies = 1;
2493
2494 subpst->globals_offset =
2495 subpst->n_global_syms =
2496 subpst->statics_offset =
2497 subpst->n_static_syms = 0;
2498
2499 subpst->readin = 0;
2500 subpst->symtab = 0;
2501 subpst->read_symtab = dbx_psymtab_to_symtab;
2502
2503 subpst->next = partial_symtab_list;
2504 partial_symtab_list = subpst;
2505 }
2506
2507 /* Sort the global list; don't sort the static list */
2508 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2509 sizeof (struct partial_symbol), compare_psymbols);
2510
2511 /* If there is already a psymtab or symtab for a file of this name, remove it.
2512 (If there is a symtab, more drastic things also happen.)
2513 This happens in VxWorks. */
2514 free_named_symtabs (pst->filename);
2515
2516 /* Put the psymtab on the psymtab list */
2517 pst->next = partial_symtab_list;
2518 partial_symtab_list = pst;
2519 }
2520 \f
2521 static void
2522 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2523 struct partial_symtab *pst;
2524 int desc;
2525 char *stringtab;
2526 int stringtab_size;
2527 int sym_offset;
2528 {
2529 struct cleanup *old_chain;
2530 int i;
2531
2532 if (!pst)
2533 return;
2534
2535 if (pst->readin)
2536 {
2537 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2538 pst->filename);
2539 return;
2540 }
2541
2542 /* Read in all partial symbtabs on which this one is dependent */
2543 for (i = 0; i < pst->number_of_dependencies; i++)
2544 if (!pst->dependencies[i]->readin)
2545 {
2546 /* Inform about additional files that need to be read in. */
2547 if (info_verbose)
2548 {
2549 fputs_filtered (" ", stdout);
2550 wrap_here ("");
2551 fputs_filtered ("and ", stdout);
2552 wrap_here ("");
2553 printf_filtered ("%s...", pst->dependencies[i]->filename);
2554 wrap_here (""); /* Flush output */
2555 fflush (stdout);
2556 }
2557 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2558 stringtab, stringtab_size, sym_offset);
2559 }
2560
2561 if (pst->ldsymlen) /* Otherwise it's a dummy */
2562 {
2563 /* Init stuff necessary for reading in symbols */
2564 free_pendings = 0;
2565 pending_blocks = 0;
2566 file_symbols = 0;
2567 global_symbols = 0;
2568 old_chain = make_cleanup (really_free_pendings, 0);
2569
2570 /* Read in this files symbols */
2571 lseek (desc, sym_offset, L_SET);
2572 read_ofile_symtab (desc, stringtab, stringtab_size,
2573 pst->ldsymoff,
2574 pst->ldsymlen, pst->textlow,
2575 pst->texthigh - pst->textlow, pst->addr);
2576 sort_symtab_syms (symtab_list); /* At beginning since just added */
2577
2578 do_cleanups (old_chain);
2579 }
2580
2581 pst->readin = 1;
2582 }
2583
2584 /*
2585 * Read in all of the symbols for a given psymtab for real.
2586 * Be verbose about it if the user wants that.
2587 */
2588 static void
2589 dbx_psymtab_to_symtab (pst)
2590 struct partial_symtab *pst;
2591 {
2592 int desc;
2593 char *stringtab;
2594 int stsize, val;
2595 struct stat statbuf;
2596 struct cleanup *old_chain;
2597 bfd *sym_bfd;
2598 long st_temp;
2599
2600 if (!pst)
2601 return;
2602
2603 if (pst->readin)
2604 {
2605 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2606 pst->filename);
2607 return;
2608 }
2609
2610 if (pst->ldsymlen || pst->number_of_dependencies)
2611 {
2612 /* Print the message now, before reading the string table,
2613 to avoid disconcerting pauses. */
2614 if (info_verbose)
2615 {
2616 printf_filtered ("Reading in symbols for %s...", pst->filename);
2617 fflush (stdout);
2618 }
2619
2620 /* Open symbol file and read in string table. Symbol_file_command
2621 guarantees that the symbol file name will be absolute, so there is
2622 no need for openp. */
2623 desc = open(pst->symfile_name, O_RDONLY, 0);
2624
2625 if (desc < 0)
2626 perror_with_name (pst->symfile_name);
2627
2628 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2629 if (!sym_bfd)
2630 {
2631 (void)close (desc);
2632 error ("Could not open `%s' to read symbols: %s",
2633 pst->symfile_name, bfd_errmsg (bfd_error));
2634 }
2635 old_chain = make_cleanup (bfd_close, sym_bfd);
2636 if (!bfd_check_format (sym_bfd, bfd_object))
2637 error ("\"%s\": can't read symbols: %s.",
2638 pst->symfile_name, bfd_errmsg (bfd_error));
2639
2640 /* We keep the string table for symfile resident in memory, but
2641 not the string table for any other symbol files. */
2642 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2643 {
2644 /* Read in the string table */
2645
2646 /* FIXME, this uses internal BFD variables. See above in
2647 dbx_symbol_file_open where the macro is defined! */
2648 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2649
2650 val = myread (desc, &st_temp, sizeof st_temp);
2651 if (val < 0)
2652 perror_with_name (pst->symfile_name);
2653 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2654 if (fstat (desc, &statbuf) < 0)
2655 perror_with_name (pst->symfile_name);
2656
2657 if (stsize >= 0 && stsize < statbuf.st_size)
2658 {
2659 #ifdef BROKEN_LARGE_ALLOCA
2660 stringtab = (char *) xmalloc (stsize);
2661 make_cleanup (free, stringtab);
2662 #else
2663 stringtab = (char *) alloca (stsize);
2664 #endif
2665 }
2666 else
2667 stringtab = NULL;
2668 if (stringtab == NULL && stsize != 0)
2669 error ("ridiculous string table size: %d bytes", stsize);
2670
2671 /* FIXME, this uses internal BFD variables. See above in
2672 dbx_symbol_file_open where the macro is defined! */
2673 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2674 if (val < 0)
2675 perror_with_name (pst->symfile_name);
2676 val = myread (desc, stringtab, stsize);
2677 if (val < 0)
2678 perror_with_name (pst->symfile_name);
2679 }
2680 else
2681 {
2682 stringtab = symfile_string_table;
2683 stsize = symfile_string_table_size;
2684 }
2685
2686 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2687
2688 /* FIXME, this uses internal BFD variables. See above in
2689 dbx_symbol_file_open where the macro is defined! */
2690 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2691 SYMBOL_TABLE_OFFSET);
2692
2693 /* Match with global symbols. This only needs to be done once,
2694 after all of the symtabs and dependencies have been read in. */
2695 scan_file_globals ();
2696
2697 do_cleanups (old_chain);
2698
2699 /* Finish up the debug error message. */
2700 if (info_verbose)
2701 printf_filtered ("done.\n");
2702 }
2703 }
2704
2705 /*
2706 * Scan through all of the global symbols defined in the object file,
2707 * assigning values to the debugging symbols that need to be assigned
2708 * to. Get these symbols from the misc function list.
2709 */
2710 static void
2711 scan_file_globals ()
2712 {
2713 int hash;
2714 int mf;
2715
2716 for (mf = 0; mf < misc_function_count; mf++)
2717 {
2718 char *namestring = misc_function_vector[mf].name;
2719 struct symbol *sym, *prev;
2720
2721 QUIT;
2722
2723 prev = (struct symbol *) 0;
2724
2725 /* Get the hash index and check all the symbols
2726 under that hash index. */
2727
2728 hash = hashname (namestring);
2729
2730 for (sym = global_sym_chain[hash]; sym;)
2731 {
2732 if (*namestring == SYMBOL_NAME (sym)[0]
2733 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2734 {
2735 /* Splice this symbol out of the hash chain and
2736 assign the value we have to it. */
2737 if (prev)
2738 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2739 else
2740 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2741
2742 /* Check to see whether we need to fix up a common block. */
2743 /* Note: this code might be executed several times for
2744 the same symbol if there are multiple references. */
2745 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2746 fix_common_block (sym, misc_function_vector[mf].address);
2747 else
2748 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2749
2750 if (prev)
2751 sym = SYMBOL_VALUE_CHAIN (prev);
2752 else
2753 sym = global_sym_chain[hash];
2754 }
2755 else
2756 {
2757 prev = sym;
2758 sym = SYMBOL_VALUE_CHAIN (sym);
2759 }
2760 }
2761 }
2762 }
2763
2764 /* Process a pair of symbols. Currently they must both be N_SO's. */
2765 static void
2766 process_symbol_pair (type1, desc1, value1, name1,
2767 type2, desc2, value2, name2)
2768 int type1;
2769 int desc1;
2770 CORE_ADDR value1;
2771 char *name1;
2772 int type2;
2773 int desc2;
2774 CORE_ADDR value2;
2775 char *name2;
2776 {
2777 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2778 broken PCC's don't put out N_SO pairs. */
2779 if (last_source_file)
2780 end_symtab (value2);
2781 start_symtab (name2, name1, value2);
2782 }
2783
2784 /*
2785 * Read in a defined section of a specific object file's symbols.
2786 *
2787 * DESC is the file descriptor for the file, positioned at the
2788 * beginning of the symtab
2789 * STRINGTAB is a pointer to the files string
2790 * table, already read in
2791 * SYM_OFFSET is the offset within the file of
2792 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2793 * number of symbols to read
2794 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2795 * TEXT_SIZE is the size of the text segment read in.
2796 * OFFSET is a relocation offset which gets added to each symbol
2797 */
2798
2799 static void
2800 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2801 sym_size, text_offset, text_size, offset)
2802 int desc;
2803 register char *stringtab;
2804 unsigned int stringtab_size;
2805 int sym_offset;
2806 int sym_size;
2807 CORE_ADDR text_offset;
2808 int text_size;
2809 int offset;
2810 {
2811 register char *namestring;
2812 struct nlist *bufp;
2813 unsigned char type;
2814 subfile_stack = 0;
2815
2816 stringtab_global = stringtab;
2817 last_source_file = 0;
2818
2819 symtab_input_desc = desc;
2820 symbuf_end = symbuf_idx = 0;
2821
2822 /* It is necessary to actually read one symbol *before* the start
2823 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2824 occurs before the N_SO symbol.
2825
2826 Detecting this in read_dbx_symtab
2827 would slow down initial readin, so we look for it here instead. */
2828 if (sym_offset >= (int)sizeof (struct nlist))
2829 {
2830 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2831 fill_symbuf ();
2832 bufp = &symbuf[symbuf_idx++];
2833 SWAP_SYMBOL (bufp);
2834
2835 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2836 error ("Invalid symbol data: bad string table offset: %d",
2837 bufp->n_un.n_strx);
2838 namestring = bufp->n_un.n_strx + stringtab;
2839
2840 processing_gcc_compilation =
2841 (bufp->n_type == N_TEXT
2842 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2843 }
2844 else
2845 {
2846 /* The N_SO starting this symtab is the first symbol, so we
2847 better not check the symbol before it. I'm not this can
2848 happen, but it doesn't hurt to check for it. */
2849 lseek(desc, sym_offset, L_INCR);
2850 processing_gcc_compilation = 0;
2851 }
2852
2853 if (symbuf_idx == symbuf_end)
2854 fill_symbuf();
2855 bufp = &symbuf[symbuf_idx];
2856 if (bufp->n_type != (unsigned char)N_SO)
2857 error("First symbol in segment of executable not a source symbol");
2858
2859 for (symnum = 0;
2860 symnum < sym_size / sizeof(struct nlist);
2861 symnum++)
2862 {
2863 QUIT; /* Allow this to be interruptable */
2864 if (symbuf_idx == symbuf_end)
2865 fill_symbuf();
2866 bufp = &symbuf[symbuf_idx++];
2867 SWAP_SYMBOL (bufp);
2868
2869 type = bufp->n_type & N_TYPE;
2870 if (type == (unsigned char)N_CATCH)
2871 {
2872 /* N_CATCH is not fixed up by the linker, and unfortunately,
2873 there's no other place to put it in the .stab map. */
2874 /* FIXME, do we also have to add OFFSET or something? -- gnu@cygnus */
2875 bufp->n_value += text_offset;
2876 }
2877 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2878 bufp->n_value += offset;
2879
2880 type = bufp->n_type;
2881 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2882 error ("Invalid symbol data: bad string table offset: %d",
2883 bufp->n_un.n_strx);
2884 namestring = bufp->n_un.n_strx + stringtab;
2885
2886 if (type & N_STAB)
2887 {
2888 short desc = bufp->n_desc;
2889 unsigned long valu = bufp->n_value;
2890
2891 /* Check for a pair of N_SO symbols. */
2892 if (type == (unsigned char)N_SO)
2893 {
2894 if (symbuf_idx == symbuf_end)
2895 fill_symbuf ();
2896 bufp = &symbuf[symbuf_idx];
2897 if (bufp->n_type == (unsigned char)N_SO)
2898 {
2899 char *namestring2;
2900
2901 SWAP_SYMBOL (bufp);
2902 bufp->n_value += offset; /* Relocate */
2903 symbuf_idx++;
2904 symnum++;
2905
2906 if (bufp->n_un.n_strx < 0
2907 || bufp->n_un.n_strx >= stringtab_size)
2908 error ("Invalid symbol data: bad string table offset: %d",
2909 bufp->n_un.n_strx);
2910 namestring2 = bufp->n_un.n_strx + stringtab;
2911
2912 process_symbol_pair (N_SO, desc, valu, namestring,
2913 N_SO, bufp->n_desc, bufp->n_value,
2914 namestring2);
2915 }
2916 else
2917 process_one_symbol(type, desc, valu, namestring);
2918 }
2919 else
2920 process_one_symbol (type, desc, valu, namestring);
2921 }
2922 /* We skip checking for a new .o or -l file; that should never
2923 happen in this routine. */
2924 else if (type == N_TEXT
2925 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2926 /* I don't think this code will ever be executed, because
2927 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2928 the N_SO symbol which starts this source file.
2929 However, there is no reason not to accept
2930 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2931 processing_gcc_compilation = 1;
2932 else if (type & N_EXT || type == (unsigned char)N_TEXT
2933 || type == (unsigned char)N_NBTEXT
2934 )
2935 /* Global symbol: see if we came across a dbx defintion for
2936 a corresponding symbol. If so, store the value. Remove
2937 syms from the chain when their values are stored, but
2938 search the whole chain, as there may be several syms from
2939 different files with the same name. */
2940 /* This is probably not true. Since the files will be read
2941 in one at a time, each reference to a global symbol will
2942 be satisfied in each file as it appears. So we skip this
2943 section. */
2944 ;
2945 }
2946 end_symtab (text_offset + text_size);
2947 }
2948 \f
2949 static int
2950 hashname (name)
2951 char *name;
2952 {
2953 register char *p = name;
2954 register int total = p[0];
2955 register int c;
2956
2957 c = p[1];
2958 total += c << 2;
2959 if (c)
2960 {
2961 c = p[2];
2962 total += c << 4;
2963 if (c)
2964 total += p[3] << 6;
2965 }
2966
2967 /* Ensure result is positive. */
2968 if (total < 0) total += (1000 << 6);
2969 return total % HASHSIZE;
2970 }
2971
2972 \f
2973 static void
2974 process_one_symbol (type, desc, valu, name)
2975 int type, desc;
2976 CORE_ADDR valu;
2977 char *name;
2978 {
2979 #ifndef SUN_FIXED_LBRAC_BUG
2980 /* This records the last pc address we've seen. We depend on their being
2981 an SLINE or FUN or SO before the first LBRAC, since the variable does
2982 not get reset in between reads of different symbol files. */
2983 static CORE_ADDR last_pc_address;
2984 #endif
2985 register struct context_stack *new;
2986 char *colon_pos;
2987
2988 /* Something is wrong if we see real data before
2989 seeing a source file name. */
2990
2991 if (last_source_file == 0 && type != (unsigned char)N_SO)
2992 {
2993 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2994 where that code is defined. */
2995 if (IGNORE_SYMBOL (type))
2996 return;
2997
2998 /* FIXME, this should not be an error, since it precludes extending
2999 the symbol table information in this way... */
3000 error ("Invalid symbol data: does not start by identifying a source file.");
3001 }
3002
3003 switch (type)
3004 {
3005 case N_FUN:
3006 case N_FNAME:
3007 /* Either of these types of symbols indicates the start of
3008 a new function. We must process its "name" normally for dbx,
3009 but also record the start of a new lexical context, and possibly
3010 also the end of the lexical context for the previous function. */
3011 /* This is not always true. This type of symbol may indicate a
3012 text segment variable. */
3013
3014 #ifndef SUN_FIXED_LBRAC_BUG
3015 last_pc_address = valu; /* Save for SunOS bug circumcision */
3016 #endif
3017
3018 colon_pos = strchr (name, ':');
3019 if (!colon_pos++
3020 || (*colon_pos != 'f' && *colon_pos != 'F'))
3021 {
3022 define_symbol (valu, name, desc, type);
3023 break;
3024 }
3025
3026 within_function = 1;
3027 if (context_stack_depth > 0)
3028 {
3029 new = &context_stack[--context_stack_depth];
3030 /* Make a block for the local symbols within. */
3031 finish_block (new->name, &local_symbols, new->old_blocks,
3032 new->start_addr, valu);
3033 }
3034 /* Stack must be empty now. */
3035 if (context_stack_depth != 0)
3036 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3037 symnum);
3038
3039 new = &context_stack[context_stack_depth++];
3040 new->old_blocks = pending_blocks;
3041 new->start_addr = valu;
3042 new->name = define_symbol (valu, name, desc, type);
3043 local_symbols = 0;
3044 break;
3045
3046 case N_CATCH:
3047 /* Record the address at which this catch takes place. */
3048 define_symbol (valu, name, desc, type);
3049 break;
3050
3051 case N_EHDECL:
3052 /* Don't know what to do with these yet. */
3053 error ("action uncertain for eh extensions");
3054 break;
3055
3056 case N_LBRAC:
3057 /* This "symbol" just indicates the start of an inner lexical
3058 context within a function. */
3059
3060 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3061 /* On most machines, the block addresses are relative to the
3062 N_SO, the linker did not relocate them (sigh). */
3063 valu += last_source_start_addr;
3064 #endif
3065
3066 #ifndef SUN_FIXED_LBRAC_BUG
3067 if (valu < last_pc_address) {
3068 /* Patch current LBRAC pc value to match last handy pc value */
3069 complain (&lbrac_complaint, 0);
3070 valu = last_pc_address;
3071 }
3072 #endif
3073 if (context_stack_depth == context_stack_size)
3074 {
3075 context_stack_size *= 2;
3076 context_stack = (struct context_stack *)
3077 xrealloc (context_stack,
3078 (context_stack_size
3079 * sizeof (struct context_stack)));
3080 }
3081
3082 new = &context_stack[context_stack_depth++];
3083 new->depth = desc;
3084 new->locals = local_symbols;
3085 new->old_blocks = pending_blocks;
3086 new->start_addr = valu;
3087 new->name = 0;
3088 local_symbols = 0;
3089 break;
3090
3091 case N_RBRAC:
3092 /* This "symbol" just indicates the end of an inner lexical
3093 context that was started with N_LBRAC. */
3094
3095 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3096 /* On most machines, the block addresses are relative to the
3097 N_SO, the linker did not relocate them (sigh). */
3098 valu += last_source_start_addr;
3099 #endif
3100
3101 new = &context_stack[--context_stack_depth];
3102 if (desc != new->depth)
3103 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3104
3105 /* Some compilers put the variable decls inside of an
3106 LBRAC/RBRAC block. This macro should be nonzero if this
3107 is true. DESC is N_DESC from the N_RBRAC symbol.
3108 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3109 #if !defined (VARIABLES_INSIDE_BLOCK)
3110 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3111 #endif
3112
3113 /* Can only use new->locals as local symbols here if we're in
3114 gcc or on a machine that puts them before the lbrack. */
3115 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3116 local_symbols = new->locals;
3117
3118 /* If this is not the outermost LBRAC...RBRAC pair in the
3119 function, its local symbols preceded it, and are the ones
3120 just recovered from the context stack. Defined the block for them.
3121
3122 If this is the outermost LBRAC...RBRAC pair, there is no
3123 need to do anything; leave the symbols that preceded it
3124 to be attached to the function's own block. However, if
3125 it is so, we need to indicate that we just moved outside
3126 of the function. */
3127 if (local_symbols
3128 && (context_stack_depth
3129 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3130 {
3131 /* FIXME Muzzle a compiler bug that makes end < start. */
3132 if (new->start_addr > valu)
3133 {
3134 complain(&lbrac_rbrac_complaint, 0);
3135 new->start_addr = valu;
3136 }
3137 /* Make a block for the local symbols within. */
3138 finish_block (0, &local_symbols, new->old_blocks,
3139 new->start_addr, valu);
3140 }
3141 else
3142 {
3143 within_function = 0;
3144 }
3145 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3146 /* Now pop locals of block just finished. */
3147 local_symbols = new->locals;
3148 break;
3149
3150 case N_FN | N_EXT:
3151 /* This kind of symbol supposedly indicates the start
3152 of an object file. In fact this type does not appear. */
3153 break;
3154
3155 case N_SO:
3156 /* This type of symbol indicates the start of data
3157 for one source file.
3158 Finish the symbol table of the previous source file
3159 (if any) and start accumulating a new symbol table. */
3160 #ifndef SUN_FIXED_LBRAC_BUG
3161 last_pc_address = valu; /* Save for SunOS bug circumcision */
3162 #endif
3163
3164 #ifdef PCC_SOL_BROKEN
3165 /* pcc bug, occasionally puts out SO for SOL. */
3166 if (context_stack_depth > 0)
3167 {
3168 start_subfile (name, NULL);
3169 break;
3170 }
3171 #endif
3172 if (last_source_file)
3173 end_symtab (valu);
3174 start_symtab (name, NULL, valu);
3175 break;
3176
3177 case N_SOL:
3178 /* This type of symbol indicates the start of data for
3179 a sub-source-file, one whose contents were copied or
3180 included in the compilation of the main source file
3181 (whose name was given in the N_SO symbol.) */
3182 start_subfile (name, NULL);
3183 break;
3184
3185 case N_BINCL:
3186 push_subfile ();
3187 add_new_header_file (name, valu);
3188 start_subfile (name, NULL);
3189 break;
3190
3191 case N_EINCL:
3192 start_subfile (pop_subfile (), NULL);
3193 break;
3194
3195 case N_EXCL:
3196 add_old_header_file (name, valu);
3197 break;
3198
3199 case N_SLINE:
3200 /* This type of "symbol" really just records
3201 one line-number -- core-address correspondence.
3202 Enter it in the line list for this symbol table. */
3203 #ifndef SUN_FIXED_LBRAC_BUG
3204 last_pc_address = valu; /* Save for SunOS bug circumcision */
3205 #endif
3206 record_line (desc, valu);
3207 break;
3208
3209 case N_BCOMM:
3210 if (common_block)
3211 error ("Invalid symbol data: common within common at symtab pos %d",
3212 symnum);
3213 common_block = local_symbols;
3214 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3215 break;
3216
3217 case N_ECOMM:
3218 /* Symbols declared since the BCOMM are to have the common block
3219 start address added in when we know it. common_block points to
3220 the first symbol after the BCOMM in the local_symbols list;
3221 copy the list and hang it off the symbol for the common block name
3222 for later fixup. */
3223 {
3224 int i;
3225 struct symbol *sym =
3226 (struct symbol *) xmalloc (sizeof (struct symbol));
3227 bzero (sym, sizeof *sym);
3228 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3229 SYMBOL_CLASS (sym) = LOC_BLOCK;
3230 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3231 copy_pending (local_symbols, common_block_i, common_block));
3232 i = hashname (SYMBOL_NAME (sym));
3233 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3234 global_sym_chain[i] = sym;
3235 common_block = 0;
3236 break;
3237 }
3238
3239 case N_ECOML:
3240 case N_LENG:
3241 break;
3242
3243 default:
3244 if (name)
3245 define_symbol (valu, name, desc, type);
3246 }
3247 }
3248 \f
3249 /* Read a number by which a type is referred to in dbx data,
3250 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3251 Just a single number N is equivalent to (0,N).
3252 Return the two numbers by storing them in the vector TYPENUMS.
3253 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3254
3255 static void
3256 read_type_number (pp, typenums)
3257 register char **pp;
3258 register int *typenums;
3259 {
3260 if (**pp == '(')
3261 {
3262 (*pp)++;
3263 typenums[0] = read_number (pp, ',');
3264 typenums[1] = read_number (pp, ')');
3265 }
3266 else
3267 {
3268 typenums[0] = 0;
3269 typenums[1] = read_number (pp, 0);
3270 }
3271 }
3272 \f
3273 /* To handle GNU C++ typename abbreviation, we need to be able to
3274 fill in a type's name as soon as space for that type is allocated.
3275 `type_synonym_name' is the name of the type being allocated.
3276 It is cleared as soon as it is used (lest all allocated types
3277 get this name). */
3278 static char *type_synonym_name;
3279
3280 static struct symbol *
3281 define_symbol (valu, string, desc, type)
3282 unsigned int valu;
3283 char *string;
3284 int desc;
3285 int type;
3286 {
3287 register struct symbol *sym;
3288 char *p = (char *) strchr (string, ':');
3289 int deftype;
3290 int synonym = 0;
3291 register int i;
3292
3293 /* Ignore syms with empty names. */
3294 if (string[0] == 0)
3295 return 0;
3296
3297 /* Ignore old-style symbols from cc -go */
3298 if (p == 0)
3299 return 0;
3300
3301 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3302
3303 if (processing_gcc_compilation) {
3304 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3305 number of bytes occupied by a type or object, which we ignore. */
3306 SYMBOL_LINE(sym) = desc;
3307 } else {
3308 SYMBOL_LINE(sym) = 0; /* unknown */
3309 }
3310
3311 if (string[0] == CPLUS_MARKER)
3312 {
3313 /* Special GNU C++ names. */
3314 switch (string[1])
3315 {
3316 case 't':
3317 SYMBOL_NAME (sym) = "this";
3318 break;
3319 case 'v': /* $vtbl_ptr_type */
3320 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3321 goto normal;
3322 case 'e':
3323 SYMBOL_NAME (sym) = "eh_throw";
3324 break;
3325
3326 case '_':
3327 /* This was an anonymous type that was never fixed up. */
3328 goto normal;
3329
3330 default:
3331 abort ();
3332 }
3333 }
3334 else
3335 {
3336 normal:
3337 SYMBOL_NAME (sym)
3338 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3339 /* Open-coded bcopy--saves function call time. */
3340 {
3341 register char *p1 = string;
3342 register char *p2 = SYMBOL_NAME (sym);
3343 while (p1 != p)
3344 *p2++ = *p1++;
3345 *p2++ = '\0';
3346 }
3347 }
3348 p++;
3349 /* Determine the type of name being defined. */
3350 /* The Acorn RISC machine's compiler can put out locals that don't
3351 start with "234=" or "(3,4)=", so assume anything other than the
3352 deftypes we know how to handle is a local. */
3353 /* (Peter Watkins @ Computervision)
3354 Handle Sun-style local fortran array types 'ar...' .
3355 (gnu@cygnus.com) -- this strchr() handles them properly?
3356 (tiemann@cygnus.com) -- 'C' is for catch. */
3357 if (!strchr ("cfFGpPrStTvVXC", *p))
3358 deftype = 'l';
3359 else
3360 deftype = *p++;
3361
3362 /* c is a special case, not followed by a type-number.
3363 SYMBOL:c=iVALUE for an integer constant symbol.
3364 SYMBOL:c=rVALUE for a floating constant symbol.
3365 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3366 e.g. "b:c=e6,0" for "const b = blob1"
3367 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3368 if (deftype == 'c')
3369 {
3370 if (*p++ != '=')
3371 error ("Invalid symbol data at symtab pos %d.", symnum);
3372 switch (*p++)
3373 {
3374 case 'r':
3375 {
3376 double d = atof (p);
3377 char *valu;
3378
3379 SYMBOL_TYPE (sym) = builtin_type_double;
3380 valu = (char *) obstack_alloc (symbol_obstack, sizeof (double));
3381 bcopy (&d, valu, sizeof (double));
3382 SWAP_TARGET_AND_HOST (valu, sizeof (double));
3383 SYMBOL_VALUE_BYTES (sym) = valu;
3384 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3385 }
3386 break;
3387 case 'i':
3388 {
3389 SYMBOL_TYPE (sym) = builtin_type_int;
3390 SYMBOL_VALUE (sym) = atoi (p);
3391 SYMBOL_CLASS (sym) = LOC_CONST;
3392 }
3393 break;
3394 case 'e':
3395 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3396 e.g. "b:c=e6,0" for "const b = blob1"
3397 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3398 {
3399 int typenums[2];
3400
3401 read_type_number (&p, typenums);
3402 if (*p++ != ',')
3403 error ("Invalid symbol data: no comma in enum const symbol");
3404
3405 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3406 SYMBOL_VALUE (sym) = atoi (p);
3407 SYMBOL_CLASS (sym) = LOC_CONST;
3408 }
3409 break;
3410 default:
3411 error ("Invalid symbol data at symtab pos %d.", symnum);
3412 }
3413 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3414 add_symbol_to_list (sym, &file_symbols);
3415 return sym;
3416 }
3417
3418 /* Now usually comes a number that says which data type,
3419 and possibly more stuff to define the type
3420 (all of which is handled by read_type) */
3421
3422 if (deftype == 'p' && *p == 'F')
3423 /* pF is a two-letter code that means a function parameter in Fortran.
3424 The type-number specifies the type of the return value.
3425 Translate it into a pointer-to-function type. */
3426 {
3427 p++;
3428 SYMBOL_TYPE (sym)
3429 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3430 }
3431 else
3432 {
3433 struct type *type;
3434 synonym = *p == 't';
3435
3436 if (synonym)
3437 {
3438 p += 1;
3439 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3440 strlen (SYMBOL_NAME (sym)));
3441 }
3442
3443 type = read_type (&p);
3444
3445 if ((deftype == 'F' || deftype == 'f')
3446 && TYPE_CODE (type) != TYPE_CODE_FUNC)
3447 SYMBOL_TYPE (sym) = lookup_function_type (type);
3448 else
3449 SYMBOL_TYPE (sym) = type;
3450 }
3451
3452 switch (deftype)
3453 {
3454 case 'C':
3455 /* The name of a caught exception. */
3456 SYMBOL_CLASS (sym) = LOC_LABEL;
3457 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3458 SYMBOL_VALUE_ADDRESS (sym) = valu;
3459 add_symbol_to_list (sym, &local_symbols);
3460 break;
3461
3462 case 'f':
3463 SYMBOL_CLASS (sym) = LOC_BLOCK;
3464 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3465 add_symbol_to_list (sym, &file_symbols);
3466 break;
3467
3468 case 'F':
3469 SYMBOL_CLASS (sym) = LOC_BLOCK;
3470 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3471 add_symbol_to_list (sym, &global_symbols);
3472 break;
3473
3474 case 'G':
3475 /* For a class G (global) symbol, it appears that the
3476 value is not correct. It is necessary to search for the
3477 corresponding linker definition to find the value.
3478 These definitions appear at the end of the namelist. */
3479 i = hashname (SYMBOL_NAME (sym));
3480 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3481 global_sym_chain[i] = sym;
3482 SYMBOL_CLASS (sym) = LOC_STATIC;
3483 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3484 add_symbol_to_list (sym, &global_symbols);
3485 break;
3486
3487 /* This case is faked by a conditional above,
3488 when there is no code letter in the dbx data.
3489 Dbx data never actually contains 'l'. */
3490 case 'l':
3491 SYMBOL_CLASS (sym) = LOC_LOCAL;
3492 SYMBOL_VALUE (sym) = valu;
3493 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3494 add_symbol_to_list (sym, &local_symbols);
3495 break;
3496
3497 case 'p':
3498 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3499 can also be a LOC_LOCAL_ARG depending on symbol type. */
3500 #ifndef DBX_PARM_SYMBOL_CLASS
3501 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3502 #endif
3503 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3504 SYMBOL_VALUE (sym) = valu;
3505 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3506 add_symbol_to_list (sym, &local_symbols);
3507
3508 /* If it's gcc-compiled, if it says `short', believe it. */
3509 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3510 break;
3511
3512 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3513 /* This macro is defined on machines (e.g. sparc) where
3514 we should believe the type of a PCC 'short' argument,
3515 but shouldn't believe the address (the address is
3516 the address of the corresponding int). Note that
3517 this is only different from the BELIEVE_PCC_PROMOTION
3518 case on big-endian machines.
3519
3520 My guess is that this correction, as opposed to changing
3521 the parameter to an 'int' (as done below, for PCC
3522 on most machines), is the right thing to do
3523 on all machines, but I don't want to risk breaking
3524 something that already works. On most PCC machines,
3525 the sparc problem doesn't come up because the calling
3526 function has to zero the top bytes (not knowing whether
3527 the called function wants an int or a short), so there
3528 is no practical difference between an int and a short
3529 (except perhaps what happens when the GDB user types
3530 "print short_arg = 0x10000;").
3531
3532 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3533 actually produces the correct address (we don't need to fix it
3534 up). I made this code adapt so that it will offset the symbol
3535 if it was pointing at an int-aligned location and not
3536 otherwise. This way you can use the same gdb for 4.0.x and
3537 4.1 systems. */
3538
3539 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3540 {
3541 if (SYMBOL_TYPE (sym) == builtin_type_char
3542 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3543 SYMBOL_VALUE (sym) += 3;
3544 else if (SYMBOL_TYPE (sym) == builtin_type_short
3545 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3546 SYMBOL_VALUE (sym) += 2;
3547 }
3548 break;
3549
3550 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3551
3552 /* If PCC says a parameter is a short or a char,
3553 it is really an int. */
3554 if (SYMBOL_TYPE (sym) == builtin_type_char
3555 || SYMBOL_TYPE (sym) == builtin_type_short)
3556 SYMBOL_TYPE (sym) = builtin_type_int;
3557 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3558 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3559 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3560 break;
3561
3562 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3563
3564 case 'P':
3565 SYMBOL_CLASS (sym) = LOC_REGPARM;
3566 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3567 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3568 add_symbol_to_list (sym, &local_symbols);
3569 break;
3570
3571 case 'r':
3572 SYMBOL_CLASS (sym) = LOC_REGISTER;
3573 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3574 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3575 add_symbol_to_list (sym, &local_symbols);
3576 break;
3577
3578 case 'S':
3579 /* Static symbol at top level of file */
3580 SYMBOL_CLASS (sym) = LOC_STATIC;
3581 SYMBOL_VALUE_ADDRESS (sym) = valu;
3582 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3583 add_symbol_to_list (sym, &file_symbols);
3584 break;
3585
3586 case 't':
3587 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3588 SYMBOL_VALUE (sym) = valu;
3589 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3590 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3591 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3592 TYPE_NAME (SYMBOL_TYPE (sym)) =
3593 obsavestring (SYMBOL_NAME (sym),
3594 strlen (SYMBOL_NAME (sym)));
3595 /* C++ vagaries: we may have a type which is derived from
3596 a base type which did not have its name defined when the
3597 derived class was output. We fill in the derived class's
3598 base part member's name here in that case. */
3599 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3600 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3601 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3602 {
3603 int i;
3604 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3605 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3606 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3607 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3608 }
3609
3610 add_symbol_to_list (sym, &file_symbols);
3611 break;
3612
3613 case 'T':
3614 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3615 SYMBOL_VALUE (sym) = valu;
3616 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3617 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3618 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3619 TYPE_NAME (SYMBOL_TYPE (sym))
3620 = obconcat ("",
3621 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3622 ? "enum "
3623 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3624 ? "struct " : "union ")),
3625 SYMBOL_NAME (sym));
3626 add_symbol_to_list (sym, &file_symbols);
3627
3628 if (synonym)
3629 {
3630 register struct symbol *typedef_sym
3631 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3632 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3633 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3634
3635 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3636 SYMBOL_VALUE (typedef_sym) = valu;
3637 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3638 add_symbol_to_list (typedef_sym, &file_symbols);
3639 }
3640 break;
3641
3642 case 'V':
3643 /* Static symbol of local scope */
3644 SYMBOL_CLASS (sym) = LOC_STATIC;
3645 SYMBOL_VALUE_ADDRESS (sym) = valu;
3646 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3647 add_symbol_to_list (sym, &local_symbols);
3648 break;
3649
3650 case 'v':
3651 /* Reference parameter */
3652 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3653 SYMBOL_VALUE (sym) = valu;
3654 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3655 add_symbol_to_list (sym, &local_symbols);
3656 break;
3657
3658 case 'X':
3659 /* This is used by Sun FORTRAN for "function result value".
3660 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3661 that Pascal uses it too, but when I tried it Pascal used
3662 "x:3" (local symbol) instead. */
3663 SYMBOL_CLASS (sym) = LOC_LOCAL;
3664 SYMBOL_VALUE (sym) = valu;
3665 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3666 add_symbol_to_list (sym, &local_symbols);
3667 break;
3668
3669 default:
3670 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3671 }
3672 return sym;
3673 }
3674 \f
3675 /* What about types defined as forward references inside of a small lexical
3676 scope? */
3677 /* Add a type to the list of undefined types to be checked through
3678 once this file has been read in. */
3679 static void
3680 add_undefined_type (type)
3681 struct type *type;
3682 {
3683 if (undef_types_length == undef_types_allocated)
3684 {
3685 undef_types_allocated *= 2;
3686 undef_types = (struct type **)
3687 xrealloc (undef_types,
3688 undef_types_allocated * sizeof (struct type *));
3689 }
3690 undef_types[undef_types_length++] = type;
3691 }
3692
3693 /* Add here something to go through each undefined type, see if it's
3694 still undefined, and do a full lookup if so. */
3695 static void
3696 cleanup_undefined_types ()
3697 {
3698 struct type **type;
3699
3700 for (type = undef_types; type < undef_types + undef_types_length; type++)
3701 {
3702 /* Reasonable test to see if it's been defined since. */
3703 if (TYPE_NFIELDS (*type) == 0)
3704 {
3705 struct pending *ppt;
3706 int i;
3707 /* Name of the type, without "struct" or "union" */
3708 char *typename = TYPE_NAME (*type);
3709
3710 if (!strncmp (typename, "struct ", 7))
3711 typename += 7;
3712 if (!strncmp (typename, "union ", 6))
3713 typename += 6;
3714
3715 for (ppt = file_symbols; ppt; ppt = ppt->next)
3716 for (i = 0; i < ppt->nsyms; i++)
3717 {
3718 struct symbol *sym = ppt->symbol[i];
3719
3720 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3721 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3722 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3723 TYPE_CODE (*type))
3724 && !strcmp (SYMBOL_NAME (sym), typename))
3725 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3726 }
3727 }
3728 else
3729 /* It has been defined; don't mark it as a stub. */
3730 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3731 }
3732 undef_types_length = 0;
3733 }
3734
3735 /* Skip rest of this symbol and return an error type.
3736
3737 General notes on error recovery: error_type always skips to the
3738 end of the symbol (modulo cretinous dbx symbol name continuation).
3739 Thus code like this:
3740
3741 if (*(*pp)++ != ';')
3742 return error_type (pp);
3743
3744 is wrong because if *pp starts out pointing at '\0' (typically as the
3745 result of an earlier error), it will be incremented to point to the
3746 start of the next symbol, which might produce strange results, at least
3747 if you run off the end of the string table. Instead use
3748
3749 if (**pp != ';')
3750 return error_type (pp);
3751 ++*pp;
3752
3753 or
3754
3755 if (**pp != ';')
3756 foo = error_type (pp);
3757 else
3758 ++*pp;
3759
3760 And in case it isn't obvious, the point of all this hair is so the compiler
3761 can define new types and new syntaxes, and old versions of the
3762 debugger will be able to read the new symbol tables. */
3763
3764 static struct type *
3765 error_type (pp)
3766 char **pp;
3767 {
3768 complain (&error_type_complaint, 0);
3769 while (1)
3770 {
3771 /* Skip to end of symbol. */
3772 while (**pp != '\0')
3773 (*pp)++;
3774
3775 /* Check for and handle cretinous dbx symbol name continuation! */
3776 if ((*pp)[-1] == '\\')
3777 *pp = next_symbol_text ();
3778 else
3779 break;
3780 }
3781 return builtin_type_error;
3782 }
3783 \f
3784 /* Read a dbx type reference or definition;
3785 return the type that is meant.
3786 This can be just a number, in which case it references
3787 a type already defined and placed in type_vector.
3788 Or the number can be followed by an =, in which case
3789 it means to define a new type according to the text that
3790 follows the =. */
3791
3792 static
3793 struct type *
3794 read_type (pp)
3795 register char **pp;
3796 {
3797 register struct type *type = 0;
3798 struct type *type1;
3799 int typenums[2];
3800 int xtypenums[2];
3801
3802 /* Read type number if present. The type number may be omitted.
3803 for instance in a two-dimensional array declared with type
3804 "ar1;1;10;ar1;1;10;4". */
3805 if ((**pp >= '0' && **pp <= '9')
3806 || **pp == '(')
3807 {
3808 read_type_number (pp, typenums);
3809
3810 /* Detect random reference to type not yet defined.
3811 Allocate a type object but leave it zeroed. */
3812 if (**pp != '=')
3813 return dbx_alloc_type (typenums);
3814
3815 *pp += 2;
3816 }
3817 else
3818 {
3819 /* 'typenums=' not present, type is anonymous. Read and return
3820 the definition, but don't put it in the type vector. */
3821 typenums[0] = typenums[1] = -1;
3822 *pp += 1;
3823 }
3824
3825 switch ((*pp)[-1])
3826 {
3827 case 'x':
3828 {
3829 enum type_code code;
3830
3831 /* Used to index through file_symbols. */
3832 struct pending *ppt;
3833 int i;
3834
3835 /* Name including "struct", etc. */
3836 char *type_name;
3837
3838 /* Name without "struct", etc. */
3839 char *type_name_only;
3840
3841 {
3842 char *prefix;
3843 char *from, *to;
3844
3845 /* Set the type code according to the following letter. */
3846 switch ((*pp)[0])
3847 {
3848 case 's':
3849 code = TYPE_CODE_STRUCT;
3850 prefix = "struct ";
3851 break;
3852 case 'u':
3853 code = TYPE_CODE_UNION;
3854 prefix = "union ";
3855 break;
3856 case 'e':
3857 code = TYPE_CODE_ENUM;
3858 prefix = "enum ";
3859 break;
3860 default:
3861 return error_type (pp);
3862 }
3863
3864 to = type_name = (char *)
3865 obstack_alloc (symbol_obstack,
3866 (strlen (prefix) +
3867 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3868
3869 /* Copy the prefix. */
3870 from = prefix;
3871 while (*to++ = *from++)
3872 ;
3873 to--;
3874
3875 type_name_only = to;
3876
3877 /* Copy the name. */
3878 from = *pp + 1;
3879 while ((*to++ = *from++) != ':')
3880 ;
3881 *--to = '\0';
3882
3883 /* Set the pointer ahead of the name which we just read. */
3884 *pp = from;
3885
3886 #if 0
3887 /* The following hack is clearly wrong, because it doesn't
3888 check whether we are in a baseclass. I tried to reproduce
3889 the case that it is trying to fix, but I couldn't get
3890 g++ to put out a cross reference to a basetype. Perhaps
3891 it doesn't do it anymore. */
3892 /* Note: for C++, the cross reference may be to a base type which
3893 has not yet been seen. In this case, we skip to the comma,
3894 which will mark the end of the base class name. (The ':'
3895 at the end of the base class name will be skipped as well.)
3896 But sometimes (ie. when the cross ref is the last thing on
3897 the line) there will be no ','. */
3898 from = (char *) strchr (*pp, ',');
3899 if (from)
3900 *pp = from;
3901 #endif /* 0 */
3902 }
3903
3904 /* Now check to see whether the type has already been declared. */
3905 /* This is necessary at least in the case where the
3906 program says something like
3907 struct foo bar[5];
3908 The compiler puts out a cross-reference; we better find
3909 set the length of the structure correctly so we can
3910 set the length of the array. */
3911 for (ppt = file_symbols; ppt; ppt = ppt->next)
3912 for (i = 0; i < ppt->nsyms; i++)
3913 {
3914 struct symbol *sym = ppt->symbol[i];
3915
3916 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3917 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3918 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3919 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3920 {
3921 obstack_free (symbol_obstack, type_name);
3922 type = SYMBOL_TYPE (sym);
3923 return type;
3924 }
3925 }
3926
3927 /* Didn't find the type to which this refers, so we must
3928 be dealing with a forward reference. Allocate a type
3929 structure for it, and keep track of it so we can
3930 fill in the rest of the fields when we get the full
3931 type. */
3932 type = dbx_alloc_type (typenums);
3933 TYPE_CODE (type) = code;
3934 TYPE_NAME (type) = type_name;
3935
3936 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3937
3938 add_undefined_type (type);
3939 return type;
3940 }
3941
3942 case '0':
3943 case '1':
3944 case '2':
3945 case '3':
3946 case '4':
3947 case '5':
3948 case '6':
3949 case '7':
3950 case '8':
3951 case '9':
3952 case '(':
3953 (*pp)--;
3954 read_type_number (pp, xtypenums);
3955 type = *dbx_lookup_type (xtypenums);
3956 if (type == 0)
3957 type = builtin_type_void;
3958 if (typenums[0] != -1)
3959 *dbx_lookup_type (typenums) = type;
3960 break;
3961
3962 case '*':
3963 type1 = read_type (pp);
3964 type = lookup_pointer_type (type1);
3965 if (typenums[0] != -1)
3966 *dbx_lookup_type (typenums) = type;
3967 break;
3968
3969 case '@':
3970 {
3971 struct type *domain = read_type (pp);
3972 struct type *memtype;
3973
3974 if (**pp != ',')
3975 /* Invalid member type data format. */
3976 return error_type (pp);
3977 ++*pp;
3978
3979 memtype = read_type (pp);
3980 type = dbx_alloc_type (typenums);
3981 smash_to_member_type (type, domain, memtype);
3982 }
3983 break;
3984
3985 case '#':
3986 if ((*pp)[0] == '#')
3987 {
3988 /* We'll get the parameter types from the name. */
3989 struct type *return_type;
3990
3991 *pp += 1;
3992 return_type = read_type (pp);
3993 if (*(*pp)++ != ';')
3994 complain (&invalid_member_complaint, symnum);
3995 type = lookup_function_type (return_type);
3996 if (typenums[0] != -1)
3997 *dbx_lookup_type (typenums) = type;
3998 TYPE_CODE (type) = TYPE_CODE_METHOD;
3999 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4000 }
4001 else
4002 {
4003 struct type *domain = read_type (pp);
4004 struct type *return_type;
4005 struct type **args;
4006
4007 if (*(*pp)++ != ',')
4008 error ("invalid member type data format, at symtab pos %d.",
4009 symnum);
4010
4011 return_type = read_type (pp);
4012 args = read_args (pp, ';');
4013 type = dbx_alloc_type (typenums);
4014 smash_to_method_type (type, domain, return_type, args);
4015 }
4016 break;
4017
4018 case '&':
4019 type1 = read_type (pp);
4020 type = lookup_reference_type (type1);
4021 if (typenums[0] != -1)
4022 *dbx_lookup_type (typenums) = type;
4023 break;
4024
4025 case 'f':
4026 type1 = read_type (pp);
4027 type = lookup_function_type (type1);
4028 if (typenums[0] != -1)
4029 *dbx_lookup_type (typenums) = type;
4030 break;
4031
4032 case 'r':
4033 type = read_range_type (pp, typenums);
4034 if (typenums[0] != -1)
4035 *dbx_lookup_type (typenums) = type;
4036 break;
4037
4038 case 'e':
4039 type = dbx_alloc_type (typenums);
4040 type = read_enum_type (pp, type);
4041 *dbx_lookup_type (typenums) = type;
4042 break;
4043
4044 case 's':
4045 type = dbx_alloc_type (typenums);
4046 TYPE_NAME (type) = type_synonym_name;
4047 type_synonym_name = 0;
4048 type = read_struct_type (pp, type);
4049 break;
4050
4051 case 'u':
4052 type = dbx_alloc_type (typenums);
4053 TYPE_NAME (type) = type_synonym_name;
4054 type_synonym_name = 0;
4055 type = read_struct_type (pp, type);
4056 TYPE_CODE (type) = TYPE_CODE_UNION;
4057 break;
4058
4059 case 'a':
4060 if (**pp != 'r')
4061 return error_type (pp);
4062 ++*pp;
4063
4064 type = dbx_alloc_type (typenums);
4065 type = read_array_type (pp, type);
4066 break;
4067
4068 default:
4069 return error_type (pp);
4070 }
4071
4072 if (type == 0)
4073 abort ();
4074
4075 #if 0
4076 /* If this is an overriding temporary alteration for a header file's
4077 contents, and this type number is unknown in the global definition,
4078 put this type into the global definition at this type number. */
4079 if (header_file_prev_index >= 0)
4080 {
4081 register struct type **tp
4082 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4083 if (*tp == 0)
4084 *tp = type;
4085 }
4086 #endif
4087 return type;
4088 }
4089 \f
4090 #if 0
4091 /* This would be a good idea, but it doesn't really work. The problem
4092 is that in order to get the virtual context for a particular type,
4093 you need to know the virtual info from all of its basetypes,
4094 and you need to have processed its methods. Since GDB reads
4095 symbols on a file-by-file basis, this means processing the symbols
4096 of all the files that are needed for each baseclass, which
4097 means potentially reading in all the debugging info just to fill
4098 in information we may never need. */
4099
4100 /* This page contains subroutines of read_type. */
4101
4102 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4103 FN_TYPE. The `virtual context' for this virtual function is the
4104 first base class of FOR_TYPE in which NAME is defined with signature
4105 matching FN_TYPE. OFFSET serves as a hash on matches here.
4106
4107 TYPE is the current type in which we are searching. */
4108
4109 static struct type *
4110 virtual_context (for_type, type, name, fn_type, offset)
4111 struct type *for_type, *type;
4112 char *name;
4113 struct type *fn_type;
4114 int offset;
4115 {
4116 struct type *basetype = 0;
4117 int i;
4118
4119 if (for_type != type)
4120 {
4121 /* Check the methods of TYPE. */
4122 /* Need to do a check_stub_type here, but that breaks
4123 things because we can get infinite regress. */
4124 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4125 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4126 break;
4127 if (i >= 0)
4128 {
4129 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4130 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4131
4132 while (--j >= 0)
4133 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4134 return TYPE_FN_FIELD_FCONTEXT (f, j);
4135 }
4136 }
4137 for (i = TYPE_N_BASECLASSES (type); i > 0; i--)
4138 {
4139 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4140 fn_type, offset);
4141 if (basetype != for_type)
4142 return basetype;
4143 }
4144 return for_type;
4145 }
4146 #endif
4147
4148 /* Read the description of a structure (or union type)
4149 and return an object describing the type. */
4150
4151 static struct type *
4152 read_struct_type (pp, type)
4153 char **pp;
4154 register struct type *type;
4155 {
4156 /* Total number of methods defined in this class.
4157 If the class defines two `f' methods, and one `g' method,
4158 then this will have the value 3. */
4159 int total_length = 0;
4160
4161 struct nextfield
4162 {
4163 struct nextfield *next;
4164 int visibility; /* 0=public, 1=protected, 2=public */
4165 struct field field;
4166 };
4167
4168 struct next_fnfield
4169 {
4170 struct next_fnfield *next;
4171 int visibility; /* 0=public, 1=protected, 2=public */
4172 struct fn_field fn_field;
4173 };
4174
4175 struct next_fnfieldlist
4176 {
4177 struct next_fnfieldlist *next;
4178 struct fn_fieldlist fn_fieldlist;
4179 };
4180
4181 register struct nextfield *list = 0;
4182 struct nextfield *new;
4183 register char *p;
4184 int nfields = 0;
4185 register int n;
4186
4187 register struct next_fnfieldlist *mainlist = 0;
4188 int nfn_fields = 0;
4189
4190 if (TYPE_MAIN_VARIANT (type) == 0)
4191 {
4192 TYPE_MAIN_VARIANT (type) = type;
4193 }
4194
4195 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4196
4197 /* First comes the total size in bytes. */
4198
4199 TYPE_LENGTH (type) = read_number (pp, 0);
4200
4201 /* C++: Now, if the class is a derived class, then the next character
4202 will be a '!', followed by the number of base classes derived from.
4203 Each element in the list contains visibility information,
4204 the offset of this base class in the derived structure,
4205 and then the base type. */
4206 if (**pp == '!')
4207 {
4208 int i, n_baseclasses, offset;
4209 struct type *baseclass;
4210 int via_public;
4211
4212 /* Nonzero if it is a virtual baseclass, i.e.,
4213
4214 struct A{};
4215 struct B{};
4216 struct C : public B, public virtual A {};
4217
4218 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4219 2.0 language feature. */
4220 int via_virtual;
4221
4222 *pp += 1;
4223
4224 n_baseclasses = read_number (pp, ',');
4225 TYPE_FIELD_VIRTUAL_BITS (type) =
4226 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4227 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4228
4229 for (i = 0; i < n_baseclasses; i++)
4230 {
4231 if (**pp == '\\')
4232 *pp = next_symbol_text ();
4233
4234 switch (**pp)
4235 {
4236 case '0':
4237 via_virtual = 0;
4238 break;
4239 case '1':
4240 via_virtual = 1;
4241 break;
4242 default:
4243 /* Bad visibility format. */
4244 return error_type (pp);
4245 }
4246 ++*pp;
4247
4248 switch (**pp)
4249 {
4250 case '0':
4251 via_public = 0;
4252 break;
4253 case '2':
4254 via_public = 2;
4255 break;
4256 default:
4257 /* Bad visibility format. */
4258 return error_type (pp);
4259 }
4260 if (via_virtual)
4261 SET_TYPE_FIELD_VIRTUAL (type, i);
4262 ++*pp;
4263
4264 /* Offset of the portion of the object corresponding to
4265 this baseclass. Always zero in the absence of
4266 multiple inheritance. */
4267 offset = read_number (pp, ',');
4268 baseclass = read_type (pp);
4269 *pp += 1; /* skip trailing ';' */
4270
4271 #if 0
4272 /* One's understanding improves, grasshopper... */
4273 if (offset != 0)
4274 {
4275 static int error_printed = 0;
4276
4277 if (!error_printed)
4278 {
4279 fprintf (stderr,
4280 "\nWarning: GDB has limited understanding of multiple inheritance...");
4281 if (!info_verbose)
4282 fprintf(stderr, "\n");
4283 error_printed = 1;
4284 }
4285 }
4286 #endif
4287
4288 /* Make this baseclass visible for structure-printing purposes. */
4289 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4290 new->next = list;
4291 list = new;
4292 list->visibility = via_public;
4293 list->field.type = baseclass;
4294 list->field.name = type_name_no_tag (baseclass);
4295 list->field.bitpos = offset;
4296 list->field.bitsize = 0; /* this should be an unpacked field! */
4297 nfields++;
4298 }
4299 TYPE_N_BASECLASSES (type) = n_baseclasses;
4300 }
4301
4302 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4303 At the end, we see a semicolon instead of a field.
4304
4305 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4306 a static field.
4307
4308 The `?' is a placeholder for one of '/2' (public visibility),
4309 '/1' (protected visibility), '/0' (private visibility), or nothing
4310 (C style symbol table, public visibility). */
4311
4312 /* We better set p right now, in case there are no fields at all... */
4313 p = *pp;
4314
4315 while (**pp != ';')
4316 {
4317 /* Check for and handle cretinous dbx symbol name continuation! */
4318 if (**pp == '\\') *pp = next_symbol_text ();
4319
4320 /* Get space to record the next field's data. */
4321 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4322 new->next = list;
4323 list = new;
4324
4325 /* Get the field name. */
4326 p = *pp;
4327 if (*p == CPLUS_MARKER)
4328 {
4329 /* Special GNU C++ name. */
4330 if (*++p == 'v')
4331 {
4332 char *prefix, *name; /* FIXME: NAME never set! */
4333 struct type *context;
4334
4335 switch (*++p)
4336 {
4337 case 'f':
4338 prefix = vptr_name;
4339 break;
4340 case 'b':
4341 prefix = vb_name;
4342 break;
4343 default:
4344 error ("invalid abbreviation at symtab pos %d.", symnum);
4345 }
4346 *pp = p + 1;
4347 context = read_type (pp);
4348 if (type_name_no_tag (context) == 0)
4349 {
4350 if (name == 0)
4351 error ("type name unknown at symtab pos %d.", symnum);
4352 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4353 }
4354 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4355 p = ++(*pp);
4356 if (p[-1] != ':')
4357 error ("invalid abbreviation at symtab pos %d.", symnum);
4358 list->field.type = read_type (pp);
4359 (*pp)++; /* Skip the comma. */
4360 list->field.bitpos = read_number (pp, ';');
4361 /* This field is unpacked. */
4362 list->field.bitsize = 0;
4363 }
4364 else
4365 error ("invalid abbreviation at symtab pos %d.", symnum);
4366
4367 nfields++;
4368 continue;
4369 }
4370
4371 while (*p != ':') p++;
4372 list->field.name = obsavestring (*pp, p - *pp);
4373
4374 /* C++: Check to see if we have hit the methods yet. */
4375 if (p[1] == ':')
4376 break;
4377
4378 *pp = p + 1;
4379
4380 /* This means we have a visibility for a field coming. */
4381 if (**pp == '/')
4382 {
4383 switch (*++*pp)
4384 {
4385 case '0':
4386 list->visibility = 0; /* private */
4387 *pp += 1;
4388 break;
4389
4390 case '1':
4391 list->visibility = 1; /* protected */
4392 *pp += 1;
4393 break;
4394
4395 case '2':
4396 list->visibility = 2; /* public */
4397 *pp += 1;
4398 break;
4399 }
4400 }
4401 else /* normal dbx-style format. */
4402 list->visibility = 2; /* public */
4403
4404 list->field.type = read_type (pp);
4405 if (**pp == ':')
4406 {
4407 /* Static class member. */
4408 list->field.bitpos = (long)-1;
4409 p = ++(*pp);
4410 while (*p != ';') p++;
4411 list->field.bitsize = (long) savestring (*pp, p - *pp);
4412 *pp = p + 1;
4413 nfields++;
4414 continue;
4415 }
4416 else if (**pp != ',')
4417 /* Bad structure-type format. */
4418 return error_type (pp);
4419
4420 (*pp)++; /* Skip the comma. */
4421 list->field.bitpos = read_number (pp, ',');
4422 list->field.bitsize = read_number (pp, ';');
4423
4424 #if 0
4425 /* FIXME tiemann: what is the story here? What does the compiler
4426 really do? Also, patch gdb.texinfo for this case; I document
4427 it as a possible problem there. Search for "DBX-style". */
4428
4429 /* This is wrong because this is identical to the symbols
4430 produced for GCC 0-size arrays. For example:
4431 typedef union {
4432 int num;
4433 char str[0];
4434 } foo;
4435 The code which dumped core in such circumstances should be
4436 fixed not to dump core. */
4437
4438 /* g++ -g0 can put out bitpos & bitsize zero for a static
4439 field. This does not give us any way of getting its
4440 class, so we can't know its name. But we can just
4441 ignore the field so we don't dump core and other nasty
4442 stuff. */
4443 if (list->field.bitpos == 0
4444 && list->field.bitsize == 0)
4445 {
4446 complain (&dbx_class_complaint, 0);
4447 /* Ignore this field. */
4448 list = list->next;
4449 }
4450 else
4451 #endif /* 0 */
4452 {
4453 /* Detect an unpacked field and mark it as such.
4454 dbx gives a bit size for all fields.
4455 Note that forward refs cannot be packed,
4456 and treat enums as if they had the width of ints. */
4457 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4458 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4459 list->field.bitsize = 0;
4460 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4461 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4462 && (list->field.bitsize
4463 == 8 * TYPE_LENGTH (builtin_type_int))
4464 )
4465 )
4466 &&
4467 list->field.bitpos % 8 == 0)
4468 list->field.bitsize = 0;
4469 nfields++;
4470 }
4471 }
4472
4473 if (p[1] == ':')
4474 /* chill the list of fields: the last entry (at the head)
4475 is a partially constructed entry which we now scrub. */
4476 list = list->next;
4477
4478 /* Now create the vector of fields, and record how big it is.
4479 We need this info to record proper virtual function table information
4480 for this class's virtual functions. */
4481
4482 TYPE_NFIELDS (type) = nfields;
4483 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4484 sizeof (struct field) * nfields);
4485
4486 TYPE_FIELD_PRIVATE_BITS (type) =
4487 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4488 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4489
4490 TYPE_FIELD_PROTECTED_BITS (type) =
4491 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4492 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4493
4494 /* Copy the saved-up fields into the field vector. */
4495
4496 for (n = nfields; list; list = list->next)
4497 {
4498 n -= 1;
4499 TYPE_FIELD (type, n) = list->field;
4500 if (list->visibility == 0)
4501 SET_TYPE_FIELD_PRIVATE (type, n);
4502 else if (list->visibility == 1)
4503 SET_TYPE_FIELD_PROTECTED (type, n);
4504 }
4505
4506 /* Now come the method fields, as NAME::methods
4507 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4508 At the end, we see a semicolon instead of a field.
4509
4510 For the case of overloaded operators, the format is
4511 OPERATOR::*.methods, where OPERATOR is the string "operator",
4512 `*' holds the place for an operator name (such as `+=')
4513 and `.' marks the end of the operator name. */
4514 if (p[1] == ':')
4515 {
4516 /* Now, read in the methods. To simplify matters, we
4517 "unread" the name that has been read, so that we can
4518 start from the top. */
4519
4520 /* For each list of method lists... */
4521 do
4522 {
4523 int i;
4524 struct next_fnfield *sublist = 0;
4525 int length = 0;
4526 struct next_fnfieldlist *new_mainlist =
4527 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4528 char *main_fn_name;
4529
4530 p = *pp;
4531
4532 /* read in the name. */
4533 while (*p != ':') p++;
4534 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4535 {
4536 /* This lets the user type "break operator+".
4537 We could just put in "+" as the name, but that wouldn't
4538 work for "*". */
4539 static char opname[32] = "operator";
4540 char *o = opname + 8;
4541
4542 /* Skip past '::'. */
4543 p += 2;
4544 while (*p != '.')
4545 *o++ = *p++;
4546 main_fn_name = savestring (opname, o - opname);
4547 /* Skip past '.' */
4548 *pp = p + 1;
4549 }
4550 else
4551 {
4552 i = 0;
4553 main_fn_name = savestring (*pp, p - *pp);
4554 /* Skip past '::'. */
4555 *pp = p + 2;
4556 }
4557 new_mainlist->fn_fieldlist.name = main_fn_name;
4558
4559 do
4560 {
4561 struct next_fnfield *new_sublist =
4562 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4563
4564 /* Check for and handle cretinous dbx symbol name continuation! */
4565 if (**pp == '\\') *pp = next_symbol_text ();
4566
4567 new_sublist->fn_field.type = read_type (pp);
4568 if (**pp != ':')
4569 /* Invalid symtab info for method. */
4570 return error_type (pp);
4571
4572 *pp += 1;
4573 p = *pp;
4574 while (*p != ';') p++;
4575 /* If this is just a stub, then we don't have the
4576 real name here. */
4577 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4578 *pp = p + 1;
4579 new_sublist->visibility = *(*pp)++ - '0';
4580 if (**pp == '\\') *pp = next_symbol_text ();
4581 /* FIXME: tiemann needs to add const/volatile info
4582 to the methods. For now, just skip the char.
4583 In future, here's what we need to implement:
4584
4585 A for normal functions.
4586 B for `const' member functions.
4587 C for `volatile' member functions.
4588 D for `const volatile' member functions. */
4589 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4590 (*pp)++;
4591 #if 0
4592 /* This probably just means we're processing a file compiled
4593 with g++ version 1. */
4594 else
4595 complain(&const_vol_complaint, **pp);
4596 #endif /* 0 */
4597
4598 switch (*(*pp)++)
4599 {
4600 case '*':
4601 /* virtual member function, followed by index. */
4602 /* The sign bit is set to distinguish pointers-to-methods
4603 from virtual function indicies. Since the array is
4604 in words, the quantity must be shifted left by 1
4605 on 16 bit machine, and by 2 on 32 bit machine, forcing
4606 the sign bit out, and usable as a valid index into
4607 the array. Remove the sign bit here. */
4608 new_sublist->fn_field.voffset =
4609 (0x7fffffff & read_number (pp, ';')) + 1;
4610
4611 if (**pp == ';' || **pp == '\0')
4612 /* Must be g++ version 1. */
4613 new_sublist->fn_field.fcontext = 0;
4614 else
4615 {
4616 /* Figure out from whence this virtual function came.
4617 It may belong to virtual function table of
4618 one of its baseclasses. */
4619 new_sublist->fn_field.fcontext = read_type (pp);
4620 if (**pp != ';')
4621 return error_type (pp);
4622 else
4623 ++*pp;
4624 }
4625 break;
4626
4627 case '?':
4628 /* static member function. */
4629 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4630 break;
4631 default:
4632 /* **pp == '.'. */
4633 /* normal member function. */
4634 new_sublist->fn_field.voffset = 0;
4635 break;
4636 }
4637
4638 new_sublist->next = sublist;
4639 sublist = new_sublist;
4640 length++;
4641 }
4642 while (**pp != ';' && **pp != '\0');
4643
4644 *pp += 1;
4645
4646 new_mainlist->fn_fieldlist.fn_fields =
4647 (struct fn_field *) obstack_alloc (symbol_obstack,
4648 sizeof (struct fn_field) * length);
4649 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4650 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4651 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4652
4653 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4654 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4655 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4656
4657 for (i = length; (i--, sublist); sublist = sublist->next)
4658 {
4659 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4660 if (sublist->visibility == 0)
4661 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4662 else if (sublist->visibility == 1)
4663 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4664 }
4665
4666 new_mainlist->fn_fieldlist.length = length;
4667 new_mainlist->next = mainlist;
4668 mainlist = new_mainlist;
4669 nfn_fields++;
4670 total_length += length;
4671 }
4672 while (**pp != ';');
4673 }
4674
4675 *pp += 1;
4676
4677 TYPE_FN_FIELDLISTS (type) =
4678 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4679 sizeof (struct fn_fieldlist) * nfn_fields);
4680
4681 TYPE_NFN_FIELDS (type) = nfn_fields;
4682 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4683
4684 {
4685 int i;
4686 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4687 TYPE_NFN_FIELDS_TOTAL (type) +=
4688 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4689 }
4690
4691 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4692 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4693
4694 if (**pp == '~')
4695 {
4696 *pp += 1;
4697
4698 if (**pp == '=')
4699 {
4700 TYPE_FLAGS (type)
4701 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4702 *pp += 1;
4703 }
4704 else if (**pp == '+')
4705 {
4706 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4707 *pp += 1;
4708 }
4709 else if (**pp == '-')
4710 {
4711 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4712 *pp += 1;
4713 }
4714
4715 /* Read either a '%' or the final ';'. */
4716 if (*(*pp)++ == '%')
4717 {
4718 /* Now we must record the virtual function table pointer's
4719 field information. */
4720
4721 struct type *t;
4722 int i;
4723
4724 t = read_type (pp);
4725 p = (*pp)++;
4726 while (*p != '\0' && *p != ';')
4727 p++;
4728 if (*p == '\0')
4729 /* Premature end of symbol. */
4730 return error_type (pp);
4731
4732 TYPE_VPTR_BASETYPE (type) = t;
4733 if (type == t)
4734 {
4735 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4736 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4737 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4738 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4739 sizeof (vptr_name) -1))
4740 {
4741 TYPE_VPTR_FIELDNO (type) = i;
4742 break;
4743 }
4744 if (i < 0)
4745 /* Virtual function table field not found. */
4746 return error_type (pp);
4747 }
4748 else
4749 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4750 *pp = p + 1;
4751 }
4752 else
4753 {
4754 TYPE_VPTR_BASETYPE (type) = 0;
4755 TYPE_VPTR_FIELDNO (type) = -1;
4756 }
4757 }
4758 else
4759 {
4760 TYPE_VPTR_BASETYPE (type) = 0;
4761 TYPE_VPTR_FIELDNO (type) = -1;
4762 }
4763
4764 return type;
4765 }
4766
4767 /* Read a definition of an array type,
4768 and create and return a suitable type object.
4769 Also creates a range type which represents the bounds of that
4770 array. */
4771 static struct type *
4772 read_array_type (pp, type)
4773 register char **pp;
4774 register struct type *type;
4775 {
4776 struct type *index_type, *element_type, *range_type;
4777 int lower, upper;
4778 int adjustable = 0;
4779
4780 /* Format of an array type:
4781 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4782 to handle this.
4783
4784 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4785 for these, produce a type like float[][]. */
4786
4787 index_type = read_type (pp);
4788 if (**pp != ';')
4789 /* Improper format of array type decl. */
4790 return error_type (pp);
4791 ++*pp;
4792
4793 if (!(**pp >= '0' && **pp <= '9'))
4794 {
4795 *pp += 1;
4796 adjustable = 1;
4797 }
4798 lower = read_number (pp, ';');
4799
4800 if (!(**pp >= '0' && **pp <= '9'))
4801 {
4802 *pp += 1;
4803 adjustable = 1;
4804 }
4805 upper = read_number (pp, ';');
4806
4807 element_type = read_type (pp);
4808
4809 if (adjustable)
4810 {
4811 lower = 0;
4812 upper = -1;
4813 }
4814
4815 {
4816 /* Create range type. */
4817 range_type = (struct type *) obstack_alloc (symbol_obstack,
4818 sizeof (struct type));
4819 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4820 TYPE_TARGET_TYPE (range_type) = index_type;
4821
4822 /* This should never be needed. */
4823 TYPE_LENGTH (range_type) = sizeof (int);
4824
4825 TYPE_NFIELDS (range_type) = 2;
4826 TYPE_FIELDS (range_type) =
4827 (struct field *) obstack_alloc (symbol_obstack,
4828 2 * sizeof (struct field));
4829 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4830 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4831 }
4832
4833 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4834 TYPE_TARGET_TYPE (type) = element_type;
4835 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4836 TYPE_NFIELDS (type) = 1;
4837 TYPE_FIELDS (type) =
4838 (struct field *) obstack_alloc (symbol_obstack,
4839 sizeof (struct field));
4840 TYPE_FIELD_TYPE (type, 0) = range_type;
4841
4842 return type;
4843 }
4844
4845
4846 /* Read a definition of an enumeration type,
4847 and create and return a suitable type object.
4848 Also defines the symbols that represent the values of the type. */
4849
4850 static struct type *
4851 read_enum_type (pp, type)
4852 register char **pp;
4853 register struct type *type;
4854 {
4855 register char *p;
4856 char *name;
4857 register long n;
4858 register struct symbol *sym;
4859 int nsyms = 0;
4860 struct pending **symlist;
4861 struct pending *osyms, *syms;
4862 int o_nsyms;
4863
4864 if (within_function)
4865 symlist = &local_symbols;
4866 else
4867 symlist = &file_symbols;
4868 osyms = *symlist;
4869 o_nsyms = osyms ? osyms->nsyms : 0;
4870
4871 /* Read the value-names and their values.
4872 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4873 A semicolon or comman instead of a NAME means the end. */
4874 while (**pp && **pp != ';' && **pp != ',')
4875 {
4876 /* Check for and handle cretinous dbx symbol name continuation! */
4877 if (**pp == '\\') *pp = next_symbol_text ();
4878
4879 p = *pp;
4880 while (*p != ':') p++;
4881 name = obsavestring (*pp, p - *pp);
4882 *pp = p + 1;
4883 n = read_number (pp, ',');
4884
4885 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4886 bzero (sym, sizeof (struct symbol));
4887 SYMBOL_NAME (sym) = name;
4888 SYMBOL_CLASS (sym) = LOC_CONST;
4889 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4890 SYMBOL_VALUE (sym) = n;
4891 add_symbol_to_list (sym, symlist);
4892 nsyms++;
4893 }
4894
4895 if (**pp == ';')
4896 (*pp)++; /* Skip the semicolon. */
4897
4898 /* Now fill in the fields of the type-structure. */
4899
4900 TYPE_LENGTH (type) = sizeof (int);
4901 TYPE_CODE (type) = TYPE_CODE_ENUM;
4902 TYPE_NFIELDS (type) = nsyms;
4903 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4904
4905 /* Find the symbols for the values and put them into the type.
4906 The symbols can be found in the symlist that we put them on
4907 to cause them to be defined. osyms contains the old value
4908 of that symlist; everything up to there was defined by us. */
4909 /* Note that we preserve the order of the enum constants, so
4910 that in something like "enum {FOO, LAST_THING=FOO}" we print
4911 FOO, not LAST_THING. */
4912
4913 for (syms = *symlist, n = 0; syms; syms = syms->next)
4914 {
4915 int j = 0;
4916 if (syms == osyms)
4917 j = o_nsyms;
4918 for (; j < syms->nsyms; j++,n++)
4919 {
4920 struct symbol *sym = syms->symbol[j];
4921 SYMBOL_TYPE (sym) = type;
4922 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4923 TYPE_FIELD_VALUE (type, n) = 0;
4924 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4925 TYPE_FIELD_BITSIZE (type, n) = 0;
4926 }
4927 if (syms == osyms)
4928 break;
4929 }
4930
4931 return type;
4932 }
4933
4934 /* Read a number from the string pointed to by *PP.
4935 The value of *PP is advanced over the number.
4936 If END is nonzero, the character that ends the
4937 number must match END, or an error happens;
4938 and that character is skipped if it does match.
4939 If END is zero, *PP is left pointing to that character.
4940
4941 If the number fits in a long, set *VALUE and set *BITS to 0.
4942 If not, set *BITS to be the number of bits in the number.
4943
4944 If encounter garbage, set *BITS to -1. */
4945
4946 static void
4947 read_huge_number (pp, end, valu, bits)
4948 char **pp;
4949 int end;
4950 long *valu;
4951 int *bits;
4952 {
4953 char *p = *pp;
4954 int sign = 1;
4955 long n = 0;
4956 int radix = 10;
4957 char overflow = 0;
4958 int nbits = 0;
4959 int c;
4960
4961 if (*p == '-')
4962 {
4963 sign = -1;
4964 p++;
4965 }
4966
4967 /* Leading zero means octal. GCC uses this to output values larger
4968 than an int (because that would be hard in decimal). */
4969 if (*p == '0')
4970 {
4971 radix = 8;
4972 p++;
4973 }
4974
4975 while ((c = *p++) >= '0' && c <= ('0' + radix))
4976 {
4977 if (n <= LONG_MAX / radix)
4978 {
4979 n *= radix;
4980 n += c - '0'; /* FIXME this overflows anyway */
4981 }
4982 else
4983 overflow = 1;
4984
4985 /* This depends on large values being output in octal, which is
4986 what GCC does. */
4987 if (radix == 8)
4988 {
4989 if (nbits == 0)
4990 {
4991 if (c == '0')
4992 /* Ignore leading zeroes. */
4993 ;
4994 else if (c == '1')
4995 nbits = 1;
4996 else if (c == '2' || c == '3')
4997 nbits = 2;
4998 else
4999 nbits = 3;
5000 }
5001 else
5002 nbits += 3;
5003 }
5004 }
5005 if (end)
5006 {
5007 if (c && c != end)
5008 {
5009 if (bits != NULL)
5010 *bits = -1;
5011 return;
5012 }
5013 }
5014 else
5015 --p;
5016
5017 *pp = p;
5018 if (overflow)
5019 {
5020 if (nbits == 0)
5021 {
5022 /* Large decimal constants are an error (because it is hard to
5023 count how many bits are in them). */
5024 if (bits != NULL)
5025 *bits = -1;
5026 return;
5027 }
5028
5029 /* -0x7f is the same as 0x80. So deal with it by adding one to
5030 the number of bits. */
5031 if (sign == -1)
5032 ++nbits;
5033 if (bits)
5034 *bits = nbits;
5035 }
5036 else
5037 {
5038 if (valu)
5039 *valu = n * sign;
5040 if (bits)
5041 *bits = 0;
5042 }
5043 }
5044
5045 #define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5046 #define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5047
5048 static struct type *
5049 read_range_type (pp, typenums)
5050 char **pp;
5051 int typenums[2];
5052 {
5053 int rangenums[2];
5054 long n2, n3;
5055 int n2bits, n3bits;
5056 int self_subrange;
5057 struct type *result_type;
5058
5059 /* First comes a type we are a subrange of.
5060 In C it is usually 0, 1 or the type being defined. */
5061 read_type_number (pp, rangenums);
5062 self_subrange = (rangenums[0] == typenums[0] &&
5063 rangenums[1] == typenums[1]);
5064
5065 /* A semicolon should now follow; skip it. */
5066 if (**pp == ';')
5067 (*pp)++;
5068
5069 /* The remaining two operands are usually lower and upper bounds
5070 of the range. But in some special cases they mean something else. */
5071 read_huge_number (pp, ';', &n2, &n2bits);
5072 read_huge_number (pp, ';', &n3, &n3bits);
5073
5074 if (n2bits == -1 || n3bits == -1)
5075 return error_type (pp);
5076
5077 /* If limits are huge, must be large integral type. */
5078 if (n2bits != 0 || n3bits != 0)
5079 {
5080 char got_signed = 0;
5081 char got_unsigned = 0;
5082 /* Number of bits in the type. */
5083 int nbits;
5084
5085 /* Range from 0 to <large number> is an unsigned large integral type. */
5086 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5087 {
5088 got_unsigned = 1;
5089 nbits = n3bits;
5090 }
5091 /* Range from <large number> to <large number>-1 is a large signed
5092 integral type. */
5093 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5094 {
5095 got_signed = 1;
5096 nbits = n2bits;
5097 }
5098
5099 if (got_signed || got_unsigned)
5100 {
5101 result_type = (struct type *) obstack_alloc (symbol_obstack,
5102 sizeof (struct type));
5103 bzero (result_type, sizeof (struct type));
5104 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5105 TYPE_MAIN_VARIANT (result_type) = result_type;
5106 TYPE_CODE (result_type) = TYPE_CODE_INT;
5107 if (got_unsigned)
5108 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5109 return result_type;
5110 }
5111 else
5112 return error_type (pp);
5113 }
5114
5115 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5116 if (self_subrange && n2 == 0 && n3 == 0)
5117 return builtin_type_void;
5118
5119 /* If n3 is zero and n2 is not, we want a floating type,
5120 and n2 is the width in bytes.
5121
5122 Fortran programs appear to use this for complex types also,
5123 and they give no way to distinguish between double and single-complex!
5124 We don't have complex types, so we would lose on all fortran files!
5125 So return type `double' for all of those. It won't work right
5126 for the complex values, but at least it makes the file loadable. */
5127
5128 if (n3 == 0 && n2 > 0)
5129 {
5130 if (n2 == sizeof (float))
5131 return builtin_type_float;
5132 return builtin_type_double;
5133 }
5134
5135 /* If the upper bound is -1, it must really be an unsigned int. */
5136
5137 else if (n2 == 0 && n3 == -1)
5138 {
5139 if (sizeof (int) == sizeof (long))
5140 return builtin_type_unsigned_int;
5141 else
5142 return builtin_type_unsigned_long;
5143 }
5144
5145 /* Special case: char is defined (Who knows why) as a subrange of
5146 itself with range 0-127. */
5147 else if (self_subrange && n2 == 0 && n3 == 127)
5148 return builtin_type_char;
5149
5150 /* Assumptions made here: Subrange of self is equivalent to subrange
5151 of int. */
5152 else if (n2 == 0
5153 && (self_subrange ||
5154 *dbx_lookup_type (rangenums) == builtin_type_int))
5155 {
5156 /* an unsigned type */
5157 #ifdef LONG_LONG
5158 if (n3 == - sizeof (long long))
5159 return builtin_type_unsigned_long_long;
5160 #endif
5161 if (n3 == (unsigned int)~0L)
5162 return builtin_type_unsigned_int;
5163 if (n3 == (unsigned long)~0L)
5164 return builtin_type_unsigned_long;
5165 if (n3 == (unsigned short)~0L)
5166 return builtin_type_unsigned_short;
5167 if (n3 == (unsigned char)~0L)
5168 return builtin_type_unsigned_char;
5169 }
5170 #ifdef LONG_LONG
5171 else if (n3 == 0 && n2 == -sizeof (long long))
5172 return builtin_type_long_long;
5173 #endif
5174 else if (n2 == -n3 -1)
5175 {
5176 /* a signed type */
5177 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5178 return builtin_type_int;
5179 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5180 return builtin_type_long;
5181 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5182 return builtin_type_short;
5183 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5184 return builtin_type_char;
5185 }
5186
5187 /* We have a real range type on our hands. Allocate space and
5188 return a real pointer. */
5189
5190 /* At this point I don't have the faintest idea how to deal with
5191 a self_subrange type; I'm going to assume that this is used
5192 as an idiom, and that all of them are special cases. So . . . */
5193 if (self_subrange)
5194 return error_type (pp);
5195
5196 result_type = (struct type *) obstack_alloc (symbol_obstack,
5197 sizeof (struct type));
5198 bzero (result_type, sizeof (struct type));
5199
5200 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5201 builtin_type_int :
5202 *dbx_lookup_type(rangenums));
5203
5204 /* We have to figure out how many bytes it takes to hold this
5205 range type. I'm going to assume that anything that is pushing
5206 the bounds of a long was taken care of above. */
5207 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5208 TYPE_LENGTH (result_type) = 1;
5209 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5210 TYPE_LENGTH (result_type) = sizeof (short);
5211 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5212 TYPE_LENGTH (result_type) = sizeof (int);
5213 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5214 TYPE_LENGTH (result_type) = sizeof (long);
5215 else
5216 /* Ranged type doesn't fit within known sizes. */
5217 return error_type (pp);
5218
5219 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5220 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5221 TYPE_NFIELDS (result_type) = 2;
5222 TYPE_FIELDS (result_type) =
5223 (struct field *) obstack_alloc (symbol_obstack,
5224 2 * sizeof (struct field));
5225 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5226 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5227 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5228
5229 return result_type;
5230 }
5231
5232 /* Read a number from the string pointed to by *PP.
5233 The value of *PP is advanced over the number.
5234 If END is nonzero, the character that ends the
5235 number must match END, or an error happens;
5236 and that character is skipped if it does match.
5237 If END is zero, *PP is left pointing to that character. */
5238
5239 static long
5240 read_number (pp, end)
5241 char **pp;
5242 int end;
5243 {
5244 register char *p = *pp;
5245 register long n = 0;
5246 register int c;
5247 int sign = 1;
5248
5249 /* Handle an optional leading minus sign. */
5250
5251 if (*p == '-')
5252 {
5253 sign = -1;
5254 p++;
5255 }
5256
5257 /* Read the digits, as far as they go. */
5258
5259 while ((c = *p++) >= '0' && c <= '9')
5260 {
5261 n *= 10;
5262 n += c - '0';
5263 }
5264 if (end)
5265 {
5266 if (c && c != end)
5267 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5268 }
5269 else
5270 --p;
5271
5272 *pp = p;
5273 return n * sign;
5274 }
5275
5276 /* Read in an argument list. This is a list of types, separated by commas
5277 and terminated with END. Return the list of types read in, or (struct type
5278 **)-1 if there is an error. */
5279 static struct type **
5280 read_args (pp, end)
5281 char **pp;
5282 int end;
5283 {
5284 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5285 int n = 0;
5286
5287 while (**pp != end)
5288 {
5289 if (**pp != ',')
5290 /* Invalid argument list: no ','. */
5291 return (struct type **)-1;
5292 *pp += 1;
5293
5294 /* Check for and handle cretinous dbx symbol name continuation! */
5295 if (**pp == '\\')
5296 *pp = next_symbol_text ();
5297
5298 types[n++] = read_type (pp);
5299 }
5300 *pp += 1; /* get past `end' (the ':' character) */
5301
5302 if (n == 1)
5303 {
5304 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5305 }
5306 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5307 {
5308 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5309 bzero (rval + n, sizeof (struct type *));
5310 }
5311 else
5312 {
5313 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5314 }
5315 bcopy (types, rval, n * sizeof (struct type *));
5316 return rval;
5317 }
5318 \f
5319 /* Copy a pending list, used to record the contents of a common
5320 block for later fixup. */
5321 static struct pending *
5322 copy_pending (beg, begi, end)
5323 struct pending *beg, *end;
5324 int begi;
5325 {
5326 struct pending *new = 0;
5327 struct pending *next;
5328
5329 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5330 next = next->next, begi = 0)
5331 {
5332 register int j;
5333 for (j = begi; j < next->nsyms; j++)
5334 add_symbol_to_list (next->symbol[j], &new);
5335 }
5336 return new;
5337 }
5338
5339 /* Add a common block's start address to the offset of each symbol
5340 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5341 the common block name). */
5342
5343 static void
5344 fix_common_block (sym, valu)
5345 struct symbol *sym;
5346 int valu;
5347 {
5348 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5349 for ( ; next; next = next->next)
5350 {
5351 register int j;
5352 for (j = next->nsyms - 1; j >= 0; j--)
5353 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5354 }
5355 }
5356 \f
5357 /* Register our willingness to decode symbols for SunOS and a.out and
5358 b.out files handled by BFD... */
5359 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5360 dbx_new_init, dbx_symfile_init,
5361 dbx_symfile_read, dbx_symfile_discard};
5362
5363 static struct sym_fns aout_sym_fns = {"a.out", 5,
5364 dbx_new_init, dbx_symfile_init,
5365 dbx_symfile_read, dbx_symfile_discard};
5366
5367 static struct sym_fns bout_sym_fns = {"b.out", 5,
5368 dbx_new_init, dbx_symfile_init,
5369 dbx_symfile_read, dbx_symfile_discard};
5370
5371 void
5372 _initialize_dbxread ()
5373 {
5374 add_symtab_fns(&sunos_sym_fns);
5375 add_symtab_fns(&aout_sym_fns);
5376 add_symtab_fns(&bout_sym_fns);
5377
5378 undef_types_allocated = 20;
5379 undef_types_length = 0;
5380 undef_types = (struct type **) xmalloc (undef_types_allocated *
5381 sizeof (struct type *));
5382
5383 dbx_new_init ();
5384 }
This page took 0.130252 seconds and 5 git commands to generate.