Document "target:" sysroot changes
[deliverable/binutils-gdb.git] / gdb / doc / guile.texi
1 @c Copyright (C) 2008-2015 Free Software Foundation, Inc.
2 @c Permission is granted to copy, distribute and/or modify this document
3 @c under the terms of the GNU Free Documentation License, Version 1.3 or
4 @c any later version published by the Free Software Foundation; with the
5 @c Invariant Sections being ``Free Software'' and ``Free Software Needs
6 @c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7 @c and with the Back-Cover Texts as in (a) below.
8 @c
9 @c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10 @c this GNU Manual. Buying copies from GNU Press supports the FSF in
11 @c developing GNU and promoting software freedom.''
12
13 @node Guile
14 @section Extending @value{GDBN} using Guile
15 @cindex guile scripting
16 @cindex scripting with guile
17
18 You can extend @value{GDBN} using the @uref{http://www.gnu.org/software/guile/,
19 Guile implementation of the Scheme programming language}.
20 This feature is available only if @value{GDBN} was configured using
21 @option{--with-guile}.
22
23 @menu
24 * Guile Introduction:: Introduction to Guile scripting in @value{GDBN}
25 * Guile Commands:: Accessing Guile from @value{GDBN}
26 * Guile API:: Accessing @value{GDBN} from Guile
27 * Guile Auto-loading:: Automatically loading Guile code
28 * Guile Modules:: Guile modules provided by @value{GDBN}
29 @end menu
30
31 @node Guile Introduction
32 @subsection Guile Introduction
33
34 Guile is an implementation of the Scheme programming language
35 and is the GNU project's official extension language.
36
37 Guile support in @value{GDBN} follows the Python support in @value{GDBN}
38 reasonably closely, so concepts there should carry over.
39 However, some things are done differently where it makes sense.
40
41 @value{GDBN} requires Guile version 2.0 or greater.
42 Older versions are not supported.
43
44 @cindex guile scripts directory
45 Guile scripts used by @value{GDBN} should be installed in
46 @file{@var{data-directory}/guile}, where @var{data-directory} is
47 the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
48 This directory, known as the @dfn{guile directory},
49 is automatically added to the Guile Search Path in order to allow
50 the Guile interpreter to locate all scripts installed at this location.
51
52 @node Guile Commands
53 @subsection Guile Commands
54 @cindex guile commands
55 @cindex commands to access guile
56
57 @value{GDBN} provides two commands for accessing the Guile interpreter:
58
59 @table @code
60 @kindex guile-repl
61 @kindex gr
62 @item guile-repl
63 @itemx gr
64 The @code{guile-repl} command can be used to start an interactive
65 Guile prompt or @dfn{repl}. To return to @value{GDBN},
66 type @kbd{,q} or the @code{EOF} character (e.g., @kbd{Ctrl-D} on
67 an empty prompt). These commands do not take any arguments.
68
69 @kindex guile
70 @kindex gu
71 @item guile @r{[}@var{scheme-expression}@r{]}
72 @itemx gu @r{[}@var{scheme-expression}@r{]}
73 The @code{guile} command can be used to evaluate a Scheme expression.
74
75 If given an argument, @value{GDBN} will pass the argument to the Guile
76 interpreter for evaluation.
77
78 @smallexample
79 (@value{GDBP}) guile (display (+ 20 3)) (newline)
80 23
81 @end smallexample
82
83 The result of the Scheme expression is displayed using normal Guile rules.
84
85 @smallexample
86 (@value{GDBP}) guile (+ 20 3)
87 23
88 @end smallexample
89
90 If you do not provide an argument to @code{guile}, it will act as a
91 multi-line command, like @code{define}. In this case, the Guile
92 script is made up of subsequent command lines, given after the
93 @code{guile} command. This command list is terminated using a line
94 containing @code{end}. For example:
95
96 @smallexample
97 (@value{GDBP}) guile
98 >(display 23)
99 >(newline)
100 >end
101 23
102 @end smallexample
103 @end table
104
105 It is also possible to execute a Guile script from the @value{GDBN}
106 interpreter:
107
108 @table @code
109 @item source @file{script-name}
110 The script name must end with @samp{.scm} and @value{GDBN} must be configured
111 to recognize the script language based on filename extension using
112 the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
113
114 @item guile (load "script-name")
115 This method uses the @code{load} Guile function.
116 It takes a string argument that is the name of the script to load.
117 See the Guile documentation for a description of this function.
118 (@pxref{Loading,,, guile, GNU Guile Reference Manual}).
119 @end table
120
121 @node Guile API
122 @subsection Guile API
123 @cindex guile api
124 @cindex programming in guile
125
126 You can get quick online help for @value{GDBN}'s Guile API by issuing
127 the command @w{@kbd{help guile}}, or by issuing the command @kbd{,help}
128 from an interactive Guile session. Furthermore, most Guile procedures
129 provided by @value{GDBN} have doc strings which can be obtained with
130 @kbd{,describe @var{procedure-name}} or @kbd{,d @var{procedure-name}}
131 from the Guile interactive prompt.
132
133 @menu
134 * Basic Guile:: Basic Guile Functions
135 * Guile Configuration:: Guile configuration variables
136 * GDB Scheme Data Types:: Scheme representations of GDB objects
137 * Guile Exception Handling:: How Guile exceptions are translated
138 * Values From Inferior In Guile:: Guile representation of values
139 * Arithmetic In Guile:: Arithmetic in Guile
140 * Types In Guile:: Guile representation of types
141 * Guile Pretty Printing API:: Pretty-printing values with Guile
142 * Selecting Guile Pretty-Printers:: How GDB chooses a pretty-printer
143 * Writing a Guile Pretty-Printer:: Writing a pretty-printer
144 * Commands In Guile:: Implementing new commands in Guile
145 * Parameters In Guile:: Adding new @value{GDBN} parameters
146 * Progspaces In Guile:: Program spaces
147 * Objfiles In Guile:: Object files in Guile
148 * Frames In Guile:: Accessing inferior stack frames from Guile
149 * Blocks In Guile:: Accessing blocks from Guile
150 * Symbols In Guile:: Guile representation of symbols
151 * Symbol Tables In Guile:: Guile representation of symbol tables
152 * Breakpoints In Guile:: Manipulating breakpoints using Guile
153 * Lazy Strings In Guile:: Guile representation of lazy strings
154 * Architectures In Guile:: Guile representation of architectures
155 * Disassembly In Guile:: Disassembling instructions from Guile
156 * I/O Ports in Guile:: GDB I/O ports
157 * Memory Ports in Guile:: Accessing memory through ports and bytevectors
158 * Iterators In Guile:: Basic iterator support
159 @end menu
160
161 @node Basic Guile
162 @subsubsection Basic Guile
163
164 @cindex guile stdout
165 @cindex guile pagination
166 At startup, @value{GDBN} overrides Guile's @code{current-output-port} and
167 @code{current-error-port} to print using @value{GDBN}'s output-paging streams.
168 A Guile program which outputs to one of these streams may have its
169 output interrupted by the user (@pxref{Screen Size}). In this
170 situation, a Guile @code{signal} exception is thrown with value @code{SIGINT}.
171
172 Guile's history mechanism uses the same naming as @value{GDBN}'s,
173 namely the user of dollar-variables (e.g., $1, $2, etc.).
174 The results of evaluations in Guile and in GDB are counted separately,
175 @code{$1} in Guile is not the same value as @code{$1} in @value{GDBN}.
176
177 @value{GDBN} is not thread-safe. If your Guile program uses multiple
178 threads, you must be careful to only call @value{GDBN}-specific
179 functions in the @value{GDBN} thread.
180
181 Some care must be taken when writing Guile code to run in
182 @value{GDBN}. Two things are worth noting in particular:
183
184 @itemize @bullet
185 @item
186 @value{GDBN} installs handlers for @code{SIGCHLD} and @code{SIGINT}.
187 Guile code must not override these, or even change the options using
188 @code{sigaction}. If your program changes the handling of these
189 signals, @value{GDBN} will most likely stop working correctly. Note
190 that it is unfortunately common for GUI toolkits to install a
191 @code{SIGCHLD} handler.
192
193 @item
194 @value{GDBN} takes care to mark its internal file descriptors as
195 close-on-exec. However, this cannot be done in a thread-safe way on
196 all platforms. Your Guile programs should be aware of this and
197 should both create new file descriptors with the close-on-exec flag
198 set and arrange to close unneeded file descriptors before starting a
199 child process.
200 @end itemize
201
202 @cindex guile gdb module
203 @value{GDBN} introduces a new Guile module, named @code{gdb}. All
204 methods and classes added by @value{GDBN} are placed in this module.
205 @value{GDBN} does not automatically @code{import} the @code{gdb} module,
206 scripts must do this themselves. There are various options for how to
207 import a module, so @value{GDBN} leaves the choice of how the @code{gdb}
208 module is imported to the user.
209 To simplify interactive use, it is recommended to add one of the following
210 to your ~/.gdbinit.
211
212 @smallexample
213 guile (use-modules (gdb))
214 @end smallexample
215
216 @smallexample
217 guile (use-modules ((gdb) #:renamer (symbol-prefix-proc 'gdb:)))
218 @end smallexample
219
220 Which one to choose depends on your preference.
221 The second one adds @code{gdb:} as a prefix to all module functions
222 and variables.
223
224 The rest of this manual assumes the @code{gdb} module has been imported
225 without any prefix. See the Guile documentation for @code{use-modules}
226 for more information
227 (@pxref{Using Guile Modules,,, guile, GNU Guile Reference Manual}).
228
229 Example:
230
231 @smallexample
232 (gdb) guile (value-type (make-value 1))
233 ERROR: Unbound variable: value-type
234 Error while executing Scheme code.
235 (gdb) guile (use-modules (gdb))
236 (gdb) guile (value-type (make-value 1))
237 int
238 (gdb)
239 @end smallexample
240
241 The @code{(gdb)} module provides these basic Guile functions.
242
243 @c TODO: line length
244 @deffn {Scheme Procedure} execute command @r{[}#:from-tty boolean@r{]} @r{[}#:to-string boolean@r{]}
245 Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
246 If a @value{GDBN} exception happens while @var{command} runs, it is
247 translated as described in
248 @ref{Guile Exception Handling,,Guile Exception Handling}.
249
250 @var{from-tty} specifies whether @value{GDBN} ought to consider this
251 command as having originated from the user invoking it interactively.
252 It must be a boolean value. If omitted, it defaults to @code{#f}.
253
254 By default, any output produced by @var{command} is sent to
255 @value{GDBN}'s standard output (and to the log output if logging is
256 turned on). If the @var{to-string} parameter is
257 @code{#t}, then output will be collected by @code{execute} and
258 returned as a string. The default is @code{#f}, in which case the
259 return value is unspecified. If @var{to-string} is @code{#t}, the
260 @value{GDBN} virtual terminal will be temporarily set to unlimited width
261 and height, and its pagination will be disabled; @pxref{Screen Size}.
262 @end deffn
263
264 @deffn {Scheme Procedure} history-ref number
265 Return a value from @value{GDBN}'s value history (@pxref{Value
266 History}). The @var{number} argument indicates which history element to return.
267 If @var{number} is negative, then @value{GDBN} will take its absolute value
268 and count backward from the last element (i.e., the most recent element) to
269 find the value to return. If @var{number} is zero, then @value{GDBN} will
270 return the most recent element. If the element specified by @var{number}
271 doesn't exist in the value history, a @code{gdb:error} exception will be
272 raised.
273
274 If no exception is raised, the return value is always an instance of
275 @code{<gdb:value>} (@pxref{Values From Inferior In Guile}).
276
277 @emph{Note:} @value{GDBN}'s value history is independent of Guile's.
278 @code{$1} in @value{GDBN}'s value history contains the result of evaluating
279 an expression from @value{GDBN}'s command line and @code{$1} from Guile's
280 history contains the result of evaluating an expression from Guile's
281 command line.
282 @end deffn
283
284 @deffn {Scheme Procedure} history-append! value
285 Append @var{value}, an instance of @code{<gdb:value>}, to @value{GDBN}'s
286 value history. Return its index in the history.
287
288 Putting into history values returned by Guile extensions will allow
289 the user convenient access to those values via CLI history
290 facilities.
291 @end deffn
292
293 @deffn {Scheme Procedure} parse-and-eval expression
294 Parse @var{expression} as an expression in the current language,
295 evaluate it, and return the result as a @code{<gdb:value>}.
296 The @var{expression} must be a string.
297
298 This function can be useful when implementing a new command
299 (@pxref{Commands In Guile}), as it provides a way to parse the
300 command's arguments as an expression.
301 It is also is useful when computing values.
302 For example, it is the only way to get the value of a
303 convenience variable (@pxref{Convenience Vars}) as a @code{<gdb:value>}.
304 @end deffn
305
306 @node Guile Configuration
307 @subsubsection Guile Configuration
308 @cindex guile configuration
309
310 @value{GDBN} provides these Scheme functions to access various configuration
311 parameters.
312
313 @deffn {Scheme Procedure} data-directory
314 Return a string containing @value{GDBN}'s data directory.
315 This directory contains @value{GDBN}'s ancillary files.
316 @end deffn
317
318 @deffn {Scheme Procedure} guile-data-directory
319 Return a string containing @value{GDBN}'s Guile data directory.
320 This directory contains the Guile modules provided by @value{GDBN}.
321 @end deffn
322
323 @deffn {Scheme Procedure} gdb-version
324 Return a string containing the @value{GDBN} version.
325 @end deffn
326
327 @deffn {Scheme Procedure} host-config
328 Return a string containing the host configuration.
329 This is the string passed to @code{--host} when @value{GDBN} was configured.
330 @end deffn
331
332 @deffn {Scheme Procedure} target-config
333 Return a string containing the target configuration.
334 This is the string passed to @code{--target} when @value{GDBN} was configured.
335 @end deffn
336
337 @node GDB Scheme Data Types
338 @subsubsection GDB Scheme Data Types
339 @cindex gdb objects
340
341 The values exposed by @value{GDBN} to Guile are known as
342 @dfn{@value{GDBN} objects}. There are several kinds of @value{GDBN}
343 object, and each is disjoint from all other types known to Guile.
344
345 @deffn {Scheme Procedure} gdb-object-kind object
346 Return the kind of the @value{GDBN} object, e.g., @code{<gdb:breakpoint>},
347 as a symbol.
348 @end deffn
349
350 @value{GDBN} defines the following object types:
351
352 @table @code
353 @item <gdb:arch>
354 @xref{Architectures In Guile}.
355
356 @item <gdb:block>
357 @xref{Blocks In Guile}.
358
359 @item <gdb:block-symbols-iterator>
360 @xref{Blocks In Guile}.
361
362 @item <gdb:breakpoint>
363 @xref{Breakpoints In Guile}.
364
365 @item <gdb:command>
366 @xref{Commands In Guile}.
367
368 @item <gdb:exception>
369 @xref{Guile Exception Handling}.
370
371 @item <gdb:frame>
372 @xref{Frames In Guile}.
373
374 @item <gdb:iterator>
375 @xref{Iterators In Guile}.
376
377 @item <gdb:lazy-string>
378 @xref{Lazy Strings In Guile}.
379
380 @item <gdb:objfile>
381 @xref{Objfiles In Guile}.
382
383 @item <gdb:parameter>
384 @xref{Parameters In Guile}.
385
386 @item <gdb:pretty-printer>
387 @xref{Guile Pretty Printing API}.
388
389 @item <gdb:pretty-printer-worker>
390 @xref{Guile Pretty Printing API}.
391
392 @item <gdb:progspace>
393 @xref{Progspaces In Guile}.
394
395 @item <gdb:symbol>
396 @xref{Symbols In Guile}.
397
398 @item <gdb:symtab>
399 @xref{Symbol Tables In Guile}.
400
401 @item <gdb:sal>
402 @xref{Symbol Tables In Guile}.
403
404 @item <gdb:type>
405 @xref{Types In Guile}.
406
407 @item <gdb:field>
408 @xref{Types In Guile}.
409
410 @item <gdb:value>
411 @xref{Values From Inferior In Guile}.
412 @end table
413
414 The following @value{GDBN} objects are managed internally so that the
415 Scheme function @code{eq?} may be applied to them.
416
417 @table @code
418 @item <gdb:arch>
419 @item <gdb:block>
420 @item <gdb:breakpoint>
421 @item <gdb:frame>
422 @item <gdb:objfile>
423 @item <gdb:progspace>
424 @item <gdb:symbol>
425 @item <gdb:symtab>
426 @item <gdb:type>
427 @end table
428
429 @node Guile Exception Handling
430 @subsubsection Guile Exception Handling
431 @cindex guile exceptions
432 @cindex exceptions, guile
433 @kindex set guile print-stack
434
435 When executing the @code{guile} command, Guile exceptions
436 uncaught within the Guile code are translated to calls to the
437 @value{GDBN} error-reporting mechanism. If the command that called
438 @code{guile} does not handle the error, @value{GDBN} will
439 terminate it and report the error according to the setting of
440 the @code{guile print-stack} parameter.
441
442 The @code{guile print-stack} parameter has three settings:
443
444 @table @code
445 @item none
446 Nothing is printed.
447
448 @item message
449 An error message is printed containing the Guile exception name,
450 the associated value, and the Guile call stack backtrace at the
451 point where the exception was raised. Example:
452
453 @smallexample
454 (@value{GDBP}) guile (display foo)
455 ERROR: In procedure memoize-variable-access!:
456 ERROR: Unbound variable: foo
457 Error while executing Scheme code.
458 @end smallexample
459
460 @item full
461 In addition to an error message a full backtrace is printed.
462
463 @smallexample
464 (@value{GDBP}) set guile print-stack full
465 (@value{GDBP}) guile (display foo)
466 Guile Backtrace:
467 In ice-9/boot-9.scm:
468 157: 10 [catch #t #<catch-closure 2c76e20> ...]
469 In unknown file:
470 ?: 9 [apply-smob/1 #<catch-closure 2c76e20>]
471 In ice-9/boot-9.scm:
472 157: 8 [catch #t #<catch-closure 2c76d20> ...]
473 In unknown file:
474 ?: 7 [apply-smob/1 #<catch-closure 2c76d20>]
475 ?: 6 [call-with-input-string "(display foo)" ...]
476 In ice-9/boot-9.scm:
477 2320: 5 [save-module-excursion #<procedure 2c2dc30 ... ()>]
478 In ice-9/eval-string.scm:
479 44: 4 [read-and-eval #<input: string 27cb410> #:lang ...]
480 37: 3 [lp (display foo)]
481 In ice-9/eval.scm:
482 387: 2 [eval # ()]
483 393: 1 [eval #<memoized foo> ()]
484 In unknown file:
485 ?: 0 [memoize-variable-access! #<memoized foo> ...]
486
487 ERROR: In procedure memoize-variable-access!:
488 ERROR: Unbound variable: foo
489 Error while executing Scheme code.
490 @end smallexample
491 @end table
492
493 @value{GDBN} errors that happen in @value{GDBN} commands invoked by
494 Guile code are converted to Guile exceptions. The type of the
495 Guile exception depends on the error.
496
497 Guile procedures provided by @value{GDBN} can throw the standard
498 Guile exceptions like @code{wrong-type-arg} and @code{out-of-range}.
499
500 User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
501 prompt) is translated to a Guile @code{signal} exception with value
502 @code{SIGINT}.
503
504 @value{GDBN} Guile procedures can also throw these exceptions:
505
506 @vtable @code
507 @item gdb:error
508 This exception is a catch-all for errors generated from within @value{GDBN}.
509
510 @item gdb:invalid-object
511 This exception is thrown when accessing Guile objects that wrap underlying
512 @value{GDBN} objects have become invalid. For example, a
513 @code{<gdb:breakpoint>} object becomes invalid if the user deletes it
514 from the command line. The object still exists in Guile, but the
515 object it represents is gone. Further operations on this breakpoint
516 will throw this exception.
517
518 @item gdb:memory-error
519 This exception is thrown when an operation tried to access invalid
520 memory in the inferior.
521
522 @item gdb:pp-type-error
523 This exception is thrown when a Guile pretty-printer passes a bad object
524 to @value{GDBN}.
525 @end vtable
526
527 The following exception-related procedures are provided by the
528 @code{(gdb)} module.
529
530 @deffn {Scheme Procedure} make-exception key args
531 Return a @code{<gdb:exception>} object given by its @var{key} and
532 @var{args}, which are the standard Guile parameters of an exception.
533 See the Guile documentation for more information (@pxref{Exceptions,,,
534 guile, GNU Guile Reference Manual}).
535 @end deffn
536
537 @deffn {Scheme Procedure} exception? object
538 Return @code{#t} if @var{object} is a @code{<gdb:exception>} object.
539 Otherwise return @code{#f}.
540 @end deffn
541
542 @deffn {Scheme Procedure} exception-key exception
543 Return the @var{args} field of a @code{<gdb:exception>} object.
544 @end deffn
545
546 @deffn {Scheme Procedure} exception-args exception
547 Return the @var{args} field of a @code{<gdb:exception>} object.
548 @end deffn
549
550 @node Values From Inferior In Guile
551 @subsubsection Values From Inferior In Guile
552 @cindex values from inferior, in guile
553 @cindex guile, working with values from inferior
554
555 @tindex @code{<gdb:value>}
556 @value{GDBN} provides values it obtains from the inferior program in
557 an object of type @code{<gdb:value>}. @value{GDBN} uses this object
558 for its internal bookkeeping of the inferior's values, and for
559 fetching values when necessary.
560
561 @value{GDBN} does not memoize @code{<gdb:value>} objects.
562 @code{make-value} always returns a fresh object.
563
564 @smallexample
565 (gdb) guile (eq? (make-value 1) (make-value 1))
566 $1 = #f
567 (gdb) guile (equal? (make-value 1) (make-value 1))
568 $1 = #t
569 @end smallexample
570
571 A @code{<gdb:value>} that represents a function can be executed via
572 inferior function call with @code{value-call}.
573 Any arguments provided to the call must match the function's prototype,
574 and must be provided in the order specified by that prototype.
575
576 For example, @code{some-val} is a @code{<gdb:value>} instance
577 representing a function that takes two integers as arguments. To
578 execute this function, call it like so:
579
580 @smallexample
581 (define result (value-call some-val 10 20))
582 @end smallexample
583
584 Any values returned from a function call are @code{<gdb:value>} objects.
585
586 Note: Unlike Python scripting in @value{GDBN},
587 inferior values that are simple scalars cannot be used directly in
588 Scheme expressions that are valid for the value's data type.
589 For example, @code{(+ (parse-and-eval "int_variable") 2)} does not work.
590 And inferior values that are structures or instances of some class cannot
591 be accessed using any special syntax, instead @code{value-field} must be used.
592
593 The following value-related procedures are provided by the
594 @code{(gdb)} module.
595
596 @deffn {Scheme Procedure} value? object
597 Return @code{#t} if @var{object} is a @code{<gdb:value>} object.
598 Otherwise return @code{#f}.
599 @end deffn
600
601 @deffn {Scheme Procedure} make-value value @r{[}#:type type@r{]}
602 Many Scheme values can be converted directly to a @code{<gdb:value>}
603 with this procedure. If @var{type} is specified, the result is a value
604 of this type, and if @var{value} can't be represented with this type
605 an exception is thrown. Otherwise the type of the result is determined from
606 @var{value} as described below.
607
608 @xref{Architectures In Guile}, for a list of the builtin
609 types for an architecture.
610
611 Here's how Scheme values are converted when @var{type} argument to
612 @code{make-value} is not specified:
613
614 @table @asis
615 @item Scheme boolean
616 A Scheme boolean is converted the boolean type for the current language.
617
618 @item Scheme integer
619 A Scheme integer is converted to the first of a C @code{int},
620 @code{unsigned int}, @code{long}, @code{unsigned long},
621 @code{long long} or @code{unsigned long long} type
622 for the current architecture that can represent the value.
623
624 If the Scheme integer cannot be represented as a target integer
625 an @code{out-of-range} exception is thrown.
626
627 @item Scheme real
628 A Scheme real is converted to the C @code{double} type for the
629 current architecture.
630
631 @item Scheme string
632 A Scheme string is converted to a string in the current target
633 language using the current target encoding.
634 Characters that cannot be represented in the current target encoding
635 are replaced with the corresponding escape sequence. This is Guile's
636 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE} conversion strategy
637 (@pxref{Strings,,, guile, GNU Guile Reference Manual}).
638
639 Passing @var{type} is not supported in this case,
640 if it is provided a @code{wrong-type-arg} exception is thrown.
641
642 @item @code{<gdb:lazy-string>}
643 If @var{value} is a @code{<gdb:lazy-string>} object (@pxref{Lazy Strings In
644 Guile}), then the @code{lazy-string->value} procedure is called, and
645 its result is used.
646
647 Passing @var{type} is not supported in this case,
648 if it is provided a @code{wrong-type-arg} exception is thrown.
649
650 @item Scheme bytevector
651 If @var{value} is a Scheme bytevector and @var{type} is provided,
652 @var{value} must be the same size, in bytes, of values of type @var{type},
653 and the result is essentially created by using @code{memcpy}.
654
655 If @var{value} is a Scheme bytevector and @var{type} is not provided,
656 the result is an array of type @code{uint8} of the same length.
657 @end table
658 @end deffn
659
660 @cindex optimized out value in guile
661 @deffn {Scheme Procedure} value-optimized-out? value
662 Return @code{#t} if the compiler optimized out @var{value},
663 thus it is not available for fetching from the inferior.
664 Otherwise return @code{#f}.
665 @end deffn
666
667 @deffn {Scheme Procedure} value-address value
668 If @var{value} is addressable, returns a
669 @code{<gdb:value>} object representing the address.
670 Otherwise, @code{#f} is returned.
671 @end deffn
672
673 @deffn {Scheme Procedure} value-type value
674 Return the type of @var{value} as a @code{<gdb:type>} object
675 (@pxref{Types In Guile}).
676 @end deffn
677
678 @deffn {Scheme Procedure} value-dynamic-type value
679 Return the dynamic type of @var{value}. This uses C@t{++} run-time
680 type information (@acronym{RTTI}) to determine the dynamic type of the
681 value. If the value is of class type, it will return the class in
682 which the value is embedded, if any. If the value is of pointer or
683 reference to a class type, it will compute the dynamic type of the
684 referenced object, and return a pointer or reference to that type,
685 respectively. In all other cases, it will return the value's static
686 type.
687
688 Note that this feature will only work when debugging a C@t{++} program
689 that includes @acronym{RTTI} for the object in question. Otherwise,
690 it will just return the static type of the value as in @kbd{ptype foo}.
691 @xref{Symbols, ptype}.
692 @end deffn
693
694 @deffn {Scheme Procedure} value-cast value type
695 Return a new instance of @code{<gdb:value>} that is the result of
696 casting @var{value} to the type described by @var{type}, which must
697 be a @code{<gdb:type>} object. If the cast cannot be performed for some
698 reason, this method throws an exception.
699 @end deffn
700
701 @deffn {Scheme Procedure} value-dynamic-cast value type
702 Like @code{value-cast}, but works as if the C@t{++} @code{dynamic_cast}
703 operator were used. Consult a C@t{++} reference for details.
704 @end deffn
705
706 @deffn {Scheme Procedure} value-reinterpret-cast value type
707 Like @code{value-cast}, but works as if the C@t{++} @code{reinterpret_cast}
708 operator were used. Consult a C@t{++} reference for details.
709 @end deffn
710
711 @deffn {Scheme Procedure} value-dereference value
712 For pointer data types, this method returns a new @code{<gdb:value>} object
713 whose contents is the object pointed to by @var{value}. For example, if
714 @code{foo} is a C pointer to an @code{int}, declared in your C program as
715
716 @smallexample
717 int *foo;
718 @end smallexample
719
720 @noindent
721 then you can use the corresponding @code{<gdb:value>} to access what
722 @code{foo} points to like this:
723
724 @smallexample
725 (define bar (value-dereference foo))
726 @end smallexample
727
728 The result @code{bar} will be a @code{<gdb:value>} object holding the
729 value pointed to by @code{foo}.
730
731 A similar function @code{value-referenced-value} exists which also
732 returns @code{<gdb:value>} objects corresonding to the values pointed to
733 by pointer values (and additionally, values referenced by reference
734 values). However, the behavior of @code{value-dereference}
735 differs from @code{value-referenced-value} by the fact that the
736 behavior of @code{value-dereference} is identical to applying the C
737 unary operator @code{*} on a given value. For example, consider a
738 reference to a pointer @code{ptrref}, declared in your C@t{++} program
739 as
740
741 @smallexample
742 typedef int *intptr;
743 ...
744 int val = 10;
745 intptr ptr = &val;
746 intptr &ptrref = ptr;
747 @end smallexample
748
749 Though @code{ptrref} is a reference value, one can apply the method
750 @code{value-dereference} to the @code{<gdb:value>} object corresponding
751 to it and obtain a @code{<gdb:value>} which is identical to that
752 corresponding to @code{val}. However, if you apply the method
753 @code{value-referenced-value}, the result would be a @code{<gdb:value>}
754 object identical to that corresponding to @code{ptr}.
755
756 @smallexample
757 (define scm-ptrref (parse-and-eval "ptrref"))
758 (define scm-val (value-dereference scm-ptrref))
759 (define scm-ptr (value-referenced-value scm-ptrref))
760 @end smallexample
761
762 The @code{<gdb:value>} object @code{scm-val} is identical to that
763 corresponding to @code{val}, and @code{scm-ptr} is identical to that
764 corresponding to @code{ptr}. In general, @code{value-dereference} can
765 be applied whenever the C unary operator @code{*} can be applied
766 to the corresponding C value. For those cases where applying both
767 @code{value-dereference} and @code{value-referenced-value} is allowed,
768 the results obtained need not be identical (as we have seen in the above
769 example). The results are however identical when applied on
770 @code{<gdb:value>} objects corresponding to pointers (@code{<gdb:value>}
771 objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
772 @end deffn
773
774 @deffn {Scheme Procedure} value-referenced-value value
775 For pointer or reference data types, this method returns a new
776 @code{<gdb:value>} object corresponding to the value referenced by the
777 pointer/reference value. For pointer data types,
778 @code{value-dereference} and @code{value-referenced-value} produce
779 identical results. The difference between these methods is that
780 @code{value-dereference} cannot get the values referenced by reference
781 values. For example, consider a reference to an @code{int}, declared
782 in your C@t{++} program as
783
784 @smallexample
785 int val = 10;
786 int &ref = val;
787 @end smallexample
788
789 @noindent
790 then applying @code{value-dereference} to the @code{<gdb:value>} object
791 corresponding to @code{ref} will result in an error, while applying
792 @code{value-referenced-value} will result in a @code{<gdb:value>} object
793 identical to that corresponding to @code{val}.
794
795 @smallexample
796 (define scm-ref (parse-and-eval "ref"))
797 (define err-ref (value-dereference scm-ref)) ;; error
798 (define scm-val (value-referenced-value scm-ref)) ;; ok
799 @end smallexample
800
801 The @code{<gdb:value>} object @code{scm-val} is identical to that
802 corresponding to @code{val}.
803 @end deffn
804
805 @deffn {Scheme Procedure} value-field value field-name
806 Return field @var{field-name} from @code{<gdb:value>} object @var{value}.
807 @end deffn
808
809 @deffn {Scheme Procedure} value-subscript value index
810 Return the value of array @var{value} at index @var{index}.
811 The @var{value} argument must be a subscriptable @code{<gdb:value>} object.
812 @end deffn
813
814 @deffn {Scheme Procedure} value-call value arg-list
815 Perform an inferior function call, taking @var{value} as a pointer
816 to the function to call.
817 Each element of list @var{arg-list} must be a <gdb:value> object or an object
818 that can be converted to a value.
819 The result is the value returned by the function.
820 @end deffn
821
822 @deffn {Scheme Procedure} value->bool value
823 Return the Scheme boolean representing @code{<gdb:value>} @var{value}.
824 The value must be ``integer like''. Pointers are ok.
825 @end deffn
826
827 @deffn {Scheme Procedure} value->integer
828 Return the Scheme integer representing @code{<gdb:value>} @var{value}.
829 The value must be ``integer like''. Pointers are ok.
830 @end deffn
831
832 @deffn {Scheme Procedure} value->real
833 Return the Scheme real number representing @code{<gdb:value>} @var{value}.
834 The value must be a number.
835 @end deffn
836
837 @deffn {Scheme Procedure} value->bytevector
838 Return a Scheme bytevector with the raw contents of @code{<gdb:value>}
839 @var{value}. No transformation, endian or otherwise, is performed.
840 @end deffn
841
842 @c TODO: line length
843 @deffn {Scheme Procedure} value->string value @r{[}#:encoding encoding@r{]} @r{[}#:errors errors@r{]} @r{[}#:length length@r{]}
844 If @var{value>} represents a string, then this method
845 converts the contents to a Guile string. Otherwise, this method will
846 throw an exception.
847
848 Values are interpreted as strings according to the rules of the
849 current language. If the optional length argument is given, the
850 string will be converted to that length, and will include any embedded
851 zeroes that the string may contain. Otherwise, for languages
852 where the string is zero-terminated, the entire string will be
853 converted.
854
855 For example, in C-like languages, a value is a string if it is a pointer
856 to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
857 or @code{char32_t}.
858
859 If the optional @var{encoding} argument is given, it must be a string
860 naming the encoding of the string in the @code{<gdb:value>}, such as
861 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
862 the same encodings as the corresponding argument to Guile's
863 @code{scm_from_stringn} function, and the Guile codec machinery will be used
864 to convert the string. If @var{encoding} is not given, or if
865 @var{encoding} is the empty string, then either the @code{target-charset}
866 (@pxref{Character Sets}) will be used, or a language-specific encoding
867 will be used, if the current language is able to supply one.
868
869 The optional @var{errors} argument is one of @code{#f}, @code{error} or
870 @code{substitute}. @code{error} and @code{substitute} must be symbols.
871 If @var{errors} is not specified, or if its value is @code{#f}, then the
872 default conversion strategy is used, which is set with the Scheme function
873 @code{set-port-conversion-strategy!}.
874 If the value is @code{'error} then an exception is thrown if there is any
875 conversion error. If the value is @code{'substitute} then any conversion
876 error is replaced with question marks.
877 @xref{Strings,,, guile, GNU Guile Reference Manual}.
878
879 If the optional @var{length} argument is given, the string will be
880 fetched and converted to the given length.
881 The length must be a Scheme integer and not a @code{<gdb:value>} integer.
882 @end deffn
883
884 @c TODO: line length
885 @deffn {Scheme Procedure} value->lazy-string value @r{[}#:encoding encoding@r{]} @r{[}#:length length@r{]}
886 If this @code{<gdb:value>} represents a string, then this method
887 converts @var{value} to a @code{<gdb:lazy-string} (@pxref{Lazy Strings
888 In Guile}). Otherwise, this method will throw an exception.
889
890 If the optional @var{encoding} argument is given, it must be a string
891 naming the encoding of the @code{<gdb:lazy-string}. Some examples are:
892 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. If the
893 @var{encoding} argument is an encoding that @value{GDBN} does not
894 recognize, @value{GDBN} will raise an error.
895
896 When a lazy string is printed, the @value{GDBN} encoding machinery is
897 used to convert the string during printing. If the optional
898 @var{encoding} argument is not provided, or is an empty string,
899 @value{GDBN} will automatically select the encoding most suitable for
900 the string type. For further information on encoding in @value{GDBN}
901 please see @ref{Character Sets}.
902
903 If the optional @var{length} argument is given, the string will be
904 fetched and encoded to the length of characters specified. If
905 the @var{length} argument is not provided, the string will be fetched
906 and encoded until a null of appropriate width is found.
907 The length must be a Scheme integer and not a @code{<gdb:value>} integer.
908 @end deffn
909
910 @deffn {Scheme Procedure} value-lazy? value
911 Return @code{#t} if @var{value} has not yet been fetched
912 from the inferior.
913 Otherwise return @code{#f}.
914 @value{GDBN} does not fetch values until necessary, for efficiency.
915 For example:
916
917 @smallexample
918 (define myval (parse-and-eval "somevar"))
919 @end smallexample
920
921 The value of @code{somevar} is not fetched at this time. It will be
922 fetched when the value is needed, or when the @code{fetch-lazy}
923 procedure is invoked.
924 @end deffn
925
926 @deffn {Scheme Procedure} make-lazy-value type address
927 Return a @code{<gdb:value>} that will be lazily fetched from the
928 target. The object of type @code{<gdb:type>} whose value to fetch is
929 specified by its @var{type} and its target memory @var{address}, which
930 is a Scheme integer.
931 @end deffn
932
933 @deffn {Scheme Procedure} value-fetch-lazy! value
934 If @var{value} is a lazy value (@code{(value-lazy? value)} is @code{#t}),
935 then the value is fetched from the inferior.
936 Any errors that occur in the process will produce a Guile exception.
937
938 If @var{value} is not a lazy value, this method has no effect.
939
940 The result of this function is unspecified.
941 @end deffn
942
943 @deffn {Scheme Procedure} value-print value
944 Return the string representation (print form) of @code{<gdb:value>}
945 @var{value}.
946 @end deffn
947
948 @node Arithmetic In Guile
949 @subsubsection Arithmetic In Guile
950
951 The @code{(gdb)} module provides several functions for performing
952 arithmetic on @code{<gdb:value>} objects.
953 The arithmetic is performed as if it were done by the target,
954 and therefore has target semantics which are not necessarily
955 those of Scheme. For example operations work with a fixed precision,
956 not the arbitrary precision of Scheme.
957
958 Wherever a function takes an integer or pointer as an operand,
959 @value{GDBN} will convert appropriate Scheme values to perform
960 the operation.
961
962 @deffn {Scheme Procedure} value-add a b
963 @end deffn
964
965 @deffn {Scheme Procedure} value-sub a b
966 @end deffn
967
968 @deffn {Scheme Procedure} value-mul a b
969 @end deffn
970
971 @deffn {Scheme Procedure} value-div a b
972 @end deffn
973
974 @deffn {Scheme Procedure} value-rem a b
975 @end deffn
976
977 @deffn {Scheme Procedure} value-mod a b
978 @end deffn
979
980 @deffn {Scheme Procedure} value-pow a b
981 @end deffn
982
983 @deffn {Scheme Procedure} value-not a
984 @end deffn
985
986 @deffn {Scheme Procedure} value-neg a
987 @end deffn
988
989 @deffn {Scheme Procedure} value-pos a
990 @end deffn
991
992 @deffn {Scheme Procedure} value-abs a
993 @end deffn
994
995 @deffn {Scheme Procedure} value-lsh a b
996 @end deffn
997
998 @deffn {Scheme Procedure} value-rsh a b
999 @end deffn
1000
1001 @deffn {Scheme Procedure} value-min a b
1002 @end deffn
1003
1004 @deffn {Scheme Procedure} value-max a b
1005 @end deffn
1006
1007 @deffn {Scheme Procedure} value-lognot a
1008 @end deffn
1009
1010 @deffn {Scheme Procedure} value-logand a b
1011 @end deffn
1012
1013 @deffn {Scheme Procedure} value-logior a b
1014 @end deffn
1015
1016 @deffn {Scheme Procedure} value-logxor a b
1017 @end deffn
1018
1019 @deffn {Scheme Procedure} value=? a b
1020 @end deffn
1021
1022 @deffn {Scheme Procedure} value<? a b
1023 @end deffn
1024
1025 @deffn {Scheme Procedure} value<=? a b
1026 @end deffn
1027
1028 @deffn {Scheme Procedure} value>? a b
1029 @end deffn
1030
1031 @deffn {Scheme Procedure} value>=? a b
1032 @end deffn
1033
1034 Scheme does not provide a @code{not-equal} function,
1035 and thus Guile support in @value{GDBN} does not either.
1036
1037 @node Types In Guile
1038 @subsubsection Types In Guile
1039 @cindex types in guile
1040 @cindex guile, working with types
1041
1042 @tindex <gdb:type>
1043 @value{GDBN} represents types from the inferior in objects of type
1044 @code{<gdb:type>}.
1045
1046 The following type-related procedures are provided by the
1047 @code{(gdb)} module.
1048
1049 @deffn {Scheme Procedure} type? object
1050 Return @code{#t} if @var{object} is an object of type @code{<gdb:type>}.
1051 Otherwise return @code{#f}.
1052 @end deffn
1053
1054 @deffn {Scheme Procedure} lookup-type name @r{[}#:block block@r{]}
1055 This function looks up a type by its @var{name}, which must be a string.
1056
1057 If @var{block} is given, it is an object of type @code{<gdb:block>},
1058 and @var{name} is looked up in that scope.
1059 Otherwise, it is searched for globally.
1060
1061 Ordinarily, this function will return an instance of @code{<gdb:type>}.
1062 If the named type cannot be found, it will throw an exception.
1063 @end deffn
1064
1065 @deffn {Scheme Procedure} type-code type
1066 Return the type code of @var{type}. The type code will be one of the
1067 @code{TYPE_CODE_} constants defined below.
1068 @end deffn
1069
1070 @deffn {Scheme Procedure} type-tag type
1071 Return the tag name of @var{type}. The tag name is the name after
1072 @code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1073 languages have this concept. If this type has no tag name, then
1074 @code{#f} is returned.
1075 @end deffn
1076
1077 @deffn {Scheme Procedure} type-name type
1078 Return the name of @var{type}.
1079 If this type has no name, then @code{#f} is returned.
1080 @end deffn
1081
1082 @deffn {Scheme Procedure} type-print-name type
1083 Return the print name of @var{type}.
1084 This returns something even for anonymous types.
1085 For example, for an anonymous C struct @code{"struct @{...@}"} is returned.
1086 @end deffn
1087
1088 @deffn {Scheme Procedure} type-sizeof type
1089 Return the size of this type, in target @code{char} units. Usually, a
1090 target's @code{char} type will be an 8-bit byte. However, on some
1091 unusual platforms, this type may have a different size.
1092 @end deffn
1093
1094 @deffn {Scheme Procedure} type-strip-typedefs type
1095 Return a new @code{<gdb:type>} that represents the real type of @var{type},
1096 after removing all layers of typedefs.
1097 @end deffn
1098
1099 @deffn {Scheme Procedure} type-array type n1 @r{[}n2@r{]}
1100 Return a new @code{<gdb:type>} object which represents an array of this
1101 type. If one argument is given, it is the inclusive upper bound of
1102 the array; in this case the lower bound is zero. If two arguments are
1103 given, the first argument is the lower bound of the array, and the
1104 second argument is the upper bound of the array. An array's length
1105 must not be negative, but the bounds can be.
1106 @end deffn
1107
1108 @deffn {Scheme Procedure} type-vector type n1 @r{[}n2@r{]}
1109 Return a new @code{<gdb:type>} object which represents a vector of this
1110 type. If one argument is given, it is the inclusive upper bound of
1111 the vector; in this case the lower bound is zero. If two arguments are
1112 given, the first argument is the lower bound of the vector, and the
1113 second argument is the upper bound of the vector. A vector's length
1114 must not be negative, but the bounds can be.
1115
1116 The difference between an @code{array} and a @code{vector} is that
1117 arrays behave like in C: when used in expressions they decay to a pointer
1118 to the first element whereas vectors are treated as first class values.
1119 @end deffn
1120
1121 @deffn {Scheme Procedure} type-pointer type
1122 Return a new @code{<gdb:type>} object which represents a pointer to
1123 @var{type}.
1124 @end deffn
1125
1126 @deffn {Scheme Procedure} type-range type
1127 Return a list of two elements: the low bound and high bound of @var{type}.
1128 If @var{type} does not have a range, an exception is thrown.
1129 @end deffn
1130
1131 @deffn {Scheme Procedure} type-reference type
1132 Return a new @code{<gdb:type>} object which represents a reference to
1133 @var{type}.
1134 @end deffn
1135
1136 @deffn {Scheme Procedure} type-target type
1137 Return a new @code{<gdb:type>} object which represents the target type
1138 of @var{type}.
1139
1140 For a pointer type, the target type is the type of the pointed-to
1141 object. For an array type (meaning C-like arrays), the target type is
1142 the type of the elements of the array. For a function or method type,
1143 the target type is the type of the return value. For a complex type,
1144 the target type is the type of the elements. For a typedef, the
1145 target type is the aliased type.
1146
1147 If the type does not have a target, this method will throw an
1148 exception.
1149 @end deffn
1150
1151 @deffn {Scheme Procedure} type-const type
1152 Return a new @code{<gdb:type>} object which represents a
1153 @code{const}-qualified variant of @var{type}.
1154 @end deffn
1155
1156 @deffn {Scheme Procedure} type-volatile type
1157 Return a new @code{<gdb:type>} object which represents a
1158 @code{volatile}-qualified variant of @var{type}.
1159 @end deffn
1160
1161 @deffn {Scheme Procedure} type-unqualified type
1162 Return a new @code{<gdb:type>} object which represents an unqualified
1163 variant of @var{type}. That is, the result is neither @code{const} nor
1164 @code{volatile}.
1165 @end deffn
1166
1167 @deffn {Scheme Procedure} type-num-fields
1168 Return the number of fields of @code{<gdb:type>} @var{type}.
1169 @end deffn
1170
1171 @deffn {Scheme Procedure} type-fields type
1172 Return the fields of @var{type} as a list.
1173 For structure and union types, @code{fields} has the usual meaning.
1174 Range types have two fields, the minimum and maximum values. Enum types
1175 have one field per enum constant. Function and method types have one
1176 field per parameter. The base types of C@t{++} classes are also
1177 represented as fields. If the type has no fields, or does not fit
1178 into one of these categories, an empty list will be returned.
1179 @xref{Fields of a type in Guile}.
1180 @end deffn
1181
1182 @deffn {Scheme Procedure} make-field-iterator type
1183 Return the fields of @var{type} as a <gdb:iterator> object.
1184 @xref{Iterators In Guile}.
1185 @end deffn
1186
1187 @deffn {Scheme Procedure} type-field type field-name
1188 Return field named @var{field-name} in @var{type}.
1189 The result is an object of type @code{<gdb:field>}.
1190 @xref{Fields of a type in Guile}.
1191 If the type does not have fields, or @var{field-name} is not a field
1192 of @var{type}, an exception is thrown.
1193
1194 For example, if @code{some-type} is a @code{<gdb:type>} instance holding
1195 a structure type, you can access its @code{foo} field with:
1196
1197 @smallexample
1198 (define bar (type-field some-type "foo"))
1199 @end smallexample
1200
1201 @code{bar} will be a @code{<gdb:field>} object.
1202 @end deffn
1203
1204 @deffn {Scheme Procedure} type-has-field? type name
1205 Return @code{#t} if @code{<gdb:type>} @var{type} has field named @var{name}.
1206 Otherwise return @code{#f}.
1207 @end deffn
1208
1209 Each type has a code, which indicates what category this type falls
1210 into. The available type categories are represented by constants
1211 defined in the @code{(gdb)} module:
1212
1213 @vtable @code
1214 @item TYPE_CODE_PTR
1215 The type is a pointer.
1216
1217 @item TYPE_CODE_ARRAY
1218 The type is an array.
1219
1220 @item TYPE_CODE_STRUCT
1221 The type is a structure.
1222
1223 @item TYPE_CODE_UNION
1224 The type is a union.
1225
1226 @item TYPE_CODE_ENUM
1227 The type is an enum.
1228
1229 @item TYPE_CODE_FLAGS
1230 A bit flags type, used for things such as status registers.
1231
1232 @item TYPE_CODE_FUNC
1233 The type is a function.
1234
1235 @item TYPE_CODE_INT
1236 The type is an integer type.
1237
1238 @item TYPE_CODE_FLT
1239 A floating point type.
1240
1241 @item TYPE_CODE_VOID
1242 The special type @code{void}.
1243
1244 @item TYPE_CODE_SET
1245 A Pascal set type.
1246
1247 @item TYPE_CODE_RANGE
1248 A range type, that is, an integer type with bounds.
1249
1250 @item TYPE_CODE_STRING
1251 A string type. Note that this is only used for certain languages with
1252 language-defined string types; C strings are not represented this way.
1253
1254 @item TYPE_CODE_BITSTRING
1255 A string of bits. It is deprecated.
1256
1257 @item TYPE_CODE_ERROR
1258 An unknown or erroneous type.
1259
1260 @item TYPE_CODE_METHOD
1261 A method type, as found in C@t{++} or Java.
1262
1263 @item TYPE_CODE_METHODPTR
1264 A pointer-to-member-function.
1265
1266 @item TYPE_CODE_MEMBERPTR
1267 A pointer-to-member.
1268
1269 @item TYPE_CODE_REF
1270 A reference type.
1271
1272 @item TYPE_CODE_CHAR
1273 A character type.
1274
1275 @item TYPE_CODE_BOOL
1276 A boolean type.
1277
1278 @item TYPE_CODE_COMPLEX
1279 A complex float type.
1280
1281 @item TYPE_CODE_TYPEDEF
1282 A typedef to some other type.
1283
1284 @item TYPE_CODE_NAMESPACE
1285 A C@t{++} namespace.
1286
1287 @item TYPE_CODE_DECFLOAT
1288 A decimal floating point type.
1289
1290 @item TYPE_CODE_INTERNAL_FUNCTION
1291 A function internal to @value{GDBN}. This is the type used to represent
1292 convenience functions (@pxref{Convenience Funs}).
1293 @end vtable
1294
1295 Further support for types is provided in the @code{(gdb types)}
1296 Guile module (@pxref{Guile Types Module}).
1297
1298 @anchor{Fields of a type in Guile}
1299 Each field is represented as an object of type @code{<gdb:field>}.
1300
1301 The following field-related procedures are provided by the
1302 @code{(gdb)} module:
1303
1304 @deffn {Scheme Procedure} field? object
1305 Return @code{#t} if @var{object} is an object of type @code{<gdb:field>}.
1306 Otherwise return @code{#f}.
1307 @end deffn
1308
1309 @deffn {Scheme Procedure} field-name field
1310 Return the name of the field, or @code{#f} for anonymous fields.
1311 @end deffn
1312
1313 @deffn {Scheme Procedure} field-type field
1314 Return the type of the field. This is usually an instance of
1315 @code{<gdb:type>}, but it can be @code{#f} in some situations.
1316 @end deffn
1317
1318 @deffn {Scheme Procedure} field-enumval field
1319 Return the enum value represented by @code{<gdb:field>} @var{field}.
1320 @end deffn
1321
1322 @deffn {Scheme Procedure} field-bitpos field
1323 Return the bit position of @code{<gdb:field>} @var{field}.
1324 This attribute is not available for @code{static} fields (as in
1325 C@t{++} or Java).
1326 @end deffn
1327
1328 @deffn {Scheme Procedure} field-bitsize field
1329 If the field is packed, or is a bitfield, return the size of
1330 @code{<gdb:field>} @var{field} in bits. Otherwise, zero is returned;
1331 in which case the field's size is given by its type.
1332 @end deffn
1333
1334 @deffn {Scheme Procedure} field-artificial? field
1335 Return @code{#t} if the field is artificial, usually meaning that
1336 it was provided by the compiler and not the user.
1337 Otherwise return @code{#f}.
1338 @end deffn
1339
1340 @deffn {Scheme Procedure} field-base-class? field
1341 Return @code{#t} if the field represents a base class of a C@t{++}
1342 structure.
1343 Otherwise return @code{#f}.
1344 @end deffn
1345
1346 @node Guile Pretty Printing API
1347 @subsubsection Guile Pretty Printing API
1348 @cindex guile pretty printing api
1349
1350 An example output is provided (@pxref{Pretty Printing}).
1351
1352 A pretty-printer is represented by an object of type <gdb:pretty-printer>.
1353 Pretty-printer objects are created with @code{make-pretty-printer}.
1354
1355 The following pretty-printer-related procedures are provided by the
1356 @code{(gdb)} module:
1357
1358 @deffn {Scheme Procedure} make-pretty-printer name lookup-function
1359 Return a @code{<gdb:pretty-printer>} object named @var{name}.
1360
1361 @var{lookup-function} is a function of one parameter: the value to
1362 be printed. If the value is handled by this pretty-printer, then
1363 @var{lookup-function} returns an object of type
1364 <gdb:pretty-printer-worker> to perform the actual pretty-printing.
1365 Otherwise @var{lookup-function} returns @code{#f}.
1366 @end deffn
1367
1368 @deffn {Scheme Procedure} pretty-printer? object
1369 Return @code{#t} if @var{object} is a @code{<gdb:pretty-printer>} object.
1370 Otherwise return @code{#f}.
1371 @end deffn
1372
1373 @deffn {Scheme Procedure} pretty-printer-enabled? pretty-printer
1374 Return @code{#t} if @var{pretty-printer} is enabled.
1375 Otherwise return @code{#f}.
1376 @end deffn
1377
1378 @deffn {Scheme Procedure} set-pretty-printer-enabled! pretty-printer flag
1379 Set the enabled flag of @var{pretty-printer} to @var{flag}.
1380 The value returned is unspecified.
1381 @end deffn
1382
1383 @deffn {Scheme Procedure} pretty-printers
1384 Return the list of global pretty-printers.
1385 @end deffn
1386
1387 @deffn {Scheme Procedure} set-pretty-printers! pretty-printers
1388 Set the list of global pretty-printers to @var{pretty-printers}.
1389 The value returned is unspecified.
1390 @end deffn
1391
1392 @deffn {Scheme Procedure} make-pretty-printer-worker display-hint to-string children
1393 Return an object of type @code{<gdb:pretty-printer-worker>}.
1394
1395 This function takes three parameters:
1396
1397 @table @samp
1398 @item display-hint
1399 @var{display-hint} provides a hint to @value{GDBN} or @value{GDBN}
1400 front end via MI to change the formatting of the value being printed.
1401 The value must be a string or @code{#f} (meaning there is no hint).
1402 Several values for @var{display-hint}
1403 are predefined by @value{GDBN}:
1404
1405 @table @samp
1406 @item array
1407 Indicate that the object being printed is ``array-like''. The CLI
1408 uses this to respect parameters such as @code{set print elements} and
1409 @code{set print array}.
1410
1411 @item map
1412 Indicate that the object being printed is ``map-like'', and that the
1413 children of this value can be assumed to alternate between keys and
1414 values.
1415
1416 @item string
1417 Indicate that the object being printed is ``string-like''. If the
1418 printer's @code{to-string} function returns a Guile string of some
1419 kind, then @value{GDBN} will call its internal language-specific
1420 string-printing function to format the string. For the CLI this means
1421 adding quotation marks, possibly escaping some characters, respecting
1422 @code{set print elements}, and the like.
1423 @end table
1424
1425 @item to-string
1426 @var{to-string} is either a function of one parameter, the
1427 @code{<gdb:pretty-printer-worker>} object, or @code{#f}.
1428
1429 When printing from the CLI, if the @code{to-string} method exists,
1430 then @value{GDBN} will prepend its result to the values returned by
1431 @code{children}. Exactly how this formatting is done is dependent on
1432 the display hint, and may change as more hints are added. Also,
1433 depending on the print settings (@pxref{Print Settings}), the CLI may
1434 print just the result of @code{to-string} in a stack trace, omitting
1435 the result of @code{children}.
1436
1437 If this method returns a string, it is printed verbatim.
1438
1439 Otherwise, if this method returns an instance of @code{<gdb:value>},
1440 then @value{GDBN} prints this value. This may result in a call to
1441 another pretty-printer.
1442
1443 If instead the method returns a Guile value which is convertible to a
1444 @code{<gdb:value>}, then @value{GDBN} performs the conversion and prints
1445 the resulting value. Again, this may result in a call to another
1446 pretty-printer. Guile scalars (integers, floats, and booleans) and
1447 strings are convertible to @code{<gdb:value>}; other types are not.
1448
1449 Finally, if this method returns @code{#f} then no further operations
1450 are peformed in this method and nothing is printed.
1451
1452 If the result is not one of these types, an exception is raised.
1453
1454 @var{to-string} may also be @code{#f} in which case it is left to
1455 @var{children} to print the value.
1456
1457 @item children
1458 @var{children} is either a function of one parameter, the
1459 @code{<gdb:pretty-printer-worker>} object, or @code{#f}.
1460
1461 @value{GDBN} will call this function on a pretty-printer to compute the
1462 children of the pretty-printer's value.
1463
1464 This function must return a <gdb:iterator> object.
1465 Each item returned by the iterator must be a tuple holding
1466 two elements. The first element is the ``name'' of the child; the
1467 second element is the child's value. The value can be any Guile
1468 object which is convertible to a @value{GDBN} value.
1469
1470 If @var{children} is @code{#f}, @value{GDBN} will act
1471 as though the value has no children.
1472 @end table
1473 @end deffn
1474
1475 @value{GDBN} provides a function which can be used to look up the
1476 default pretty-printer for a @code{<gdb:value>}:
1477
1478 @deffn {Scheme Procedure} default-visualizer value
1479 This function takes a @code{<gdb:value>} object as an argument. If a
1480 pretty-printer for this value exists, then it is returned. If no such
1481 printer exists, then this returns @code{#f}.
1482 @end deffn
1483
1484 @node Selecting Guile Pretty-Printers
1485 @subsubsection Selecting Guile Pretty-Printers
1486 @cindex selecting guile pretty-printers
1487
1488 There are three sets of pretty-printers that @value{GDBN} searches:
1489
1490 @itemize @bullet
1491 @item
1492 Per-objfile list of pretty-printers (@pxref{Objfiles In Guile}).
1493 @item
1494 Per-progspace list of pretty-printers (@pxref{Progspaces In Guile}).
1495 @item
1496 The global list of pretty-printers (@pxref{Guile Pretty Printing API}).
1497 These printers are available when debugging any inferior.
1498 @end itemize
1499
1500 Pretty-printer lookup is done by passing the value to be printed to the
1501 lookup function of each enabled object in turn.
1502 Lookup stops when a lookup function returns a non-@code{#f} value
1503 or when the list is exhausted.
1504 Lookup functions must return either a @code{<gdb:pretty-printer-worker>}
1505 object or @code{#f}. Otherwise an exception is thrown.
1506
1507 @value{GDBN} first checks the result of @code{objfile-pretty-printers}
1508 of each @code{<gdb:objfile>} in the current program space and iteratively
1509 calls each enabled lookup function in the list for that @code{<gdb:objfile>}
1510 until a non-@code{#f} object is returned.
1511 If no pretty-printer is found in the objfile lists, @value{GDBN} then
1512 searches the result of @code{progspace-pretty-printers} of the current
1513 program space, calling each enabled function until a non-@code{#f} object
1514 is returned.
1515 After these lists have been exhausted, it tries the global pretty-printers
1516 list, obtained with @code{pretty-printers}, again calling each enabled
1517 function until a non-@code{#f} object is returned.
1518
1519 The order in which the objfiles are searched is not specified. For a
1520 given list, functions are always invoked from the head of the list,
1521 and iterated over sequentially until the end of the list, or a
1522 @code{<gdb:pretty-printer-worker>} object is returned.
1523
1524 For various reasons a pretty-printer may not work.
1525 For example, the underlying data structure may have changed and
1526 the pretty-printer is out of date.
1527
1528 The consequences of a broken pretty-printer are severe enough that
1529 @value{GDBN} provides support for enabling and disabling individual
1530 printers. For example, if @code{print frame-arguments} is on,
1531 a backtrace can become highly illegible if any argument is printed
1532 with a broken printer.
1533
1534 Pretty-printers are enabled and disabled from Scheme by calling
1535 @code{set-pretty-printer-enabled!}.
1536 @xref{Guile Pretty Printing API}.
1537
1538 @node Writing a Guile Pretty-Printer
1539 @subsubsection Writing a Guile Pretty-Printer
1540 @cindex writing a Guile pretty-printer
1541
1542 A pretty-printer consists of two basic parts: a lookup function to determine
1543 if the type is supported, and the printer itself.
1544
1545 Here is an example showing how a @code{std::string} printer might be
1546 written. @xref{Guile Pretty Printing API}, for details.
1547
1548 @smallexample
1549 (define (make-my-string-printer value)
1550 "Print a my::string string"
1551 (make-pretty-printer-worker
1552 "string"
1553 (lambda (printer)
1554 (value-field value "_data"))
1555 #f))
1556 @end smallexample
1557
1558 And here is an example showing how a lookup function for the printer
1559 example above might be written.
1560
1561 @smallexample
1562 (define (str-lookup-function pretty-printer value)
1563 (let ((tag (type-tag (value-type value))))
1564 (and tag
1565 (string-prefix? "std::string<" tag)
1566 (make-my-string-printer value))))
1567 @end smallexample
1568
1569 Then to register this printer in the global printer list:
1570
1571 @smallexample
1572 (append-pretty-printer!
1573 (make-pretty-printer "my-string" str-lookup-function))
1574 @end smallexample
1575
1576 The example lookup function extracts the value's type, and attempts to
1577 match it to a type that it can pretty-print. If it is a type the
1578 printer can pretty-print, it will return a <gdb:pretty-printer-worker> object.
1579 If not, it returns @code{#f}.
1580
1581 We recommend that you put your core pretty-printers into a Guile
1582 package. If your pretty-printers are for use with a library, we
1583 further recommend embedding a version number into the package name.
1584 This practice will enable @value{GDBN} to load multiple versions of
1585 your pretty-printers at the same time, because they will have
1586 different names.
1587
1588 You should write auto-loaded code (@pxref{Guile Auto-loading}) such that it
1589 can be evaluated multiple times without changing its meaning. An
1590 ideal auto-load file will consist solely of @code{import}s of your
1591 printer modules, followed by a call to a register pretty-printers with
1592 the current objfile.
1593
1594 Taken as a whole, this approach will scale nicely to multiple
1595 inferiors, each potentially using a different library version.
1596 Embedding a version number in the Guile package name will ensure that
1597 @value{GDBN} is able to load both sets of printers simultaneously.
1598 Then, because the search for pretty-printers is done by objfile, and
1599 because your auto-loaded code took care to register your library's
1600 printers with a specific objfile, @value{GDBN} will find the correct
1601 printers for the specific version of the library used by each
1602 inferior.
1603
1604 To continue the @code{my::string} example,
1605 this code might appear in @code{(my-project my-library v1)}:
1606
1607 @smallexample
1608 (use-modules (gdb))
1609 (define (register-printers objfile)
1610 (append-objfile-pretty-printer!
1611 (make-pretty-printer "my-string" str-lookup-function)))
1612 @end smallexample
1613
1614 @noindent
1615 And then the corresponding contents of the auto-load file would be:
1616
1617 @smallexample
1618 (use-modules (gdb) (my-project my-library v1))
1619 (register-printers (current-objfile))
1620 @end smallexample
1621
1622 The previous example illustrates a basic pretty-printer.
1623 There are a few things that can be improved on.
1624 The printer only handles one type, whereas a library typically has
1625 several types. One could install a lookup function for each desired type
1626 in the library, but one could also have a single lookup function recognize
1627 several types. The latter is the conventional way this is handled.
1628 If a pretty-printer can handle multiple data types, then its
1629 @dfn{subprinters} are the printers for the individual data types.
1630
1631 The @code{(gdb printing)} module provides a formal way of solving this
1632 problem (@pxref{Guile Printing Module}).
1633 Here is another example that handles multiple types.
1634
1635 These are the types we are going to pretty-print:
1636
1637 @smallexample
1638 struct foo @{ int a, b; @};
1639 struct bar @{ struct foo x, y; @};
1640 @end smallexample
1641
1642 Here are the printers:
1643
1644 @smallexample
1645 (define (make-foo-printer value)
1646 "Print a foo object"
1647 (make-pretty-printer-worker
1648 "foo"
1649 (lambda (printer)
1650 (format #f "a=<~a> b=<~a>"
1651 (value-field value "a") (value-field value "a")))
1652 #f))
1653
1654 (define (make-bar-printer value)
1655 "Print a bar object"
1656 (make-pretty-printer-worker
1657 "foo"
1658 (lambda (printer)
1659 (format #f "x=<~a> y=<~a>"
1660 (value-field value "x") (value-field value "y")))
1661 #f))
1662 @end smallexample
1663
1664 This example doesn't need a lookup function, that is handled by the
1665 @code{(gdb printing)} module. Instead a function is provided to build up
1666 the object that handles the lookup.
1667
1668 @smallexample
1669 (use-modules (gdb printing))
1670
1671 (define (build-pretty-printer)
1672 (let ((pp (make-pretty-printer-collection "my-library")))
1673 (pp-collection-add-tag-printer "foo" make-foo-printer)
1674 (pp-collection-add-tag-printer "bar" make-bar-printer)
1675 pp))
1676 @end smallexample
1677
1678 And here is the autoload support:
1679
1680 @smallexample
1681 (use-modules (gdb) (my-library))
1682 (append-objfile-pretty-printer! (current-objfile) (build-pretty-printer))
1683 @end smallexample
1684
1685 Finally, when this printer is loaded into @value{GDBN}, here is the
1686 corresponding output of @samp{info pretty-printer}:
1687
1688 @smallexample
1689 (gdb) info pretty-printer
1690 my_library.so:
1691 my-library
1692 foo
1693 bar
1694 @end smallexample
1695
1696 @node Commands In Guile
1697 @subsubsection Commands In Guile
1698
1699 @cindex commands in guile
1700 @cindex guile commands
1701 You can implement new @value{GDBN} CLI commands in Guile. A CLI
1702 command object is created with the @code{make-command} Guile function,
1703 and added to @value{GDBN} with the @code{register-command!} Guile function.
1704 This two-step approach is taken to separate out the side-effect of adding
1705 the command to @value{GDBN} from @code{make-command}.
1706
1707 There is no support for multi-line commands, that is commands that
1708 consist of multiple lines and are terminated with @code{end}.
1709
1710 @c TODO: line length
1711 @deffn {Scheme Procedure} (make-command name @r{[}#:invoke invoke{]} @r{[}#:command-class command-class@r{]} @r{[}#:completer-class completer{]} @r{[}#:prefix? prefix@r{]} @r{[}#:doc doc-string{]})
1712
1713 The argument @var{name} is the name of the command. If @var{name} consists of
1714 multiple words, then the initial words are looked for as prefix
1715 commands. In this case, if one of the prefix commands does not exist,
1716 an exception is raised.
1717
1718 The result is the @code{<gdb:command>} object representing the command.
1719 The command is not usable until it has been registered with @value{GDBN}
1720 with @code{register-command!}.
1721
1722 The rest of the arguments are optional.
1723
1724 The argument @var{invoke} is a procedure of three arguments: @var{self},
1725 @var{args} and @var{from-tty}. The argument @var{self} is the
1726 @code{<gdb:command>} object representing the command.
1727 The argument @var{args} is a string representing the arguments passed to
1728 the command, after leading and trailing whitespace has been stripped.
1729 The argument @var{from-tty} is a boolean flag and specifies whether the
1730 command should consider itself to have been originated from the user
1731 invoking it interactively. If this function throws an exception,
1732 it is turned into a @value{GDBN} @code{error} call.
1733 Otherwise, the return value is ignored.
1734
1735 The argument @var{command-class} is one of the @samp{COMMAND_} constants
1736 defined below. This argument tells @value{GDBN} how to categorize the
1737 new command in the help system. The default is @code{COMMAND_NONE}.
1738
1739 The argument @var{completer} is either @code{#f}, one of the @samp{COMPLETE_}
1740 constants defined below, or a procedure, also defined below.
1741 This argument tells @value{GDBN} how to perform completion
1742 for this command. If not provided or if the value is @code{#f},
1743 then no completion is performed on the command.
1744
1745 The argument @var{prefix} is a boolean flag indicating whether the new
1746 command is a prefix command; sub-commands of this command may be
1747 registered.
1748
1749 The argument @var{doc-string} is help text for the new command.
1750 If no documentation string is provided, the default value ``This command is
1751 not documented.'' is used.
1752 @end deffn
1753
1754 @deffn {Scheme Procedure} register-command! command
1755 Add @var{command}, a @code{<gdb:command>} object, to @value{GDBN}'s
1756 list of commands.
1757 It is an error to register a command more than once.
1758 The result is unspecified.
1759 @end deffn
1760
1761 @deffn {Scheme Procedure} command? object
1762 Return @code{#t} if @var{object} is a @code{<gdb:command>} object.
1763 Otherwise return @code{#f}.
1764 @end deffn
1765
1766 @cindex don't repeat Guile command
1767 @deffn {Scheme Procedure} dont-repeat
1768 By default, a @value{GDBN} command is repeated when the user enters a
1769 blank line at the command prompt. A command can suppress this
1770 behavior by invoking the @code{dont-repeat} function. This is similar
1771 to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
1772 @end deffn
1773
1774 @deffn {Scheme Procedure} string->argv string
1775 Convert a string to a list of strings split up according to
1776 @value{GDBN}'s argv parsing rules.
1777 It is recommended to use this for consistency.
1778 Arguments are separated by spaces and may be quoted.
1779 Example:
1780
1781 @smallexample
1782 scheme@@(guile-user)> (string->argv "1 2\\ \\\"3 '4 \"5' \"6 '7\"")
1783 $1 = ("1" "2 \"3" "4 \"5" "6 '7")
1784 @end smallexample
1785 @end deffn
1786
1787 @deffn {Scheme Procedure} throw-user-error message . args
1788 Throw a @code{gdb:user-error} exception.
1789 The argument @var{message} is the error message as a format string, like the
1790 @var{fmt} argument to the @code{format} Scheme function.
1791 @xref{Formatted Output,,, guile, GNU Guile Reference Manual}.
1792 The argument @var{args} is a list of the optional arguments of @var{message}.
1793
1794 This is used when the command detects a user error of some kind,
1795 say a bad command argument.
1796
1797 @smallexample
1798 (gdb) guile (use-modules (gdb))
1799 (gdb) guile
1800 (register-command! (make-command "test-user-error"
1801 #:command-class COMMAND_OBSCURE
1802 #:invoke (lambda (self arg from-tty)
1803 (throw-user-error "Bad argument ~a" arg))))
1804 end
1805 (gdb) test-user-error ugh
1806 ERROR: Bad argument ugh
1807 @end smallexample
1808 @end deffn
1809
1810 @cindex completion of Guile commands
1811 @deffn completer self text word
1812 If the @var{completer} option to @code{make-command} is a procedure,
1813 it takes three arguments: @var{self} which is the @code{<gdb:command>}
1814 object, and @var{text} and @var{word} which are both strings.
1815 The argument @var{text} holds the complete command line up to the cursor's
1816 location. The argument @var{word} holds the last word of the command line;
1817 this is computed using a word-breaking heuristic.
1818
1819 All forms of completion are handled by this function, that is,
1820 the @key{TAB} and @key{M-?} key bindings (@pxref{Completion}),
1821 and the @code{complete} command (@pxref{Help, complete}).
1822
1823 This procedure can return several kinds of values:
1824
1825 @itemize @bullet
1826 @item
1827 If the return value is a list, the contents of the list are used as the
1828 completions. It is up to @var{completer} to ensure that the
1829 contents actually do complete the word. An empty list is
1830 allowed, it means that there were no completions available. Only
1831 string elements of the list are used; other elements in the
1832 list are ignored.
1833
1834 @item
1835 If the return value is a @code{<gdb:iterator>} object, it is iterated over to
1836 obtain the completions. It is up to @code{completer-procedure} to ensure
1837 that the results actually do complete the word. Only
1838 string elements of the result are used; other elements in the
1839 sequence are ignored.
1840
1841 @item
1842 All other results are treated as though there were no available
1843 completions.
1844 @end itemize
1845 @end deffn
1846
1847 When a new command is registered, it will have been declared as a member of
1848 some general class of commands. This is used to classify top-level
1849 commands in the on-line help system; note that prefix commands are not
1850 listed under their own category but rather that of their top-level
1851 command. The available classifications are represented by constants
1852 defined in the @code{gdb} module:
1853
1854 @vtable @code
1855 @item COMMAND_NONE
1856 The command does not belong to any particular class. A command in
1857 this category will not be displayed in any of the help categories.
1858 This is the default.
1859
1860 @item COMMAND_RUNNING
1861 The command is related to running the inferior. For example,
1862 @code{start}, @code{step}, and @code{continue} are in this category.
1863 Type @kbd{help running} at the @value{GDBN} prompt to see a list of
1864 commands in this category.
1865
1866 @item COMMAND_DATA
1867 The command is related to data or variables. For example,
1868 @code{call}, @code{find}, and @code{print} are in this category. Type
1869 @kbd{help data} at the @value{GDBN} prompt to see a list of commands
1870 in this category.
1871
1872 @item COMMAND_STACK
1873 The command has to do with manipulation of the stack. For example,
1874 @code{backtrace}, @code{frame}, and @code{return} are in this
1875 category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
1876 list of commands in this category.
1877
1878 @item COMMAND_FILES
1879 This class is used for file-related commands. For example,
1880 @code{file}, @code{list} and @code{section} are in this category.
1881 Type @kbd{help files} at the @value{GDBN} prompt to see a list of
1882 commands in this category.
1883
1884 @item COMMAND_SUPPORT
1885 This should be used for ``support facilities'', generally meaning
1886 things that are useful to the user when interacting with @value{GDBN},
1887 but not related to the state of the inferior. For example,
1888 @code{help}, @code{make}, and @code{shell} are in this category. Type
1889 @kbd{help support} at the @value{GDBN} prompt to see a list of
1890 commands in this category.
1891
1892 @item COMMAND_STATUS
1893 The command is an @samp{info}-related command, that is, related to the
1894 state of @value{GDBN} itself. For example, @code{info}, @code{macro},
1895 and @code{show} are in this category. Type @kbd{help status} at the
1896 @value{GDBN} prompt to see a list of commands in this category.
1897
1898 @item COMMAND_BREAKPOINTS
1899 The command has to do with breakpoints. For example, @code{break},
1900 @code{clear}, and @code{delete} are in this category. Type @kbd{help
1901 breakpoints} at the @value{GDBN} prompt to see a list of commands in
1902 this category.
1903
1904 @item COMMAND_TRACEPOINTS
1905 The command has to do with tracepoints. For example, @code{trace},
1906 @code{actions}, and @code{tfind} are in this category. Type
1907 @kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
1908 commands in this category.
1909
1910 @item COMMAND_USER
1911 The command is a general purpose command for the user, and typically
1912 does not fit in one of the other categories.
1913 Type @kbd{help user-defined} at the @value{GDBN} prompt to see
1914 a list of commands in this category, as well as the list of gdb macros
1915 (@pxref{Sequences}).
1916
1917 @item COMMAND_OBSCURE
1918 The command is only used in unusual circumstances, or is not of
1919 general interest to users. For example, @code{checkpoint},
1920 @code{fork}, and @code{stop} are in this category. Type @kbd{help
1921 obscure} at the @value{GDBN} prompt to see a list of commands in this
1922 category.
1923
1924 @item COMMAND_MAINTENANCE
1925 The command is only useful to @value{GDBN} maintainers. The
1926 @code{maintenance} and @code{flushregs} commands are in this category.
1927 Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
1928 commands in this category.
1929 @end vtable
1930
1931 A new command can use a predefined completion function, either by
1932 specifying it via an argument at initialization, or by returning it
1933 from the @code{completer} procedure. These predefined completion
1934 constants are all defined in the @code{gdb} module:
1935
1936 @vtable @code
1937 @item COMPLETE_NONE
1938 This constant means that no completion should be done.
1939
1940 @item COMPLETE_FILENAME
1941 This constant means that filename completion should be performed.
1942
1943 @item COMPLETE_LOCATION
1944 This constant means that location completion should be done.
1945 @xref{Specify Location}.
1946
1947 @item COMPLETE_COMMAND
1948 This constant means that completion should examine @value{GDBN}
1949 command names.
1950
1951 @item COMPLETE_SYMBOL
1952 This constant means that completion should be done using symbol names
1953 as the source.
1954
1955 @item COMPLETE_EXPRESSION
1956 This constant means that completion should be done on expressions.
1957 Often this means completing on symbol names, but some language
1958 parsers also have support for completing on field names.
1959 @end vtable
1960
1961 The following code snippet shows how a trivial CLI command can be
1962 implemented in Guile:
1963
1964 @smallexample
1965 (gdb) guile
1966 (register-command! (make-command "hello-world"
1967 #:command-class COMMAND_USER
1968 #:doc "Greet the whole world."
1969 #:invoke (lambda (self args from-tty) (display "Hello, World!\n"))))
1970 end
1971 (gdb) hello-world
1972 Hello, World!
1973 @end smallexample
1974
1975 @node Parameters In Guile
1976 @subsubsection Parameters In Guile
1977
1978 @cindex parameters in guile
1979 @cindex guile parameters
1980 @tindex Parameter
1981 You can implement new @value{GDBN} @dfn{parameters} using Guile
1982 @footnote{Note that @value{GDBN} parameters must not be confused with
1983 Guile’s parameter objects (@pxref{Parameters,,, guile, GNU Guile
1984 Reference Manual}).}.
1985
1986 There are many parameters that already exist and can be set in
1987 @value{GDBN}. Two examples are: @code{set follow-fork} and
1988 @code{set charset}. Setting these parameters influences certain
1989 behavior in @value{GDBN}. Similarly, you can define parameters that
1990 can be used to influence behavior in custom Guile scripts and commands.
1991
1992 A new parameter is defined with the @code{make-parameter} Guile function,
1993 and added to @value{GDBN} with the @code{register-parameter!} Guile function.
1994 This two-step approach is taken to separate out the side-effect of adding
1995 the parameter to @value{GDBN} from @code{make-parameter}.
1996
1997 Parameters are exposed to the user via the @code{set} and
1998 @code{show} commands. @xref{Help}.
1999
2000 @c TODO line length
2001 @deffn {Scheme Procedure} (make-parameter name @r{[}#:command-class command-class@r{]} @r{[}#:parameter-type parameter-type{]} @r{[}#:enum-list enum-list@r{]} @r{[}#:set-func set-func{]} @r{[}#:show-func show-func{]} @r{[}#:doc doc{]} @r{[}#:set-doc set-doc{]} @r{[}#:show-doc show-doc{]} @r{[}#:initial-value initial-value{]})
2002
2003 The argument @var{name} is the name of the new parameter. If @var{name}
2004 consists of multiple words, then the initial words are looked for as prefix
2005 parameters. An example of this can be illustrated with the
2006 @code{set print} set of parameters. If @var{name} is
2007 @code{print foo}, then @code{print} will be searched as the prefix
2008 parameter. In this case the parameter can subsequently be accessed in
2009 @value{GDBN} as @code{set print foo}.
2010 If @var{name} consists of multiple words, and no prefix parameter group
2011 can be found, an exception is raised.
2012
2013 The result is the @code{<gdb:parameter>} object representing the parameter.
2014 The parameter is not usable until it has been registered with @value{GDBN}
2015 with @code{register-parameter!}.
2016
2017 The rest of the arguments are optional.
2018
2019 The argument @var{command-class} should be one of the @samp{COMMAND_} constants
2020 (@pxref{Commands In Guile}). This argument tells @value{GDBN} how to
2021 categorize the new parameter in the help system.
2022 The default is @code{COMMAND_NONE}.
2023
2024 The argument @var{parameter-type} should be one of the @samp{PARAM_} constants
2025 defined below. This argument tells @value{GDBN} the type of the new
2026 parameter; this information is used for input validation and
2027 completion. The default is @code{PARAM_BOOLEAN}.
2028
2029 If @var{parameter-type} is @code{PARAM_ENUM}, then
2030 @var{enum-list} must be a list of strings. These strings
2031 represent the possible values for the parameter.
2032
2033 If @var{parameter-type} is not @code{PARAM_ENUM}, then the presence
2034 of @var{enum-list} will cause an exception to be thrown.
2035
2036 The argument @var{set-func} is a function of one argument: @var{self} which
2037 is the @code{<gdb:parameter>} object representing the parameter.
2038 @value{GDBN} will call this function when a @var{parameter}'s value has
2039 been changed via the @code{set} API (for example, @kbd{set foo off}).
2040 The value of the parameter has already been set to the new value.
2041 This function must return a string to be displayed to the user.
2042 @value{GDBN} will add a trailing newline if the string is non-empty.
2043 @value{GDBN} generally doesn't print anything when a parameter is set,
2044 thus typically this function should return @samp{""}.
2045 A non-empty string result should typically be used for displaying warnings
2046 and errors.
2047
2048 The argument @var{show-func} is a function of two arguments: @var{self} which
2049 is the @code{<gdb:parameter>} object representing the parameter, and
2050 @var{svalue} which is the string representation of the current value.
2051 @value{GDBN} will call this function when a @var{parameter}'s
2052 @code{show} API has been invoked (for example, @kbd{show foo}).
2053 This function must return a string, and will be displayed to the user.
2054 @value{GDBN} will add a trailing newline.
2055
2056 The argument @var{doc} is the help text for the new parameter.
2057 If there is no documentation string, a default value is used.
2058
2059 The argument @var{set-doc} is the help text for this parameter's
2060 @code{set} command.
2061
2062 The argument @var{show-doc} is the help text for this parameter's
2063 @code{show} command.
2064
2065 The argument @var{initial-value} specifies the initial value of the parameter.
2066 If it is a function, it takes one parameter, the @code{<gdb:parameter>}
2067 object and its result is used as the initial value of the parameter.
2068 The initial value must be valid for the parameter type,
2069 otherwise an exception is thrown.
2070 @end deffn
2071
2072 @deffn {Scheme Procedure} register-parameter! parameter
2073 Add @var{parameter}, a @code{<gdb:parameter>} object, to @value{GDBN}'s
2074 list of parameters.
2075 It is an error to register a parameter more than once.
2076 The result is unspecified.
2077 @end deffn
2078
2079 @deffn {Scheme Procedure} parameter? object
2080 Return @code{#t} if @var{object} is a @code{<gdb:parameter>} object.
2081 Otherwise return @code{#f}.
2082 @end deffn
2083
2084 @deffn {Scheme Procedure} parameter-value parameter
2085 Return the value of @var{parameter} which may either be
2086 a @code{<gdb:parameter>} object or a string naming the parameter.
2087 @end deffn
2088
2089 @deffn {Scheme Procedure} set-parameter-value! parameter new-value
2090 Assign @var{parameter} the value of @var{new-value}.
2091 The argument @var{parameter} must be an object of type @code{<gdb:parameter>}.
2092 @value{GDBN} does validation when assignments are made.
2093 @end deffn
2094
2095 When a new parameter is defined, its type must be specified. The
2096 available types are represented by constants defined in the @code{gdb}
2097 module:
2098
2099 @vtable @code
2100 @item PARAM_BOOLEAN
2101 The value is a plain boolean. The Guile boolean values, @code{#t}
2102 and @code{#f} are the only valid values.
2103
2104 @item PARAM_AUTO_BOOLEAN
2105 The value has three possible states: true, false, and @samp{auto}. In
2106 Guile, true and false are represented using boolean constants, and
2107 @samp{auto} is represented using @code{#:auto}.
2108
2109 @item PARAM_UINTEGER
2110 The value is an unsigned integer. The value of 0 should be
2111 interpreted to mean ``unlimited''.
2112
2113 @item PARAM_ZINTEGER
2114 The value is an integer.
2115
2116 @item PARAM_ZUINTEGER
2117 The value is an unsigned integer.
2118
2119 @item PARAM_ZUINTEGER_UNLIMITED
2120 The value is an integer in the range @samp{[0, INT_MAX]}.
2121 A value of @samp{-1} means ``unlimited'', and other negative
2122 numbers are not allowed.
2123
2124 @item PARAM_STRING
2125 The value is a string. When the user modifies the string, any escape
2126 sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
2127 translated into corresponding characters and encoded into the current
2128 host charset.
2129
2130 @item PARAM_STRING_NOESCAPE
2131 The value is a string. When the user modifies the string, escapes are
2132 passed through untranslated.
2133
2134 @item PARAM_OPTIONAL_FILENAME
2135 The value is a either a filename (a string), or @code{#f}.
2136
2137 @item PARAM_FILENAME
2138 The value is a filename. This is just like
2139 @code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
2140
2141 @item PARAM_ENUM
2142 The value is a string, which must be one of a collection of string
2143 constants provided when the parameter is created.
2144 @end vtable
2145
2146 @node Progspaces In Guile
2147 @subsubsection Program Spaces In Guile
2148
2149 @cindex progspaces in guile
2150 @tindex <gdb:progspace>
2151 A program space, or @dfn{progspace}, represents a symbolic view
2152 of an address space.
2153 It consists of all of the objfiles of the program.
2154 @xref{Objfiles In Guile}.
2155 @xref{Inferiors and Programs, program spaces}, for more details
2156 about program spaces.
2157
2158 Each progspace is represented by an instance of the @code{<gdb:progspace>}
2159 smob. @xref{GDB Scheme Data Types}.
2160
2161 The following progspace-related functions are available in the
2162 @code{(gdb)} module:
2163
2164 @deffn {Scheme Procedure} progspace? object
2165 Return @code{#t} if @var{object} is a @code{<gdb:progspace>} object.
2166 Otherwise return @code{#f}.
2167 @end deffn
2168
2169 @deffn {Scheme Procedure} progspace-valid? progspace
2170 Return @code{#t} if @var{progspace} is valid, @code{#f} if not.
2171 A @code{<gdb:progspace>} object can become invalid
2172 if the program it refers to is not loaded in @value{GDBN} any longer.
2173 @end deffn
2174
2175 @deffn {Scheme Procedure} current-progspace
2176 This function returns the program space of the currently selected inferior.
2177 There is always a current progspace, this never returns @code{#f}.
2178 @xref{Inferiors and Programs}.
2179 @end deffn
2180
2181 @deffn {Scheme Procedure} progspaces
2182 Return a list of all the progspaces currently known to @value{GDBN}.
2183 @end deffn
2184
2185 @deffn {Scheme Procedure} progspace-filename progspace
2186 Return the absolute file name of @var{progspace} as a string.
2187 This is the name of the file passed as the argument to the @code{file}
2188 or @code{symbol-file} commands.
2189 If the program space does not have an associated file name,
2190 then @code{#f} is returned. This occurs, for example, when @value{GDBN}
2191 is started without a program to debug.
2192
2193 A @code{gdb:invalid-object-error} exception is thrown if @var{progspace}
2194 is invalid.
2195 @end deffn
2196
2197 @deffn {Scheme Procedure} progspace-objfiles progspace
2198 Return the list of objfiles of @var{progspace}.
2199 The order of objfiles in the result is arbitrary.
2200 Each element is an object of type @code{<gdb:objfile>}.
2201 @xref{Objfiles In Guile}.
2202
2203 A @code{gdb:invalid-object-error} exception is thrown if @var{progspace}
2204 is invalid.
2205 @end deffn
2206
2207 @deffn {Scheme Procedure} progspace-pretty-printers progspace
2208 Return the list of pretty-printers of @var{progspace}.
2209 Each element is an object of type @code{<gdb:pretty-printer>}.
2210 @xref{Guile Pretty Printing API}, for more information.
2211 @end deffn
2212
2213 @deffn {Scheme Procedure} set-progspace-pretty-printers! progspace printer-list
2214 Set the list of registered @code{<gdb:pretty-printer>} objects for
2215 @var{progspace} to @var{printer-list}.
2216 @xref{Guile Pretty Printing API}, for more information.
2217 @end deffn
2218
2219 @node Objfiles In Guile
2220 @subsubsection Objfiles In Guile
2221
2222 @cindex objfiles in guile
2223 @tindex <gdb:objfile>
2224 @value{GDBN} loads symbols for an inferior from various
2225 symbol-containing files (@pxref{Files}). These include the primary
2226 executable file, any shared libraries used by the inferior, and any
2227 separate debug info files (@pxref{Separate Debug Files}).
2228 @value{GDBN} calls these symbol-containing files @dfn{objfiles}.
2229
2230 Each objfile is represented as an object of type @code{<gdb:objfile>}.
2231
2232 The following objfile-related procedures are provided by the
2233 @code{(gdb)} module:
2234
2235 @deffn {Scheme Procedure} objfile? object
2236 Return @code{#t} if @var{object} is a @code{<gdb:objfile>} object.
2237 Otherwise return @code{#f}.
2238 @end deffn
2239
2240 @deffn {Scheme Procedure} objfile-valid? objfile
2241 Return @code{#t} if @var{objfile} is valid, @code{#f} if not.
2242 A @code{<gdb:objfile>} object can become invalid
2243 if the object file it refers to is not loaded in @value{GDBN} any
2244 longer. All other @code{<gdb:objfile>} procedures will throw an exception
2245 if it is invalid at the time the procedure is called.
2246 @end deffn
2247
2248 @deffn {Scheme Procedure} objfile-filename objfile
2249 Return the file name of @var{objfile} as a string,
2250 with symbolic links resolved.
2251 @end deffn
2252
2253 @deffn {Scheme Procedure} objfile-progspace objfile
2254 Return the @code{<gdb:progspace>} that this object file lives in.
2255 @xref{Progspaces In Guile}, for more on progspaces.
2256 @end deffn
2257
2258 @deffn {Scheme Procedure} objfile-pretty-printers objfile
2259 Return the list of registered @code{<gdb:pretty-printer>} objects for
2260 @var{objfile}. @xref{Guile Pretty Printing API}, for more information.
2261 @end deffn
2262
2263 @deffn {Scheme Procedure} set-objfile-pretty-printers! objfile printer-list
2264 Set the list of registered @code{<gdb:pretty-printer>} objects for
2265 @var{objfile} to @var{printer-list}. The
2266 @var{printer-list} must be a list of @code{<gdb:pretty-printer>} objects.
2267 @xref{Guile Pretty Printing API}, for more information.
2268 @end deffn
2269
2270 @deffn {Scheme Procedure} current-objfile
2271 When auto-loading a Guile script (@pxref{Guile Auto-loading}), @value{GDBN}
2272 sets the ``current objfile'' to the corresponding objfile. This
2273 function returns the current objfile. If there is no current objfile,
2274 this function returns @code{#f}.
2275 @end deffn
2276
2277 @deffn {Scheme Procedure} objfiles
2278 Return a list of all the objfiles in the current program space.
2279 @end deffn
2280
2281 @node Frames In Guile
2282 @subsubsection Accessing inferior stack frames from Guile.
2283
2284 @cindex frames in guile
2285 When the debugged program stops, @value{GDBN} is able to analyze its call
2286 stack (@pxref{Frames,,Stack frames}). The @code{<gdb:frame>} class
2287 represents a frame in the stack. A @code{<gdb:frame>} object is only valid
2288 while its corresponding frame exists in the inferior's stack. If you try
2289 to use an invalid frame object, @value{GDBN} will throw a
2290 @code{gdb:invalid-object} exception (@pxref{Guile Exception Handling}).
2291
2292 Two @code{<gdb:frame>} objects can be compared for equality with the
2293 @code{equal?} function, like:
2294
2295 @smallexample
2296 (@value{GDBP}) guile (equal? (newest-frame) (selected-frame))
2297 #t
2298 @end smallexample
2299
2300 The following frame-related procedures are provided by the
2301 @code{(gdb)} module:
2302
2303 @deffn {Scheme Procedure} frame? object
2304 Return @code{#t} if @var{object} is a @code{<gdb:frame>} object.
2305 Otherwise return @code{#f}.
2306 @end deffn
2307
2308 @deffn {Scheme Procedure} frame-valid? frame
2309 Returns @code{#t} if @var{frame} is valid, @code{#f} if not.
2310 A frame object can become invalid if the frame it refers to doesn't
2311 exist anymore in the inferior. All @code{<gdb:frame>} procedures will throw
2312 an exception if the frame is invalid at the time the procedure is called.
2313 @end deffn
2314
2315 @deffn {Scheme Procedure} frame-name frame
2316 Return the function name of @var{frame}, or @code{#f} if it can't be
2317 obtained.
2318 @end deffn
2319
2320 @deffn {Scheme Procedure} frame-arch frame
2321 Return the @code{<gdb:architecture>} object corresponding to @var{frame}'s
2322 architecture. @xref{Architectures In Guile}.
2323 @end deffn
2324
2325 @deffn {Scheme Procedure} frame-type frame
2326 Return the type of @var{frame}. The value can be one of:
2327
2328 @table @code
2329 @item NORMAL_FRAME
2330 An ordinary stack frame.
2331
2332 @item DUMMY_FRAME
2333 A fake stack frame that was created by @value{GDBN} when performing an
2334 inferior function call.
2335
2336 @item INLINE_FRAME
2337 A frame representing an inlined function. The function was inlined
2338 into a @code{NORMAL_FRAME} that is older than this one.
2339
2340 @item TAILCALL_FRAME
2341 A frame representing a tail call. @xref{Tail Call Frames}.
2342
2343 @item SIGTRAMP_FRAME
2344 A signal trampoline frame. This is the frame created by the OS when
2345 it calls into a signal handler.
2346
2347 @item ARCH_FRAME
2348 A fake stack frame representing a cross-architecture call.
2349
2350 @item SENTINEL_FRAME
2351 This is like @code{NORMAL_FRAME}, but it is only used for the
2352 newest frame.
2353 @end table
2354 @end deffn
2355
2356 @deffn {Scheme Procedure} frame-unwind-stop-reason frame
2357 Return an integer representing the reason why it's not possible to find
2358 more frames toward the outermost frame. Use
2359 @code{unwind-stop-reason-string} to convert the value returned by this
2360 function to a string. The value can be one of:
2361
2362 @table @code
2363 @item FRAME_UNWIND_NO_REASON
2364 No particular reason (older frames should be available).
2365
2366 @item FRAME_UNWIND_NULL_ID
2367 The previous frame's analyzer returns an invalid result.
2368
2369 @item FRAME_UNWIND_OUTERMOST
2370 This frame is the outermost.
2371
2372 @item FRAME_UNWIND_UNAVAILABLE
2373 Cannot unwind further, because that would require knowing the
2374 values of registers or memory that have not been collected.
2375
2376 @item FRAME_UNWIND_INNER_ID
2377 This frame ID looks like it ought to belong to a NEXT frame,
2378 but we got it for a PREV frame. Normally, this is a sign of
2379 unwinder failure. It could also indicate stack corruption.
2380
2381 @item FRAME_UNWIND_SAME_ID
2382 This frame has the same ID as the previous one. That means
2383 that unwinding further would almost certainly give us another
2384 frame with exactly the same ID, so break the chain. Normally,
2385 this is a sign of unwinder failure. It could also indicate
2386 stack corruption.
2387
2388 @item FRAME_UNWIND_NO_SAVED_PC
2389 The frame unwinder did not find any saved PC, but we needed
2390 one to unwind further.
2391
2392 @item FRAME_UNWIND_MEMORY_ERROR
2393 The frame unwinder caused an error while trying to access memory.
2394
2395 @item FRAME_UNWIND_FIRST_ERROR
2396 Any stop reason greater or equal to this value indicates some kind
2397 of error. This special value facilitates writing code that tests
2398 for errors in unwinding in a way that will work correctly even if
2399 the list of the other values is modified in future @value{GDBN}
2400 versions. Using it, you could write:
2401
2402 @smallexample
2403 (define reason (frame-unwind-stop-readon (selected-frame)))
2404 (define reason-str (unwind-stop-reason-string reason))
2405 (if (>= reason FRAME_UNWIND_FIRST_ERROR)
2406 (format #t "An error occured: ~s\n" reason-str))
2407 @end smallexample
2408 @end table
2409 @end deffn
2410
2411 @deffn {Scheme Procedure} frame-pc frame
2412 Return the frame's resume address.
2413 @end deffn
2414
2415 @deffn {Scheme Procedure} frame-block frame
2416 Return the frame's code block as a @code{<gdb:block>} object.
2417 @xref{Blocks In Guile}.
2418 @end deffn
2419
2420 @deffn {Scheme Procedure} frame-function frame
2421 Return the symbol for the function corresponding to this frame
2422 as a @code{<gdb:symbol>} object, or @code{#f} if there isn't one.
2423 @xref{Symbols In Guile}.
2424 @end deffn
2425
2426 @deffn {Scheme Procedure} frame-older frame
2427 Return the frame that called @var{frame}.
2428 @end deffn
2429
2430 @deffn {Scheme Procedure} frame-newer frame
2431 Return the frame called by @var{frame}.
2432 @end deffn
2433
2434 @deffn {Scheme Procedure} frame-sal frame
2435 Return the frame's @code{<gdb:sal>} (symtab and line) object.
2436 @xref{Symbol Tables In Guile}.
2437 @end deffn
2438
2439 @deffn {Scheme Procedure} frame-read-var frame variable @r{[}#:block block@r{]}
2440 Return the value of @var{variable} in @var{frame}. If the optional
2441 argument @var{block} is provided, search for the variable from that
2442 block; otherwise start at the frame's current block (which is
2443 determined by the frame's current program counter). The
2444 @var{variable} must be given as a string or a @code{<gdb:symbol>}
2445 object, and @var{block} must be a @code{<gdb:block>} object.
2446 @end deffn
2447
2448 @deffn {Scheme Procedure} frame-select frame
2449 Set @var{frame} to be the selected frame. @xref{Stack, ,Examining the
2450 Stack}.
2451 @end deffn
2452
2453 @deffn {Scheme Procedure} selected-frame
2454 Return the selected frame object. @xref{Selection,,Selecting a Frame}.
2455 @end deffn
2456
2457 @deffn {Scheme Procedure} newest-frame
2458 Return the newest frame object for the selected thread.
2459 @end deffn
2460
2461 @deffn {Scheme Procedure} unwind-stop-reason-string reason
2462 Return a string explaining the reason why @value{GDBN} stopped unwinding
2463 frames, as expressed by the given @var{reason} code (an integer, see the
2464 @code{frame-unwind-stop-reason} procedure above in this section).
2465 @end deffn
2466
2467 @node Blocks In Guile
2468 @subsubsection Accessing blocks from Guile.
2469
2470 @cindex blocks in guile
2471 @tindex <gdb:block>
2472
2473 In @value{GDBN}, symbols are stored in blocks. A block corresponds
2474 roughly to a scope in the source code. Blocks are organized
2475 hierarchically, and are represented individually in Guile as an object
2476 of type @code{<gdb:block>}. Blocks rely on debugging information being
2477 available.
2478
2479 A frame has a block. Please see @ref{Frames In Guile}, for a more
2480 in-depth discussion of frames.
2481
2482 The outermost block is known as the @dfn{global block}. The global
2483 block typically holds public global variables and functions.
2484
2485 The block nested just inside the global block is the @dfn{static
2486 block}. The static block typically holds file-scoped variables and
2487 functions.
2488
2489 @value{GDBN} provides a method to get a block's superblock, but there
2490 is currently no way to examine the sub-blocks of a block, or to
2491 iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
2492 Guile}).
2493
2494 Here is a short example that should help explain blocks:
2495
2496 @smallexample
2497 /* This is in the global block. */
2498 int global;
2499
2500 /* This is in the static block. */
2501 static int file_scope;
2502
2503 /* 'function' is in the global block, and 'argument' is
2504 in a block nested inside of 'function'. */
2505 int function (int argument)
2506 @{
2507 /* 'local' is in a block inside 'function'. It may or may
2508 not be in the same block as 'argument'. */
2509 int local;
2510
2511 @{
2512 /* 'inner' is in a block whose superblock is the one holding
2513 'local'. */
2514 int inner;
2515
2516 /* If this call is expanded by the compiler, you may see
2517 a nested block here whose function is 'inline_function'
2518 and whose superblock is the one holding 'inner'. */
2519 inline_function ();
2520 @}
2521 @}
2522 @end smallexample
2523
2524 The following block-related procedures are provided by the
2525 @code{(gdb)} module:
2526
2527 @deffn {Scheme Procedure} block? object
2528 Return @code{#t} if @var{object} is a @code{<gdb:block>} object.
2529 Otherwise return @code{#f}.
2530 @end deffn
2531
2532 @deffn {Scheme Procedure} block-valid? block
2533 Returns @code{#t} if @code{<gdb:block>} @var{block} is valid,
2534 @code{#f} if not. A block object can become invalid if the block it
2535 refers to doesn't exist anymore in the inferior. All other
2536 @code{<gdb:block>} methods will throw an exception if it is invalid at
2537 the time the procedure is called. The block's validity is also checked
2538 during iteration over symbols of the block.
2539 @end deffn
2540
2541 @deffn {Scheme Procedure} block-start block
2542 Return the start address of @code{<gdb:block>} @var{block}.
2543 @end deffn
2544
2545 @deffn {Scheme Procedure} block-end block
2546 Return the end address of @code{<gdb:block>} @var{block}.
2547 @end deffn
2548
2549 @deffn {Scheme Procedure} block-function block
2550 Return the name of @code{<gdb:block>} @var{block} represented as a
2551 @code{<gdb:symbol>} object.
2552 If the block is not named, then @code{#f} is returned.
2553
2554 For ordinary function blocks, the superblock is the static block.
2555 However, you should note that it is possible for a function block to
2556 have a superblock that is not the static block -- for instance this
2557 happens for an inlined function.
2558 @end deffn
2559
2560 @deffn {Scheme Procedure} block-superblock block
2561 Return the block containing @code{<gdb:block>} @var{block}.
2562 If the parent block does not exist, then @code{#f} is returned.
2563 @end deffn
2564
2565 @deffn {Scheme Procedure} block-global-block block
2566 Return the global block associated with @code{<gdb:block>} @var{block}.
2567 @end deffn
2568
2569 @deffn {Scheme Procedure} block-static-block block
2570 Return the static block associated with @code{<gdb:block>} @var{block}.
2571 @end deffn
2572
2573 @deffn {Scheme Procedure} block-global? block
2574 Return @code{#t} if @code{<gdb:block>} @var{block} is a global block.
2575 Otherwise return @code{#f}.
2576 @end deffn
2577
2578 @deffn {Scheme Procedure} block-static? block
2579 Return @code{#t} if @code{<gdb:block>} @var{block} is a static block.
2580 Otherwise return @code{#f}.
2581 @end deffn
2582
2583 @deffn {Scheme Procedure} block-symbols
2584 Return a list of all symbols (as <gdb:symbol> objects) in
2585 @code{<gdb:block>} @var{block}.
2586 @end deffn
2587
2588 @deffn {Scheme Procedure} make-block-symbols-iterator block
2589 Return an object of type @code{<gdb:iterator>} that will iterate
2590 over all symbols of the block.
2591 Guile programs should not assume that a specific block object will
2592 always contain a given symbol, since changes in @value{GDBN} features and
2593 infrastructure may cause symbols move across blocks in a symbol table.
2594 @xref{Iterators In Guile}.
2595 @end deffn
2596
2597 @deffn {Scheme Procedure} block-symbols-progress?
2598 Return #t if the object is a <gdb:block-symbols-progress> object.
2599 This object would be obtained from the @code{progress} element of the
2600 @code{<gdb:iterator>} object returned by @code{make-block-symbols-iterator}.
2601 @end deffn
2602
2603 @deffn {Scheme Procedure} lookup-block pc
2604 Return the innermost @code{<gdb:block>} containing the given @var{pc}
2605 value. If the block cannot be found for the @var{pc} value specified,
2606 the function will return @code{#f}.
2607 @end deffn
2608
2609 @node Symbols In Guile
2610 @subsubsection Guile representation of Symbols.
2611
2612 @cindex symbols in guile
2613 @tindex <gdb:symbol>
2614
2615 @value{GDBN} represents every variable, function and type as an
2616 entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
2617 Guile represents these symbols in @value{GDBN} with the
2618 @code{<gdb:symbol>} object.
2619
2620 The following symbol-related procedures are provided by the
2621 @code{(gdb)} module:
2622
2623 @deffn {Scheme Procedure} symbol? object
2624 Return @code{#t} if @var{object} is an object of type @code{<gdb:symbol>}.
2625 Otherwise return @code{#f}.
2626 @end deffn
2627
2628 @deffn {Scheme Procedure} symbol-valid? symbol
2629 Return @code{#t} if the @code{<gdb:symbol>} object is valid,
2630 @code{#f} if not. A @code{<gdb:symbol>} object can become invalid if
2631 the symbol it refers to does not exist in @value{GDBN} any longer.
2632 All other @code{<gdb:symbol>} procedures will throw an exception if it is
2633 invalid at the time the procedure is called.
2634 @end deffn
2635
2636 @deffn {Scheme Procedure} symbol-type symbol
2637 Return the type of @var{symbol} or @code{#f} if no type is recorded.
2638 The result is an object of type @code{<gdb:type>}.
2639 @xref{Types In Guile}.
2640 @end deffn
2641
2642 @deffn {Scheme Procedure} symbol-symtab symbol
2643 Return the symbol table in which @var{symbol} appears.
2644 The result is an object of type @code{<gdb:symtab>}.
2645 @xref{Symbol Tables In Guile}.
2646 @end deffn
2647
2648 @deffn {Scheme Procedure} symbol-line symbol
2649 Return the line number in the source code at which @var{symbol} was defined.
2650 This is an integer.
2651 @end deffn
2652
2653 @deffn {Scheme Procedure} symbol-name symbol
2654 Return the name of @var{symbol} as a string.
2655 @end deffn
2656
2657 @deffn {Scheme Procedure} symbol-linkage-name symbol
2658 Return the name of @var{symbol}, as used by the linker (i.e., may be mangled).
2659 @end deffn
2660
2661 @deffn {Scheme Procedure} symbol-print-name symbol
2662 Return the name of @var{symbol} in a form suitable for output. This is either
2663 @code{name} or @code{linkage_name}, depending on whether the user
2664 asked @value{GDBN} to display demangled or mangled names.
2665 @end deffn
2666
2667 @deffn {Scheme Procedure} symbol-addr-class symbol
2668 Return the address class of the symbol. This classifies how to find the value
2669 of a symbol. Each address class is a constant defined in the
2670 @code{(gdb)} module and described later in this chapter.
2671 @end deffn
2672
2673 @deffn {Scheme Procedure} symbol-needs-frame? symbol
2674 Return @code{#t} if evaluating @var{symbol}'s value requires a frame
2675 (@pxref{Frames In Guile}) and @code{#f} otherwise. Typically,
2676 local variables will require a frame, but other symbols will not.
2677 @end deffn
2678
2679 @deffn {Scheme Procedure} symbol-argument? symbol
2680 Return @code{#t} if @var{symbol} is an argument of a function.
2681 Otherwise return @code{#f}.
2682 @end deffn
2683
2684 @deffn {Scheme Procedure} symbol-constant? symbol
2685 Return @code{#t} if @var{symbol} is a constant.
2686 Otherwise return @code{#f}.
2687 @end deffn
2688
2689 @deffn {Scheme Procedure} symbol-function? symbol
2690 Return @code{#t} if @var{symbol} is a function or a method.
2691 Otherwise return @code{#f}.
2692 @end deffn
2693
2694 @deffn {Scheme Procedure} symbol-variable? symbol
2695 Return @code{#t} if @var{symbol} is a variable.
2696 Otherwise return @code{#f}.
2697 @end deffn
2698
2699 @deffn {Scheme Procedure} symbol-value symbol @r{[}#:frame frame@r{]}
2700 Compute the value of @var{symbol}, as a @code{<gdb:value>}. For
2701 functions, this computes the address of the function, cast to the
2702 appropriate type. If the symbol requires a frame in order to compute
2703 its value, then @var{frame} must be given. If @var{frame} is not
2704 given, or if @var{frame} is invalid, then an exception is thrown.
2705 @end deffn
2706
2707 @c TODO: line length
2708 @deffn {Scheme Procedure} lookup-symbol name @r{[}#:block block@r{]} @r{[}#:domain domain@r{]}
2709 This function searches for a symbol by name. The search scope can be
2710 restricted to the parameters defined in the optional domain and block
2711 arguments.
2712
2713 @var{name} is the name of the symbol. It must be a string. The
2714 optional @var{block} argument restricts the search to symbols visible
2715 in that @var{block}. The @var{block} argument must be a
2716 @code{<gdb:block>} object. If omitted, the block for the current frame
2717 is used. The optional @var{domain} argument restricts
2718 the search to the domain type. The @var{domain} argument must be a
2719 domain constant defined in the @code{(gdb)} module and described later
2720 in this chapter.
2721
2722 The result is a list of two elements.
2723 The first element is a @code{<gdb:symbol>} object or @code{#f} if the symbol
2724 is not found.
2725 If the symbol is found, the second element is @code{#t} if the symbol
2726 is a field of a method's object (e.g., @code{this} in C@t{++}),
2727 otherwise it is @code{#f}.
2728 If the symbol is not found, the second element is @code{#f}.
2729 @end deffn
2730
2731 @deffn {Scheme Procedure} lookup-global-symbol name @r{[}#:domain domain@r{]}
2732 This function searches for a global symbol by name.
2733 The search scope can be restricted by the domain argument.
2734
2735 @var{name} is the name of the symbol. It must be a string.
2736 The optional @var{domain} argument restricts the search to the domain type.
2737 The @var{domain} argument must be a domain constant defined in the @code{(gdb)}
2738 module and described later in this chapter.
2739
2740 The result is a @code{<gdb:symbol>} object or @code{#f} if the symbol
2741 is not found.
2742 @end deffn
2743
2744 The available domain categories in @code{<gdb:symbol>} are represented
2745 as constants in the @code{(gdb)} module:
2746
2747 @vtable @code
2748 @item SYMBOL_UNDEF_DOMAIN
2749 This is used when a domain has not been discovered or none of the
2750 following domains apply. This usually indicates an error either
2751 in the symbol information or in @value{GDBN}'s handling of symbols.
2752
2753 @item SYMBOL_VAR_DOMAIN
2754 This domain contains variables, function names, typedef names and enum
2755 type values.
2756
2757 @item SYMBOL_STRUCT_DOMAIN
2758 This domain holds struct, union and enum type names.
2759
2760 @item SYMBOL_LABEL_DOMAIN
2761 This domain contains names of labels (for gotos).
2762
2763 @item SYMBOL_VARIABLES_DOMAIN
2764 This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
2765 contains everything minus functions and types.
2766
2767 @item SYMBOL_FUNCTION_DOMAIN
2768 This domain contains all functions.
2769
2770 @item SYMBOL_TYPES_DOMAIN
2771 This domain contains all types.
2772 @end vtable
2773
2774 The available address class categories in @code{<gdb:symbol>} are represented
2775 as constants in the @code{gdb} module:
2776
2777 @vtable @code
2778 @item SYMBOL_LOC_UNDEF
2779 If this is returned by address class, it indicates an error either in
2780 the symbol information or in @value{GDBN}'s handling of symbols.
2781
2782 @item SYMBOL_LOC_CONST
2783 Value is constant int.
2784
2785 @item SYMBOL_LOC_STATIC
2786 Value is at a fixed address.
2787
2788 @item SYMBOL_LOC_REGISTER
2789 Value is in a register.
2790
2791 @item SYMBOL_LOC_ARG
2792 Value is an argument. This value is at the offset stored within the
2793 symbol inside the frame's argument list.
2794
2795 @item SYMBOL_LOC_REF_ARG
2796 Value address is stored in the frame's argument list. Just like
2797 @code{LOC_ARG} except that the value's address is stored at the
2798 offset, not the value itself.
2799
2800 @item SYMBOL_LOC_REGPARM_ADDR
2801 Value is a specified register. Just like @code{LOC_REGISTER} except
2802 the register holds the address of the argument instead of the argument
2803 itself.
2804
2805 @item SYMBOL_LOC_LOCAL
2806 Value is a local variable.
2807
2808 @item SYMBOL_LOC_TYPEDEF
2809 Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
2810 have this class.
2811
2812 @item SYMBOL_LOC_BLOCK
2813 Value is a block.
2814
2815 @item SYMBOL_LOC_CONST_BYTES
2816 Value is a byte-sequence.
2817
2818 @item SYMBOL_LOC_UNRESOLVED
2819 Value is at a fixed address, but the address of the variable has to be
2820 determined from the minimal symbol table whenever the variable is
2821 referenced.
2822
2823 @item SYMBOL_LOC_OPTIMIZED_OUT
2824 The value does not actually exist in the program.
2825
2826 @item SYMBOL_LOC_COMPUTED
2827 The value's address is a computed location.
2828 @end vtable
2829
2830 @node Symbol Tables In Guile
2831 @subsubsection Symbol table representation in Guile.
2832
2833 @cindex symbol tables in guile
2834 @tindex <gdb:symtab>
2835 @tindex <gdb:sal>
2836
2837 Access to symbol table data maintained by @value{GDBN} on the inferior
2838 is exposed to Guile via two objects: @code{<gdb:sal>} (symtab-and-line) and
2839 @code{<gdb:symtab>}. Symbol table and line data for a frame is returned
2840 from the @code{frame-find-sal} @code{<gdb:frame>} procedure.
2841 @xref{Frames In Guile}.
2842
2843 For more information on @value{GDBN}'s symbol table management, see
2844 @ref{Symbols, ,Examining the Symbol Table}.
2845
2846 The following symtab-related procedures are provided by the
2847 @code{(gdb)} module:
2848
2849 @deffn {Scheme Procedure} symtab? object
2850 Return @code{#t} if @var{object} is an object of type @code{<gdb:symtab>}.
2851 Otherwise return @code{#f}.
2852 @end deffn
2853
2854 @deffn {Scheme Procedure} symtab-valid? symtab
2855 Return @code{#t} if the @code{<gdb:symtab>} object is valid,
2856 @code{#f} if not. A @code{<gdb:symtab>} object becomes invalid when
2857 the symbol table it refers to no longer exists in @value{GDBN}.
2858 All other @code{<gdb:symtab>} procedures will throw an exception
2859 if it is invalid at the time the procedure is called.
2860 @end deffn
2861
2862 @deffn {Scheme Procedure} symtab-filename symtab
2863 Return the symbol table's source filename.
2864 @end deffn
2865
2866 @deffn {Scheme Procedure} symtab-fullname symtab
2867 Return the symbol table's source absolute file name.
2868 @end deffn
2869
2870 @deffn {Scheme Procedure} symtab-objfile symtab
2871 Return the symbol table's backing object file. @xref{Objfiles In Guile}.
2872 @end deffn
2873
2874 @deffn {Scheme Procedure} symtab-global-block symtab
2875 Return the global block of the underlying symbol table.
2876 @xref{Blocks In Guile}.
2877 @end deffn
2878
2879 @deffn {Scheme Procedure} symtab-static-block symtab
2880 Return the static block of the underlying symbol table.
2881 @xref{Blocks In Guile}.
2882 @end deffn
2883
2884 The following symtab-and-line-related procedures are provided by the
2885 @code{(gdb)} module:
2886
2887 @deffn {Scheme Procedure} sal? object
2888 Return @code{#t} if @var{object} is an object of type @code{<gdb:sal>}.
2889 Otherwise return @code{#f}.
2890 @end deffn
2891
2892 @deffn {Scheme Procedure} sal-valid? sal
2893 Return @code{#t} if @var{sal} is valid, @code{#f} if not.
2894 A @code{<gdb:sal>} object becomes invalid when the Symbol table object
2895 it refers to no longer exists in @value{GDBN}. All other
2896 @code{<gdb:sal>} procedures will throw an exception if it is
2897 invalid at the time the procedure is called.
2898 @end deffn
2899
2900 @deffn {Scheme Procedure} sal-symtab sal
2901 Return the symbol table object (@code{<gdb:symtab>}) for @var{sal}.
2902 @end deffn
2903
2904 @deffn {Scheme Procedure} sal-line sal
2905 Return the line number for @var{sal}.
2906 @end deffn
2907
2908 @deffn {Scheme Procedure} sal-pc sal
2909 Return the start of the address range occupied by code for @var{sal}.
2910 @end deffn
2911
2912 @deffn {Scheme Procedure} sal-last sal
2913 Return the end of the address range occupied by code for @var{sal}.
2914 @end deffn
2915
2916 @deffn {Scheme Procedure} find-pc-line pc
2917 Return the @code{<gdb:sal>} object corresponding to the @var{pc} value.
2918 If an invalid value of @var{pc} is passed as an argument, then the
2919 @code{symtab} and @code{line} attributes of the returned @code{<gdb:sal>}
2920 object will be @code{#f} and 0 respectively.
2921 @end deffn
2922
2923 @node Breakpoints In Guile
2924 @subsubsection Manipulating breakpoints using Guile
2925
2926 @cindex breakpoints in guile
2927 @tindex <gdb:breakpoint>
2928
2929 Breakpoints in Guile are represented by objects of type
2930 @code{<gdb:breakpoint>}. New breakpoints can be created with the
2931 @code{make-breakpoint} Guile function, and then added to @value{GDBN} with the
2932 @code{register-breakpoint!} Guile function.
2933 This two-step approach is taken to separate out the side-effect of adding
2934 the breakpoint to @value{GDBN} from @code{make-breakpoint}.
2935
2936 Support is also provided to view and manipulate breakpoints created
2937 outside of Guile.
2938
2939 The following breakpoint-related procedures are provided by the
2940 @code{(gdb)} module:
2941
2942 @c TODO: line length
2943 @deffn {Scheme Procedure} make-breakpoint location @r{[}#:type type@r{]} @r{[}#:wp-class wp-class@r{]} @r{[}#:internal internal@r{]}
2944 Create a new breakpoint at @var{location}, a string naming the
2945 location of the breakpoint, or an expression that defines a watchpoint.
2946 The contents can be any location recognized by the @code{break} command,
2947 or in the case of a watchpoint, by the @code{watch} command.
2948
2949 The breakpoint is initially marked as @samp{invalid}.
2950 The breakpoint is not usable until it has been registered with @value{GDBN}
2951 with @code{register-breakpoint!}, at which point it becomes @samp{valid}.
2952 The result is the @code{<gdb:breakpoint>} object representing the breakpoint.
2953
2954 The optional @var{type} denotes the breakpoint to create.
2955 This argument can be either @code{BP_BREAKPOINT} or @code{BP_WATCHPOINT},
2956 and defaults to @code{BP_BREAKPOINT}.
2957
2958 The optional @var{wp-class} argument defines the class of watchpoint to
2959 create, if @var{type} is @code{BP_WATCHPOINT}. If a watchpoint class is
2960 not provided, it is assumed to be a @code{WP_WRITE} class.
2961
2962 The optional @var{internal} argument allows the breakpoint to become
2963 invisible to the user. The breakpoint will neither be reported when
2964 registered, nor will it be listed in the output from @code{info breakpoints}
2965 (but will be listed with the @code{maint info breakpoints} command).
2966 If an internal flag is not provided, the breakpoint is visible
2967 (non-internal).
2968
2969 When a watchpoint is created, @value{GDBN} will try to create a
2970 hardware assisted watchpoint. If successful, the type of the watchpoint
2971 is changed from @code{BP_WATCHPOINT} to @code{BP_HARDWARE_WATCHPOINT}
2972 for @code{WP_WRITE}, @code{BP_READ_WATCHPOINT} for @code{WP_READ},
2973 and @code{BP_ACCESS_WATCHPOINT} for @code{WP_ACCESS}.
2974 If not successful, the type of the watchpoint is left as @code{WP_WATCHPOINT}.
2975
2976 The available types are represented by constants defined in the @code{gdb}
2977 module:
2978
2979 @vtable @code
2980 @item BP_BREAKPOINT
2981 Normal code breakpoint.
2982
2983 @item BP_WATCHPOINT
2984 Watchpoint breakpoint.
2985
2986 @item BP_HARDWARE_WATCHPOINT
2987 Hardware assisted watchpoint.
2988 This value cannot be specified when creating the breakpoint.
2989
2990 @item BP_READ_WATCHPOINT
2991 Hardware assisted read watchpoint.
2992 This value cannot be specified when creating the breakpoint.
2993
2994 @item BP_ACCESS_WATCHPOINT
2995 Hardware assisted access watchpoint.
2996 This value cannot be specified when creating the breakpoint.
2997 @end vtable
2998
2999 The available watchpoint types represented by constants are defined in the
3000 @code{(gdb)} module:
3001
3002 @vtable @code
3003 @item WP_READ
3004 Read only watchpoint.
3005
3006 @item WP_WRITE
3007 Write only watchpoint.
3008
3009 @item WP_ACCESS
3010 Read/Write watchpoint.
3011 @end vtable
3012
3013 @end deffn
3014
3015 @deffn {Scheme Procedure} register-breakpoint! breakpoint
3016 Add @var{breakpoint}, a @code{<gdb:breakpoint>} object, to @value{GDBN}'s
3017 list of breakpoints. The breakpoint must have been created with
3018 @code{make-breakpoint}. One cannot register breakpoints that have been
3019 created outside of Guile. Once a breakpoint is registered it becomes
3020 @samp{valid}.
3021 It is an error to register an already registered breakpoint.
3022 The result is unspecified.
3023 @end deffn
3024
3025 @deffn {Scheme Procedure} delete-breakpoint! breakpoint
3026 Remove @var{breakpoint} from @value{GDBN}'s list of breakpoints.
3027 This also invalidates the Guile @var{breakpoint} object.
3028 Any further attempt to access the object will throw an exception.
3029
3030 If @var{breakpoint} was created from Guile with @code{make-breakpoint}
3031 it may be re-registered with @value{GDBN}, in which case the breakpoint
3032 becomes valid again.
3033 @end deffn
3034
3035 @deffn {Scheme Procedure} breakpoints
3036 Return a list of all breakpoints.
3037 Each element of the list is a @code{<gdb:breakpoint>} object.
3038 @end deffn
3039
3040 @deffn {Scheme Procedure} breakpoint? object
3041 Return @code{#t} if @var{object} is a @code{<gdb:breakpoint>} object,
3042 and @code{#f} otherwise.
3043 @end deffn
3044
3045 @deffn {Scheme Procedure} breakpoint-valid? breakpoint
3046 Return @code{#t} if @var{breakpoint} is valid, @code{#f} otherwise.
3047 Breakpoints created with @code{make-breakpoint} are marked as invalid
3048 until they are registered with @value{GDBN} with @code{register-breakpoint!}.
3049 A @code{<gdb:breakpoint>} object can become invalid
3050 if the user deletes the breakpoint. In this case, the object still
3051 exists, but the underlying breakpoint does not. In the cases of
3052 watchpoint scope, the watchpoint remains valid even if execution of the
3053 inferior leaves the scope of that watchpoint.
3054 @end deffn
3055
3056 @deffn {Scheme Procedure} breakpoint-number breakpoint
3057 Return the breakpoint's number --- the identifier used by
3058 the user to manipulate the breakpoint.
3059 @end deffn
3060
3061 @deffn {Scheme Procedure} breakpoint-type breakpoint
3062 Return the breakpoint's type --- the identifier used to
3063 determine the actual breakpoint type or use-case.
3064 @end deffn
3065
3066 @deffn {Scheme Procedure} breakpoint-visible? breakpoint
3067 Return @code{#t} if the breakpoint is visible to the user
3068 when hit, or when the @samp{info breakpoints} command is run.
3069 Otherwise return @code{#f}.
3070 @end deffn
3071
3072 @deffn {Scheme Procedure} breakpoint-location breakpoint
3073 Return the location of the breakpoint, as specified by
3074 the user. It is a string. If the breakpoint does not have a location
3075 (that is, it is a watchpoint) return @code{#f}.
3076 @end deffn
3077
3078 @deffn {Scheme Procedure} breakpoint-expression breakpoint
3079 Return the breakpoint expression, as specified by the user. It is a string.
3080 If the breakpoint does not have an expression (the breakpoint is not a
3081 watchpoint) return @code{#f}.
3082 @end deffn
3083
3084 @deffn {Scheme Procedure} breakpoint-enabled? breakpoint
3085 Return @code{#t} if the breakpoint is enabled, and @code{#f} otherwise.
3086 @end deffn
3087
3088 @deffn {Scheme Procedure} set-breakpoint-enabled! breakpoint flag
3089 Set the enabled state of @var{breakpoint} to @var{flag}.
3090 If flag is @code{#f} it is disabled, otherwise it is enabled.
3091 @end deffn
3092
3093 @deffn {Scheme Procedure} breakpoint-silent? breakpoint
3094 Return @code{#t} if the breakpoint is silent, and @code{#f} otherwise.
3095
3096 Note that a breakpoint can also be silent if it has commands and the
3097 first command is @code{silent}. This is not reported by the
3098 @code{silent} attribute.
3099 @end deffn
3100
3101 @deffn {Scheme Procedure} set-breakpoint-silent! breakpoint flag
3102 Set the silent state of @var{breakpoint} to @var{flag}.
3103 If flag is @code{#f} the breakpoint is made silent,
3104 otherwise it is made non-silent (or noisy).
3105 @end deffn
3106
3107 @deffn {Scheme Procedure} breakpoint-ignore-count breakpoint
3108 Return the ignore count for @var{breakpoint}.
3109 @end deffn
3110
3111 @deffn {Scheme Procedure} set-breakpoint-ignore-count! breakpoint count
3112 Set the ignore count for @var{breakpoint} to @var{count}.
3113 @end deffn
3114
3115 @deffn {Scheme Procedure} breakpoint-hit-count breakpoint
3116 Return hit count of @var{breakpoint}.
3117 @end deffn
3118
3119 @deffn {Scheme Procedure} set-breakpoint-hit-count! breakpoint count
3120 Set the hit count of @var{breakpoint} to @var{count}.
3121 At present, @var{count} must be zero.
3122 @end deffn
3123
3124 @deffn {Scheme Procedure} breakpoint-thread breakpoint
3125 Return the thread-id for thread-specific breakpoint @var{breakpoint}.
3126 Return #f if @var{breakpoint} is not thread-specific.
3127 @end deffn
3128
3129 @deffn {Scheme Procedure} set-breakpoint-thread! breakpoint thread-id|#f
3130 Set the thread-id for @var{breakpoint} to @var{thread-id}.
3131 If set to @code{#f}, the breakpoint is no longer thread-specific.
3132 @end deffn
3133
3134 @deffn {Scheme Procedure} breakpoint-task breakpoint
3135 If the breakpoint is Ada task-specific, return the Ada task id.
3136 If the breakpoint is not task-specific (or the underlying
3137 language is not Ada), return @code{#f}.
3138 @end deffn
3139
3140 @deffn {Scheme Procedure} set-breakpoint-task! breakpoint task
3141 Set the Ada task of @var{breakpoint} to @var{task}.
3142 If set to @code{#f}, the breakpoint is no longer task-specific.
3143 @end deffn
3144
3145 @deffn {Scheme Procedure} breakpoint-condition breakpoint
3146 Return the condition of @var{breakpoint}, as specified by the user.
3147 It is a string. If there is no condition, return @code{#f}.
3148 @end deffn
3149
3150 @deffn {Scheme Procedure} set-breakpoint-condition! breakpoint condition
3151 Set the condition of @var{breakpoint} to @var{condition},
3152 which must be a string. If set to @code{#f} then the breakpoint
3153 becomes unconditional.
3154 @end deffn
3155
3156 @deffn {Scheme Procedure} breakpoint-stop breakpoint
3157 Return the stop predicate of @var{breakpoint}.
3158 See @code{set-breakpoint-stop!} below in this section.
3159 @end deffn
3160
3161 @deffn {Scheme Procedure} set-breakpoint-stop! breakpoint procedure|#f
3162 Set the stop predicate of @var{breakpoint}. The predicate
3163 @var{procedure} takes one argument: the <gdb:breakpoint> object.
3164 If this predicate is set to a procedure then it is invoked whenever
3165 the inferior reaches this breakpoint. If it returns @code{#t},
3166 or any non-@code{#f} value, then the inferior is stopped,
3167 otherwise the inferior will continue.
3168
3169 If there are multiple breakpoints at the same location with a
3170 @code{stop} predicate, each one will be called regardless of the
3171 return status of the previous. This ensures that all @code{stop}
3172 predicates have a chance to execute at that location. In this scenario
3173 if one of the methods returns @code{#t} but the others return
3174 @code{#f}, the inferior will still be stopped.
3175
3176 You should not alter the execution state of the inferior (i.e.@:, step,
3177 next, etc.), alter the current frame context (i.e.@:, change the current
3178 active frame), or alter, add or delete any breakpoint. As a general
3179 rule, you should not alter any data within @value{GDBN} or the inferior
3180 at this time.
3181
3182 Example @code{stop} implementation:
3183
3184 @smallexample
3185 (define (my-stop? bkpt)
3186 (let ((int-val (parse-and-eval "foo")))
3187 (value=? int-val 3)))
3188 (define bkpt (make-breakpoint "main.c:42"))
3189 (register-breakpoint! bkpt)
3190 (set-breakpoint-stop! bkpt my-stop?)
3191 @end smallexample
3192 @end deffn
3193
3194 @deffn {Scheme Procedure} breakpoint-commands breakpoint
3195 Return the commands attached to @var{breakpoint} as a string,
3196 or @code{#f} if there are none.
3197 @end deffn
3198
3199 @node Lazy Strings In Guile
3200 @subsubsection Guile representation of lazy strings.
3201
3202 @cindex lazy strings in guile
3203 @tindex <gdb:lazy-string>
3204
3205 A @dfn{lazy string} is a string whose contents is not retrieved or
3206 encoded until it is needed.
3207
3208 A @code{<gdb:lazy-string>} is represented in @value{GDBN} as an
3209 @code{address} that points to a region of memory, an @code{encoding}
3210 that will be used to encode that region of memory, and a @code{length}
3211 to delimit the region of memory that represents the string. The
3212 difference between a @code{<gdb:lazy-string>} and a string wrapped within
3213 a @code{<gdb:value>} is that a @code{<gdb:lazy-string>} will be treated
3214 differently by @value{GDBN} when printing. A @code{<gdb:lazy-string>} is
3215 retrieved and encoded during printing, while a @code{<gdb:value>}
3216 wrapping a string is immediately retrieved and encoded on creation.
3217
3218 The following lazy-string-related procedures are provided by the
3219 @code{(gdb)} module:
3220
3221 @deffn {Scheme Procedure} lazy-string? object
3222 Return @code{#t} if @var{object} is an object of type @code{<gdb:lazy-string>}.
3223 Otherwise return @code{#f}.
3224 @end deffn
3225
3226 @deffn {Scheme Procedure} lazy-string-address lazy-sring
3227 Return the address of @var{lazy-string}.
3228 @end deffn
3229
3230 @deffn {Scheme Procedure} lazy-string-length lazy-string
3231 Return the length of @var{lazy-string} in characters. If the
3232 length is -1, then the string will be fetched and encoded up to the
3233 first null of appropriate width.
3234 @end deffn
3235
3236 @deffn {Scheme Procedure} lazy-string-encoding lazy-string
3237 Return the encoding that will be applied to @var{lazy-string}
3238 when the string is printed by @value{GDBN}. If the encoding is not
3239 set, or contains an empty string, then @value{GDBN} will select the
3240 most appropriate encoding when the string is printed.
3241 @end deffn
3242
3243 @deffn {Scheme Procedure} lazy-string-type lazy-string
3244 Return the type that is represented by @var{lazy-string}'s type.
3245 For a lazy string this will always be a pointer type. To
3246 resolve this to the lazy string's character type, use @code{type-target-type}.
3247 @xref{Types In Guile}.
3248 @end deffn
3249
3250 @deffn {Scheme Procedure} lazy-string->value lazy-string
3251 Convert the @code{<gdb:lazy-string>} to a @code{<gdb:value>}. This value
3252 will point to the string in memory, but will lose all the delayed
3253 retrieval, encoding and handling that @value{GDBN} applies to a
3254 @code{<gdb:lazy-string>}.
3255 @end deffn
3256
3257 @node Architectures In Guile
3258 @subsubsection Guile representation of architectures
3259
3260 @cindex guile architectures
3261 @tindex <gdb:arch>
3262
3263 @value{GDBN} uses architecture specific parameters and artifacts in a
3264 number of its various computations. An architecture is represented
3265 by an instance of the @code{<gdb:arch>} class.
3266
3267 The following architecture-related procedures are provided by the
3268 @code{(gdb)} module:
3269
3270 @deffn {Scheme Procedure} arch? object
3271 Return @code{#t} if @var{object} is an object of type @code{<gdb:arch>}.
3272 Otherwise return @code{#f}.
3273 @end deffn
3274
3275 @deffn {Scheme Procedure} current-arch
3276 Return the current architecture as a @code{<gdb:arch>} object.
3277 @end deffn
3278
3279 @deffn {Scheme Procedure} arch-name arch
3280 Return the name (string value) of @code{<gdb:arch>} @var{arch}.
3281 @end deffn
3282
3283 @deffn {Scheme Procedure} arch-charset arch
3284 Return name of target character set of @code{<gdb:arch>} @var{arch}.
3285 @end deffn
3286
3287 @deffn {Scheme Procedure} arch-wide-charset
3288 Return name of target wide character set of @code{<gdb:arch>} @var{arch}.
3289 @end deffn
3290
3291 Each architecture provides a set of predefined types, obtained by
3292 the following functions.
3293
3294 @deffn {Scheme Procedure} arch-void-type arch
3295 Return the @code{<gdb:type>} object for a @code{void} type
3296 of architecture @var{arch}.
3297 @end deffn
3298
3299 @deffn {Scheme Procedure} arch-char-type arch
3300 Return the @code{<gdb:type>} object for a @code{char} type
3301 of architecture @var{arch}.
3302 @end deffn
3303
3304 @deffn {Scheme Procedure} arch-short-type arch
3305 Return the @code{<gdb:type>} object for a @code{short} type
3306 of architecture @var{arch}.
3307 @end deffn
3308
3309 @deffn {Scheme Procedure} arch-int-type arch
3310 Return the @code{<gdb:type>} object for an @code{int} type
3311 of architecture @var{arch}.
3312 @end deffn
3313
3314 @deffn {Scheme Procedure} arch-long-type arch
3315 Return the @code{<gdb:type>} object for a @code{long} type
3316 of architecture @var{arch}.
3317 @end deffn
3318
3319 @deffn {Scheme Procedure} arch-schar-type arch
3320 Return the @code{<gdb:type>} object for a @code{signed char} type
3321 of architecture @var{arch}.
3322 @end deffn
3323
3324 @deffn {Scheme Procedure} arch-uchar-type arch
3325 Return the @code{<gdb:type>} object for an @code{unsigned char} type
3326 of architecture @var{arch}.
3327 @end deffn
3328
3329 @deffn {Scheme Procedure} arch-ushort-type arch
3330 Return the @code{<gdb:type>} object for an @code{unsigned short} type
3331 of architecture @var{arch}.
3332 @end deffn
3333
3334 @deffn {Scheme Procedure} arch-uint-type arch
3335 Return the @code{<gdb:type>} object for an @code{unsigned int} type
3336 of architecture @var{arch}.
3337 @end deffn
3338
3339 @deffn {Scheme Procedure} arch-ulong-type arch
3340 Return the @code{<gdb:type>} object for an @code{unsigned long} type
3341 of architecture @var{arch}.
3342 @end deffn
3343
3344 @deffn {Scheme Procedure} arch-float-type arch
3345 Return the @code{<gdb:type>} object for a @code{float} type
3346 of architecture @var{arch}.
3347 @end deffn
3348
3349 @deffn {Scheme Procedure} arch-double-type arch
3350 Return the @code{<gdb:type>} object for a @code{double} type
3351 of architecture @var{arch}.
3352 @end deffn
3353
3354 @deffn {Scheme Procedure} arch-longdouble-type arch
3355 Return the @code{<gdb:type>} object for a @code{long double} type
3356 of architecture @var{arch}.
3357 @end deffn
3358
3359 @deffn {Scheme Procedure} arch-bool-type arch
3360 Return the @code{<gdb:type>} object for a @code{bool} type
3361 of architecture @var{arch}.
3362 @end deffn
3363
3364 @deffn {Scheme Procedure} arch-longlong-type arch
3365 Return the @code{<gdb:type>} object for a @code{long long} type
3366 of architecture @var{arch}.
3367 @end deffn
3368
3369 @deffn {Scheme Procedure} arch-ulonglong-type arch
3370 Return the @code{<gdb:type>} object for an @code{unsigned long long} type
3371 of architecture @var{arch}.
3372 @end deffn
3373
3374 @deffn {Scheme Procedure} arch-int8-type arch
3375 Return the @code{<gdb:type>} object for an @code{int8} type
3376 of architecture @var{arch}.
3377 @end deffn
3378
3379 @deffn {Scheme Procedure} arch-uint8-type arch
3380 Return the @code{<gdb:type>} object for a @code{uint8} type
3381 of architecture @var{arch}.
3382 @end deffn
3383
3384 @deffn {Scheme Procedure} arch-int16-type arch
3385 Return the @code{<gdb:type>} object for an @code{int16} type
3386 of architecture @var{arch}.
3387 @end deffn
3388
3389 @deffn {Scheme Procedure} arch-uint16-type arch
3390 Return the @code{<gdb:type>} object for a @code{uint16} type
3391 of architecture @var{arch}.
3392 @end deffn
3393
3394 @deffn {Scheme Procedure} arch-int32-type arch
3395 Return the @code{<gdb:type>} object for an @code{int32} type
3396 of architecture @var{arch}.
3397 @end deffn
3398
3399 @deffn {Scheme Procedure} arch-uint32-type arch
3400 Return the @code{<gdb:type>} object for a @code{uint32} type
3401 of architecture @var{arch}.
3402 @end deffn
3403
3404 @deffn {Scheme Procedure} arch-int64-type arch
3405 Return the @code{<gdb:type>} object for an @code{int64} type
3406 of architecture @var{arch}.
3407 @end deffn
3408
3409 @deffn {Scheme Procedure} arch-uint64-type arch
3410 Return the @code{<gdb:type>} object for a @code{uint64} type
3411 of architecture @var{arch}.
3412 @end deffn
3413
3414 Example:
3415
3416 @smallexample
3417 (gdb) guile (type-name (arch-uchar-type (current-arch)))
3418 "unsigned char"
3419 @end smallexample
3420
3421 @node Disassembly In Guile
3422 @subsubsection Disassembly In Guile
3423
3424 The disassembler can be invoked from Scheme code.
3425 Furthermore, the disassembler can take a Guile port as input,
3426 allowing one to disassemble from any source, and not just target memory.
3427
3428 @c TODO: line length
3429 @deffn {Scheme Procedure} arch-disassemble arch start-pc @r{[}#:port port@r{]} @r{[}#:offset offset@r{]} @r{[}#:size size@r{]} @r{[}#:count count@r{]}
3430 Return a list of disassembled instructions starting from the memory
3431 address @var{start-pc}.
3432
3433 The optional argument @var{port} specifies the input port to read bytes from.
3434 If @var{port} is @code{#f} then bytes are read from target memory.
3435
3436 The optional argument @var{offset} specifies the address offset of the
3437 first byte in @var{port}. This is useful, for example, when @var{port}
3438 specifies a @samp{bytevector} and you want the bytevector to be disassembled
3439 as if it came from that address. The @var{start-pc} passed to the reader
3440 for @var{port} is offset by the same amount.
3441
3442 Example:
3443 @smallexample
3444 (gdb) guile (use-modules (rnrs io ports))
3445 (gdb) guile (define pc (value->integer (parse-and-eval "$pc")))
3446 (gdb) guile (define mem (open-memory #:start pc))
3447 (gdb) guile (define bv (get-bytevector-n mem 10))
3448 (gdb) guile (define bv-port (open-bytevector-input-port bv))
3449 (gdb) guile (define arch (current-arch))
3450 (gdb) guile (arch-disassemble arch pc #:port bv-port #:offset pc)
3451 (((address . 4195516) (asm . "mov $0x4005c8,%edi") (length . 5)))
3452 @end smallexample
3453
3454 The optional arguments @var{size} and
3455 @var{count} determine the number of instructions in the returned list.
3456 If either @var{size} or @var{count} is specified as zero, then
3457 no instructions are disassembled and an empty list is returned.
3458 If both the optional arguments @var{size} and @var{count} are
3459 specified, then a list of at most @var{count} disassembled instructions
3460 whose start address falls in the closed memory address interval from
3461 @var{start-pc} to (@var{start-pc} + @var{size} - 1) are returned.
3462 If @var{size} is not specified, but @var{count} is specified,
3463 then @var{count} number of instructions starting from the address
3464 @var{start-pc} are returned. If @var{count} is not specified but
3465 @var{size} is specified, then all instructions whose start address
3466 falls in the closed memory address interval from @var{start-pc} to
3467 (@var{start-pc} + @var{size} - 1) are returned.
3468 If neither @var{size} nor @var{count} are specified, then a single
3469 instruction at @var{start-pc} is returned.
3470
3471 Each element of the returned list is an alist (associative list)
3472 with the following keys:
3473
3474 @table @code
3475
3476 @item address
3477 The value corresponding to this key is a Guile integer of
3478 the memory address of the instruction.
3479
3480 @item asm
3481 The value corresponding to this key is a string value which represents
3482 the instruction with assembly language mnemonics. The assembly
3483 language flavor used is the same as that specified by the current CLI
3484 variable @code{disassembly-flavor}. @xref{Machine Code}.
3485
3486 @item length
3487 The value corresponding to this key is the length of the instruction in bytes.
3488
3489 @end table
3490 @end deffn
3491
3492 @node I/O Ports in Guile
3493 @subsubsection I/O Ports in Guile
3494
3495 @deffn {Scheme Procedure} input-port
3496 Return @value{GDBN}'s input port as a Guile port object.
3497 @end deffn
3498
3499 @deffn {Scheme Procedure} output-port
3500 Return @value{GDBN}'s output port as a Guile port object.
3501 @end deffn
3502
3503 @deffn {Scheme Procedure} error-port
3504 Return @value{GDBN}'s error port as a Guile port object.
3505 @end deffn
3506
3507 @deffn {Scheme Procedure} stdio-port? object
3508 Return @code{#t} if @var{object} is a @value{GDBN} stdio port.
3509 Otherwise return @code{#f}.
3510 @end deffn
3511
3512 @node Memory Ports in Guile
3513 @subsubsection Memory Ports in Guile
3514
3515 @value{GDBN} provides a @code{port} interface to target memory.
3516 This allows Guile code to read/write target memory using Guile's port and
3517 bytevector functionality. The main routine is @code{open-memory} which
3518 returns a port object. One can then read/write memory using that object.
3519
3520 @deffn {Scheme Procedure} open-memory @r{[}#:mode mode{]} @r{[}#:start address{]} @r{[}#:size size{]}
3521 Return a port object that can be used for reading and writing memory.
3522 The port will be open according to @var{mode}, which is the standard
3523 mode argument to Guile port open routines, except that it is
3524 restricted to one of @samp{"r"}, @samp{"w"}, or @samp{"r+"}. For
3525 compatibility @samp{"b"} (binary) may also be present, but we ignore
3526 it: memory ports are binary only. The default is @samp{"r"},
3527 read-only.
3528
3529 The chunk of memory that can be accessed can be bounded.
3530 If both @var{start} and @var{size} are unspecified, all of memory can be
3531 accessed. If only @var{start} is specified, all of memory from that point
3532 on can be accessed. If only @var{size} if specified, all memory in the
3533 range [0,@var{size}) can be accessed. If both are specified, all memory
3534 in the rane [@var{start},@var{start}+@var{size}) can be accessed.
3535 @end deffn
3536
3537 @deffn {Scheme Procedure} memory-port?
3538 Return @code{#t} if @var{object} is an object of type @code{<gdb:memory-port>}.
3539 Otherwise return @code{#f}.
3540 @end deffn
3541
3542 @deffn {Scheme Procedure} memory-port-range memory-port
3543 Return the range of @code{<gdb:memory-port>} @var{memory-port} as a list
3544 of two elements: @code{(start end)}. The range is @var{start} to @var{end}
3545 inclusive.
3546 @end deffn
3547
3548 @deffn {Scheme Procedure} memory-port-read-buffer-size memory-port
3549 Return the size of the read buffer of @code{<gdb:memory-port>}
3550 @var{memory-port}.
3551 @end deffn
3552
3553 @deffn {Scheme Procedure} set-memory-port-read-buffer-size! memory-port size
3554 Set the size of the read buffer of @code{<gdb:memory-port>}
3555 @var{memory-port} to @var{size}. The result is unspecified.
3556 @end deffn
3557
3558 @deffn {Scheme Procedure} memory-port-write-buffer-size memory-port
3559 Return the size of the write buffer of @code{<gdb:memory-port>}
3560 @var{memory-port}.
3561 @end deffn
3562
3563 @deffn {Scheme Procedure} set-memory-port-write-buffer-size! memory-port size
3564 Set the size of the write buffer of @code{<gdb:memory-port>}
3565 @var{memory-port} to @var{size}. The result is unspecified.
3566 @end deffn
3567
3568 A memory port is closed like any other port, with @code{close-port}.
3569
3570 Combined with Guile's @code{bytevectors}, memory ports provide a lot
3571 of utility. For example, to fill a buffer of 10 integers in memory,
3572 one can do something like the following.
3573
3574 @smallexample
3575 ;; In the program: int buffer[10];
3576 (use-modules (rnrs bytevectors))
3577 (use-modules (rnrs io ports))
3578 (define addr (parse-and-eval "buffer"))
3579 (define n 10)
3580 (define byte-size (* n 4))
3581 (define mem-port (open-memory #:mode "r+" #:start
3582 (value->integer addr) #:size byte-size))
3583 (define byte-vec (make-bytevector byte-size))
3584 (do ((i 0 (+ i 1)))
3585 ((>= i n))
3586 (bytevector-s32-native-set! byte-vec (* i 4) (* i 42)))
3587 (put-bytevector mem-port byte-vec)
3588 (close-port mem-port)
3589 @end smallexample
3590
3591 @node Iterators In Guile
3592 @subsubsection Iterators In Guile
3593
3594 @cindex guile iterators
3595 @tindex <gdb:iterator>
3596
3597 A simple iterator facility is provided to allow, for example,
3598 iterating over the set of program symbols without having to first
3599 construct a list of all of them. A useful contribution would be
3600 to add support for SRFI 41 and SRFI 45.
3601
3602 @deffn {Scheme Procedure} make-iterator object progress next!
3603 A @code{<gdb:iterator>} object is constructed with the @code{make-iterator}
3604 procedure. It takes three arguments: the object to be iterated over,
3605 an object to record the progress of the iteration, and a procedure to
3606 return the next element in the iteration, or an implementation chosen value
3607 to denote the end of iteration.
3608
3609 By convention, end of iteration is marked with @code{(end-of-iteration)},
3610 and may be tested with the @code{end-of-iteration?} predicate.
3611 The result of @code{(end-of-iteration)} is chosen so that it is not
3612 otherwise used by the @code{(gdb)} module. If you are using
3613 @code{<gdb:iterator>} in your own code it is your responsibility to
3614 maintain this invariant.
3615
3616 A trivial example for illustration's sake:
3617
3618 @smallexample
3619 (use-modules (gdb iterator))
3620 (define my-list (list 1 2 3))
3621 (define iter
3622 (make-iterator my-list my-list
3623 (lambda (iter)
3624 (let ((l (iterator-progress iter)))
3625 (if (eq? l '())
3626 (end-of-iteration)
3627 (begin
3628 (set-iterator-progress! iter (cdr l))
3629 (car l)))))))
3630 @end smallexample
3631
3632 Here is a slightly more realistic example, which computes a list of all the
3633 functions in @code{my-global-block}.
3634
3635 @smallexample
3636 (use-modules (gdb iterator))
3637 (define this-sal (find-pc-line (frame-pc (selected-frame))))
3638 (define this-symtab (sal-symtab this-sal))
3639 (define this-global-block (symtab-global-block this-symtab))
3640 (define syms-iter (make-block-symbols-iterator this-global-block))
3641 (define functions (iterator-filter symbol-function? syms-iter))
3642 @end smallexample
3643 @end deffn
3644
3645 @deffn {Scheme Procedure} iterator? object
3646 Return @code{#t} if @var{object} is a @code{<gdb:iterator>} object.
3647 Otherwise return @code{#f}.
3648 @end deffn
3649
3650 @deffn {Scheme Procedure} iterator-object iterator
3651 Return the first argument that was passed to @code{make-iterator}.
3652 This is the object being iterated over.
3653 @end deffn
3654
3655 @deffn {Scheme Procedure} iterator-progress iterator
3656 Return the object tracking iteration progress.
3657 @end deffn
3658
3659 @deffn {Scheme Procedure} set-iterator-progress! iterator new-value
3660 Set the object tracking iteration progress.
3661 @end deffn
3662
3663 @deffn {Scheme Procedure} iterator-next! iterator
3664 Invoke the procedure that was the third argument to @code{make-iterator},
3665 passing it one argument, the @code{<gdb:iterator>} object.
3666 The result is either the next element in the iteration, or an end
3667 marker as implemented by the @code{next!} procedure.
3668 By convention the end marker is the result of @code{(end-of-iteration)}.
3669 @end deffn
3670
3671 @deffn {Scheme Procedure} end-of-iteration
3672 Return the Scheme object that denotes end of iteration.
3673 @end deffn
3674
3675 @deffn {Scheme Procedure} end-of-iteration? object
3676 Return @code{#t} if @var{object} is the end of iteration marker.
3677 Otherwise return @code{#f}.
3678 @end deffn
3679
3680 These functions are provided by the @code{(gdb iterator)} module to
3681 assist in using iterators.
3682
3683 @deffn {Scheme Procedure} make-list-iterator list
3684 Return a @code{<gdb:iterator>} object that will iterate over @var{list}.
3685 @end deffn
3686
3687 @deffn {Scheme Procedure} iterator->list iterator
3688 Return the elements pointed to by @var{iterator} as a list.
3689 @end deffn
3690
3691 @deffn {Scheme Procedure} iterator-map proc iterator
3692 Return the list of objects obtained by applying @var{proc} to the object
3693 pointed to by @var{iterator} and to each subsequent object.
3694 @end deffn
3695
3696 @deffn {Scheme Procedure} iterator-for-each proc iterator
3697 Apply @var{proc} to each element pointed to by @var{iterator}.
3698 The result is unspecified.
3699 @end deffn
3700
3701 @deffn {Scheme Procedure} iterator-filter pred iterator
3702 Return the list of elements pointed to by @var{iterator} that satisfy
3703 @var{pred}.
3704 @end deffn
3705
3706 @deffn {Scheme Procedure} iterator-until pred iterator
3707 Run @var{iterator} until the result of @code{(pred element)} is true
3708 and return that as the result. Otherwise return @code{#f}.
3709 @end deffn
3710
3711 @node Guile Auto-loading
3712 @subsection Guile Auto-loading
3713 @cindex guile auto-loading
3714
3715 When a new object file is read (for example, due to the @code{file}
3716 command, or because the inferior has loaded a shared library),
3717 @value{GDBN} will look for Guile support scripts in two ways:
3718 @file{@var{objfile}-gdb.scm} and the @code{.debug_gdb_scripts} section.
3719 @xref{Auto-loading extensions}.
3720
3721 The auto-loading feature is useful for supplying application-specific
3722 debugging commands and scripts.
3723
3724 Auto-loading can be enabled or disabled,
3725 and the list of auto-loaded scripts can be printed.
3726
3727 @table @code
3728 @anchor{set auto-load guile-scripts}
3729 @kindex set auto-load guile-scripts
3730 @item set auto-load guile-scripts [on|off]
3731 Enable or disable the auto-loading of Guile scripts.
3732
3733 @anchor{show auto-load guile-scripts}
3734 @kindex show auto-load guile-scripts
3735 @item show auto-load guile-scripts
3736 Show whether auto-loading of Guile scripts is enabled or disabled.
3737
3738 @anchor{info auto-load guile-scripts}
3739 @kindex info auto-load guile-scripts
3740 @cindex print list of auto-loaded Guile scripts
3741 @item info auto-load guile-scripts [@var{regexp}]
3742 Print the list of all Guile scripts that @value{GDBN} auto-loaded.
3743
3744 Also printed is the list of Guile scripts that were mentioned in
3745 the @code{.debug_gdb_scripts} section and were not found.
3746 This is useful because their names are not printed when @value{GDBN}
3747 tries to load them and fails. There may be many of them, and printing
3748 an error message for each one is problematic.
3749
3750 If @var{regexp} is supplied only Guile scripts with matching names are printed.
3751
3752 Example:
3753
3754 @smallexample
3755 (gdb) info auto-load guile-scripts
3756 Loaded Script
3757 Yes scm-section-script.scm
3758 full name: /tmp/scm-section-script.scm
3759 No my-foo-pretty-printers.scm
3760 @end smallexample
3761 @end table
3762
3763 When reading an auto-loaded file, @value{GDBN} sets the
3764 @dfn{current objfile}. This is available via the @code{current-objfile}
3765 procedure (@pxref{Objfiles In Guile}). This can be useful for
3766 registering objfile-specific pretty-printers.
3767
3768 @node Guile Modules
3769 @subsection Guile Modules
3770 @cindex guile modules
3771
3772 @value{GDBN} comes with several modules to assist writing Guile code.
3773
3774 @menu
3775 * Guile Printing Module:: Building and registering pretty-printers
3776 * Guile Types Module:: Utilities for working with types
3777 @end menu
3778
3779 @node Guile Printing Module
3780 @subsubsection Guile Printing Module
3781
3782 This module provides a collection of utilities for working with
3783 pretty-printers.
3784
3785 Usage:
3786
3787 @smallexample
3788 (use-modules (gdb printing))
3789 @end smallexample
3790
3791 @deffn {Scheme Procedure} prepend-pretty-printer! object printer
3792 Add @var{printer} to the front of the list of pretty-printers for
3793 @var{object}. The @var{object} must either be a @code{<gdb:objfile>} object,
3794 or @code{#f} in which case @var{printer} is added to the global list of
3795 printers.
3796 @end deffn
3797
3798 @deffn {Scheme Procecure} append-pretty-printer! object printer
3799 Add @var{printer} to the end of the list of pretty-printers for
3800 @var{object}. The @var{object} must either be a @code{<gdb:objfile>} object,
3801 or @code{#f} in which case @var{printer} is added to the global list of
3802 printers.
3803 @end deffn
3804
3805 @node Guile Types Module
3806 @subsubsection Guile Types Module
3807
3808 This module provides a collection of utilities for working with
3809 @code{<gdb:type>} objects.
3810
3811 Usage:
3812
3813 @smallexample
3814 (use-modules (gdb types))
3815 @end smallexample
3816
3817 @deffn {Scheme Procedure} get-basic-type type
3818 Return @var{type} with const and volatile qualifiers stripped,
3819 and with typedefs and C@t{++} references converted to the underlying type.
3820
3821 C@t{++} example:
3822
3823 @smallexample
3824 typedef const int const_int;
3825 const_int foo (3);
3826 const_int& foo_ref (foo);
3827 int main () @{ return 0; @}
3828 @end smallexample
3829
3830 Then in gdb:
3831
3832 @smallexample
3833 (gdb) start
3834 (gdb) guile (use-modules (gdb) (gdb types))
3835 (gdb) guile (define foo-ref (parse-and-eval "foo_ref"))
3836 (gdb) guile (get-basic-type (value-type foo-ref))
3837 int
3838 @end smallexample
3839 @end deffn
3840
3841 @deffn {Scheme Procedure} type-has-field-deep? type field
3842 Return @code{#t} if @var{type}, assumed to be a type with fields
3843 (e.g., a structure or union), has field @var{field}.
3844 Otherwise return @code{#f}.
3845 This searches baseclasses, whereas @code{type-has-field?} does not.
3846 @end deffn
3847
3848 @deffn {Scheme Procedure} make-enum-hashtable enum-type
3849 Return a Guile hash table produced from @var{enum-type}.
3850 Elements in the hash table are referenced with @code{hashq-ref}.
3851 @end deffn
This page took 0.109772 seconds and 4 git commands to generate.