* coffcode.h (coff_write_object_contents): Enclose all occurrences
[deliverable/binutils-gdb.git] / gdb / disasm.c
1 /* Disassemble support for GDB.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "ui-out.h"
25 #include "gdb_string.h"
26 #include "disasm.h"
27 #include "gdbcore.h"
28 #include "dis-asm.h"
29
30 /* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
33
34 /* This Structure is used to store line number information.
35 We need a different sort of line table from the normal one cuz we can't
36 depend upon implicit line-end pc's for lines to do the
37 reordering in this function. */
38
39 struct dis_line_entry
40 {
41 int line;
42 CORE_ADDR start_pc;
43 CORE_ADDR end_pc;
44 };
45
46 /* Like target_read_memory, but slightly different parameters. */
47 static int
48 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
49 struct disassemble_info *info)
50 {
51 return target_read_memory (memaddr, myaddr, len);
52 }
53
54 /* Like memory_error with slightly different parameters. */
55 static void
56 dis_asm_memory_error (int status, bfd_vma memaddr,
57 struct disassemble_info *info)
58 {
59 memory_error (status, memaddr);
60 }
61
62 /* Like print_address with slightly different parameters. */
63 static void
64 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
65 {
66 struct gdbarch *gdbarch = info->application_data;
67 print_address (gdbarch, addr, info->stream);
68 }
69
70 static int
71 compare_lines (const void *mle1p, const void *mle2p)
72 {
73 struct dis_line_entry *mle1, *mle2;
74 int val;
75
76 mle1 = (struct dis_line_entry *) mle1p;
77 mle2 = (struct dis_line_entry *) mle2p;
78
79 val = mle1->line - mle2->line;
80
81 if (val != 0)
82 return val;
83
84 return mle1->start_pc - mle2->start_pc;
85 }
86
87 static int
88 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
89 struct disassemble_info * di,
90 CORE_ADDR low, CORE_ADDR high,
91 int how_many, int flags, struct ui_stream *stb)
92 {
93 int num_displayed = 0;
94 CORE_ADDR pc;
95
96 /* parts of the symbolic representation of the address */
97 int unmapped;
98 int offset;
99 int line;
100 struct cleanup *ui_out_chain;
101
102 for (pc = low; pc < high;)
103 {
104 char *filename = NULL;
105 char *name = NULL;
106
107 QUIT;
108 if (how_many >= 0)
109 {
110 if (num_displayed >= how_many)
111 break;
112 else
113 num_displayed++;
114 }
115 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
116 ui_out_text (uiout, pc_prefix (pc));
117 ui_out_field_core_addr (uiout, "address", gdbarch, pc);
118
119 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
120 &line, &unmapped))
121 {
122 /* We don't care now about line, filename and
123 unmapped. But we might in the future. */
124 ui_out_text (uiout, " <");
125 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
126 ui_out_field_string (uiout, "func-name", name);
127 ui_out_text (uiout, "+");
128 ui_out_field_int (uiout, "offset", offset);
129 ui_out_text (uiout, ">:\t");
130 }
131 else
132 ui_out_text (uiout, ":\t");
133
134 if (filename != NULL)
135 xfree (filename);
136 if (name != NULL)
137 xfree (name);
138
139 ui_file_rewind (stb->stream);
140 if (flags & DISASSEMBLY_RAW_INSN)
141 {
142 CORE_ADDR old_pc = pc;
143 bfd_byte data;
144 int status;
145 pc += gdbarch_print_insn (gdbarch, pc, di);
146 for (;old_pc < pc; old_pc++)
147 {
148 status = (*di->read_memory_func) (old_pc, &data, 1, di);
149 if (status != 0)
150 (*di->memory_error_func) (status, old_pc, di);
151 ui_out_message (uiout, 0, " %02x", (unsigned)data);
152 }
153 ui_out_text (uiout, "\t");
154 }
155 else
156 pc += gdbarch_print_insn (gdbarch, pc, di);
157 ui_out_field_stream (uiout, "inst", stb);
158 ui_file_rewind (stb->stream);
159 do_cleanups (ui_out_chain);
160 ui_out_text (uiout, "\n");
161 }
162 return num_displayed;
163 }
164
165 /* The idea here is to present a source-O-centric view of a
166 function to the user. This means that things are presented
167 in source order, with (possibly) out of order assembly
168 immediately following. */
169 static void
170 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
171 struct disassemble_info *di, int nlines,
172 struct linetable_entry *le,
173 CORE_ADDR low, CORE_ADDR high,
174 struct symtab *symtab,
175 int how_many, int flags, struct ui_stream *stb)
176 {
177 int newlines = 0;
178 struct dis_line_entry *mle;
179 struct symtab_and_line sal;
180 int i;
181 int out_of_order = 0;
182 int next_line = 0;
183 int num_displayed = 0;
184 struct cleanup *ui_out_chain;
185 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
186 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
187
188 mle = (struct dis_line_entry *) alloca (nlines
189 * sizeof (struct dis_line_entry));
190
191 /* Copy linetable entries for this function into our data
192 structure, creating end_pc's and setting out_of_order as
193 appropriate. */
194
195 /* First, skip all the preceding functions. */
196
197 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
198
199 /* Now, copy all entries before the end of this function. */
200
201 for (; i < nlines - 1 && le[i].pc < high; i++)
202 {
203 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
204 continue; /* Ignore duplicates */
205
206 /* Skip any end-of-function markers. */
207 if (le[i].line == 0)
208 continue;
209
210 mle[newlines].line = le[i].line;
211 if (le[i].line > le[i + 1].line)
212 out_of_order = 1;
213 mle[newlines].start_pc = le[i].pc;
214 mle[newlines].end_pc = le[i + 1].pc;
215 newlines++;
216 }
217
218 /* If we're on the last line, and it's part of the function,
219 then we need to get the end pc in a special way. */
220
221 if (i == nlines - 1 && le[i].pc < high)
222 {
223 mle[newlines].line = le[i].line;
224 mle[newlines].start_pc = le[i].pc;
225 sal = find_pc_line (le[i].pc, 0);
226 mle[newlines].end_pc = sal.end;
227 newlines++;
228 }
229
230 /* Now, sort mle by line #s (and, then by addresses within
231 lines). */
232
233 if (out_of_order)
234 qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
235
236 /* Now, for each line entry, emit the specified lines (unless
237 they have been emitted before), followed by the assembly code
238 for that line. */
239
240 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
241
242 for (i = 0; i < newlines; i++)
243 {
244 /* Print out everything from next_line to the current line. */
245 if (mle[i].line >= next_line)
246 {
247 if (next_line != 0)
248 {
249 /* Just one line to print. */
250 if (next_line == mle[i].line)
251 {
252 ui_out_tuple_chain
253 = make_cleanup_ui_out_tuple_begin_end (uiout,
254 "src_and_asm_line");
255 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
256 }
257 else
258 {
259 /* Several source lines w/o asm instructions associated. */
260 for (; next_line < mle[i].line; next_line++)
261 {
262 struct cleanup *ui_out_list_chain_line;
263 struct cleanup *ui_out_tuple_chain_line;
264
265 ui_out_tuple_chain_line
266 = make_cleanup_ui_out_tuple_begin_end (uiout,
267 "src_and_asm_line");
268 print_source_lines (symtab, next_line, next_line + 1,
269 0);
270 ui_out_list_chain_line
271 = make_cleanup_ui_out_list_begin_end (uiout,
272 "line_asm_insn");
273 do_cleanups (ui_out_list_chain_line);
274 do_cleanups (ui_out_tuple_chain_line);
275 }
276 /* Print the last line and leave list open for
277 asm instructions to be added. */
278 ui_out_tuple_chain
279 = make_cleanup_ui_out_tuple_begin_end (uiout,
280 "src_and_asm_line");
281 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
282 }
283 }
284 else
285 {
286 ui_out_tuple_chain
287 = make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
288 print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
289 }
290
291 next_line = mle[i].line + 1;
292 ui_out_list_chain
293 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
294 }
295
296 num_displayed += dump_insns (gdbarch, uiout, di,
297 mle[i].start_pc, mle[i].end_pc,
298 how_many, flags, stb);
299
300 /* When we've reached the end of the mle array, or we've seen the last
301 assembly range for this source line, close out the list/tuple. */
302 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
303 {
304 do_cleanups (ui_out_list_chain);
305 do_cleanups (ui_out_tuple_chain);
306 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
307 ui_out_list_chain = make_cleanup (null_cleanup, 0);
308 ui_out_text (uiout, "\n");
309 }
310 if (how_many >= 0 && num_displayed >= how_many)
311 break;
312 }
313 do_cleanups (ui_out_chain);
314 }
315
316
317 static void
318 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
319 struct disassemble_info * di,
320 CORE_ADDR low, CORE_ADDR high,
321 int how_many, int flags, struct ui_stream *stb)
322 {
323 int num_displayed = 0;
324 struct cleanup *ui_out_chain;
325
326 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
327
328 num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
329 flags, stb);
330
331 do_cleanups (ui_out_chain);
332 }
333
334 /* Initialize the disassemble info struct ready for the specified
335 stream. */
336
337 static int ATTRIBUTE_PRINTF (2, 3)
338 fprintf_disasm (void *stream, const char *format, ...)
339 {
340 va_list args;
341 va_start (args, format);
342 vfprintf_filtered (stream, format, args);
343 va_end (args);
344 /* Something non -ve. */
345 return 0;
346 }
347
348 static struct disassemble_info
349 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
350 {
351 struct disassemble_info di;
352 init_disassemble_info (&di, file, fprintf_disasm);
353 di.flavour = bfd_target_unknown_flavour;
354 di.memory_error_func = dis_asm_memory_error;
355 di.print_address_func = dis_asm_print_address;
356 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
357 disassembler had a local optomization here. By default it would
358 access the executable file, instead of the target memory (there
359 was a growing list of exceptions though). Unfortunately, the
360 heuristic was flawed. Commands like "disassemble &variable"
361 didn't work as they relied on the access going to the target.
362 Further, it has been supperseeded by trust-read-only-sections
363 (although that should be superseeded by target_trust..._p()). */
364 di.read_memory_func = dis_asm_read_memory;
365 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
366 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
367 di.endian = gdbarch_byte_order (gdbarch);
368 di.endian_code = gdbarch_byte_order_for_code (gdbarch);
369 di.application_data = gdbarch;
370 disassemble_init_for_target (&di);
371 return di;
372 }
373
374 void
375 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
376 char *file_string, int flags, int how_many,
377 CORE_ADDR low, CORE_ADDR high)
378 {
379 struct ui_stream *stb = ui_out_stream_new (uiout);
380 struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
381 struct disassemble_info di = gdb_disassemble_info (gdbarch, stb->stream);
382 /* To collect the instruction outputted from opcodes. */
383 struct symtab *symtab = NULL;
384 struct linetable_entry *le = NULL;
385 int nlines = -1;
386
387 /* Assume symtab is valid for whole PC range */
388 symtab = find_pc_symtab (low);
389
390 if (symtab != NULL && symtab->linetable != NULL)
391 {
392 /* Convert the linetable to a bunch of my_line_entry's. */
393 le = symtab->linetable->item;
394 nlines = symtab->linetable->nitems;
395 }
396
397 if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
398 || symtab == NULL || symtab->linetable == NULL)
399 do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
400
401 else if (flags & DISASSEMBLY_SOURCE)
402 do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
403 high, symtab, how_many, flags, stb);
404
405 do_cleanups (cleanups);
406 gdb_flush (gdb_stdout);
407 }
408
409 /* Print the instruction at address MEMADDR in debugged memory,
410 on STREAM. Returns the length of the instruction, in bytes,
411 and, if requested, the number of branch delay slot instructions. */
412
413 int
414 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
415 struct ui_file *stream, int *branch_delay_insns)
416 {
417 struct disassemble_info di;
418 int length;
419
420 di = gdb_disassemble_info (gdbarch, stream);
421 length = gdbarch_print_insn (gdbarch, memaddr, &di);
422 if (branch_delay_insns)
423 {
424 if (di.insn_info_valid)
425 *branch_delay_insns = di.branch_delay_insns;
426 else
427 *branch_delay_insns = 0;
428 }
429 return length;
430 }
431
432 static void
433 do_ui_file_delete (void *arg)
434 {
435 ui_file_delete (arg);
436 }
437
438 /* Return the length in bytes of the instruction at address MEMADDR in
439 debugged memory. */
440
441 int
442 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
443 {
444 static struct ui_file *null_stream = NULL;
445
446 /* Dummy file descriptor for the disassembler. */
447 if (!null_stream)
448 {
449 null_stream = ui_file_new ();
450 make_final_cleanup (do_ui_file_delete, null_stream);
451 }
452
453 return gdb_print_insn (gdbarch, addr, null_stream, NULL);
454 }
455
456 /* fprintf-function for gdb_buffered_insn_length. This function is a
457 nop, we don't want to print anything, we just want to compute the
458 length of the insn. */
459
460 static int ATTRIBUTE_PRINTF (2, 3)
461 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
462 {
463 return 0;
464 }
465
466 /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
467
468 static void
469 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
470 struct disassemble_info *di,
471 const gdb_byte *insn, int max_len,
472 CORE_ADDR addr)
473 {
474 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
475
476 /* init_disassemble_info installs buffer_read_memory, etc.
477 so we don't need to do that here.
478 The cast is necessary until disassemble_info is const-ified. */
479 di->buffer = (gdb_byte *) insn;
480 di->buffer_length = max_len;
481 di->buffer_vma = addr;
482
483 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
484 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
485 di->endian = gdbarch_byte_order (gdbarch);
486 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
487
488 disassemble_init_for_target (di);
489 }
490
491 /* Return the length in bytes of INSN. MAX_LEN is the size of the
492 buffer containing INSN. */
493
494 int
495 gdb_buffered_insn_length (struct gdbarch *gdbarch,
496 const gdb_byte *insn, int max_len, CORE_ADDR addr)
497 {
498 struct disassemble_info di;
499
500 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
501
502 return gdbarch_print_insn (gdbarch, addr, &di);
503 }
This page took 0.038902 seconds and 4 git commands to generate.