Eliminate LOC_EXTERNAL. Improve select_source_symtab. Bug fixes.
[deliverable/binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 \f
20 /* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31 #include <stdio.h>
32 #include <string.h>
33 #include "defs.h"
34 #include "param.h"
35
36 #ifdef USG
37 #include <sys/types.h>
38 #include <fcntl.h>
39 #define L_SET 0
40 #define L_INCR 1
41 #endif
42
43 #include "a.out.gnu.h"
44 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
45 #include <ctype.h>
46
47 #ifndef NO_GNU_STABS
48 /*
49 * Define specifically gnu symbols here.
50 */
51
52 /* The following type indicates the definition of a symbol as being
53 an indirect reference to another symbol. The other symbol
54 appears as an undefined reference, immediately following this symbol.
55
56 Indirection is asymmetrical. The other symbol's value will be used
57 to satisfy requests for the indirect symbol, but not vice versa.
58 If the other symbol does not have a definition, libraries will
59 be searched to find a definition. */
60 #ifndef N_INDR
61 #define N_INDR 0xa
62 #endif
63
64 /* The following symbols refer to set elements.
65 All the N_SET[ATDB] symbols with the same name form one set.
66 Space is allocated for the set in the text section, and each set
67 element's value is stored into one word of the space.
68 The first word of the space is the length of the set (number of elements).
69
70 The address of the set is made into an N_SETV symbol
71 whose name is the same as the name of the set.
72 This symbol acts like a N_DATA global symbol
73 in that it can satisfy undefined external references. */
74
75 #ifndef N_SETA
76 #define N_SETA 0x14 /* Absolute set element symbol */
77 #endif /* This is input to LD, in a .o file. */
78
79 #ifndef N_SETT
80 #define N_SETT 0x16 /* Text set element symbol */
81 #endif /* This is input to LD, in a .o file. */
82
83 #ifndef N_SETD
84 #define N_SETD 0x18 /* Data set element symbol */
85 #endif /* This is input to LD, in a .o file. */
86
87 #ifndef N_SETB
88 #define N_SETB 0x1A /* Bss set element symbol */
89 #endif /* This is input to LD, in a .o file. */
90
91 /* Macros dealing with the set element symbols defined in a.out.h */
92 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
93 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
94
95 #ifndef N_SETV
96 #define N_SETV 0x1C /* Pointer to set vector in data area. */
97 #endif /* This is output from LD. */
98
99 #ifndef N_WARNING
100 #define N_WARNING 0x1E /* Warning message to print if file included */
101 #endif /* This is input to ld */
102
103 #endif /* NO_GNU_STABS */
104
105 #include <obstack.h>
106 #include <sys/param.h>
107 #include <sys/file.h>
108 #include <sys/stat.h>
109 #include "symtab.h"
110 #include "breakpoint.h"
111 #include "command.h"
112 #include "target.h"
113 #include "gdbcore.h" /* for bfd stuff */
114 #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
115 #include "symfile.h"
116
117 struct dbx_symfile_info {
118 asection *text_sect; /* Text section accessor */
119 int symcount; /* How many symbols are there in the file */
120 char *stringtab; /* The actual string table */
121 int stringtab_size; /* Its size */
122 off_t symtab_offset; /* Offset in file to symbol table */
123 int desc; /* File descriptor of symbol file */
124 };
125
126 extern void qsort ();
127 extern double atof ();
128 extern struct cmd_list_element *cmdlist;
129
130 extern void symbol_file_command ();
131
132 /* Forward declarations */
133
134 static void add_symbol_to_list ();
135 static void read_dbx_symtab ();
136 static void init_psymbol_list ();
137 static void process_one_symbol ();
138 static struct type *read_type ();
139 static struct type *read_range_type ();
140 static struct type *read_enum_type ();
141 static struct type *read_struct_type ();
142 static struct type *read_array_type ();
143 static long read_number ();
144 static void finish_block ();
145 static struct blockvector *make_blockvector ();
146 static struct symbol *define_symbol ();
147 static void start_subfile ();
148 static int hashname ();
149 static struct pending *copy_pending ();
150 static void fix_common_block ();
151 static void add_undefined_type ();
152 static void cleanup_undefined_types ();
153 static void scan_file_globals ();
154 static void read_ofile_symtab ();
155 static void dbx_psymtab_to_symtab ();
156
157 /* C++ */
158 static struct type **read_args ();
159
160 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
161 static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
162
163 /* Macro to determine which symbols to ignore when reading the first symbol
164 of a file. Some machines override this definition. */
165 #ifndef IGNORE_SYMBOL
166 /* This code is used on Ultrix systems. Ignore it */
167 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
168 #endif
169
170 /* Macro for name of symbol to indicate a file compiled with gcc. */
171 #ifndef GCC_COMPILED_FLAG_SYMBOL
172 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
173 #endif
174
175 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
176
177 #ifndef STAB_REG_TO_REGNUM
178 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
179 #endif
180
181 /* Define this as 1 if a pcc declaration of a char or short argument
182 gives the correct address. Otherwise assume pcc gives the
183 address of the corresponding int, which is not the same on a
184 big-endian machine. */
185
186 #ifndef BELIEVE_PCC_PROMOTION
187 #define BELIEVE_PCC_PROMOTION 0
188 #endif
189 \f
190 /* Nonzero means give verbose info on gdb action. From main.c. */
191 extern int info_verbose;
192
193 /* Name of source file whose symbol data we are now processing.
194 This comes from a symbol of type N_SO. */
195
196 static char *last_source_file;
197
198 /* Core address of start of text of current source file.
199 This too comes from the N_SO symbol. */
200
201 static CORE_ADDR last_source_start_addr;
202
203 /* The entry point of a file we are reading. */
204 CORE_ADDR entry_point;
205
206 /* The list of sub-source-files within the current individual compilation.
207 Each file gets its own symtab with its own linetable and associated info,
208 but they all share one blockvector. */
209
210 struct subfile
211 {
212 struct subfile *next;
213 char *name;
214 char *dirname;
215 struct linetable *line_vector;
216 int line_vector_length;
217 int line_vector_index;
218 int prev_line_number;
219 };
220
221 static struct subfile *subfiles;
222
223 static struct subfile *current_subfile;
224
225 /* Count symbols as they are processed, for error messages. */
226
227 static unsigned int symnum;
228
229 /* Vector of types defined so far, indexed by their dbx type numbers.
230 (In newer sun systems, dbx uses a pair of numbers in parens,
231 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
232 translated through the type_translations hash table to get
233 the index into the type vector.) */
234
235 static struct typevector *type_vector;
236
237 /* Number of elements allocated for type_vector currently. */
238
239 static int type_vector_length;
240
241 /* Vector of line number information. */
242
243 static struct linetable *line_vector;
244
245 /* Index of next entry to go in line_vector_index. */
246
247 static int line_vector_index;
248
249 /* Last line number recorded in the line vector. */
250
251 static int prev_line_number;
252
253 /* Number of elements allocated for line_vector currently. */
254
255 static int line_vector_length;
256
257 /* Hash table of global symbols whose values are not known yet.
258 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
259 have the correct data for that slot yet. */
260 /* The use of the LOC_BLOCK code in this chain is nonstandard--
261 it refers to a FORTRAN common block rather than the usual meaning. */
262
263 #define HASHSIZE 127
264 static struct symbol *global_sym_chain[HASHSIZE];
265
266 /* Record the symbols defined for each context in a list.
267 We don't create a struct block for the context until we
268 know how long to make it. */
269
270 #define PENDINGSIZE 100
271
272 struct pending
273 {
274 struct pending *next;
275 int nsyms;
276 struct symbol *symbol[PENDINGSIZE];
277 };
278
279 /* List of free `struct pending' structures for reuse. */
280 struct pending *free_pendings;
281
282 /* Here are the three lists that symbols are put on. */
283
284 struct pending *file_symbols; /* static at top level, and types */
285
286 struct pending *global_symbols; /* global functions and variables */
287
288 struct pending *local_symbols; /* everything local to lexical context */
289
290 /* List of symbols declared since the last BCOMM. This list is a tail
291 of local_symbols. When ECOMM is seen, the symbols on the list
292 are noted so their proper addresses can be filled in later,
293 using the common block base address gotten from the assembler
294 stabs. */
295
296 struct pending *common_block;
297 int common_block_i;
298
299 /* Stack representing unclosed lexical contexts
300 (that will become blocks, eventually). */
301
302 struct context_stack
303 {
304 struct pending *locals;
305 struct pending_block *old_blocks;
306 struct symbol *name;
307 CORE_ADDR start_addr;
308 CORE_ADDR end_addr; /* Temp slot for exception handling. */
309 int depth;
310 };
311
312 struct context_stack *context_stack;
313
314 /* Index of first unused entry in context stack. */
315 int context_stack_depth;
316
317 /* Currently allocated size of context stack. */
318
319 int context_stack_size;
320
321 /* Nonzero if within a function (so symbols should be local,
322 if nothing says specifically). */
323
324 int within_function;
325
326 /* List of blocks already made (lexical contexts already closed).
327 This is used at the end to make the blockvector. */
328
329 struct pending_block
330 {
331 struct pending_block *next;
332 struct block *block;
333 };
334
335 struct pending_block *pending_blocks;
336
337 extern CORE_ADDR startup_file_start; /* From blockframe.c */
338 extern CORE_ADDR startup_file_end; /* From blockframe.c */
339
340 /* Global variable which, when set, indicates that we are processing a
341 .o file compiled with gcc */
342
343 static unsigned char processing_gcc_compilation;
344
345 /* Make a list of forward references which haven't been defined. */
346 static struct type **undef_types;
347 static int undef_types_allocated, undef_types_length;
348
349 /* String table for the main symbol file. It is kept in memory
350 permanently, to speed up symbol reading. Other files' symbol tables
351 are read in on demand. FIXME, this should be cleaner. */
352
353 static char *symfile_string_table;
354 static int symfile_string_table_size;
355
356 /* Setup a define to deal cleanly with the underscore problem */
357
358 #ifdef NAMES_HAVE_UNDERSCORE
359 #define HASH_OFFSET 1
360 #else
361 #define HASH_OFFSET 0
362 #endif
363
364 /* Complaints about the symbols we have encountered. */
365
366 struct complaint innerblock_complaint =
367 {"inner block not inside outer block in %s", 0, 0};
368
369 struct complaint blockvector_complaint =
370 {"block at %x out of order", 0, 0};
371
372 struct complaint lbrac_complaint =
373 {"bad block start address patched", 0, 0};
374
375 #if 0
376 struct complaint dbx_class_complaint =
377 {"encountered DBX-style class variable debugging information.\n\
378 You seem to have compiled your program with \
379 \"g++ -g0\" instead of \"g++ -g\".\n\
380 Therefore GDB will not know about your class variables", 0, 0};
381 #endif
382
383 struct complaint string_table_offset_complaint =
384 {"bad string table offset in symbol %d", 0, 0};
385
386 struct complaint unknown_symtype_complaint =
387 {"unknown symbol type 0x%x", 0, 0};
388
389 struct complaint lbrac_rbrac_complaint =
390 {"block start larger than block end", 0, 0};
391
392 struct complaint const_vol_complaint =
393 {"const/volatile indicator missing, got '%c'", 0, 0};
394
395 struct complaint error_type_complaint =
396 {"C++ type mismatch between compiler and debugger", 0, 0};
397
398 struct complaint invalid_member_complaint =
399 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
400 \f
401 /* Support for Sun changes to dbx symbol format */
402
403 /* For each identified header file, we have a table of types defined
404 in that header file.
405
406 header_files maps header file names to their type tables.
407 It is a vector of n_header_files elements.
408 Each element describes one header file.
409 It contains a vector of types.
410
411 Sometimes it can happen that the same header file produces
412 different results when included in different places.
413 This can result from conditionals or from different
414 things done before including the file.
415 When this happens, there are multiple entries for the file in this table,
416 one entry for each distinct set of results.
417 The entries are distinguished by the INSTANCE field.
418 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
419 used to match header-file references to their corresponding data. */
420
421 struct header_file
422 {
423 char *name; /* Name of header file */
424 int instance; /* Numeric code distinguishing instances
425 of one header file that produced
426 different results when included.
427 It comes from the N_BINCL or N_EXCL. */
428 struct type **vector; /* Pointer to vector of types */
429 int length; /* Allocated length (# elts) of that vector */
430 };
431
432 static struct header_file *header_files = 0;
433
434 static int n_header_files;
435
436 static int n_allocated_header_files;
437
438 /* During initial symbol readin, we need to have a structure to keep
439 track of which psymtabs have which bincls in them. This structure
440 is used during readin to setup the list of dependencies within each
441 partial symbol table. */
442
443 struct header_file_location
444 {
445 char *name; /* Name of header file */
446 int instance; /* See above */
447 struct partial_symtab *pst; /* Partial symtab that has the
448 BINCL/EINCL defs for this file */
449 };
450
451 /* The actual list and controling variables */
452 static struct header_file_location *bincl_list, *next_bincl;
453 static int bincls_allocated;
454
455 /* Within each object file, various header files are assigned numbers.
456 A type is defined or referred to with a pair of numbers
457 (FILENUM,TYPENUM) where FILENUM is the number of the header file
458 and TYPENUM is the number within that header file.
459 TYPENUM is the index within the vector of types for that header file.
460
461 FILENUM == 1 is special; it refers to the main source of the object file,
462 and not to any header file. FILENUM != 1 is interpreted by looking it up
463 in the following table, which contains indices in header_files. */
464
465 static int *this_object_header_files = 0;
466
467 static int n_this_object_header_files;
468
469 static int n_allocated_this_object_header_files;
470
471 /* When a header file is getting special overriding definitions
472 for one source file, record here the header_files index
473 of its normal definition vector.
474 At other times, this is -1. */
475
476 static int header_file_prev_index;
477
478 /* Free up old header file tables, and allocate new ones.
479 We're reading a new symbol file now. */
480
481 void
482 free_and_init_header_files ()
483 {
484 register int i;
485 for (i = 0; i < n_header_files; i++)
486 free (header_files[i].name);
487 if (header_files) /* First time null */
488 free (header_files);
489 if (this_object_header_files) /* First time null */
490 free (this_object_header_files);
491
492 n_allocated_header_files = 10;
493 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
494 n_header_files = 0;
495
496 n_allocated_this_object_header_files = 10;
497 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
498 }
499
500 /* Called at the start of each object file's symbols.
501 Clear out the mapping of header file numbers to header files. */
502
503 static void
504 new_object_header_files ()
505 {
506 /* Leave FILENUM of 0 free for builtin types and this file's types. */
507 n_this_object_header_files = 1;
508 header_file_prev_index = -1;
509 }
510
511 /* Add header file number I for this object file
512 at the next successive FILENUM. */
513
514 static void
515 add_this_object_header_file (i)
516 int i;
517 {
518 if (n_this_object_header_files == n_allocated_this_object_header_files)
519 {
520 n_allocated_this_object_header_files *= 2;
521 this_object_header_files
522 = (int *) xrealloc (this_object_header_files,
523 n_allocated_this_object_header_files * sizeof (int));
524 }
525
526 this_object_header_files[n_this_object_header_files++] = i;
527 }
528
529 /* Add to this file an "old" header file, one already seen in
530 a previous object file. NAME is the header file's name.
531 INSTANCE is its instance code, to select among multiple
532 symbol tables for the same header file. */
533
534 static void
535 add_old_header_file (name, instance)
536 char *name;
537 int instance;
538 {
539 register struct header_file *p = header_files;
540 register int i;
541
542 for (i = 0; i < n_header_files; i++)
543 if (!strcmp (p[i].name, name) && instance == p[i].instance)
544 {
545 add_this_object_header_file (i);
546 return;
547 }
548 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
549 symnum);
550 }
551
552 /* Add to this file a "new" header file: definitions for its types follow.
553 NAME is the header file's name.
554 Most often this happens only once for each distinct header file,
555 but not necessarily. If it happens more than once, INSTANCE has
556 a different value each time, and references to the header file
557 use INSTANCE values to select among them.
558
559 dbx output contains "begin" and "end" markers for each new header file,
560 but at this level we just need to know which files there have been;
561 so we record the file when its "begin" is seen and ignore the "end". */
562
563 static void
564 add_new_header_file (name, instance)
565 char *name;
566 int instance;
567 {
568 register int i;
569 header_file_prev_index = -1;
570
571 /* Make sure there is room for one more header file. */
572
573 if (n_header_files == n_allocated_header_files)
574 {
575 n_allocated_header_files *= 2;
576 header_files = (struct header_file *)
577 xrealloc (header_files,
578 (n_allocated_header_files
579 * sizeof (struct header_file)));
580 }
581
582 /* Create an entry for this header file. */
583
584 i = n_header_files++;
585 header_files[i].name = savestring (name, strlen(name));
586 header_files[i].instance = instance;
587 header_files[i].length = 10;
588 header_files[i].vector
589 = (struct type **) xmalloc (10 * sizeof (struct type *));
590 bzero (header_files[i].vector, 10 * sizeof (struct type *));
591
592 add_this_object_header_file (i);
593 }
594
595 /* Look up a dbx type-number pair. Return the address of the slot
596 where the type for that number-pair is stored.
597 The number-pair is in TYPENUMS.
598
599 This can be used for finding the type associated with that pair
600 or for associating a new type with the pair. */
601
602 static struct type **
603 dbx_lookup_type (typenums)
604 int typenums[2];
605 {
606 register int filenum = typenums[0], index = typenums[1];
607
608 if (filenum < 0 || filenum >= n_this_object_header_files)
609 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
610 filenum, index, symnum);
611
612 if (filenum == 0)
613 {
614 /* Type is defined outside of header files.
615 Find it in this object file's type vector. */
616 if (index >= type_vector_length)
617 {
618 type_vector_length *= 2;
619 type_vector = (struct typevector *)
620 xrealloc (type_vector,
621 (sizeof (struct typevector)
622 + type_vector_length * sizeof (struct type *)));
623 bzero (&type_vector->type[type_vector_length / 2],
624 type_vector_length * sizeof (struct type *) / 2);
625 }
626 return &type_vector->type[index];
627 }
628 else
629 {
630 register int real_filenum = this_object_header_files[filenum];
631 register struct header_file *f;
632 int f_orig_length;
633
634 if (real_filenum >= n_header_files)
635 abort ();
636
637 f = &header_files[real_filenum];
638
639 f_orig_length = f->length;
640 if (index >= f_orig_length)
641 {
642 while (index >= f->length)
643 f->length *= 2;
644 f->vector = (struct type **)
645 xrealloc (f->vector, f->length * sizeof (struct type *));
646 bzero (&f->vector[f_orig_length],
647 (f->length - f_orig_length) * sizeof (struct type *));
648 }
649 return &f->vector[index];
650 }
651 }
652
653 /* Create a type object. Occaisionally used when you need a type
654 which isn't going to be given a type number. */
655
656 static struct type *
657 dbx_create_type ()
658 {
659 register struct type *type =
660 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
661
662 bzero (type, sizeof (struct type));
663 TYPE_VPTR_FIELDNO (type) = -1;
664 TYPE_VPTR_BASETYPE (type) = 0;
665 return type;
666 }
667
668 /* Make sure there is a type allocated for type numbers TYPENUMS
669 and return the type object.
670 This can create an empty (zeroed) type object.
671 TYPENUMS may be (-1, -1) to return a new type object that is not
672 put into the type vector, and so may not be referred to by number. */
673
674 static struct type *
675 dbx_alloc_type (typenums)
676 int typenums[2];
677 {
678 register struct type **type_addr;
679 register struct type *type;
680
681 if (typenums[1] != -1)
682 {
683 type_addr = dbx_lookup_type (typenums);
684 type = *type_addr;
685 }
686 else
687 {
688 type_addr = 0;
689 type = 0;
690 }
691
692 /* If we are referring to a type not known at all yet,
693 allocate an empty type for it.
694 We will fill it in later if we find out how. */
695 if (type == 0)
696 {
697 type = dbx_create_type ();
698 if (type_addr)
699 *type_addr = type;
700 }
701
702 return type;
703 }
704
705 #if 0
706 static struct type **
707 explicit_lookup_type (real_filenum, index)
708 int real_filenum, index;
709 {
710 register struct header_file *f = &header_files[real_filenum];
711
712 if (index >= f->length)
713 {
714 f->length *= 2;
715 f->vector = (struct type **)
716 xrealloc (f->vector, f->length * sizeof (struct type *));
717 bzero (&f->vector[f->length / 2],
718 f->length * sizeof (struct type *) / 2);
719 }
720 return &f->vector[index];
721 }
722 #endif
723 \f
724 /* maintain the lists of symbols and blocks */
725
726 /* Add a symbol to one of the lists of symbols. */
727 static void
728 add_symbol_to_list (symbol, listhead)
729 struct symbol *symbol;
730 struct pending **listhead;
731 {
732 /* We keep PENDINGSIZE symbols in each link of the list.
733 If we don't have a link with room in it, add a new link. */
734 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
735 {
736 register struct pending *link;
737 if (free_pendings)
738 {
739 link = free_pendings;
740 free_pendings = link->next;
741 }
742 else
743 link = (struct pending *) xmalloc (sizeof (struct pending));
744
745 link->next = *listhead;
746 *listhead = link;
747 link->nsyms = 0;
748 }
749
750 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
751 }
752
753 /* At end of reading syms, or in case of quit,
754 really free as many `struct pending's as we can easily find. */
755
756 /* ARGSUSED */
757 static void
758 really_free_pendings (foo)
759 int foo;
760 {
761 struct pending *next, *next1;
762 #if 0
763 struct pending_block *bnext, *bnext1;
764 #endif
765
766 for (next = free_pendings; next; next = next1)
767 {
768 next1 = next->next;
769 free (next);
770 }
771 free_pendings = 0;
772
773 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
774 for (bnext = pending_blocks; bnext; bnext = bnext1)
775 {
776 bnext1 = bnext->next;
777 free (bnext);
778 }
779 #endif
780 pending_blocks = 0;
781
782 for (next = file_symbols; next; next = next1)
783 {
784 next1 = next->next;
785 free (next);
786 }
787 file_symbols = 0;
788
789 for (next = global_symbols; next; next = next1)
790 {
791 next1 = next->next;
792 free (next);
793 }
794 global_symbols = 0;
795 }
796
797 /* Take one of the lists of symbols and make a block from it.
798 Keep the order the symbols have in the list (reversed from the input file).
799 Put the block on the list of pending blocks. */
800
801 static void
802 finish_block (symbol, listhead, old_blocks, start, end)
803 struct symbol *symbol;
804 struct pending **listhead;
805 struct pending_block *old_blocks;
806 CORE_ADDR start, end;
807 {
808 register struct pending *next, *next1;
809 register struct block *block;
810 register struct pending_block *pblock;
811 struct pending_block *opblock;
812 register int i;
813
814 /* Count the length of the list of symbols. */
815
816 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
817 /*EMPTY*/;
818
819 block = (struct block *) obstack_alloc (symbol_obstack,
820 (sizeof (struct block)
821 + ((i - 1)
822 * sizeof (struct symbol *))));
823
824 /* Copy the symbols into the block. */
825
826 BLOCK_NSYMS (block) = i;
827 for (next = *listhead; next; next = next->next)
828 {
829 register int j;
830 for (j = next->nsyms - 1; j >= 0; j--)
831 BLOCK_SYM (block, --i) = next->symbol[j];
832 }
833
834 BLOCK_START (block) = start;
835 BLOCK_END (block) = end;
836 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
837 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
838
839 /* Put the block in as the value of the symbol that names it. */
840
841 if (symbol)
842 {
843 SYMBOL_BLOCK_VALUE (symbol) = block;
844 BLOCK_FUNCTION (block) = symbol;
845 }
846 else
847 BLOCK_FUNCTION (block) = 0;
848
849 /* Now "free" the links of the list, and empty the list. */
850
851 for (next = *listhead; next; next = next1)
852 {
853 next1 = next->next;
854 next->next = free_pendings;
855 free_pendings = next;
856 }
857 *listhead = 0;
858
859 /* Install this block as the superblock
860 of all blocks made since the start of this scope
861 that don't have superblocks yet. */
862
863 opblock = 0;
864 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
865 {
866 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
867 #if 1
868 /* Check to be sure the blocks are nested as we receive them.
869 If the compiler/assembler/linker work, this just burns a small
870 amount of time. */
871 if (BLOCK_START (pblock->block) < BLOCK_START (block)
872 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
873 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
874 "(don't know)");
875 BLOCK_START (pblock->block) = BLOCK_START (block);
876 BLOCK_END (pblock->block) = BLOCK_END (block);
877 }
878 #endif
879 BLOCK_SUPERBLOCK (pblock->block) = block;
880 }
881 opblock = pblock;
882 }
883
884 /* Record this block on the list of all blocks in the file.
885 Put it after opblock, or at the beginning if opblock is 0.
886 This puts the block in the list after all its subblocks. */
887
888 /* Allocate in the symbol_obstack to save time.
889 It wastes a little space. */
890 pblock = (struct pending_block *)
891 obstack_alloc (symbol_obstack,
892 sizeof (struct pending_block));
893 pblock->block = block;
894 if (opblock)
895 {
896 pblock->next = opblock->next;
897 opblock->next = pblock;
898 }
899 else
900 {
901 pblock->next = pending_blocks;
902 pending_blocks = pblock;
903 }
904 }
905
906 static struct blockvector *
907 make_blockvector ()
908 {
909 register struct pending_block *next;
910 register struct blockvector *blockvector;
911 register int i;
912
913 /* Count the length of the list of blocks. */
914
915 for (next = pending_blocks, i = 0; next; next = next->next, i++);
916
917 blockvector = (struct blockvector *)
918 obstack_alloc (symbol_obstack,
919 (sizeof (struct blockvector)
920 + (i - 1) * sizeof (struct block *)));
921
922 /* Copy the blocks into the blockvector.
923 This is done in reverse order, which happens to put
924 the blocks into the proper order (ascending starting address).
925 finish_block has hair to insert each block into the list
926 after its subblocks in order to make sure this is true. */
927
928 BLOCKVECTOR_NBLOCKS (blockvector) = i;
929 for (next = pending_blocks; next; next = next->next) {
930 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
931 }
932
933 #if 0 /* Now we make the links in the obstack, so don't free them. */
934 /* Now free the links of the list, and empty the list. */
935
936 for (next = pending_blocks; next; next = next1)
937 {
938 next1 = next->next;
939 free (next);
940 }
941 #endif
942 pending_blocks = 0;
943
944 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
945 /* Some compilers output blocks in the wrong order, but we depend
946 on their being in the right order so we can binary search.
947 Check the order and moan about it. FIXME. */
948 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
949 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
950 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
951 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
952 complain (&blockvector_complaint,
953 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
954 }
955 }
956 #endif
957
958 return blockvector;
959 }
960 \f
961 /* Manage the vector of line numbers. */
962
963 static void
964 record_line (line, pc)
965 int line;
966 CORE_ADDR pc;
967 {
968 struct linetable_entry *e;
969 /* Ignore the dummy line number in libg.o */
970
971 if (line == 0xffff)
972 return;
973
974 /* Make sure line vector is big enough. */
975
976 if (line_vector_index + 1 >= line_vector_length)
977 {
978 line_vector_length *= 2;
979 line_vector = (struct linetable *)
980 xrealloc (line_vector,
981 (sizeof (struct linetable)
982 + line_vector_length * sizeof (struct linetable_entry)));
983 current_subfile->line_vector = line_vector;
984 }
985
986 e = line_vector->item + line_vector_index++;
987 e->line = line; e->pc = pc;
988 }
989 \f
990 /* Start a new symtab for a new source file.
991 This is called when a dbx symbol of type N_SO is seen;
992 it indicates the start of data for one original source file. */
993
994 static void
995 start_symtab (name, dirname, start_addr)
996 char *name;
997 char *dirname;
998 CORE_ADDR start_addr;
999 {
1000
1001 last_source_file = name;
1002 last_source_start_addr = start_addr;
1003 file_symbols = 0;
1004 global_symbols = 0;
1005 within_function = 0;
1006
1007 /* Context stack is initially empty, with room for 10 levels. */
1008 context_stack
1009 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1010 context_stack_size = 10;
1011 context_stack_depth = 0;
1012
1013 new_object_header_files ();
1014
1015 type_vector_length = 160;
1016 type_vector = (struct typevector *)
1017 xmalloc (sizeof (struct typevector)
1018 + type_vector_length * sizeof (struct type *));
1019 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1020
1021 /* Initialize the list of sub source files with one entry
1022 for this file (the top-level source file). */
1023
1024 subfiles = 0;
1025 current_subfile = 0;
1026 start_subfile (name, dirname);
1027 }
1028
1029 /* Handle an N_SOL symbol, which indicates the start of
1030 code that came from an included (or otherwise merged-in)
1031 source file with a different name. */
1032
1033 static void
1034 start_subfile (name, dirname)
1035 char *name;
1036 char *dirname;
1037 {
1038 register struct subfile *subfile;
1039
1040 /* Save the current subfile's line vector data. */
1041
1042 if (current_subfile)
1043 {
1044 current_subfile->line_vector_index = line_vector_index;
1045 current_subfile->line_vector_length = line_vector_length;
1046 current_subfile->prev_line_number = prev_line_number;
1047 }
1048
1049 /* See if this subfile is already known as a subfile of the
1050 current main source file. */
1051
1052 for (subfile = subfiles; subfile; subfile = subfile->next)
1053 {
1054 if (!strcmp (subfile->name, name))
1055 {
1056 line_vector = subfile->line_vector;
1057 line_vector_index = subfile->line_vector_index;
1058 line_vector_length = subfile->line_vector_length;
1059 prev_line_number = subfile->prev_line_number;
1060 current_subfile = subfile;
1061 return;
1062 }
1063 }
1064
1065 /* This subfile is not known. Add an entry for it. */
1066
1067 line_vector_index = 0;
1068 line_vector_length = 1000;
1069 prev_line_number = -2; /* Force first line number to be explicit */
1070 line_vector = (struct linetable *)
1071 xmalloc (sizeof (struct linetable)
1072 + line_vector_length * sizeof (struct linetable_entry));
1073
1074 /* Make an entry for this subfile in the list of all subfiles
1075 of the current main source file. */
1076
1077 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1078 subfile->next = subfiles;
1079 subfile->name = obsavestring (name, strlen (name));
1080 if (dirname == NULL)
1081 subfile->dirname = NULL;
1082 else
1083 subfile->dirname = obsavestring (dirname, strlen (dirname));
1084
1085 subfile->line_vector = line_vector;
1086 subfiles = subfile;
1087 current_subfile = subfile;
1088 }
1089
1090 /* Finish the symbol definitions for one main source file,
1091 close off all the lexical contexts for that file
1092 (creating struct block's for them), then make the struct symtab
1093 for that file and put it in the list of all such.
1094
1095 END_ADDR is the address of the end of the file's text. */
1096
1097 static void
1098 end_symtab (end_addr)
1099 CORE_ADDR end_addr;
1100 {
1101 register struct symtab *symtab;
1102 register struct blockvector *blockvector;
1103 register struct subfile *subfile;
1104 register struct linetable *lv;
1105 struct subfile *nextsub;
1106
1107 /* Finish the lexical context of the last function in the file;
1108 pop the context stack. */
1109
1110 if (context_stack_depth > 0)
1111 {
1112 register struct context_stack *cstk;
1113 context_stack_depth--;
1114 cstk = &context_stack[context_stack_depth];
1115 /* Make a block for the local symbols within. */
1116 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1117 cstk->start_addr, end_addr);
1118 }
1119
1120 /* Cleanup any undefined types that have been left hanging around
1121 (this needs to be done before the finish_blocks so that
1122 file_symbols is still good). */
1123 cleanup_undefined_types ();
1124
1125 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1126 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1127 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1128 blockvector = make_blockvector ();
1129
1130 current_subfile->line_vector_index = line_vector_index;
1131
1132 /* Now create the symtab objects proper, one for each subfile. */
1133 /* (The main file is one of them.) */
1134
1135 for (subfile = subfiles; subfile; subfile = nextsub)
1136 {
1137 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1138
1139 /* Fill in its components. */
1140 symtab->blockvector = blockvector;
1141 lv = subfile->line_vector;
1142 lv->nitems = subfile->line_vector_index;
1143 symtab->linetable = (struct linetable *)
1144 xrealloc (lv, (sizeof (struct linetable)
1145 + lv->nitems * sizeof (struct linetable_entry)));
1146 type_vector->length = type_vector_length;
1147 symtab->typevector = type_vector;
1148
1149 symtab->filename = subfile->name;
1150 symtab->dirname = subfile->dirname;
1151
1152 symtab->free_code = free_linetable;
1153 symtab->free_ptr = 0;
1154 if (subfile->next == 0)
1155 symtab->free_ptr = (char *) type_vector;
1156
1157 symtab->nlines = 0;
1158 symtab->line_charpos = 0;
1159
1160 symtab->language = language_unknown;
1161 symtab->fullname = NULL;
1162
1163 /* There should never already be a symtab for this name, since
1164 any prev dups have been removed when the psymtab was read in.
1165 FIXME, there ought to be a way to check this here. */
1166 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1167
1168 /* Link the new symtab into the list of such. */
1169 symtab->next = symtab_list;
1170 symtab_list = symtab;
1171
1172 nextsub = subfile->next;
1173 free (subfile);
1174 }
1175
1176 type_vector = 0;
1177 type_vector_length = -1;
1178 line_vector = 0;
1179 line_vector_length = -1;
1180 last_source_file = 0;
1181 }
1182 \f
1183 /* Handle the N_BINCL and N_EINCL symbol types
1184 that act like N_SOL for switching source files
1185 (different subfiles, as we call them) within one object file,
1186 but using a stack rather than in an arbitrary order. */
1187
1188 struct subfile_stack
1189 {
1190 struct subfile_stack *next;
1191 char *name;
1192 int prev_index;
1193 };
1194
1195 struct subfile_stack *subfile_stack;
1196
1197 static void
1198 push_subfile ()
1199 {
1200 register struct subfile_stack *tem
1201 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1202
1203 tem->next = subfile_stack;
1204 subfile_stack = tem;
1205 if (current_subfile == 0 || current_subfile->name == 0)
1206 abort ();
1207 tem->name = current_subfile->name;
1208 tem->prev_index = header_file_prev_index;
1209 }
1210
1211 static char *
1212 pop_subfile ()
1213 {
1214 register char *name;
1215 register struct subfile_stack *link = subfile_stack;
1216
1217 if (link == 0)
1218 abort ();
1219
1220 name = link->name;
1221 subfile_stack = link->next;
1222 header_file_prev_index = link->prev_index;
1223 free (link);
1224
1225 return name;
1226 }
1227 \f
1228 void
1229 record_misc_function (name, address, type)
1230 char *name;
1231 CORE_ADDR address;
1232 int type;
1233 {
1234 enum misc_function_type misc_type =
1235 (type == (N_TEXT | N_EXT) ? mf_text :
1236 (type == (N_DATA | N_EXT)
1237 || type == (N_DATA)
1238 || type == (N_SETV | N_EXT)
1239 ) ? mf_data :
1240 type == (N_BSS | N_EXT) ? mf_bss :
1241 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1242
1243 prim_record_misc_function (obsavestring (name, strlen (name)),
1244 address, misc_type);
1245 }
1246 \f
1247 /* The BFD for this file -- only good while we're actively reading
1248 symbols into a psymtab or a symtab. */
1249
1250 static bfd *symfile_bfd;
1251
1252 /* Scan and build partial symbols for a symbol file.
1253 We have been initialized by a call to dbx_symfile_init, which
1254 put all the relevant info into a "struct dbx_symfile_info"
1255 hung off the struct sym_fns SF.
1256
1257 ADDR is the address relative to which the symbols in it are (e.g.
1258 the base address of the text segment).
1259 MAINLINE is true if we are reading the main symbol
1260 table (as opposed to a shared lib or dynamically loaded file). */
1261
1262 void
1263 dbx_symfile_read (sf, addr, mainline)
1264 struct sym_fns *sf;
1265 CORE_ADDR addr;
1266 int mainline; /* FIXME comments above */
1267 {
1268 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1269 bfd *sym_bfd = sf->sym_bfd;
1270 int val;
1271 char *filename = bfd_get_filename (sym_bfd);
1272
1273 val = lseek (info->desc, info->symtab_offset, L_SET);
1274 if (val < 0)
1275 perror_with_name (filename);
1276
1277 /* If mainline, set global string table pointers, and reinitialize global
1278 partial symbol list. */
1279 if (mainline) {
1280 symfile_string_table = info->stringtab;
1281 symfile_string_table_size = info->stringtab_size;
1282 }
1283
1284 /* If we are reinitializing, or if we have never loaded syms yet, init */
1285 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1286 init_psymbol_list (info->symcount);
1287
1288 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1289
1290 pending_blocks = 0;
1291 make_cleanup (really_free_pendings, 0);
1292
1293 init_misc_bunches ();
1294 make_cleanup (discard_misc_bunches, 0);
1295
1296 /* Now that the symbol table data of the executable file are all in core,
1297 process them and define symbols accordingly. */
1298
1299 read_dbx_symtab (filename,
1300 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1301 info->desc, info->stringtab, info->stringtab_size,
1302 info->symcount,
1303 bfd_section_vma (sym_bfd, info->text_sect),
1304 bfd_section_size (sym_bfd, info->text_sect));
1305
1306 /* Go over the misc symbol bunches and install them in vector. */
1307
1308 condense_misc_bunches (!mainline);
1309
1310 /* Free up any memory we allocated for ourselves. */
1311
1312 if (!mainline) {
1313 free (info->stringtab); /* Stringtab is only saved for mainline */
1314 }
1315 free (info);
1316 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1317
1318 if (!partial_symtab_list)
1319 printf_filtered ("\n(no debugging symbols found)...");
1320 }
1321
1322 /* Discard any information we have cached during the reading of a
1323 single symbol file. This should not toss global information
1324 from previous symbol files that have been read. E.g. we might
1325 be discarding info from reading a shared library, and should not
1326 throw away the info from the main file. */
1327
1328 void
1329 dbx_symfile_discard ()
1330 {
1331
1332 /* Empty the hash table of global syms looking for values. */
1333 bzero (global_sym_chain, sizeof global_sym_chain);
1334
1335 free_pendings = 0;
1336 file_symbols = 0;
1337 global_symbols = 0;
1338 }
1339
1340 /* Initialize anything that needs initializing when a completely new
1341 symbol file is specified (not just adding some symbols from another
1342 file, e.g. a shared library). */
1343
1344 void
1345 dbx_new_init ()
1346 {
1347 dbx_symfile_discard ();
1348 /* Don't put these on the cleanup chain; they need to stick around
1349 until the next call to symbol_file_command. *Then* we'll free
1350 them. */
1351 if (symfile_string_table)
1352 {
1353 free (symfile_string_table);
1354 symfile_string_table = 0;
1355 symfile_string_table_size = 0;
1356 }
1357 free_and_init_header_files ();
1358 }
1359
1360
1361 /* dbx_symfile_init ()
1362 is the dbx-specific initialization routine for reading symbols.
1363 It is passed a struct sym_fns which contains, among other things,
1364 the BFD for the file whose symbols are being read, and a slot for a pointer
1365 to "private data" which we fill with goodies.
1366
1367 We read the string table into malloc'd space and stash a pointer to it.
1368
1369 Since BFD doesn't know how to read debug symbols in a format-independent
1370 way (and may never do so...), we have to do it ourselves. We will never
1371 be called unless this is an a.out (or very similar) file.
1372 FIXME, there should be a cleaner peephole into the BFD environment here. */
1373
1374 void
1375 dbx_symfile_init (sf)
1376 struct sym_fns *sf;
1377 {
1378 int val;
1379 int desc;
1380 struct stat statbuf;
1381 bfd *sym_bfd = sf->sym_bfd;
1382 char *name = bfd_get_filename (sym_bfd);
1383 struct dbx_symfile_info *info;
1384 unsigned char size_temp[4];
1385
1386 /* Allocate struct to keep track of the symfile */
1387 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1388 info = (struct dbx_symfile_info *)sf->sym_private;
1389
1390 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1391 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1392 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1393 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1394 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1395
1396 info->desc = desc;
1397 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1398 if (!info->text_sect)
1399 abort();
1400 info->symcount = bfd_get_symcount (sym_bfd);
1401
1402 /* Read the string table size and check it for bogosity. */
1403 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1404 if (val < 0)
1405 perror_with_name (name);
1406 if (fstat (desc, &statbuf) == -1)
1407 perror_with_name (name);
1408
1409 val = myread (desc, size_temp, sizeof (long));
1410 if (val < 0)
1411 perror_with_name (name);
1412 info->stringtab_size = bfd_h_get_32 (sym_bfd, size_temp);
1413
1414 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1415 {
1416 info->stringtab = (char *) xmalloc (info->stringtab_size);
1417 /* Caller is responsible for freeing the string table. No cleanup. */
1418 }
1419 else
1420 info->stringtab = NULL;
1421 if (info->stringtab == NULL && info->stringtab_size != 0)
1422 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1423
1424 /* Now read in the string table in one big gulp. */
1425
1426 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1427 if (val < 0)
1428 perror_with_name (name);
1429 val = myread (desc, info->stringtab, info->stringtab_size);
1430 if (val < 0)
1431 perror_with_name (name);
1432
1433 /* Record the position of the symbol table for later use. */
1434
1435 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1436 }
1437 \f
1438 /* Buffer for reading the symbol table entries. */
1439 static struct nlist symbuf[4096];
1440 static int symbuf_idx;
1441 static int symbuf_end;
1442
1443 /* I/O descriptor for reading the symbol table. */
1444 static int symtab_input_desc;
1445
1446 /* The address in memory of the string table of the object file we are
1447 reading (which might not be the "main" object file, but might be a
1448 shared library or some other dynamically loaded thing). This is set
1449 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1450 when building symtabs, and is used only by next_symbol_text. */
1451 static char *stringtab_global;
1452
1453 /* Refill the symbol table input buffer
1454 and set the variables that control fetching entries from it.
1455 Reports an error if no data available.
1456 This function can read past the end of the symbol table
1457 (into the string table) but this does no harm. */
1458
1459 static int
1460 fill_symbuf ()
1461 {
1462 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1463 if (nbytes < 0)
1464 perror_with_name ("<symbol file>");
1465 else if (nbytes == 0)
1466 error ("Premature end of file reading symbol table");
1467 symbuf_end = nbytes / sizeof (struct nlist);
1468 symbuf_idx = 0;
1469 return 1;
1470 }
1471
1472 #define SWAP_SYMBOL(symp) \
1473 { \
1474 (symp)->n_un.n_strx = bfd_h_get_32(symfile_bfd, \
1475 (unsigned char *)&(symp)->n_un.n_strx); \
1476 (symp)->n_desc = bfd_h_get_16 (symfile_bfd, \
1477 (unsigned char *)&(symp)->n_desc); \
1478 (symp)->n_value = bfd_h_get_32 (symfile_bfd, \
1479 (unsigned char *)&(symp)->n_value); \
1480 }
1481
1482 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1483 that hasn't been swapped. Swap the symbol at the same time
1484 that symbuf_idx is incremented. */
1485
1486 /* dbx allows the text of a symbol name to be continued into the
1487 next symbol name! When such a continuation is encountered
1488 (a \ at the end of the text of a name)
1489 call this function to get the continuation. */
1490
1491 static char *
1492 next_symbol_text ()
1493 {
1494 if (symbuf_idx == symbuf_end)
1495 fill_symbuf ();
1496 symnum++;
1497 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1498 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1499 }
1500 \f
1501 /* Initializes storage for all of the partial symbols that will be
1502 created by read_dbx_symtab and subsidiaries. */
1503
1504 static void
1505 init_psymbol_list (total_symbols)
1506 int total_symbols;
1507 {
1508 /* Free any previously allocated psymbol lists. */
1509 if (global_psymbols.list)
1510 free (global_psymbols.list);
1511 if (static_psymbols.list)
1512 free (static_psymbols.list);
1513
1514 /* Current best guess is that there are approximately a twentieth
1515 of the total symbols (in a debugging file) are global or static
1516 oriented symbols */
1517 global_psymbols.size = total_symbols / 10;
1518 static_psymbols.size = total_symbols / 10;
1519 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1520 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1521 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1522 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1523 }
1524
1525 /* Initialize the list of bincls to contain none and have some
1526 allocated. */
1527
1528 static void
1529 init_bincl_list (number)
1530 int number;
1531 {
1532 bincls_allocated = number;
1533 next_bincl = bincl_list = (struct header_file_location *)
1534 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1535 }
1536
1537 /* Add a bincl to the list. */
1538
1539 static void
1540 add_bincl_to_list (pst, name, instance)
1541 struct partial_symtab *pst;
1542 char *name;
1543 int instance;
1544 {
1545 if (next_bincl >= bincl_list + bincls_allocated)
1546 {
1547 int offset = next_bincl - bincl_list;
1548 bincls_allocated *= 2;
1549 bincl_list = (struct header_file_location *)
1550 xrealloc ((char *)bincl_list,
1551 bincls_allocated * sizeof (struct header_file_location));
1552 next_bincl = bincl_list + offset;
1553 }
1554 next_bincl->pst = pst;
1555 next_bincl->instance = instance;
1556 next_bincl++->name = name;
1557 }
1558
1559 /* Given a name, value pair, find the corresponding
1560 bincl in the list. Return the partial symtab associated
1561 with that header_file_location. */
1562
1563 struct partial_symtab *
1564 find_corresponding_bincl_psymtab (name, instance)
1565 char *name;
1566 int instance;
1567 {
1568 struct header_file_location *bincl;
1569
1570 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1571 if (bincl->instance == instance
1572 && !strcmp (name, bincl->name))
1573 return bincl->pst;
1574
1575 return (struct partial_symtab *) 0;
1576 }
1577
1578 /* Free the storage allocated for the bincl list. */
1579
1580 static void
1581 free_bincl_list ()
1582 {
1583 free (bincl_list);
1584 bincls_allocated = 0;
1585 }
1586
1587 static struct partial_symtab *start_psymtab ();
1588 static void end_psymtab();
1589
1590 #ifdef DEBUG
1591 /* This is normally a macro defined in read_dbx_symtab, but this
1592 is a lot easier to debug. */
1593
1594 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1595 char *NAME;
1596 int NAMELENGTH;
1597 enum namespace NAMESPACE;
1598 enum address_class CLASS;
1599 struct psymbol_allocation_list *PLIST;
1600 unsigned long VALUE;
1601 {
1602 register struct partial_symbol *psym;
1603
1604 #define LIST *PLIST
1605 do {
1606 if ((LIST).next >=
1607 (LIST).list + (LIST).size)
1608 {
1609 (LIST).list = (struct partial_symbol *)
1610 xrealloc ((LIST).list,
1611 ((LIST).size * 2
1612 * sizeof (struct partial_symbol)));
1613 /* Next assumes we only went one over. Should be good if
1614 program works correctly */
1615 (LIST).next =
1616 (LIST).list + (LIST).size;
1617 (LIST).size *= 2;
1618 }
1619 psym = (LIST).next++;
1620 #undef LIST
1621
1622 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1623 (NAMELENGTH) + 1);
1624 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1625 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1626 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1627 SYMBOL_CLASS (psym) = (CLASS);
1628 SYMBOL_VALUE (psym) = (VALUE);
1629 } while (0);
1630 }
1631
1632 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1633 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1634 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1635
1636 #endif /* DEBUG */
1637
1638 /* Given pointers to an a.out symbol table in core containing dbx
1639 style data, setup partial_symtab's describing each source file for
1640 which debugging information is available. NLISTLEN is the number
1641 of symbols in the symbol table. All symbol names are given as
1642 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1643 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1644 and ADDR is its relocated address (if incremental) or 0 (if not). */
1645
1646 static void
1647 read_dbx_symtab (symfile_name, addr,
1648 desc, stringtab, stringtab_size, nlistlen,
1649 text_addr, text_size)
1650 char *symfile_name;
1651 CORE_ADDR addr;
1652 int desc;
1653 register char *stringtab;
1654 register long stringtab_size;
1655 register int nlistlen;
1656 CORE_ADDR text_addr;
1657 int text_size;
1658 {
1659 register struct nlist *bufp;
1660 register char *namestring;
1661 register struct partial_symbol *psym;
1662 int nsl;
1663 int past_first_source_file = 0;
1664 CORE_ADDR last_o_file_start = 0;
1665 struct cleanup *old_chain;
1666 char *p;
1667
1668 /* End of the text segment of the executable file. */
1669 CORE_ADDR end_of_text_addr;
1670
1671 /* Current partial symtab */
1672 struct partial_symtab *pst;
1673
1674 /* List of current psymtab's include files */
1675 char **psymtab_include_list;
1676 int includes_allocated;
1677 int includes_used;
1678
1679 /* Index within current psymtab dependency list */
1680 struct partial_symtab **dependency_list;
1681 int dependencies_used, dependencies_allocated;
1682
1683 stringtab_global = stringtab;
1684
1685 pst = (struct partial_symtab *) 0;
1686
1687 includes_allocated = 30;
1688 includes_used = 0;
1689 psymtab_include_list = (char **) alloca (includes_allocated *
1690 sizeof (char *));
1691
1692 dependencies_allocated = 30;
1693 dependencies_used = 0;
1694 dependency_list =
1695 (struct partial_symtab **) alloca (dependencies_allocated *
1696 sizeof (struct partial_symtab *));
1697
1698 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1699 It should only blow away the psymtabs created herein. We could
1700 be reading a shared library or a dynloaded file! */
1701 old_chain = make_cleanup (free_all_psymtabs, 0);
1702
1703 /* Init bincl list */
1704 init_bincl_list (20);
1705 make_cleanup (free_bincl_list, 0);
1706
1707 last_source_file = 0;
1708
1709 #ifdef END_OF_TEXT_DEFAULT
1710 end_of_text_addr = END_OF_TEXT_DEFAULT;
1711 #else
1712 end_of_text_addr = text_addr + text_size;
1713 #endif
1714
1715 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1716 symbuf_end = symbuf_idx = 0;
1717
1718 for (symnum = 0; symnum < nlistlen; symnum++)
1719 {
1720 /* Get the symbol for this run and pull out some info */
1721 QUIT; /* allow this to be interruptable */
1722 if (symbuf_idx == symbuf_end)
1723 fill_symbuf ();
1724 bufp = &symbuf[symbuf_idx++];
1725
1726 /*
1727 * Special case to speed up readin.
1728 */
1729 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1730
1731 SWAP_SYMBOL (bufp);
1732
1733 /* Ok. There is a lot of code duplicated in the rest of this
1734 switch statement (for efficiency reasons). Since I don't
1735 like duplicating code, I will do my penance here, and
1736 describe the code which is duplicated:
1737
1738 *) The assignment to namestring.
1739 *) The call to strchr.
1740 *) The addition of a partial symbol the the two partial
1741 symbol lists. This last is a large section of code, so
1742 I've imbedded it in the following macro.
1743 */
1744
1745 /* Set namestring based on bufp. If the string table index is invalid,
1746 give a fake name, and print a single error message per symbol file read,
1747 rather than abort the symbol reading or flood the user with messages. */
1748 #define SET_NAMESTRING()\
1749 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1750 complain (&string_table_offset_complaint, symnum); \
1751 namestring = "foo"; \
1752 } else \
1753 namestring = bufp->n_un.n_strx + stringtab
1754
1755 /* Add a symbol with an integer value to a psymtab. */
1756 /* This is a macro unless we're debugging. See above this function. */
1757 #ifndef DEBUG
1758 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1759 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1760 SYMBOL_VALUE)
1761 #endif /* DEBUG */
1762
1763 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1764 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1765 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1766 SYMBOL_VALUE_ADDRESS)
1767
1768 /* Add any kind of symbol to a psymtab. */
1769 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1770 do { \
1771 if ((LIST).next >= \
1772 (LIST).list + (LIST).size) \
1773 { \
1774 (LIST).list = (struct partial_symbol *) \
1775 xrealloc ((LIST).list, \
1776 ((LIST).size * 2 \
1777 * sizeof (struct partial_symbol))); \
1778 /* Next assumes we only went one over. Should be good if \
1779 program works correctly */ \
1780 (LIST).next = \
1781 (LIST).list + (LIST).size; \
1782 (LIST).size *= 2; \
1783 } \
1784 psym = (LIST).next++; \
1785 \
1786 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1787 (NAMELENGTH) + 1); \
1788 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1789 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1790 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1791 SYMBOL_CLASS (psym) = (CLASS); \
1792 VT (psym) = (VALUE); \
1793 } while (0);
1794
1795 /* End of macro definitions, now let's handle them symbols! */
1796
1797 switch (bufp->n_type)
1798 {
1799 /*
1800 * Standard, external, non-debugger, symbols
1801 */
1802
1803 case N_TEXT | N_EXT:
1804 case N_NBTEXT | N_EXT:
1805 case N_NBDATA | N_EXT:
1806 case N_NBBSS | N_EXT:
1807 case N_SETV | N_EXT:
1808 case N_ABS | N_EXT:
1809 case N_DATA | N_EXT:
1810 case N_BSS | N_EXT:
1811
1812 bufp->n_value += addr; /* Relocate */
1813
1814 SET_NAMESTRING();
1815
1816 bss_ext_symbol:
1817 record_misc_function (namestring, bufp->n_value,
1818 bufp->n_type); /* Always */
1819
1820 continue;
1821
1822 /* Standard, local, non-debugger, symbols */
1823
1824 case N_NBTEXT:
1825
1826 /* We need to be able to deal with both N_FN or N_TEXT,
1827 because we have no way of knowing whether the sys-supplied ld
1828 or GNU ld was used to make the executable. */
1829 #if ! (N_FN & N_EXT)
1830 case N_FN:
1831 #endif
1832 case N_FN | N_EXT:
1833 case N_TEXT:
1834 bufp->n_value += addr; /* Relocate */
1835 SET_NAMESTRING();
1836 if ((namestring[0] == '-' && namestring[1] == 'l')
1837 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1838 && namestring [nsl - 2] == '.'))
1839 {
1840 if (entry_point < bufp->n_value
1841 && entry_point >= last_o_file_start
1842 && addr == 0) /* FIXME nogood nomore */
1843 {
1844 startup_file_start = last_o_file_start;
1845 startup_file_end = bufp->n_value;
1846 }
1847 if (past_first_source_file && pst
1848 /* The gould NP1 uses low values for .o and -l symbols
1849 which are not the address. */
1850 && bufp->n_value > pst->textlow)
1851 {
1852 end_psymtab (pst, psymtab_include_list, includes_used,
1853 symnum * sizeof (struct nlist), bufp->n_value,
1854 dependency_list, dependencies_used,
1855 global_psymbols.next, static_psymbols.next);
1856 pst = (struct partial_symtab *) 0;
1857 includes_used = 0;
1858 dependencies_used = 0;
1859 }
1860 else
1861 past_first_source_file = 1;
1862 last_o_file_start = bufp->n_value;
1863 }
1864 continue;
1865
1866 case N_DATA:
1867 bufp->n_value += addr; /* Relocate */
1868 SET_NAMESTRING ();
1869 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1870 Record it even if it's local, not global, so we can find it.
1871 Same with virtual function tables, both global and static. */
1872 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1873 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
1874 {
1875 /* Not really a function here, but... */
1876 record_misc_function (namestring, bufp->n_value,
1877 bufp->n_type); /* Always */
1878 }
1879 continue;
1880
1881 case N_UNDF | N_EXT:
1882 if (bufp->n_value != 0) {
1883 /* This is a "Fortran COMMON" symbol. See if the target
1884 environment knows where it has been relocated to. */
1885
1886 CORE_ADDR reladdr;
1887
1888 SET_NAMESTRING();
1889 if (target_lookup_symbol (namestring, &reladdr)) {
1890 continue; /* Error in lookup; ignore symbol for now. */
1891 }
1892 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1893 bufp->n_value = reladdr;
1894 goto bss_ext_symbol;
1895 }
1896 continue; /* Just undefined, not COMMON */
1897
1898 /* Lots of symbol types we can just ignore. */
1899
1900 case N_UNDF:
1901 case N_ABS:
1902 case N_BSS:
1903 case N_NBDATA:
1904 case N_NBBSS:
1905 continue;
1906
1907 /* Keep going . . .*/
1908
1909 /*
1910 * Special symbol types for GNU
1911 */
1912 case N_INDR:
1913 case N_INDR | N_EXT:
1914 case N_SETA:
1915 case N_SETA | N_EXT:
1916 case N_SETT:
1917 case N_SETT | N_EXT:
1918 case N_SETD:
1919 case N_SETD | N_EXT:
1920 case N_SETB:
1921 case N_SETB | N_EXT:
1922 case N_SETV:
1923 continue;
1924
1925 /*
1926 * Debugger symbols
1927 */
1928
1929 case N_SO: {
1930 unsigned long valu = bufp->n_value;
1931 /* Symbol number of the first symbol of this file (i.e. the N_SO
1932 if there is just one, or the first if we have a pair). */
1933 int first_symnum = symnum;
1934
1935 /* End the current partial symtab and start a new one */
1936
1937 SET_NAMESTRING();
1938
1939 /* Peek at the next symbol. If it is also an N_SO, the
1940 first one just indicates the directory. */
1941 if (symbuf_idx == symbuf_end)
1942 fill_symbuf ();
1943 bufp = &symbuf[symbuf_idx];
1944 /* n_type is only a char, so swapping swapping is irrelevant. */
1945 if (bufp->n_type == (unsigned char)N_SO)
1946 {
1947 SWAP_SYMBOL (bufp);
1948 SET_NAMESTRING ();
1949 valu = bufp->n_value;
1950 symbuf_idx++;
1951 symnum++;
1952 }
1953 valu += addr; /* Relocate */
1954
1955 if (pst && past_first_source_file)
1956 {
1957 end_psymtab (pst, psymtab_include_list, includes_used,
1958 first_symnum * sizeof (struct nlist), valu,
1959 dependency_list, dependencies_used,
1960 global_psymbols.next, static_psymbols.next);
1961 pst = (struct partial_symtab *) 0;
1962 includes_used = 0;
1963 dependencies_used = 0;
1964 }
1965 else
1966 past_first_source_file = 1;
1967
1968 pst = start_psymtab (symfile_name, addr,
1969 namestring, valu,
1970 first_symnum * sizeof (struct nlist),
1971 global_psymbols.next, static_psymbols.next);
1972
1973 continue;
1974 }
1975
1976 case N_BINCL:
1977 /* Add this bincl to the bincl_list for future EXCLs. No
1978 need to save the string; it'll be around until
1979 read_dbx_symtab function returns */
1980
1981 SET_NAMESTRING();
1982
1983 add_bincl_to_list (pst, namestring, bufp->n_value);
1984
1985 /* Mark down an include file in the current psymtab */
1986
1987 psymtab_include_list[includes_used++] = namestring;
1988 if (includes_used >= includes_allocated)
1989 {
1990 char **orig = psymtab_include_list;
1991
1992 psymtab_include_list = (char **)
1993 alloca ((includes_allocated *= 2) *
1994 sizeof (char *));
1995 bcopy (orig, psymtab_include_list,
1996 includes_used * sizeof (char *));
1997 }
1998
1999 continue;
2000
2001 case N_SOL:
2002 /* Mark down an include file in the current psymtab */
2003
2004 SET_NAMESTRING();
2005
2006 /* In C++, one may expect the same filename to come round many
2007 times, when code is coming alternately from the main file
2008 and from inline functions in other files. So I check to see
2009 if this is a file we've seen before -- either the main
2010 source file, or a previously included file.
2011
2012 This seems to be a lot of time to be spending on N_SOL, but
2013 things like "break expread.y:435" need to work (I
2014 suppose the psymtab_include_list could be hashed or put
2015 in a binary tree, if profiling shows this is a major hog). */
2016 if (!strcmp (namestring, pst->filename))
2017 continue;
2018 {
2019 register int i;
2020 for (i = 0; i < includes_used; i++)
2021 if (!strcmp (namestring, psymtab_include_list[i]))
2022 {
2023 i = -1;
2024 break;
2025 }
2026 if (i == -1)
2027 continue;
2028 }
2029
2030 psymtab_include_list[includes_used++] = namestring;
2031 if (includes_used >= includes_allocated)
2032 {
2033 char **orig = psymtab_include_list;
2034
2035 psymtab_include_list = (char **)
2036 alloca ((includes_allocated *= 2) *
2037 sizeof (char *));
2038 bcopy (orig, psymtab_include_list,
2039 includes_used * sizeof (char *));
2040 }
2041 continue;
2042
2043 case N_LSYM: /* Typedef or automatic variable. */
2044 SET_NAMESTRING();
2045
2046 p = (char *) strchr (namestring, ':');
2047
2048 /* Skip if there is no :. */
2049 if (!p) continue;
2050
2051 switch (p[1])
2052 {
2053 case 'T':
2054 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2055 STRUCT_NAMESPACE, LOC_TYPEDEF,
2056 static_psymbols, bufp->n_value);
2057 if (p[2] == 't')
2058 {
2059 /* Also a typedef with the same name. */
2060 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2061 VAR_NAMESPACE, LOC_TYPEDEF,
2062 static_psymbols, bufp->n_value);
2063 p += 1;
2064 }
2065 goto check_enum;
2066 case 't':
2067 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2068 VAR_NAMESPACE, LOC_TYPEDEF,
2069 static_psymbols, bufp->n_value);
2070 check_enum:
2071 /* If this is an enumerated type, we need to
2072 add all the enum constants to the partial symbol
2073 table. This does not cover enums without names, e.g.
2074 "enum {a, b} c;" in C, but fortunately those are
2075 rare. There is no way for GDB to find those from the
2076 enum type without spending too much time on it. Thus
2077 to solve this problem, the compiler needs to put out separate
2078 constant symbols ('c' N_LSYMS) for enum constants in
2079 enums without names, or put out a dummy type. */
2080
2081 /* We are looking for something of the form
2082 <name> ":" ("t" | "T") [<number> "="] "e"
2083 {<constant> ":" <value> ","} ";". */
2084
2085 /* Skip over the colon and the 't' or 'T'. */
2086 p += 2;
2087 /* This type may be given a number. Skip over it. */
2088 while ((*p >= '0' && *p <= '9')
2089 || *p == '=')
2090 p++;
2091
2092 if (*p++ == 'e')
2093 {
2094 /* We have found an enumerated type. */
2095 /* According to comments in read_enum_type
2096 a comma could end it instead of a semicolon.
2097 I don't know where that happens.
2098 Accept either. */
2099 while (*p && *p != ';' && *p != ',')
2100 {
2101 char *q;
2102
2103 /* Check for and handle cretinous dbx symbol name
2104 continuation! */
2105 if (*p == '\\')
2106 p = next_symbol_text ();
2107
2108 /* Point to the character after the name
2109 of the enum constant. */
2110 for (q = p; *q && *q != ':'; q++)
2111 ;
2112 /* Note that the value doesn't matter for
2113 enum constants in psymtabs, just in symtabs. */
2114 ADD_PSYMBOL_TO_LIST (p, q - p,
2115 VAR_NAMESPACE, LOC_CONST,
2116 static_psymbols, 0);
2117 /* Point past the name. */
2118 p = q;
2119 /* Skip over the value. */
2120 while (*p && *p != ',')
2121 p++;
2122 /* Advance past the comma. */
2123 if (*p)
2124 p++;
2125 }
2126 }
2127
2128 continue;
2129 case 'c':
2130 /* Constant, e.g. from "const" in Pascal. */
2131 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2132 VAR_NAMESPACE, LOC_CONST,
2133 static_psymbols, bufp->n_value);
2134 continue;
2135 default:
2136 /* Skip if the thing following the : is
2137 not a letter (which indicates declaration of a local
2138 variable, which we aren't interested in). */
2139 continue;
2140 }
2141
2142 case N_FUN:
2143 case N_GSYM: /* Global (extern) variable; can be
2144 data or bss (sigh). */
2145 case N_STSYM: /* Data seg var -- static */
2146 case N_LCSYM: /* BSS " */
2147
2148 case N_NBSTS: /* Gould nobase. */
2149 case N_NBLCS: /* symbols. */
2150
2151 /* Following may probably be ignored; I'll leave them here
2152 for now (until I do Pascal and Modula 2 extensions). */
2153
2154 case N_PC: /* I may or may not need this; I
2155 suspect not. */
2156 case N_M2C: /* I suspect that I can ignore this here. */
2157 case N_SCOPE: /* Same. */
2158
2159 SET_NAMESTRING();
2160
2161 p = (char *) strchr (namestring, ':');
2162 if (!p)
2163 continue; /* Not a debugging symbol. */
2164
2165
2166
2167 /* Main processing section for debugging symbols which
2168 the initial read through the symbol tables needs to worry
2169 about. If we reach this point, the symbol which we are
2170 considering is definitely one we are interested in.
2171 p must also contain the (valid) index into the namestring
2172 which indicates the debugging type symbol. */
2173
2174 switch (p[1])
2175 {
2176 case 'c':
2177 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2178 VAR_NAMESPACE, LOC_CONST,
2179 static_psymbols, bufp->n_value);
2180 continue;
2181 case 'S':
2182 bufp->n_value += addr; /* Relocate */
2183 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2184 VAR_NAMESPACE, LOC_STATIC,
2185 static_psymbols, bufp->n_value);
2186 continue;
2187 case 'G':
2188 bufp->n_value += addr; /* Relocate */
2189 /* The addresses in these entries are reported to be
2190 wrong. See the code that reads 'G's for symtabs. */
2191 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2192 VAR_NAMESPACE, LOC_STATIC,
2193 global_psymbols, bufp->n_value);
2194 continue;
2195
2196 case 't':
2197 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2198 VAR_NAMESPACE, LOC_TYPEDEF,
2199 global_psymbols, bufp->n_value);
2200 continue;
2201
2202 case 'f':
2203 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2204 VAR_NAMESPACE, LOC_BLOCK,
2205 static_psymbols, bufp->n_value);
2206 continue;
2207
2208 /* Global functions were ignored here, but now they
2209 are put into the global psymtab like one would expect.
2210 They're also in the misc fn vector...
2211 FIXME, why did it used to ignore these? That broke
2212 "i fun" on these functions. */
2213 case 'F':
2214 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2215 VAR_NAMESPACE, LOC_BLOCK,
2216 global_psymbols, bufp->n_value);
2217 continue;
2218
2219 /* Two things show up here (hopefully); static symbols of
2220 local scope (static used inside braces) or extensions
2221 of structure symbols. We can ignore both. */
2222 case 'V':
2223 case '(':
2224 case '0':
2225 case '1':
2226 case '2':
2227 case '3':
2228 case '4':
2229 case '5':
2230 case '6':
2231 case '7':
2232 case '8':
2233 case '9':
2234 continue;
2235
2236 default:
2237 /* Unexpected symbol. Ignore it; perhaps it is an extension
2238 that we don't know about.
2239
2240 Someone says sun cc puts out symbols like
2241 /foo/baz/maclib::/usr/local/bin/maclib,
2242 which would get here with a symbol type of ':'. */
2243 continue;
2244 }
2245
2246 case N_EXCL:
2247
2248 SET_NAMESTRING();
2249
2250 /* Find the corresponding bincl and mark that psymtab on the
2251 psymtab dependency list */
2252 {
2253 struct partial_symtab *needed_pst =
2254 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2255
2256 /* If this include file was defined earlier in this file,
2257 leave it alone. */
2258 if (needed_pst == pst) continue;
2259
2260 if (needed_pst)
2261 {
2262 int i;
2263 int found = 0;
2264
2265 for (i = 0; i < dependencies_used; i++)
2266 if (dependency_list[i] == needed_pst)
2267 {
2268 found = 1;
2269 break;
2270 }
2271
2272 /* If it's already in the list, skip the rest. */
2273 if (found) continue;
2274
2275 dependency_list[dependencies_used++] = needed_pst;
2276 if (dependencies_used >= dependencies_allocated)
2277 {
2278 struct partial_symtab **orig = dependency_list;
2279 dependency_list =
2280 (struct partial_symtab **)
2281 alloca ((dependencies_allocated *= 2)
2282 * sizeof (struct partial_symtab *));
2283 bcopy (orig, dependency_list,
2284 (dependencies_used
2285 * sizeof (struct partial_symtab *)));
2286 #ifdef DEBUG_INFO
2287 fprintf (stderr, "Had to reallocate dependency list.\n");
2288 fprintf (stderr, "New dependencies allocated: %d\n",
2289 dependencies_allocated);
2290 #endif
2291 }
2292 }
2293 else
2294 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2295 symnum);
2296 }
2297 continue;
2298
2299 case N_EINCL:
2300 case N_DSLINE:
2301 case N_BSLINE:
2302 case N_SSYM: /* Claim: Structure or union element.
2303 Hopefully, I can ignore this. */
2304 case N_ENTRY: /* Alternate entry point; can ignore. */
2305 case N_MAIN: /* Can definitely ignore this. */
2306 case N_CATCH: /* These are GNU C++ extensions */
2307 case N_EHDECL: /* that can safely be ignored here. */
2308 case N_LENG:
2309 case N_BCOMM:
2310 case N_ECOMM:
2311 case N_ECOML:
2312 case N_FNAME:
2313 case N_SLINE:
2314 case N_RSYM:
2315 case N_PSYM:
2316 case N_LBRAC:
2317 case N_RBRAC:
2318 case N_NSYMS: /* Ultrix 4.0: symbol count */
2319 /* These symbols aren't interesting; don't worry about them */
2320
2321 continue;
2322
2323 default:
2324 /* If we haven't found it yet, ignore it. It's probably some
2325 new type we don't know about yet. */
2326 complain (&unknown_symtype_complaint, bufp->n_type);
2327 continue;
2328 }
2329 }
2330
2331 /* If there's stuff to be cleaned up, clean it up. */
2332 if (nlistlen > 0 /* We have some syms */
2333 && entry_point < bufp->n_value
2334 && entry_point >= last_o_file_start)
2335 {
2336 startup_file_start = last_o_file_start;
2337 startup_file_end = bufp->n_value;
2338 }
2339
2340 if (pst)
2341 {
2342 end_psymtab (pst, psymtab_include_list, includes_used,
2343 symnum * sizeof (struct nlist), end_of_text_addr,
2344 dependency_list, dependencies_used,
2345 global_psymbols.next, static_psymbols.next);
2346 includes_used = 0;
2347 dependencies_used = 0;
2348 pst = (struct partial_symtab *) 0;
2349 }
2350
2351 free_bincl_list ();
2352 discard_cleanups (old_chain);
2353 }
2354
2355 /*
2356 * Allocate and partially fill a partial symtab. It will be
2357 * completely filled at the end of the symbol list.
2358
2359 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2360 is the address relative to which its symbols are (incremental) or 0
2361 (normal). */
2362 static struct partial_symtab *
2363 start_psymtab (symfile_name, addr,
2364 filename, textlow, ldsymoff, global_syms, static_syms)
2365 char *symfile_name;
2366 CORE_ADDR addr;
2367 char *filename;
2368 CORE_ADDR textlow;
2369 int ldsymoff;
2370 struct partial_symbol *global_syms;
2371 struct partial_symbol *static_syms;
2372 {
2373 struct partial_symtab *result =
2374 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2375 sizeof (struct partial_symtab));
2376
2377 result->addr = addr;
2378
2379 result->symfile_name =
2380 (char *) obstack_alloc (psymbol_obstack,
2381 strlen (symfile_name) + 1);
2382 strcpy (result->symfile_name, symfile_name);
2383
2384 result->filename =
2385 (char *) obstack_alloc (psymbol_obstack,
2386 strlen (filename) + 1);
2387 strcpy (result->filename, filename);
2388
2389 result->textlow = textlow;
2390 result->ldsymoff = ldsymoff;
2391
2392 result->readin = 0;
2393 result->symtab = 0;
2394 result->read_symtab = dbx_psymtab_to_symtab;
2395
2396 result->globals_offset = global_syms - global_psymbols.list;
2397 result->statics_offset = static_syms - static_psymbols.list;
2398
2399 result->n_global_syms = 0;
2400 result->n_static_syms = 0;
2401
2402
2403 return result;
2404 }
2405
2406 static int
2407 compare_psymbols (s1, s2)
2408 register struct partial_symbol *s1, *s2;
2409 {
2410 register char
2411 *st1 = SYMBOL_NAME (s1),
2412 *st2 = SYMBOL_NAME (s2);
2413
2414 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2415 strcmp (st1 + 1, st2 + 1));
2416 }
2417
2418
2419 /* Close off the current usage of a partial_symbol table entry. This
2420 involves setting the correct number of includes (with a realloc),
2421 setting the high text mark, setting the symbol length in the
2422 executable, and setting the length of the global and static lists
2423 of psymbols.
2424
2425 The global symbols and static symbols are then seperately sorted.
2426
2427 Then the partial symtab is put on the global list.
2428 *** List variables and peculiarities of same. ***
2429 */
2430 static void
2431 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2432 capping_text, dependency_list, number_dependencies,
2433 capping_global, capping_static)
2434 struct partial_symtab *pst;
2435 char **include_list;
2436 int num_includes;
2437 int capping_symbol_offset;
2438 CORE_ADDR capping_text;
2439 struct partial_symtab **dependency_list;
2440 int number_dependencies;
2441 struct partial_symbol *capping_global, *capping_static;
2442 {
2443 int i;
2444
2445 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2446 pst->texthigh = capping_text;
2447
2448 pst->n_global_syms =
2449 capping_global - (global_psymbols.list + pst->globals_offset);
2450 pst->n_static_syms =
2451 capping_static - (static_psymbols.list + pst->statics_offset);
2452
2453 pst->number_of_dependencies = number_dependencies;
2454 if (number_dependencies)
2455 {
2456 pst->dependencies = (struct partial_symtab **)
2457 obstack_alloc (psymbol_obstack,
2458 number_dependencies * sizeof (struct partial_symtab *));
2459 bcopy (dependency_list, pst->dependencies,
2460 number_dependencies * sizeof (struct partial_symtab *));
2461 }
2462 else
2463 pst->dependencies = 0;
2464
2465 for (i = 0; i < num_includes; i++)
2466 {
2467 /* Eventually, put this on obstack */
2468 struct partial_symtab *subpst =
2469 (struct partial_symtab *)
2470 obstack_alloc (psymbol_obstack,
2471 sizeof (struct partial_symtab));
2472
2473 subpst->filename =
2474 (char *) obstack_alloc (psymbol_obstack,
2475 strlen (include_list[i]) + 1);
2476 strcpy (subpst->filename, include_list[i]);
2477
2478 subpst->symfile_name = pst->symfile_name;
2479 subpst->addr = pst->addr;
2480 subpst->ldsymoff =
2481 subpst->ldsymlen =
2482 subpst->textlow =
2483 subpst->texthigh = 0;
2484
2485 /* We could save slight bits of space by only making one of these,
2486 shared by the entire set of include files. FIXME-someday. */
2487 subpst->dependencies = (struct partial_symtab **)
2488 obstack_alloc (psymbol_obstack,
2489 sizeof (struct partial_symtab *));
2490 subpst->dependencies[0] = pst;
2491 subpst->number_of_dependencies = 1;
2492
2493 subpst->globals_offset =
2494 subpst->n_global_syms =
2495 subpst->statics_offset =
2496 subpst->n_static_syms = 0;
2497
2498 subpst->readin = 0;
2499 subpst->symtab = 0;
2500 subpst->read_symtab = dbx_psymtab_to_symtab;
2501
2502 subpst->next = partial_symtab_list;
2503 partial_symtab_list = subpst;
2504 }
2505
2506 /* Sort the global list; don't sort the static list */
2507 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2508 sizeof (struct partial_symbol), compare_psymbols);
2509
2510 /* If there is already a psymtab or symtab for a file of this name, remove it.
2511 (If there is a symtab, more drastic things also happen.)
2512 This happens in VxWorks. */
2513 free_named_symtabs (pst->filename);
2514
2515 /* Put the psymtab on the psymtab list */
2516 pst->next = partial_symtab_list;
2517 partial_symtab_list = pst;
2518 }
2519 \f
2520 static void
2521 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2522 struct partial_symtab *pst;
2523 int desc;
2524 char *stringtab;
2525 int stringtab_size;
2526 int sym_offset;
2527 {
2528 struct cleanup *old_chain;
2529 int i;
2530
2531 if (!pst)
2532 return;
2533
2534 if (pst->readin)
2535 {
2536 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2537 pst->filename);
2538 return;
2539 }
2540
2541 /* Read in all partial symbtabs on which this one is dependent */
2542 for (i = 0; i < pst->number_of_dependencies; i++)
2543 if (!pst->dependencies[i]->readin)
2544 {
2545 /* Inform about additional files that need to be read in. */
2546 if (info_verbose)
2547 {
2548 fputs_filtered (" ", stdout);
2549 wrap_here ("");
2550 fputs_filtered ("and ", stdout);
2551 wrap_here ("");
2552 printf_filtered ("%s...", pst->dependencies[i]->filename);
2553 wrap_here (""); /* Flush output */
2554 fflush (stdout);
2555 }
2556 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2557 stringtab, stringtab_size, sym_offset);
2558 }
2559
2560 if (pst->ldsymlen) /* Otherwise it's a dummy */
2561 {
2562 /* Init stuff necessary for reading in symbols */
2563 free_pendings = 0;
2564 pending_blocks = 0;
2565 file_symbols = 0;
2566 global_symbols = 0;
2567 old_chain = make_cleanup (really_free_pendings, 0);
2568
2569 /* Read in this files symbols */
2570 lseek (desc, sym_offset, L_SET);
2571 read_ofile_symtab (desc, stringtab, stringtab_size,
2572 pst->ldsymoff,
2573 pst->ldsymlen, pst->textlow,
2574 pst->texthigh - pst->textlow, pst->addr);
2575 sort_symtab_syms (symtab_list); /* At beginning since just added */
2576
2577 do_cleanups (old_chain);
2578 }
2579
2580 pst->readin = 1;
2581 }
2582
2583 /*
2584 * Read in all of the symbols for a given psymtab for real.
2585 * Be verbose about it if the user wants that.
2586 */
2587 static void
2588 dbx_psymtab_to_symtab (pst)
2589 struct partial_symtab *pst;
2590 {
2591 int desc;
2592 char *stringtab;
2593 int stsize, val;
2594 struct stat statbuf;
2595 struct cleanup *old_chain;
2596 bfd *sym_bfd;
2597 long st_temp;
2598
2599 if (!pst)
2600 return;
2601
2602 if (pst->readin)
2603 {
2604 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2605 pst->filename);
2606 return;
2607 }
2608
2609 if (pst->ldsymlen || pst->number_of_dependencies)
2610 {
2611 /* Print the message now, before reading the string table,
2612 to avoid disconcerting pauses. */
2613 if (info_verbose)
2614 {
2615 printf_filtered ("Reading in symbols for %s...", pst->filename);
2616 fflush (stdout);
2617 }
2618
2619 /* Open symbol file and read in string table. Symbol_file_command
2620 guarantees that the symbol file name will be absolute, so there is
2621 no need for openp. */
2622 desc = open(pst->symfile_name, O_RDONLY, 0);
2623
2624 if (desc < 0)
2625 perror_with_name (pst->symfile_name);
2626
2627 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2628 if (!sym_bfd)
2629 {
2630 (void)close (desc);
2631 error ("Could not open `%s' to read symbols: %s",
2632 pst->symfile_name, bfd_errmsg (bfd_error));
2633 }
2634 old_chain = make_cleanup (bfd_close, sym_bfd);
2635 if (!bfd_check_format (sym_bfd, bfd_object))
2636 error ("\"%s\": can't read symbols: %s.",
2637 pst->symfile_name, bfd_errmsg (bfd_error));
2638
2639 /* We keep the string table for symfile resident in memory, but
2640 not the string table for any other symbol files. */
2641 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2642 {
2643 /* Read in the string table */
2644
2645 /* FIXME, this uses internal BFD variables. See above in
2646 dbx_symbol_file_open where the macro is defined! */
2647 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2648
2649 val = myread (desc, &st_temp, sizeof st_temp);
2650 if (val < 0)
2651 perror_with_name (pst->symfile_name);
2652 stsize = bfd_h_get_32 (sym_bfd, (unsigned char *)&st_temp);
2653 if (fstat (desc, &statbuf) < 0)
2654 perror_with_name (pst->symfile_name);
2655
2656 if (stsize >= 0 && stsize < statbuf.st_size)
2657 {
2658 #ifdef BROKEN_LARGE_ALLOCA
2659 stringtab = (char *) xmalloc (stsize);
2660 make_cleanup (free, stringtab);
2661 #else
2662 stringtab = (char *) alloca (stsize);
2663 #endif
2664 }
2665 else
2666 stringtab = NULL;
2667 if (stringtab == NULL && stsize != 0)
2668 error ("ridiculous string table size: %d bytes", stsize);
2669
2670 /* FIXME, this uses internal BFD variables. See above in
2671 dbx_symbol_file_open where the macro is defined! */
2672 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2673 if (val < 0)
2674 perror_with_name (pst->symfile_name);
2675 val = myread (desc, stringtab, stsize);
2676 if (val < 0)
2677 perror_with_name (pst->symfile_name);
2678 }
2679 else
2680 {
2681 stringtab = symfile_string_table;
2682 stsize = symfile_string_table_size;
2683 }
2684
2685 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2686
2687 /* FIXME, this uses internal BFD variables. See above in
2688 dbx_symbol_file_open where the macro is defined! */
2689 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2690 SYMBOL_TABLE_OFFSET);
2691
2692 /* Match with global symbols. This only needs to be done once,
2693 after all of the symtabs and dependencies have been read in. */
2694 scan_file_globals ();
2695
2696 do_cleanups (old_chain);
2697
2698 /* Finish up the debug error message. */
2699 if (info_verbose)
2700 printf_filtered ("done.\n");
2701 }
2702 }
2703
2704 /*
2705 * Scan through all of the global symbols defined in the object file,
2706 * assigning values to the debugging symbols that need to be assigned
2707 * to. Get these symbols from the misc function list.
2708 */
2709 static void
2710 scan_file_globals ()
2711 {
2712 int hash;
2713 int mf;
2714
2715 for (mf = 0; mf < misc_function_count; mf++)
2716 {
2717 char *namestring = misc_function_vector[mf].name;
2718 struct symbol *sym, *prev;
2719
2720 QUIT;
2721
2722 prev = (struct symbol *) 0;
2723
2724 /* Get the hash index and check all the symbols
2725 under that hash index. */
2726
2727 hash = hashname (namestring);
2728
2729 for (sym = global_sym_chain[hash]; sym;)
2730 {
2731 if (*namestring == SYMBOL_NAME (sym)[0]
2732 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2733 {
2734 /* Splice this symbol out of the hash chain and
2735 assign the value we have to it. */
2736 if (prev)
2737 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2738 else
2739 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2740
2741 /* Check to see whether we need to fix up a common block. */
2742 /* Note: this code might be executed several times for
2743 the same symbol if there are multiple references. */
2744 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2745 fix_common_block (sym, misc_function_vector[mf].address);
2746 else
2747 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2748
2749 if (prev)
2750 sym = SYMBOL_VALUE_CHAIN (prev);
2751 else
2752 sym = global_sym_chain[hash];
2753 }
2754 else
2755 {
2756 prev = sym;
2757 sym = SYMBOL_VALUE_CHAIN (sym);
2758 }
2759 }
2760 }
2761 }
2762
2763 /* Process a pair of symbols. Currently they must both be N_SO's. */
2764 static void
2765 process_symbol_pair (type1, desc1, value1, name1,
2766 type2, desc2, value2, name2)
2767 int type1;
2768 int desc1;
2769 CORE_ADDR value1;
2770 char *name1;
2771 int type2;
2772 int desc2;
2773 CORE_ADDR value2;
2774 char *name2;
2775 {
2776 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2777 broken PCC's don't put out N_SO pairs. */
2778 if (last_source_file)
2779 end_symtab (value2);
2780 start_symtab (name2, name1, value2);
2781 }
2782
2783 /*
2784 * Read in a defined section of a specific object file's symbols.
2785 *
2786 * DESC is the file descriptor for the file, positioned at the
2787 * beginning of the symtab
2788 * STRINGTAB is a pointer to the files string
2789 * table, already read in
2790 * SYM_OFFSET is the offset within the file of
2791 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2792 * number of symbols to read
2793 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2794 * TEXT_SIZE is the size of the text segment read in.
2795 * OFFSET is a relocation offset which gets added to each symbol
2796 */
2797
2798 static void
2799 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2800 sym_size, text_offset, text_size, offset)
2801 int desc;
2802 register char *stringtab;
2803 unsigned int stringtab_size;
2804 int sym_offset;
2805 int sym_size;
2806 CORE_ADDR text_offset;
2807 int text_size;
2808 int offset;
2809 {
2810 register char *namestring;
2811 struct nlist *bufp;
2812 unsigned char type;
2813 subfile_stack = 0;
2814
2815 stringtab_global = stringtab;
2816 last_source_file = 0;
2817
2818 symtab_input_desc = desc;
2819 symbuf_end = symbuf_idx = 0;
2820
2821 /* It is necessary to actually read one symbol *before* the start
2822 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2823 occurs before the N_SO symbol.
2824
2825 Detecting this in read_dbx_symtab
2826 would slow down initial readin, so we look for it here instead. */
2827 if (sym_offset >= (int)sizeof (struct nlist))
2828 {
2829 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2830 fill_symbuf ();
2831 bufp = &symbuf[symbuf_idx++];
2832 SWAP_SYMBOL (bufp);
2833
2834 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2835 error ("Invalid symbol data: bad string table offset: %d",
2836 bufp->n_un.n_strx);
2837 namestring = bufp->n_un.n_strx + stringtab;
2838
2839 processing_gcc_compilation =
2840 (bufp->n_type == N_TEXT
2841 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2842 }
2843 else
2844 {
2845 /* The N_SO starting this symtab is the first symbol, so we
2846 better not check the symbol before it. I'm not this can
2847 happen, but it doesn't hurt to check for it. */
2848 lseek(desc, sym_offset, L_INCR);
2849 processing_gcc_compilation = 0;
2850 }
2851
2852 if (symbuf_idx == symbuf_end)
2853 fill_symbuf();
2854 bufp = &symbuf[symbuf_idx];
2855 if (bufp->n_type != (unsigned char)N_SO)
2856 error("First symbol in segment of executable not a source symbol");
2857
2858 for (symnum = 0;
2859 symnum < sym_size / sizeof(struct nlist);
2860 symnum++)
2861 {
2862 QUIT; /* Allow this to be interruptable */
2863 if (symbuf_idx == symbuf_end)
2864 fill_symbuf();
2865 bufp = &symbuf[symbuf_idx++];
2866 SWAP_SYMBOL (bufp);
2867
2868 type = bufp->n_type & N_TYPE;
2869 if (type == (unsigned char)N_CATCH)
2870 {
2871 /* N_CATCH is not fixed up by the linker, and unfortunately,
2872 there's no other place to put it in the .stab map. */
2873 bufp->n_value += text_offset + offset;
2874 }
2875 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2876 bufp->n_value += offset;
2877
2878 type = bufp->n_type;
2879 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2880 error ("Invalid symbol data: bad string table offset: %d",
2881 bufp->n_un.n_strx);
2882 namestring = bufp->n_un.n_strx + stringtab;
2883
2884 if (type & N_STAB)
2885 {
2886 short bufp_n_desc = bufp->n_desc;
2887 unsigned long valu = bufp->n_value;
2888
2889 /* Check for a pair of N_SO symbols. */
2890 if (type == (unsigned char)N_SO)
2891 {
2892 if (symbuf_idx == symbuf_end)
2893 fill_symbuf ();
2894 bufp = &symbuf[symbuf_idx];
2895 if (bufp->n_type == (unsigned char)N_SO)
2896 {
2897 char *namestring2;
2898
2899 SWAP_SYMBOL (bufp);
2900 bufp->n_value += offset; /* Relocate */
2901 symbuf_idx++;
2902 symnum++;
2903
2904 if (bufp->n_un.n_strx < 0
2905 || bufp->n_un.n_strx >= stringtab_size)
2906 error ("Invalid symbol data: bad string table offset: %d",
2907 bufp->n_un.n_strx);
2908 namestring2 = bufp->n_un.n_strx + stringtab;
2909
2910 process_symbol_pair (N_SO, bufp_n_desc, valu, namestring,
2911 N_SO, bufp->n_desc, bufp->n_value,
2912 namestring2);
2913 }
2914 else
2915 process_one_symbol(type, bufp_n_desc, valu, namestring);
2916 }
2917 else
2918 process_one_symbol (type, bufp_n_desc, valu, namestring);
2919 }
2920 /* We skip checking for a new .o or -l file; that should never
2921 happen in this routine. */
2922 else if (type == N_TEXT
2923 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2924 /* I don't think this code will ever be executed, because
2925 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2926 the N_SO symbol which starts this source file.
2927 However, there is no reason not to accept
2928 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2929 processing_gcc_compilation = 1;
2930 else if (type & N_EXT || type == (unsigned char)N_TEXT
2931 || type == (unsigned char)N_NBTEXT
2932 )
2933 /* Global symbol: see if we came across a dbx defintion for
2934 a corresponding symbol. If so, store the value. Remove
2935 syms from the chain when their values are stored, but
2936 search the whole chain, as there may be several syms from
2937 different files with the same name. */
2938 /* This is probably not true. Since the files will be read
2939 in one at a time, each reference to a global symbol will
2940 be satisfied in each file as it appears. So we skip this
2941 section. */
2942 ;
2943 }
2944 end_symtab (text_offset + text_size);
2945 }
2946 \f
2947 static int
2948 hashname (name)
2949 char *name;
2950 {
2951 register char *p = name;
2952 register int total = p[0];
2953 register int c;
2954
2955 c = p[1];
2956 total += c << 2;
2957 if (c)
2958 {
2959 c = p[2];
2960 total += c << 4;
2961 if (c)
2962 total += p[3] << 6;
2963 }
2964
2965 /* Ensure result is positive. */
2966 if (total < 0) total += (1000 << 6);
2967 return total % HASHSIZE;
2968 }
2969
2970 \f
2971 static void
2972 process_one_symbol (type, desc, valu, name)
2973 int type, desc;
2974 CORE_ADDR valu;
2975 char *name;
2976 {
2977 #ifndef SUN_FIXED_LBRAC_BUG
2978 /* This records the last pc address we've seen. We depend on their being
2979 an SLINE or FUN or SO before the first LBRAC, since the variable does
2980 not get reset in between reads of different symbol files. */
2981 static CORE_ADDR last_pc_address;
2982 #endif
2983 register struct context_stack *new;
2984 char *colon_pos;
2985
2986 /* Something is wrong if we see real data before
2987 seeing a source file name. */
2988
2989 if (last_source_file == 0 && type != (unsigned char)N_SO)
2990 {
2991 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2992 where that code is defined. */
2993 if (IGNORE_SYMBOL (type))
2994 return;
2995
2996 /* FIXME, this should not be an error, since it precludes extending
2997 the symbol table information in this way... */
2998 error ("Invalid symbol data: does not start by identifying a source file.");
2999 }
3000
3001 switch (type)
3002 {
3003 case N_FUN:
3004 case N_FNAME:
3005 /* Either of these types of symbols indicates the start of
3006 a new function. We must process its "name" normally for dbx,
3007 but also record the start of a new lexical context, and possibly
3008 also the end of the lexical context for the previous function. */
3009 /* This is not always true. This type of symbol may indicate a
3010 text segment variable. */
3011
3012 #ifndef SUN_FIXED_LBRAC_BUG
3013 last_pc_address = valu; /* Save for SunOS bug circumcision */
3014 #endif
3015
3016 colon_pos = strchr (name, ':');
3017 if (!colon_pos++
3018 || (*colon_pos != 'f' && *colon_pos != 'F'))
3019 {
3020 define_symbol (valu, name, desc, type);
3021 break;
3022 }
3023
3024 within_function = 1;
3025 if (context_stack_depth > 0)
3026 {
3027 new = &context_stack[--context_stack_depth];
3028 /* Make a block for the local symbols within. */
3029 finish_block (new->name, &local_symbols, new->old_blocks,
3030 new->start_addr, valu);
3031 }
3032 /* Stack must be empty now. */
3033 if (context_stack_depth != 0)
3034 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3035 symnum);
3036
3037 new = &context_stack[context_stack_depth++];
3038 new->old_blocks = pending_blocks;
3039 new->start_addr = valu;
3040 new->name = define_symbol (valu, name, desc, type);
3041 local_symbols = 0;
3042 break;
3043
3044 case N_CATCH:
3045 /* Record the address at which this catch takes place. */
3046 define_symbol (valu, name, desc, type);
3047 break;
3048
3049 case N_EHDECL:
3050 /* Don't know what to do with these yet. */
3051 error ("action uncertain for eh extensions");
3052 break;
3053
3054 case N_LBRAC:
3055 /* This "symbol" just indicates the start of an inner lexical
3056 context within a function. */
3057
3058 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3059 /* On most machines, the block addresses are relative to the
3060 N_SO, the linker did not relocate them (sigh). */
3061 valu += last_source_start_addr;
3062 #endif
3063
3064 #ifndef SUN_FIXED_LBRAC_BUG
3065 if (valu < last_pc_address) {
3066 /* Patch current LBRAC pc value to match last handy pc value */
3067 complain (&lbrac_complaint, 0);
3068 valu = last_pc_address;
3069 }
3070 #endif
3071 if (context_stack_depth == context_stack_size)
3072 {
3073 context_stack_size *= 2;
3074 context_stack = (struct context_stack *)
3075 xrealloc (context_stack,
3076 (context_stack_size
3077 * sizeof (struct context_stack)));
3078 }
3079
3080 new = &context_stack[context_stack_depth++];
3081 new->depth = desc;
3082 new->locals = local_symbols;
3083 new->old_blocks = pending_blocks;
3084 new->start_addr = valu;
3085 new->name = 0;
3086 local_symbols = 0;
3087 break;
3088
3089 case N_RBRAC:
3090 /* This "symbol" just indicates the end of an inner lexical
3091 context that was started with N_LBRAC. */
3092
3093 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3094 /* On most machines, the block addresses are relative to the
3095 N_SO, the linker did not relocate them (sigh). */
3096 valu += last_source_start_addr;
3097 #endif
3098
3099 new = &context_stack[--context_stack_depth];
3100 if (desc != new->depth)
3101 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3102
3103 /* Some compilers put the variable decls inside of an
3104 LBRAC/RBRAC block. This macro should be nonzero if this
3105 is true. DESC is N_DESC from the N_RBRAC symbol.
3106 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3107 #if !defined (VARIABLES_INSIDE_BLOCK)
3108 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3109 #endif
3110
3111 /* Can only use new->locals as local symbols here if we're in
3112 gcc or on a machine that puts them before the lbrack. */
3113 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3114 local_symbols = new->locals;
3115
3116 /* If this is not the outermost LBRAC...RBRAC pair in the
3117 function, its local symbols preceded it, and are the ones
3118 just recovered from the context stack. Defined the block for them.
3119
3120 If this is the outermost LBRAC...RBRAC pair, there is no
3121 need to do anything; leave the symbols that preceded it
3122 to be attached to the function's own block. However, if
3123 it is so, we need to indicate that we just moved outside
3124 of the function. */
3125 if (local_symbols
3126 && (context_stack_depth
3127 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3128 {
3129 /* FIXME Muzzle a compiler bug that makes end < start. */
3130 if (new->start_addr > valu)
3131 {
3132 complain(&lbrac_rbrac_complaint, 0);
3133 new->start_addr = valu;
3134 }
3135 /* Make a block for the local symbols within. */
3136 finish_block (0, &local_symbols, new->old_blocks,
3137 new->start_addr, valu);
3138 }
3139 else
3140 {
3141 within_function = 0;
3142 }
3143 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3144 /* Now pop locals of block just finished. */
3145 local_symbols = new->locals;
3146 break;
3147
3148 case N_FN | N_EXT:
3149 /* This kind of symbol supposedly indicates the start
3150 of an object file. In fact this type does not appear. */
3151 break;
3152
3153 case N_SO:
3154 /* This type of symbol indicates the start of data
3155 for one source file.
3156 Finish the symbol table of the previous source file
3157 (if any) and start accumulating a new symbol table. */
3158 #ifndef SUN_FIXED_LBRAC_BUG
3159 last_pc_address = valu; /* Save for SunOS bug circumcision */
3160 #endif
3161
3162 #ifdef PCC_SOL_BROKEN
3163 /* pcc bug, occasionally puts out SO for SOL. */
3164 if (context_stack_depth > 0)
3165 {
3166 start_subfile (name, NULL);
3167 break;
3168 }
3169 #endif
3170 if (last_source_file)
3171 end_symtab (valu);
3172 start_symtab (name, NULL, valu);
3173 break;
3174
3175 case N_SOL:
3176 /* This type of symbol indicates the start of data for
3177 a sub-source-file, one whose contents were copied or
3178 included in the compilation of the main source file
3179 (whose name was given in the N_SO symbol.) */
3180 start_subfile (name, NULL);
3181 break;
3182
3183 case N_BINCL:
3184 push_subfile ();
3185 add_new_header_file (name, valu);
3186 start_subfile (name, NULL);
3187 break;
3188
3189 case N_EINCL:
3190 start_subfile (pop_subfile (), NULL);
3191 break;
3192
3193 case N_EXCL:
3194 add_old_header_file (name, valu);
3195 break;
3196
3197 case N_SLINE:
3198 /* This type of "symbol" really just records
3199 one line-number -- core-address correspondence.
3200 Enter it in the line list for this symbol table. */
3201 #ifndef SUN_FIXED_LBRAC_BUG
3202 last_pc_address = valu; /* Save for SunOS bug circumcision */
3203 #endif
3204 record_line (desc, valu);
3205 break;
3206
3207 case N_BCOMM:
3208 if (common_block)
3209 error ("Invalid symbol data: common within common at symtab pos %d",
3210 symnum);
3211 common_block = local_symbols;
3212 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3213 break;
3214
3215 case N_ECOMM:
3216 /* Symbols declared since the BCOMM are to have the common block
3217 start address added in when we know it. common_block points to
3218 the first symbol after the BCOMM in the local_symbols list;
3219 copy the list and hang it off the symbol for the common block name
3220 for later fixup. */
3221 {
3222 int i;
3223 struct symbol *sym =
3224 (struct symbol *) xmalloc (sizeof (struct symbol));
3225 bzero (sym, sizeof *sym);
3226 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3227 SYMBOL_CLASS (sym) = LOC_BLOCK;
3228 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3229 copy_pending (local_symbols, common_block_i, common_block));
3230 i = hashname (SYMBOL_NAME (sym));
3231 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3232 global_sym_chain[i] = sym;
3233 common_block = 0;
3234 break;
3235 }
3236
3237 case N_ECOML:
3238 case N_LENG:
3239 break;
3240
3241 default:
3242 if (name)
3243 define_symbol (valu, name, desc, type);
3244 }
3245 }
3246 \f
3247 /* Read a number by which a type is referred to in dbx data,
3248 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3249 Just a single number N is equivalent to (0,N).
3250 Return the two numbers by storing them in the vector TYPENUMS.
3251 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3252
3253 static void
3254 read_type_number (pp, typenums)
3255 register char **pp;
3256 register int *typenums;
3257 {
3258 if (**pp == '(')
3259 {
3260 (*pp)++;
3261 typenums[0] = read_number (pp, ',');
3262 typenums[1] = read_number (pp, ')');
3263 }
3264 else
3265 {
3266 typenums[0] = 0;
3267 typenums[1] = read_number (pp, 0);
3268 }
3269 }
3270 \f
3271 /* To handle GNU C++ typename abbreviation, we need to be able to
3272 fill in a type's name as soon as space for that type is allocated.
3273 `type_synonym_name' is the name of the type being allocated.
3274 It is cleared as soon as it is used (lest all allocated types
3275 get this name). */
3276 static char *type_synonym_name;
3277
3278 static struct symbol *
3279 define_symbol (valu, string, desc, type)
3280 unsigned int valu;
3281 char *string;
3282 int desc;
3283 int type;
3284 {
3285 register struct symbol *sym;
3286 char *p = (char *) strchr (string, ':');
3287 int deftype;
3288 int synonym = 0;
3289 register int i;
3290
3291 /* Ignore syms with empty names. */
3292 if (string[0] == 0)
3293 return 0;
3294
3295 /* Ignore old-style symbols from cc -go */
3296 if (p == 0)
3297 return 0;
3298
3299 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3300
3301 if (processing_gcc_compilation) {
3302 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3303 number of bytes occupied by a type or object, which we ignore. */
3304 SYMBOL_LINE(sym) = desc;
3305 } else {
3306 SYMBOL_LINE(sym) = 0; /* unknown */
3307 }
3308
3309 if (string[0] == CPLUS_MARKER)
3310 {
3311 /* Special GNU C++ names. */
3312 switch (string[1])
3313 {
3314 case 't':
3315 SYMBOL_NAME (sym) = "this";
3316 break;
3317 case 'v': /* $vtbl_ptr_type */
3318 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3319 goto normal;
3320 case 'e':
3321 SYMBOL_NAME (sym) = "eh_throw";
3322 break;
3323
3324 case '_':
3325 /* This was an anonymous type that was never fixed up. */
3326 goto normal;
3327
3328 default:
3329 abort ();
3330 }
3331 }
3332 else
3333 {
3334 normal:
3335 SYMBOL_NAME (sym)
3336 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3337 /* Open-coded bcopy--saves function call time. */
3338 {
3339 register char *p1 = string;
3340 register char *p2 = SYMBOL_NAME (sym);
3341 while (p1 != p)
3342 *p2++ = *p1++;
3343 *p2++ = '\0';
3344 }
3345 }
3346 p++;
3347 /* Determine the type of name being defined. */
3348 /* The Acorn RISC machine's compiler can put out locals that don't
3349 start with "234=" or "(3,4)=", so assume anything other than the
3350 deftypes we know how to handle is a local. */
3351 /* (Peter Watkins @ Computervision)
3352 Handle Sun-style local fortran array types 'ar...' .
3353 (gnu@cygnus.com) -- this strchr() handles them properly?
3354 (tiemann@cygnus.com) -- 'C' is for catch. */
3355 if (!strchr ("cfFGpPrStTvVXC", *p))
3356 deftype = 'l';
3357 else
3358 deftype = *p++;
3359
3360 /* c is a special case, not followed by a type-number.
3361 SYMBOL:c=iVALUE for an integer constant symbol.
3362 SYMBOL:c=rVALUE for a floating constant symbol.
3363 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3364 e.g. "b:c=e6,0" for "const b = blob1"
3365 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3366 if (deftype == 'c')
3367 {
3368 if (*p++ != '=')
3369 error ("Invalid symbol data at symtab pos %d.", symnum);
3370 switch (*p++)
3371 {
3372 case 'r':
3373 {
3374 double d = atof (p);
3375 char *dbl_valu;
3376
3377 SYMBOL_TYPE (sym) = builtin_type_double;
3378 dbl_valu =
3379 (char *) obstack_alloc (symbol_obstack, sizeof (double));
3380 bcopy (&d, dbl_valu, sizeof (double));
3381 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
3382 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
3383 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3384 }
3385 break;
3386 case 'i':
3387 {
3388 SYMBOL_TYPE (sym) = builtin_type_int;
3389 SYMBOL_VALUE (sym) = atoi (p);
3390 SYMBOL_CLASS (sym) = LOC_CONST;
3391 }
3392 break;
3393 case 'e':
3394 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3395 e.g. "b:c=e6,0" for "const b = blob1"
3396 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3397 {
3398 int typenums[2];
3399
3400 read_type_number (&p, typenums);
3401 if (*p++ != ',')
3402 error ("Invalid symbol data: no comma in enum const symbol");
3403
3404 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3405 SYMBOL_VALUE (sym) = atoi (p);
3406 SYMBOL_CLASS (sym) = LOC_CONST;
3407 }
3408 break;
3409 default:
3410 error ("Invalid symbol data at symtab pos %d.", symnum);
3411 }
3412 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3413 add_symbol_to_list (sym, &file_symbols);
3414 return sym;
3415 }
3416
3417 /* Now usually comes a number that says which data type,
3418 and possibly more stuff to define the type
3419 (all of which is handled by read_type) */
3420
3421 if (deftype == 'p' && *p == 'F')
3422 /* pF is a two-letter code that means a function parameter in Fortran.
3423 The type-number specifies the type of the return value.
3424 Translate it into a pointer-to-function type. */
3425 {
3426 p++;
3427 SYMBOL_TYPE (sym)
3428 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3429 }
3430 else
3431 {
3432 struct type *type_read;
3433 synonym = *p == 't';
3434
3435 if (synonym)
3436 {
3437 p += 1;
3438 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3439 strlen (SYMBOL_NAME (sym)));
3440 }
3441
3442 type_read = read_type (&p);
3443
3444 if ((deftype == 'F' || deftype == 'f')
3445 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
3446 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
3447 else
3448 SYMBOL_TYPE (sym) = type_read;
3449 }
3450
3451 switch (deftype)
3452 {
3453 case 'C':
3454 /* The name of a caught exception. */
3455 SYMBOL_CLASS (sym) = LOC_LABEL;
3456 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3457 SYMBOL_VALUE_ADDRESS (sym) = valu;
3458 add_symbol_to_list (sym, &local_symbols);
3459 break;
3460
3461 case 'f':
3462 SYMBOL_CLASS (sym) = LOC_BLOCK;
3463 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3464 add_symbol_to_list (sym, &file_symbols);
3465 break;
3466
3467 case 'F':
3468 SYMBOL_CLASS (sym) = LOC_BLOCK;
3469 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3470 add_symbol_to_list (sym, &global_symbols);
3471 break;
3472
3473 case 'G':
3474 /* For a class G (global) symbol, it appears that the
3475 value is not correct. It is necessary to search for the
3476 corresponding linker definition to find the value.
3477 These definitions appear at the end of the namelist. */
3478 i = hashname (SYMBOL_NAME (sym));
3479 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3480 global_sym_chain[i] = sym;
3481 SYMBOL_CLASS (sym) = LOC_STATIC;
3482 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3483 add_symbol_to_list (sym, &global_symbols);
3484 break;
3485
3486 /* This case is faked by a conditional above,
3487 when there is no code letter in the dbx data.
3488 Dbx data never actually contains 'l'. */
3489 case 'l':
3490 SYMBOL_CLASS (sym) = LOC_LOCAL;
3491 SYMBOL_VALUE (sym) = valu;
3492 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3493 add_symbol_to_list (sym, &local_symbols);
3494 break;
3495
3496 case 'p':
3497 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3498 can also be a LOC_LOCAL_ARG depending on symbol type. */
3499 #ifndef DBX_PARM_SYMBOL_CLASS
3500 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3501 #endif
3502 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3503 SYMBOL_VALUE (sym) = valu;
3504 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3505 add_symbol_to_list (sym, &local_symbols);
3506
3507 /* If it's gcc-compiled, if it says `short', believe it. */
3508 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3509 break;
3510
3511 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3512 /* This macro is defined on machines (e.g. sparc) where
3513 we should believe the type of a PCC 'short' argument,
3514 but shouldn't believe the address (the address is
3515 the address of the corresponding int). Note that
3516 this is only different from the BELIEVE_PCC_PROMOTION
3517 case on big-endian machines.
3518
3519 My guess is that this correction, as opposed to changing
3520 the parameter to an 'int' (as done below, for PCC
3521 on most machines), is the right thing to do
3522 on all machines, but I don't want to risk breaking
3523 something that already works. On most PCC machines,
3524 the sparc problem doesn't come up because the calling
3525 function has to zero the top bytes (not knowing whether
3526 the called function wants an int or a short), so there
3527 is no practical difference between an int and a short
3528 (except perhaps what happens when the GDB user types
3529 "print short_arg = 0x10000;").
3530
3531 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3532 actually produces the correct address (we don't need to fix it
3533 up). I made this code adapt so that it will offset the symbol
3534 if it was pointing at an int-aligned location and not
3535 otherwise. This way you can use the same gdb for 4.0.x and
3536 4.1 systems. */
3537
3538 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3539 {
3540 if (SYMBOL_TYPE (sym) == builtin_type_char
3541 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3542 SYMBOL_VALUE (sym) += 3;
3543 else if (SYMBOL_TYPE (sym) == builtin_type_short
3544 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3545 SYMBOL_VALUE (sym) += 2;
3546 }
3547 break;
3548
3549 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3550
3551 /* If PCC says a parameter is a short or a char,
3552 it is really an int. */
3553 if (SYMBOL_TYPE (sym) == builtin_type_char
3554 || SYMBOL_TYPE (sym) == builtin_type_short)
3555 SYMBOL_TYPE (sym) = builtin_type_int;
3556 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3557 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3558 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3559 break;
3560
3561 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3562
3563 case 'P':
3564 SYMBOL_CLASS (sym) = LOC_REGPARM;
3565 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3566 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3567 add_symbol_to_list (sym, &local_symbols);
3568 break;
3569
3570 case 'r':
3571 SYMBOL_CLASS (sym) = LOC_REGISTER;
3572 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3573 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3574 add_symbol_to_list (sym, &local_symbols);
3575 break;
3576
3577 case 'S':
3578 /* Static symbol at top level of file */
3579 SYMBOL_CLASS (sym) = LOC_STATIC;
3580 SYMBOL_VALUE_ADDRESS (sym) = valu;
3581 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3582 add_symbol_to_list (sym, &file_symbols);
3583 break;
3584
3585 case 't':
3586 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3587 SYMBOL_VALUE (sym) = valu;
3588 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3589 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3590 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3591 TYPE_NAME (SYMBOL_TYPE (sym)) =
3592 obsavestring (SYMBOL_NAME (sym),
3593 strlen (SYMBOL_NAME (sym)));
3594 /* C++ vagaries: we may have a type which is derived from
3595 a base type which did not have its name defined when the
3596 derived class was output. We fill in the derived class's
3597 base part member's name here in that case. */
3598 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3599 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3600 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3601 {
3602 int i;
3603 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3604 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3605 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3606 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3607 }
3608
3609 add_symbol_to_list (sym, &file_symbols);
3610 break;
3611
3612 case 'T':
3613 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3614 SYMBOL_VALUE (sym) = valu;
3615 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3616 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3617 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3618 TYPE_NAME (SYMBOL_TYPE (sym))
3619 = obconcat ("",
3620 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3621 ? "enum "
3622 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3623 ? "struct " : "union ")),
3624 SYMBOL_NAME (sym));
3625 add_symbol_to_list (sym, &file_symbols);
3626
3627 if (synonym)
3628 {
3629 register struct symbol *typedef_sym
3630 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3631 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3632 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3633
3634 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3635 SYMBOL_VALUE (typedef_sym) = valu;
3636 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3637 add_symbol_to_list (typedef_sym, &file_symbols);
3638 }
3639 break;
3640
3641 case 'V':
3642 /* Static symbol of local scope */
3643 SYMBOL_CLASS (sym) = LOC_STATIC;
3644 SYMBOL_VALUE_ADDRESS (sym) = valu;
3645 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3646 add_symbol_to_list (sym, &local_symbols);
3647 break;
3648
3649 case 'v':
3650 /* Reference parameter */
3651 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3652 SYMBOL_VALUE (sym) = valu;
3653 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3654 add_symbol_to_list (sym, &local_symbols);
3655 break;
3656
3657 case 'X':
3658 /* This is used by Sun FORTRAN for "function result value".
3659 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3660 that Pascal uses it too, but when I tried it Pascal used
3661 "x:3" (local symbol) instead. */
3662 SYMBOL_CLASS (sym) = LOC_LOCAL;
3663 SYMBOL_VALUE (sym) = valu;
3664 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3665 add_symbol_to_list (sym, &local_symbols);
3666 break;
3667
3668 default:
3669 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3670 }
3671 return sym;
3672 }
3673 \f
3674 /* What about types defined as forward references inside of a small lexical
3675 scope? */
3676 /* Add a type to the list of undefined types to be checked through
3677 once this file has been read in. */
3678 static void
3679 add_undefined_type (type)
3680 struct type *type;
3681 {
3682 if (undef_types_length == undef_types_allocated)
3683 {
3684 undef_types_allocated *= 2;
3685 undef_types = (struct type **)
3686 xrealloc (undef_types,
3687 undef_types_allocated * sizeof (struct type *));
3688 }
3689 undef_types[undef_types_length++] = type;
3690 }
3691
3692 /* Add here something to go through each undefined type, see if it's
3693 still undefined, and do a full lookup if so. */
3694 static void
3695 cleanup_undefined_types ()
3696 {
3697 struct type **type;
3698
3699 for (type = undef_types; type < undef_types + undef_types_length; type++)
3700 {
3701 /* Reasonable test to see if it's been defined since. */
3702 if (TYPE_NFIELDS (*type) == 0)
3703 {
3704 struct pending *ppt;
3705 int i;
3706 /* Name of the type, without "struct" or "union" */
3707 char *typename = TYPE_NAME (*type);
3708
3709 if (!strncmp (typename, "struct ", 7))
3710 typename += 7;
3711 if (!strncmp (typename, "union ", 6))
3712 typename += 6;
3713
3714 for (ppt = file_symbols; ppt; ppt = ppt->next)
3715 for (i = 0; i < ppt->nsyms; i++)
3716 {
3717 struct symbol *sym = ppt->symbol[i];
3718
3719 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3720 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3721 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3722 TYPE_CODE (*type))
3723 && !strcmp (SYMBOL_NAME (sym), typename))
3724 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3725 }
3726 }
3727 else
3728 /* It has been defined; don't mark it as a stub. */
3729 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3730 }
3731 undef_types_length = 0;
3732 }
3733
3734 /* Skip rest of this symbol and return an error type.
3735
3736 General notes on error recovery: error_type always skips to the
3737 end of the symbol (modulo cretinous dbx symbol name continuation).
3738 Thus code like this:
3739
3740 if (*(*pp)++ != ';')
3741 return error_type (pp);
3742
3743 is wrong because if *pp starts out pointing at '\0' (typically as the
3744 result of an earlier error), it will be incremented to point to the
3745 start of the next symbol, which might produce strange results, at least
3746 if you run off the end of the string table. Instead use
3747
3748 if (**pp != ';')
3749 return error_type (pp);
3750 ++*pp;
3751
3752 or
3753
3754 if (**pp != ';')
3755 foo = error_type (pp);
3756 else
3757 ++*pp;
3758
3759 And in case it isn't obvious, the point of all this hair is so the compiler
3760 can define new types and new syntaxes, and old versions of the
3761 debugger will be able to read the new symbol tables. */
3762
3763 static struct type *
3764 error_type (pp)
3765 char **pp;
3766 {
3767 complain (&error_type_complaint, 0);
3768 while (1)
3769 {
3770 /* Skip to end of symbol. */
3771 while (**pp != '\0')
3772 (*pp)++;
3773
3774 /* Check for and handle cretinous dbx symbol name continuation! */
3775 if ((*pp)[-1] == '\\')
3776 *pp = next_symbol_text ();
3777 else
3778 break;
3779 }
3780 return builtin_type_error;
3781 }
3782 \f
3783 /* Read a dbx type reference or definition;
3784 return the type that is meant.
3785 This can be just a number, in which case it references
3786 a type already defined and placed in type_vector.
3787 Or the number can be followed by an =, in which case
3788 it means to define a new type according to the text that
3789 follows the =. */
3790
3791 static
3792 struct type *
3793 read_type (pp)
3794 register char **pp;
3795 {
3796 register struct type *type = 0;
3797 struct type *type1;
3798 int typenums[2];
3799 int xtypenums[2];
3800
3801 /* Read type number if present. The type number may be omitted.
3802 for instance in a two-dimensional array declared with type
3803 "ar1;1;10;ar1;1;10;4". */
3804 if ((**pp >= '0' && **pp <= '9')
3805 || **pp == '(')
3806 {
3807 read_type_number (pp, typenums);
3808
3809 /* Detect random reference to type not yet defined.
3810 Allocate a type object but leave it zeroed. */
3811 if (**pp != '=')
3812 return dbx_alloc_type (typenums);
3813
3814 *pp += 2;
3815 }
3816 else
3817 {
3818 /* 'typenums=' not present, type is anonymous. Read and return
3819 the definition, but don't put it in the type vector. */
3820 typenums[0] = typenums[1] = -1;
3821 *pp += 1;
3822 }
3823
3824 switch ((*pp)[-1])
3825 {
3826 case 'x':
3827 {
3828 enum type_code code;
3829
3830 /* Used to index through file_symbols. */
3831 struct pending *ppt;
3832 int i;
3833
3834 /* Name including "struct", etc. */
3835 char *type_name;
3836
3837 /* Name without "struct", etc. */
3838 char *type_name_only;
3839
3840 {
3841 char *prefix;
3842 char *from, *to;
3843
3844 /* Set the type code according to the following letter. */
3845 switch ((*pp)[0])
3846 {
3847 case 's':
3848 code = TYPE_CODE_STRUCT;
3849 prefix = "struct ";
3850 break;
3851 case 'u':
3852 code = TYPE_CODE_UNION;
3853 prefix = "union ";
3854 break;
3855 case 'e':
3856 code = TYPE_CODE_ENUM;
3857 prefix = "enum ";
3858 break;
3859 default:
3860 return error_type (pp);
3861 }
3862
3863 to = type_name = (char *)
3864 obstack_alloc (symbol_obstack,
3865 (strlen (prefix) +
3866 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3867
3868 /* Copy the prefix. */
3869 from = prefix;
3870 while (*to++ = *from++)
3871 ;
3872 to--;
3873
3874 type_name_only = to;
3875
3876 /* Copy the name. */
3877 from = *pp + 1;
3878 while ((*to++ = *from++) != ':')
3879 ;
3880 *--to = '\0';
3881
3882 /* Set the pointer ahead of the name which we just read. */
3883 *pp = from;
3884
3885 #if 0
3886 /* The following hack is clearly wrong, because it doesn't
3887 check whether we are in a baseclass. I tried to reproduce
3888 the case that it is trying to fix, but I couldn't get
3889 g++ to put out a cross reference to a basetype. Perhaps
3890 it doesn't do it anymore. */
3891 /* Note: for C++, the cross reference may be to a base type which
3892 has not yet been seen. In this case, we skip to the comma,
3893 which will mark the end of the base class name. (The ':'
3894 at the end of the base class name will be skipped as well.)
3895 But sometimes (ie. when the cross ref is the last thing on
3896 the line) there will be no ','. */
3897 from = (char *) strchr (*pp, ',');
3898 if (from)
3899 *pp = from;
3900 #endif /* 0 */
3901 }
3902
3903 /* Now check to see whether the type has already been declared. */
3904 /* This is necessary at least in the case where the
3905 program says something like
3906 struct foo bar[5];
3907 The compiler puts out a cross-reference; we better find
3908 set the length of the structure correctly so we can
3909 set the length of the array. */
3910 for (ppt = file_symbols; ppt; ppt = ppt->next)
3911 for (i = 0; i < ppt->nsyms; i++)
3912 {
3913 struct symbol *sym = ppt->symbol[i];
3914
3915 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3916 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3917 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3918 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3919 {
3920 obstack_free (symbol_obstack, type_name);
3921 type = SYMBOL_TYPE (sym);
3922 return type;
3923 }
3924 }
3925
3926 /* Didn't find the type to which this refers, so we must
3927 be dealing with a forward reference. Allocate a type
3928 structure for it, and keep track of it so we can
3929 fill in the rest of the fields when we get the full
3930 type. */
3931 type = dbx_alloc_type (typenums);
3932 TYPE_CODE (type) = code;
3933 TYPE_NAME (type) = type_name;
3934
3935 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3936
3937 add_undefined_type (type);
3938 return type;
3939 }
3940
3941 case '0':
3942 case '1':
3943 case '2':
3944 case '3':
3945 case '4':
3946 case '5':
3947 case '6':
3948 case '7':
3949 case '8':
3950 case '9':
3951 case '(':
3952 (*pp)--;
3953 read_type_number (pp, xtypenums);
3954 type = *dbx_lookup_type (xtypenums);
3955 if (type == 0)
3956 type = builtin_type_void;
3957 if (typenums[0] != -1)
3958 *dbx_lookup_type (typenums) = type;
3959 break;
3960
3961 case '*':
3962 type1 = read_type (pp);
3963 type = lookup_pointer_type (type1);
3964 if (typenums[0] != -1)
3965 *dbx_lookup_type (typenums) = type;
3966 break;
3967
3968 case '@':
3969 {
3970 struct type *domain = read_type (pp);
3971 struct type *memtype;
3972
3973 if (**pp != ',')
3974 /* Invalid member type data format. */
3975 return error_type (pp);
3976 ++*pp;
3977
3978 memtype = read_type (pp);
3979 type = dbx_alloc_type (typenums);
3980 smash_to_member_type (type, domain, memtype);
3981 }
3982 break;
3983
3984 case '#':
3985 if ((*pp)[0] == '#')
3986 {
3987 /* We'll get the parameter types from the name. */
3988 struct type *return_type;
3989
3990 *pp += 1;
3991 return_type = read_type (pp);
3992 if (*(*pp)++ != ';')
3993 complain (&invalid_member_complaint, symnum);
3994 type = allocate_stub_method (return_type);
3995 if (typenums[0] != -1)
3996 *dbx_lookup_type (typenums) = type;
3997 }
3998 else
3999 {
4000 struct type *domain = read_type (pp);
4001 struct type *return_type;
4002 struct type **args;
4003
4004 if (*(*pp)++ != ',')
4005 error ("invalid member type data format, at symtab pos %d.",
4006 symnum);
4007
4008 return_type = read_type (pp);
4009 args = read_args (pp, ';');
4010 type = dbx_alloc_type (typenums);
4011 smash_to_method_type (type, domain, return_type, args);
4012 }
4013 break;
4014
4015 case '&':
4016 type1 = read_type (pp);
4017 type = lookup_reference_type (type1);
4018 if (typenums[0] != -1)
4019 *dbx_lookup_type (typenums) = type;
4020 break;
4021
4022 case 'f':
4023 type1 = read_type (pp);
4024 type = lookup_function_type (type1);
4025 if (typenums[0] != -1)
4026 *dbx_lookup_type (typenums) = type;
4027 break;
4028
4029 case 'r':
4030 type = read_range_type (pp, typenums);
4031 if (typenums[0] != -1)
4032 *dbx_lookup_type (typenums) = type;
4033 break;
4034
4035 case 'e':
4036 type = dbx_alloc_type (typenums);
4037 type = read_enum_type (pp, type);
4038 *dbx_lookup_type (typenums) = type;
4039 break;
4040
4041 case 's':
4042 type = dbx_alloc_type (typenums);
4043 TYPE_NAME (type) = type_synonym_name;
4044 type_synonym_name = 0;
4045 type = read_struct_type (pp, type);
4046 break;
4047
4048 case 'u':
4049 type = dbx_alloc_type (typenums);
4050 TYPE_NAME (type) = type_synonym_name;
4051 type_synonym_name = 0;
4052 type = read_struct_type (pp, type);
4053 TYPE_CODE (type) = TYPE_CODE_UNION;
4054 break;
4055
4056 case 'a':
4057 if (**pp != 'r')
4058 return error_type (pp);
4059 ++*pp;
4060
4061 type = dbx_alloc_type (typenums);
4062 type = read_array_type (pp, type);
4063 break;
4064
4065 default:
4066 return error_type (pp);
4067 }
4068
4069 if (type == 0)
4070 abort ();
4071
4072 #if 0
4073 /* If this is an overriding temporary alteration for a header file's
4074 contents, and this type number is unknown in the global definition,
4075 put this type into the global definition at this type number. */
4076 if (header_file_prev_index >= 0)
4077 {
4078 register struct type **tp
4079 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4080 if (*tp == 0)
4081 *tp = type;
4082 }
4083 #endif
4084 return type;
4085 }
4086 \f
4087 #if 0
4088 /* This would be a good idea, but it doesn't really work. The problem
4089 is that in order to get the virtual context for a particular type,
4090 you need to know the virtual info from all of its basetypes,
4091 and you need to have processed its methods. Since GDB reads
4092 symbols on a file-by-file basis, this means processing the symbols
4093 of all the files that are needed for each baseclass, which
4094 means potentially reading in all the debugging info just to fill
4095 in information we may never need. */
4096
4097 /* This page contains subroutines of read_type. */
4098
4099 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4100 FN_TYPE. The `virtual context' for this virtual function is the
4101 first base class of FOR_TYPE in which NAME is defined with signature
4102 matching FN_TYPE. OFFSET serves as a hash on matches here.
4103
4104 TYPE is the current type in which we are searching. */
4105
4106 static struct type *
4107 virtual_context (for_type, type, name, fn_type, offset)
4108 struct type *for_type, *type;
4109 char *name;
4110 struct type *fn_type;
4111 int offset;
4112 {
4113 struct type *basetype = 0;
4114 int i;
4115
4116 if (for_type != type)
4117 {
4118 /* Check the methods of TYPE. */
4119 /* Need to do a check_stub_type here, but that breaks
4120 things because we can get infinite regress. */
4121 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4122 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4123 break;
4124 if (i >= 0)
4125 {
4126 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4127 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4128
4129 while (--j >= 0)
4130 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4131 return TYPE_FN_FIELD_FCONTEXT (f, j);
4132 }
4133 }
4134 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
4135 {
4136 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4137 fn_type, offset);
4138 if (basetype != for_type)
4139 return basetype;
4140 }
4141 return for_type;
4142 }
4143 #endif
4144
4145 /* Read the description of a structure (or union type)
4146 and return an object describing the type. */
4147
4148 static struct type *
4149 read_struct_type (pp, type)
4150 char **pp;
4151 register struct type *type;
4152 {
4153 /* Total number of methods defined in this class.
4154 If the class defines two `f' methods, and one `g' method,
4155 then this will have the value 3. */
4156 int total_length = 0;
4157
4158 struct nextfield
4159 {
4160 struct nextfield *next;
4161 int visibility; /* 0=public, 1=protected, 2=public */
4162 struct field field;
4163 };
4164
4165 struct next_fnfield
4166 {
4167 struct next_fnfield *next;
4168 int visibility; /* 0=public, 1=protected, 2=public */
4169 struct fn_field fn_field;
4170 };
4171
4172 struct next_fnfieldlist
4173 {
4174 struct next_fnfieldlist *next;
4175 struct fn_fieldlist fn_fieldlist;
4176 };
4177
4178 register struct nextfield *list = 0;
4179 struct nextfield *new;
4180 register char *p;
4181 int nfields = 0;
4182 register int n;
4183
4184 register struct next_fnfieldlist *mainlist = 0;
4185 int nfn_fields = 0;
4186
4187 if (TYPE_MAIN_VARIANT (type) == 0)
4188 {
4189 TYPE_MAIN_VARIANT (type) = type;
4190 }
4191
4192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4193
4194 /* First comes the total size in bytes. */
4195
4196 TYPE_LENGTH (type) = read_number (pp, 0);
4197
4198 /* C++: Now, if the class is a derived class, then the next character
4199 will be a '!', followed by the number of base classes derived from.
4200 Each element in the list contains visibility information,
4201 the offset of this base class in the derived structure,
4202 and then the base type. */
4203 if (**pp == '!')
4204 {
4205 int i, n_baseclasses, offset;
4206 struct type *baseclass;
4207 int via_public;
4208
4209 /* Nonzero if it is a virtual baseclass, i.e.,
4210
4211 struct A{};
4212 struct B{};
4213 struct C : public B, public virtual A {};
4214
4215 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4216 2.0 language feature. */
4217 int via_virtual;
4218
4219 *pp += 1;
4220
4221 n_baseclasses = read_number (pp, ',');
4222 TYPE_FIELD_VIRTUAL_BITS (type) =
4223 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4224 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4225
4226 for (i = 0; i < n_baseclasses; i++)
4227 {
4228 if (**pp == '\\')
4229 *pp = next_symbol_text ();
4230
4231 switch (**pp)
4232 {
4233 case '0':
4234 via_virtual = 0;
4235 break;
4236 case '1':
4237 via_virtual = 1;
4238 break;
4239 default:
4240 /* Bad visibility format. */
4241 return error_type (pp);
4242 }
4243 ++*pp;
4244
4245 switch (**pp)
4246 {
4247 case '0':
4248 via_public = 0;
4249 break;
4250 case '2':
4251 via_public = 2;
4252 break;
4253 default:
4254 /* Bad visibility format. */
4255 return error_type (pp);
4256 }
4257 if (via_virtual)
4258 SET_TYPE_FIELD_VIRTUAL (type, i);
4259 ++*pp;
4260
4261 /* Offset of the portion of the object corresponding to
4262 this baseclass. Always zero in the absence of
4263 multiple inheritance. */
4264 offset = read_number (pp, ',');
4265 baseclass = read_type (pp);
4266 *pp += 1; /* skip trailing ';' */
4267
4268 #if 0
4269 /* One's understanding improves, grasshopper... */
4270 if (offset != 0)
4271 {
4272 static int error_printed = 0;
4273
4274 if (!error_printed)
4275 {
4276 fprintf (stderr,
4277 "\nWarning: GDB has limited understanding of multiple inheritance...");
4278 if (!info_verbose)
4279 fprintf(stderr, "\n");
4280 error_printed = 1;
4281 }
4282 }
4283 #endif
4284
4285 /* Make this baseclass visible for structure-printing purposes. */
4286 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4287 new->next = list;
4288 list = new;
4289 list->visibility = via_public;
4290 list->field.type = baseclass;
4291 list->field.name = type_name_no_tag (baseclass);
4292 list->field.bitpos = offset;
4293 list->field.bitsize = 0; /* this should be an unpacked field! */
4294 nfields++;
4295 }
4296 TYPE_N_BASECLASSES (type) = n_baseclasses;
4297 }
4298
4299 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4300 At the end, we see a semicolon instead of a field.
4301
4302 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4303 a static field.
4304
4305 The `?' is a placeholder for one of '/2' (public visibility),
4306 '/1' (protected visibility), '/0' (private visibility), or nothing
4307 (C style symbol table, public visibility). */
4308
4309 /* We better set p right now, in case there are no fields at all... */
4310 p = *pp;
4311
4312 while (**pp != ';')
4313 {
4314 /* Check for and handle cretinous dbx symbol name continuation! */
4315 if (**pp == '\\') *pp = next_symbol_text ();
4316
4317 /* Get space to record the next field's data. */
4318 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4319 new->next = list;
4320 list = new;
4321
4322 /* Get the field name. */
4323 p = *pp;
4324 if (*p == CPLUS_MARKER)
4325 {
4326 /* Special GNU C++ name. */
4327 if (*++p == 'v')
4328 {
4329 const char *prefix;
4330 char *name = 0;
4331 struct type *context;
4332
4333 switch (*++p)
4334 {
4335 case 'f':
4336 prefix = vptr_name;
4337 break;
4338 case 'b':
4339 prefix = vb_name;
4340 break;
4341 default:
4342 error ("invalid abbreviation at symtab pos %d.", symnum);
4343 }
4344 *pp = p + 1;
4345 context = read_type (pp);
4346 if (type_name_no_tag (context) == 0)
4347 {
4348 if (name == 0)
4349 error ("type name unknown at symtab pos %d.", symnum);
4350 /* FIXME-tiemann: when is `name' ever non-0? */
4351 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4352 }
4353 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4354 p = ++(*pp);
4355 if (p[-1] != ':')
4356 error ("invalid abbreviation at symtab pos %d.", symnum);
4357 list->field.type = read_type (pp);
4358 (*pp)++; /* Skip the comma. */
4359 list->field.bitpos = read_number (pp, ';');
4360 /* This field is unpacked. */
4361 list->field.bitsize = 0;
4362 }
4363 else
4364 error ("invalid abbreviation at symtab pos %d.", symnum);
4365
4366 nfields++;
4367 continue;
4368 }
4369
4370 while (*p != ':') p++;
4371 list->field.name = obsavestring (*pp, p - *pp);
4372
4373 /* C++: Check to see if we have hit the methods yet. */
4374 if (p[1] == ':')
4375 break;
4376
4377 *pp = p + 1;
4378
4379 /* This means we have a visibility for a field coming. */
4380 if (**pp == '/')
4381 {
4382 switch (*++*pp)
4383 {
4384 case '0':
4385 list->visibility = 0; /* private */
4386 *pp += 1;
4387 break;
4388
4389 case '1':
4390 list->visibility = 1; /* protected */
4391 *pp += 1;
4392 break;
4393
4394 case '2':
4395 list->visibility = 2; /* public */
4396 *pp += 1;
4397 break;
4398 }
4399 }
4400 else /* normal dbx-style format. */
4401 list->visibility = 2; /* public */
4402
4403 list->field.type = read_type (pp);
4404 if (**pp == ':')
4405 {
4406 /* Static class member. */
4407 list->field.bitpos = (long)-1;
4408 p = ++(*pp);
4409 while (*p != ';') p++;
4410 list->field.bitsize = (long) savestring (*pp, p - *pp);
4411 *pp = p + 1;
4412 nfields++;
4413 continue;
4414 }
4415 else if (**pp != ',')
4416 /* Bad structure-type format. */
4417 return error_type (pp);
4418
4419 (*pp)++; /* Skip the comma. */
4420 list->field.bitpos = read_number (pp, ',');
4421 list->field.bitsize = read_number (pp, ';');
4422
4423 #if 0
4424 /* FIXME-tiemann: Can't the compiler put out something which
4425 lets us distinguish these? (or maybe just not put out anything
4426 for the field). What is the story here? What does the compiler
4427 really do? Also, patch gdb.texinfo for this case; I document
4428 it as a possible problem there. Search for "DBX-style". */
4429
4430 /* This is wrong because this is identical to the symbols
4431 produced for GCC 0-size arrays. For example:
4432 typedef union {
4433 int num;
4434 char str[0];
4435 } foo;
4436 The code which dumped core in such circumstances should be
4437 fixed not to dump core. */
4438
4439 /* g++ -g0 can put out bitpos & bitsize zero for a static
4440 field. This does not give us any way of getting its
4441 class, so we can't know its name. But we can just
4442 ignore the field so we don't dump core and other nasty
4443 stuff. */
4444 if (list->field.bitpos == 0
4445 && list->field.bitsize == 0)
4446 {
4447 complain (&dbx_class_complaint, 0);
4448 /* Ignore this field. */
4449 list = list->next;
4450 }
4451 else
4452 #endif /* 0 */
4453 {
4454 /* Detect an unpacked field and mark it as such.
4455 dbx gives a bit size for all fields.
4456 Note that forward refs cannot be packed,
4457 and treat enums as if they had the width of ints. */
4458 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4459 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4460 list->field.bitsize = 0;
4461 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4462 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4463 && (list->field.bitsize
4464 == 8 * TYPE_LENGTH (builtin_type_int))
4465 )
4466 )
4467 &&
4468 list->field.bitpos % 8 == 0)
4469 list->field.bitsize = 0;
4470 nfields++;
4471 }
4472 }
4473
4474 if (p[1] == ':')
4475 /* chill the list of fields: the last entry (at the head)
4476 is a partially constructed entry which we now scrub. */
4477 list = list->next;
4478
4479 /* Now create the vector of fields, and record how big it is.
4480 We need this info to record proper virtual function table information
4481 for this class's virtual functions. */
4482
4483 TYPE_NFIELDS (type) = nfields;
4484 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4485 sizeof (struct field) * nfields);
4486
4487 TYPE_FIELD_PRIVATE_BITS (type) =
4488 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4489 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4490
4491 TYPE_FIELD_PROTECTED_BITS (type) =
4492 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4493 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4494
4495 /* Copy the saved-up fields into the field vector. */
4496
4497 for (n = nfields; list; list = list->next)
4498 {
4499 n -= 1;
4500 TYPE_FIELD (type, n) = list->field;
4501 if (list->visibility == 0)
4502 SET_TYPE_FIELD_PRIVATE (type, n);
4503 else if (list->visibility == 1)
4504 SET_TYPE_FIELD_PROTECTED (type, n);
4505 }
4506
4507 /* Now come the method fields, as NAME::methods
4508 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4509 At the end, we see a semicolon instead of a field.
4510
4511 For the case of overloaded operators, the format is
4512 OPERATOR::*.methods, where OPERATOR is the string "operator",
4513 `*' holds the place for an operator name (such as `+=')
4514 and `.' marks the end of the operator name. */
4515 if (p[1] == ':')
4516 {
4517 /* Now, read in the methods. To simplify matters, we
4518 "unread" the name that has been read, so that we can
4519 start from the top. */
4520
4521 /* For each list of method lists... */
4522 do
4523 {
4524 int i;
4525 struct next_fnfield *sublist = 0;
4526 struct type *look_ahead_type = NULL;
4527 int length = 0;
4528 struct next_fnfieldlist *new_mainlist =
4529 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4530 char *main_fn_name;
4531
4532 p = *pp;
4533
4534 /* read in the name. */
4535 while (*p != ':') p++;
4536 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4537 {
4538 /* This lets the user type "break operator+".
4539 We could just put in "+" as the name, but that wouldn't
4540 work for "*". */
4541 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4542 char *o = opname + 3;
4543
4544 /* Skip past '::'. */
4545 p += 2;
4546 while (*p != '.')
4547 *o++ = *p++;
4548 main_fn_name = savestring (opname, o - opname);
4549 /* Skip past '.' */
4550 *pp = p + 1;
4551 }
4552 else
4553 {
4554 i = 0;
4555 main_fn_name = savestring (*pp, p - *pp);
4556 /* Skip past '::'. */
4557 *pp = p + 2;
4558 }
4559 new_mainlist->fn_fieldlist.name = main_fn_name;
4560
4561 do
4562 {
4563 struct next_fnfield *new_sublist =
4564 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4565
4566 /* Check for and handle cretinous dbx symbol name continuation! */
4567 if (look_ahead_type == NULL) /* Normal case. */
4568 {
4569 if (**pp == '\\') *pp = next_symbol_text ();
4570
4571 new_sublist->fn_field.type = read_type (pp);
4572 if (**pp != ':')
4573 /* Invalid symtab info for method. */
4574 return error_type (pp);
4575 }
4576 else
4577 { /* g++ version 1 kludge */
4578 new_sublist->fn_field.type = look_ahead_type;
4579 look_ahead_type = NULL;
4580 }
4581
4582 *pp += 1;
4583 p = *pp;
4584 while (*p != ';') p++;
4585 /* If this is just a stub, then we don't have the
4586 real name here. */
4587 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4588 *pp = p + 1;
4589 new_sublist->visibility = *(*pp)++ - '0';
4590 if (**pp == '\\') *pp = next_symbol_text ();
4591 /* FIXME-tiemann: need to add const/volatile info
4592 to the methods. For now, just skip the char.
4593 In future, here's what we need to implement:
4594
4595 A for normal functions.
4596 B for `const' member functions.
4597 C for `volatile' member functions.
4598 D for `const volatile' member functions. */
4599 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4600 (*pp)++;
4601 #if 0
4602 /* This probably just means we're processing a file compiled
4603 with g++ version 1. */
4604 else
4605 complain(&const_vol_complaint, **pp);
4606 #endif /* 0 */
4607
4608 switch (*(*pp)++)
4609 {
4610 case '*':
4611 /* virtual member function, followed by index. */
4612 /* The sign bit is set to distinguish pointers-to-methods
4613 from virtual function indicies. Since the array is
4614 in words, the quantity must be shifted left by 1
4615 on 16 bit machine, and by 2 on 32 bit machine, forcing
4616 the sign bit out, and usable as a valid index into
4617 the array. Remove the sign bit here. */
4618 new_sublist->fn_field.voffset =
4619 (0x7fffffff & read_number (pp, ';')) + 1;
4620
4621 if (**pp == '\\') *pp = next_symbol_text ();
4622
4623 if (**pp == ';' || **pp == '\0')
4624 /* Must be g++ version 1. */
4625 new_sublist->fn_field.fcontext = 0;
4626 else
4627 {
4628 /* Figure out from whence this virtual function came.
4629 It may belong to virtual function table of
4630 one of its baseclasses. */
4631 look_ahead_type = read_type (pp);
4632 if (**pp == ':')
4633 { /* g++ version 1 overloaded methods. */ }
4634 else
4635 {
4636 new_sublist->fn_field.fcontext = look_ahead_type;
4637 if (**pp != ';')
4638 return error_type (pp);
4639 else
4640 ++*pp;
4641 look_ahead_type = NULL;
4642 }
4643 }
4644 break;
4645
4646 case '?':
4647 /* static member function. */
4648 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4649 break;
4650 default:
4651 /* **pp == '.'. */
4652 /* normal member function. */
4653 new_sublist->fn_field.voffset = 0;
4654 new_sublist->fn_field.fcontext = 0;
4655 break;
4656 }
4657
4658 new_sublist->next = sublist;
4659 sublist = new_sublist;
4660 length++;
4661 }
4662 while (**pp != ';' && **pp != '\0');
4663
4664 *pp += 1;
4665
4666 new_mainlist->fn_fieldlist.fn_fields =
4667 (struct fn_field *) obstack_alloc (symbol_obstack,
4668 sizeof (struct fn_field) * length);
4669 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4670 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4671 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4672
4673 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4674 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4675 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4676
4677 for (i = length; (i--, sublist); sublist = sublist->next)
4678 {
4679 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4680 if (sublist->visibility == 0)
4681 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4682 else if (sublist->visibility == 1)
4683 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4684 }
4685
4686 new_mainlist->fn_fieldlist.length = length;
4687 new_mainlist->next = mainlist;
4688 mainlist = new_mainlist;
4689 nfn_fields++;
4690 total_length += length;
4691 }
4692 while (**pp != ';');
4693 }
4694
4695 *pp += 1;
4696
4697 TYPE_FN_FIELDLISTS (type) =
4698 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4699 sizeof (struct fn_fieldlist) * nfn_fields);
4700
4701 TYPE_NFN_FIELDS (type) = nfn_fields;
4702 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4703
4704 {
4705 int i;
4706 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4707 TYPE_NFN_FIELDS_TOTAL (type) +=
4708 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4709 }
4710
4711 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4712 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4713
4714 if (**pp == '~')
4715 {
4716 *pp += 1;
4717
4718 if (**pp == '=')
4719 {
4720 TYPE_FLAGS (type)
4721 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4722 *pp += 1;
4723 }
4724 else if (**pp == '+')
4725 {
4726 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4727 *pp += 1;
4728 }
4729 else if (**pp == '-')
4730 {
4731 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4732 *pp += 1;
4733 }
4734
4735 /* Read either a '%' or the final ';'. */
4736 if (*(*pp)++ == '%')
4737 {
4738 /* Now we must record the virtual function table pointer's
4739 field information. */
4740
4741 struct type *t;
4742 int i;
4743
4744 t = read_type (pp);
4745 p = (*pp)++;
4746 while (*p != '\0' && *p != ';')
4747 p++;
4748 if (*p == '\0')
4749 /* Premature end of symbol. */
4750 return error_type (pp);
4751
4752 TYPE_VPTR_BASETYPE (type) = t;
4753 if (type == t)
4754 {
4755 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4756 {
4757 /* FIXME-tiemann: what's this? */
4758 #if 0
4759 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4760 #else
4761 error_type (pp);
4762 #endif
4763 }
4764 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4765 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4766 sizeof (vptr_name) -1))
4767 {
4768 TYPE_VPTR_FIELDNO (type) = i;
4769 break;
4770 }
4771 if (i < 0)
4772 /* Virtual function table field not found. */
4773 return error_type (pp);
4774 }
4775 else
4776 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4777 *pp = p + 1;
4778 }
4779 }
4780
4781 return type;
4782 }
4783
4784 /* Read a definition of an array type,
4785 and create and return a suitable type object.
4786 Also creates a range type which represents the bounds of that
4787 array. */
4788 static struct type *
4789 read_array_type (pp, type)
4790 register char **pp;
4791 register struct type *type;
4792 {
4793 struct type *index_type, *element_type, *range_type;
4794 int lower, upper;
4795 int adjustable = 0;
4796
4797 /* Format of an array type:
4798 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4799 to handle this.
4800
4801 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4802 for these, produce a type like float[][]. */
4803
4804 index_type = read_type (pp);
4805 if (**pp != ';')
4806 /* Improper format of array type decl. */
4807 return error_type (pp);
4808 ++*pp;
4809
4810 if (!(**pp >= '0' && **pp <= '9'))
4811 {
4812 *pp += 1;
4813 adjustable = 1;
4814 }
4815 lower = read_number (pp, ';');
4816
4817 if (!(**pp >= '0' && **pp <= '9'))
4818 {
4819 *pp += 1;
4820 adjustable = 1;
4821 }
4822 upper = read_number (pp, ';');
4823
4824 element_type = read_type (pp);
4825
4826 if (adjustable)
4827 {
4828 lower = 0;
4829 upper = -1;
4830 }
4831
4832 {
4833 /* Create range type. */
4834 range_type = (struct type *) obstack_alloc (symbol_obstack,
4835 sizeof (struct type));
4836 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4837 TYPE_TARGET_TYPE (range_type) = index_type;
4838
4839 /* This should never be needed. */
4840 TYPE_LENGTH (range_type) = sizeof (int);
4841
4842 TYPE_NFIELDS (range_type) = 2;
4843 TYPE_FIELDS (range_type) =
4844 (struct field *) obstack_alloc (symbol_obstack,
4845 2 * sizeof (struct field));
4846 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4847 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4848 }
4849
4850 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4851 TYPE_TARGET_TYPE (type) = element_type;
4852 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4853 TYPE_NFIELDS (type) = 1;
4854 TYPE_FIELDS (type) =
4855 (struct field *) obstack_alloc (symbol_obstack,
4856 sizeof (struct field));
4857 TYPE_FIELD_TYPE (type, 0) = range_type;
4858
4859 return type;
4860 }
4861
4862
4863 /* Read a definition of an enumeration type,
4864 and create and return a suitable type object.
4865 Also defines the symbols that represent the values of the type. */
4866
4867 static struct type *
4868 read_enum_type (pp, type)
4869 register char **pp;
4870 register struct type *type;
4871 {
4872 register char *p;
4873 char *name;
4874 register long n;
4875 register struct symbol *sym;
4876 int nsyms = 0;
4877 struct pending **symlist;
4878 struct pending *osyms, *syms;
4879 int o_nsyms;
4880
4881 if (within_function)
4882 symlist = &local_symbols;
4883 else
4884 symlist = &file_symbols;
4885 osyms = *symlist;
4886 o_nsyms = osyms ? osyms->nsyms : 0;
4887
4888 /* Read the value-names and their values.
4889 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4890 A semicolon or comman instead of a NAME means the end. */
4891 while (**pp && **pp != ';' && **pp != ',')
4892 {
4893 /* Check for and handle cretinous dbx symbol name continuation! */
4894 if (**pp == '\\') *pp = next_symbol_text ();
4895
4896 p = *pp;
4897 while (*p != ':') p++;
4898 name = obsavestring (*pp, p - *pp);
4899 *pp = p + 1;
4900 n = read_number (pp, ',');
4901
4902 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4903 bzero (sym, sizeof (struct symbol));
4904 SYMBOL_NAME (sym) = name;
4905 SYMBOL_CLASS (sym) = LOC_CONST;
4906 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4907 SYMBOL_VALUE (sym) = n;
4908 add_symbol_to_list (sym, symlist);
4909 nsyms++;
4910 }
4911
4912 if (**pp == ';')
4913 (*pp)++; /* Skip the semicolon. */
4914
4915 /* Now fill in the fields of the type-structure. */
4916
4917 TYPE_LENGTH (type) = sizeof (int);
4918 TYPE_CODE (type) = TYPE_CODE_ENUM;
4919 TYPE_NFIELDS (type) = nsyms;
4920 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4921
4922 /* Find the symbols for the values and put them into the type.
4923 The symbols can be found in the symlist that we put them on
4924 to cause them to be defined. osyms contains the old value
4925 of that symlist; everything up to there was defined by us. */
4926 /* Note that we preserve the order of the enum constants, so
4927 that in something like "enum {FOO, LAST_THING=FOO}" we print
4928 FOO, not LAST_THING. */
4929
4930 for (syms = *symlist, n = 0; syms; syms = syms->next)
4931 {
4932 int j = 0;
4933 if (syms == osyms)
4934 j = o_nsyms;
4935 for (; j < syms->nsyms; j++,n++)
4936 {
4937 struct symbol *sym = syms->symbol[j];
4938 SYMBOL_TYPE (sym) = type;
4939 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4940 TYPE_FIELD_VALUE (type, n) = 0;
4941 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4942 TYPE_FIELD_BITSIZE (type, n) = 0;
4943 }
4944 if (syms == osyms)
4945 break;
4946 }
4947
4948 return type;
4949 }
4950
4951 /* Read a number from the string pointed to by *PP.
4952 The value of *PP is advanced over the number.
4953 If END is nonzero, the character that ends the
4954 number must match END, or an error happens;
4955 and that character is skipped if it does match.
4956 If END is zero, *PP is left pointing to that character.
4957
4958 If the number fits in a long, set *VALUE and set *BITS to 0.
4959 If not, set *BITS to be the number of bits in the number.
4960
4961 If encounter garbage, set *BITS to -1. */
4962
4963 static void
4964 read_huge_number (pp, end, valu, bits)
4965 char **pp;
4966 int end;
4967 long *valu;
4968 int *bits;
4969 {
4970 char *p = *pp;
4971 int sign = 1;
4972 long n = 0;
4973 int radix = 10;
4974 char overflow = 0;
4975 int nbits = 0;
4976 int c;
4977 long upper_limit;
4978
4979 if (*p == '-')
4980 {
4981 sign = -1;
4982 p++;
4983 }
4984
4985 /* Leading zero means octal. GCC uses this to output values larger
4986 than an int (because that would be hard in decimal). */
4987 if (*p == '0')
4988 {
4989 radix = 8;
4990 p++;
4991 }
4992
4993 upper_limit = LONG_MAX / radix;
4994 while ((c = *p++) >= '0' && c <= ('0' + radix))
4995 {
4996 if (n <= upper_limit)
4997 {
4998 n *= radix;
4999 n += c - '0'; /* FIXME this overflows anyway */
5000 }
5001 else
5002 overflow = 1;
5003
5004 /* This depends on large values being output in octal, which is
5005 what GCC does. */
5006 if (radix == 8)
5007 {
5008 if (nbits == 0)
5009 {
5010 if (c == '0')
5011 /* Ignore leading zeroes. */
5012 ;
5013 else if (c == '1')
5014 nbits = 1;
5015 else if (c == '2' || c == '3')
5016 nbits = 2;
5017 else
5018 nbits = 3;
5019 }
5020 else
5021 nbits += 3;
5022 }
5023 }
5024 if (end)
5025 {
5026 if (c && c != end)
5027 {
5028 if (bits != NULL)
5029 *bits = -1;
5030 return;
5031 }
5032 }
5033 else
5034 --p;
5035
5036 *pp = p;
5037 if (overflow)
5038 {
5039 if (nbits == 0)
5040 {
5041 /* Large decimal constants are an error (because it is hard to
5042 count how many bits are in them). */
5043 if (bits != NULL)
5044 *bits = -1;
5045 return;
5046 }
5047
5048 /* -0x7f is the same as 0x80. So deal with it by adding one to
5049 the number of bits. */
5050 if (sign == -1)
5051 ++nbits;
5052 if (bits)
5053 *bits = nbits;
5054 }
5055 else
5056 {
5057 if (valu)
5058 *valu = n * sign;
5059 if (bits)
5060 *bits = 0;
5061 }
5062 }
5063
5064 #define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5065 #define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5066
5067 static struct type *
5068 read_range_type (pp, typenums)
5069 char **pp;
5070 int typenums[2];
5071 {
5072 int rangenums[2];
5073 long n2, n3;
5074 int n2bits, n3bits;
5075 int self_subrange;
5076 struct type *result_type;
5077
5078 /* First comes a type we are a subrange of.
5079 In C it is usually 0, 1 or the type being defined. */
5080 read_type_number (pp, rangenums);
5081 self_subrange = (rangenums[0] == typenums[0] &&
5082 rangenums[1] == typenums[1]);
5083
5084 /* A semicolon should now follow; skip it. */
5085 if (**pp == ';')
5086 (*pp)++;
5087
5088 /* The remaining two operands are usually lower and upper bounds
5089 of the range. But in some special cases they mean something else. */
5090 read_huge_number (pp, ';', &n2, &n2bits);
5091 read_huge_number (pp, ';', &n3, &n3bits);
5092
5093 if (n2bits == -1 || n3bits == -1)
5094 return error_type (pp);
5095
5096 /* If limits are huge, must be large integral type. */
5097 if (n2bits != 0 || n3bits != 0)
5098 {
5099 char got_signed = 0;
5100 char got_unsigned = 0;
5101 /* Number of bits in the type. */
5102 int nbits;
5103
5104 /* Range from 0 to <large number> is an unsigned large integral type. */
5105 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5106 {
5107 got_unsigned = 1;
5108 nbits = n3bits;
5109 }
5110 /* Range from <large number> to <large number>-1 is a large signed
5111 integral type. */
5112 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5113 {
5114 got_signed = 1;
5115 nbits = n2bits;
5116 }
5117
5118 /* Check for "long long". */
5119 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5120 return builtin_type_long_long;
5121 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5122 return builtin_type_unsigned_long_long;
5123
5124 if (got_signed || got_unsigned)
5125 {
5126 result_type = (struct type *) obstack_alloc (symbol_obstack,
5127 sizeof (struct type));
5128 bzero (result_type, sizeof (struct type));
5129 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5130 TYPE_MAIN_VARIANT (result_type) = result_type;
5131 TYPE_CODE (result_type) = TYPE_CODE_INT;
5132 if (got_unsigned)
5133 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5134 return result_type;
5135 }
5136 else
5137 return error_type (pp);
5138 }
5139
5140 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5141 if (self_subrange && n2 == 0 && n3 == 0)
5142 return builtin_type_void;
5143
5144 /* If n3 is zero and n2 is not, we want a floating type,
5145 and n2 is the width in bytes.
5146
5147 Fortran programs appear to use this for complex types also,
5148 and they give no way to distinguish between double and single-complex!
5149 We don't have complex types, so we would lose on all fortran files!
5150 So return type `double' for all of those. It won't work right
5151 for the complex values, but at least it makes the file loadable. */
5152
5153 if (n3 == 0 && n2 > 0)
5154 {
5155 if (n2 == sizeof (float))
5156 return builtin_type_float;
5157 return builtin_type_double;
5158 }
5159
5160 /* If the upper bound is -1, it must really be an unsigned int. */
5161
5162 else if (n2 == 0 && n3 == -1)
5163 {
5164 if (sizeof (int) == sizeof (long))
5165 return builtin_type_unsigned_int;
5166 else
5167 return builtin_type_unsigned_long;
5168 }
5169
5170 /* Special case: char is defined (Who knows why) as a subrange of
5171 itself with range 0-127. */
5172 else if (self_subrange && n2 == 0 && n3 == 127)
5173 return builtin_type_char;
5174
5175 /* Assumptions made here: Subrange of self is equivalent to subrange
5176 of int. */
5177 else if (n2 == 0
5178 && (self_subrange ||
5179 *dbx_lookup_type (rangenums) == builtin_type_int))
5180 {
5181 /* an unsigned type */
5182 #ifdef LONG_LONG
5183 if (n3 == - sizeof (long long))
5184 return builtin_type_unsigned_long_long;
5185 #endif
5186 if (n3 == (unsigned int)~0L)
5187 return builtin_type_unsigned_int;
5188 if (n3 == (unsigned long)~0L)
5189 return builtin_type_unsigned_long;
5190 if (n3 == (unsigned short)~0L)
5191 return builtin_type_unsigned_short;
5192 if (n3 == (unsigned char)~0L)
5193 return builtin_type_unsigned_char;
5194 }
5195 #ifdef LONG_LONG
5196 else if (n3 == 0 && n2 == -sizeof (long long))
5197 return builtin_type_long_long;
5198 #endif
5199 else if (n2 == -n3 -1)
5200 {
5201 /* a signed type */
5202 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5203 return builtin_type_int;
5204 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5205 return builtin_type_long;
5206 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5207 return builtin_type_short;
5208 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5209 return builtin_type_char;
5210 }
5211
5212 /* We have a real range type on our hands. Allocate space and
5213 return a real pointer. */
5214
5215 /* At this point I don't have the faintest idea how to deal with
5216 a self_subrange type; I'm going to assume that this is used
5217 as an idiom, and that all of them are special cases. So . . . */
5218 if (self_subrange)
5219 return error_type (pp);
5220
5221 result_type = (struct type *) obstack_alloc (symbol_obstack,
5222 sizeof (struct type));
5223 bzero (result_type, sizeof (struct type));
5224
5225 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5226 builtin_type_int :
5227 *dbx_lookup_type(rangenums));
5228
5229 /* We have to figure out how many bytes it takes to hold this
5230 range type. I'm going to assume that anything that is pushing
5231 the bounds of a long was taken care of above. */
5232 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5233 TYPE_LENGTH (result_type) = 1;
5234 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5235 TYPE_LENGTH (result_type) = sizeof (short);
5236 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5237 TYPE_LENGTH (result_type) = sizeof (int);
5238 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5239 TYPE_LENGTH (result_type) = sizeof (long);
5240 else
5241 /* Ranged type doesn't fit within known sizes. */
5242 return error_type (pp);
5243
5244 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5245 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5246 TYPE_NFIELDS (result_type) = 2;
5247 TYPE_FIELDS (result_type) =
5248 (struct field *) obstack_alloc (symbol_obstack,
5249 2 * sizeof (struct field));
5250 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5251 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5252 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5253
5254 return result_type;
5255 }
5256
5257 /* Read a number from the string pointed to by *PP.
5258 The value of *PP is advanced over the number.
5259 If END is nonzero, the character that ends the
5260 number must match END, or an error happens;
5261 and that character is skipped if it does match.
5262 If END is zero, *PP is left pointing to that character. */
5263
5264 static long
5265 read_number (pp, end)
5266 char **pp;
5267 int end;
5268 {
5269 register char *p = *pp;
5270 register long n = 0;
5271 register int c;
5272 int sign = 1;
5273
5274 /* Handle an optional leading minus sign. */
5275
5276 if (*p == '-')
5277 {
5278 sign = -1;
5279 p++;
5280 }
5281
5282 /* Read the digits, as far as they go. */
5283
5284 while ((c = *p++) >= '0' && c <= '9')
5285 {
5286 n *= 10;
5287 n += c - '0';
5288 }
5289 if (end)
5290 {
5291 if (c && c != end)
5292 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5293 }
5294 else
5295 --p;
5296
5297 *pp = p;
5298 return n * sign;
5299 }
5300
5301 /* Read in an argument list. This is a list of types, separated by commas
5302 and terminated with END. Return the list of types read in, or (struct type
5303 **)-1 if there is an error. */
5304 static struct type **
5305 read_args (pp, end)
5306 char **pp;
5307 int end;
5308 {
5309 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5310 int n = 0;
5311
5312 while (**pp != end)
5313 {
5314 if (**pp != ',')
5315 /* Invalid argument list: no ','. */
5316 return (struct type **)-1;
5317 *pp += 1;
5318
5319 /* Check for and handle cretinous dbx symbol name continuation! */
5320 if (**pp == '\\')
5321 *pp = next_symbol_text ();
5322
5323 types[n++] = read_type (pp);
5324 }
5325 *pp += 1; /* get past `end' (the ':' character) */
5326
5327 if (n == 1)
5328 {
5329 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5330 }
5331 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5332 {
5333 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5334 bzero (rval + n, sizeof (struct type *));
5335 }
5336 else
5337 {
5338 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5339 }
5340 bcopy (types, rval, n * sizeof (struct type *));
5341 return rval;
5342 }
5343 \f
5344 /* Copy a pending list, used to record the contents of a common
5345 block for later fixup. */
5346 static struct pending *
5347 copy_pending (beg, begi, end)
5348 struct pending *beg, *end;
5349 int begi;
5350 {
5351 struct pending *new = 0;
5352 struct pending *next;
5353
5354 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5355 next = next->next, begi = 0)
5356 {
5357 register int j;
5358 for (j = begi; j < next->nsyms; j++)
5359 add_symbol_to_list (next->symbol[j], &new);
5360 }
5361 return new;
5362 }
5363
5364 /* Add a common block's start address to the offset of each symbol
5365 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5366 the common block name). */
5367
5368 static void
5369 fix_common_block (sym, valu)
5370 struct symbol *sym;
5371 int valu;
5372 {
5373 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5374 for ( ; next; next = next->next)
5375 {
5376 register int j;
5377 for (j = next->nsyms - 1; j >= 0; j--)
5378 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5379 }
5380 }
5381 \f
5382 /* Register our willingness to decode symbols for SunOS and a.out and
5383 b.out files handled by BFD... */
5384 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5385 dbx_new_init, dbx_symfile_init,
5386 dbx_symfile_read, dbx_symfile_discard};
5387
5388 static struct sym_fns aout_sym_fns = {"a.out", 5,
5389 dbx_new_init, dbx_symfile_init,
5390 dbx_symfile_read, dbx_symfile_discard};
5391
5392 static struct sym_fns bout_sym_fns = {"b.out", 5,
5393 dbx_new_init, dbx_symfile_init,
5394 dbx_symfile_read, dbx_symfile_discard};
5395
5396 void
5397 _initialize_dbxread ()
5398 {
5399 add_symtab_fns(&sunos_sym_fns);
5400 add_symtab_fns(&aout_sym_fns);
5401 add_symtab_fns(&bout_sym_fns);
5402
5403 undef_types_allocated = 20;
5404 undef_types_length = 0;
5405 undef_types = (struct type **) xmalloc (undef_types_allocated *
5406 sizeof (struct type *));
5407
5408 dbx_new_init ();
5409 }
This page took 0.130104 seconds and 5 git commands to generate.