* gdbint.texinfo (Coding): Add section ``Per-architecture module
[deliverable/binutils-gdb.git] / gdb / doc / gdbint.texinfo
1 \input texinfo @c -*- texinfo -*-
2 @setfilename gdbint.info
3 @include gdb-cfg.texi
4 @dircategory Programming & development tools.
5 @direntry
6 * Gdb-Internals: (gdbint). The GNU debugger's internals.
7 @end direntry
8
9 @ifinfo
10 This file documents the internals of the GNU debugger @value{GDBN}.
11 Copyright 1990,1991,1992,1993,1994,1996,1998,1999,2000,2001,2002
12 Free Software Foundation, Inc.
13 Contributed by Cygnus Solutions. Written by John Gilmore.
14 Second Edition by Stan Shebs.
15
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.1 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with the Front-Cover Texts being ``A GNU Manual,''
20 and with the Back-Cover Texts as in (a) below.
21
22 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
23 this GNU Manual, like GNU software. Copies published by the Free
24 Software Foundation raise funds for GNU development.''
25 @end ifinfo
26
27 @setchapternewpage off
28 @settitle @value{GDBN} Internals
29
30 @syncodeindex fn cp
31 @syncodeindex vr cp
32
33 @titlepage
34 @title @value{GDBN} Internals
35 @subtitle{A guide to the internals of the GNU debugger}
36 @author John Gilmore
37 @author Cygnus Solutions
38 @author Second Edition:
39 @author Stan Shebs
40 @author Cygnus Solutions
41 @page
42 @tex
43 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
44 \xdef\manvers{\$Revision$} % For use in headers, footers too
45 {\parskip=0pt
46 \hfill Cygnus Solutions\par
47 \hfill \manvers\par
48 \hfill \TeX{}info \texinfoversion\par
49 }
50 @end tex
51
52 @vskip 0pt plus 1filll
53 Copyright @copyright{} 1990,1991,1992,1993,1994,1996,1998,1999,2000,2001
54 Free Software Foundation, Inc.
55
56 Permission is granted to copy, distribute and/or modify this document
57 under the terms of the GNU Free Documentation License, Version 1.1 or
58 any later version published by the Free Software Foundation; with no
59 Invariant Sections, with the Front-Cover Texts being ``A GNU Manual,''
60 and with the Back-Cover Texts as in (a) below.
61
62 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
63 this GNU Manual, like GNU software. Copies published by the Free
64 Software Foundation raise funds for GNU development.''
65 @end titlepage
66
67 @contents
68
69 @node Top
70 @c Perhaps this should be the title of the document (but only for info,
71 @c not for TeX). Existing GNU manuals seem inconsistent on this point.
72 @top Scope of this Document
73
74 This document documents the internals of the GNU debugger, @value{GDBN}. It
75 includes description of @value{GDBN}'s key algorithms and operations, as well
76 as the mechanisms that adapt @value{GDBN} to specific hosts and targets.
77
78 @menu
79 * Requirements::
80 * Overall Structure::
81 * Algorithms::
82 * User Interface::
83 * libgdb::
84 * Symbol Handling::
85 * Language Support::
86 * Host Definition::
87 * Target Architecture Definition::
88 * Target Vector Definition::
89 * Native Debugging::
90 * Support Libraries::
91 * Coding::
92 * Porting GDB::
93 * Releasing GDB::
94 * Testsuite::
95 * Hints::
96
97 * GNU Free Documentation License:: The license for this documentation
98 * Index::
99 @end menu
100
101 @node Requirements
102
103 @chapter Requirements
104 @cindex requirements for @value{GDBN}
105
106 Before diving into the internals, you should understand the formal
107 requirements and other expectations for @value{GDBN}. Although some
108 of these may seem obvious, there have been proposals for @value{GDBN}
109 that have run counter to these requirements.
110
111 First of all, @value{GDBN} is a debugger. It's not designed to be a
112 front panel for embedded systems. It's not a text editor. It's not a
113 shell. It's not a programming environment.
114
115 @value{GDBN} is an interactive tool. Although a batch mode is
116 available, @value{GDBN}'s primary role is to interact with a human
117 programmer.
118
119 @value{GDBN} should be responsive to the user. A programmer hot on
120 the trail of a nasty bug, and operating under a looming deadline, is
121 going to be very impatient of everything, including the response time
122 to debugger commands.
123
124 @value{GDBN} should be relatively permissive, such as for expressions.
125 While the compiler should be picky (or have the option to be made
126 picky), since source code lives for a long time usually, the
127 programmer doing debugging shouldn't be spending time figuring out to
128 mollify the debugger.
129
130 @value{GDBN} will be called upon to deal with really large programs.
131 Executable sizes of 50 to 100 megabytes occur regularly, and we've
132 heard reports of programs approaching 1 gigabyte in size.
133
134 @value{GDBN} should be able to run everywhere. No other debugger is
135 available for even half as many configurations as @value{GDBN}
136 supports.
137
138
139 @node Overall Structure
140
141 @chapter Overall Structure
142
143 @value{GDBN} consists of three major subsystems: user interface,
144 symbol handling (the @dfn{symbol side}), and target system handling (the
145 @dfn{target side}).
146
147 The user interface consists of several actual interfaces, plus
148 supporting code.
149
150 The symbol side consists of object file readers, debugging info
151 interpreters, symbol table management, source language expression
152 parsing, type and value printing.
153
154 The target side consists of execution control, stack frame analysis, and
155 physical target manipulation.
156
157 The target side/symbol side division is not formal, and there are a
158 number of exceptions. For instance, core file support involves symbolic
159 elements (the basic core file reader is in BFD) and target elements (it
160 supplies the contents of memory and the values of registers). Instead,
161 this division is useful for understanding how the minor subsystems
162 should fit together.
163
164 @section The Symbol Side
165
166 The symbolic side of @value{GDBN} can be thought of as ``everything
167 you can do in @value{GDBN} without having a live program running''.
168 For instance, you can look at the types of variables, and evaluate
169 many kinds of expressions.
170
171 @section The Target Side
172
173 The target side of @value{GDBN} is the ``bits and bytes manipulator''.
174 Although it may make reference to symbolic info here and there, most
175 of the target side will run with only a stripped executable
176 available---or even no executable at all, in remote debugging cases.
177
178 Operations such as disassembly, stack frame crawls, and register
179 display, are able to work with no symbolic info at all. In some cases,
180 such as disassembly, @value{GDBN} will use symbolic info to present addresses
181 relative to symbols rather than as raw numbers, but it will work either
182 way.
183
184 @section Configurations
185
186 @cindex host
187 @cindex target
188 @dfn{Host} refers to attributes of the system where @value{GDBN} runs.
189 @dfn{Target} refers to the system where the program being debugged
190 executes. In most cases they are the same machine, in which case a
191 third type of @dfn{Native} attributes come into play.
192
193 Defines and include files needed to build on the host are host support.
194 Examples are tty support, system defined types, host byte order, host
195 float format.
196
197 Defines and information needed to handle the target format are target
198 dependent. Examples are the stack frame format, instruction set,
199 breakpoint instruction, registers, and how to set up and tear down the stack
200 to call a function.
201
202 Information that is only needed when the host and target are the same,
203 is native dependent. One example is Unix child process support; if the
204 host and target are not the same, doing a fork to start the target
205 process is a bad idea. The various macros needed for finding the
206 registers in the @code{upage}, running @code{ptrace}, and such are all
207 in the native-dependent files.
208
209 Another example of native-dependent code is support for features that
210 are really part of the target environment, but which require
211 @code{#include} files that are only available on the host system. Core
212 file handling and @code{setjmp} handling are two common cases.
213
214 When you want to make @value{GDBN} work ``native'' on a particular machine, you
215 have to include all three kinds of information.
216
217
218 @node Algorithms
219
220 @chapter Algorithms
221 @cindex algorithms
222
223 @value{GDBN} uses a number of debugging-specific algorithms. They are
224 often not very complicated, but get lost in the thicket of special
225 cases and real-world issues. This chapter describes the basic
226 algorithms and mentions some of the specific target definitions that
227 they use.
228
229 @section Frames
230
231 @cindex frame
232 @cindex call stack frame
233 A frame is a construct that @value{GDBN} uses to keep track of calling
234 and called functions.
235
236 @findex create_new_frame
237 @vindex FRAME_FP
238 @code{FRAME_FP} in the machine description has no meaning to the
239 machine-independent part of @value{GDBN}, except that it is used when
240 setting up a new frame from scratch, as follows:
241
242 @smallexample
243 create_new_frame (read_register (FP_REGNUM), read_pc ()));
244 @end smallexample
245
246 @cindex frame pointer register
247 Other than that, all the meaning imparted to @code{FP_REGNUM} is
248 imparted by the machine-dependent code. So, @code{FP_REGNUM} can have
249 any value that is convenient for the code that creates new frames.
250 (@code{create_new_frame} calls @code{INIT_EXTRA_FRAME_INFO} if it is
251 defined; that is where you should use the @code{FP_REGNUM} value, if
252 your frames are nonstandard.)
253
254 @cindex frame chain
255 Given a @value{GDBN} frame, define @code{FRAME_CHAIN} to determine the
256 address of the calling function's frame. This will be used to create
257 a new @value{GDBN} frame struct, and then @code{INIT_EXTRA_FRAME_INFO}
258 and @code{INIT_FRAME_PC} will be called for the new frame.
259
260 @section Breakpoint Handling
261
262 @cindex breakpoints
263 In general, a breakpoint is a user-designated location in the program
264 where the user wants to regain control if program execution ever reaches
265 that location.
266
267 There are two main ways to implement breakpoints; either as ``hardware''
268 breakpoints or as ``software'' breakpoints.
269
270 @cindex hardware breakpoints
271 @cindex program counter
272 Hardware breakpoints are sometimes available as a builtin debugging
273 features with some chips. Typically these work by having dedicated
274 register into which the breakpoint address may be stored. If the PC
275 (shorthand for @dfn{program counter})
276 ever matches a value in a breakpoint registers, the CPU raises an
277 exception and reports it to @value{GDBN}.
278
279 Another possibility is when an emulator is in use; many emulators
280 include circuitry that watches the address lines coming out from the
281 processor, and force it to stop if the address matches a breakpoint's
282 address.
283
284 A third possibility is that the target already has the ability to do
285 breakpoints somehow; for instance, a ROM monitor may do its own
286 software breakpoints. So although these are not literally ``hardware
287 breakpoints'', from @value{GDBN}'s point of view they work the same;
288 @value{GDBN} need not do nothing more than set the breakpoint and wait
289 for something to happen.
290
291 Since they depend on hardware resources, hardware breakpoints may be
292 limited in number; when the user asks for more, @value{GDBN} will
293 start trying to set software breakpoints. (On some architectures,
294 notably the 32-bit x86 platforms, @value{GDBN} cannot always know
295 whether there's enough hardware resources to insert all the hardware
296 breakpoints and watchpoints. On those platforms, @value{GDBN} prints
297 an error message only when the program being debugged is continued.)
298
299 @cindex software breakpoints
300 Software breakpoints require @value{GDBN} to do somewhat more work.
301 The basic theory is that @value{GDBN} will replace a program
302 instruction with a trap, illegal divide, or some other instruction
303 that will cause an exception, and then when it's encountered,
304 @value{GDBN} will take the exception and stop the program. When the
305 user says to continue, @value{GDBN} will restore the original
306 instruction, single-step, re-insert the trap, and continue on.
307
308 Since it literally overwrites the program being tested, the program area
309 must be writable, so this technique won't work on programs in ROM. It
310 can also distort the behavior of programs that examine themselves,
311 although such a situation would be highly unusual.
312
313 Also, the software breakpoint instruction should be the smallest size of
314 instruction, so it doesn't overwrite an instruction that might be a jump
315 target, and cause disaster when the program jumps into the middle of the
316 breakpoint instruction. (Strictly speaking, the breakpoint must be no
317 larger than the smallest interval between instructions that may be jump
318 targets; perhaps there is an architecture where only even-numbered
319 instructions may jumped to.) Note that it's possible for an instruction
320 set not to have any instructions usable for a software breakpoint,
321 although in practice only the ARC has failed to define such an
322 instruction.
323
324 @findex BREAKPOINT
325 The basic definition of the software breakpoint is the macro
326 @code{BREAKPOINT}.
327
328 Basic breakpoint object handling is in @file{breakpoint.c}. However,
329 much of the interesting breakpoint action is in @file{infrun.c}.
330
331 @section Single Stepping
332
333 @section Signal Handling
334
335 @section Thread Handling
336
337 @section Inferior Function Calls
338
339 @section Longjmp Support
340
341 @cindex @code{longjmp} debugging
342 @value{GDBN} has support for figuring out that the target is doing a
343 @code{longjmp} and for stopping at the target of the jump, if we are
344 stepping. This is done with a few specialized internal breakpoints,
345 which are visible in the output of the @samp{maint info breakpoint}
346 command.
347
348 @findex GET_LONGJMP_TARGET
349 To make this work, you need to define a macro called
350 @code{GET_LONGJMP_TARGET}, which will examine the @code{jmp_buf}
351 structure and extract the longjmp target address. Since @code{jmp_buf}
352 is target specific, you will need to define it in the appropriate
353 @file{tm-@var{target}.h} file. Look in @file{tm-sun4os4.h} and
354 @file{sparc-tdep.c} for examples of how to do this.
355
356 @section Watchpoints
357 @cindex watchpoints
358
359 Watchpoints are a special kind of breakpoints (@pxref{Algorithms,
360 breakpoints}) which break when data is accessed rather than when some
361 instruction is executed. When you have data which changes without
362 your knowing what code does that, watchpoints are the silver bullet to
363 hunt down and kill such bugs.
364
365 @cindex hardware watchpoints
366 @cindex software watchpoints
367 Watchpoints can be either hardware-assisted or not; the latter type is
368 known as ``software watchpoints.'' @value{GDBN} always uses
369 hardware-assisted watchpoints if they are available, and falls back on
370 software watchpoints otherwise. Typical situations where @value{GDBN}
371 will use software watchpoints are:
372
373 @itemize @bullet
374 @item
375 The watched memory region is too large for the underlying hardware
376 watchpoint support. For example, each x86 debug register can watch up
377 to 4 bytes of memory, so trying to watch data structures whose size is
378 more than 16 bytes will cause @value{GDBN} to use software
379 watchpoints.
380
381 @item
382 The value of the expression to be watched depends on data held in
383 registers (as opposed to memory).
384
385 @item
386 Too many different watchpoints requested. (On some architectures,
387 this situation is impossible to detect until the debugged program is
388 resumed.) Note that x86 debug registers are used both for hardware
389 breakpoints and for watchpoints, so setting too many hardware
390 breakpoints might cause watchpoint insertion to fail.
391
392 @item
393 No hardware-assisted watchpoints provided by the target
394 implementation.
395 @end itemize
396
397 Software watchpoints are very slow, since @value{GDBN} needs to
398 single-step the program being debugged and test the value of the
399 watched expression(s) after each instruction. The rest of this
400 section is mostly irrelevant for software watchpoints.
401
402 @value{GDBN} uses several macros and primitives to support hardware
403 watchpoints:
404
405 @table @code
406 @findex TARGET_HAS_HARDWARE_WATCHPOINTS
407 @item TARGET_HAS_HARDWARE_WATCHPOINTS
408 If defined, the target supports hardware watchpoints.
409
410 @findex TARGET_CAN_USE_HARDWARE_WATCHPOINT
411 @item TARGET_CAN_USE_HARDWARE_WATCHPOINT (@var{type}, @var{count}, @var{other})
412 Return the number of hardware watchpoints of type @var{type} that are
413 possible to be set. The value is positive if @var{count} watchpoints
414 of this type can be set, zero if setting watchpoints of this type is
415 not supported, and negative if @var{count} is more than the maximum
416 number of watchpoints of type @var{type} that can be set. @var{other}
417 is non-zero if other types of watchpoints are currently enabled (there
418 are architectures which cannot set watchpoints of different types at
419 the same time).
420
421 @findex TARGET_REGION_OK_FOR_HW_WATCHPOINT
422 @item TARGET_REGION_OK_FOR_HW_WATCHPOINT (@var{addr}, @var{len})
423 Return non-zero if hardware watchpoints can be used to watch a region
424 whose address is @var{addr} and whose length in bytes is @var{len}.
425
426 @findex TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT
427 @item TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (@var{size})
428 Return non-zero if hardware watchpoints can be used to watch a region
429 whose size is @var{size}. @value{GDBN} only uses this macro as a
430 fall-back, in case @code{TARGET_REGION_OK_FOR_HW_WATCHPOINT} is not
431 defined.
432
433 @findex TARGET_DISABLE_HW_WATCHPOINTS
434 @item TARGET_DISABLE_HW_WATCHPOINTS (@var{pid})
435 Disables watchpoints in the process identified by @var{pid}. This is
436 used, e.g., on HP-UX which provides operations to disable and enable
437 the page-level memory protection that implements hardware watchpoints
438 on that platform.
439
440 @findex TARGET_ENABLE_HW_WATCHPOINTS
441 @item TARGET_ENABLE_HW_WATCHPOINTS (@var{pid})
442 Enables watchpoints in the process identified by @var{pid}. This is
443 used, e.g., on HP-UX which provides operations to disable and enable
444 the page-level memory protection that implements hardware watchpoints
445 on that platform.
446
447 @findex target_insert_watchpoint
448 @findex target_remove_watchpoint
449 @item target_insert_watchpoint (@var{addr}, @var{len}, @var{type})
450 @itemx target_remove_watchpoint (@var{addr}, @var{len}, @var{type})
451 Insert or remove a hardware watchpoint starting at @var{addr}, for
452 @var{len} bytes. @var{type} is the watchpoint type, one of the
453 possible values of the enumerated data type @code{target_hw_bp_type},
454 defined by @file{breakpoint.h} as follows:
455
456 @smallexample
457 enum target_hw_bp_type
458 @{
459 hw_write = 0, /* Common (write) HW watchpoint */
460 hw_read = 1, /* Read HW watchpoint */
461 hw_access = 2, /* Access (read or write) HW watchpoint */
462 hw_execute = 3 /* Execute HW breakpoint */
463 @};
464 @end smallexample
465
466 @noindent
467 These two macros should return 0 for success, non-zero for failure.
468
469 @cindex insert or remove hardware breakpoint
470 @findex target_remove_hw_breakpoint
471 @findex target_insert_hw_breakpoint
472 @item target_remove_hw_breakpoint (@var{addr}, @var{shadow})
473 @itemx target_insert_hw_breakpoint (@var{addr}, @var{shadow})
474 Insert or remove a hardware-assisted breakpoint at address @var{addr}.
475 Returns zero for success, non-zero for failure. @var{shadow} is the
476 real contents of the byte where the breakpoint has been inserted; it
477 is generally not valid when hardware breakpoints are used, but since
478 no other code touches these values, the implementations of the above
479 two macros can use them for their internal purposes.
480
481 @findex target_stopped_data_address
482 @item target_stopped_data_address ()
483 If the inferior has some watchpoint that triggered, return the address
484 associated with that watchpoint. Otherwise, return zero.
485
486 @findex DECR_PC_AFTER_HW_BREAK
487 @item DECR_PC_AFTER_HW_BREAK
488 If defined, @value{GDBN} decrements the program counter by the value
489 of @code{DECR_PC_AFTER_HW_BREAK} after a hardware break-point. This
490 overrides the value of @code{DECR_PC_AFTER_BREAK} when a breakpoint
491 that breaks is a hardware-assisted breakpoint.
492
493 @findex HAVE_STEPPABLE_WATCHPOINT
494 @item HAVE_STEPPABLE_WATCHPOINT
495 If defined to a non-zero value, it is not necessary to disable a
496 watchpoint to step over it.
497
498 @findex HAVE_NONSTEPPABLE_WATCHPOINT
499 @item HAVE_NONSTEPPABLE_WATCHPOINT
500 If defined to a non-zero value, @value{GDBN} should disable a
501 watchpoint to step the inferior over it.
502
503 @findex HAVE_CONTINUABLE_WATCHPOINT
504 @item HAVE_CONTINUABLE_WATCHPOINT
505 If defined to a non-zero value, it is possible to continue the
506 inferior after a watchpoint has been hit.
507
508 @findex CANNOT_STEP_HW_WATCHPOINTS
509 @item CANNOT_STEP_HW_WATCHPOINTS
510 If this is defined to a non-zero value, @value{GDBN} will remove all
511 watchpoints before stepping the inferior.
512
513 @findex STOPPED_BY_WATCHPOINT
514 @item STOPPED_BY_WATCHPOINT (@var{wait_status})
515 Return non-zero if stopped by a watchpoint. @var{wait_status} is of
516 the type @code{struct target_waitstatus}, defined by @file{target.h}.
517 @end table
518
519 @subsection x86 Watchpoints
520 @cindex x86 debug registers
521 @cindex watchpoints, on x86
522
523 The 32-bit Intel x86 (a.k.a.@: ia32) processors feature special debug
524 registers designed to facilitate debugging. @value{GDBN} provides a
525 generic library of functions that x86-based ports can use to implement
526 support for watchpoints and hardware-assisted breakpoints. This
527 subsection documents the x86 watchpoint facilities in @value{GDBN}.
528
529 To use the generic x86 watchpoint support, a port should do the
530 following:
531
532 @itemize @bullet
533 @findex I386_USE_GENERIC_WATCHPOINTS
534 @item
535 Define the macro @code{I386_USE_GENERIC_WATCHPOINTS} somewhere in the
536 target-dependent headers.
537
538 @item
539 Include the @file{config/i386/nm-i386.h} header file @emph{after}
540 defining @code{I386_USE_GENERIC_WATCHPOINTS}.
541
542 @item
543 Add @file{i386-nat.o} to the value of the Make variable
544 @code{NATDEPFILES} (@pxref{Native Debugging, NATDEPFILES}) or
545 @code{TDEPFILES} (@pxref{Target Architecture Definition, TDEPFILES}).
546
547 @item
548 Provide implementations for the @code{I386_DR_LOW_*} macros described
549 below. Typically, each macro should call a target-specific function
550 which does the real work.
551 @end itemize
552
553 The x86 watchpoint support works by maintaining mirror images of the
554 debug registers. Values are copied between the mirror images and the
555 real debug registers via a set of macros which each target needs to
556 provide:
557
558 @table @code
559 @findex I386_DR_LOW_SET_CONTROL
560 @item I386_DR_LOW_SET_CONTROL (@var{val})
561 Set the Debug Control (DR7) register to the value @var{val}.
562
563 @findex I386_DR_LOW_SET_ADDR
564 @item I386_DR_LOW_SET_ADDR (@var{idx}, @var{addr})
565 Put the address @var{addr} into the debug register number @var{idx}.
566
567 @findex I386_DR_LOW_RESET_ADDR
568 @item I386_DR_LOW_RESET_ADDR (@var{idx})
569 Reset (i.e.@: zero out) the address stored in the debug register
570 number @var{idx}.
571
572 @findex I386_DR_LOW_GET_STATUS
573 @item I386_DR_LOW_GET_STATUS
574 Return the value of the Debug Status (DR6) register. This value is
575 used immediately after it is returned by
576 @code{I386_DR_LOW_GET_STATUS}, so as to support per-thread status
577 register values.
578 @end table
579
580 For each one of the 4 debug registers (whose indices are from 0 to 3)
581 that store addresses, a reference count is maintained by @value{GDBN},
582 to allow sharing of debug registers by several watchpoints. This
583 allows users to define several watchpoints that watch the same
584 expression, but with different conditions and/or commands, without
585 wasting debug registers which are in short supply. @value{GDBN}
586 maintains the reference counts internally, targets don't have to do
587 anything to use this feature.
588
589 The x86 debug registers can each watch a region that is 1, 2, or 4
590 bytes long. The ia32 architecture requires that each watched region
591 be appropriately aligned: 2-byte region on 2-byte boundary, 4-byte
592 region on 4-byte boundary. However, the x86 watchpoint support in
593 @value{GDBN} can watch unaligned regions and regions larger than 4
594 bytes (up to 16 bytes) by allocating several debug registers to watch
595 a single region. This allocation of several registers per a watched
596 region is also done automatically without target code intervention.
597
598 The generic x86 watchpoint support provides the following API for the
599 @value{GDBN}'s application code:
600
601 @table @code
602 @findex i386_region_ok_for_watchpoint
603 @item i386_region_ok_for_watchpoint (@var{addr}, @var{len})
604 The macro @code{TARGET_REGION_OK_FOR_HW_WATCHPOINT} is set to call
605 this function. It counts the number of debug registers required to
606 watch a given region, and returns a non-zero value if that number is
607 less than 4, the number of debug registers available to x86
608 processors.
609
610 @findex i386_stopped_data_address
611 @item i386_stopped_data_address (void)
612 The macros @code{STOPPED_BY_WATCHPOINT} and
613 @code{target_stopped_data_address} are set to call this function. The
614 argument passed to @code{STOPPED_BY_WATCHPOINT} is ignored. This
615 function examines the breakpoint condition bits in the DR6 Debug
616 Status register, as returned by the @code{I386_DR_LOW_GET_STATUS}
617 macro, and returns the address associated with the first bit that is
618 set in DR6.
619
620 @findex i386_insert_watchpoint
621 @findex i386_remove_watchpoint
622 @item i386_insert_watchpoint (@var{addr}, @var{len}, @var{type})
623 @itemx i386_remove_watchpoint (@var{addr}, @var{len}, @var{type})
624 Insert or remove a watchpoint. The macros
625 @code{target_insert_watchpoint} and @code{target_remove_watchpoint}
626 are set to call these functions. @code{i386_insert_watchpoint} first
627 looks for a debug register which is already set to watch the same
628 region for the same access types; if found, it just increments the
629 reference count of that debug register, thus implementing debug
630 register sharing between watchpoints. If no such register is found,
631 the function looks for a vacant debug register, sets its mirrored
632 value to @var{addr}, sets the mirrored value of DR7 Debug Control
633 register as appropriate for the @var{len} and @var{type} parameters,
634 and then passes the new values of the debug register and DR7 to the
635 inferior by calling @code{I386_DR_LOW_SET_ADDR} and
636 @code{I386_DR_LOW_SET_CONTROL}. If more than one debug register is
637 required to cover the given region, the above process is repeated for
638 each debug register.
639
640 @code{i386_remove_watchpoint} does the opposite: it resets the address
641 in the mirrored value of the debug register and its read/write and
642 length bits in the mirrored value of DR7, then passes these new
643 values to the inferior via @code{I386_DR_LOW_RESET_ADDR} and
644 @code{I386_DR_LOW_SET_CONTROL}. If a register is shared by several
645 watchpoints, each time a @code{i386_remove_watchpoint} is called, it
646 decrements the reference count, and only calls
647 @code{I386_DR_LOW_RESET_ADDR} and @code{I386_DR_LOW_SET_CONTROL} when
648 the count goes to zero.
649
650 @findex i386_insert_hw_breakpoint
651 @findex i386_remove_hw_breakpoint
652 @item i386_insert_hw_breakpoint (@var{addr}, @var{shadow}
653 @itemx i386_remove_hw_breakpoint (@var{addr}, @var{shadow})
654 These functions insert and remove hardware-assisted breakpoints. The
655 macros @code{target_insert_hw_breakpoint} and
656 @code{target_remove_hw_breakpoint} are set to call these functions.
657 These functions work like @code{i386_insert_watchpoint} and
658 @code{i386_remove_watchpoint}, respectively, except that they set up
659 the debug registers to watch instruction execution, and each
660 hardware-assisted breakpoint always requires exactly one debug
661 register.
662
663 @findex i386_stopped_by_hwbp
664 @item i386_stopped_by_hwbp (void)
665 This function returns non-zero if the inferior has some watchpoint or
666 hardware breakpoint that triggered. It works like
667 @code{i386_stopped_data_address}, except that it doesn't return the
668 address whose watchpoint triggered.
669
670 @findex i386_cleanup_dregs
671 @item i386_cleanup_dregs (void)
672 This function clears all the reference counts, addresses, and control
673 bits in the mirror images of the debug registers. It doesn't affect
674 the actual debug registers in the inferior process.
675 @end table
676
677 @noindent
678 @strong{Notes:}
679 @enumerate 1
680 @item
681 x86 processors support setting watchpoints on I/O reads or writes.
682 However, since no target supports this (as of March 2001), and since
683 @code{enum target_hw_bp_type} doesn't even have an enumeration for I/O
684 watchpoints, this feature is not yet available to @value{GDBN} running
685 on x86.
686
687 @item
688 x86 processors can enable watchpoints locally, for the current task
689 only, or globally, for all the tasks. For each debug register,
690 there's a bit in the DR7 Debug Control register that determines
691 whether the associated address is watched locally or globally. The
692 current implementation of x86 watchpoint support in @value{GDBN}
693 always sets watchpoints to be locally enabled, since global
694 watchpoints might interfere with the underlying OS and are probably
695 unavailable in many platforms.
696 @end enumerate
697
698 @node User Interface
699
700 @chapter User Interface
701
702 @value{GDBN} has several user interfaces. Although the command-line interface
703 is the most common and most familiar, there are others.
704
705 @section Command Interpreter
706
707 @cindex command interpreter
708 @cindex CLI
709 The command interpreter in @value{GDBN} is fairly simple. It is designed to
710 allow for the set of commands to be augmented dynamically, and also
711 has a recursive subcommand capability, where the first argument to
712 a command may itself direct a lookup on a different command list.
713
714 For instance, the @samp{set} command just starts a lookup on the
715 @code{setlist} command list, while @samp{set thread} recurses
716 to the @code{set_thread_cmd_list}.
717
718 @findex add_cmd
719 @findex add_com
720 To add commands in general, use @code{add_cmd}. @code{add_com} adds to
721 the main command list, and should be used for those commands. The usual
722 place to add commands is in the @code{_initialize_@var{xyz}} routines at
723 the ends of most source files.
724
725 @cindex deprecating commands
726 @findex deprecate_cmd
727 Before removing commands from the command set it is a good idea to
728 deprecate them for some time. Use @code{deprecate_cmd} on commands or
729 aliases to set the deprecated flag. @code{deprecate_cmd} takes a
730 @code{struct cmd_list_element} as it's first argument. You can use the
731 return value from @code{add_com} or @code{add_cmd} to deprecate the
732 command immediately after it is created.
733
734 The first time a command is used the user will be warned and offered a
735 replacement (if one exists). Note that the replacement string passed to
736 @code{deprecate_cmd} should be the full name of the command, i.e. the
737 entire string the user should type at the command line.
738
739 @section UI-Independent Output---the @code{ui_out} Functions
740 @c This section is based on the documentation written by Fernando
741 @c Nasser <fnasser@redhat.com>.
742
743 @cindex @code{ui_out} functions
744 The @code{ui_out} functions present an abstraction level for the
745 @value{GDBN} output code. They hide the specifics of different user
746 interfaces supported by @value{GDBN}, and thus free the programmer
747 from the need to write several versions of the same code, one each for
748 every UI, to produce output.
749
750 @subsection Overview and Terminology
751
752 In general, execution of each @value{GDBN} command produces some sort
753 of output, and can even generate an input request.
754
755 Output can be generated for the following purposes:
756
757 @itemize @bullet
758 @item
759 to display a @emph{result} of an operation;
760
761 @item
762 to convey @emph{info} or produce side-effects of a requested
763 operation;
764
765 @item
766 to provide a @emph{notification} of an asynchronous event (including
767 progress indication of a prolonged asynchronous operation);
768
769 @item
770 to display @emph{error messages} (including warnings);
771
772 @item
773 to show @emph{debug data};
774
775 @item
776 to @emph{query} or prompt a user for input (a special case).
777 @end itemize
778
779 @noindent
780 This section mainly concentrates on how to build result output,
781 although some of it also applies to other kinds of output.
782
783 Generation of output that displays the results of an operation
784 involves one or more of the following:
785
786 @itemize @bullet
787 @item
788 output of the actual data
789
790 @item
791 formatting the output as appropriate for console output, to make it
792 easily readable by humans
793
794 @item
795 machine oriented formatting--a more terse formatting to allow for easy
796 parsing by programs which read @value{GDBN}'s output
797
798 @item
799 annotation, whose purpose is to help legacy GUIs to identify interesting
800 parts in the output
801 @end itemize
802
803 The @code{ui_out} routines take care of the first three aspects.
804 Annotations are provided by separate annotation routines. Note that use
805 of annotations for an interface between a GUI and @value{GDBN} is
806 deprecated.
807
808 Output can be in the form of a single item, which we call a @dfn{field};
809 a @dfn{list} consisting of identical fields; a @dfn{tuple} consisting of
810 non-identical fields; or a @dfn{table}, which is a tuple consisting of a
811 header and a body. In a BNF-like form:
812
813 @table @code
814 @item <table> @expansion{}
815 @code{<header> <body>}
816 @item <header> @expansion{}
817 @code{@{ <column> @}}
818 @item <column> @expansion{}
819 @code{<width> <alignment> <title>}
820 @item <body> @expansion{}
821 @code{@{<row>@}}
822 @end table
823
824
825 @subsection General Conventions
826
827 Most @code{ui_out} routines are of type @code{void}, the exceptions are
828 @code{ui_out_stream_new} (which returns a pointer to the newly created
829 object) and the @code{make_cleanup} routines.
830
831 The first parameter is always the @code{ui_out} vector object, a pointer
832 to a @code{struct ui_out}.
833
834 The @var{format} parameter is like in @code{printf} family of functions.
835 When it is present, there must also be a variable list of arguments
836 sufficient used to satisfy the @code{%} specifiers in the supplied
837 format.
838
839 When a character string argument is not used in a @code{ui_out} function
840 call, a @code{NULL} pointer has to be supplied instead.
841
842
843 @subsection Table, Tuple and List Functions
844
845 @cindex list output functions
846 @cindex table output functions
847 @cindex tuple output functions
848 This section introduces @code{ui_out} routines for building lists,
849 tuples and tables. The routines to output the actual data items
850 (fields) are presented in the next section.
851
852 To recap: A @dfn{tuple} is a sequence of @dfn{fields}, each field
853 containing information about an object; a @dfn{list} is a sequence of
854 fields where each field describes an identical object.
855
856 Use the @dfn{table} functions when your output consists of a list of
857 rows (tuples) and the console output should include a heading. Use this
858 even when you are listing just one object but you still want the header.
859
860 @cindex nesting level in @code{ui_out} functions
861 Tables can not be nested. Tuples and lists can be nested up to a
862 maximum of five levels.
863
864 The overall structure of the table output code is something like this:
865
866 @smallexample
867 ui_out_table_begin
868 ui_out_table_header
869 @dots{}
870 ui_out_table_body
871 ui_out_tuple_begin
872 ui_out_field_*
873 @dots{}
874 ui_out_tuple_end
875 @dots{}
876 ui_out_table_end
877 @end smallexample
878
879 Here is the description of table-, tuple- and list-related @code{ui_out}
880 functions:
881
882 @deftypefun void ui_out_table_begin (struct ui_out *@var{uiout}, int @var{nbrofcols}, int @var{nr_rows}, const char *@var{tblid})
883 The function @code{ui_out_table_begin} marks the beginning of the output
884 of a table. It should always be called before any other @code{ui_out}
885 function for a given table. @var{nbrofcols} is the number of columns in
886 the table. @var{nr_rows} is the number of rows in the table.
887 @var{tblid} is an optional string identifying the table. The string
888 pointed to by @var{tblid} is copied by the implementation of
889 @code{ui_out_table_begin}, so the application can free the string if it
890 was @code{malloc}ed.
891
892 The companion function @code{ui_out_table_end}, described below, marks
893 the end of the table's output.
894 @end deftypefun
895
896 @deftypefun void ui_out_table_header (struct ui_out *@var{uiout}, int @var{width}, enum ui_align @var{alignment}, const char *@var{colhdr})
897 @code{ui_out_table_header} provides the header information for a single
898 table column. You call this function several times, one each for every
899 column of the table, after @code{ui_out_table_begin}, but before
900 @code{ui_out_table_body}.
901
902 The value of @var{width} gives the column width in characters. The
903 value of @var{alignment} is one of @code{left}, @code{center}, and
904 @code{right}, and it specifies how to align the header: left-justify,
905 center, or right-justify it. @var{colhdr} points to a string that
906 specifies the column header; the implementation copies that string, so
907 column header strings in @code{malloc}ed storage can be freed after the
908 call.
909 @end deftypefun
910
911 @deftypefun void ui_out_table_body (struct ui_out *@var{uiout})
912 This function delimits the table header from the table body.
913 @end deftypefun
914
915 @deftypefun void ui_out_table_end (struct ui_out *@var{uiout})
916 This function signals the end of a table's output. It should be called
917 after the table body has been produced by the list and field output
918 functions.
919
920 There should be exactly one call to @code{ui_out_table_end} for each
921 call to @code{ui_out_table_begin}, otherwise the @code{ui_out} functions
922 will signal an internal error.
923 @end deftypefun
924
925 The output of the tuples that represent the table rows must follow the
926 call to @code{ui_out_table_body} and precede the call to
927 @code{ui_out_table_end}. You build a tuple by calling
928 @code{ui_out_tuple_begin} and @code{ui_out_tuple_end}, with suitable
929 calls to functions which actually output fields between them.
930
931 @deftypefun void ui_out_tuple_begin (struct ui_out *@var{uiout}, const char *@var{id})
932 This function marks the beginning of a tuple output. @var{id} points
933 to an optional string that identifies the tuple; it is copied by the
934 implementation, and so strings in @code{malloc}ed storage can be freed
935 after the call.
936 @end deftypefun
937
938 @deftypefun void ui_out_tuple_end (struct ui_out *@var{uiout})
939 This function signals an end of a tuple output. There should be exactly
940 one call to @code{ui_out_tuple_end} for each call to
941 @code{ui_out_tuple_begin}, otherwise an internal @value{GDBN} error will
942 be signaled.
943 @end deftypefun
944
945 @deftypefun struct cleanup *make_cleanup_ui_out_tuple_begin_end (struct ui_out *@var{uiout}, const char *@var{id})
946 This function first opens the tuple and then establishes a cleanup
947 (@pxref{Coding, Cleanups}) to close the tuple. It provides a convenient
948 and correct implementation of the non-portable@footnote{The function
949 cast is not portable ISO-C.} code sequence:
950 @smallexample
951 struct cleanup *old_cleanup;
952 ui_out_tuple_begin (uiout, "...");
953 old_cleanup = make_cleanup ((void(*)(void *)) ui_out_tuple_end,
954 uiout);
955 @end smallexample
956 @end deftypefun
957
958 @deftypefun void ui_out_list_begin (struct ui_out *@var{uiout}, const char *@var{id})
959 This function marks the beginning of a list output. @var{id} points to
960 an optional string that identifies the list; it is copied by the
961 implementation, and so strings in @code{malloc}ed storage can be freed
962 after the call.
963 @end deftypefun
964
965 @deftypefun void ui_out_list_end (struct ui_out *@var{uiout})
966 This function signals an end of a list output. There should be exactly
967 one call to @code{ui_out_list_end} for each call to
968 @code{ui_out_list_begin}, otherwise an internal @value{GDBN} error will
969 be signaled.
970 @end deftypefun
971
972 @deftypefun struct cleanup *make_cleanup_ui_out_list_begin_end (struct ui_out *@var{uiout}, const char *@var{id})
973 Similar to @code{make_cleanup_ui_out_tuple_begin_end}, this function
974 opens a list and then establishes cleanup (@pxref{Coding, Cleanups})
975 that will close the list.list.
976 @end deftypefun
977
978 @subsection Item Output Functions
979
980 @cindex item output functions
981 @cindex field output functions
982 @cindex data output
983 The functions described below produce output for the actual data
984 items, or fields, which contain information about the object.
985
986 Choose the appropriate function accordingly to your particular needs.
987
988 @deftypefun void ui_out_field_fmt (struct ui_out *@var{uiout}, char *@var{fldname}, char *@var{format}, ...)
989 This is the most general output function. It produces the
990 representation of the data in the variable-length argument list
991 according to formatting specifications in @var{format}, a
992 @code{printf}-like format string. The optional argument @var{fldname}
993 supplies the name of the field. The data items themselves are
994 supplied as additional arguments after @var{format}.
995
996 This generic function should be used only when it is not possible to
997 use one of the specialized versions (see below).
998 @end deftypefun
999
1000 @deftypefun void ui_out_field_int (struct ui_out *@var{uiout}, const char *@var{fldname}, int @var{value})
1001 This function outputs a value of an @code{int} variable. It uses the
1002 @code{"%d"} output conversion specification. @var{fldname} specifies
1003 the name of the field.
1004 @end deftypefun
1005
1006 @deftypefun void ui_out_field_core_addr (struct ui_out *@var{uiout}, const char *@var{fldname}, CORE_ADDR @var{address})
1007 This function outputs an address.
1008 @end deftypefun
1009
1010 @deftypefun void ui_out_field_string (struct ui_out *@var{uiout}, const char *@var{fldname}, const char *@var{string})
1011 This function outputs a string using the @code{"%s"} conversion
1012 specification.
1013 @end deftypefun
1014
1015 Sometimes, there's a need to compose your output piece by piece using
1016 functions that operate on a stream, such as @code{value_print} or
1017 @code{fprintf_symbol_filtered}. These functions accept an argument of
1018 the type @code{struct ui_file *}, a pointer to a @code{ui_file} object
1019 used to store the data stream used for the output. When you use one
1020 of these functions, you need a way to pass their results stored in a
1021 @code{ui_file} object to the @code{ui_out} functions. To this end,
1022 you first create a @code{ui_stream} object by calling
1023 @code{ui_out_stream_new}, pass the @code{stream} member of that
1024 @code{ui_stream} object to @code{value_print} and similar functions,
1025 and finally call @code{ui_out_field_stream} to output the field you
1026 constructed. When the @code{ui_stream} object is no longer needed,
1027 you should destroy it and free its memory by calling
1028 @code{ui_out_stream_delete}.
1029
1030 @deftypefun struct ui_stream *ui_out_stream_new (struct ui_out *@var{uiout})
1031 This function creates a new @code{ui_stream} object which uses the
1032 same output methods as the @code{ui_out} object whose pointer is
1033 passed in @var{uiout}. It returns a pointer to the newly created
1034 @code{ui_stream} object.
1035 @end deftypefun
1036
1037 @deftypefun void ui_out_stream_delete (struct ui_stream *@var{streambuf})
1038 This functions destroys a @code{ui_stream} object specified by
1039 @var{streambuf}.
1040 @end deftypefun
1041
1042 @deftypefun void ui_out_field_stream (struct ui_out *@var{uiout}, const char *@var{fieldname}, struct ui_stream *@var{streambuf})
1043 This function consumes all the data accumulated in
1044 @code{streambuf->stream} and outputs it like
1045 @code{ui_out_field_string} does. After a call to
1046 @code{ui_out_field_stream}, the accumulated data no longer exists, but
1047 the stream is still valid and may be used for producing more fields.
1048 @end deftypefun
1049
1050 @strong{Important:} If there is any chance that your code could bail
1051 out before completing output generation and reaching the point where
1052 @code{ui_out_stream_delete} is called, it is necessary to set up a
1053 cleanup, to avoid leaking memory and other resources. Here's a
1054 skeleton code to do that:
1055
1056 @smallexample
1057 struct ui_stream *mybuf = ui_out_stream_new (uiout);
1058 struct cleanup *old = make_cleanup (ui_out_stream_delete, mybuf);
1059 ...
1060 do_cleanups (old);
1061 @end smallexample
1062
1063 If the function already has the old cleanup chain set (for other kinds
1064 of cleanups), you just have to add your cleanup to it:
1065
1066 @smallexample
1067 mybuf = ui_out_stream_new (uiout);
1068 make_cleanup (ui_out_stream_delete, mybuf);
1069 @end smallexample
1070
1071 Note that with cleanups in place, you should not call
1072 @code{ui_out_stream_delete} directly, or you would attempt to free the
1073 same buffer twice.
1074
1075 @subsection Utility Output Functions
1076
1077 @deftypefun void ui_out_field_skip (struct ui_out *@var{uiout}, const char *@var{fldname})
1078 This function skips a field in a table. Use it if you have to leave
1079 an empty field without disrupting the table alignment. The argument
1080 @var{fldname} specifies a name for the (missing) filed.
1081 @end deftypefun
1082
1083 @deftypefun void ui_out_text (struct ui_out *@var{uiout}, const char *@var{string})
1084 This function outputs the text in @var{string} in a way that makes it
1085 easy to be read by humans. For example, the console implementation of
1086 this method filters the text through a built-in pager, to prevent it
1087 from scrolling off the visible portion of the screen.
1088
1089 Use this function for printing relatively long chunks of text around
1090 the actual field data: the text it produces is not aligned according
1091 to the table's format. Use @code{ui_out_field_string} to output a
1092 string field, and use @code{ui_out_message}, described below, to
1093 output short messages.
1094 @end deftypefun
1095
1096 @deftypefun void ui_out_spaces (struct ui_out *@var{uiout}, int @var{nspaces})
1097 This function outputs @var{nspaces} spaces. It is handy to align the
1098 text produced by @code{ui_out_text} with the rest of the table or
1099 list.
1100 @end deftypefun
1101
1102 @deftypefun void ui_out_message (struct ui_out *@var{uiout}, int @var{verbosity}, const char *@var{format}, ...)
1103 This function produces a formatted message, provided that the current
1104 verbosity level is at least as large as given by @var{verbosity}. The
1105 current verbosity level is specified by the user with the @samp{set
1106 verbositylevel} command.@footnote{As of this writing (April 2001),
1107 setting verbosity level is not yet implemented, and is always returned
1108 as zero. So calling @code{ui_out_message} with a @var{verbosity}
1109 argument more than zero will cause the message to never be printed.}
1110 @end deftypefun
1111
1112 @deftypefun void ui_out_wrap_hint (struct ui_out *@var{uiout}, char *@var{indent})
1113 This function gives the console output filter (a paging filter) a hint
1114 of where to break lines which are too long. Ignored for all other
1115 output consumers. @var{indent}, if non-@code{NULL}, is the string to
1116 be printed to indent the wrapped text on the next line; it must remain
1117 accessible until the next call to @code{ui_out_wrap_hint}, or until an
1118 explicit newline is produced by one of the other functions. If
1119 @var{indent} is @code{NULL}, the wrapped text will not be indented.
1120 @end deftypefun
1121
1122 @deftypefun void ui_out_flush (struct ui_out *@var{uiout})
1123 This function flushes whatever output has been accumulated so far, if
1124 the UI buffers output.
1125 @end deftypefun
1126
1127
1128 @subsection Examples of Use of @code{ui_out} functions
1129
1130 @cindex using @code{ui_out} functions
1131 @cindex @code{ui_out} functions, usage examples
1132 This section gives some practical examples of using the @code{ui_out}
1133 functions to generalize the old console-oriented code in
1134 @value{GDBN}. The examples all come from functions defined on the
1135 @file{breakpoints.c} file.
1136
1137 This example, from the @code{breakpoint_1} function, shows how to
1138 produce a table.
1139
1140 The original code was:
1141
1142 @smallexample
1143 if (!found_a_breakpoint++)
1144 @{
1145 annotate_breakpoints_headers ();
1146
1147 annotate_field (0);
1148 printf_filtered ("Num ");
1149 annotate_field (1);
1150 printf_filtered ("Type ");
1151 annotate_field (2);
1152 printf_filtered ("Disp ");
1153 annotate_field (3);
1154 printf_filtered ("Enb ");
1155 if (addressprint)
1156 @{
1157 annotate_field (4);
1158 printf_filtered ("Address ");
1159 @}
1160 annotate_field (5);
1161 printf_filtered ("What\n");
1162
1163 annotate_breakpoints_table ();
1164 @}
1165 @end smallexample
1166
1167 Here's the new version:
1168
1169 @smallexample
1170 nr_printable_breakpoints = @dots{};
1171
1172 if (addressprint)
1173 ui_out_table_begin (ui, 6, nr_printable_breakpoints, "BreakpointTable");
1174 else
1175 ui_out_table_begin (ui, 5, nr_printable_breakpoints, "BreakpointTable");
1176
1177 if (nr_printable_breakpoints > 0)
1178 annotate_breakpoints_headers ();
1179 if (nr_printable_breakpoints > 0)
1180 annotate_field (0);
1181 ui_out_table_header (uiout, 3, ui_left, "number", "Num"); /* 1 */
1182 if (nr_printable_breakpoints > 0)
1183 annotate_field (1);
1184 ui_out_table_header (uiout, 14, ui_left, "type", "Type"); /* 2 */
1185 if (nr_printable_breakpoints > 0)
1186 annotate_field (2);
1187 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
1188 if (nr_printable_breakpoints > 0)
1189 annotate_field (3);
1190 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
1191 if (addressprint)
1192 @{
1193 if (nr_printable_breakpoints > 0)
1194 annotate_field (4);
1195 if (TARGET_ADDR_BIT <= 32)
1196 ui_out_table_header (uiout, 10, ui_left, "addr", "Address");/* 5 */
1197 else
1198 ui_out_table_header (uiout, 18, ui_left, "addr", "Address");/* 5 */
1199 @}
1200 if (nr_printable_breakpoints > 0)
1201 annotate_field (5);
1202 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
1203 ui_out_table_body (uiout);
1204 if (nr_printable_breakpoints > 0)
1205 annotate_breakpoints_table ();
1206 @end smallexample
1207
1208 This example, from the @code{print_one_breakpoint} function, shows how
1209 to produce the actual data for the table whose structure was defined
1210 in the above example. The original code was:
1211
1212 @smallexample
1213 annotate_record ();
1214 annotate_field (0);
1215 printf_filtered ("%-3d ", b->number);
1216 annotate_field (1);
1217 if ((int)b->type > (sizeof(bptypes)/sizeof(bptypes[0]))
1218 || ((int) b->type != bptypes[(int) b->type].type))
1219 internal_error ("bptypes table does not describe type #%d.",
1220 (int)b->type);
1221 printf_filtered ("%-14s ", bptypes[(int)b->type].description);
1222 annotate_field (2);
1223 printf_filtered ("%-4s ", bpdisps[(int)b->disposition]);
1224 annotate_field (3);
1225 printf_filtered ("%-3c ", bpenables[(int)b->enable]);
1226 @dots{}
1227 @end smallexample
1228
1229 This is the new version:
1230
1231 @smallexample
1232 annotate_record ();
1233 ui_out_tuple_begin (uiout, "bkpt");
1234 annotate_field (0);
1235 ui_out_field_int (uiout, "number", b->number);
1236 annotate_field (1);
1237 if (((int) b->type > (sizeof (bptypes) / sizeof (bptypes[0])))
1238 || ((int) b->type != bptypes[(int) b->type].type))
1239 internal_error ("bptypes table does not describe type #%d.",
1240 (int) b->type);
1241 ui_out_field_string (uiout, "type", bptypes[(int)b->type].description);
1242 annotate_field (2);
1243 ui_out_field_string (uiout, "disp", bpdisps[(int)b->disposition]);
1244 annotate_field (3);
1245 ui_out_field_fmt (uiout, "enabled", "%c", bpenables[(int)b->enable]);
1246 @dots{}
1247 @end smallexample
1248
1249 This example, also from @code{print_one_breakpoint}, shows how to
1250 produce a complicated output field using the @code{print_expression}
1251 functions which requires a stream to be passed. It also shows how to
1252 automate stream destruction with cleanups. The original code was:
1253
1254 @smallexample
1255 annotate_field (5);
1256 print_expression (b->exp, gdb_stdout);
1257 @end smallexample
1258
1259 The new version is:
1260
1261 @smallexample
1262 struct ui_stream *stb = ui_out_stream_new (uiout);
1263 struct cleanup *old_chain = make_cleanup_ui_out_stream_delete (stb);
1264 ...
1265 annotate_field (5);
1266 print_expression (b->exp, stb->stream);
1267 ui_out_field_stream (uiout, "what", local_stream);
1268 @end smallexample
1269
1270 This example, also from @code{print_one_breakpoint}, shows how to use
1271 @code{ui_out_text} and @code{ui_out_field_string}. The original code
1272 was:
1273
1274 @smallexample
1275 annotate_field (5);
1276 if (b->dll_pathname == NULL)
1277 printf_filtered ("<any library> ");
1278 else
1279 printf_filtered ("library \"%s\" ", b->dll_pathname);
1280 @end smallexample
1281
1282 It became:
1283
1284 @smallexample
1285 annotate_field (5);
1286 if (b->dll_pathname == NULL)
1287 @{
1288 ui_out_field_string (uiout, "what", "<any library>");
1289 ui_out_spaces (uiout, 1);
1290 @}
1291 else
1292 @{
1293 ui_out_text (uiout, "library \"");
1294 ui_out_field_string (uiout, "what", b->dll_pathname);
1295 ui_out_text (uiout, "\" ");
1296 @}
1297 @end smallexample
1298
1299 The following example from @code{print_one_breakpoint} shows how to
1300 use @code{ui_out_field_int} and @code{ui_out_spaces}. The original
1301 code was:
1302
1303 @smallexample
1304 annotate_field (5);
1305 if (b->forked_inferior_pid != 0)
1306 printf_filtered ("process %d ", b->forked_inferior_pid);
1307 @end smallexample
1308
1309 It became:
1310
1311 @smallexample
1312 annotate_field (5);
1313 if (b->forked_inferior_pid != 0)
1314 @{
1315 ui_out_text (uiout, "process ");
1316 ui_out_field_int (uiout, "what", b->forked_inferior_pid);
1317 ui_out_spaces (uiout, 1);
1318 @}
1319 @end smallexample
1320
1321 Here's an example of using @code{ui_out_field_string}. The original
1322 code was:
1323
1324 @smallexample
1325 annotate_field (5);
1326 if (b->exec_pathname != NULL)
1327 printf_filtered ("program \"%s\" ", b->exec_pathname);
1328 @end smallexample
1329
1330 It became:
1331
1332 @smallexample
1333 annotate_field (5);
1334 if (b->exec_pathname != NULL)
1335 @{
1336 ui_out_text (uiout, "program \"");
1337 ui_out_field_string (uiout, "what", b->exec_pathname);
1338 ui_out_text (uiout, "\" ");
1339 @}
1340 @end smallexample
1341
1342 Finally, here's an example of printing an address. The original code:
1343
1344 @smallexample
1345 annotate_field (4);
1346 printf_filtered ("%s ",
1347 local_hex_string_custom ((unsigned long) b->address, "08l"));
1348 @end smallexample
1349
1350 It became:
1351
1352 @smallexample
1353 annotate_field (4);
1354 ui_out_field_core_addr (uiout, "Address", b->address);
1355 @end smallexample
1356
1357
1358 @section Console Printing
1359
1360 @section TUI
1361
1362 @node libgdb
1363
1364 @chapter libgdb
1365
1366 @section libgdb 1.0
1367 @cindex @code{libgdb}
1368 @code{libgdb} 1.0 was an abortive project of years ago. The theory was
1369 to provide an API to @value{GDBN}'s functionality.
1370
1371 @section libgdb 2.0
1372 @cindex @code{libgdb}
1373 @code{libgdb} 2.0 is an ongoing effort to update @value{GDBN} so that is
1374 better able to support graphical and other environments.
1375
1376 Since @code{libgdb} development is on-going, its architecture is still
1377 evolving. The following components have so far been identified:
1378
1379 @itemize @bullet
1380 @item
1381 Observer - @file{gdb-events.h}.
1382 @item
1383 Builder - @file{ui-out.h}
1384 @item
1385 Event Loop - @file{event-loop.h}
1386 @item
1387 Library - @file{gdb.h}
1388 @end itemize
1389
1390 The model that ties these components together is described below.
1391
1392 @section The @code{libgdb} Model
1393
1394 A client of @code{libgdb} interacts with the library in two ways.
1395
1396 @itemize @bullet
1397 @item
1398 As an observer (using @file{gdb-events}) receiving notifications from
1399 @code{libgdb} of any internal state changes (break point changes, run
1400 state, etc).
1401 @item
1402 As a client querying @code{libgdb} (using the @file{ui-out} builder) to
1403 obtain various status values from @value{GDBN}.
1404 @end itemize
1405
1406 Since @code{libgdb} could have multiple clients (e.g. a GUI supporting
1407 the existing @value{GDBN} CLI), those clients must co-operate when
1408 controlling @code{libgdb}. In particular, a client must ensure that
1409 @code{libgdb} is idle (i.e. no other client is using @code{libgdb})
1410 before responding to a @file{gdb-event} by making a query.
1411
1412 @section CLI support
1413
1414 At present @value{GDBN}'s CLI is very much entangled in with the core of
1415 @code{libgdb}. Consequently, a client wishing to include the CLI in
1416 their interface needs to carefully co-ordinate its own and the CLI's
1417 requirements.
1418
1419 It is suggested that the client set @code{libgdb} up to be bi-modal
1420 (alternate between CLI and client query modes). The notes below sketch
1421 out the theory:
1422
1423 @itemize @bullet
1424 @item
1425 The client registers itself as an observer of @code{libgdb}.
1426 @item
1427 The client create and install @code{cli-out} builder using its own
1428 versions of the @code{ui-file} @code{gdb_stderr}, @code{gdb_stdtarg} and
1429 @code{gdb_stdout} streams.
1430 @item
1431 The client creates a separate custom @code{ui-out} builder that is only
1432 used while making direct queries to @code{libgdb}.
1433 @end itemize
1434
1435 When the client receives input intended for the CLI, it simply passes it
1436 along. Since the @code{cli-out} builder is installed by default, all
1437 the CLI output in response to that command is routed (pronounced rooted)
1438 through to the client controlled @code{gdb_stdout} et.@: al.@: streams.
1439 At the same time, the client is kept abreast of internal changes by
1440 virtue of being a @code{libgdb} observer.
1441
1442 The only restriction on the client is that it must wait until
1443 @code{libgdb} becomes idle before initiating any queries (using the
1444 client's custom builder).
1445
1446 @section @code{libgdb} components
1447
1448 @subheading Observer - @file{gdb-events.h}
1449 @file{gdb-events} provides the client with a very raw mechanism that can
1450 be used to implement an observer. At present it only allows for one
1451 observer and that observer must, internally, handle the need to delay
1452 the processing of any event notifications until after @code{libgdb} has
1453 finished the current command.
1454
1455 @subheading Builder - @file{ui-out.h}
1456 @file{ui-out} provides the infrastructure necessary for a client to
1457 create a builder. That builder is then passed down to @code{libgdb}
1458 when doing any queries.
1459
1460 @subheading Event Loop - @file{event-loop.h}
1461 @c There could be an entire section on the event-loop
1462 @file{event-loop}, currently non-re-entrant, provides a simple event
1463 loop. A client would need to either plug its self into this loop or,
1464 implement a new event-loop that GDB would use.
1465
1466 The event-loop will eventually be made re-entrant. This is so that
1467 @value{GDB} can better handle the problem of some commands blocking
1468 instead of returning.
1469
1470 @subheading Library - @file{gdb.h}
1471 @file{libgdb} is the most obvious component of this system. It provides
1472 the query interface. Each function is parameterized by a @code{ui-out}
1473 builder. The result of the query is constructed using that builder
1474 before the query function returns.
1475
1476 @node Symbol Handling
1477
1478 @chapter Symbol Handling
1479
1480 Symbols are a key part of @value{GDBN}'s operation. Symbols include variables,
1481 functions, and types.
1482
1483 @section Symbol Reading
1484
1485 @cindex symbol reading
1486 @cindex reading of symbols
1487 @cindex symbol files
1488 @value{GDBN} reads symbols from @dfn{symbol files}. The usual symbol
1489 file is the file containing the program which @value{GDBN} is
1490 debugging. @value{GDBN} can be directed to use a different file for
1491 symbols (with the @samp{symbol-file} command), and it can also read
1492 more symbols via the @samp{add-file} and @samp{load} commands, or while
1493 reading symbols from shared libraries.
1494
1495 @findex find_sym_fns
1496 Symbol files are initially opened by code in @file{symfile.c} using
1497 the BFD library (@pxref{Support Libraries}). BFD identifies the type
1498 of the file by examining its header. @code{find_sym_fns} then uses
1499 this identification to locate a set of symbol-reading functions.
1500
1501 @findex add_symtab_fns
1502 @cindex @code{sym_fns} structure
1503 @cindex adding a symbol-reading module
1504 Symbol-reading modules identify themselves to @value{GDBN} by calling
1505 @code{add_symtab_fns} during their module initialization. The argument
1506 to @code{add_symtab_fns} is a @code{struct sym_fns} which contains the
1507 name (or name prefix) of the symbol format, the length of the prefix,
1508 and pointers to four functions. These functions are called at various
1509 times to process symbol files whose identification matches the specified
1510 prefix.
1511
1512 The functions supplied by each module are:
1513
1514 @table @code
1515 @item @var{xyz}_symfile_init(struct sym_fns *sf)
1516
1517 @cindex secondary symbol file
1518 Called from @code{symbol_file_add} when we are about to read a new
1519 symbol file. This function should clean up any internal state (possibly
1520 resulting from half-read previous files, for example) and prepare to
1521 read a new symbol file. Note that the symbol file which we are reading
1522 might be a new ``main'' symbol file, or might be a secondary symbol file
1523 whose symbols are being added to the existing symbol table.
1524
1525 The argument to @code{@var{xyz}_symfile_init} is a newly allocated
1526 @code{struct sym_fns} whose @code{bfd} field contains the BFD for the
1527 new symbol file being read. Its @code{private} field has been zeroed,
1528 and can be modified as desired. Typically, a struct of private
1529 information will be @code{malloc}'d, and a pointer to it will be placed
1530 in the @code{private} field.
1531
1532 There is no result from @code{@var{xyz}_symfile_init}, but it can call
1533 @code{error} if it detects an unavoidable problem.
1534
1535 @item @var{xyz}_new_init()
1536
1537 Called from @code{symbol_file_add} when discarding existing symbols.
1538 This function needs only handle the symbol-reading module's internal
1539 state; the symbol table data structures visible to the rest of
1540 @value{GDBN} will be discarded by @code{symbol_file_add}. It has no
1541 arguments and no result. It may be called after
1542 @code{@var{xyz}_symfile_init}, if a new symbol table is being read, or
1543 may be called alone if all symbols are simply being discarded.
1544
1545 @item @var{xyz}_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)
1546
1547 Called from @code{symbol_file_add} to actually read the symbols from a
1548 symbol-file into a set of psymtabs or symtabs.
1549
1550 @code{sf} points to the @code{struct sym_fns} originally passed to
1551 @code{@var{xyz}_sym_init} for possible initialization. @code{addr} is
1552 the offset between the file's specified start address and its true
1553 address in memory. @code{mainline} is 1 if this is the main symbol
1554 table being read, and 0 if a secondary symbol file (e.g. shared library
1555 or dynamically loaded file) is being read.@refill
1556 @end table
1557
1558 In addition, if a symbol-reading module creates psymtabs when
1559 @var{xyz}_symfile_read is called, these psymtabs will contain a pointer
1560 to a function @code{@var{xyz}_psymtab_to_symtab}, which can be called
1561 from any point in the @value{GDBN} symbol-handling code.
1562
1563 @table @code
1564 @item @var{xyz}_psymtab_to_symtab (struct partial_symtab *pst)
1565
1566 Called from @code{psymtab_to_symtab} (or the @code{PSYMTAB_TO_SYMTAB} macro) if
1567 the psymtab has not already been read in and had its @code{pst->symtab}
1568 pointer set. The argument is the psymtab to be fleshed-out into a
1569 symtab. Upon return, @code{pst->readin} should have been set to 1, and
1570 @code{pst->symtab} should contain a pointer to the new corresponding symtab, or
1571 zero if there were no symbols in that part of the symbol file.
1572 @end table
1573
1574 @section Partial Symbol Tables
1575
1576 @value{GDBN} has three types of symbol tables:
1577
1578 @itemize @bullet
1579 @cindex full symbol table
1580 @cindex symtabs
1581 @item
1582 Full symbol tables (@dfn{symtabs}). These contain the main
1583 information about symbols and addresses.
1584
1585 @cindex psymtabs
1586 @item
1587 Partial symbol tables (@dfn{psymtabs}). These contain enough
1588 information to know when to read the corresponding part of the full
1589 symbol table.
1590
1591 @cindex minimal symbol table
1592 @cindex minsymtabs
1593 @item
1594 Minimal symbol tables (@dfn{msymtabs}). These contain information
1595 gleaned from non-debugging symbols.
1596 @end itemize
1597
1598 @cindex partial symbol table
1599 This section describes partial symbol tables.
1600
1601 A psymtab is constructed by doing a very quick pass over an executable
1602 file's debugging information. Small amounts of information are
1603 extracted---enough to identify which parts of the symbol table will
1604 need to be re-read and fully digested later, when the user needs the
1605 information. The speed of this pass causes @value{GDBN} to start up very
1606 quickly. Later, as the detailed rereading occurs, it occurs in small
1607 pieces, at various times, and the delay therefrom is mostly invisible to
1608 the user.
1609 @c (@xref{Symbol Reading}.)
1610
1611 The symbols that show up in a file's psymtab should be, roughly, those
1612 visible to the debugger's user when the program is not running code from
1613 that file. These include external symbols and types, static symbols and
1614 types, and @code{enum} values declared at file scope.
1615
1616 The psymtab also contains the range of instruction addresses that the
1617 full symbol table would represent.
1618
1619 @cindex finding a symbol
1620 @cindex symbol lookup
1621 The idea is that there are only two ways for the user (or much of the
1622 code in the debugger) to reference a symbol:
1623
1624 @itemize @bullet
1625 @findex find_pc_function
1626 @findex find_pc_line
1627 @item
1628 By its address (e.g. execution stops at some address which is inside a
1629 function in this file). The address will be noticed to be in the
1630 range of this psymtab, and the full symtab will be read in.
1631 @code{find_pc_function}, @code{find_pc_line}, and other
1632 @code{find_pc_@dots{}} functions handle this.
1633
1634 @cindex lookup_symbol
1635 @item
1636 By its name
1637 (e.g. the user asks to print a variable, or set a breakpoint on a
1638 function). Global names and file-scope names will be found in the
1639 psymtab, which will cause the symtab to be pulled in. Local names will
1640 have to be qualified by a global name, or a file-scope name, in which
1641 case we will have already read in the symtab as we evaluated the
1642 qualifier. Or, a local symbol can be referenced when we are ``in'' a
1643 local scope, in which case the first case applies. @code{lookup_symbol}
1644 does most of the work here.
1645 @end itemize
1646
1647 The only reason that psymtabs exist is to cause a symtab to be read in
1648 at the right moment. Any symbol that can be elided from a psymtab,
1649 while still causing that to happen, should not appear in it. Since
1650 psymtabs don't have the idea of scope, you can't put local symbols in
1651 them anyway. Psymtabs don't have the idea of the type of a symbol,
1652 either, so types need not appear, unless they will be referenced by
1653 name.
1654
1655 It is a bug for @value{GDBN} to behave one way when only a psymtab has
1656 been read, and another way if the corresponding symtab has been read
1657 in. Such bugs are typically caused by a psymtab that does not contain
1658 all the visible symbols, or which has the wrong instruction address
1659 ranges.
1660
1661 The psymtab for a particular section of a symbol file (objfile) could be
1662 thrown away after the symtab has been read in. The symtab should always
1663 be searched before the psymtab, so the psymtab will never be used (in a
1664 bug-free environment). Currently, psymtabs are allocated on an obstack,
1665 and all the psymbols themselves are allocated in a pair of large arrays
1666 on an obstack, so there is little to be gained by trying to free them
1667 unless you want to do a lot more work.
1668
1669 @section Types
1670
1671 @unnumberedsubsec Fundamental Types (e.g., @code{FT_VOID}, @code{FT_BOOLEAN}).
1672
1673 @cindex fundamental types
1674 These are the fundamental types that @value{GDBN} uses internally. Fundamental
1675 types from the various debugging formats (stabs, ELF, etc) are mapped
1676 into one of these. They are basically a union of all fundamental types
1677 that @value{GDBN} knows about for all the languages that @value{GDBN}
1678 knows about.
1679
1680 @unnumberedsubsec Type Codes (e.g., @code{TYPE_CODE_PTR}, @code{TYPE_CODE_ARRAY}).
1681
1682 @cindex type codes
1683 Each time @value{GDBN} builds an internal type, it marks it with one
1684 of these types. The type may be a fundamental type, such as
1685 @code{TYPE_CODE_INT}, or a derived type, such as @code{TYPE_CODE_PTR}
1686 which is a pointer to another type. Typically, several @code{FT_*}
1687 types map to one @code{TYPE_CODE_*} type, and are distinguished by
1688 other members of the type struct, such as whether the type is signed
1689 or unsigned, and how many bits it uses.
1690
1691 @unnumberedsubsec Builtin Types (e.g., @code{builtin_type_void}, @code{builtin_type_char}).
1692
1693 These are instances of type structs that roughly correspond to
1694 fundamental types and are created as global types for @value{GDBN} to
1695 use for various ugly historical reasons. We eventually want to
1696 eliminate these. Note for example that @code{builtin_type_int}
1697 initialized in @file{gdbtypes.c} is basically the same as a
1698 @code{TYPE_CODE_INT} type that is initialized in @file{c-lang.c} for
1699 an @code{FT_INTEGER} fundamental type. The difference is that the
1700 @code{builtin_type} is not associated with any particular objfile, and
1701 only one instance exists, while @file{c-lang.c} builds as many
1702 @code{TYPE_CODE_INT} types as needed, with each one associated with
1703 some particular objfile.
1704
1705 @section Object File Formats
1706 @cindex object file formats
1707
1708 @subsection a.out
1709
1710 @cindex @code{a.out} format
1711 The @code{a.out} format is the original file format for Unix. It
1712 consists of three sections: @code{text}, @code{data}, and @code{bss},
1713 which are for program code, initialized data, and uninitialized data,
1714 respectively.
1715
1716 The @code{a.out} format is so simple that it doesn't have any reserved
1717 place for debugging information. (Hey, the original Unix hackers used
1718 @samp{adb}, which is a machine-language debugger!) The only debugging
1719 format for @code{a.out} is stabs, which is encoded as a set of normal
1720 symbols with distinctive attributes.
1721
1722 The basic @code{a.out} reader is in @file{dbxread.c}.
1723
1724 @subsection COFF
1725
1726 @cindex COFF format
1727 The COFF format was introduced with System V Release 3 (SVR3) Unix.
1728 COFF files may have multiple sections, each prefixed by a header. The
1729 number of sections is limited.
1730
1731 The COFF specification includes support for debugging. Although this
1732 was a step forward, the debugging information was woefully limited. For
1733 instance, it was not possible to represent code that came from an
1734 included file.
1735
1736 The COFF reader is in @file{coffread.c}.
1737
1738 @subsection ECOFF
1739
1740 @cindex ECOFF format
1741 ECOFF is an extended COFF originally introduced for Mips and Alpha
1742 workstations.
1743
1744 The basic ECOFF reader is in @file{mipsread.c}.
1745
1746 @subsection XCOFF
1747
1748 @cindex XCOFF format
1749 The IBM RS/6000 running AIX uses an object file format called XCOFF.
1750 The COFF sections, symbols, and line numbers are used, but debugging
1751 symbols are @code{dbx}-style stabs whose strings are located in the
1752 @code{.debug} section (rather than the string table). For more
1753 information, see @ref{Top,,,stabs,The Stabs Debugging Format}.
1754
1755 The shared library scheme has a clean interface for figuring out what
1756 shared libraries are in use, but the catch is that everything which
1757 refers to addresses (symbol tables and breakpoints at least) needs to be
1758 relocated for both shared libraries and the main executable. At least
1759 using the standard mechanism this can only be done once the program has
1760 been run (or the core file has been read).
1761
1762 @subsection PE
1763
1764 @cindex PE-COFF format
1765 Windows 95 and NT use the PE (@dfn{Portable Executable}) format for their
1766 executables. PE is basically COFF with additional headers.
1767
1768 While BFD includes special PE support, @value{GDBN} needs only the basic
1769 COFF reader.
1770
1771 @subsection ELF
1772
1773 @cindex ELF format
1774 The ELF format came with System V Release 4 (SVR4) Unix. ELF is similar
1775 to COFF in being organized into a number of sections, but it removes
1776 many of COFF's limitations.
1777
1778 The basic ELF reader is in @file{elfread.c}.
1779
1780 @subsection SOM
1781
1782 @cindex SOM format
1783 SOM is HP's object file and debug format (not to be confused with IBM's
1784 SOM, which is a cross-language ABI).
1785
1786 The SOM reader is in @file{hpread.c}.
1787
1788 @subsection Other File Formats
1789
1790 @cindex Netware Loadable Module format
1791 Other file formats that have been supported by @value{GDBN} include Netware
1792 Loadable Modules (@file{nlmread.c}).
1793
1794 @section Debugging File Formats
1795
1796 This section describes characteristics of debugging information that
1797 are independent of the object file format.
1798
1799 @subsection stabs
1800
1801 @cindex stabs debugging info
1802 @code{stabs} started out as special symbols within the @code{a.out}
1803 format. Since then, it has been encapsulated into other file
1804 formats, such as COFF and ELF.
1805
1806 While @file{dbxread.c} does some of the basic stab processing,
1807 including for encapsulated versions, @file{stabsread.c} does
1808 the real work.
1809
1810 @subsection COFF
1811
1812 @cindex COFF debugging info
1813 The basic COFF definition includes debugging information. The level
1814 of support is minimal and non-extensible, and is not often used.
1815
1816 @subsection Mips debug (Third Eye)
1817
1818 @cindex ECOFF debugging info
1819 ECOFF includes a definition of a special debug format.
1820
1821 The file @file{mdebugread.c} implements reading for this format.
1822
1823 @subsection DWARF 1
1824
1825 @cindex DWARF 1 debugging info
1826 DWARF 1 is a debugging format that was originally designed to be
1827 used with ELF in SVR4 systems.
1828
1829 @c CHILL_PRODUCER
1830 @c GCC_PRODUCER
1831 @c GPLUS_PRODUCER
1832 @c LCC_PRODUCER
1833 @c If defined, these are the producer strings in a DWARF 1 file. All of
1834 @c these have reasonable defaults already.
1835
1836 The DWARF 1 reader is in @file{dwarfread.c}.
1837
1838 @subsection DWARF 2
1839
1840 @cindex DWARF 2 debugging info
1841 DWARF 2 is an improved but incompatible version of DWARF 1.
1842
1843 The DWARF 2 reader is in @file{dwarf2read.c}.
1844
1845 @subsection SOM
1846
1847 @cindex SOM debugging info
1848 Like COFF, the SOM definition includes debugging information.
1849
1850 @section Adding a New Symbol Reader to @value{GDBN}
1851
1852 @cindex adding debugging info reader
1853 If you are using an existing object file format (@code{a.out}, COFF, ELF, etc),
1854 there is probably little to be done.
1855
1856 If you need to add a new object file format, you must first add it to
1857 BFD. This is beyond the scope of this document.
1858
1859 You must then arrange for the BFD code to provide access to the
1860 debugging symbols. Generally @value{GDBN} will have to call swapping routines
1861 from BFD and a few other BFD internal routines to locate the debugging
1862 information. As much as possible, @value{GDBN} should not depend on the BFD
1863 internal data structures.
1864
1865 For some targets (e.g., COFF), there is a special transfer vector used
1866 to call swapping routines, since the external data structures on various
1867 platforms have different sizes and layouts. Specialized routines that
1868 will only ever be implemented by one object file format may be called
1869 directly. This interface should be described in a file
1870 @file{bfd/lib@var{xyz}.h}, which is included by @value{GDBN}.
1871
1872
1873 @node Language Support
1874
1875 @chapter Language Support
1876
1877 @cindex language support
1878 @value{GDBN}'s language support is mainly driven by the symbol reader,
1879 although it is possible for the user to set the source language
1880 manually.
1881
1882 @value{GDBN} chooses the source language by looking at the extension
1883 of the file recorded in the debug info; @file{.c} means C, @file{.f}
1884 means Fortran, etc. It may also use a special-purpose language
1885 identifier if the debug format supports it, like with DWARF.
1886
1887 @section Adding a Source Language to @value{GDBN}
1888
1889 @cindex adding source language
1890 To add other languages to @value{GDBN}'s expression parser, follow the
1891 following steps:
1892
1893 @table @emph
1894 @item Create the expression parser.
1895
1896 @cindex expression parser
1897 This should reside in a file @file{@var{lang}-exp.y}. Routines for
1898 building parsed expressions into a @code{union exp_element} list are in
1899 @file{parse.c}.
1900
1901 @cindex language parser
1902 Since we can't depend upon everyone having Bison, and YACC produces
1903 parsers that define a bunch of global names, the following lines
1904 @strong{must} be included at the top of the YACC parser, to prevent the
1905 various parsers from defining the same global names:
1906
1907 @smallexample
1908 #define yyparse @var{lang}_parse
1909 #define yylex @var{lang}_lex
1910 #define yyerror @var{lang}_error
1911 #define yylval @var{lang}_lval
1912 #define yychar @var{lang}_char
1913 #define yydebug @var{lang}_debug
1914 #define yypact @var{lang}_pact
1915 #define yyr1 @var{lang}_r1
1916 #define yyr2 @var{lang}_r2
1917 #define yydef @var{lang}_def
1918 #define yychk @var{lang}_chk
1919 #define yypgo @var{lang}_pgo
1920 #define yyact @var{lang}_act
1921 #define yyexca @var{lang}_exca
1922 #define yyerrflag @var{lang}_errflag
1923 #define yynerrs @var{lang}_nerrs
1924 @end smallexample
1925
1926 At the bottom of your parser, define a @code{struct language_defn} and
1927 initialize it with the right values for your language. Define an
1928 @code{initialize_@var{lang}} routine and have it call
1929 @samp{add_language(@var{lang}_language_defn)} to tell the rest of @value{GDBN}
1930 that your language exists. You'll need some other supporting variables
1931 and functions, which will be used via pointers from your
1932 @code{@var{lang}_language_defn}. See the declaration of @code{struct
1933 language_defn} in @file{language.h}, and the other @file{*-exp.y} files,
1934 for more information.
1935
1936 @item Add any evaluation routines, if necessary
1937
1938 @cindex expression evaluation routines
1939 @findex evaluate_subexp
1940 @findex prefixify_subexp
1941 @findex length_of_subexp
1942 If you need new opcodes (that represent the operations of the language),
1943 add them to the enumerated type in @file{expression.h}. Add support
1944 code for these operations in the @code{evaluate_subexp} function
1945 defined in the file @file{eval.c}. Add cases
1946 for new opcodes in two functions from @file{parse.c}:
1947 @code{prefixify_subexp} and @code{length_of_subexp}. These compute
1948 the number of @code{exp_element}s that a given operation takes up.
1949
1950 @item Update some existing code
1951
1952 Add an enumerated identifier for your language to the enumerated type
1953 @code{enum language} in @file{defs.h}.
1954
1955 Update the routines in @file{language.c} so your language is included.
1956 These routines include type predicates and such, which (in some cases)
1957 are language dependent. If your language does not appear in the switch
1958 statement, an error is reported.
1959
1960 @vindex current_language
1961 Also included in @file{language.c} is the code that updates the variable
1962 @code{current_language}, and the routines that translate the
1963 @code{language_@var{lang}} enumerated identifier into a printable
1964 string.
1965
1966 @findex _initialize_language
1967 Update the function @code{_initialize_language} to include your
1968 language. This function picks the default language upon startup, so is
1969 dependent upon which languages that @value{GDBN} is built for.
1970
1971 @findex allocate_symtab
1972 Update @code{allocate_symtab} in @file{symfile.c} and/or symbol-reading
1973 code so that the language of each symtab (source file) is set properly.
1974 This is used to determine the language to use at each stack frame level.
1975 Currently, the language is set based upon the extension of the source
1976 file. If the language can be better inferred from the symbol
1977 information, please set the language of the symtab in the symbol-reading
1978 code.
1979
1980 @findex print_subexp
1981 @findex op_print_tab
1982 Add helper code to @code{print_subexp} (in @file{expprint.c}) to handle any new
1983 expression opcodes you have added to @file{expression.h}. Also, add the
1984 printed representations of your operators to @code{op_print_tab}.
1985
1986 @item Add a place of call
1987
1988 @findex parse_exp_1
1989 Add a call to @code{@var{lang}_parse()} and @code{@var{lang}_error} in
1990 @code{parse_exp_1} (defined in @file{parse.c}).
1991
1992 @item Use macros to trim code
1993
1994 @cindex trimming language-dependent code
1995 The user has the option of building @value{GDBN} for some or all of the
1996 languages. If the user decides to build @value{GDBN} for the language
1997 @var{lang}, then every file dependent on @file{language.h} will have the
1998 macro @code{_LANG_@var{lang}} defined in it. Use @code{#ifdef}s to
1999 leave out large routines that the user won't need if he or she is not
2000 using your language.
2001
2002 Note that you do not need to do this in your YACC parser, since if @value{GDBN}
2003 is not build for @var{lang}, then @file{@var{lang}-exp.tab.o} (the
2004 compiled form of your parser) is not linked into @value{GDBN} at all.
2005
2006 See the file @file{configure.in} for how @value{GDBN} is configured
2007 for different languages.
2008
2009 @item Edit @file{Makefile.in}
2010
2011 Add dependencies in @file{Makefile.in}. Make sure you update the macro
2012 variables such as @code{HFILES} and @code{OBJS}, otherwise your code may
2013 not get linked in, or, worse yet, it may not get @code{tar}red into the
2014 distribution!
2015 @end table
2016
2017
2018 @node Host Definition
2019
2020 @chapter Host Definition
2021
2022 With the advent of Autoconf, it's rarely necessary to have host
2023 definition machinery anymore. The following information is provided,
2024 mainly, as an historical reference.
2025
2026 @section Adding a New Host
2027
2028 @cindex adding a new host
2029 @cindex host, adding
2030 @value{GDBN}'s host configuration support normally happens via Autoconf.
2031 New host-specific definitions should not be needed. Older hosts
2032 @value{GDBN} still use the host-specific definitions and files listed
2033 below, but these mostly exist for historical reasons, and will
2034 eventually disappear.
2035
2036 @table @file
2037 @item gdb/config/@var{arch}/@var{xyz}.mh
2038 This file once contained both host and native configuration information
2039 (@pxref{Native Debugging}) for the machine @var{xyz}. The host
2040 configuration information is now handed by Autoconf.
2041
2042 Host configuration information included a definition of
2043 @code{XM_FILE=xm-@var{xyz}.h} and possibly definitions for @code{CC},
2044 @code{SYSV_DEFINE}, @code{XM_CFLAGS}, @code{XM_ADD_FILES},
2045 @code{XM_CLIBS}, @code{XM_CDEPS}, etc.; see @file{Makefile.in}.
2046
2047 New host only configurations do not need this file.
2048
2049 @item gdb/config/@var{arch}/xm-@var{xyz}.h
2050 This file once contained definitions and includes required when hosting
2051 gdb on machine @var{xyz}. Those definitions and includes are now
2052 handled by Autoconf.
2053
2054 New host and native configurations do not need this file.
2055
2056 @emph{Maintainer's note: Some hosts continue to use the @file{xm-xyz.h}
2057 file to define the macros @var{HOST_FLOAT_FORMAT},
2058 @var{HOST_DOUBLE_FORMAT} and @var{HOST_LONG_DOUBLE_FORMAT}. That code
2059 also needs to be replaced with either an Autoconf or run-time test.}
2060
2061 @end table
2062
2063 @subheading Generic Host Support Files
2064
2065 @cindex generic host support
2066 There are some ``generic'' versions of routines that can be used by
2067 various systems. These can be customized in various ways by macros
2068 defined in your @file{xm-@var{xyz}.h} file. If these routines work for
2069 the @var{xyz} host, you can just include the generic file's name (with
2070 @samp{.o}, not @samp{.c}) in @code{XDEPFILES}.
2071
2072 Otherwise, if your machine needs custom support routines, you will need
2073 to write routines that perform the same functions as the generic file.
2074 Put them into @code{@var{xyz}-xdep.c}, and put @code{@var{xyz}-xdep.o}
2075 into @code{XDEPFILES}.
2076
2077 @table @file
2078 @cindex remote debugging support
2079 @cindex serial line support
2080 @item ser-unix.c
2081 This contains serial line support for Unix systems. This is always
2082 included, via the makefile variable @code{SER_HARDWIRE}; override this
2083 variable in the @file{.mh} file to avoid it.
2084
2085 @item ser-go32.c
2086 This contains serial line support for 32-bit programs running under DOS,
2087 using the DJGPP (a.k.a.@: GO32) execution environment.
2088
2089 @cindex TCP remote support
2090 @item ser-tcp.c
2091 This contains generic TCP support using sockets.
2092 @end table
2093
2094 @section Host Conditionals
2095
2096 When @value{GDBN} is configured and compiled, various macros are
2097 defined or left undefined, to control compilation based on the
2098 attributes of the host system. These macros and their meanings (or if
2099 the meaning is not documented here, then one of the source files where
2100 they are used is indicated) are:
2101
2102 @ftable @code
2103 @item @value{GDBN}INIT_FILENAME
2104 The default name of @value{GDBN}'s initialization file (normally
2105 @file{.gdbinit}).
2106
2107 @item NO_STD_REGS
2108 This macro is deprecated.
2109
2110 @item NO_SYS_FILE
2111 Define this if your system does not have a @code{<sys/file.h>}.
2112
2113 @item SIGWINCH_HANDLER
2114 If your host defines @code{SIGWINCH}, you can define this to be the name
2115 of a function to be called if @code{SIGWINCH} is received.
2116
2117 @item SIGWINCH_HANDLER_BODY
2118 Define this to expand into code that will define the function named by
2119 the expansion of @code{SIGWINCH_HANDLER}.
2120
2121 @item ALIGN_STACK_ON_STARTUP
2122 @cindex stack alignment
2123 Define this if your system is of a sort that will crash in
2124 @code{tgetent} if the stack happens not to be longword-aligned when
2125 @code{main} is called. This is a rare situation, but is known to occur
2126 on several different types of systems.
2127
2128 @item CRLF_SOURCE_FILES
2129 @cindex DOS text files
2130 Define this if host files use @code{\r\n} rather than @code{\n} as a
2131 line terminator. This will cause source file listings to omit @code{\r}
2132 characters when printing and it will allow @code{\r\n} line endings of files
2133 which are ``sourced'' by gdb. It must be possible to open files in binary
2134 mode using @code{O_BINARY} or, for fopen, @code{"rb"}.
2135
2136 @item DEFAULT_PROMPT
2137 @cindex prompt
2138 The default value of the prompt string (normally @code{"(gdb) "}).
2139
2140 @item DEV_TTY
2141 @cindex terminal device
2142 The name of the generic TTY device, defaults to @code{"/dev/tty"}.
2143
2144 @item FCLOSE_PROVIDED
2145 Define this if the system declares @code{fclose} in the headers included
2146 in @code{defs.h}. This isn't needed unless your compiler is unusually
2147 anal.
2148
2149 @item FOPEN_RB
2150 Define this if binary files are opened the same way as text files.
2151
2152 @item GETENV_PROVIDED
2153 Define this if the system declares @code{getenv} in its headers included
2154 in @code{defs.h}. This isn't needed unless your compiler is unusually
2155 anal.
2156
2157 @item HAVE_MMAP
2158 @findex mmap
2159 In some cases, use the system call @code{mmap} for reading symbol
2160 tables. For some machines this allows for sharing and quick updates.
2161
2162 @item HAVE_TERMIO
2163 Define this if the host system has @code{termio.h}.
2164
2165 @item INT_MAX
2166 @itemx INT_MIN
2167 @itemx LONG_MAX
2168 @itemx UINT_MAX
2169 @itemx ULONG_MAX
2170 Values for host-side constants.
2171
2172 @item ISATTY
2173 Substitute for isatty, if not available.
2174
2175 @item LONGEST
2176 This is the longest integer type available on the host. If not defined,
2177 it will default to @code{long long} or @code{long}, depending on
2178 @code{CC_HAS_LONG_LONG}.
2179
2180 @item CC_HAS_LONG_LONG
2181 @cindex @code{long long} data type
2182 Define this if the host C compiler supports @code{long long}. This is set
2183 by the @code{configure} script.
2184
2185 @item PRINTF_HAS_LONG_LONG
2186 Define this if the host can handle printing of long long integers via
2187 the printf format conversion specifier @code{ll}. This is set by the
2188 @code{configure} script.
2189
2190 @item HAVE_LONG_DOUBLE
2191 Define this if the host C compiler supports @code{long double}. This is
2192 set by the @code{configure} script.
2193
2194 @item PRINTF_HAS_LONG_DOUBLE
2195 Define this if the host can handle printing of long double float-point
2196 numbers via the printf format conversion specifier @code{Lg}. This is
2197 set by the @code{configure} script.
2198
2199 @item SCANF_HAS_LONG_DOUBLE
2200 Define this if the host can handle the parsing of long double
2201 float-point numbers via the scanf format conversion specifier
2202 @code{Lg}. This is set by the @code{configure} script.
2203
2204 @item LSEEK_NOT_LINEAR
2205 Define this if @code{lseek (n)} does not necessarily move to byte number
2206 @code{n} in the file. This is only used when reading source files. It
2207 is normally faster to define @code{CRLF_SOURCE_FILES} when possible.
2208
2209 @item L_SET
2210 This macro is used as the argument to @code{lseek} (or, most commonly,
2211 @code{bfd_seek}). FIXME, should be replaced by SEEK_SET instead,
2212 which is the POSIX equivalent.
2213
2214 @item MMAP_BASE_ADDRESS
2215 When using HAVE_MMAP, the first mapping should go at this address.
2216
2217 @item MMAP_INCREMENT
2218 when using HAVE_MMAP, this is the increment between mappings.
2219
2220 @item NORETURN
2221 If defined, this should be one or more tokens, such as @code{volatile},
2222 that can be used in both the declaration and definition of functions to
2223 indicate that they never return. The default is already set correctly
2224 if compiling with GCC. This will almost never need to be defined.
2225
2226 @item ATTR_NORETURN
2227 If defined, this should be one or more tokens, such as
2228 @code{__attribute__ ((noreturn))}, that can be used in the declarations
2229 of functions to indicate that they never return. The default is already
2230 set correctly if compiling with GCC. This will almost never need to be
2231 defined.
2232
2233 @item USE_GENERIC_DUMMY_FRAMES
2234 @cindex generic dummy frames
2235 Define this to 1 if the target is using the generic inferior function
2236 call code. See @code{blockframe.c} for more information.
2237
2238 @item USE_MMALLOC
2239 @findex mmalloc
2240 @value{GDBN} will use the @code{mmalloc} library for memory allocation
2241 for symbol reading if this symbol is defined. Be careful defining it
2242 since there are systems on which @code{mmalloc} does not work for some
2243 reason. One example is the DECstation, where its RPC library can't
2244 cope with our redefinition of @code{malloc} to call @code{mmalloc}.
2245 When defining @code{USE_MMALLOC}, you will also have to set
2246 @code{MMALLOC} in the Makefile, to point to the @code{mmalloc} library. This
2247 define is set when you configure with @samp{--with-mmalloc}.
2248
2249 @item NO_MMCHECK
2250 @findex mmcheck
2251 Define this if you are using @code{mmalloc}, but don't want the overhead
2252 of checking the heap with @code{mmcheck}. Note that on some systems,
2253 the C runtime makes calls to @code{malloc} prior to calling @code{main}, and if
2254 @code{free} is ever called with these pointers after calling
2255 @code{mmcheck} to enable checking, a memory corruption abort is certain
2256 to occur. These systems can still use @code{mmalloc}, but must define
2257 @code{NO_MMCHECK}.
2258
2259 @item MMCHECK_FORCE
2260 Define this to 1 if the C runtime allocates memory prior to
2261 @code{mmcheck} being called, but that memory is never freed so we don't
2262 have to worry about it triggering a memory corruption abort. The
2263 default is 0, which means that @code{mmcheck} will only install the heap
2264 checking functions if there has not yet been any memory allocation
2265 calls, and if it fails to install the functions, @value{GDBN} will issue a
2266 warning. This is currently defined if you configure using
2267 @samp{--with-mmalloc}.
2268
2269 @item NO_SIGINTERRUPT
2270 @findex siginterrupt
2271 Define this to indicate that @code{siginterrupt} is not available.
2272
2273 @item SEEK_CUR
2274 @itemx SEEK_SET
2275 Define these to appropriate value for the system @code{lseek}, if not already
2276 defined.
2277
2278 @item STOP_SIGNAL
2279 This is the signal for stopping @value{GDBN}. Defaults to
2280 @code{SIGTSTP}. (Only redefined for the Convex.)
2281
2282 @item USE_O_NOCTTY
2283 Define this if the interior's tty should be opened with the @code{O_NOCTTY}
2284 flag. (FIXME: This should be a native-only flag, but @file{inflow.c} is
2285 always linked in.)
2286
2287 @item USG
2288 Means that System V (prior to SVR4) include files are in use. (FIXME:
2289 This symbol is abused in @file{infrun.c}, @file{regex.c},
2290 @file{remote-nindy.c}, and @file{utils.c} for other things, at the
2291 moment.)
2292
2293 @item lint
2294 Define this to help placate @code{lint} in some situations.
2295
2296 @item volatile
2297 Define this to override the defaults of @code{__volatile__} or
2298 @code{/**/}.
2299 @end ftable
2300
2301
2302 @node Target Architecture Definition
2303
2304 @chapter Target Architecture Definition
2305
2306 @cindex target architecture definition
2307 @value{GDBN}'s target architecture defines what sort of
2308 machine-language programs @value{GDBN} can work with, and how it works
2309 with them.
2310
2311 The target architecture object is implemented as the C structure
2312 @code{struct gdbarch *}. The structure, and its methods, are generated
2313 using the Bourne shell script @file{gdbarch.sh}.
2314
2315 @section Operating System ABI Variant Handling
2316 @cindex OS ABI variants
2317
2318 @value{GDBN} provides a mechanism for handling variations in OS
2319 ABIs. An OS ABI variant may have influence over any number of
2320 variables in the target architecture definition. There are two major
2321 components in the OS ABI mechanism: sniffers and handlers.
2322
2323 A @dfn{sniffer} examines a file matching a BFD architecture/flavour pair
2324 (the architecture may be wildcarded) in an attempt to determine the
2325 OS ABI of that file. Sniffers with a wildcarded architecture are considered
2326 to be @dfn{generic}, while sniffers for a specific architecture are
2327 considered to be @dfn{specific}. A match from a specific sniffer
2328 overrides a match from a generic sniffer. Multiple sniffers for an
2329 architecture/flavour may exist, in order to differentiate between two
2330 different operating systems which use the same basic file format. The
2331 OS ABI framework provides a generic sniffer for ELF-format files which
2332 examines the @code{EI_OSABI} field of the ELF header, as well as note
2333 sections known to be used by several operating systems.
2334
2335 @cindex fine-tuning @code{gdbarch} structure
2336 A @dfn{handler} is used to fine-tune the @code{gdbarch} structure for the
2337 selected OS ABI. There may be only one handler for a given OS ABI
2338 for each BFD architecture.
2339
2340 The following OS ABI variants are defined in @file{osabi.h}:
2341
2342 @table @code
2343
2344 @findex GDB_OSABI_UNKNOWN
2345 @item GDB_OSABI_UNKNOWN
2346 The ABI of the inferior is unknown. The default @code{gdbarch}
2347 settings for the architecture will be used.
2348
2349 @findex GDB_OSABI_SVR4
2350 @item GDB_OSABI_SVR4
2351 UNIX System V Release 4
2352
2353 @findex GDB_OSABI_HURD
2354 @item GDB_OSABI_HURD
2355 GNU using the Hurd kernel
2356
2357 @findex GDB_OSABI_SOLARIS
2358 @item GDB_OSABI_SOLARIS
2359 Sun Solaris
2360
2361 @findex GDB_OSABI_OSF1
2362 @item GDB_OSABI_OSF1
2363 OSF/1, including Digital UNIX and Compaq Tru64 UNIX
2364
2365 @findex GDB_OSABI_LINUX
2366 @item GDB_OSABI_LINUX
2367 GNU using the Linux kernel
2368
2369 @findex GDB_OSABI_FREEBSD_AOUT
2370 @item GDB_OSABI_FREEBSD_AOUT
2371 FreeBSD using the a.out executable format
2372
2373 @findex GDB_OSABI_FREEBSD_ELF
2374 @item GDB_OSABI_FREEBSD_ELF
2375 FreeBSD using the ELF executable format
2376
2377 @findex GDB_OSABI_NETBSD_AOUT
2378 @item GDB_OSABI_NETBSD_AOUT
2379 NetBSD using the a.out executable format
2380
2381 @findex GDB_OSABI_NETBSD_ELF
2382 @item GDB_OSABI_NETBSD_ELF
2383 NetBSD using the ELF executable format
2384
2385 @findex GDB_OSABI_WINCE
2386 @item GDB_OSABI_WINCE
2387 Windows CE
2388
2389 @findex GDB_OSABI_GO32
2390 @item GDB_OSABI_GO32
2391 DJGPP
2392
2393 @findex GDB_OSABI_NETWARE
2394 @item GDB_OSABI_NETWARE
2395 Novell NetWare
2396
2397 @findex GDB_OSABI_ARM_EABI_V1
2398 @item GDB_OSABI_ARM_EABI_V1
2399 ARM Embedded ABI version 1
2400
2401 @findex GDB_OSABI_ARM_EABI_V2
2402 @item GDB_OSABI_ARM_EABI_V2
2403 ARM Embedded ABI version 2
2404
2405 @findex GDB_OSABI_ARM_APCS
2406 @item GDB_OSABI_ARM_APCS
2407 Generic ARM Procedure Call Standard
2408
2409 @end table
2410
2411 Here are the functions that make up the OS ABI framework:
2412
2413 @deftypefun const char *gdbarch_osabi_name (enum gdb_osabi @var{osabi})
2414 Return the name of the OS ABI corresponding to @var{osabi}.
2415 @end deftypefun
2416
2417 @deftypefun void gdbarch_register_osabi (enum bfd_architecture @var{arch}, enum gdb_osabi @var{osabi}, void (*@var{init_osabi})(struct gdbarch_info @var{info}, struct gdbarch *@var{gdbarch}))
2418 Register the OS ABI handler specified by @var{init_osabi} for the
2419 architecture/OS ABI pair specified by @var{arch} and @var{osabi}.
2420 @end deftypefun
2421
2422 @deftypefun void gdbarch_register_osabi_sniffer (enum bfd_architecture @var{arch}, enum bfd_flavour @var{flavour}, enum gdb_osabi (*@var{sniffer})(bfd *@var{abfd}))
2423 Register the OS ABI file sniffer specified by @var{sniffer} for the
2424 BFD architecture/flavour pair specified by @var{arch} and @var{flavour}.
2425 If @var{arch} is @code{bfd_arch_unknown}, the sniffer is considered to
2426 be generic, and is allowed to examine @var{flavour}-flavoured files for
2427 any architecture.
2428 @end deftypefun
2429
2430 @deftypefun enum gdb_osabi gdbarch_lookup_osabi (bfd *@var{abfd})
2431 Examine the file described by @var{abfd} to determine its OS ABI.
2432 The value @code{GDB_OSABI_UNKNOWN} is returned if the OS ABI cannot
2433 be determined.
2434 @end deftypefun
2435
2436 @deftypefun void gdbarch_init_osabi (struct gdbarch info @var{info}, struct gdbarch *@var{gdbarch}, enum gdb_osabi @var{osabi})
2437 Invoke the OS ABI handler corresponding to @var{osabi} to fine-tune the
2438 @code{gdbarch} structure specified by @var{gdbarch}. If a handler
2439 corresponding to @var{osabi} has not been registered for @var{gdbarch}'s
2440 architecture, a warning will be issued and the debugging session will continue
2441 with the defaults already established for @var{gdbarch}.
2442 @end deftypefun
2443
2444 @section Registers and Memory
2445
2446 @value{GDBN}'s model of the target machine is rather simple.
2447 @value{GDBN} assumes the machine includes a bank of registers and a
2448 block of memory. Each register may have a different size.
2449
2450 @value{GDBN} does not have a magical way to match up with the
2451 compiler's idea of which registers are which; however, it is critical
2452 that they do match up accurately. The only way to make this work is
2453 to get accurate information about the order that the compiler uses,
2454 and to reflect that in the @code{REGISTER_NAME} and related macros.
2455
2456 @value{GDBN} can handle big-endian, little-endian, and bi-endian architectures.
2457
2458 @section Pointers Are Not Always Addresses
2459 @cindex pointer representation
2460 @cindex address representation
2461 @cindex word-addressed machines
2462 @cindex separate data and code address spaces
2463 @cindex spaces, separate data and code address
2464 @cindex address spaces, separate data and code
2465 @cindex code pointers, word-addressed
2466 @cindex converting between pointers and addresses
2467 @cindex D10V addresses
2468
2469 On almost all 32-bit architectures, the representation of a pointer is
2470 indistinguishable from the representation of some fixed-length number
2471 whose value is the byte address of the object pointed to. On such
2472 machines, the words ``pointer'' and ``address'' can be used interchangeably.
2473 However, architectures with smaller word sizes are often cramped for
2474 address space, so they may choose a pointer representation that breaks this
2475 identity, and allows a larger code address space.
2476
2477 For example, the Mitsubishi D10V is a 16-bit VLIW processor whose
2478 instructions are 32 bits long@footnote{Some D10V instructions are
2479 actually pairs of 16-bit sub-instructions. However, since you can't
2480 jump into the middle of such a pair, code addresses can only refer to
2481 full 32 bit instructions, which is what matters in this explanation.}.
2482 If the D10V used ordinary byte addresses to refer to code locations,
2483 then the processor would only be able to address 64kb of instructions.
2484 However, since instructions must be aligned on four-byte boundaries, the
2485 low two bits of any valid instruction's byte address are always
2486 zero---byte addresses waste two bits. So instead of byte addresses,
2487 the D10V uses word addresses---byte addresses shifted right two bits---to
2488 refer to code. Thus, the D10V can use 16-bit words to address 256kb of
2489 code space.
2490
2491 However, this means that code pointers and data pointers have different
2492 forms on the D10V. The 16-bit word @code{0xC020} refers to byte address
2493 @code{0xC020} when used as a data address, but refers to byte address
2494 @code{0x30080} when used as a code address.
2495
2496 (The D10V also uses separate code and data address spaces, which also
2497 affects the correspondence between pointers and addresses, but we're
2498 going to ignore that here; this example is already too long.)
2499
2500 To cope with architectures like this---the D10V is not the only
2501 one!---@value{GDBN} tries to distinguish between @dfn{addresses}, which are
2502 byte numbers, and @dfn{pointers}, which are the target's representation
2503 of an address of a particular type of data. In the example above,
2504 @code{0xC020} is the pointer, which refers to one of the addresses
2505 @code{0xC020} or @code{0x30080}, depending on the type imposed upon it.
2506 @value{GDBN} provides functions for turning a pointer into an address
2507 and vice versa, in the appropriate way for the current architecture.
2508
2509 Unfortunately, since addresses and pointers are identical on almost all
2510 processors, this distinction tends to bit-rot pretty quickly. Thus,
2511 each time you port @value{GDBN} to an architecture which does
2512 distinguish between pointers and addresses, you'll probably need to
2513 clean up some architecture-independent code.
2514
2515 Here are functions which convert between pointers and addresses:
2516
2517 @deftypefun CORE_ADDR extract_typed_address (void *@var{buf}, struct type *@var{type})
2518 Treat the bytes at @var{buf} as a pointer or reference of type
2519 @var{type}, and return the address it represents, in a manner
2520 appropriate for the current architecture. This yields an address
2521 @value{GDBN} can use to read target memory, disassemble, etc. Note that
2522 @var{buf} refers to a buffer in @value{GDBN}'s memory, not the
2523 inferior's.
2524
2525 For example, if the current architecture is the Intel x86, this function
2526 extracts a little-endian integer of the appropriate length from
2527 @var{buf} and returns it. However, if the current architecture is the
2528 D10V, this function will return a 16-bit integer extracted from
2529 @var{buf}, multiplied by four if @var{type} is a pointer to a function.
2530
2531 If @var{type} is not a pointer or reference type, then this function
2532 will signal an internal error.
2533 @end deftypefun
2534
2535 @deftypefun CORE_ADDR store_typed_address (void *@var{buf}, struct type *@var{type}, CORE_ADDR @var{addr})
2536 Store the address @var{addr} in @var{buf}, in the proper format for a
2537 pointer of type @var{type} in the current architecture. Note that
2538 @var{buf} refers to a buffer in @value{GDBN}'s memory, not the
2539 inferior's.
2540
2541 For example, if the current architecture is the Intel x86, this function
2542 stores @var{addr} unmodified as a little-endian integer of the
2543 appropriate length in @var{buf}. However, if the current architecture
2544 is the D10V, this function divides @var{addr} by four if @var{type} is
2545 a pointer to a function, and then stores it in @var{buf}.
2546
2547 If @var{type} is not a pointer or reference type, then this function
2548 will signal an internal error.
2549 @end deftypefun
2550
2551 @deftypefun CORE_ADDR value_as_address (struct value *@var{val})
2552 Assuming that @var{val} is a pointer, return the address it represents,
2553 as appropriate for the current architecture.
2554
2555 This function actually works on integral values, as well as pointers.
2556 For pointers, it performs architecture-specific conversions as
2557 described above for @code{extract_typed_address}.
2558 @end deftypefun
2559
2560 @deftypefun CORE_ADDR value_from_pointer (struct type *@var{type}, CORE_ADDR @var{addr})
2561 Create and return a value representing a pointer of type @var{type} to
2562 the address @var{addr}, as appropriate for the current architecture.
2563 This function performs architecture-specific conversions as described
2564 above for @code{store_typed_address}.
2565 @end deftypefun
2566
2567
2568 @value{GDBN} also provides functions that do the same tasks, but assume
2569 that pointers are simply byte addresses; they aren't sensitive to the
2570 current architecture, beyond knowing the appropriate endianness.
2571
2572 @deftypefun CORE_ADDR extract_address (void *@var{addr}, int len)
2573 Extract a @var{len}-byte number from @var{addr} in the appropriate
2574 endianness for the current architecture, and return it. Note that
2575 @var{addr} refers to @value{GDBN}'s memory, not the inferior's.
2576
2577 This function should only be used in architecture-specific code; it
2578 doesn't have enough information to turn bits into a true address in the
2579 appropriate way for the current architecture. If you can, use
2580 @code{extract_typed_address} instead.
2581 @end deftypefun
2582
2583 @deftypefun void store_address (void *@var{addr}, int @var{len}, LONGEST @var{val})
2584 Store @var{val} at @var{addr} as a @var{len}-byte integer, in the
2585 appropriate endianness for the current architecture. Note that
2586 @var{addr} refers to a buffer in @value{GDBN}'s memory, not the
2587 inferior's.
2588
2589 This function should only be used in architecture-specific code; it
2590 doesn't have enough information to turn a true address into bits in the
2591 appropriate way for the current architecture. If you can, use
2592 @code{store_typed_address} instead.
2593 @end deftypefun
2594
2595
2596 Here are some macros which architectures can define to indicate the
2597 relationship between pointers and addresses. These have default
2598 definitions, appropriate for architectures on which all pointers are
2599 simple unsigned byte addresses.
2600
2601 @deftypefn {Target Macro} CORE_ADDR POINTER_TO_ADDRESS (struct type *@var{type}, char *@var{buf})
2602 Assume that @var{buf} holds a pointer of type @var{type}, in the
2603 appropriate format for the current architecture. Return the byte
2604 address the pointer refers to.
2605
2606 This function may safely assume that @var{type} is either a pointer or a
2607 C@t{++} reference type.
2608 @end deftypefn
2609
2610 @deftypefn {Target Macro} void ADDRESS_TO_POINTER (struct type *@var{type}, char *@var{buf}, CORE_ADDR @var{addr})
2611 Store in @var{buf} a pointer of type @var{type} representing the address
2612 @var{addr}, in the appropriate format for the current architecture.
2613
2614 This function may safely assume that @var{type} is either a pointer or a
2615 C@t{++} reference type.
2616 @end deftypefn
2617
2618
2619 @section Raw and Virtual Register Representations
2620 @cindex raw register representation
2621 @cindex virtual register representation
2622 @cindex representations, raw and virtual registers
2623
2624 @emph{Maintainer note: This section is pretty much obsolete. The
2625 functionality described here has largely been replaced by
2626 pseudo-registers and the mechanisms described in @ref{Target
2627 Architecture Definition, , Using Different Register and Memory Data
2628 Representations}. See also @uref{http://www.gnu.org/software/gdb/bugs/,
2629 Bug Tracking Database} and
2630 @uref{http://sources.redhat.com/gdb/current/ari/, ARI Index} for more
2631 up-to-date information.}
2632
2633 Some architectures use one representation for a value when it lives in a
2634 register, but use a different representation when it lives in memory.
2635 In @value{GDBN}'s terminology, the @dfn{raw} representation is the one used in
2636 the target registers, and the @dfn{virtual} representation is the one
2637 used in memory, and within @value{GDBN} @code{struct value} objects.
2638
2639 @emph{Maintainer note: Notice that the same mechanism is being used to
2640 both convert a register to a @code{struct value} and alternative
2641 register forms.}
2642
2643 For almost all data types on almost all architectures, the virtual and
2644 raw representations are identical, and no special handling is needed.
2645 However, they do occasionally differ. For example:
2646
2647 @itemize @bullet
2648 @item
2649 The x86 architecture supports an 80-bit @code{long double} type. However, when
2650 we store those values in memory, they occupy twelve bytes: the
2651 floating-point number occupies the first ten, and the final two bytes
2652 are unused. This keeps the values aligned on four-byte boundaries,
2653 allowing more efficient access. Thus, the x86 80-bit floating-point
2654 type is the raw representation, and the twelve-byte loosely-packed
2655 arrangement is the virtual representation.
2656
2657 @item
2658 Some 64-bit MIPS targets present 32-bit registers to @value{GDBN} as 64-bit
2659 registers, with garbage in their upper bits. @value{GDBN} ignores the top 32
2660 bits. Thus, the 64-bit form, with garbage in the upper 32 bits, is the
2661 raw representation, and the trimmed 32-bit representation is the
2662 virtual representation.
2663 @end itemize
2664
2665 In general, the raw representation is determined by the architecture, or
2666 @value{GDBN}'s interface to the architecture, while the virtual representation
2667 can be chosen for @value{GDBN}'s convenience. @value{GDBN}'s register file,
2668 @code{registers}, holds the register contents in raw format, and the
2669 @value{GDBN} remote protocol transmits register values in raw format.
2670
2671 Your architecture may define the following macros to request
2672 conversions between the raw and virtual format:
2673
2674 @deftypefn {Target Macro} int REGISTER_CONVERTIBLE (int @var{reg})
2675 Return non-zero if register number @var{reg}'s value needs different raw
2676 and virtual formats.
2677
2678 You should not use @code{REGISTER_CONVERT_TO_VIRTUAL} for a register
2679 unless this macro returns a non-zero value for that register.
2680 @end deftypefn
2681
2682 @deftypefn {Target Macro} int REGISTER_RAW_SIZE (int @var{reg})
2683 The size of register number @var{reg}'s raw value. This is the number
2684 of bytes the register will occupy in @code{registers}, or in a @value{GDBN}
2685 remote protocol packet.
2686 @end deftypefn
2687
2688 @deftypefn {Target Macro} int REGISTER_VIRTUAL_SIZE (int @var{reg})
2689 The size of register number @var{reg}'s value, in its virtual format.
2690 This is the size a @code{struct value}'s buffer will have, holding that
2691 register's value.
2692 @end deftypefn
2693
2694 @deftypefn {Target Macro} struct type *REGISTER_VIRTUAL_TYPE (int @var{reg})
2695 This is the type of the virtual representation of register number
2696 @var{reg}. Note that there is no need for a macro giving a type for the
2697 register's raw form; once the register's value has been obtained, @value{GDBN}
2698 always uses the virtual form.
2699 @end deftypefn
2700
2701 @deftypefn {Target Macro} void REGISTER_CONVERT_TO_VIRTUAL (int @var{reg}, struct type *@var{type}, char *@var{from}, char *@var{to})
2702 Convert the value of register number @var{reg} to @var{type}, which
2703 should always be @code{REGISTER_VIRTUAL_TYPE (@var{reg})}. The buffer
2704 at @var{from} holds the register's value in raw format; the macro should
2705 convert the value to virtual format, and place it at @var{to}.
2706
2707 Note that @code{REGISTER_CONVERT_TO_VIRTUAL} and
2708 @code{REGISTER_CONVERT_TO_RAW} take their @var{reg} and @var{type}
2709 arguments in different orders.
2710
2711 You should only use @code{REGISTER_CONVERT_TO_VIRTUAL} with registers
2712 for which the @code{REGISTER_CONVERTIBLE} macro returns a non-zero
2713 value.
2714 @end deftypefn
2715
2716 @deftypefn {Target Macro} void REGISTER_CONVERT_TO_RAW (struct type *@var{type}, int @var{reg}, char *@var{from}, char *@var{to})
2717 Convert the value of register number @var{reg} to @var{type}, which
2718 should always be @code{REGISTER_VIRTUAL_TYPE (@var{reg})}. The buffer
2719 at @var{from} holds the register's value in raw format; the macro should
2720 convert the value to virtual format, and place it at @var{to}.
2721
2722 Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_CONVERT_TO_RAW take
2723 their @var{reg} and @var{type} arguments in different orders.
2724 @end deftypefn
2725
2726
2727 @section Using Different Register and Memory Data Representations
2728 @cindex register representation
2729 @cindex memory representation
2730 @cindex representations, register and memory
2731 @cindex register data formats, converting
2732 @cindex @code{struct value}, converting register contents to
2733
2734 @emph{Maintainer's note: The way GDB manipulates registers is undergoing
2735 significant change. Many of the macros and functions refered to in this
2736 section are likely to be subject to further revision. See
2737 @uref{http://sources.redhat.com/gdb/current/ari/, A.R. Index} and
2738 @uref{http://www.gnu.org/software/gdb/bugs, Bug Tracking Database} for
2739 further information. cagney/2002-05-06.}
2740
2741 Some architectures can represent a data object in a register using a
2742 form that is different to the objects more normal memory representation.
2743 For example:
2744
2745 @itemize @bullet
2746
2747 @item
2748 The Alpha architecture can represent 32 bit integer values in
2749 floating-point registers.
2750
2751 @item
2752 The x86 architecture supports 80-bit floating-point registers. The
2753 @code{long double} data type occupies 96 bits in memory but only 80 bits
2754 when stored in a register.
2755
2756 @end itemize
2757
2758 In general, the register representation of a data type is determined by
2759 the architecture, or @value{GDBN}'s interface to the architecture, while
2760 the memory representation is determined by the Application Binary
2761 Interface.
2762
2763 For almost all data types on almost all architectures, the two
2764 representations are identical, and no special handling is needed.
2765 However, they do occasionally differ. Your architecture may define the
2766 following macros to request conversions between the register and memory
2767 representations of a data type:
2768
2769 @deftypefn {Target Macro} int CONVERT_REGISTER_P (int @var{reg})
2770 Return non-zero if the representation of a data value stored in this
2771 register may be different to the representation of that same data value
2772 when stored in memory.
2773
2774 When non-zero, the macros @code{REGISTER_TO_VALUE} and
2775 @code{VALUE_TO_REGISTER} are used to perform any necessary conversion.
2776 @end deftypefn
2777
2778 @deftypefn {Target Macro} void REGISTER_TO_VALUE (int @var{reg}, struct type *@var{type}, char *@var{from}, char *@var{to})
2779 Convert the value of register number @var{reg} to a data object of type
2780 @var{type}. The buffer at @var{from} holds the register's value in raw
2781 format; the converted value should be placed in the buffer at @var{to}.
2782
2783 Note that @code{REGISTER_TO_VALUE} and @code{VALUE_TO_REGISTER} take
2784 their @var{reg} and @var{type} arguments in different orders.
2785
2786 You should only use @code{REGISTER_TO_VALUE} with registers for which
2787 the @code{CONVERT_REGISTER_P} macro returns a non-zero value.
2788 @end deftypefn
2789
2790 @deftypefn {Target Macro} void VALUE_TO_REGISTER (struct type *@var{type}, int @var{reg}, char *@var{from}, char *@var{to})
2791 Convert a data value of type @var{type} to register number @var{reg}'
2792 raw format.
2793
2794 Note that @code{REGISTER_TO_VALUE} and @code{VALUE_TO_REGISTER} take
2795 their @var{reg} and @var{type} arguments in different orders.
2796
2797 You should only use @code{VALUE_TO_REGISTER} with registers for which
2798 the @code{CONVERT_REGISTER_P} macro returns a non-zero value.
2799 @end deftypefn
2800
2801 @deftypefn {Target Macro} void REGISTER_CONVERT_TO_TYPE (int @var{regnum}, struct type *@var{type}, char *@var{buf})
2802 See @file{mips-tdep.c}. It does not do what you want.
2803 @end deftypefn
2804
2805
2806 @section Frame Interpretation
2807
2808 @section Inferior Call Setup
2809
2810 @section Compiler Characteristics
2811
2812 @section Target Conditionals
2813
2814 This section describes the macros that you can use to define the target
2815 machine.
2816
2817 @table @code
2818
2819 @item ADDITIONAL_OPTIONS
2820 @itemx ADDITIONAL_OPTION_CASES
2821 @itemx ADDITIONAL_OPTION_HANDLER
2822 @itemx ADDITIONAL_OPTION_HELP
2823 @findex ADDITIONAL_OPTION_HELP
2824 @findex ADDITIONAL_OPTION_HANDLER
2825 @findex ADDITIONAL_OPTION_CASES
2826 @findex ADDITIONAL_OPTIONS
2827 These are a set of macros that allow the addition of additional command
2828 line options to @value{GDBN}. They are currently used only for the unsupported
2829 i960 Nindy target, and should not be used in any other configuration.
2830
2831 @item ADDR_BITS_REMOVE (addr)
2832 @findex ADDR_BITS_REMOVE
2833 If a raw machine instruction address includes any bits that are not
2834 really part of the address, then define this macro to expand into an
2835 expression that zeroes those bits in @var{addr}. This is only used for
2836 addresses of instructions, and even then not in all contexts.
2837
2838 For example, the two low-order bits of the PC on the Hewlett-Packard PA
2839 2.0 architecture contain the privilege level of the corresponding
2840 instruction. Since instructions must always be aligned on four-byte
2841 boundaries, the processor masks out these bits to generate the actual
2842 address of the instruction. ADDR_BITS_REMOVE should filter out these
2843 bits with an expression such as @code{((addr) & ~3)}.
2844
2845 @item ADDRESS_TO_POINTER (@var{type}, @var{buf}, @var{addr})
2846 @findex ADDRESS_TO_POINTER
2847 Store in @var{buf} a pointer of type @var{type} representing the address
2848 @var{addr}, in the appropriate format for the current architecture.
2849 This macro may safely assume that @var{type} is either a pointer or a
2850 C@t{++} reference type.
2851 @xref{Target Architecture Definition, , Pointers Are Not Always Addresses}.
2852
2853 @item BEFORE_MAIN_LOOP_HOOK
2854 @findex BEFORE_MAIN_LOOP_HOOK
2855 Define this to expand into any code that you want to execute before the
2856 main loop starts. Although this is not, strictly speaking, a target
2857 conditional, that is how it is currently being used. Note that if a
2858 configuration were to define it one way for a host and a different way
2859 for the target, @value{GDBN} will probably not compile, let alone run
2860 correctly. This macro is currently used only for the unsupported i960 Nindy
2861 target, and should not be used in any other configuration.
2862
2863 @item BELIEVE_PCC_PROMOTION
2864 @findex BELIEVE_PCC_PROMOTION
2865 Define if the compiler promotes a @code{short} or @code{char}
2866 parameter to an @code{int}, but still reports the parameter as its
2867 original type, rather than the promoted type.
2868
2869 @item BELIEVE_PCC_PROMOTION_TYPE
2870 @findex BELIEVE_PCC_PROMOTION_TYPE
2871 Define this if @value{GDBN} should believe the type of a @code{short}
2872 argument when compiled by @code{pcc}, but look within a full int space to get
2873 its value. Only defined for Sun-3 at present.
2874
2875 @item BITS_BIG_ENDIAN
2876 @findex BITS_BIG_ENDIAN
2877 Define this if the numbering of bits in the targets does @strong{not} match the
2878 endianness of the target byte order. A value of 1 means that the bits
2879 are numbered in a big-endian bit order, 0 means little-endian.
2880
2881 @item BREAKPOINT
2882 @findex BREAKPOINT
2883 This is the character array initializer for the bit pattern to put into
2884 memory where a breakpoint is set. Although it's common to use a trap
2885 instruction for a breakpoint, it's not required; for instance, the bit
2886 pattern could be an invalid instruction. The breakpoint must be no
2887 longer than the shortest instruction of the architecture.
2888
2889 @code{BREAKPOINT} has been deprecated in favor of
2890 @code{BREAKPOINT_FROM_PC}.
2891
2892 @item BIG_BREAKPOINT
2893 @itemx LITTLE_BREAKPOINT
2894 @findex LITTLE_BREAKPOINT
2895 @findex BIG_BREAKPOINT
2896 Similar to BREAKPOINT, but used for bi-endian targets.
2897
2898 @code{BIG_BREAKPOINT} and @code{LITTLE_BREAKPOINT} have been deprecated in
2899 favor of @code{BREAKPOINT_FROM_PC}.
2900
2901 @item REMOTE_BREAKPOINT
2902 @itemx LITTLE_REMOTE_BREAKPOINT
2903 @itemx BIG_REMOTE_BREAKPOINT
2904 @findex BIG_REMOTE_BREAKPOINT
2905 @findex LITTLE_REMOTE_BREAKPOINT
2906 @findex REMOTE_BREAKPOINT
2907 Similar to BREAKPOINT, but used for remote targets.
2908
2909 @code{BIG_REMOTE_BREAKPOINT} and @code{LITTLE_REMOTE_BREAKPOINT} have been
2910 deprecated in favor of @code{BREAKPOINT_FROM_PC}.
2911
2912 @item BREAKPOINT_FROM_PC (@var{pcptr}, @var{lenptr})
2913 @findex BREAKPOINT_FROM_PC
2914 Use the program counter to determine the contents and size of a
2915 breakpoint instruction. It returns a pointer to a string of bytes
2916 that encode a breakpoint instruction, stores the length of the string
2917 to *@var{lenptr}, and adjusts pc (if necessary) to point to the actual
2918 memory location where the breakpoint should be inserted.
2919
2920 Although it is common to use a trap instruction for a breakpoint, it's
2921 not required; for instance, the bit pattern could be an invalid
2922 instruction. The breakpoint must be no longer than the shortest
2923 instruction of the architecture.
2924
2925 Replaces all the other @var{BREAKPOINT} macros.
2926
2927 @item MEMORY_INSERT_BREAKPOINT (@var{addr}, @var{contents_cache})
2928 @itemx MEMORY_REMOVE_BREAKPOINT (@var{addr}, @var{contents_cache})
2929 @findex MEMORY_REMOVE_BREAKPOINT
2930 @findex MEMORY_INSERT_BREAKPOINT
2931 Insert or remove memory based breakpoints. Reasonable defaults
2932 (@code{default_memory_insert_breakpoint} and
2933 @code{default_memory_remove_breakpoint} respectively) have been
2934 provided so that it is not necessary to define these for most
2935 architectures. Architectures which may want to define
2936 @code{MEMORY_INSERT_BREAKPOINT} and @code{MEMORY_REMOVE_BREAKPOINT} will
2937 likely have instructions that are oddly sized or are not stored in a
2938 conventional manner.
2939
2940 It may also be desirable (from an efficiency standpoint) to define
2941 custom breakpoint insertion and removal routines if
2942 @code{BREAKPOINT_FROM_PC} needs to read the target's memory for some
2943 reason.
2944
2945 @item CALL_DUMMY_P
2946 @findex CALL_DUMMY_P
2947 A C expression that is non-zero when the target supports inferior function
2948 calls.
2949
2950 @item CALL_DUMMY_WORDS
2951 @findex CALL_DUMMY_WORDS
2952 Pointer to an array of @code{LONGEST} words of data containing
2953 host-byte-ordered @code{REGISTER_BYTES} sized values that partially
2954 specify the sequence of instructions needed for an inferior function
2955 call.
2956
2957 Should be deprecated in favor of a macro that uses target-byte-ordered
2958 data.
2959
2960 @item SIZEOF_CALL_DUMMY_WORDS
2961 @findex SIZEOF_CALL_DUMMY_WORDS
2962 The size of @code{CALL_DUMMY_WORDS}. When @code{CALL_DUMMY_P} this must
2963 return a positive value. See also @code{CALL_DUMMY_LENGTH}.
2964
2965 @item CALL_DUMMY
2966 @findex CALL_DUMMY
2967 A static initializer for @code{CALL_DUMMY_WORDS}. Deprecated.
2968
2969 @item CALL_DUMMY_LOCATION
2970 @findex CALL_DUMMY_LOCATION
2971 See the file @file{inferior.h}.
2972
2973 @item CALL_DUMMY_STACK_ADJUST
2974 @findex CALL_DUMMY_STACK_ADJUST
2975 Stack adjustment needed when performing an inferior function call.
2976
2977 Should be deprecated in favor of something like @code{STACK_ALIGN}.
2978
2979 @item CALL_DUMMY_STACK_ADJUST_P
2980 @findex CALL_DUMMY_STACK_ADJUST_P
2981 Predicate for use of @code{CALL_DUMMY_STACK_ADJUST}.
2982
2983 Should be deprecated in favor of something like @code{STACK_ALIGN}.
2984
2985 @item CANNOT_FETCH_REGISTER (@var{regno})
2986 @findex CANNOT_FETCH_REGISTER
2987 A C expression that should be nonzero if @var{regno} cannot be fetched
2988 from an inferior process. This is only relevant if
2989 @code{FETCH_INFERIOR_REGISTERS} is not defined.
2990
2991 @item CANNOT_STORE_REGISTER (@var{regno})
2992 @findex CANNOT_STORE_REGISTER
2993 A C expression that should be nonzero if @var{regno} should not be
2994 written to the target. This is often the case for program counters,
2995 status words, and other special registers. If this is not defined,
2996 @value{GDBN} will assume that all registers may be written.
2997
2998 @item DO_DEFERRED_STORES
2999 @itemx CLEAR_DEFERRED_STORES
3000 @findex CLEAR_DEFERRED_STORES
3001 @findex DO_DEFERRED_STORES
3002 Define this to execute any deferred stores of registers into the inferior,
3003 and to cancel any deferred stores.
3004
3005 Currently only implemented correctly for native Sparc configurations?
3006
3007 @item COERCE_FLOAT_TO_DOUBLE (@var{formal}, @var{actual})
3008 @findex COERCE_FLOAT_TO_DOUBLE
3009 @cindex promotion to @code{double}
3010 @cindex @code{float} arguments
3011 @cindex prototyped functions, passing arguments to
3012 @cindex passing arguments to prototyped functions
3013 Return non-zero if GDB should promote @code{float} values to
3014 @code{double} when calling a non-prototyped function. The argument
3015 @var{actual} is the type of the value we want to pass to the function.
3016 The argument @var{formal} is the type of this argument, as it appears in
3017 the function's definition. Note that @var{formal} may be zero if we
3018 have no debugging information for the function, or if we're passing more
3019 arguments than are officially declared (for example, varargs). This
3020 macro is never invoked if the function definitely has a prototype.
3021
3022 How you should pass arguments to a function depends on whether it was
3023 defined in K&R style or prototype style. If you define a function using
3024 the K&R syntax that takes a @code{float} argument, then callers must
3025 pass that argument as a @code{double}. If you define the function using
3026 the prototype syntax, then you must pass the argument as a @code{float},
3027 with no promotion.
3028
3029 Unfortunately, on certain older platforms, the debug info doesn't
3030 indicate reliably how each function was defined. A function type's
3031 @code{TYPE_FLAG_PROTOTYPED} flag may be unset, even if the function was
3032 defined in prototype style. When calling a function whose
3033 @code{TYPE_FLAG_PROTOTYPED} flag is unset, GDB consults the
3034 @code{COERCE_FLOAT_TO_DOUBLE} macro to decide what to do.
3035
3036 @findex standard_coerce_float_to_double
3037 For modern targets, it is proper to assume that, if the prototype flag
3038 is unset, that can be trusted: @code{float} arguments should be promoted
3039 to @code{double}. You should use the function
3040 @code{standard_coerce_float_to_double} to get this behavior.
3041
3042 @findex default_coerce_float_to_double
3043 For some older targets, if the prototype flag is unset, that doesn't
3044 tell us anything. So we guess that, if we don't have a type for the
3045 formal parameter (@i{i.e.}, the first argument to
3046 @code{COERCE_FLOAT_TO_DOUBLE} is null), then we should promote it;
3047 otherwise, we should leave it alone. The function
3048 @code{default_coerce_float_to_double} provides this behavior; it is the
3049 default value, for compatibility with older configurations.
3050
3051 @item int CONVERT_REGISTER_P(@var{regnum})
3052 @findex CONVERT_REGISTER_P
3053 Return non-zero if register @var{regnum} can represent data values in a
3054 non-standard form.
3055 @xref{Target Architecture Definition, , Using Different Register and Memory Data Representations}.
3056
3057 @item CPLUS_MARKER
3058 @findex CPLUS_MARKERz
3059 Define this to expand into the character that G@t{++} uses to distinguish
3060 compiler-generated identifiers from programmer-specified identifiers.
3061 By default, this expands into @code{'$'}. Most System V targets should
3062 define this to @code{'.'}.
3063
3064 @item DBX_PARM_SYMBOL_CLASS
3065 @findex DBX_PARM_SYMBOL_CLASS
3066 Hook for the @code{SYMBOL_CLASS} of a parameter when decoding DBX symbol
3067 information. In the i960, parameters can be stored as locals or as
3068 args, depending on the type of the debug record.
3069
3070 @item DECR_PC_AFTER_BREAK
3071 @findex DECR_PC_AFTER_BREAK
3072 Define this to be the amount by which to decrement the PC after the
3073 program encounters a breakpoint. This is often the number of bytes in
3074 @code{BREAKPOINT}, though not always. For most targets this value will be 0.
3075
3076 @item DECR_PC_AFTER_HW_BREAK
3077 @findex DECR_PC_AFTER_HW_BREAK
3078 Similarly, for hardware breakpoints.
3079
3080 @item DISABLE_UNSETTABLE_BREAK (@var{addr})
3081 @findex DISABLE_UNSETTABLE_BREAK
3082 If defined, this should evaluate to 1 if @var{addr} is in a shared
3083 library in which breakpoints cannot be set and so should be disabled.
3084
3085 @item DO_REGISTERS_INFO
3086 @findex DO_REGISTERS_INFO
3087 If defined, use this to print the value of a register or all registers.
3088
3089 @item PRINT_FLOAT_INFO()
3090 #findex PRINT_FLOAT_INFO
3091 If defined, then the @samp{info float} command will print information about
3092 the processor's floating point unit.
3093
3094 @item DWARF_REG_TO_REGNUM
3095 @findex DWARF_REG_TO_REGNUM
3096 Convert DWARF register number into @value{GDBN} regnum. If not defined,
3097 no conversion will be performed.
3098
3099 @item DWARF2_REG_TO_REGNUM
3100 @findex DWARF2_REG_TO_REGNUM
3101 Convert DWARF2 register number into @value{GDBN} regnum. If not
3102 defined, no conversion will be performed.
3103
3104 @item ECOFF_REG_TO_REGNUM
3105 @findex ECOFF_REG_TO_REGNUM
3106 Convert ECOFF register number into @value{GDBN} regnum. If not defined,
3107 no conversion will be performed.
3108
3109 @item END_OF_TEXT_DEFAULT
3110 @findex END_OF_TEXT_DEFAULT
3111 This is an expression that should designate the end of the text section.
3112 @c (? FIXME ?)
3113
3114 @item EXTRACT_RETURN_VALUE(@var{type}, @var{regbuf}, @var{valbuf})
3115 @findex EXTRACT_RETURN_VALUE
3116 Define this to extract a function's return value of type @var{type} from
3117 the raw register state @var{regbuf} and copy that, in virtual format,
3118 into @var{valbuf}.
3119
3120 @item EXTRACT_STRUCT_VALUE_ADDRESS(@var{regbuf})
3121 @findex EXTRACT_STRUCT_VALUE_ADDRESS
3122 When defined, extract from the array @var{regbuf} (containing the raw
3123 register state) the @code{CORE_ADDR} at which a function should return
3124 its structure value.
3125
3126 If not defined, @code{EXTRACT_RETURN_VALUE} is used.
3127
3128 @item EXTRACT_STRUCT_VALUE_ADDRESS_P()
3129 @findex EXTRACT_STRUCT_VALUE_ADDRESS_P
3130 Predicate for @code{EXTRACT_STRUCT_VALUE_ADDRESS}.
3131
3132 @item FLOAT_INFO
3133 @findex FLOAT_INFO
3134 Deprecated in favor of @code{PRINT_FLOAT_INFO}.
3135
3136 @item FP_REGNUM
3137 @findex FP_REGNUM
3138 If the virtual frame pointer is kept in a register, then define this
3139 macro to be the number (greater than or equal to zero) of that register.
3140
3141 This should only need to be defined if @code{TARGET_READ_FP} is not
3142 defined.
3143
3144 @item FRAMELESS_FUNCTION_INVOCATION(@var{fi})
3145 @findex FRAMELESS_FUNCTION_INVOCATION
3146 Define this to an expression that returns 1 if the function invocation
3147 represented by @var{fi} does not have a stack frame associated with it.
3148 Otherwise return 0.
3149
3150 @item FRAME_ARGS_ADDRESS_CORRECT
3151 @findex FRAME_ARGS_ADDRESS_CORRECT
3152 See @file{stack.c}.
3153
3154 @item FRAME_CHAIN(@var{frame})
3155 @findex FRAME_CHAIN
3156 Given @var{frame}, return a pointer to the calling frame.
3157
3158 @item FRAME_CHAIN_VALID(@var{chain}, @var{thisframe})
3159 @findex FRAME_CHAIN_VALID
3160 Define this to be an expression that returns zero if the given frame is
3161 an outermost frame, with no caller, and nonzero otherwise. Several
3162 common definitions are available:
3163
3164 @itemize @bullet
3165 @item
3166 @code{file_frame_chain_valid} is nonzero if the chain pointer is nonzero
3167 and given frame's PC is not inside the startup file (such as
3168 @file{crt0.o}).
3169
3170 @item
3171 @code{func_frame_chain_valid} is nonzero if the chain
3172 pointer is nonzero and the given frame's PC is not in @code{main} or a
3173 known entry point function (such as @code{_start}).
3174
3175 @item
3176 @code{generic_file_frame_chain_valid} and
3177 @code{generic_func_frame_chain_valid} are equivalent implementations for
3178 targets using generic dummy frames.
3179 @end itemize
3180
3181 @item FRAME_INIT_SAVED_REGS(@var{frame})
3182 @findex FRAME_INIT_SAVED_REGS
3183 See @file{frame.h}. Determines the address of all registers in the
3184 current stack frame storing each in @code{frame->saved_regs}. Space for
3185 @code{frame->saved_regs} shall be allocated by
3186 @code{FRAME_INIT_SAVED_REGS} using either
3187 @code{frame_saved_regs_zalloc} or @code{frame_obstack_alloc}.
3188
3189 @code{FRAME_FIND_SAVED_REGS} and @code{EXTRA_FRAME_INFO} are deprecated.
3190
3191 @item FRAME_NUM_ARGS (@var{fi})
3192 @findex FRAME_NUM_ARGS
3193 For the frame described by @var{fi} return the number of arguments that
3194 are being passed. If the number of arguments is not known, return
3195 @code{-1}.
3196
3197 @item FRAME_SAVED_PC(@var{frame})
3198 @findex FRAME_SAVED_PC
3199 Given @var{frame}, return the pc saved there. This is the return
3200 address.
3201
3202 @item FUNCTION_EPILOGUE_SIZE
3203 @findex FUNCTION_EPILOGUE_SIZE
3204 For some COFF targets, the @code{x_sym.x_misc.x_fsize} field of the
3205 function end symbol is 0. For such targets, you must define
3206 @code{FUNCTION_EPILOGUE_SIZE} to expand into the standard size of a
3207 function's epilogue.
3208
3209 @item FUNCTION_START_OFFSET
3210 @findex FUNCTION_START_OFFSET
3211 An integer, giving the offset in bytes from a function's address (as
3212 used in the values of symbols, function pointers, etc.), and the
3213 function's first genuine instruction.
3214
3215 This is zero on almost all machines: the function's address is usually
3216 the address of its first instruction. However, on the VAX, for example,
3217 each function starts with two bytes containing a bitmask indicating
3218 which registers to save upon entry to the function. The VAX @code{call}
3219 instructions check this value, and save the appropriate registers
3220 automatically. Thus, since the offset from the function's address to
3221 its first instruction is two bytes, @code{FUNCTION_START_OFFSET} would
3222 be 2 on the VAX.
3223
3224 @item GCC_COMPILED_FLAG_SYMBOL
3225 @itemx GCC2_COMPILED_FLAG_SYMBOL
3226 @findex GCC2_COMPILED_FLAG_SYMBOL
3227 @findex GCC_COMPILED_FLAG_SYMBOL
3228 If defined, these are the names of the symbols that @value{GDBN} will
3229 look for to detect that GCC compiled the file. The default symbols
3230 are @code{gcc_compiled.} and @code{gcc2_compiled.},
3231 respectively. (Currently only defined for the Delta 68.)
3232
3233 @item @value{GDBN}_MULTI_ARCH
3234 @findex @value{GDBN}_MULTI_ARCH
3235 If defined and non-zero, enables support for multiple architectures
3236 within @value{GDBN}.
3237
3238 This support can be enabled at two levels. At level one, only
3239 definitions for previously undefined macros are provided; at level two,
3240 a multi-arch definition of all architecture dependent macros will be
3241 defined.
3242
3243 @item @value{GDBN}_TARGET_IS_HPPA
3244 @findex @value{GDBN}_TARGET_IS_HPPA
3245 This determines whether horrible kludge code in @file{dbxread.c} and
3246 @file{partial-stab.h} is used to mangle multiple-symbol-table files from
3247 HPPA's. This should all be ripped out, and a scheme like @file{elfread.c}
3248 used instead.
3249
3250 @item GET_LONGJMP_TARGET
3251 @findex GET_LONGJMP_TARGET
3252 For most machines, this is a target-dependent parameter. On the
3253 DECstation and the Iris, this is a native-dependent parameter, since
3254 the header file @file{setjmp.h} is needed to define it.
3255
3256 This macro determines the target PC address that @code{longjmp} will jump to,
3257 assuming that we have just stopped at a @code{longjmp} breakpoint. It takes a
3258 @code{CORE_ADDR *} as argument, and stores the target PC value through this
3259 pointer. It examines the current state of the machine as needed.
3260
3261 @item GET_SAVED_REGISTER
3262 @findex GET_SAVED_REGISTER
3263 @findex get_saved_register
3264 Define this if you need to supply your own definition for the function
3265 @code{get_saved_register}.
3266
3267 @item IBM6000_TARGET
3268 @findex IBM6000_TARGET
3269 Shows that we are configured for an IBM RS/6000 target. This
3270 conditional should be eliminated (FIXME) and replaced by
3271 feature-specific macros. It was introduced in a haste and we are
3272 repenting at leisure.
3273
3274 @item I386_USE_GENERIC_WATCHPOINTS
3275 An x86-based target can define this to use the generic x86 watchpoint
3276 support; see @ref{Algorithms, I386_USE_GENERIC_WATCHPOINTS}.
3277
3278 @item SYMBOLS_CAN_START_WITH_DOLLAR
3279 @findex SYMBOLS_CAN_START_WITH_DOLLAR
3280 Some systems have routines whose names start with @samp{$}. Giving this
3281 macro a non-zero value tells @value{GDBN}'s expression parser to check for such
3282 routines when parsing tokens that begin with @samp{$}.
3283
3284 On HP-UX, certain system routines (millicode) have names beginning with
3285 @samp{$} or @samp{$$}. For example, @code{$$dyncall} is a millicode
3286 routine that handles inter-space procedure calls on PA-RISC.
3287
3288 @item INIT_EXTRA_FRAME_INFO (@var{fromleaf}, @var{frame})
3289 @findex INIT_EXTRA_FRAME_INFO
3290 If additional information about the frame is required this should be
3291 stored in @code{frame->extra_info}. Space for @code{frame->extra_info}
3292 is allocated using @code{frame_obstack_alloc}.
3293
3294 @item INIT_FRAME_PC (@var{fromleaf}, @var{prev})
3295 @findex INIT_FRAME_PC
3296 This is a C statement that sets the pc of the frame pointed to by
3297 @var{prev}. [By default...]
3298
3299 @item INNER_THAN (@var{lhs}, @var{rhs})
3300 @findex INNER_THAN
3301 Returns non-zero if stack address @var{lhs} is inner than (nearer to the
3302 stack top) stack address @var{rhs}. Define this as @code{lhs < rhs} if
3303 the target's stack grows downward in memory, or @code{lhs > rsh} if the
3304 stack grows upward.
3305
3306 @item gdbarch_in_function_epilogue_p (@var{gdbarch}, @var{pc})
3307 @findex gdbarch_in_function_epilogue_p
3308 Returns non-zero if the given @var{pc} is in the epilogue of a function.
3309 The epilogue of a function is defined as the part of a function where
3310 the stack frame of the function already has been destroyed up to the
3311 final `return from function call' instruction.
3312
3313 @item SIGTRAMP_START (@var{pc})
3314 @findex SIGTRAMP_START
3315 @itemx SIGTRAMP_END (@var{pc})
3316 @findex SIGTRAMP_END
3317 Define these to be the start and end address of the @code{sigtramp} for the
3318 given @var{pc}. On machines where the address is just a compile time
3319 constant, the macro expansion will typically just ignore the supplied
3320 @var{pc}.
3321
3322 @item IN_SOLIB_CALL_TRAMPOLINE (@var{pc}, @var{name})
3323 @findex IN_SOLIB_CALL_TRAMPOLINE
3324 Define this to evaluate to nonzero if the program is stopped in the
3325 trampoline that connects to a shared library.
3326
3327 @item IN_SOLIB_RETURN_TRAMPOLINE (@var{pc}, @var{name})
3328 @findex IN_SOLIB_RETURN_TRAMPOLINE
3329 Define this to evaluate to nonzero if the program is stopped in the
3330 trampoline that returns from a shared library.
3331
3332 @item IN_SOLIB_DYNSYM_RESOLVE_CODE (@var{pc})
3333 @findex IN_SOLIB_DYNSYM_RESOLVE_CODE
3334 Define this to evaluate to nonzero if the program is stopped in the
3335 dynamic linker.
3336
3337 @item SKIP_SOLIB_RESOLVER (@var{pc})
3338 @findex SKIP_SOLIB_RESOLVER
3339 Define this to evaluate to the (nonzero) address at which execution
3340 should continue to get past the dynamic linker's symbol resolution
3341 function. A zero value indicates that it is not important or necessary
3342 to set a breakpoint to get through the dynamic linker and that single
3343 stepping will suffice.
3344
3345 @item INTEGER_TO_ADDRESS (@var{type}, @var{buf})
3346 @findex INTEGER_TO_ADDRESS
3347 @cindex converting integers to addresses
3348 Define this when the architecture needs to handle non-pointer to address
3349 conversions specially. Converts that value to an address according to
3350 the current architectures conventions.
3351
3352 @emph{Pragmatics: When the user copies a well defined expression from
3353 their source code and passes it, as a parameter, to @value{GDBN}'s
3354 @code{print} command, they should get the same value as would have been
3355 computed by the target program. Any deviation from this rule can cause
3356 major confusion and annoyance, and needs to be justified carefully. In
3357 other words, @value{GDBN} doesn't really have the freedom to do these
3358 conversions in clever and useful ways. It has, however, been pointed
3359 out that users aren't complaining about how @value{GDBN} casts integers
3360 to pointers; they are complaining that they can't take an address from a
3361 disassembly listing and give it to @code{x/i}. Adding an architecture
3362 method like @code{INTEGER_TO_ADDRESS} certainly makes it possible for
3363 @value{GDBN} to ``get it right'' in all circumstances.}
3364
3365 @xref{Target Architecture Definition, , Pointers Are Not Always
3366 Addresses}.
3367
3368 @item IS_TRAPPED_INTERNALVAR (@var{name})
3369 @findex IS_TRAPPED_INTERNALVAR
3370 This is an ugly hook to allow the specification of special actions that
3371 should occur as a side-effect of setting the value of a variable
3372 internal to @value{GDBN}. Currently only used by the h8500. Note that this
3373 could be either a host or target conditional.
3374
3375 @item NEED_TEXT_START_END
3376 @findex NEED_TEXT_START_END
3377 Define this if @value{GDBN} should determine the start and end addresses of the
3378 text section. (Seems dubious.)
3379
3380 @item NO_HIF_SUPPORT
3381 @findex NO_HIF_SUPPORT
3382 (Specific to the a29k.)
3383
3384 @item POINTER_TO_ADDRESS (@var{type}, @var{buf})
3385 @findex POINTER_TO_ADDRESS
3386 Assume that @var{buf} holds a pointer of type @var{type}, in the
3387 appropriate format for the current architecture. Return the byte
3388 address the pointer refers to.
3389 @xref{Target Architecture Definition, , Pointers Are Not Always Addresses}.
3390
3391 @item REGISTER_CONVERTIBLE (@var{reg})
3392 @findex REGISTER_CONVERTIBLE
3393 Return non-zero if @var{reg} uses different raw and virtual formats.
3394 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3395
3396 @item REGISTER_TO_VALUE(@var{regnum}, @var{type}, @var{from}, @var{to})
3397 @findex REGISTER_TO_VALUE
3398 Convert the raw contents of register @var{regnum} into a value of type
3399 @var{type}.
3400 @xref{Target Architecture Definition, , Using Different Register and Memory Data Representations}.
3401
3402 @item REGISTER_RAW_SIZE (@var{reg})
3403 @findex REGISTER_RAW_SIZE
3404 Return the raw size of @var{reg}; defaults to the size of the register's
3405 virtual type.
3406 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3407
3408 @item REGISTER_VIRTUAL_SIZE (@var{reg})
3409 @findex REGISTER_VIRTUAL_SIZE
3410 Return the virtual size of @var{reg}; defaults to the size of the
3411 register's virtual type.
3412 Return the virtual size of @var{reg}.
3413 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3414
3415 @item REGISTER_VIRTUAL_TYPE (@var{reg})
3416 @findex REGISTER_VIRTUAL_TYPE
3417 Return the virtual type of @var{reg}.
3418 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3419
3420 @item REGISTER_CONVERT_TO_VIRTUAL(@var{reg}, @var{type}, @var{from}, @var{to})
3421 @findex REGISTER_CONVERT_TO_VIRTUAL
3422 Convert the value of register @var{reg} from its raw form to its virtual
3423 form.
3424 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3425
3426 @item REGISTER_CONVERT_TO_RAW(@var{type}, @var{reg}, @var{from}, @var{to})
3427 @findex REGISTER_CONVERT_TO_RAW
3428 Convert the value of register @var{reg} from its virtual form to its raw
3429 form.
3430 @xref{Target Architecture Definition, , Raw and Virtual Register Representations}.
3431
3432 @item RETURN_VALUE_ON_STACK(@var{type})
3433 @findex RETURN_VALUE_ON_STACK
3434 @cindex returning structures by value
3435 @cindex structures, returning by value
3436
3437 Return non-zero if values of type TYPE are returned on the stack, using
3438 the ``struct convention'' (i.e., the caller provides a pointer to a
3439 buffer in which the callee should store the return value). This
3440 controls how the @samp{finish} command finds a function's return value,
3441 and whether an inferior function call reserves space on the stack for
3442 the return value.
3443
3444 The full logic @value{GDBN} uses here is kind of odd.
3445
3446 @itemize @bullet
3447 @item
3448 If the type being returned by value is not a structure, union, or array,
3449 and @code{RETURN_VALUE_ON_STACK} returns zero, then @value{GDBN}
3450 concludes the value is not returned using the struct convention.
3451
3452 @item
3453 Otherwise, @value{GDBN} calls @code{USE_STRUCT_CONVENTION} (see below).
3454 If that returns non-zero, @value{GDBN} assumes the struct convention is
3455 in use.
3456 @end itemize
3457
3458 In other words, to indicate that a given type is returned by value using
3459 the struct convention, that type must be either a struct, union, array,
3460 or something @code{RETURN_VALUE_ON_STACK} likes, @emph{and} something
3461 that @code{USE_STRUCT_CONVENTION} likes.
3462
3463 Note that, in C and C@t{++}, arrays are never returned by value. In those
3464 languages, these predicates will always see a pointer type, never an
3465 array type. All the references above to arrays being returned by value
3466 apply only to other languages.
3467
3468 @item SOFTWARE_SINGLE_STEP_P()
3469 @findex SOFTWARE_SINGLE_STEP_P
3470 Define this as 1 if the target does not have a hardware single-step
3471 mechanism. The macro @code{SOFTWARE_SINGLE_STEP} must also be defined.
3472
3473 @item SOFTWARE_SINGLE_STEP(@var{signal}, @var{insert_breapoints_p})
3474 @findex SOFTWARE_SINGLE_STEP
3475 A function that inserts or removes (depending on
3476 @var{insert_breapoints_p}) breakpoints at each possible destinations of
3477 the next instruction. See @file{sparc-tdep.c} and @file{rs6000-tdep.c}
3478 for examples.
3479
3480 @item SOFUN_ADDRESS_MAYBE_MISSING
3481 @findex SOFUN_ADDRESS_MAYBE_MISSING
3482 Somebody clever observed that, the more actual addresses you have in the
3483 debug information, the more time the linker has to spend relocating
3484 them. So whenever there's some other way the debugger could find the
3485 address it needs, you should omit it from the debug info, to make
3486 linking faster.
3487
3488 @code{SOFUN_ADDRESS_MAYBE_MISSING} indicates that a particular set of
3489 hacks of this sort are in use, affecting @code{N_SO} and @code{N_FUN}
3490 entries in stabs-format debugging information. @code{N_SO} stabs mark
3491 the beginning and ending addresses of compilation units in the text
3492 segment. @code{N_FUN} stabs mark the starts and ends of functions.
3493
3494 @code{SOFUN_ADDRESS_MAYBE_MISSING} means two things:
3495
3496 @itemize @bullet
3497 @item
3498 @code{N_FUN} stabs have an address of zero. Instead, you should find the
3499 addresses where the function starts by taking the function name from
3500 the stab, and then looking that up in the minsyms (the
3501 linker/assembler symbol table). In other words, the stab has the
3502 name, and the linker/assembler symbol table is the only place that carries
3503 the address.
3504
3505 @item
3506 @code{N_SO} stabs have an address of zero, too. You just look at the
3507 @code{N_FUN} stabs that appear before and after the @code{N_SO} stab,
3508 and guess the starting and ending addresses of the compilation unit from
3509 them.
3510 @end itemize
3511
3512 @item PCC_SOL_BROKEN
3513 @findex PCC_SOL_BROKEN
3514 (Used only in the Convex target.)
3515
3516 @item PC_IN_CALL_DUMMY
3517 @findex PC_IN_CALL_DUMMY
3518 See @file{inferior.h}.
3519
3520 @item PC_IN_SIGTRAMP (@var{pc}, @var{name})
3521 @findex PC_IN_SIGTRAMP
3522 @cindex sigtramp
3523 The @dfn{sigtramp} is a routine that the kernel calls (which then calls
3524 the signal handler). On most machines it is a library routine that is
3525 linked into the executable.
3526
3527 This function, given a program counter value in @var{pc} and the
3528 (possibly NULL) name of the function in which that @var{pc} resides,
3529 returns nonzero if the @var{pc} and/or @var{name} show that we are in
3530 sigtramp.
3531
3532 @item PC_LOAD_SEGMENT
3533 @findex PC_LOAD_SEGMENT
3534 If defined, print information about the load segment for the program
3535 counter. (Defined only for the RS/6000.)
3536
3537 @item PC_REGNUM
3538 @findex PC_REGNUM
3539 If the program counter is kept in a register, then define this macro to
3540 be the number (greater than or equal to zero) of that register.
3541
3542 This should only need to be defined if @code{TARGET_READ_PC} and
3543 @code{TARGET_WRITE_PC} are not defined.
3544
3545 @item NPC_REGNUM
3546 @findex NPC_REGNUM
3547 The number of the ``next program counter'' register, if defined.
3548
3549 @item PARM_BOUNDARY
3550 @findex PARM_BOUNDARY
3551 If non-zero, round arguments to a boundary of this many bits before
3552 pushing them on the stack.
3553
3554 @item PRINT_REGISTER_HOOK (@var{regno})
3555 @findex PRINT_REGISTER_HOOK
3556 If defined, this must be a function that prints the contents of the
3557 given register to standard output.
3558
3559 @item PRINT_TYPELESS_INTEGER
3560 @findex PRINT_TYPELESS_INTEGER
3561 This is an obscure substitute for @code{print_longest} that seems to
3562 have been defined for the Convex target.
3563
3564 @item PROCESS_LINENUMBER_HOOK
3565 @findex PROCESS_LINENUMBER_HOOK
3566 A hook defined for XCOFF reading.
3567
3568 @item PROLOGUE_FIRSTLINE_OVERLAP
3569 @findex PROLOGUE_FIRSTLINE_OVERLAP
3570 (Only used in unsupported Convex configuration.)
3571
3572 @item PS_REGNUM
3573 @findex PS_REGNUM
3574 If defined, this is the number of the processor status register. (This
3575 definition is only used in generic code when parsing "$ps".)
3576
3577 @item POP_FRAME
3578 @findex POP_FRAME
3579 @findex call_function_by_hand
3580 @findex return_command
3581 Used in @samp{call_function_by_hand} to remove an artificial stack
3582 frame and in @samp{return_command} to remove a real stack frame.
3583
3584 @item PUSH_ARGUMENTS (@var{nargs}, @var{args}, @var{sp}, @var{struct_return}, @var{struct_addr})
3585 @findex PUSH_ARGUMENTS
3586 Define this to push arguments onto the stack for inferior function
3587 call. Returns the updated stack pointer value.
3588
3589 @item PUSH_DUMMY_FRAME
3590 @findex PUSH_DUMMY_FRAME
3591 Used in @samp{call_function_by_hand} to create an artificial stack frame.
3592
3593 @item REGISTER_BYTES
3594 @findex REGISTER_BYTES
3595 The total amount of space needed to store @value{GDBN}'s copy of the machine's
3596 register state.
3597
3598 @item REGISTER_NAME(@var{i})
3599 @findex REGISTER_NAME
3600 Return the name of register @var{i} as a string. May return @code{NULL}
3601 or @code{NUL} to indicate that register @var{i} is not valid.
3602
3603 @item REGISTER_NAMES
3604 @findex REGISTER_NAMES
3605 Deprecated in favor of @code{REGISTER_NAME}.
3606
3607 @item REG_STRUCT_HAS_ADDR (@var{gcc_p}, @var{type})
3608 @findex REG_STRUCT_HAS_ADDR
3609 Define this to return 1 if the given type will be passed by pointer
3610 rather than directly.
3611
3612 @item SAVE_DUMMY_FRAME_TOS (@var{sp})
3613 @findex SAVE_DUMMY_FRAME_TOS
3614 Used in @samp{call_function_by_hand} to notify the target dependent code
3615 of the top-of-stack value that will be passed to the the inferior code.
3616 This is the value of the @code{SP} after both the dummy frame and space
3617 for parameters/results have been allocated on the stack.
3618
3619 @item SDB_REG_TO_REGNUM
3620 @findex SDB_REG_TO_REGNUM
3621 Define this to convert sdb register numbers into @value{GDBN} regnums. If not
3622 defined, no conversion will be done.
3623
3624 @item SHIFT_INST_REGS
3625 @findex SHIFT_INST_REGS
3626 (Only used for m88k targets.)
3627
3628 @item SKIP_PERMANENT_BREAKPOINT
3629 @findex SKIP_PERMANENT_BREAKPOINT
3630 Advance the inferior's PC past a permanent breakpoint. @value{GDBN} normally
3631 steps over a breakpoint by removing it, stepping one instruction, and
3632 re-inserting the breakpoint. However, permanent breakpoints are
3633 hardwired into the inferior, and can't be removed, so this strategy
3634 doesn't work. Calling @code{SKIP_PERMANENT_BREAKPOINT} adjusts the processor's
3635 state so that execution will resume just after the breakpoint. This
3636 macro does the right thing even when the breakpoint is in the delay slot
3637 of a branch or jump.
3638
3639 @item SKIP_PROLOGUE (@var{pc})
3640 @findex SKIP_PROLOGUE
3641 A C expression that returns the address of the ``real'' code beyond the
3642 function entry prologue found at @var{pc}.
3643
3644 @item SKIP_TRAMPOLINE_CODE (@var{pc})
3645 @findex SKIP_TRAMPOLINE_CODE
3646 If the target machine has trampoline code that sits between callers and
3647 the functions being called, then define this macro to return a new PC
3648 that is at the start of the real function.
3649
3650 @item SP_REGNUM
3651 @findex SP_REGNUM
3652 If the stack-pointer is kept in a register, then define this macro to be
3653 the number (greater than or equal to zero) of that register.
3654
3655 This should only need to be defined if @code{TARGET_WRITE_SP} and
3656 @code{TARGET_WRITE_SP} are not defined.
3657
3658 @item STAB_REG_TO_REGNUM
3659 @findex STAB_REG_TO_REGNUM
3660 Define this to convert stab register numbers (as gotten from `r'
3661 declarations) into @value{GDBN} regnums. If not defined, no conversion will be
3662 done.
3663
3664 @item STACK_ALIGN (@var{addr})
3665 @findex STACK_ALIGN
3666 Define this to adjust the address to the alignment required for the
3667 processor's stack.
3668
3669 @item STEP_SKIPS_DELAY (@var{addr})
3670 @findex STEP_SKIPS_DELAY
3671 Define this to return true if the address is of an instruction with a
3672 delay slot. If a breakpoint has been placed in the instruction's delay
3673 slot, @value{GDBN} will single-step over that instruction before resuming
3674 normally. Currently only defined for the Mips.
3675
3676 @item STORE_RETURN_VALUE (@var{type}, @var{valbuf})
3677 @findex STORE_RETURN_VALUE
3678 A C expression that stores a function return value of type @var{type},
3679 where @var{valbuf} is the address of the value to be stored.
3680
3681 @item SUN_FIXED_LBRAC_BUG
3682 @findex SUN_FIXED_LBRAC_BUG
3683 (Used only for Sun-3 and Sun-4 targets.)
3684
3685 @item SYMBOL_RELOADING_DEFAULT
3686 @findex SYMBOL_RELOADING_DEFAULT
3687 The default value of the ``symbol-reloading'' variable. (Never defined in
3688 current sources.)
3689
3690 @item TARGET_CHAR_BIT
3691 @findex TARGET_CHAR_BIT
3692 Number of bits in a char; defaults to 8.
3693
3694 @item TARGET_CHAR_SIGNED
3695 @findex TARGET_CHAR_SIGNED
3696 Non-zero if @code{char} is normally signed on this architecture; zero if
3697 it should be unsigned.
3698
3699 The ISO C standard requires the compiler to treat @code{char} as
3700 equivalent to either @code{signed char} or @code{unsigned char}; any
3701 character in the standard execution set is supposed to be positive.
3702 Most compilers treat @code{char} as signed, but @code{char} is unsigned
3703 on the IBM S/390, RS6000, and PowerPC targets.
3704
3705 @item TARGET_COMPLEX_BIT
3706 @findex TARGET_COMPLEX_BIT
3707 Number of bits in a complex number; defaults to @code{2 * TARGET_FLOAT_BIT}.
3708
3709 At present this macro is not used.
3710
3711 @item TARGET_DOUBLE_BIT
3712 @findex TARGET_DOUBLE_BIT
3713 Number of bits in a double float; defaults to @code{8 * TARGET_CHAR_BIT}.
3714
3715 @item TARGET_DOUBLE_COMPLEX_BIT
3716 @findex TARGET_DOUBLE_COMPLEX_BIT
3717 Number of bits in a double complex; defaults to @code{2 * TARGET_DOUBLE_BIT}.
3718
3719 At present this macro is not used.
3720
3721 @item TARGET_FLOAT_BIT
3722 @findex TARGET_FLOAT_BIT
3723 Number of bits in a float; defaults to @code{4 * TARGET_CHAR_BIT}.
3724
3725 @item TARGET_INT_BIT
3726 @findex TARGET_INT_BIT
3727 Number of bits in an integer; defaults to @code{4 * TARGET_CHAR_BIT}.
3728
3729 @item TARGET_LONG_BIT
3730 @findex TARGET_LONG_BIT
3731 Number of bits in a long integer; defaults to @code{4 * TARGET_CHAR_BIT}.
3732
3733 @item TARGET_LONG_DOUBLE_BIT
3734 @findex TARGET_LONG_DOUBLE_BIT
3735 Number of bits in a long double float;
3736 defaults to @code{2 * TARGET_DOUBLE_BIT}.
3737
3738 @item TARGET_LONG_LONG_BIT
3739 @findex TARGET_LONG_LONG_BIT
3740 Number of bits in a long long integer; defaults to @code{2 * TARGET_LONG_BIT}.
3741
3742 @item TARGET_PTR_BIT
3743 @findex TARGET_PTR_BIT
3744 Number of bits in a pointer; defaults to @code{TARGET_INT_BIT}.
3745
3746 @item TARGET_SHORT_BIT
3747 @findex TARGET_SHORT_BIT
3748 Number of bits in a short integer; defaults to @code{2 * TARGET_CHAR_BIT}.
3749
3750 @item TARGET_READ_PC
3751 @findex TARGET_READ_PC
3752 @itemx TARGET_WRITE_PC (@var{val}, @var{pid})
3753 @findex TARGET_WRITE_PC
3754 @itemx TARGET_READ_SP
3755 @findex TARGET_READ_SP
3756 @itemx TARGET_WRITE_SP
3757 @findex TARGET_WRITE_SP
3758 @itemx TARGET_READ_FP
3759 @findex TARGET_READ_FP
3760 @findex read_pc
3761 @findex write_pc
3762 @findex read_sp
3763 @findex write_sp
3764 @findex read_fp
3765 These change the behavior of @code{read_pc}, @code{write_pc},
3766 @code{read_sp}, @code{write_sp} and @code{read_fp}. For most targets,
3767 these may be left undefined. @value{GDBN} will call the read and write
3768 register functions with the relevant @code{_REGNUM} argument.
3769
3770 These macros are useful when a target keeps one of these registers in a
3771 hard to get at place; for example, part in a segment register and part
3772 in an ordinary register.
3773
3774 @item TARGET_VIRTUAL_FRAME_POINTER(@var{pc}, @var{regp}, @var{offsetp})
3775 @findex TARGET_VIRTUAL_FRAME_POINTER
3776 Returns a @code{(register, offset)} pair representing the virtual
3777 frame pointer in use at the code address @var{pc}. If virtual
3778 frame pointers are not used, a default definition simply returns
3779 @code{FP_REGNUM}, with an offset of zero.
3780
3781 @item TARGET_HAS_HARDWARE_WATCHPOINTS
3782 If non-zero, the target has support for hardware-assisted
3783 watchpoints. @xref{Algorithms, watchpoints}, for more details and
3784 other related macros.
3785
3786 @item TARGET_PRINT_INSN (@var{addr}, @var{info})
3787 @findex TARGET_PRINT_INSN
3788 This is the function used by @value{GDBN} to print an assembly
3789 instruction. It prints the instruction at address @var{addr} in
3790 debugged memory and returns the length of the instruction, in bytes. If
3791 a target doesn't define its own printing routine, it defaults to an
3792 accessor function for the global pointer @code{tm_print_insn}. This
3793 usually points to a function in the @code{opcodes} library (@pxref{Support
3794 Libraries, ,Opcodes}). @var{info} is a structure (of type
3795 @code{disassemble_info}) defined in @file{include/dis-asm.h} used to
3796 pass information to the instruction decoding routine.
3797
3798 @item USE_STRUCT_CONVENTION (@var{gcc_p}, @var{type})
3799 @findex USE_STRUCT_CONVENTION
3800 If defined, this must be an expression that is nonzero if a value of the
3801 given @var{type} being returned from a function must have space
3802 allocated for it on the stack. @var{gcc_p} is true if the function
3803 being considered is known to have been compiled by GCC; this is helpful
3804 for systems where GCC is known to use different calling convention than
3805 other compilers.
3806
3807 @item VALUE_TO_REGISTER(@var{type}, @var{regnum}, @var{from}, @var{to})
3808 @findex VALUE_TO_REGISTER
3809 Convert a value of type @var{type} into the raw contents of register
3810 @var{regnum}'s.
3811 @xref{Target Architecture Definition, , Using Different Register and Memory Data Representations}.
3812
3813 @item VARIABLES_INSIDE_BLOCK (@var{desc}, @var{gcc_p})
3814 @findex VARIABLES_INSIDE_BLOCK
3815 For dbx-style debugging information, if the compiler puts variable
3816 declarations inside LBRAC/RBRAC blocks, this should be defined to be
3817 nonzero. @var{desc} is the value of @code{n_desc} from the
3818 @code{N_RBRAC} symbol, and @var{gcc_p} is true if @value{GDBN} has noticed the
3819 presence of either the @code{GCC_COMPILED_SYMBOL} or the
3820 @code{GCC2_COMPILED_SYMBOL}. By default, this is 0.
3821
3822 @item OS9K_VARIABLES_INSIDE_BLOCK (@var{desc}, @var{gcc_p})
3823 @findex OS9K_VARIABLES_INSIDE_BLOCK
3824 Similarly, for OS/9000. Defaults to 1.
3825 @end table
3826
3827 Motorola M68K target conditionals.
3828
3829 @ftable @code
3830 @item BPT_VECTOR
3831 Define this to be the 4-bit location of the breakpoint trap vector. If
3832 not defined, it will default to @code{0xf}.
3833
3834 @item REMOTE_BPT_VECTOR
3835 Defaults to @code{1}.
3836 @end ftable
3837
3838 @section Adding a New Target
3839
3840 @cindex adding a target
3841 The following files add a target to @value{GDBN}:
3842
3843 @table @file
3844 @vindex TDEPFILES
3845 @item gdb/config/@var{arch}/@var{ttt}.mt
3846 Contains a Makefile fragment specific to this target. Specifies what
3847 object files are needed for target @var{ttt}, by defining
3848 @samp{TDEPFILES=@dots{}} and @samp{TDEPLIBS=@dots{}}. Also specifies
3849 the header file which describes @var{ttt}, by defining @samp{TM_FILE=
3850 tm-@var{ttt}.h}.
3851
3852 You can also define @samp{TM_CFLAGS}, @samp{TM_CLIBS}, @samp{TM_CDEPS},
3853 but these are now deprecated, replaced by autoconf, and may go away in
3854 future versions of @value{GDBN}.
3855
3856 @item gdb/@var{ttt}-tdep.c
3857 Contains any miscellaneous code required for this target machine. On
3858 some machines it doesn't exist at all. Sometimes the macros in
3859 @file{tm-@var{ttt}.h} become very complicated, so they are implemented
3860 as functions here instead, and the macro is simply defined to call the
3861 function. This is vastly preferable, since it is easier to understand
3862 and debug.
3863
3864 @item gdb/@var{arch}-tdep.c
3865 @itemx gdb/@var{arch}-tdep.h
3866 This often exists to describe the basic layout of the target machine's
3867 processor chip (registers, stack, etc.). If used, it is included by
3868 @file{@var{ttt}-tdep.h}. It can be shared among many targets that use
3869 the same processor.
3870
3871 @item gdb/config/@var{arch}/tm-@var{ttt}.h
3872 (@file{tm.h} is a link to this file, created by @code{configure}). Contains
3873 macro definitions about the target machine's registers, stack frame
3874 format and instructions.
3875
3876 New targets do not need this file and should not create it.
3877
3878 @item gdb/config/@var{arch}/tm-@var{arch}.h
3879 This often exists to describe the basic layout of the target machine's
3880 processor chip (registers, stack, etc.). If used, it is included by
3881 @file{tm-@var{ttt}.h}. It can be shared among many targets that use the
3882 same processor.
3883
3884 New targets do not need this file and should not create it.
3885
3886 @end table
3887
3888 If you are adding a new operating system for an existing CPU chip, add a
3889 @file{config/tm-@var{os}.h} file that describes the operating system
3890 facilities that are unusual (extra symbol table info; the breakpoint
3891 instruction needed; etc.). Then write a @file{@var{arch}/tm-@var{os}.h}
3892 that just @code{#include}s @file{tm-@var{arch}.h} and
3893 @file{config/tm-@var{os}.h}.
3894
3895
3896 @section Converting an existing Target Architecture to Multi-arch
3897 @cindex converting targets to multi-arch
3898
3899 This section describes the current accepted best practice for converting
3900 an existing target architecture to the multi-arch framework.
3901
3902 The process consists of generating, testing, posting and committing a
3903 sequence of patches. Each patch must contain a single change, for
3904 instance:
3905
3906 @itemize @bullet
3907
3908 @item
3909 Directly convert a group of functions into macros (the conversion does
3910 not change the behavior of any of the functions).
3911
3912 @item
3913 Replace a non-multi-arch with a multi-arch mechanism (e.g.,
3914 @code{FRAME_INFO}).
3915
3916 @item
3917 Enable multi-arch level one.
3918
3919 @item
3920 Delete one or more files.
3921
3922 @end itemize
3923
3924 @noindent
3925 There isn't a size limit on a patch, however, a developer is strongly
3926 encouraged to keep the patch size down.
3927
3928 Since each patch is well defined, and since each change has been tested
3929 and shows no regressions, the patches are considered @emph{fairly}
3930 obvious. Such patches, when submitted by developers listed in the
3931 @file{MAINTAINERS} file, do not need approval. Occasional steps in the
3932 process may be more complicated and less clear. The developer is
3933 expected to use their judgment and is encouraged to seek advice as
3934 needed.
3935
3936 @subsection Preparation
3937
3938 The first step is to establish control. Build (with @option{-Werror}
3939 enabled) and test the target so that there is a baseline against which
3940 the debugger can be compared.
3941
3942 At no stage can the test results regress or @value{GDBN} stop compiling
3943 with @option{-Werror}.
3944
3945 @subsection Add the multi-arch initialization code
3946
3947 The objective of this step is to establish the basic multi-arch
3948 framework. It involves
3949
3950 @itemize @bullet
3951
3952 @item
3953 The addition of a @code{@var{arch}_gdbarch_init} function@footnote{The
3954 above is from the original example and uses K&R C. @value{GDBN}
3955 has since converted to ISO C but lets ignore that.} that creates
3956 the architecture:
3957 @smallexample
3958 static struct gdbarch *
3959 d10v_gdbarch_init (info, arches)
3960 struct gdbarch_info info;
3961 struct gdbarch_list *arches;
3962 @{
3963 struct gdbarch *gdbarch;
3964 /* there is only one d10v architecture */
3965 if (arches != NULL)
3966 return arches->gdbarch;
3967 gdbarch = gdbarch_alloc (&info, NULL);
3968 return gdbarch;
3969 @}
3970 @end smallexample
3971 @noindent
3972 @emph{}
3973
3974 @item
3975 A per-architecture dump function to print any architecture specific
3976 information:
3977 @smallexample
3978 static void
3979 mips_dump_tdep (struct gdbarch *current_gdbarch,
3980 struct ui_file *file)
3981 @{
3982 @dots{} code to print architecture specific info @dots{}
3983 @}
3984 @end smallexample
3985
3986 @item
3987 A change to @code{_initialize_@var{arch}_tdep} to register this new
3988 architecture:
3989 @smallexample
3990 void
3991 _initialize_mips_tdep (void)
3992 @{
3993 gdbarch_register (bfd_arch_mips, mips_gdbarch_init,
3994 mips_dump_tdep);
3995 @end smallexample
3996
3997 @item
3998 Add the macro @code{GDB_MULTI_ARCH}, defined as 0 (zero), to the file@*
3999 @file{config/@var{arch}/tm-@var{arch}.h}.
4000
4001 @end itemize
4002
4003 @subsection Update multi-arch incompatible mechanisms
4004
4005 Some mechanisms do not work with multi-arch. They include:
4006
4007 @table @code
4008 @item EXTRA_FRAME_INFO
4009 Delete.
4010 @item FRAME_FIND_SAVED_REGS
4011 Replaced with @code{FRAME_INIT_SAVED_REGS}
4012 @end table
4013
4014 @noindent
4015 At this stage you could also consider converting the macros into
4016 functions.
4017
4018 @subsection Prepare for multi-arch level to one
4019
4020 Temporally set @code{GDB_MULTI_ARCH} to @code{GDB_MULTI_ARCH_PARTIAL}
4021 and then build and start @value{GDBN} (the change should not be
4022 committed). @value{GDBN} may not build, and once built, it may die with
4023 an internal error listing the architecture methods that must be
4024 provided.
4025
4026 Fix any build problems (patch(es)).
4027
4028 Convert all the architecture methods listed, which are only macros, into
4029 functions (patch(es)).
4030
4031 Update @code{@var{arch}_gdbarch_init} to set all the missing
4032 architecture methods and wrap the corresponding macros in @code{#if
4033 !GDB_MULTI_ARCH} (patch(es)).
4034
4035 @subsection Set multi-arch level one
4036
4037 Change the value of @code{GDB_MULTI_ARCH} to GDB_MULTI_ARCH_PARTIAL (a
4038 single patch).
4039
4040 Any problems with throwing ``the switch'' should have been fixed
4041 already.
4042
4043 @subsection Convert remaining macros
4044
4045 Suggest converting macros into functions (and setting the corresponding
4046 architecture method) in small batches.
4047
4048 @subsection Set multi-arch level to two
4049
4050 This should go smoothly.
4051
4052 @subsection Delete the TM file
4053
4054 The @file{tm-@var{arch}.h} can be deleted. @file{@var{arch}.mt} and
4055 @file{configure.in} updated.
4056
4057
4058 @node Target Vector Definition
4059
4060 @chapter Target Vector Definition
4061 @cindex target vector
4062
4063 The target vector defines the interface between @value{GDBN}'s
4064 abstract handling of target systems, and the nitty-gritty code that
4065 actually exercises control over a process or a serial port.
4066 @value{GDBN} includes some 30-40 different target vectors; however,
4067 each configuration of @value{GDBN} includes only a few of them.
4068
4069 @section File Targets
4070
4071 Both executables and core files have target vectors.
4072
4073 @section Standard Protocol and Remote Stubs
4074
4075 @value{GDBN}'s file @file{remote.c} talks a serial protocol to code
4076 that runs in the target system. @value{GDBN} provides several sample
4077 @dfn{stubs} that can be integrated into target programs or operating
4078 systems for this purpose; they are named @file{*-stub.c}.
4079
4080 The @value{GDBN} user's manual describes how to put such a stub into
4081 your target code. What follows is a discussion of integrating the
4082 SPARC stub into a complicated operating system (rather than a simple
4083 program), by Stu Grossman, the author of this stub.
4084
4085 The trap handling code in the stub assumes the following upon entry to
4086 @code{trap_low}:
4087
4088 @enumerate
4089 @item
4090 %l1 and %l2 contain pc and npc respectively at the time of the trap;
4091
4092 @item
4093 traps are disabled;
4094
4095 @item
4096 you are in the correct trap window.
4097 @end enumerate
4098
4099 As long as your trap handler can guarantee those conditions, then there
4100 is no reason why you shouldn't be able to ``share'' traps with the stub.
4101 The stub has no requirement that it be jumped to directly from the
4102 hardware trap vector. That is why it calls @code{exceptionHandler()},
4103 which is provided by the external environment. For instance, this could
4104 set up the hardware traps to actually execute code which calls the stub
4105 first, and then transfers to its own trap handler.
4106
4107 For the most point, there probably won't be much of an issue with
4108 ``sharing'' traps, as the traps we use are usually not used by the kernel,
4109 and often indicate unrecoverable error conditions. Anyway, this is all
4110 controlled by a table, and is trivial to modify. The most important
4111 trap for us is for @code{ta 1}. Without that, we can't single step or
4112 do breakpoints. Everything else is unnecessary for the proper operation
4113 of the debugger/stub.
4114
4115 From reading the stub, it's probably not obvious how breakpoints work.
4116 They are simply done by deposit/examine operations from @value{GDBN}.
4117
4118 @section ROM Monitor Interface
4119
4120 @section Custom Protocols
4121
4122 @section Transport Layer
4123
4124 @section Builtin Simulator
4125
4126
4127 @node Native Debugging
4128
4129 @chapter Native Debugging
4130 @cindex native debugging
4131
4132 Several files control @value{GDBN}'s configuration for native support:
4133
4134 @table @file
4135 @vindex NATDEPFILES
4136 @item gdb/config/@var{arch}/@var{xyz}.mh
4137 Specifies Makefile fragments needed by a @emph{native} configuration on
4138 machine @var{xyz}. In particular, this lists the required
4139 native-dependent object files, by defining @samp{NATDEPFILES=@dots{}}.
4140 Also specifies the header file which describes native support on
4141 @var{xyz}, by defining @samp{NAT_FILE= nm-@var{xyz}.h}. You can also
4142 define @samp{NAT_CFLAGS}, @samp{NAT_ADD_FILES}, @samp{NAT_CLIBS},
4143 @samp{NAT_CDEPS}, etc.; see @file{Makefile.in}.
4144
4145 @emph{Maintainer's note: The @file{.mh} suffix is because this file
4146 originally contained @file{Makefile} fragments for hosting @value{GDBN}
4147 on machine @var{xyz}. While the file is no longer used for this
4148 purpose, the @file{.mh} suffix remains. Perhaps someone will
4149 eventually rename these fragments so that they have a @file{.mn}
4150 suffix.}
4151
4152 @item gdb/config/@var{arch}/nm-@var{xyz}.h
4153 (@file{nm.h} is a link to this file, created by @code{configure}). Contains C
4154 macro definitions describing the native system environment, such as
4155 child process control and core file support.
4156
4157 @item gdb/@var{xyz}-nat.c
4158 Contains any miscellaneous C code required for this native support of
4159 this machine. On some machines it doesn't exist at all.
4160 @end table
4161
4162 There are some ``generic'' versions of routines that can be used by
4163 various systems. These can be customized in various ways by macros
4164 defined in your @file{nm-@var{xyz}.h} file. If these routines work for
4165 the @var{xyz} host, you can just include the generic file's name (with
4166 @samp{.o}, not @samp{.c}) in @code{NATDEPFILES}.
4167
4168 Otherwise, if your machine needs custom support routines, you will need
4169 to write routines that perform the same functions as the generic file.
4170 Put them into @file{@var{xyz}-nat.c}, and put @file{@var{xyz}-nat.o}
4171 into @code{NATDEPFILES}.
4172
4173 @table @file
4174 @item inftarg.c
4175 This contains the @emph{target_ops vector} that supports Unix child
4176 processes on systems which use ptrace and wait to control the child.
4177
4178 @item procfs.c
4179 This contains the @emph{target_ops vector} that supports Unix child
4180 processes on systems which use /proc to control the child.
4181
4182 @item fork-child.c
4183 This does the low-level grunge that uses Unix system calls to do a ``fork
4184 and exec'' to start up a child process.
4185
4186 @item infptrace.c
4187 This is the low level interface to inferior processes for systems using
4188 the Unix @code{ptrace} call in a vanilla way.
4189 @end table
4190
4191 @section Native core file Support
4192 @cindex native core files
4193
4194 @table @file
4195 @findex fetch_core_registers
4196 @item core-aout.c::fetch_core_registers()
4197 Support for reading registers out of a core file. This routine calls
4198 @code{register_addr()}, see below. Now that BFD is used to read core
4199 files, virtually all machines should use @code{core-aout.c}, and should
4200 just provide @code{fetch_core_registers} in @code{@var{xyz}-nat.c} (or
4201 @code{REGISTER_U_ADDR} in @code{nm-@var{xyz}.h}).
4202
4203 @item core-aout.c::register_addr()
4204 If your @code{nm-@var{xyz}.h} file defines the macro
4205 @code{REGISTER_U_ADDR(addr, blockend, regno)}, it should be defined to
4206 set @code{addr} to the offset within the @samp{user} struct of @value{GDBN}
4207 register number @code{regno}. @code{blockend} is the offset within the
4208 ``upage'' of @code{u.u_ar0}. If @code{REGISTER_U_ADDR} is defined,
4209 @file{core-aout.c} will define the @code{register_addr()} function and
4210 use the macro in it. If you do not define @code{REGISTER_U_ADDR}, but
4211 you are using the standard @code{fetch_core_registers()}, you will need
4212 to define your own version of @code{register_addr()}, put it into your
4213 @code{@var{xyz}-nat.c} file, and be sure @code{@var{xyz}-nat.o} is in
4214 the @code{NATDEPFILES} list. If you have your own
4215 @code{fetch_core_registers()}, you may not need a separate
4216 @code{register_addr()}. Many custom @code{fetch_core_registers()}
4217 implementations simply locate the registers themselves.@refill
4218 @end table
4219
4220 When making @value{GDBN} run native on a new operating system, to make it
4221 possible to debug core files, you will need to either write specific
4222 code for parsing your OS's core files, or customize
4223 @file{bfd/trad-core.c}. First, use whatever @code{#include} files your
4224 machine uses to define the struct of registers that is accessible
4225 (possibly in the u-area) in a core file (rather than
4226 @file{machine/reg.h}), and an include file that defines whatever header
4227 exists on a core file (e.g. the u-area or a @code{struct core}). Then
4228 modify @code{trad_unix_core_file_p} to use these values to set up the
4229 section information for the data segment, stack segment, any other
4230 segments in the core file (perhaps shared library contents or control
4231 information), ``registers'' segment, and if there are two discontiguous
4232 sets of registers (e.g. integer and float), the ``reg2'' segment. This
4233 section information basically delimits areas in the core file in a
4234 standard way, which the section-reading routines in BFD know how to seek
4235 around in.
4236
4237 Then back in @value{GDBN}, you need a matching routine called
4238 @code{fetch_core_registers}. If you can use the generic one, it's in
4239 @file{core-aout.c}; if not, it's in your @file{@var{xyz}-nat.c} file.
4240 It will be passed a char pointer to the entire ``registers'' segment,
4241 its length, and a zero; or a char pointer to the entire ``regs2''
4242 segment, its length, and a 2. The routine should suck out the supplied
4243 register values and install them into @value{GDBN}'s ``registers'' array.
4244
4245 If your system uses @file{/proc} to control processes, and uses ELF
4246 format core files, then you may be able to use the same routines for
4247 reading the registers out of processes and out of core files.
4248
4249 @section ptrace
4250
4251 @section /proc
4252
4253 @section win32
4254
4255 @section shared libraries
4256
4257 @section Native Conditionals
4258 @cindex native conditionals
4259
4260 When @value{GDBN} is configured and compiled, various macros are
4261 defined or left undefined, to control compilation when the host and
4262 target systems are the same. These macros should be defined (or left
4263 undefined) in @file{nm-@var{system}.h}.
4264
4265 @table @code
4266 @item ATTACH_DETACH
4267 @findex ATTACH_DETACH
4268 If defined, then @value{GDBN} will include support for the @code{attach} and
4269 @code{detach} commands.
4270
4271 @item CHILD_PREPARE_TO_STORE
4272 @findex CHILD_PREPARE_TO_STORE
4273 If the machine stores all registers at once in the child process, then
4274 define this to ensure that all values are correct. This usually entails
4275 a read from the child.
4276
4277 [Note that this is incorrectly defined in @file{xm-@var{system}.h} files
4278 currently.]
4279
4280 @item FETCH_INFERIOR_REGISTERS
4281 @findex FETCH_INFERIOR_REGISTERS
4282 Define this if the native-dependent code will provide its own routines
4283 @code{fetch_inferior_registers} and @code{store_inferior_registers} in
4284 @file{@var{host}-nat.c}. If this symbol is @emph{not} defined, and
4285 @file{infptrace.c} is included in this configuration, the default
4286 routines in @file{infptrace.c} are used for these functions.
4287
4288 @item FILES_INFO_HOOK
4289 @findex FILES_INFO_HOOK
4290 (Only defined for Convex.)
4291
4292 @item FP0_REGNUM
4293 @findex FP0_REGNUM
4294 This macro is normally defined to be the number of the first floating
4295 point register, if the machine has such registers. As such, it would
4296 appear only in target-specific code. However, @file{/proc} support uses this
4297 to decide whether floats are in use on this target.
4298
4299 @item GET_LONGJMP_TARGET
4300 @findex GET_LONGJMP_TARGET
4301 For most machines, this is a target-dependent parameter. On the
4302 DECstation and the Iris, this is a native-dependent parameter, since
4303 @file{setjmp.h} is needed to define it.
4304
4305 This macro determines the target PC address that @code{longjmp} will jump to,
4306 assuming that we have just stopped at a longjmp breakpoint. It takes a
4307 @code{CORE_ADDR *} as argument, and stores the target PC value through this
4308 pointer. It examines the current state of the machine as needed.
4309
4310 @item I386_USE_GENERIC_WATCHPOINTS
4311 An x86-based machine can define this to use the generic x86 watchpoint
4312 support; see @ref{Algorithms, I386_USE_GENERIC_WATCHPOINTS}.
4313
4314 @item KERNEL_U_ADDR
4315 @findex KERNEL_U_ADDR
4316 Define this to the address of the @code{u} structure (the ``user
4317 struct'', also known as the ``u-page'') in kernel virtual memory. @value{GDBN}
4318 needs to know this so that it can subtract this address from absolute
4319 addresses in the upage, that are obtained via ptrace or from core files.
4320 On systems that don't need this value, set it to zero.
4321
4322 @item KERNEL_U_ADDR_BSD
4323 @findex KERNEL_U_ADDR_BSD
4324 Define this to cause @value{GDBN} to determine the address of @code{u} at
4325 runtime, by using Berkeley-style @code{nlist} on the kernel's image in
4326 the root directory.
4327
4328 @item KERNEL_U_ADDR_HPUX
4329 @findex KERNEL_U_ADDR_HPUX
4330 Define this to cause @value{GDBN} to determine the address of @code{u} at
4331 runtime, by using HP-style @code{nlist} on the kernel's image in the
4332 root directory.
4333
4334 @item ONE_PROCESS_WRITETEXT
4335 @findex ONE_PROCESS_WRITETEXT
4336 Define this to be able to, when a breakpoint insertion fails, warn the
4337 user that another process may be running with the same executable.
4338
4339 @item PREPARE_TO_PROCEED (@var{select_it})
4340 @findex PREPARE_TO_PROCEED
4341 This (ugly) macro allows a native configuration to customize the way the
4342 @code{proceed} function in @file{infrun.c} deals with switching between
4343 threads.
4344
4345 In a multi-threaded task we may select another thread and then continue
4346 or step. But if the old thread was stopped at a breakpoint, it will
4347 immediately cause another breakpoint stop without any execution (i.e. it
4348 will report a breakpoint hit incorrectly). So @value{GDBN} must step over it
4349 first.
4350
4351 If defined, @code{PREPARE_TO_PROCEED} should check the current thread
4352 against the thread that reported the most recent event. If a step-over
4353 is required, it returns TRUE. If @var{select_it} is non-zero, it should
4354 reselect the old thread.
4355
4356 @item PROC_NAME_FMT
4357 @findex PROC_NAME_FMT
4358 Defines the format for the name of a @file{/proc} device. Should be
4359 defined in @file{nm.h} @emph{only} in order to override the default
4360 definition in @file{procfs.c}.
4361
4362 @item PTRACE_FP_BUG
4363 @findex PTRACE_FP_BUG
4364 See @file{mach386-xdep.c}.
4365
4366 @item PTRACE_ARG3_TYPE
4367 @findex PTRACE_ARG3_TYPE
4368 The type of the third argument to the @code{ptrace} system call, if it
4369 exists and is different from @code{int}.
4370
4371 @item REGISTER_U_ADDR
4372 @findex REGISTER_U_ADDR
4373 Defines the offset of the registers in the ``u area''.
4374
4375 @item SHELL_COMMAND_CONCAT
4376 @findex SHELL_COMMAND_CONCAT
4377 If defined, is a string to prefix on the shell command used to start the
4378 inferior.
4379
4380 @item SHELL_FILE
4381 @findex SHELL_FILE
4382 If defined, this is the name of the shell to use to run the inferior.
4383 Defaults to @code{"/bin/sh"}.
4384
4385 @item SOLIB_ADD (@var{filename}, @var{from_tty}, @var{targ}, @var{readsyms})
4386 @findex SOLIB_ADD
4387 Define this to expand into an expression that will cause the symbols in
4388 @var{filename} to be added to @value{GDBN}'s symbol table. If
4389 @var{readsyms} is zero symbols are not read but any necessary low level
4390 processing for @var{filename} is still done.
4391
4392 @item SOLIB_CREATE_INFERIOR_HOOK
4393 @findex SOLIB_CREATE_INFERIOR_HOOK
4394 Define this to expand into any shared-library-relocation code that you
4395 want to be run just after the child process has been forked.
4396
4397 @item START_INFERIOR_TRAPS_EXPECTED
4398 @findex START_INFERIOR_TRAPS_EXPECTED
4399 When starting an inferior, @value{GDBN} normally expects to trap
4400 twice; once when
4401 the shell execs, and once when the program itself execs. If the actual
4402 number of traps is something other than 2, then define this macro to
4403 expand into the number expected.
4404
4405 @item SVR4_SHARED_LIBS
4406 @findex SVR4_SHARED_LIBS
4407 Define this to indicate that SVR4-style shared libraries are in use.
4408
4409 @item USE_PROC_FS
4410 @findex USE_PROC_FS
4411 This determines whether small routines in @file{*-tdep.c}, which
4412 translate register values between @value{GDBN}'s internal
4413 representation and the @file{/proc} representation, are compiled.
4414
4415 @item U_REGS_OFFSET
4416 @findex U_REGS_OFFSET
4417 This is the offset of the registers in the upage. It need only be
4418 defined if the generic ptrace register access routines in
4419 @file{infptrace.c} are being used (that is, @file{infptrace.c} is
4420 configured in, and @code{FETCH_INFERIOR_REGISTERS} is not defined). If
4421 the default value from @file{infptrace.c} is good enough, leave it
4422 undefined.
4423
4424 The default value means that u.u_ar0 @emph{points to} the location of
4425 the registers. I'm guessing that @code{#define U_REGS_OFFSET 0} means
4426 that @code{u.u_ar0} @emph{is} the location of the registers.
4427
4428 @item CLEAR_SOLIB
4429 @findex CLEAR_SOLIB
4430 See @file{objfiles.c}.
4431
4432 @item DEBUG_PTRACE
4433 @findex DEBUG_PTRACE
4434 Define this to debug @code{ptrace} calls.
4435 @end table
4436
4437
4438 @node Support Libraries
4439
4440 @chapter Support Libraries
4441
4442 @section BFD
4443 @cindex BFD library
4444
4445 BFD provides support for @value{GDBN} in several ways:
4446
4447 @table @emph
4448 @item identifying executable and core files
4449 BFD will identify a variety of file types, including a.out, coff, and
4450 several variants thereof, as well as several kinds of core files.
4451
4452 @item access to sections of files
4453 BFD parses the file headers to determine the names, virtual addresses,
4454 sizes, and file locations of all the various named sections in files
4455 (such as the text section or the data section). @value{GDBN} simply
4456 calls BFD to read or write section @var{x} at byte offset @var{y} for
4457 length @var{z}.
4458
4459 @item specialized core file support
4460 BFD provides routines to determine the failing command name stored in a
4461 core file, the signal with which the program failed, and whether a core
4462 file matches (i.e.@: could be a core dump of) a particular executable
4463 file.
4464
4465 @item locating the symbol information
4466 @value{GDBN} uses an internal interface of BFD to determine where to find the
4467 symbol information in an executable file or symbol-file. @value{GDBN} itself
4468 handles the reading of symbols, since BFD does not ``understand'' debug
4469 symbols, but @value{GDBN} uses BFD's cached information to find the symbols,
4470 string table, etc.
4471 @end table
4472
4473 @section opcodes
4474 @cindex opcodes library
4475
4476 The opcodes library provides @value{GDBN}'s disassembler. (It's a separate
4477 library because it's also used in binutils, for @file{objdump}).
4478
4479 @section readline
4480
4481 @section mmalloc
4482
4483 @section libiberty
4484
4485 @section gnu-regex
4486 @cindex regular expressions library
4487
4488 Regex conditionals.
4489
4490 @table @code
4491 @item C_ALLOCA
4492
4493 @item NFAILURES
4494
4495 @item RE_NREGS
4496
4497 @item SIGN_EXTEND_CHAR
4498
4499 @item SWITCH_ENUM_BUG
4500
4501 @item SYNTAX_TABLE
4502
4503 @item Sword
4504
4505 @item sparc
4506 @end table
4507
4508 @section include
4509
4510 @node Coding
4511
4512 @chapter Coding
4513
4514 This chapter covers topics that are lower-level than the major
4515 algorithms of @value{GDBN}.
4516
4517 @section Cleanups
4518 @cindex cleanups
4519
4520 Cleanups are a structured way to deal with things that need to be done
4521 later.
4522
4523 When your code does something (e.g., @code{xmalloc} some memory, or
4524 @code{open} a file) that needs to be undone later (e.g., @code{xfree}
4525 the memory or @code{close} the file), it can make a cleanup. The
4526 cleanup will be done at some future point: when the command is finished
4527 and control returns to the top level; when an error occurs and the stack
4528 is unwound; or when your code decides it's time to explicitly perform
4529 cleanups. Alternatively you can elect to discard the cleanups you
4530 created.
4531
4532 Syntax:
4533
4534 @table @code
4535 @item struct cleanup *@var{old_chain};
4536 Declare a variable which will hold a cleanup chain handle.
4537
4538 @findex make_cleanup
4539 @item @var{old_chain} = make_cleanup (@var{function}, @var{arg});
4540 Make a cleanup which will cause @var{function} to be called with
4541 @var{arg} (a @code{char *}) later. The result, @var{old_chain}, is a
4542 handle that can later be passed to @code{do_cleanups} or
4543 @code{discard_cleanups}. Unless you are going to call
4544 @code{do_cleanups} or @code{discard_cleanups}, you can ignore the result
4545 from @code{make_cleanup}.
4546
4547 @findex do_cleanups
4548 @item do_cleanups (@var{old_chain});
4549 Do all cleanups added to the chain since the corresponding
4550 @code{make_cleanup} call was made.
4551
4552 @findex discard_cleanups
4553 @item discard_cleanups (@var{old_chain});
4554 Same as @code{do_cleanups} except that it just removes the cleanups from
4555 the chain and does not call the specified functions.
4556 @end table
4557
4558 Cleanups are implemented as a chain. The handle returned by
4559 @code{make_cleanups} includes the cleanup passed to the call and any
4560 later cleanups appended to the chain (but not yet discarded or
4561 performed). E.g.:
4562
4563 @smallexample
4564 make_cleanup (a, 0);
4565 @{
4566 struct cleanup *old = make_cleanup (b, 0);
4567 make_cleanup (c, 0)
4568 ...
4569 do_cleanups (old);
4570 @}
4571 @end smallexample
4572
4573 @noindent
4574 will call @code{c()} and @code{b()} but will not call @code{a()}. The
4575 cleanup that calls @code{a()} will remain in the cleanup chain, and will
4576 be done later unless otherwise discarded.@refill
4577
4578 Your function should explicitly do or discard the cleanups it creates.
4579 Failing to do this leads to non-deterministic behavior since the caller
4580 will arbitrarily do or discard your functions cleanups. This need leads
4581 to two common cleanup styles.
4582
4583 The first style is try/finally. Before it exits, your code-block calls
4584 @code{do_cleanups} with the old cleanup chain and thus ensures that your
4585 code-block's cleanups are always performed. For instance, the following
4586 code-segment avoids a memory leak problem (even when @code{error} is
4587 called and a forced stack unwind occurs) by ensuring that the
4588 @code{xfree} will always be called:
4589
4590 @smallexample
4591 struct cleanup *old = make_cleanup (null_cleanup, 0);
4592 data = xmalloc (sizeof blah);
4593 make_cleanup (xfree, data);
4594 ... blah blah ...
4595 do_cleanups (old);
4596 @end smallexample
4597
4598 The second style is try/except. Before it exits, your code-block calls
4599 @code{discard_cleanups} with the old cleanup chain and thus ensures that
4600 any created cleanups are not performed. For instance, the following
4601 code segment, ensures that the file will be closed but only if there is
4602 an error:
4603
4604 @smallexample
4605 FILE *file = fopen ("afile", "r");
4606 struct cleanup *old = make_cleanup (close_file, file);
4607 ... blah blah ...
4608 discard_cleanups (old);
4609 return file;
4610 @end smallexample
4611
4612 Some functions, e.g. @code{fputs_filtered()} or @code{error()}, specify
4613 that they ``should not be called when cleanups are not in place''. This
4614 means that any actions you need to reverse in the case of an error or
4615 interruption must be on the cleanup chain before you call these
4616 functions, since they might never return to your code (they
4617 @samp{longjmp} instead).
4618
4619 @section Per-architecture module data
4620 @cindex per-architecture module data
4621 @cindex multi-arch data
4622 @cindex data-pointer, per-architecture/per-module
4623
4624 The multi-arch framework includes a mechanism for adding module specific
4625 per-architecture data-pointers to the @code{struct gdbarch} architecture
4626 object.
4627
4628 A module registers one or more per-architecture data-pointers using the
4629 function @code{register_gdbarch_data}:
4630
4631 @deftypefun struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *@var{init}, gdbarch_data_free_ftype *@var{free})
4632
4633 The @var{init} function is used to obtain an initial value for a
4634 per-architecture data-pointer. The function is called, after the
4635 architecture has been created, when the data-pointer is still
4636 uninitialized (@code{NULL}) and its value has been requested via a call
4637 to @code{gdbarch_data}. A data-pointer can also be initialize
4638 explicitly using @code{set_gdbarch_data}.
4639
4640 The @var{free} function is called when a data-pointer needs to be
4641 destroyed. This occurs when either the corresponding @code{struct
4642 gdbarch} object is being destroyed or when @code{set_gdbarch_data} is
4643 overriding a non-@code{NULL} data-pointer value.
4644
4645 The function @code{register_gdbarch_data} returns a @code{struct
4646 gdbarch_data} that is used to identify the data-pointer that was added
4647 to the module.
4648
4649 @end deftypefun
4650
4651 A typical module has @code{init} and @code{free} functions of the form:
4652
4653 @smallexample
4654 static struct gdbarch_data *nozel_handle;
4655 static void *
4656 nozel_init (struct gdbarch *gdbarch)
4657 @{
4658 struct nozel *data = XMALLOC (struct nozel);
4659 @dots{}
4660 return data;
4661 @}
4662 @dots{}
4663 static void
4664 nozel_free (struct gdbarch *gdbarch, void *data)
4665 @{
4666 xfree (data);
4667 @}
4668 @end smallexample
4669
4670 Since uninitialized (@code{NULL}) data-pointers are initialized
4671 on-demand, an @code{init} function is free to call other modules that
4672 use data-pointers. Those modules data-pointers will be initialized as
4673 needed. Care should be taken to ensure that the @code{init} call graph
4674 does not contain cycles.
4675
4676 The data-pointer is registered with the call:
4677
4678 @smallexample
4679 void
4680 _initialize_nozel (void)
4681 @{
4682 nozel_handle = register_gdbarch_data (nozel_init, nozel_free);
4683 @dots{}
4684 @end smallexample
4685
4686 The per-architecture data-pointer is accessed using the function:
4687
4688 @deftypefun void *gdbarch_data (struct gdbarch *@var{gdbarch}, struct gdbarch_data *@var{data_handle})
4689 Given the architecture @var{arch} and module data handle
4690 @var{data_handle} (returned by @code{register_gdbarch_data}, this
4691 function returns the current value of the per-architecture data-pointer.
4692 @end deftypefun
4693
4694 The non-@code{NULL} data-pointer returned by @code{gdbarch_data} should
4695 be saved in a local variable and then used directly:
4696
4697 @smallexample
4698 int
4699 nozel_total (struct gdbarch *gdbarch)
4700 @{
4701 int total;
4702 struct nozel *data = gdbarch_data (gdbarch, nozel_handle);
4703 @dots{}
4704 return total;
4705 @}
4706 @end smallexample
4707
4708 It is also possible to directly initialize the data-pointer using:
4709
4710 @deftypefun void set_gdbarch_data (struct gdbarch *@var{gdbarch}, struct gdbarch_data *handle, void *@var{pointer})
4711 Update the data-pointer corresponding to @var{handle} with the value of
4712 @var{pointer}. If the previous data-pointer value is non-NULL, then it
4713 is freed using data-pointers @var{free} function.
4714 @end deftypefun
4715
4716 This function is used by modules that require a mechanism for explicitly
4717 setting the per-architecture data-pointer during architecture creation:
4718
4719 @smallexample
4720 /* Called during architecture creation. */
4721 extern void
4722 set_gdbarch_nozel (struct gdbarch *gdbarch,
4723 int total)
4724 @{
4725 struct nozel *data = XMALLOC (struct nozel);
4726 @dots{}
4727 set_gdbarch_data (gdbarch, nozel_handle, nozel);
4728 @}
4729 @end smallexample
4730
4731 @smallexample
4732 /* Default, called when nozel not set by set_gdbarch_nozel(). */
4733 static void *
4734 nozel_init (struct gdbarch *gdbarch)
4735 @{
4736 struct nozel *default_nozel = XMALLOC (struc nozel);
4737 @dots{}
4738 return default_nozel;
4739 @}
4740 @end smallexample
4741
4742 @smallexample
4743 void
4744 _initialize_nozel (void)
4745 @{
4746 nozel_handle = register_gdbarch_data (nozel_init, NULL);
4747 @dots{}
4748 @end smallexample
4749
4750 @noindent
4751 Note that an @code{init} function still needs to be registered. It is
4752 used to initialize the data-pointer when the architecture creation phase
4753 fail to set an initial value.
4754
4755
4756 @section Wrapping Output Lines
4757 @cindex line wrap in output
4758
4759 @findex wrap_here
4760 Output that goes through @code{printf_filtered} or @code{fputs_filtered}
4761 or @code{fputs_demangled} needs only to have calls to @code{wrap_here}
4762 added in places that would be good breaking points. The utility
4763 routines will take care of actually wrapping if the line width is
4764 exceeded.
4765
4766 The argument to @code{wrap_here} is an indentation string which is
4767 printed @emph{only} if the line breaks there. This argument is saved
4768 away and used later. It must remain valid until the next call to
4769 @code{wrap_here} or until a newline has been printed through the
4770 @code{*_filtered} functions. Don't pass in a local variable and then
4771 return!
4772
4773 It is usually best to call @code{wrap_here} after printing a comma or
4774 space. If you call it before printing a space, make sure that your
4775 indentation properly accounts for the leading space that will print if
4776 the line wraps there.
4777
4778 Any function or set of functions that produce filtered output must
4779 finish by printing a newline, to flush the wrap buffer, before switching
4780 to unfiltered (@code{printf}) output. Symbol reading routines that
4781 print warnings are a good example.
4782
4783 @section @value{GDBN} Coding Standards
4784 @cindex coding standards
4785
4786 @value{GDBN} follows the GNU coding standards, as described in
4787 @file{etc/standards.texi}. This file is also available for anonymous
4788 FTP from GNU archive sites. @value{GDBN} takes a strict interpretation
4789 of the standard; in general, when the GNU standard recommends a practice
4790 but does not require it, @value{GDBN} requires it.
4791
4792 @value{GDBN} follows an additional set of coding standards specific to
4793 @value{GDBN}, as described in the following sections.
4794
4795
4796 @subsection ISO-C
4797
4798 @value{GDBN} assumes an ISO-C compliant compiler.
4799
4800 @value{GDBN} does not assume an ISO-C or POSIX compliant C library.
4801
4802
4803 @subsection Memory Management
4804
4805 @value{GDBN} does not use the functions @code{malloc}, @code{realloc},
4806 @code{calloc}, @code{free} and @code{asprintf}.
4807
4808 @value{GDBN} uses the functions @code{xmalloc}, @code{xrealloc} and
4809 @code{xcalloc} when allocating memory. Unlike @code{malloc} et.al.@:
4810 these functions do not return when the memory pool is empty. Instead,
4811 they unwind the stack using cleanups. These functions return
4812 @code{NULL} when requested to allocate a chunk of memory of size zero.
4813
4814 @emph{Pragmatics: By using these functions, the need to check every
4815 memory allocation is removed. These functions provide portable
4816 behavior.}
4817
4818 @value{GDBN} does not use the function @code{free}.
4819
4820 @value{GDBN} uses the function @code{xfree} to return memory to the
4821 memory pool. Consistent with ISO-C, this function ignores a request to
4822 free a @code{NULL} pointer.
4823
4824 @emph{Pragmatics: On some systems @code{free} fails when passed a
4825 @code{NULL} pointer.}
4826
4827 @value{GDBN} can use the non-portable function @code{alloca} for the
4828 allocation of small temporary values (such as strings).
4829
4830 @emph{Pragmatics: This function is very non-portable. Some systems
4831 restrict the memory being allocated to no more than a few kilobytes.}
4832
4833 @value{GDBN} uses the string function @code{xstrdup} and the print
4834 function @code{xasprintf}.
4835
4836 @emph{Pragmatics: @code{asprintf} and @code{strdup} can fail. Print
4837 functions such as @code{sprintf} are very prone to buffer overflow
4838 errors.}
4839
4840
4841 @subsection Compiler Warnings
4842 @cindex compiler warnings
4843
4844 With few exceptions, developers should include the configuration option
4845 @samp{--enable-gdb-build-warnings=,-Werror} when building @value{GDBN}.
4846 The exceptions are listed in the file @file{gdb/MAINTAINERS}.
4847
4848 This option causes @value{GDBN} (when built using GCC) to be compiled
4849 with a carefully selected list of compiler warning flags. Any warnings
4850 from those flags being treated as errors.
4851
4852 The current list of warning flags includes:
4853
4854 @table @samp
4855 @item -Wimplicit
4856 Since @value{GDBN} coding standard requires all functions to be declared
4857 using a prototype, the flag has the side effect of ensuring that
4858 prototyped functions are always visible with out resorting to
4859 @samp{-Wstrict-prototypes}.
4860
4861 @item -Wreturn-type
4862 Such code often appears to work except on instruction set architectures
4863 that use register windows.
4864
4865 @item -Wcomment
4866
4867 @item -Wtrigraphs
4868
4869 @item -Wformat
4870 Since @value{GDBN} uses the @code{format printf} attribute on all
4871 @code{printf} like functions this checks not just @code{printf} calls
4872 but also calls to functions such as @code{fprintf_unfiltered}.
4873
4874 @item -Wparentheses
4875 This warning includes uses of the assignment operator within an
4876 @code{if} statement.
4877
4878 @item -Wpointer-arith
4879
4880 @item -Wuninitialized
4881 @end table
4882
4883 @emph{Pragmatics: Due to the way that @value{GDBN} is implemented most
4884 functions have unused parameters. Consequently the warning
4885 @samp{-Wunused-parameter} is precluded from the list. The macro
4886 @code{ATTRIBUTE_UNUSED} is not used as it leads to false negatives ---
4887 it is not an error to have @code{ATTRIBUTE_UNUSED} on a parameter that
4888 is being used. The options @samp{-Wall} and @samp{-Wunused} are also
4889 precluded because they both include @samp{-Wunused-parameter}.}
4890
4891 @emph{Pragmatics: @value{GDBN} has not simply accepted the warnings
4892 enabled by @samp{-Wall -Werror -W...}. Instead it is selecting warnings
4893 when and where their benefits can be demonstrated.}
4894
4895 @subsection Formatting
4896
4897 @cindex source code formatting
4898 The standard GNU recommendations for formatting must be followed
4899 strictly.
4900
4901 A function declaration should not have its name in column zero. A
4902 function definition should have its name in column zero.
4903
4904 @smallexample
4905 /* Declaration */
4906 static void foo (void);
4907 /* Definition */
4908 void
4909 foo (void)
4910 @{
4911 @}
4912 @end smallexample
4913
4914 @emph{Pragmatics: This simplifies scripting. Function definitions can
4915 be found using @samp{^function-name}.}
4916
4917 There must be a space between a function or macro name and the opening
4918 parenthesis of its argument list (except for macro definitions, as
4919 required by C). There must not be a space after an open paren/bracket
4920 or before a close paren/bracket.
4921
4922 While additional whitespace is generally helpful for reading, do not use
4923 more than one blank line to separate blocks, and avoid adding whitespace
4924 after the end of a program line (as of 1/99, some 600 lines had
4925 whitespace after the semicolon). Excess whitespace causes difficulties
4926 for @code{diff} and @code{patch} utilities.
4927
4928 Pointers are declared using the traditional K&R C style:
4929
4930 @smallexample
4931 void *foo;
4932 @end smallexample
4933
4934 @noindent
4935 and not:
4936
4937 @smallexample
4938 void * foo;
4939 void* foo;
4940 @end smallexample
4941
4942 @subsection Comments
4943
4944 @cindex comment formatting
4945 The standard GNU requirements on comments must be followed strictly.
4946
4947 Block comments must appear in the following form, with no @code{/*}- or
4948 @code{*/}-only lines, and no leading @code{*}:
4949
4950 @smallexample
4951 /* Wait for control to return from inferior to debugger. If inferior
4952 gets a signal, we may decide to start it up again instead of
4953 returning. That is why there is a loop in this function. When
4954 this function actually returns it means the inferior should be left
4955 stopped and @value{GDBN} should read more commands. */
4956 @end smallexample
4957
4958 (Note that this format is encouraged by Emacs; tabbing for a multi-line
4959 comment works correctly, and @kbd{M-q} fills the block consistently.)
4960
4961 Put a blank line between the block comments preceding function or
4962 variable definitions, and the definition itself.
4963
4964 In general, put function-body comments on lines by themselves, rather
4965 than trying to fit them into the 20 characters left at the end of a
4966 line, since either the comment or the code will inevitably get longer
4967 than will fit, and then somebody will have to move it anyhow.
4968
4969 @subsection C Usage
4970
4971 @cindex C data types
4972 Code must not depend on the sizes of C data types, the format of the
4973 host's floating point numbers, the alignment of anything, or the order
4974 of evaluation of expressions.
4975
4976 @cindex function usage
4977 Use functions freely. There are only a handful of compute-bound areas
4978 in @value{GDBN} that might be affected by the overhead of a function
4979 call, mainly in symbol reading. Most of @value{GDBN}'s performance is
4980 limited by the target interface (whether serial line or system call).
4981
4982 However, use functions with moderation. A thousand one-line functions
4983 are just as hard to understand as a single thousand-line function.
4984
4985 @emph{Macros are bad, M'kay.}
4986 (But if you have to use a macro, make sure that the macro arguments are
4987 protected with parentheses.)
4988
4989 @cindex types
4990
4991 Declarations like @samp{struct foo *} should be used in preference to
4992 declarations like @samp{typedef struct foo @{ @dots{} @} *foo_ptr}.
4993
4994
4995 @subsection Function Prototypes
4996 @cindex function prototypes
4997
4998 Prototypes must be used when both @emph{declaring} and @emph{defining}
4999 a function. Prototypes for @value{GDBN} functions must include both the
5000 argument type and name, with the name matching that used in the actual
5001 function definition.
5002
5003 All external functions should have a declaration in a header file that
5004 callers include, except for @code{_initialize_*} functions, which must
5005 be external so that @file{init.c} construction works, but shouldn't be
5006 visible to random source files.
5007
5008 Where a source file needs a forward declaration of a static function,
5009 that declaration must appear in a block near the top of the source file.
5010
5011
5012 @subsection Internal Error Recovery
5013
5014 During its execution, @value{GDBN} can encounter two types of errors.
5015 User errors and internal errors. User errors include not only a user
5016 entering an incorrect command but also problems arising from corrupt
5017 object files and system errors when interacting with the target.
5018 Internal errors include situations where @value{GDBN} has detected, at
5019 run time, a corrupt or erroneous situation.
5020
5021 When reporting an internal error, @value{GDBN} uses
5022 @code{internal_error} and @code{gdb_assert}.
5023
5024 @value{GDBN} must not call @code{abort} or @code{assert}.
5025
5026 @emph{Pragmatics: There is no @code{internal_warning} function. Either
5027 the code detected a user error, recovered from it and issued a
5028 @code{warning} or the code failed to correctly recover from the user
5029 error and issued an @code{internal_error}.}
5030
5031 @subsection File Names
5032
5033 Any file used when building the core of @value{GDBN} must be in lower
5034 case. Any file used when building the core of @value{GDBN} must be 8.3
5035 unique. These requirements apply to both source and generated files.
5036
5037 @emph{Pragmatics: The core of @value{GDBN} must be buildable on many
5038 platforms including DJGPP and MacOS/HFS. Every time an unfriendly file
5039 is introduced to the build process both @file{Makefile.in} and
5040 @file{configure.in} need to be modified accordingly. Compare the
5041 convoluted conversion process needed to transform @file{COPYING} into
5042 @file{copying.c} with the conversion needed to transform
5043 @file{version.in} into @file{version.c}.}
5044
5045 Any file non 8.3 compliant file (that is not used when building the core
5046 of @value{GDBN}) must be added to @file{gdb/config/djgpp/fnchange.lst}.
5047
5048 @emph{Pragmatics: This is clearly a compromise.}
5049
5050 When @value{GDBN} has a local version of a system header file (ex
5051 @file{string.h}) the file name based on the POSIX header prefixed with
5052 @file{gdb_} (@file{gdb_string.h}).
5053
5054 For other files @samp{-} is used as the separator.
5055
5056
5057 @subsection Include Files
5058
5059 All @file{.c} files should include @file{defs.h} first.
5060
5061 All @file{.c} files should explicitly include the headers for any
5062 declarations they refer to. They should not rely on files being
5063 included indirectly.
5064
5065 With the exception of the global definitions supplied by @file{defs.h},
5066 a header file should explicitly include the header declaring any
5067 @code{typedefs} et.al.@: it refers to.
5068
5069 @code{extern} declarations should never appear in @code{.c} files.
5070
5071 All include files should be wrapped in:
5072
5073 @smallexample
5074 #ifndef INCLUDE_FILE_NAME_H
5075 #define INCLUDE_FILE_NAME_H
5076 header body
5077 #endif
5078 @end smallexample
5079
5080
5081 @subsection Clean Design and Portable Implementation
5082
5083 @cindex design
5084 In addition to getting the syntax right, there's the little question of
5085 semantics. Some things are done in certain ways in @value{GDBN} because long
5086 experience has shown that the more obvious ways caused various kinds of
5087 trouble.
5088
5089 @cindex assumptions about targets
5090 You can't assume the byte order of anything that comes from a target
5091 (including @var{value}s, object files, and instructions). Such things
5092 must be byte-swapped using @code{SWAP_TARGET_AND_HOST} in
5093 @value{GDBN}, or one of the swap routines defined in @file{bfd.h},
5094 such as @code{bfd_get_32}.
5095
5096 You can't assume that you know what interface is being used to talk to
5097 the target system. All references to the target must go through the
5098 current @code{target_ops} vector.
5099
5100 You can't assume that the host and target machines are the same machine
5101 (except in the ``native'' support modules). In particular, you can't
5102 assume that the target machine's header files will be available on the
5103 host machine. Target code must bring along its own header files --
5104 written from scratch or explicitly donated by their owner, to avoid
5105 copyright problems.
5106
5107 @cindex portability
5108 Insertion of new @code{#ifdef}'s will be frowned upon. It's much better
5109 to write the code portably than to conditionalize it for various
5110 systems.
5111
5112 @cindex system dependencies
5113 New @code{#ifdef}'s which test for specific compilers or manufacturers
5114 or operating systems are unacceptable. All @code{#ifdef}'s should test
5115 for features. The information about which configurations contain which
5116 features should be segregated into the configuration files. Experience
5117 has proven far too often that a feature unique to one particular system
5118 often creeps into other systems; and that a conditional based on some
5119 predefined macro for your current system will become worthless over
5120 time, as new versions of your system come out that behave differently
5121 with regard to this feature.
5122
5123 Adding code that handles specific architectures, operating systems,
5124 target interfaces, or hosts, is not acceptable in generic code.
5125
5126 @cindex portable file name handling
5127 @cindex file names, portability
5128 One particularly notorious area where system dependencies tend to
5129 creep in is handling of file names. The mainline @value{GDBN} code
5130 assumes Posix semantics of file names: absolute file names begin with
5131 a forward slash @file{/}, slashes are used to separate leading
5132 directories, case-sensitive file names. These assumptions are not
5133 necessarily true on non-Posix systems such as MS-Windows. To avoid
5134 system-dependent code where you need to take apart or construct a file
5135 name, use the following portable macros:
5136
5137 @table @code
5138 @findex HAVE_DOS_BASED_FILE_SYSTEM
5139 @item HAVE_DOS_BASED_FILE_SYSTEM
5140 This preprocessing symbol is defined to a non-zero value on hosts
5141 whose filesystems belong to the MS-DOS/MS-Windows family. Use this
5142 symbol to write conditional code which should only be compiled for
5143 such hosts.
5144
5145 @findex IS_DIR_SEPARATOR
5146 @item IS_DIR_SEPARATOR (@var{c})
5147 Evaluates to a non-zero value if @var{c} is a directory separator
5148 character. On Unix and GNU/Linux systems, only a slash @file{/} is
5149 such a character, but on Windows, both @file{/} and @file{\} will
5150 pass.
5151
5152 @findex IS_ABSOLUTE_PATH
5153 @item IS_ABSOLUTE_PATH (@var{file})
5154 Evaluates to a non-zero value if @var{file} is an absolute file name.
5155 For Unix and GNU/Linux hosts, a name which begins with a slash
5156 @file{/} is absolute. On DOS and Windows, @file{d:/foo} and
5157 @file{x:\bar} are also absolute file names.
5158
5159 @findex FILENAME_CMP
5160 @item FILENAME_CMP (@var{f1}, @var{f2})
5161 Calls a function which compares file names @var{f1} and @var{f2} as
5162 appropriate for the underlying host filesystem. For Posix systems,
5163 this simply calls @code{strcmp}; on case-insensitive filesystems it
5164 will call @code{strcasecmp} instead.
5165
5166 @findex DIRNAME_SEPARATOR
5167 @item DIRNAME_SEPARATOR
5168 Evaluates to a character which separates directories in
5169 @code{PATH}-style lists, typically held in environment variables.
5170 This character is @samp{:} on Unix, @samp{;} on DOS and Windows.
5171
5172 @findex SLASH_STRING
5173 @item SLASH_STRING
5174 This evaluates to a constant string you should use to produce an
5175 absolute filename from leading directories and the file's basename.
5176 @code{SLASH_STRING} is @code{"/"} on most systems, but might be
5177 @code{"\\"} for some Windows-based ports.
5178 @end table
5179
5180 In addition to using these macros, be sure to use portable library
5181 functions whenever possible. For example, to extract a directory or a
5182 basename part from a file name, use the @code{dirname} and
5183 @code{basename} library functions (available in @code{libiberty} for
5184 platforms which don't provide them), instead of searching for a slash
5185 with @code{strrchr}.
5186
5187 Another way to generalize @value{GDBN} along a particular interface is with an
5188 attribute struct. For example, @value{GDBN} has been generalized to handle
5189 multiple kinds of remote interfaces---not by @code{#ifdef}s everywhere, but
5190 by defining the @code{target_ops} structure and having a current target (as
5191 well as a stack of targets below it, for memory references). Whenever
5192 something needs to be done that depends on which remote interface we are
5193 using, a flag in the current target_ops structure is tested (e.g.,
5194 @code{target_has_stack}), or a function is called through a pointer in the
5195 current target_ops structure. In this way, when a new remote interface
5196 is added, only one module needs to be touched---the one that actually
5197 implements the new remote interface. Other examples of
5198 attribute-structs are BFD access to multiple kinds of object file
5199 formats, or @value{GDBN}'s access to multiple source languages.
5200
5201 Please avoid duplicating code. For example, in @value{GDBN} 3.x all
5202 the code interfacing between @code{ptrace} and the rest of
5203 @value{GDBN} was duplicated in @file{*-dep.c}, and so changing
5204 something was very painful. In @value{GDBN} 4.x, these have all been
5205 consolidated into @file{infptrace.c}. @file{infptrace.c} can deal
5206 with variations between systems the same way any system-independent
5207 file would (hooks, @code{#if defined}, etc.), and machines which are
5208 radically different don't need to use @file{infptrace.c} at all.
5209
5210 All debugging code must be controllable using the @samp{set debug
5211 @var{module}} command. Do not use @code{printf} to print trace
5212 messages. Use @code{fprintf_unfiltered(gdb_stdlog, ...}. Do not use
5213 @code{#ifdef DEBUG}.
5214
5215
5216 @node Porting GDB
5217
5218 @chapter Porting @value{GDBN}
5219 @cindex porting to new machines
5220
5221 Most of the work in making @value{GDBN} compile on a new machine is in
5222 specifying the configuration of the machine. This is done in a
5223 dizzying variety of header files and configuration scripts, which we
5224 hope to make more sensible soon. Let's say your new host is called an
5225 @var{xyz} (e.g., @samp{sun4}), and its full three-part configuration
5226 name is @code{@var{arch}-@var{xvend}-@var{xos}} (e.g.,
5227 @samp{sparc-sun-sunos4}). In particular:
5228
5229 @itemize @bullet
5230 @item
5231 In the top level directory, edit @file{config.sub} and add @var{arch},
5232 @var{xvend}, and @var{xos} to the lists of supported architectures,
5233 vendors, and operating systems near the bottom of the file. Also, add
5234 @var{xyz} as an alias that maps to
5235 @code{@var{arch}-@var{xvend}-@var{xos}}. You can test your changes by
5236 running
5237
5238 @smallexample
5239 ./config.sub @var{xyz}
5240 @end smallexample
5241
5242 @noindent
5243 and
5244
5245 @smallexample
5246 ./config.sub @code{@var{arch}-@var{xvend}-@var{xos}}
5247 @end smallexample
5248
5249 @noindent
5250 which should both respond with @code{@var{arch}-@var{xvend}-@var{xos}}
5251 and no error messages.
5252
5253 @noindent
5254 You need to port BFD, if that hasn't been done already. Porting BFD is
5255 beyond the scope of this manual.
5256
5257 @item
5258 To configure @value{GDBN} itself, edit @file{gdb/configure.host} to recognize
5259 your system and set @code{gdb_host} to @var{xyz}, and (unless your
5260 desired target is already available) also edit @file{gdb/configure.tgt},
5261 setting @code{gdb_target} to something appropriate (for instance,
5262 @var{xyz}).
5263
5264 @emph{Maintainer's note: Work in progress. The file
5265 @file{gdb/configure.host} originally needed to be modified when either a
5266 new native target or a new host machine was being added to @value{GDBN}.
5267 Recent changes have removed this requirement. The file now only needs
5268 to be modified when adding a new native configuration. This will likely
5269 changed again in the future.}
5270
5271 @item
5272 Finally, you'll need to specify and define @value{GDBN}'s host-, native-, and
5273 target-dependent @file{.h} and @file{.c} files used for your
5274 configuration.
5275 @end itemize
5276
5277 @section Configuring @value{GDBN} for Release
5278
5279 @cindex preparing a release
5280 @cindex making a distribution tarball
5281 From the top level directory (containing @file{gdb}, @file{bfd},
5282 @file{libiberty}, and so on):
5283
5284 @smallexample
5285 make -f Makefile.in gdb.tar.gz
5286 @end smallexample
5287
5288 @noindent
5289 This will properly configure, clean, rebuild any files that are
5290 distributed pre-built (e.g. @file{c-exp.tab.c} or @file{refcard.ps}),
5291 and will then make a tarfile. (If the top level directory has already
5292 been configured, you can just do @code{make gdb.tar.gz} instead.)
5293
5294 This procedure requires:
5295
5296 @itemize @bullet
5297
5298 @item
5299 symbolic links;
5300
5301 @item
5302 @code{makeinfo} (texinfo2 level);
5303
5304 @item
5305 @TeX{};
5306
5307 @item
5308 @code{dvips};
5309
5310 @item
5311 @code{yacc} or @code{bison}.
5312 @end itemize
5313
5314 @noindent
5315 @dots{} and the usual slew of utilities (@code{sed}, @code{tar}, etc.).
5316
5317 @subheading TEMPORARY RELEASE PROCEDURE FOR DOCUMENTATION
5318
5319 @file{gdb.texinfo} is currently marked up using the texinfo-2 macros,
5320 which are not yet a default for anything (but we have to start using
5321 them sometime).
5322
5323 For making paper, the only thing this implies is the right generation of
5324 @file{texinfo.tex} needs to be included in the distribution.
5325
5326 For making info files, however, rather than duplicating the texinfo2
5327 distribution, generate @file{gdb-all.texinfo} locally, and include the
5328 files @file{gdb.info*} in the distribution. Note the plural;
5329 @code{makeinfo} will split the document into one overall file and five
5330 or so included files.
5331
5332
5333 @node Releasing GDB
5334
5335 @chapter Releasing @value{GDBN}
5336 @cindex making a new release of gdb
5337
5338 @section Versions and Branches
5339
5340 @subsection Version Identifiers
5341
5342 @value{GDBN}'s version is determined by the file @file{gdb/version.in}.
5343
5344 @value{GDBN}'s mainline uses ISO dates to differentiate between
5345 versions. The CVS repository uses @var{YYYY}-@var{MM}-@var{DD}-cvs
5346 while the corresponding snapshot uses @var{YYYYMMDD}.
5347
5348 @value{GDBN}'s release branch uses a slightly more complicated scheme.
5349 When the branch is first cut, the mainline version identifier is
5350 prefixed with the @var{major}.@var{minor} from of the previous release
5351 series but with .90 appended. As draft releases are drawn from the
5352 branch, the minor minor number (.90) is incremented. Once the first
5353 release (@var{M}.@var{N}) has been made, the version prefix is updated
5354 to @var{M}.@var{N}.0.90 (dot zero, dot ninety). Follow on releases have
5355 an incremented minor minor version number (.0).
5356
5357 Using 5.1 (previous) and 5.2 (current), the example below illustrates a
5358 typical sequence of version identifiers:
5359
5360 @table @asis
5361 @item 5.1.1
5362 final release from previous branch
5363 @item 2002-03-03-cvs
5364 main-line the day the branch is cut
5365 @item 5.1.90-2002-03-03-cvs
5366 corresponding branch version
5367 @item 5.1.91
5368 first draft release candidate
5369 @item 5.1.91-2002-03-17-cvs
5370 updated branch version
5371 @item 5.1.92
5372 second draft release candidate
5373 @item 5.1.92-2002-03-31-cvs
5374 updated branch version
5375 @item 5.1.93
5376 final release candidate (see below)
5377 @item 5.2
5378 official release
5379 @item 5.2.0.90-2002-04-07-cvs
5380 updated CVS branch version
5381 @item 5.2.1
5382 second official release
5383 @end table
5384
5385 Notes:
5386
5387 @itemize @bullet
5388 @item
5389 Minor minor minor draft release candidates such as 5.2.0.91 have been
5390 omitted from the example. Such release candidates are, typically, never
5391 made.
5392 @item
5393 For 5.1.93 the bziped tar ball @file{gdb-5.1.93.tar.bz2} is just the
5394 official @file{gdb-5.2.tar} renamed and compressed.
5395 @end itemize
5396
5397 To avoid version conflicts, vendors are expected to modify the file
5398 @file{gdb/version.in} to include a vendor unique alphabetic identifier
5399 (an official @value{GDBN} release never uses alphabetic characters in
5400 its version identifer).
5401
5402 Since @value{GDBN} does not make minor minor minor releases (e.g.,
5403 5.1.0.1) the conflict between that and a minor minor draft release
5404 identifier (e.g., 5.1.0.90) is avoided.
5405
5406
5407 @subsection Branches
5408
5409 @value{GDBN} draws a release series (5.2, 5.2.1, @dots{}) from a single
5410 release branch (gdb_5_2-branch). Since minor minor minor releases
5411 (5.1.0.1) are not made, the need to branch the release branch is avoided
5412 (it also turns out that the effort required for such a a branch and
5413 release is significantly greater than the effort needed to create a new
5414 release from the head of the release branch).
5415
5416 Releases 5.0 and 5.1 used branch and release tags of the form:
5417
5418 @smallexample
5419 gdb_N_M-YYYY-MM-DD-branchpoint
5420 gdb_N_M-YYYY-MM-DD-branch
5421 gdb_M_N-YYYY-MM-DD-release
5422 @end smallexample
5423
5424 Release 5.2 is trialing the branch and release tags:
5425
5426 @smallexample
5427 gdb_N_M-YYYY-MM-DD-branchpoint
5428 gdb_N_M-branch
5429 gdb_M_N-YYYY-MM-DD-release
5430 @end smallexample
5431
5432 @emph{Pragmatics: The branchpoint and release tags need to identify when
5433 a branch and release are made. The branch tag, denoting the head of the
5434 branch, does not have this criteria.}
5435
5436
5437 @section Branch Commit Policy
5438
5439 The branch commit policy is pretty slack. @value{GDBN} releases 5.0,
5440 5.1 and 5.2 all used the below:
5441
5442 @itemize @bullet
5443 @item
5444 The @file{gdb/MAINTAINERS} file still holds.
5445 @item
5446 Don't fix something on the branch unless/until it is also fixed in the
5447 trunk. If this isn't possible, mentioning it in the @file{gdb/PROBLEMS}
5448 file is better than committing a hack.
5449 @item
5450 When considering a patch for the branch, suggested criteria include:
5451 Does it fix a build? Does it fix the sequence @kbd{break main; run}
5452 when debugging a static binary?
5453 @item
5454 The further a change is from the core of @value{GDBN}, the less likely
5455 the change will worry anyone (e.g., target specific code).
5456 @item
5457 Only post a proposal to change the core of @value{GDBN} after you've
5458 sent individual bribes to all the people listed in the
5459 @file{MAINTAINERS} file @t{;-)}
5460 @end itemize
5461
5462 @emph{Pragmatics: Provided updates are restricted to non-core
5463 functionality there is little chance that a broken change will be fatal.
5464 This means that changes such as adding a new architectures or (within
5465 reason) support for a new host are considered acceptable.}
5466
5467
5468 @section Obsoleting code
5469
5470 Before anything else, poke the other developers (and around the source
5471 code) to see if there is anything that can be removed from @value{GDBN}
5472 (an old target, an unused file).
5473
5474 Obsolete code is identified by adding an @code{OBSOLETE} prefix to every
5475 line. Doing this means that it is easy to identify something that has
5476 been obsoleted when greping through the sources.
5477
5478 The process is done in stages --- this is mainly to ensure that the
5479 wider @value{GDBN} community has a reasonable opportunity to respond.
5480 Remember, everything on the Internet takes a week.
5481
5482 @enumerate
5483 @item
5484 Post the proposal on @email{gdb@@sources.redhat.com, the GDB mailing
5485 list} Creating a bug report to track the task's state, is also highly
5486 recommended.
5487 @item
5488 Wait a week or so.
5489 @item
5490 Post the proposal on @email{gdb-announce@@sources.redhat.com, the GDB
5491 Announcement mailing list}.
5492 @item
5493 Wait a week or so.
5494 @item
5495 Go through and edit all relevant files and lines so that they are
5496 prefixed with the word @code{OBSOLETE}.
5497 @item
5498 Wait until the next GDB version, containing this obsolete code, has been
5499 released.
5500 @item
5501 Remove the obsolete code.
5502 @end enumerate
5503
5504 @noindent
5505 @emph{Maintainer note: While removing old code is regrettable it is
5506 hopefully better for @value{GDBN}'s long term development. Firstly it
5507 helps the developers by removing code that is either no longer relevant
5508 or simply wrong. Secondly since it removes any history associated with
5509 the file (effectively clearing the slate) the developer has a much freer
5510 hand when it comes to fixing broken files.}
5511
5512
5513
5514 @section Before the Branch
5515
5516 The most important objective at this stage is to find and fix simple
5517 changes that become a pain to track once the branch is created. For
5518 instance, configuration problems that stop @value{GDBN} from even
5519 building. If you can't get the problem fixed, document it in the
5520 @file{gdb/PROBLEMS} file.
5521
5522 @subheading Prompt for @file{gdb/NEWS}
5523
5524 People always forget. Send a post reminding them but also if you know
5525 something interesting happened add it yourself. The @code{schedule}
5526 script will mention this in its e-mail.
5527
5528 @subheading Review @file{gdb/README}
5529
5530 Grab one of the nightly snapshots and then walk through the
5531 @file{gdb/README} looking for anything that can be improved. The
5532 @code{schedule} script will mention this in its e-mail.
5533
5534 @subheading Refresh any imported files.
5535
5536 A number of files are taken from external repositories. They include:
5537
5538 @itemize @bullet
5539 @item
5540 @file{texinfo/texinfo.tex}
5541 @item
5542 @file{config.guess} et.@: al.@: (see the top-level @file{MAINTAINERS}
5543 file)
5544 @item
5545 @file{etc/standards.texi}, @file{etc/make-stds.texi}
5546 @end itemize
5547
5548 @subheading Check the ARI
5549
5550 @uref{http://sources.redhat.com/gdb/ari,,A.R.I.} is an @code{awk} script
5551 (Awk Regression Index ;-) that checks for a number of errors and coding
5552 conventions. The checks include things like using @code{malloc} instead
5553 of @code{xmalloc} and file naming problems. There shouldn't be any
5554 regressions.
5555
5556 @subsection Review the bug data base
5557
5558 Close anything obviously fixed.
5559
5560 @subsection Check all cross targets build
5561
5562 The targets are listed in @file{gdb/MAINTAINERS}.
5563
5564
5565 @section Cut the Branch
5566
5567 @subheading Create the branch
5568
5569 @smallexample
5570 $ u=5.1
5571 $ v=5.2
5572 $ V=`echo $v | sed 's/\./_/g'`
5573 $ D=`date -u +%Y-%m-%d`
5574 $ echo $u $V $D
5575 5.1 5_2 2002-03-03
5576 $ echo cvs -f -d :ext:sources.redhat.com:/cvs/src rtag \
5577 -D $D-gmt gdb_$V-$D-branchpoint insight+dejagnu
5578 cvs -f -d :ext:sources.redhat.com:/cvs/src rtag
5579 -D 2002-03-03-gmt gdb_5_2-2002-03-03-branchpoint insight+dejagnu
5580 $ ^echo ^^
5581 ...
5582 $ echo cvs -f -d :ext:sources.redhat.com:/cvs/src rtag \
5583 -b -r gdb_$V-$D-branchpoint gdb_$V-branch insight+dejagnu
5584 cvs -f -d :ext:sources.redhat.com:/cvs/src rtag \
5585 -b -r gdb_5_2-2002-03-03-branchpoint gdb_5_2-branch insight+dejagnu
5586 $ ^echo ^^
5587 ...
5588 $
5589 @end smallexample
5590
5591 @itemize @bullet
5592 @item
5593 by using @kbd{-D YYYY-MM-DD-gmt} the branch is forced to an exact
5594 date/time.
5595 @item
5596 the trunk is first taged so that the branch point can easily be found
5597 @item
5598 Insight (which includes GDB) and dejagnu are all tagged at the same time
5599 @item
5600 @file{version.in} gets bumped to avoid version number conflicts
5601 @item
5602 the reading of @file{.cvsrc} is disabled using @file{-f}
5603 @end itemize
5604
5605 @subheading Update @file{version.in}
5606
5607 @smallexample
5608 $ u=5.1
5609 $ v=5.2
5610 $ V=`echo $v | sed 's/\./_/g'`
5611 $ echo $u $v$V
5612 5.1 5_2
5613 $ cd /tmp
5614 $ echo cvs -f -d :ext:sources.redhat.com:/cvs/src co \
5615 -r gdb_$V-branch src/gdb/version.in
5616 cvs -f -d :ext:sources.redhat.com:/cvs/src co
5617 -r gdb_5_2-branch src/gdb/version.in
5618 $ ^echo ^^
5619 U src/gdb/version.in
5620 $ cd src/gdb
5621 $ echo $u.90-0000-00-00-cvs > version.in
5622 $ cat version.in
5623 5.1.90-0000-00-00-cvs
5624 $ cvs -f commit version.in
5625 @end smallexample
5626
5627 @itemize @bullet
5628 @item
5629 @file{0000-00-00} is used as a date to pump prime the version.in update
5630 mechanism
5631 @item
5632 @file{.90} and the previous branch version are used as fairly arbitrary
5633 initial branch version number
5634 @end itemize
5635
5636
5637 @subheading Update the web and news pages
5638
5639 Something?
5640
5641 @subheading Tweak cron to track the new branch
5642
5643 The file @file{gdbadmin/cron/crontab} contains gdbadmin's cron table.
5644 This file needs to be updated so that:
5645
5646 @itemize @bullet
5647 @item
5648 a daily timestamp is added to the file @file{version.in}
5649 @item
5650 the new branch is included in the snapshot process
5651 @end itemize
5652
5653 @noindent
5654 See the file @file{gdbadmin/cron/README} for how to install the updated
5655 cron table.
5656
5657 The file @file{gdbadmin/ss/README} should also be reviewed to reflect
5658 any changes. That file is copied to both the branch/ and current/
5659 snapshot directories.
5660
5661
5662 @subheading Update the NEWS and README files
5663
5664 The @file{NEWS} file needs to be updated so that on the branch it refers
5665 to @emph{changes in the current release} while on the trunk it also
5666 refers to @emph{changes since the current release}.
5667
5668 The @file{README} file needs to be updated so that it refers to the
5669 current release.
5670
5671 @subheading Post the branch info
5672
5673 Send an announcement to the mailing lists:
5674
5675 @itemize @bullet
5676 @item
5677 @email{gdb-announce@@sources.redhat.com, GDB Announcement mailing list}
5678 @item
5679 @email{gdb@@sources.redhat.com, GDB Discsussion mailing list} and
5680 @email{gdb-testers@@sources.redhat.com, GDB Discsussion mailing list}
5681 @end itemize
5682
5683 @emph{Pragmatics: The branch creation is sent to the announce list to
5684 ensure that people people not subscribed to the higher volume discussion
5685 list are alerted.}
5686
5687 The announcement should include:
5688
5689 @itemize @bullet
5690 @item
5691 the branch tag
5692 @item
5693 how to check out the branch using CVS
5694 @item
5695 the date/number of weeks until the release
5696 @item
5697 the branch commit policy
5698 still holds.
5699 @end itemize
5700
5701 @section Stabilize the branch
5702
5703 Something goes here.
5704
5705 @section Create a Release
5706
5707 The process of creating and then making available a release is broken
5708 down into a number of stages. The first part addresses the technical
5709 process of creating a releasable tar ball. The later stages address the
5710 process of releasing that tar ball.
5711
5712 When making a release candidate just the first section is needed.
5713
5714 @subsection Create a release candidate
5715
5716 The objective at this stage is to create a set of tar balls that can be
5717 made available as a formal release (or as a less formal release
5718 candidate).
5719
5720 @subsubheading Freeze the branch
5721
5722 Send out an e-mail notifying everyone that the branch is frozen to
5723 @email{gdb-patches@@sources.redhat.com}.
5724
5725 @subsubheading Establish a few defaults.
5726
5727 @smallexample
5728 $ b=gdb_5_2-branch
5729 $ v=5.2
5730 $ t=/sourceware/snapshot-tmp/gdbadmin-tmp
5731 $ echo $t/$b/$v
5732 /sourceware/snapshot-tmp/gdbadmin-tmp/gdb_5_2-branch/5.2
5733 $ mkdir -p $t/$b/$v
5734 $ cd $t/$b/$v
5735 $ pwd
5736 /sourceware/snapshot-tmp/gdbadmin-tmp/gdb_5_2-branch/5.2
5737 $ which autoconf
5738 /home/gdbadmin/bin/autoconf
5739 $
5740 @end smallexample
5741
5742 @noindent
5743 Notes:
5744
5745 @itemize @bullet
5746 @item
5747 Check the @code{autoconf} version carefully. You want to be using the
5748 version taken from the @file{binutils} snapshot directory. It is very
5749 unlikely that a system installed version of @code{autoconf} (e.g.,
5750 @file{/usr/bin/autoconf}) is correct.
5751 @end itemize
5752
5753 @subsubheading Check out the relevant modules:
5754
5755 @smallexample
5756 $ for m in gdb insight dejagnu
5757 do
5758 ( mkdir -p $m && cd $m && cvs -q -f -d /cvs/src co -P -r $b $m )
5759 done
5760 $
5761 @end smallexample
5762
5763 @noindent
5764 Note:
5765
5766 @itemize @bullet
5767 @item
5768 The reading of @file{.cvsrc} is disabled (@file{-f}) so that there isn't
5769 any confusion between what is written here and what your local
5770 @code{cvs} really does.
5771 @end itemize
5772
5773 @subsubheading Update relevant files.
5774
5775 @table @file
5776
5777 @item gdb/NEWS
5778
5779 Major releases get their comments added as part of the mainline. Minor
5780 releases should probably mention any significant bugs that were fixed.
5781
5782 Don't forget to include the @file{ChangeLog} entry.
5783
5784 @smallexample
5785 $ emacs gdb/src/gdb/NEWS
5786 ...
5787 c-x 4 a
5788 ...
5789 c-x c-s c-x c-c
5790 $ cp gdb/src/gdb/NEWS insight/src/gdb/NEWS
5791 $ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog
5792 @end smallexample
5793
5794 @item gdb/README
5795
5796 You'll need to update:
5797
5798 @itemize @bullet
5799 @item
5800 the version
5801 @item
5802 the update date
5803 @item
5804 who did it
5805 @end itemize
5806
5807 @smallexample
5808 $ emacs gdb/src/gdb/README
5809 ...
5810 c-x 4 a
5811 ...
5812 c-x c-s c-x c-c
5813 $ cp gdb/src/gdb/README insight/src/gdb/README
5814 $ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog
5815 @end smallexample
5816
5817 @emph{Maintainer note: Hopefully the @file{README} file was reviewed
5818 before the initial branch was cut so just a simple substitute is needed
5819 to get it updated.}
5820
5821 @emph{Maintainer note: Other projects generate @file{README} and
5822 @file{INSTALL} from the core documentation. This might be worth
5823 pursuing.}
5824
5825 @item gdb/version.in
5826
5827 @smallexample
5828 $ echo $v > gdb/src/gdb/version.in
5829 $ cat gdb/src/gdb/version.in
5830 5.2
5831 $ emacs gdb/src/gdb/version.in
5832 ...
5833 c-x 4 a
5834 ... Bump to version ...
5835 c-x c-s c-x c-c
5836 $ cp gdb/src/gdb/version.in insight/src/gdb/version.in
5837 $ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog
5838 @end smallexample
5839
5840 @item dejagnu/src/dejagnu/configure.in
5841
5842 Dejagnu is more complicated. The version number is a parameter to
5843 @code{AM_INIT_AUTOMAKE}. Tweak it to read something like gdb-5.1.91.
5844
5845 Don't forget to re-generate @file{configure}.
5846
5847 Don't forget to include a @file{ChangeLog} entry.
5848
5849 @smallexample
5850 $ emacs dejagnu/src/dejagnu/configure.in
5851 ...
5852 c-x 4 a
5853 ...
5854 c-x c-s c-x c-c
5855 $ ( cd dejagnu/src/dejagnu && autoconf )
5856 @end smallexample
5857
5858 @end table
5859
5860 @subsubheading Do the dirty work
5861
5862 This is identical to the process used to create the daily snapshot.
5863
5864 @smallexample
5865 $ for m in gdb insight
5866 do
5867 ( cd $m/src && gmake -f Makefile.in $m.tar )
5868 done
5869 $ ( m=dejagnu; cd $m/src && gmake -f Makefile.in $m.tar.bz2 )
5870 @end smallexample
5871
5872 @subsubheading Check the source files
5873
5874 You're looking for files that have mysteriously disappeared.
5875 @kbd{distclean} has the habit of deleting files it shouldn't. Watch out
5876 for the @file{version.in} update @kbd{cronjob}.
5877
5878 @smallexample
5879 $ ( cd gdb/src && cvs -f -q -n update )
5880 M djunpack.bat
5881 ? gdb-5.1.91.tar
5882 ? proto-toplev
5883 @dots{} lots of generated files @dots{}
5884 M gdb/ChangeLog
5885 M gdb/NEWS
5886 M gdb/README
5887 M gdb/version.in
5888 @dots{} lots of generated files @dots{}
5889 $
5890 @end smallexample
5891
5892 @noindent
5893 @emph{Don't worry about the @file{gdb.info-??} or
5894 @file{gdb/p-exp.tab.c}. They were generated (and yes @file{gdb.info-1}
5895 was also generated only something strange with CVS means that they
5896 didn't get supressed). Fixing it would be nice though.}
5897
5898 @subsubheading Create compressed versions of the release
5899
5900 @smallexample
5901 $ cp */src/*.tar .
5902 $ cp */src/*.bz2 .
5903 $ ls -F
5904 dejagnu/ dejagnu-gdb-5.2.tar.bz2 gdb/ gdb-5.2.tar insight/ insight-5.2.tar
5905 $ for m in gdb insight
5906 do
5907 bzip2 -v -9 -c $m-$v.tar > $m-$v.tar.bz2
5908 gzip -v -9 -c $m-$v.tar > $m-$v.tar.gz
5909 done
5910 $
5911 @end smallexample
5912
5913 @noindent
5914 Note:
5915
5916 @itemize @bullet
5917 @item
5918 A pipe such as @kbd{bunzip2 < xxx.bz2 | gzip -9 > xxx.gz} is not since,
5919 in that mode, @code{gzip} does not know the name of the file and, hence,
5920 can not include it in the compressed file. This is also why the release
5921 process runs @code{tar} and @code{bzip2} as separate passes.
5922 @end itemize
5923
5924 @subsection Sanity check the tar ball
5925
5926 Pick a popular machine (Solaris/PPC?) and try the build on that.
5927
5928 @smallexample
5929 $ bunzip2 < gdb-5.2.tar.bz2 | tar xpf -
5930 $ cd gdb-5.2
5931 $ ./configure
5932 $ make
5933 @dots{}
5934 $ ./gdb/gdb ./gdb/gdb
5935 GNU gdb 5.2
5936 @dots{}
5937 (gdb) b main
5938 Breakpoint 1 at 0x80732bc: file main.c, line 734.
5939 (gdb) run
5940 Starting program: /tmp/gdb-5.2/gdb/gdb
5941
5942 Breakpoint 1, main (argc=1, argv=0xbffff8b4) at main.c:734
5943 734 catch_errors (captured_main, &args, "", RETURN_MASK_ALL);
5944 (gdb) print args
5945 $1 = @{argc = 136426532, argv = 0x821b7f0@}
5946 (gdb)
5947 @end smallexample
5948
5949 @subsection Make a release candidate available
5950
5951 If this is a release candidate then the only remaining steps are:
5952
5953 @enumerate
5954 @item
5955 Commit @file{version.in} and @file{ChangeLog}
5956 @item
5957 Tweak @file{version.in} (and @file{ChangeLog} to read
5958 @var{L}.@var{M}.@var{N}-0000-00-00-cvs so that the version update
5959 process can restart.
5960 @item
5961 Make the release candidate available in
5962 @uref{ftp://sources.redhat.com/pub/gdb/snapshots/branch}
5963 @item
5964 Notify the relevant mailing lists ( @email{gdb@@sources.redhat.com} and
5965 @email{gdb-testers@@sources.redhat.com} that the candidate is available.
5966 @end enumerate
5967
5968 @subsection Make a formal release available
5969
5970 (And you thought all that was required was to post an e-mail.)
5971
5972 @subsubheading Install on sware
5973
5974 Copy the new files to both the release and the old release directory:
5975
5976 @smallexample
5977 $ cp *.bz2 *.gz ~ftp/pub/gdb/old-releases/
5978 $ cp *.bz2 *.gz ~ftp/pub/gdb/releases
5979 @end smallexample
5980
5981 @noindent
5982 Clean up the releases directory so that only the most recent releases
5983 are available (e.g. keep 5.2 and 5.2.1 but remove 5.1):
5984
5985 @smallexample
5986 $ cd ~ftp/pub/gdb/releases
5987 $ rm @dots{}
5988 @end smallexample
5989
5990 @noindent
5991 Update the file @file{README} and @file{.message} in the releases
5992 directory:
5993
5994 @smallexample
5995 $ vi README
5996 @dots{}
5997 $ rm -f .message
5998 $ ln README .message
5999 @end smallexample
6000
6001 @subsubheading Update the web pages.
6002
6003 @table @file
6004
6005 @item htdocs/download/ANNOUNCEMENT
6006 This file, which is posted as the official announcement, includes:
6007 @itemize @bullet
6008 @item
6009 General announcement
6010 @item
6011 News. If making an @var{M}.@var{N}.1 release, retain the news from
6012 earlier @var{M}.@var{N} release.
6013 @item
6014 Errata
6015 @end itemize
6016
6017 @item htdocs/index.html
6018 @itemx htdocs/news/index.html
6019 @itemx htdocs/download/index.html
6020 These files include:
6021 @itemize @bullet
6022 @item
6023 announcement of the most recent release
6024 @item
6025 news entry (remember to update both the top level and the news directory).
6026 @end itemize
6027 These pages also need to be regenerate using @code{index.sh}.
6028
6029 @item download/onlinedocs/
6030 You need to find the magic command that is used to generate the online
6031 docs from the @file{.tar.bz2}. The best way is to look in the output
6032 from one of the nightly @code{cron} jobs and then just edit accordingly.
6033 Something like:
6034
6035 @smallexample
6036 $ ~/ss/update-web-docs \
6037 ~ftp/pub/gdb/releases/gdb-5.2.tar.bz2 \
6038 $PWD/www \
6039 /www/sourceware/htdocs/gdb/download/onlinedocs \
6040 gdb
6041 @end smallexample
6042
6043 @item download/ari/
6044 Just like the online documentation. Something like:
6045
6046 @smallexample
6047 $ /bin/sh ~/ss/update-web-ari \
6048 ~ftp/pub/gdb/releases/gdb-5.2.tar.bz2 \
6049 $PWD/www \
6050 /www/sourceware/htdocs/gdb/download/ari \
6051 gdb
6052 @end smallexample
6053
6054 @end table
6055
6056 @subsubheading Shadow the pages onto gnu
6057
6058 Something goes here.
6059
6060
6061 @subsubheading Install the @value{GDBN} tar ball on GNU
6062
6063 At the time of writing, the GNU machine was @kbd{gnudist.gnu.org} in
6064 @file{~ftp/gnu/gdb}.
6065
6066 @subsubheading Make the @file{ANNOUNCEMENT}
6067
6068 Post the @file{ANNOUNCEMENT} file you created above to:
6069
6070 @itemize @bullet
6071 @item
6072 @email{gdb-announce@@sources.redhat.com, GDB Announcement mailing list}
6073 @item
6074 @email{info-gnu@@gnu.org, General GNU Announcement list} (but delay it a
6075 day or so to let things get out)
6076 @item
6077 @email{bug-gdb@@gnu.org, GDB Bug Report mailing list}
6078 @end itemize
6079
6080 @subsection Cleanup
6081
6082 The release is out but you're still not finished.
6083
6084 @subsubheading Commit outstanding changes
6085
6086 In particular you'll need to commit any changes to:
6087
6088 @itemize @bullet
6089 @item
6090 @file{gdb/ChangeLog}
6091 @item
6092 @file{gdb/version.in}
6093 @item
6094 @file{gdb/NEWS}
6095 @item
6096 @file{gdb/README}
6097 @end itemize
6098
6099 @subsubheading Tag the release
6100
6101 Something like:
6102
6103 @smallexample
6104 $ d=`date -u +%Y-%m-%d`
6105 $ echo $d
6106 2002-01-24
6107 $ ( cd insight/src/gdb && cvs -f -q update )
6108 $ ( cd insight/src && cvs -f -q tag gdb_5_2-$d-release )
6109 @end smallexample
6110
6111 Insight is used since that contains more of the release than
6112 @value{GDBN} (@code{dejagnu} doesn't get tagged but I think we can live
6113 with that).
6114
6115 @subsubheading Mention the release on the trunk
6116
6117 Just put something in the @file{ChangeLog} so that the trunk also
6118 indicates when the release was made.
6119
6120 @subsubheading Restart @file{gdb/version.in}
6121
6122 If @file{gdb/version.in} does not contain an ISO date such as
6123 @kbd{2002-01-24} then the daily @code{cronjob} won't update it. Having
6124 committed all the release changes it can be set to
6125 @file{5.2.0_0000-00-00-cvs} which will restart things (yes the @kbd{_}
6126 is important - it affects the snapshot process).
6127
6128 Don't forget the @file{ChangeLog}.
6129
6130 @subsubheading Merge into trunk
6131
6132 The files committed to the branch may also need changes merged into the
6133 trunk.
6134
6135 @subsubheading Revise the release schedule
6136
6137 Post a revised release schedule to @email{gdb@@sources.redhat.com, GDB
6138 Discussion List} with an updated announcement. The schedule can be
6139 generated by running:
6140
6141 @smallexample
6142 $ ~/ss/schedule `date +%s` schedule
6143 @end smallexample
6144
6145 @noindent
6146 The first parameter is approximate date/time in seconds (from the epoch)
6147 of the most recent release.
6148
6149 Also update the schedule @code{cronjob}.
6150
6151 @section Post release
6152
6153 Remove any @code{OBSOLETE} code.
6154
6155 @node Testsuite
6156
6157 @chapter Testsuite
6158 @cindex test suite
6159
6160 The testsuite is an important component of the @value{GDBN} package.
6161 While it is always worthwhile to encourage user testing, in practice
6162 this is rarely sufficient; users typically use only a small subset of
6163 the available commands, and it has proven all too common for a change
6164 to cause a significant regression that went unnoticed for some time.
6165
6166 The @value{GDBN} testsuite uses the DejaGNU testing framework.
6167 DejaGNU is built using @code{Tcl} and @code{expect}. The tests
6168 themselves are calls to various @code{Tcl} procs; the framework runs all the
6169 procs and summarizes the passes and fails.
6170
6171 @section Using the Testsuite
6172
6173 @cindex running the test suite
6174 To run the testsuite, simply go to the @value{GDBN} object directory (or to the
6175 testsuite's objdir) and type @code{make check}. This just sets up some
6176 environment variables and invokes DejaGNU's @code{runtest} script. While
6177 the testsuite is running, you'll get mentions of which test file is in use,
6178 and a mention of any unexpected passes or fails. When the testsuite is
6179 finished, you'll get a summary that looks like this:
6180
6181 @smallexample
6182 === gdb Summary ===
6183
6184 # of expected passes 6016
6185 # of unexpected failures 58
6186 # of unexpected successes 5
6187 # of expected failures 183
6188 # of unresolved testcases 3
6189 # of untested testcases 5
6190 @end smallexample
6191
6192 The ideal test run consists of expected passes only; however, reality
6193 conspires to keep us from this ideal. Unexpected failures indicate
6194 real problems, whether in @value{GDBN} or in the testsuite. Expected
6195 failures are still failures, but ones which have been decided are too
6196 hard to deal with at the time; for instance, a test case might work
6197 everywhere except on AIX, and there is no prospect of the AIX case
6198 being fixed in the near future. Expected failures should not be added
6199 lightly, since you may be masking serious bugs in @value{GDBN}.
6200 Unexpected successes are expected fails that are passing for some
6201 reason, while unresolved and untested cases often indicate some minor
6202 catastrophe, such as the compiler being unable to deal with a test
6203 program.
6204
6205 When making any significant change to @value{GDBN}, you should run the
6206 testsuite before and after the change, to confirm that there are no
6207 regressions. Note that truly complete testing would require that you
6208 run the testsuite with all supported configurations and a variety of
6209 compilers; however this is more than really necessary. In many cases
6210 testing with a single configuration is sufficient. Other useful
6211 options are to test one big-endian (Sparc) and one little-endian (x86)
6212 host, a cross config with a builtin simulator (powerpc-eabi,
6213 mips-elf), or a 64-bit host (Alpha).
6214
6215 If you add new functionality to @value{GDBN}, please consider adding
6216 tests for it as well; this way future @value{GDBN} hackers can detect
6217 and fix their changes that break the functionality you added.
6218 Similarly, if you fix a bug that was not previously reported as a test
6219 failure, please add a test case for it. Some cases are extremely
6220 difficult to test, such as code that handles host OS failures or bugs
6221 in particular versions of compilers, and it's OK not to try to write
6222 tests for all of those.
6223
6224 @section Testsuite Organization
6225
6226 @cindex test suite organization
6227 The testsuite is entirely contained in @file{gdb/testsuite}. While the
6228 testsuite includes some makefiles and configury, these are very minimal,
6229 and used for little besides cleaning up, since the tests themselves
6230 handle the compilation of the programs that @value{GDBN} will run. The file
6231 @file{testsuite/lib/gdb.exp} contains common utility procs useful for
6232 all @value{GDBN} tests, while the directory @file{testsuite/config} contains
6233 configuration-specific files, typically used for special-purpose
6234 definitions of procs like @code{gdb_load} and @code{gdb_start}.
6235
6236 The tests themselves are to be found in @file{testsuite/gdb.*} and
6237 subdirectories of those. The names of the test files must always end
6238 with @file{.exp}. DejaGNU collects the test files by wildcarding
6239 in the test directories, so both subdirectories and individual files
6240 get chosen and run in alphabetical order.
6241
6242 The following table lists the main types of subdirectories and what they
6243 are for. Since DejaGNU finds test files no matter where they are
6244 located, and since each test file sets up its own compilation and
6245 execution environment, this organization is simply for convenience and
6246 intelligibility.
6247
6248 @table @file
6249 @item gdb.base
6250 This is the base testsuite. The tests in it should apply to all
6251 configurations of @value{GDBN} (but generic native-only tests may live here).
6252 The test programs should be in the subset of C that is valid K&R,
6253 ANSI/ISO, and C++ (@code{#ifdef}s are allowed if necessary, for instance
6254 for prototypes).
6255
6256 @item gdb.@var{lang}
6257 Language-specific tests for any language @var{lang} besides C. Examples are
6258 @file{gdb.c++} and @file{gdb.java}.
6259
6260 @item gdb.@var{platform}
6261 Non-portable tests. The tests are specific to a specific configuration
6262 (host or target), such as HP-UX or eCos. Example is @file{gdb.hp}, for
6263 HP-UX.
6264
6265 @item gdb.@var{compiler}
6266 Tests specific to a particular compiler. As of this writing (June
6267 1999), there aren't currently any groups of tests in this category that
6268 couldn't just as sensibly be made platform-specific, but one could
6269 imagine a @file{gdb.gcc}, for tests of @value{GDBN}'s handling of GCC
6270 extensions.
6271
6272 @item gdb.@var{subsystem}
6273 Tests that exercise a specific @value{GDBN} subsystem in more depth. For
6274 instance, @file{gdb.disasm} exercises various disassemblers, while
6275 @file{gdb.stabs} tests pathways through the stabs symbol reader.
6276 @end table
6277
6278 @section Writing Tests
6279 @cindex writing tests
6280
6281 In many areas, the @value{GDBN} tests are already quite comprehensive; you
6282 should be able to copy existing tests to handle new cases.
6283
6284 You should try to use @code{gdb_test} whenever possible, since it
6285 includes cases to handle all the unexpected errors that might happen.
6286 However, it doesn't cost anything to add new test procedures; for
6287 instance, @file{gdb.base/exprs.exp} defines a @code{test_expr} that
6288 calls @code{gdb_test} multiple times.
6289
6290 Only use @code{send_gdb} and @code{gdb_expect} when absolutely
6291 necessary, such as when @value{GDBN} has several valid responses to a command.
6292
6293 The source language programs do @emph{not} need to be in a consistent
6294 style. Since @value{GDBN} is used to debug programs written in many different
6295 styles, it's worth having a mix of styles in the testsuite; for
6296 instance, some @value{GDBN} bugs involving the display of source lines would
6297 never manifest themselves if the programs used GNU coding style
6298 uniformly.
6299
6300 @node Hints
6301
6302 @chapter Hints
6303
6304 Check the @file{README} file, it often has useful information that does not
6305 appear anywhere else in the directory.
6306
6307 @menu
6308 * Getting Started:: Getting started working on @value{GDBN}
6309 * Debugging GDB:: Debugging @value{GDBN} with itself
6310 @end menu
6311
6312 @node Getting Started,,, Hints
6313
6314 @section Getting Started
6315
6316 @value{GDBN} is a large and complicated program, and if you first starting to
6317 work on it, it can be hard to know where to start. Fortunately, if you
6318 know how to go about it, there are ways to figure out what is going on.
6319
6320 This manual, the @value{GDBN} Internals manual, has information which applies
6321 generally to many parts of @value{GDBN}.
6322
6323 Information about particular functions or data structures are located in
6324 comments with those functions or data structures. If you run across a
6325 function or a global variable which does not have a comment correctly
6326 explaining what is does, this can be thought of as a bug in @value{GDBN}; feel
6327 free to submit a bug report, with a suggested comment if you can figure
6328 out what the comment should say. If you find a comment which is
6329 actually wrong, be especially sure to report that.
6330
6331 Comments explaining the function of macros defined in host, target, or
6332 native dependent files can be in several places. Sometimes they are
6333 repeated every place the macro is defined. Sometimes they are where the
6334 macro is used. Sometimes there is a header file which supplies a
6335 default definition of the macro, and the comment is there. This manual
6336 also documents all the available macros.
6337 @c (@pxref{Host Conditionals}, @pxref{Target
6338 @c Conditionals}, @pxref{Native Conditionals}, and @pxref{Obsolete
6339 @c Conditionals})
6340
6341 Start with the header files. Once you have some idea of how
6342 @value{GDBN}'s internal symbol tables are stored (see @file{symtab.h},
6343 @file{gdbtypes.h}), you will find it much easier to understand the
6344 code which uses and creates those symbol tables.
6345
6346 You may wish to process the information you are getting somehow, to
6347 enhance your understanding of it. Summarize it, translate it to another
6348 language, add some (perhaps trivial or non-useful) feature to @value{GDBN}, use
6349 the code to predict what a test case would do and write the test case
6350 and verify your prediction, etc. If you are reading code and your eyes
6351 are starting to glaze over, this is a sign you need to use a more active
6352 approach.
6353
6354 Once you have a part of @value{GDBN} to start with, you can find more
6355 specifically the part you are looking for by stepping through each
6356 function with the @code{next} command. Do not use @code{step} or you
6357 will quickly get distracted; when the function you are stepping through
6358 calls another function try only to get a big-picture understanding
6359 (perhaps using the comment at the beginning of the function being
6360 called) of what it does. This way you can identify which of the
6361 functions being called by the function you are stepping through is the
6362 one which you are interested in. You may need to examine the data
6363 structures generated at each stage, with reference to the comments in
6364 the header files explaining what the data structures are supposed to
6365 look like.
6366
6367 Of course, this same technique can be used if you are just reading the
6368 code, rather than actually stepping through it. The same general
6369 principle applies---when the code you are looking at calls something
6370 else, just try to understand generally what the code being called does,
6371 rather than worrying about all its details.
6372
6373 @cindex command implementation
6374 A good place to start when tracking down some particular area is with
6375 a command which invokes that feature. Suppose you want to know how
6376 single-stepping works. As a @value{GDBN} user, you know that the
6377 @code{step} command invokes single-stepping. The command is invoked
6378 via command tables (see @file{command.h}); by convention the function
6379 which actually performs the command is formed by taking the name of
6380 the command and adding @samp{_command}, or in the case of an
6381 @code{info} subcommand, @samp{_info}. For example, the @code{step}
6382 command invokes the @code{step_command} function and the @code{info
6383 display} command invokes @code{display_info}. When this convention is
6384 not followed, you might have to use @code{grep} or @kbd{M-x
6385 tags-search} in emacs, or run @value{GDBN} on itself and set a
6386 breakpoint in @code{execute_command}.
6387
6388 @cindex @code{bug-gdb} mailing list
6389 If all of the above fail, it may be appropriate to ask for information
6390 on @code{bug-gdb}. But @emph{never} post a generic question like ``I was
6391 wondering if anyone could give me some tips about understanding
6392 @value{GDBN}''---if we had some magic secret we would put it in this manual.
6393 Suggestions for improving the manual are always welcome, of course.
6394
6395 @node Debugging GDB,,,Hints
6396
6397 @section Debugging @value{GDBN} with itself
6398 @cindex debugging @value{GDBN}
6399
6400 If @value{GDBN} is limping on your machine, this is the preferred way to get it
6401 fully functional. Be warned that in some ancient Unix systems, like
6402 Ultrix 4.2, a program can't be running in one process while it is being
6403 debugged in another. Rather than typing the command @kbd{@w{./gdb
6404 ./gdb}}, which works on Suns and such, you can copy @file{gdb} to
6405 @file{gdb2} and then type @kbd{@w{./gdb ./gdb2}}.
6406
6407 When you run @value{GDBN} in the @value{GDBN} source directory, it will read a
6408 @file{.gdbinit} file that sets up some simple things to make debugging
6409 gdb easier. The @code{info} command, when executed without a subcommand
6410 in a @value{GDBN} being debugged by gdb, will pop you back up to the top level
6411 gdb. See @file{.gdbinit} for details.
6412
6413 If you use emacs, you will probably want to do a @code{make TAGS} after
6414 you configure your distribution; this will put the machine dependent
6415 routines for your local machine where they will be accessed first by
6416 @kbd{M-.}
6417
6418 Also, make sure that you've either compiled @value{GDBN} with your local cc, or
6419 have run @code{fixincludes} if you are compiling with gcc.
6420
6421 @section Submitting Patches
6422
6423 @cindex submitting patches
6424 Thanks for thinking of offering your changes back to the community of
6425 @value{GDBN} users. In general we like to get well designed enhancements.
6426 Thanks also for checking in advance about the best way to transfer the
6427 changes.
6428
6429 The @value{GDBN} maintainers will only install ``cleanly designed'' patches.
6430 This manual summarizes what we believe to be clean design for @value{GDBN}.
6431
6432 If the maintainers don't have time to put the patch in when it arrives,
6433 or if there is any question about a patch, it goes into a large queue
6434 with everyone else's patches and bug reports.
6435
6436 @cindex legal papers for code contributions
6437 The legal issue is that to incorporate substantial changes requires a
6438 copyright assignment from you and/or your employer, granting ownership
6439 of the changes to the Free Software Foundation. You can get the
6440 standard documents for doing this by sending mail to @code{gnu@@gnu.org}
6441 and asking for it. We recommend that people write in "All programs
6442 owned by the Free Software Foundation" as "NAME OF PROGRAM", so that
6443 changes in many programs (not just @value{GDBN}, but GAS, Emacs, GCC,
6444 etc) can be
6445 contributed with only one piece of legalese pushed through the
6446 bureaucracy and filed with the FSF. We can't start merging changes until
6447 this paperwork is received by the FSF (their rules, which we follow
6448 since we maintain it for them).
6449
6450 Technically, the easiest way to receive changes is to receive each
6451 feature as a small context diff or unidiff, suitable for @code{patch}.
6452 Each message sent to me should include the changes to C code and
6453 header files for a single feature, plus @file{ChangeLog} entries for
6454 each directory where files were modified, and diffs for any changes
6455 needed to the manuals (@file{gdb/doc/gdb.texinfo} or
6456 @file{gdb/doc/gdbint.texinfo}). If there are a lot of changes for a
6457 single feature, they can be split down into multiple messages.
6458
6459 In this way, if we read and like the feature, we can add it to the
6460 sources with a single patch command, do some testing, and check it in.
6461 If you leave out the @file{ChangeLog}, we have to write one. If you leave
6462 out the doc, we have to puzzle out what needs documenting. Etc., etc.
6463
6464 The reason to send each change in a separate message is that we will not
6465 install some of the changes. They'll be returned to you with questions
6466 or comments. If we're doing our job correctly, the message back to you
6467 will say what you have to fix in order to make the change acceptable.
6468 The reason to have separate messages for separate features is so that
6469 the acceptable changes can be installed while one or more changes are
6470 being reworked. If multiple features are sent in a single message, we
6471 tend to not put in the effort to sort out the acceptable changes from
6472 the unacceptable, so none of the features get installed until all are
6473 acceptable.
6474
6475 If this sounds painful or authoritarian, well, it is. But we get a lot
6476 of bug reports and a lot of patches, and many of them don't get
6477 installed because we don't have the time to finish the job that the bug
6478 reporter or the contributor could have done. Patches that arrive
6479 complete, working, and well designed, tend to get installed on the day
6480 they arrive. The others go into a queue and get installed as time
6481 permits, which, since the maintainers have many demands to meet, may not
6482 be for quite some time.
6483
6484 Please send patches directly to
6485 @email{gdb-patches@@sources.redhat.com, the @value{GDBN} maintainers}.
6486
6487 @section Obsolete Conditionals
6488 @cindex obsolete code
6489
6490 Fragments of old code in @value{GDBN} sometimes reference or set the following
6491 configuration macros. They should not be used by new code, and old uses
6492 should be removed as those parts of the debugger are otherwise touched.
6493
6494 @table @code
6495 @item STACK_END_ADDR
6496 This macro used to define where the end of the stack appeared, for use
6497 in interpreting core file formats that don't record this address in the
6498 core file itself. This information is now configured in BFD, and @value{GDBN}
6499 gets the info portably from there. The values in @value{GDBN}'s configuration
6500 files should be moved into BFD configuration files (if needed there),
6501 and deleted from all of @value{GDBN}'s config files.
6502
6503 Any @file{@var{foo}-xdep.c} file that references STACK_END_ADDR
6504 is so old that it has never been converted to use BFD. Now that's old!
6505
6506 @end table
6507
6508 @include fdl.texi
6509
6510 @node Index
6511 @unnumbered Index
6512
6513 @printindex cp
6514
6515 @bye
This page took 0.159523 seconds and 5 git commands to generate.