bff7e9fccab74bce2d7629aca73e5dd410a41b32
[deliverable/binutils-gdb.git] / gdb / dcache.c
1 /* Caching code for GDB, the GNU debugger.
2
3 Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dcache.h"
25 #include "gdbcmd.h"
26 #include "gdb_string.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 /* The data cache could lead to incorrect results because it doesn't
31 know about volatile variables, thus making it impossible to debug
32 functions which use memory mapped I/O devices. Set the nocache
33 memory region attribute in those cases.
34
35 In general the dcache speeds up performance, some speed improvement
36 comes from the actual caching mechanism, but the major gain is in
37 the reduction of the remote protocol overhead; instead of reading
38 or writing a large area of memory in 4 byte requests, the cache
39 bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
40 Reducing the overhead to an eighth of what it was. This is very
41 obvious when displaying a large amount of data,
42
43 eg, x/200x 0
44
45 caching | no yes
46 ----------------------------
47 first time | 4 sec 2 sec improvement due to chunking
48 second time | 4 sec 0 sec improvement due to caching
49
50 The cache structure is unusual, we keep a number of cache blocks
51 (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
52 Within each line we remember the address of the line (always a
53 multiple of the LINE_SIZE) and a vector of bytes over the range.
54 There's another vector which contains the state of the bytes.
55
56 ENTRY_BAD means that the byte is just plain wrong, and has no
57 correspondence with anything else (as it would when the cache is
58 turned on, but nothing has been done to it.
59
60 ENTRY_DIRTY means that the byte has some data in it which should be
61 written out to the remote target one day, but contains correct
62 data.
63
64 ENTRY_OK means that the data is the same in the cache as it is in
65 remote memory.
66
67
68 The ENTRY_DIRTY state is necessary because GDB likes to write large
69 lumps of memory in small bits. If the caching mechanism didn't
70 maintain the DIRTY information, then something like a two byte
71 write would mean that the entire cache line would have to be read,
72 the two bytes modified and then written out again. The alternative
73 would be to not read in the cache line in the first place, and just
74 write the two bytes directly into target memory. The trouble with
75 that is that it really nails performance, because of the remote
76 protocol overhead. This way, all those little writes are bundled
77 up into an entire cache line write in one go, without having to
78 read the cache line in the first place.
79 */
80
81 /* NOTE: Interaction of dcache and memory region attributes
82
83 As there is no requirement that memory region attributes be aligned
84 to or be a multiple of the dcache page size, dcache_read_line() and
85 dcache_write_line() must break up the page by memory region. If a
86 chunk does not have the cache attribute set, an invalid memory type
87 is set, etc., then the chunk is skipped. Those chunks are handled
88 in target_xfer_memory() (or target_xfer_memory_partial()).
89
90 This doesn't occur very often. The most common occurance is when
91 the last bit of the .text segment and the first bit of the .data
92 segment fall within the same dcache page with a ro/cacheable memory
93 region defined for the .text segment and a rw/non-cacheable memory
94 region defined for the .data segment. */
95
96 /* This value regulates the number of cache blocks stored.
97 Smaller values reduce the time spent searching for a cache
98 line, and reduce memory requirements, but increase the risk
99 of a line not being in memory */
100
101 #define DCACHE_SIZE 64
102
103 /* This value regulates the size of a cache line. Smaller values
104 reduce the time taken to read a single byte, but reduce overall
105 throughput. */
106
107 #define LINE_SIZE_POWER (5)
108 #define LINE_SIZE (1 << LINE_SIZE_POWER)
109
110 /* Each cache block holds LINE_SIZE bytes of data
111 starting at a multiple-of-LINE_SIZE address. */
112
113 #define LINE_SIZE_MASK ((LINE_SIZE - 1))
114 #define XFORM(x) ((x) & LINE_SIZE_MASK)
115 #define MASK(x) ((x) & ~LINE_SIZE_MASK)
116
117
118 #define ENTRY_BAD 0 /* data at this byte is wrong */
119 #define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
120 #define ENTRY_OK 2 /* data at this byte is same as in memory */
121
122
123 struct dcache_block
124 {
125 struct dcache_block *p; /* next in list */
126 CORE_ADDR addr; /* Address for which data is recorded. */
127 char data[LINE_SIZE]; /* bytes at given address */
128 unsigned char state[LINE_SIZE]; /* what state the data is in */
129
130 /* whether anything in state is dirty - used to speed up the
131 dirty scan. */
132 int anydirty;
133
134 int refs;
135 };
136
137
138 /* FIXME: dcache_struct used to have a cache_has_stuff field that was
139 used to record whether the cache had been accessed. This was used
140 to invalidate the cache whenever caching was (re-)enabled (if the
141 cache was disabled and later re-enabled, it could contain stale
142 data). This was not needed because the cache is write through and
143 the code that enables, disables, and deletes memory region all
144 invalidate the cache.
145
146 This is overkill, since it also invalidates cache lines from
147 unrelated regions. One way this could be addressed by adding a
148 new function that takes an address and a length and invalidates
149 only those cache lines that match. */
150
151 struct dcache_struct
152 {
153 /* free list */
154 struct dcache_block *free_head;
155 struct dcache_block *free_tail;
156
157 /* in use list */
158 struct dcache_block *valid_head;
159 struct dcache_block *valid_tail;
160
161 /* The cache itself. */
162 struct dcache_block *the_cache;
163 };
164
165 static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
166
167 static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
168
169 static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
170
171 static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
172
173 static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
174
175 static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
176
177 static int dcache_writeback (DCACHE *dcache);
178
179 static void dcache_info (char *exp, int tty);
180
181 void _initialize_dcache (void);
182
183 static int dcache_enabled_p = 0;
184 static void
185 show_dcache_enabled_p (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Cache use for remote targets is %s.\n"), value);
189 }
190
191
192 DCACHE *last_cache; /* Used by info dcache */
193
194
195 /* Free all the data cache blocks, thus discarding all cached data. */
196
197 void
198 dcache_invalidate (DCACHE *dcache)
199 {
200 int i;
201 dcache->valid_head = 0;
202 dcache->valid_tail = 0;
203
204 dcache->free_head = 0;
205 dcache->free_tail = 0;
206
207 for (i = 0; i < DCACHE_SIZE; i++)
208 {
209 struct dcache_block *db = dcache->the_cache + i;
210
211 if (!dcache->free_head)
212 dcache->free_head = db;
213 else
214 dcache->free_tail->p = db;
215 dcache->free_tail = db;
216 db->p = 0;
217 }
218
219 return;
220 }
221
222 /* If addr is present in the dcache, return the address of the block
223 containing it. */
224
225 static struct dcache_block *
226 dcache_hit (DCACHE *dcache, CORE_ADDR addr)
227 {
228 struct dcache_block *db;
229
230 /* Search all cache blocks for one that is at this address. */
231 db = dcache->valid_head;
232
233 while (db)
234 {
235 if (MASK (addr) == db->addr)
236 {
237 db->refs++;
238 return db;
239 }
240 db = db->p;
241 }
242
243 return NULL;
244 }
245
246 /* Make sure that anything in this line which needs to
247 be written is. */
248
249 static int
250 dcache_write_line (DCACHE *dcache, struct dcache_block *db)
251 {
252 CORE_ADDR memaddr;
253 char *myaddr;
254 int len;
255 int res;
256 int reg_len;
257 struct mem_region *region;
258
259 if (!db->anydirty)
260 return 1;
261
262 len = LINE_SIZE;
263 memaddr = db->addr;
264 myaddr = db->data;
265
266 while (len > 0)
267 {
268 int s;
269 int e;
270 int dirty_len;
271
272 region = lookup_mem_region(memaddr);
273 if (memaddr + len < region->hi)
274 reg_len = len;
275 else
276 reg_len = region->hi - memaddr;
277
278 if (!region->attrib.cache || region->attrib.mode == MEM_RO)
279 {
280 memaddr += reg_len;
281 myaddr += reg_len;
282 len -= reg_len;
283 continue;
284 }
285
286 while (reg_len > 0)
287 {
288 s = XFORM(memaddr);
289 while (reg_len > 0) {
290 if (db->state[s] == ENTRY_DIRTY)
291 break;
292 s++;
293 reg_len--;
294
295 memaddr++;
296 myaddr++;
297 len--;
298 }
299
300 e = s;
301 while (reg_len > 0) {
302 if (db->state[e] != ENTRY_DIRTY)
303 break;
304 e++;
305 reg_len--;
306 }
307
308 dirty_len = e - s;
309 while (dirty_len > 0)
310 {
311 res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
312 &region->attrib);
313 if (res <= 0)
314 return 0;
315
316 memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
317 memaddr += res;
318 myaddr += res;
319 len -= res;
320 dirty_len -= res;
321 }
322 }
323 }
324
325 db->anydirty = 0;
326 return 1;
327 }
328
329 /* Read cache line */
330 static int
331 dcache_read_line (DCACHE *dcache, struct dcache_block *db)
332 {
333 CORE_ADDR memaddr;
334 char *myaddr;
335 int len;
336 int res;
337 int reg_len;
338 struct mem_region *region;
339
340 /* If there are any dirty bytes in the line, it must be written
341 before a new line can be read */
342 if (db->anydirty)
343 {
344 if (!dcache_write_line (dcache, db))
345 return 0;
346 }
347
348 len = LINE_SIZE;
349 memaddr = db->addr;
350 myaddr = db->data;
351
352 while (len > 0)
353 {
354 region = lookup_mem_region(memaddr);
355 if (memaddr + len < region->hi)
356 reg_len = len;
357 else
358 reg_len = region->hi - memaddr;
359
360 if (!region->attrib.cache || region->attrib.mode == MEM_WO)
361 {
362 memaddr += reg_len;
363 myaddr += reg_len;
364 len -= reg_len;
365 continue;
366 }
367
368 while (reg_len > 0)
369 {
370 res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
371 &region->attrib);
372 if (res <= 0)
373 return 0;
374
375 memaddr += res;
376 myaddr += res;
377 len -= res;
378 reg_len -= res;
379 }
380 }
381
382 memset (db->state, ENTRY_OK, sizeof (db->data));
383 db->anydirty = 0;
384
385 return 1;
386 }
387
388 /* Get a free cache block, put or keep it on the valid list,
389 and return its address. */
390
391 static struct dcache_block *
392 dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
393 {
394 struct dcache_block *db;
395
396 /* Take something from the free list */
397 db = dcache->free_head;
398 if (db)
399 {
400 dcache->free_head = db->p;
401 }
402 else
403 {
404 /* Nothing left on free list, so grab one from the valid list */
405 db = dcache->valid_head;
406
407 if (!dcache_write_line (dcache, db))
408 return NULL;
409
410 dcache->valid_head = db->p;
411 }
412
413 db->addr = MASK(addr);
414 db->refs = 0;
415 db->anydirty = 0;
416 memset (db->state, ENTRY_BAD, sizeof (db->data));
417
418 /* append this line to end of valid list */
419 if (!dcache->valid_head)
420 dcache->valid_head = db;
421 else
422 dcache->valid_tail->p = db;
423 dcache->valid_tail = db;
424 db->p = 0;
425
426 return db;
427 }
428
429 /* Writeback any dirty lines. */
430 static int
431 dcache_writeback (DCACHE *dcache)
432 {
433 struct dcache_block *db;
434
435 db = dcache->valid_head;
436
437 while (db)
438 {
439 if (!dcache_write_line (dcache, db))
440 return 0;
441 db = db->p;
442 }
443 return 1;
444 }
445
446
447 /* Using the data cache DCACHE return the contents of the byte at
448 address ADDR in the remote machine.
449
450 Returns 0 on error. */
451
452 static int
453 dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
454 {
455 struct dcache_block *db = dcache_hit (dcache, addr);
456
457 if (!db)
458 {
459 db = dcache_alloc (dcache, addr);
460 if (!db)
461 return 0;
462 }
463
464 if (db->state[XFORM (addr)] == ENTRY_BAD)
465 {
466 if (!dcache_read_line(dcache, db))
467 return 0;
468 }
469
470 *ptr = db->data[XFORM (addr)];
471 return 1;
472 }
473
474
475 /* Write the byte at PTR into ADDR in the data cache.
476 Return zero on write error.
477 */
478
479 static int
480 dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
481 {
482 struct dcache_block *db = dcache_hit (dcache, addr);
483
484 if (!db)
485 {
486 db = dcache_alloc (dcache, addr);
487 if (!db)
488 return 0;
489 }
490
491 db->data[XFORM (addr)] = *ptr;
492 db->state[XFORM (addr)] = ENTRY_DIRTY;
493 db->anydirty = 1;
494 return 1;
495 }
496
497 /* Initialize the data cache. */
498 DCACHE *
499 dcache_init (void)
500 {
501 int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
502 DCACHE *dcache;
503
504 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
505
506 dcache->the_cache = (struct dcache_block *) xmalloc (csize);
507 memset (dcache->the_cache, 0, csize);
508
509 dcache_invalidate (dcache);
510
511 last_cache = dcache;
512 return dcache;
513 }
514
515 /* Free a data cache */
516 void
517 dcache_free (DCACHE *dcache)
518 {
519 if (last_cache == dcache)
520 last_cache = NULL;
521
522 xfree (dcache->the_cache);
523 xfree (dcache);
524 }
525
526 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
527 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
528 nonzero.
529
530 Returns length of data written or read; 0 for error.
531
532 This routine is indended to be called by remote_xfer_ functions. */
533
534 int
535 dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
536 int should_write)
537 {
538 int i;
539 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
540 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
541
542 for (i = 0; i < len; i++)
543 {
544 if (!xfunc (dcache, memaddr + i, myaddr + i))
545 return 0;
546 }
547
548 /* FIXME: There may be some benefit from moving the cache writeback
549 to a higher layer, as it could occur after a sequence of smaller
550 writes have been completed (as when a stack frame is constructed
551 for an inferior function call). Note that only moving it up one
552 level to target_xfer_memory() (also target_xfer_memory_partial())
553 is not sufficent, since we want to coalesce memory transfers that
554 are "logically" connected but not actually a single call to one
555 of the memory transfer functions. */
556
557 if (should_write)
558 dcache_writeback (dcache);
559
560 return len;
561 }
562
563 static void
564 dcache_info (char *exp, int tty)
565 {
566 struct dcache_block *p;
567
568 printf_filtered (_("Dcache line width %d, depth %d\n"),
569 LINE_SIZE, DCACHE_SIZE);
570
571 if (last_cache)
572 {
573 printf_filtered (_("Cache state:\n"));
574
575 for (p = last_cache->valid_head; p; p = p->p)
576 {
577 int j;
578 printf_filtered (_("Line at %s, referenced %d times\n"),
579 paddr (p->addr), p->refs);
580
581 for (j = 0; j < LINE_SIZE; j++)
582 printf_filtered ("%02x", p->data[j] & 0xFF);
583 printf_filtered (("\n"));
584
585 for (j = 0; j < LINE_SIZE; j++)
586 printf_filtered ("%2x", p->state[j]);
587 printf_filtered ("\n");
588 }
589 }
590 }
591
592 void
593 _initialize_dcache (void)
594 {
595 add_setshow_boolean_cmd ("remotecache", class_support,
596 &dcache_enabled_p, _("\
597 Set cache use for remote targets."), _("\
598 Show cache use for remote targets."), _("\
599 When on, use data caching for remote targets. For many remote targets\n\
600 this option can offer better throughput for reading target memory.\n\
601 Unfortunately, gdb does not currently know anything about volatile\n\
602 registers and thus data caching will produce incorrect results with\n\
603 volatile registers are in use. By default, this option is off."),
604 NULL,
605 show_dcache_enabled_p,
606 &setlist, &showlist);
607
608 add_info ("dcache", dcache_info,
609 _("Print information on the dcache performance."));
610
611 }
This page took 0.076045 seconds and 4 git commands to generate.