9b8ae1eb22235af5fbab43f91f3bfc4ca59b71a3
[deliverable/binutils-gdb.git] / gdb / doc / stabs.texinfo
1 \input texinfo
2 @setfilename stabs.info
3
4 @ifinfo
5 @format
6 START-INFO-DIR-ENTRY
7 * Stabs: (stabs). The "stabs" debugging information format.
8 END-INFO-DIR-ENTRY
9 @end format
10 @end ifinfo
11
12 @ifinfo
13 This document describes GNU stabs (debugging symbol tables) in a.out files.
14
15 Copyright 1992 Free Software Foundation, Inc.
16 Contributed by Cygnus Support. Written by Julia Menapace.
17
18 Permission is granted to make and distribute verbatim copies of
19 this manual provided the copyright notice and this permission notice
20 are preserved on all copies.
21
22 @ignore
23 Permission is granted to process this file through Tex and print the
24 results, provided the printed document carries copying permission
25 notice identical to this one except for the removal of this paragraph
26 (this paragraph not being relevant to the printed manual).
27
28 @end ignore
29 Permission is granted to copy or distribute modified versions of this
30 manual under the terms of the GPL (for which purpose this text may be
31 regarded as a program in the language TeX).
32 @end ifinfo
33
34 @setchapternewpage odd
35 @settitle STABS
36 @titlepage
37 @title The ``stabs'' debug format
38 @author Julia Menapace
39 @author Cygnus Support
40 @page
41 @tex
42 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
43 \xdef\manvers{\$Revision$} % For use in headers, footers too
44 {\parskip=0pt
45 \hfill Cygnus Support\par
46 \hfill \manvers\par
47 \hfill \TeX{}info \texinfoversion\par
48 }
49 @end tex
50
51 @vskip 0pt plus 1filll
52 Copyright @copyright{} 1992 Free Software Foundation, Inc.
53 Contributed by Cygnus Support.
54
55 Permission is granted to make and distribute verbatim copies of
56 this manual provided the copyright notice and this permission notice
57 are preserved on all copies.
58
59 @end titlepage
60
61 @ifinfo
62 @node Top
63 @top The "stabs" representation of debugging information
64
65 This document describes the GNU stabs debugging format in a.out files.
66
67 @menu
68 * Overview:: Overview of stabs
69 * Program structure:: Encoding of the structure of the program
70 * Simple types::
71 * Example:: A comprehensive example in C
72 * Variables::
73 * Aggregate Types::
74 * Symbol tables:: Symbol information in symbol tables
75 * GNU Cplusplus stabs::
76
77 Appendixes:
78 * Example2.c:: Source code for extended example
79 * Example2.s:: Assembly code for extended example
80 * Quick reference:: Various refernce tables
81 * Expanded reference:: Reference information by stab type
82 * Questions:: Questions and anomolies
83 * xcoff-differences:: Differences between GNU stabs in a.out
84 and GNU stabs in xcoff
85 * Sun-differences:: Differences between GNU stabs and Sun
86 native stabs
87 @end menu
88 @end ifinfo
89
90
91 @node Overview
92 @chapter Overview of stabs
93
94 @dfn{Stabs} refers to a format for information that describes a program
95 to a debugger. This format was apparently invented by
96 @c FIXME! <<name of inventor>> at
97 the University of California at Berkeley, for the @code{pdx} Pascal
98 debugger; the format has spread widely since then.
99
100 @menu
101 * Flow:: Overview of debugging information flow
102 * Stabs format:: Overview of stab format
103 * C example:: A simple example in C source
104 * Assembly code:: The simple example at the assembly level
105 @end menu
106
107 @node Flow
108 @section Overview of debugging information flow
109
110 The GNU C compiler compiles C source in a @file{.c} file into assembly
111 language in a @file{.s} file, which is translated by the assembler into
112 a @file{.o} file, and then linked with other @file{.o} files and
113 libraries to produce an executable file.
114
115 With the @samp{-g} option, GCC puts additional debugging information in
116 the @file{.s} file, which is slightly transformed by the assembler and
117 linker, and carried through into the final executable. This debugging
118 information describes features of the source file like line numbers,
119 the types and scopes of variables, and functions, their parameters and
120 their scopes.
121
122 For some object file formats, the debugging information is
123 encapsulated in assembler directives known collectively as `stab' (symbol
124 table) directives, interspersed with the generated code. Stabs are
125 the native format for debugging information in the a.out and xcoff
126 object file formats. The GNU tools can also emit stabs in the coff
127 and ecoff object file formats.
128
129 The assembler adds the information from stabs to the symbol information
130 it places by default in the symbol table and the string table of the
131 @file{.o} file it is building. The linker consolidates the @file{.o}
132 files into one executable file, with one symbol table and one string
133 table. Debuggers use the symbol and string tables in the executable as
134 a source of debugging information about the program.
135
136 @node Stabs format
137 @section Overview of stab format
138
139 There are three overall formats for stab assembler directives
140 differentiated by the first word of the stab. The name of the directive
141 describes what combination of four possible data fields will follow. It
142 is either @code{.stabs} (string), @code{.stabn} (number), or
143 @code{.stabd} (dot).
144
145 The overall format of each class of stab is:
146
147 @example
148 .stabs "@var{string}",@var{type},0,@var{desc},@var{value}
149 .stabn @var{type},0,@var{desc},@var{value}
150 .stabd @var{type},0,@var{desc}
151 @end example
152
153 In general, in @code{.stabs} the @var{string} field contains name and type
154 information. For @code{.stabd} the value field is implicit and has the value
155 of the current file location. Otherwise the value field often
156 contains a relocatable address, frame pointer offset, or register
157 number, that maps to the source code element described by the stab.
158
159 The real key to decoding the meaning of a stab is the number in its type
160 field. Each possible type number defines a different stab type. The
161 stab type further defines the exact interpretation of, and possible
162 values for, any remaining @code{"@var{string}"}, @var{desc}, or
163 @var{value} fields present in the stab. Table A (@pxref{Stab
164 types,,Table A: Symbol types from stabs}) lists in numeric order
165 the possible type field values for stab directives. The reference
166 section that follows Table A describes the meaning of the fields for
167 each stab type in detail. The examples that follow this overview
168 introduce the stab types in terms of the source code elements they
169 describe.
170
171 For @code{.stabs} the @code{"@var{string}"} field holds the meat of the
172 debugging information. The generally unstructured nature of this field
173 is what makes stabs extensible. For some stab types the string field
174 contains only a name. For other stab types the contents can be a great
175 deal more complex.
176
177 The overall format is of the @code{"@var{string}"} field is:
178
179 @example
180 "@var{name}@r{[}:@var{symbol_descriptor}@r{]}
181 @r{[}@var{type_number}@r{[}=@var{type_descriptor} @r{@dots{}]]}"
182 @end example
183
184 @var{name} is the name of the symbol represented by the stab.
185
186 The @var{symbol_descriptor} following the @samp{:} is an alphabetic
187 character that tells more specifically what kind of symbol the stab
188 represents. If the @var{symbol_descriptor} is omitted, but type
189 information follows, then the stab represents a local variable. For a
190 list of symbol_descriptors, see @ref{Symbol descriptors,,Table C: Symbol
191 descriptors}.
192
193 Type information is either a @var{type_number}, or a
194 @samp{@var{type_number}=}. The @var{type_number} alone is a type
195 reference, referring directly to a type that has already been defined.
196
197 The @samp{@var{type_number}=} is a type definition, where the number
198 represents a new type which is about to be defined. The type definition
199 may refer to other types by number, and those type numbers may be
200 followed by @samp{=} and nested definitions.
201
202 In a type definition, if the character that follows the equals sign is
203 non-numeric then it is a @var{type_descriptor}, and tells what kind of
204 type is about to be defined. Any other values following the
205 @var{type_descriptor} vary, depending on the @var{type_descriptor}. If
206 a number follows the @samp{=} then the number is a @var{type_reference}.
207 This is described more thoroughly in the section on types. @xref{Type
208 Descriptors,,Table D: Type Descriptors}, for a list of
209 @var{type_descriptor} values.
210
211 All this can make the @code{"@var{string}"} field quite long. All
212 versions of GDB, and some versions of DBX, can handle arbitrarily long
213 strings. But many versions of DBX cretinously limit the strings to
214 about 80 characters, so compilers which must work with such DBX's need
215 to split the @code{.stabs} directive into several @code{.stabs}
216 directives. Each stab duplicates exactly all but the
217 @code{"@var{string}"} field. The @code{"@var{string}"} field of the
218 every stab except the last is marked as continued with a
219 double-backslash at the end. Removing the backslashes and concatenating
220 the @code{"@var{string}"} fields of each stab produces the original,
221 long string.
222
223 @node C example
224 @section A simple example in C source
225
226 To get the flavor of how stabs describe source information for a C
227 program, let's look at the simple program:
228
229 @example
230 main()
231 @{
232 printf("Hello world");
233 @}
234 @end example
235
236 When compiled with @samp{-g}, the program above yields the following
237 @file{.s} file. Line numbers have been added to make it easier to refer
238 to parts of the @file{.s} file in the description of the stabs that
239 follows.
240
241 @node Assembly code
242 @section The simple example at the assembly level
243
244 @example
245 1 gcc2_compiled.:
246 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
247 3 .stabs "hello.c",100,0,0,Ltext0
248 4 .text
249 5 Ltext0:
250 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
251 7 .stabs "char:t2=r2;0;127;",128,0,0,0
252 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
253 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
254 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
255 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
256 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
257 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
258 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
259 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
260 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
261 17 .stabs "float:t12=r1;4;0;",128,0,0,0
262 18 .stabs "double:t13=r1;8;0;",128,0,0,0
263 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
264 20 .stabs "void:t15=15",128,0,0,0
265 21 .align 4
266 22 LC0:
267 23 .ascii "Hello, world!\12\0"
268 24 .align 4
269 25 .global _main
270 26 .proc 1
271 27 _main:
272 28 .stabn 68,0,4,LM1
273 29 LM1:
274 30 !#PROLOGUE# 0
275 31 save %sp,-136,%sp
276 32 !#PROLOGUE# 1
277 33 call ___main,0
278 34 nop
279 35 .stabn 68,0,5,LM2
280 36 LM2:
281 37 LBB2:
282 38 sethi %hi(LC0),%o1
283 39 or %o1,%lo(LC0),%o0
284 40 call _printf,0
285 41 nop
286 42 .stabn 68,0,6,LM3
287 43 LM3:
288 44 LBE2:
289 45 .stabn 68,0,6,LM4
290 46 LM4:
291 47 L1:
292 48 ret
293 49 restore
294 50 .stabs "main:F1",36,0,0,_main
295 51 .stabn 192,0,0,LBB2
296 52 .stabn 224,0,0,LBE2
297 @end example
298
299 This simple ``hello world'' example demonstrates several of the stab
300 types used to describe C language source files.
301
302 @node Program structure
303 @chapter Encoding for the structure of the program
304
305 @menu
306 * Source file:: The path and name of the source file
307 * Line numbers::
308 * Procedures::
309 * Block Structure::
310 @end menu
311
312 @node Source file
313 @section The path and name of the source file
314
315 @table @strong
316 @item Directive:
317 @code{.stabs}
318 @item Type:
319 @code{N_SO}
320 @end table
321
322 The first stabs in the .s file contain the name and path of the source
323 file that was compiled to produce the .s file. This information is
324 contained in two records of stab type N_SO (100).
325
326 @example
327 .stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
328 .stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start
329 @end example
330
331 @example
332 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
333 3 .stabs "hello.c",100,0,0,Ltext0
334 4 .text
335 5 Ltext0:
336 @end example
337
338 @node Line numbers
339 @section Line Numbers
340
341 @table @strong
342 @item Directive:
343 @code{.stabn}
344 @item Type:
345 @code{N_SLINE}
346 @end table
347
348 The start of source lines is represented by the @code{N_SLINE} (68) stab
349 type.
350
351 @example
352 .stabn N_SLINE, NIL, @var{line}, @var{address}
353 @end example
354
355 @var{line} is a source line number; @var{address} represents the code
356 address for the start of that source line.
357
358 @example
359 27 _main:
360 28 .stabn 68,0,4,LM1
361 29 LM1:
362 30 !#PROLOGUE# 0
363 @end example
364
365 @node Procedures
366 @section Procedures
367
368 @table @strong
369 @item Directive:
370 @code{.stabs}
371 @item Type:
372 @code{N_FUN}
373 @item Symbol Descriptors:
374 @code{f} (local), @code{F} (global)
375 @end table
376
377 Procedures are described by the @code{N_FUN} stab type. The symbol
378 descriptor for a procedure is @samp{F} if the procedure is globally
379 scoped and @samp{f} if the procedure is static (locally scoped).
380
381 The @code{N_FUN} stab representing a procedure is located immediately
382 following the code of the procedure. The @code{N_FUN} stab is in turn
383 directly followed by a group of other stabs describing elements of the
384 procedure. These other stabs describe the procedure's parameters, its
385 block local variables and its block structure.
386
387 @example
388 48 ret
389 49 restore
390 @end example
391
392 The @code{.stabs} entry after this code fragment shows the @var{name} of
393 the procedure (@code{main}); the type descriptor @var{desc} (@code{F},
394 for a global procedure); a reference to the predefined type @code{int}
395 for the return type; and the starting @var{address} of the procedure.
396
397 Here is an exploded summary (with whitespace introduced for clarity),
398 followed by line 50 of our sample assembly output, which has this form:
399
400 @example
401 .stabs "@var{name}:
402 @var{desc} @r{(global proc @samp{F})}
403 @var{return_type_ref} @r{(int)}
404 ",N_FUN, NIL, NIL,
405 @var{address}
406 @end example
407
408 @example
409 50 .stabs "main:F1",36,0,0,_main
410 @end example
411
412 @node Block Structure
413 @section Block Structure
414
415 @table @strong
416 @item Directive:
417 @code{.stabn}
418 @item Types:
419 @code{N_LBRAC}, @code{N_RBRAC}
420 @end table
421
422 The program's block structure is represented by the @code{N_LBRAC} (left
423 brace) and the @code{N_RBRAC} (right brace) stab types. The following code
424 range, which is the body of @code{main}, is labeled with @samp{LBB2:} at the
425 beginning and @samp{LBE2:} at the end.
426
427 @example
428 37 LBB2:
429 38 sethi %hi(LC0),%o1
430 39 or %o1,%lo(LC0),%o0
431 40 call _printf,0
432 41 nop
433 42 .stabn 68,0,6,LM3
434 43 LM3:
435 44 LBE2:
436 @end example
437
438 The @code{N_LBRAC} and @code{N_RBRAC} stabs that describe the block
439 scope of the procedure are located after the @code{N_FUNC} stab that
440 represents the procedure itself. The @code{N_LBRAC} uses the
441 @code{LBB2} label as the code address in its value field, and the
442 @code{N_RBRAC} uses @code{LBE2}.
443
444 @example
445 50 .stabs "main:F1",36,0,0,_main
446 @end example
447
448 @example
449 .stabn N_LBRAC, NIL, NIL, @var{left-brace-address}
450 .stabn N_RBRAC, NIL, NIL, @var{right-brace-address}
451 @end example
452
453 @example
454 51 .stabn 192,0,0,LBB2
455 52 .stabn 224,0,0,LBE2
456 @end example
457
458 @node Simple types
459 @chapter Simple types
460
461 @menu
462 * Basic types:: Basic type definitions
463 * Range types:: Range types defined by min and max value
464 * Float "range" types:: Range type defined by size in bytes
465 @end menu
466
467 @node Basic types
468 @section Basic type definitions
469
470 @table @strong
471 @item Directive:
472 @code{.stabs}
473 @item Type:
474 @code{N_LSYM}
475 @item Symbol Descriptor:
476 @code{t}
477 @end table
478
479 The basic types for the language are described using the @code{N_LSYM} stab
480 type. They are boilerplate and are emited by the compiler for each
481 compilation unit. Basic type definitions are not always a complete
482 description of the type and are sometimes circular. The debugger
483 recognizes the type anyway, and knows how to read bits as that type.
484
485 Each language and compiler defines a slightly different set of basic
486 types. In this example we are looking at the basic types for C emited
487 by the GNU compiler targeting the Sun4. Here the basic types are
488 mostly defined as range types.
489
490
491 @node Range types
492 @section Range types defined by min and max value
493
494 @table @strong
495 @item Type Descriptor:
496 @code{r}
497 @end table
498
499 When defining a range type, if the number after the first semicolon is
500 smaller than the number after the second one, then the two numbers
501 represent the smallest and the largest values in the range.
502
503 @example
504 4 .text
505 5 Ltext0:
506
507 .stabs "@var{name}:
508 @var{descriptor} @r{(type)}
509 @var{type-def}=
510 @var{type-desc}
511 @var{type-ref};
512 @var{low-bound};
513 @var{high-bound};
514 ",
515 N_LSYM, NIL, NIL, NIL
516
517 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
518 7 .stabs "char:t2=r2;0;127;",128,0,0,0
519 @end example
520
521 Here the integer type (@code{1}) is defined as a range of the integer
522 type (@code{1}). Likewise @code{char} is a range of @code{char}. This
523 part of the definition is circular, but at least the high and low bound
524 values of the range hold more information about the type.
525
526 Here short unsigned int is defined as type number 8 and described as a
527 range of type @code{int}, with a minimum value of 0 and a maximum of 65535.
528
529 @example
530 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
531 @end example
532
533 @node Float "range" types
534 @section Range type defined by size in bytes
535
536 @table @strong
537 @item Type Descriptor:
538 @code{r}
539 @end table
540
541 In a range definition, if the first number after the semicolon is
542 positive and the second is zero, then the type being defined is a
543 floating point type, and the number after the first semicolon is the
544 number of bytes needed to represent the type. Note that this does not
545 provide a way to distinguish 8-byte real floating point types from
546 8-byte complex floating point types.
547
548 @example
549 .stabs "@var{name}:
550 @var{desc}
551 @var{type-def}=
552 @var{type-desc}
553 @var{type-ref};
554 @var{bit-count};
555 0;
556 ",
557 N_LSYM, NIL, NIL, NIL
558
559 17 .stabs "float:t12=r1;4;0;",128,0,0,0
560 18 .stabs "double:t13=r1;8;0;",128,0,0,0
561 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
562 @end example
563
564 Cosmically enough, the @code{void} type is defined directly in terms of
565 itself.
566
567 @example
568 .stabs "@var{name}:
569 @var{symbol-desc}
570 @var{type-def}=
571 @var{type-ref}
572 ",N_LSYM,NIL,NIL,NIL
573
574 20 .stabs "void:t15=15",128,0,0,0
575 @end example
576
577
578 @node Example
579 @chapter A Comprehensive Example in C
580
581 Now we'll examine a second program, @code{example2}, which builds on the
582 first example to introduce the rest of the stab types, symbol
583 descriptors, and type descriptors used in C.
584 @xref{Example2.c} for the complete @file{.c} source,
585 and @pxref{Example2.s} for the @file{.s} assembly code.
586 This description includes parts of those files.
587
588 @section Flow of control and nested scopes
589
590 @table @strong
591 @item Directive:
592 @code{.stabn}
593 @item Types:
594 @code{N_SLINE}, @code{N_LBRAC}, @code{N_RBRAC} (cont.)
595 @end table
596
597 Consider the body of @code{main}, from @file{example2.c}. It shows more
598 about how @code{N_SLINE}, @code{N_RBRAC}, and @code{N_LBRAC} stabs are used.
599
600 @example
601 20 @{
602 21 static float s_flap;
603 22 int times;
604 23 for (times=0; times < s_g_repeat; times++)@{
605 24 int inner;
606 25 printf ("Hello world\n");
607 26 @}
608 27 @};
609 @end example
610
611 Here we have a single source line, the @samp{for} line, that generates
612 non-linear flow of control, and non-contiguous code. In this case, an
613 @code{N_SLINE} stab with the same line number proceeds each block of
614 non-contiguous code generated from the same source line.
615
616 The example also shows nested scopes. The @code{N_LBRAC} and
617 @code{N_LBRAC} stabs that describe block structure are nested in the
618 same order as the corresponding code blocks, those of the for loop
619 inside those for the body of main.
620
621 @noindent
622 This is the label for the @code{N_LBRAC} (left brace) stab marking the
623 start of @code{main}.
624
625 @example
626 57 LBB2:
627 @end example
628
629 @noindent
630 In the first code range for C source line 23, the @code{for} loop
631 initialize and test, @code{N_SLINE} (68) records the line number:
632
633 @example
634 .stabn N_SLINE, NIL,
635 @var{line},
636 @var{address}
637
638 58 .stabn 68,0,23,LM2
639 59 LM2:
640 60 st %g0,[%fp-20]
641 61 L2:
642 62 sethi %hi(_s_g_repeat),%o0
643 63 ld [%fp-20],%o1
644 64 ld [%o0+%lo(_s_g_repeat)],%o0
645 65 cmp %o1,%o0
646 66 bge L3
647 67 nop
648
649 @exdent label for the @code{N_LBRAC} (start block) marking the start of @code{for} loop
650
651 68 LBB3:
652 69 .stabn 68,0,25,LM3
653 70 LM3:
654 71 sethi %hi(LC0),%o1
655 72 or %o1,%lo(LC0),%o0
656 73 call _printf,0
657 74 nop
658 75 .stabn 68,0,26,LM4
659 76 LM4:
660
661 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
662
663 77 LBE3:
664 @end example
665
666 @noindent
667 Now we come to the second code range for source line 23, the @code{for}
668 loop increment and return. Once again, @code{N_SLINE} (68) records the
669 source line number:
670
671 @example
672 .stabn, N_SLINE, NIL,
673 @var{line},
674 @var{address}
675
676 78 .stabn 68,0,23,LM5
677 79 LM5:
678 80 L4:
679 81 ld [%fp-20],%o0
680 82 add %o0,1,%o1
681 83 st %o1,[%fp-20]
682 84 b,a L2
683 85 L3:
684 86 .stabn 68,0,27,LM6
685 87 LM6:
686
687 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
688
689 88 LBE2:
690 89 .stabn 68,0,27,LM7
691 90 LM7:
692 91 L1:
693 92 ret
694 93 restore
695 94 .stabs "main:F1",36,0,0,_main
696 95 .stabs "argc:p1",160,0,0,68
697 96 .stabs "argv:p20=*21=*2",160,0,0,72
698 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
699 98 .stabs "times:1",128,0,0,-20
700 @end example
701
702 @noindent
703 Here is an illustration of stabs describing nested scopes. The scope
704 nesting is reflected in the nested bracketing stabs (@code{N_LBRAC},
705 192, appears here).
706
707 @example
708 .stabn N_LBRAC,NIL,NIL,
709 @var{block-start-address}
710
711 99 .stabn 192,0,0,LBB2 ## begin proc label
712 100 .stabs "inner:1",128,0,0,-24
713 101 .stabn 192,0,0,LBB3 ## begin for label
714 @end example
715
716 @noindent
717 @code{N_RBRAC} (224), ``right brace'' ends a lexical block (scope).
718
719 @example
720 .stabn N_RBRAC,NIL,NIL,
721 @var{block-end-address}
722
723 102 .stabn 224,0,0,LBE3 ## end for label
724 103 .stabn 224,0,0,LBE2 ## end proc label
725 @end example
726
727 @node Variables
728 @chapter Variables
729
730 @menu
731 * Automatic variables:: locally scoped
732 * Global Variables::
733 * Register variables::
734 * Initialized statics::
735 * Un-initialized statics::
736 * Parameters::
737 @end menu
738
739 @node Automatic variables
740 @section Locally scoped automatic variables
741
742 @table @strong
743 @item Directive:
744 @code{.stabs}
745 @item Type:
746 @code{N_LSYM}
747 @item Symbol Descriptor:
748 none
749 @end table
750
751
752 In addition to describing types, the @code{N_LSYM} stab type also
753 describes locally scoped automatic variables. Refer again to the body
754 of @code{main} in @file{example2.c}. It allocates two automatic
755 variables: @samp{times} is scoped to the body of @code{main}, and
756 @samp{inner} is scoped to the body of the @code{for} loop.
757 @samp{s_flap} is locally scoped but not automatic, and will be discussed
758 later.
759
760 @example
761 20 @{
762 21 static float s_flap;
763 22 int times;
764 23 for (times=0; times < s_g_repeat; times++)@{
765 24 int inner;
766 25 printf ("Hello world\n");
767 26 @}
768 27 @};
769 @end example
770
771 The @code{N_LSYM} stab for an automatic variable is located just before the
772 @code{N_LBRAC} stab describing the open brace of the block to which it is
773 scoped.
774
775 @example
776 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to @code{main}
777
778 .stabs "@var{name}:
779 @var{type-ref}",
780 N_LSYM, NIL, NIL,
781 @var{frame-pointer-offset}
782
783 98 .stabs "times:1",128,0,0,-20
784 99 .stabn 192,0,0,LBB2 ## begin `main' N_LBRAC
785
786 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to the @code{for} loop
787
788 .stabs "@var{name}:
789 @var{type-ref}",
790 N_LSYM, NIL, NIL,
791 @var{frame-pointer-offset}
792
793 100 .stabs "inner:1",128,0,0,-24
794 101 .stabn 192,0,0,LBB3 ## begin `for' loop N_LBRAC
795 @end example
796
797 Since the character in the string field following the colon is not a
798 letter, there is no symbol descriptor. This means that the stab
799 describes a local variable, and that the number after the colon is a
800 type reference. In this case it a a reference to the basic type @code{int}.
801 Notice also that the frame pointer offset is negative number for
802 automatic variables.
803
804
805 @node Global Variables
806 @section Global Variables
807
808 @table @strong
809 @item Directive:
810 @code{.stabs}
811 @item Type:
812 @code{N_GSYM}
813 @item Symbol Descriptor:
814 @code{G}
815 @end table
816
817 Global variables are represented by the @code{N_GSYM} stab type. The symbol
818 descriptor, following the colon in the string field, is @samp{G}. Following
819 the @samp{G} is a type reference or type definition. In this example it is a
820 type reference to the basic C type, @code{char}. The first source line in
821 @file{example2.c},
822
823 @example
824 1 char g_foo = 'c';
825 @end example
826
827 @noindent
828 yields the following stab. The stab immediately precedes the code that
829 allocates storage for the variable it describes.
830
831 @example
832 @exdent @code{N_GSYM} (32): global symbol
833
834 .stabs "@var{name}:
835 @var{descriptor}
836 @var{type-ref}",
837 N_GSYM, NIL, NIL, NIL
838
839 21 .stabs "g_foo:G2",32,0,0,0
840 22 .global _g_foo
841 23 .data
842 24 _g_foo:
843 25 .byte 99
844 @end example
845
846 The address of the variable represented by the @code{N_GSYM} is not contained
847 in the @code{N_GSYM} stab. The debugger gets this information from the
848 external symbol for the global variable.
849
850 @node Register variables
851 @section Global register variables
852
853 @table @strong
854 @item Directive:
855 @code{.stabs}
856 @item Type:
857 @code{N_RSYM}
858 @item Symbol Descriptor:
859 @code{r}
860 @end table
861
862 The following source line defines a global variable, @code{g_bar}, which is
863 explicitly allocated in global register @code{%g5}.
864
865 @example
866 2 register int g_bar asm ("%g5");
867 @end example
868
869 Register variables have their own stab type, @code{N_RSYM}, and their own
870 symbol descriptor, @code{r}. The stab's value field contains the number of
871 the register where the variable data will be stored. Since the
872 variable was not initialized in this compilation unit, the stab is
873 emited at the end of the object file, with the stabs for other
874 uninitialized globals (@code{bcc}).
875
876 @example
877 @exdent @code{N_RSYM} (64): register variable
878
879 .stabs "@var{name}:
880 @var{descriptor}
881 @var{type-ref}",
882 N_RSYM, NIL, NIL,
883 @var{register}
884
885 133 .stabs "g_bar:r1",64,0,0,5
886 @end example
887
888
889 @node Initialized statics
890 @section Initialized static variables
891
892 @table @strong
893 @item Directive:
894 @code{.stabs}
895 @item Type:
896 @code{N_STSYM}
897 @item Symbol Descriptors:
898 @code{S} (file scope), @code{V} (procedure scope)
899 @end table
900
901 Initialized static variables are represented by the @code{N_STSYM} stab
902 type. The symbol descriptor part of the string field shows if the
903 variable is file scope static (@samp{S}) or procedure scope static
904 (@samp{V}). The source line
905
906 @example
907 3 static int s_g_repeat = 2;
908 @end example
909
910 @noindent
911 yields the following code. The stab is located immediately preceding
912 the storage for the variable it represents. Since the variable in
913 this example is file scope static the symbol descriptor is @samp{S}.
914
915 @example
916 @exdent @code{N_STSYM} (38): initialized static variable (data seg w/internal linkage)
917
918 .stabs "@var{name}:
919 @var{descriptor}
920 @var{type-ref}",
921 N_STSYM,NIL,NIL,
922 @var{address}
923
924 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
925 27 .align 4
926 28 _s_g_repeat:
927 29 .word 2
928 @end example
929
930
931 @node Un-initialized statics
932 @section Un-initialized static variables
933
934 @table @strong
935 @item Directive:
936 @code{.stabs}
937 @item Type:
938 @code{N_LCSYM}
939 @item Symbol Descriptors:
940 @code{S} (file scope), @code{V} (procedure scope)
941 @end table
942
943 Un-initialized static variables are represented by the @code{N_LCSYM}
944 stab type. The symbol descriptor part of the string shows if the
945 variable is file scope static (@samp{S}) or procedure scope static
946 (@samp{V}). In this example it is procedure scope static. The source
947 line allocating @code{s_flap} immediately follows the open brace for the
948 procedure @code{main}.
949
950 @example
951 20 @{
952 21 static float s_flap;
953 @end example
954
955 The code that reserves storage for the variable @code{s_flap} precedes the
956 body of body of @code{main}.
957
958 @example
959 39 .reserve _s_flap.0,4,"bss",4
960 @end example
961
962 But since @code{s_flap} is scoped locally to @code{main}, its stab is
963 located with the other stabs representing symbols local to @code{main}.
964 The stab for @code{s_flap} is located just before the @code{N_LBRAC} for
965 @code{main}.
966
967 @example
968 @exdent @code{N_LCSYM} (40): uninitialized static var (BSS seg w/internal linkage)
969
970 .stabs "@var{name}:
971 @var{descriptor}
972 @var{type-ref}",
973 N_LCSYM, NIL, NIL,
974 @var{address}
975
976 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
977 98 .stabs "times:1",128,0,0,-20
978 99 .stabn 192,0,0,LBB2 # N_LBRAC for main.
979 @end example
980
981 @c ............................................................
982
983 @node Parameters
984 @section Parameters
985
986 @table @strong
987 @item Directive:
988 @code{.stabs}
989 @item Type:
990 @code{N_PSYM}
991 @item Symbol Descriptor:
992 @code{p}
993 @end table
994
995 Procedure parameters are represented by the N_PSYM stab type. The
996 following source lines show the parameters of the main routine.
997
998 @example
999 17 main (argc, argv)
1000 18 int argc;
1001 19 char* argv[];
1002 20 @{
1003 @end example
1004
1005 The N_PSYM stabs describing parameters to a function directly follow
1006 the N_FUN stab that represents the procedure itself. The N_FUN stab
1007 immediately follows the code of the procedure it describes. Following
1008 the N_PSYM parameter stabs are any N_LSYM stabs representing local
1009 variables.
1010
1011 @example
1012 @exdent <36> N_FUN - describing the procedure main
1013
1014 94 .stabs "main:F1",36,0,0,_main
1015
1016 @exdent <160> N_PSYM - parameters
1017 @exdent .stabs "name:sym_desc(value_param)type_ref(int)", N_PSYM,
1018 @exdent NIL, NIL, frame_ptr_offset
1019
1020 95 .stabs "argc:p1",160,0,0,68
1021
1022 @exdent <160> N_PSYM - parameter
1023 @exdent .stabs "name:sym_desc(value_param)type_def(20)=ptr_to type_def(21)=
1024 @exdent ptr_to type_ref(char)
1025
1026 96 .stabs "argv:p20=*21=*2",160,0,0,72
1027 @end example
1028
1029 The type definition of argv is interesting because it defines two new
1030 types in terms of an existing one. The array argv contains character
1031 pointers. The type of the array name is a pointer to the type the
1032 array holds. Thus the type of argv is ptr to ptr to char. The stab
1033 for argv contains nested type_definitions. Type 21 is ptr to type 2
1034 (char) and argv (type 20) is ptr to type 21.
1035
1036 @node Aggregate Types
1037 @chapter Aggregate Types
1038
1039 Now let's look at some variable definitions involving complex types.
1040 This involves understanding better how types are described. In the
1041 examples so far types have been described as references to previously
1042 defined types or defined in terms of subranges of or pointers to
1043 previously defined types. The section that follows will talk about
1044 the various other type descriptors that may follow the = sign in a
1045 type definition.
1046
1047 @menu
1048 * Arrays::
1049 * Enumerations::
1050 * Structure tags::
1051 * Typedefs::
1052 * Unions::
1053 * Function types::
1054 @end menu
1055
1056 @node Arrays
1057 @section Array types
1058
1059 @table @strong
1060 @item Directive:
1061 @code{.stabs}
1062 @item Types:
1063 @code{N_GSYM}, @code{N_LSYM}
1064 @item Symbol Descriptor:
1065 @code{T}
1066 @item Type Descriptor:
1067 @code{ar}
1068 @end table
1069
1070 As an example of an array type consider the global variable below.
1071
1072 @example
1073 15 char char_vec[3] = @{'a','b','c'@};
1074 @end example
1075
1076 Since the array is a global variable, it is described by the N_GSYM
1077 stab type. The symbol descriptor G, following the colon in stab's
1078 string field, also says the array is a global variable. Following the
1079 G is a definition for type (19) as shown by the equals sign after the
1080 type number.
1081
1082 After the equals sign is a type descriptor, ar, which says that the
1083 type being defined is an array. Following the type descriptor for an
1084 array is the type of the index, the lower bound for array indexing
1085 (always 0 in C), the upper bound for array indexing (in C: one less
1086 than the length of the array), and the type of the array elements.
1087
1088 The array definition above generates the assembly language that
1089 follows.
1090
1091 @example
1092 @exdent <32> N_GSYM - global variable
1093 @exdent .stabs "name:sym_desc(global)type_def(19)=type_desc(array)
1094 @exdent index_type_ref(int);NIL;high_bound(2);element_type_ref(char)";
1095 @exdent N_GSYM, NIL, NIL, NIL
1096
1097 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
1098 33 .global _char_vec
1099 34 .align 4
1100 35 _char_vec:
1101 36 .byte 97
1102 37 .byte 98
1103 38 .byte 99
1104 @end example
1105
1106 @node Enumerations
1107 @section Enumerations
1108
1109 @table @strong
1110 @item Directive:
1111 @code{.stabs}
1112 @item Type:
1113 @code{N_LSYM}
1114 @item Symbol Descriptor:
1115 @code{T}
1116 @item Type Descriptor:
1117 @code{e}
1118 @end table
1119
1120 The source line below declares an enumeration type. It is defined at
1121 file scope between the bodies of main and s_proc in example2.c.
1122 Because the N_LSYM is located after the N_RBRAC that marks the end of
1123 the previous procedure's block scope, and before the N_FUN that marks
1124 the beginning of the next procedure's block scope, the N_LSYM does not
1125 describe a block local symbol, but a file local one. The source line:
1126
1127 @example
1128 29 enum e_places @{first,second=3,last@};
1129 @end example
1130
1131 @noindent
1132 generates the following stab, located just after the N_RBRAC (close
1133 brace stab) for main. The type definition is in an N_LSYM stab
1134 because type definitions are file scope not global scope.
1135
1136 @display
1137 <128> N_LSYM - local symbol
1138 .stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
1139 enum_name:value(0),enum_name:value(3),enum_name:value(4),;",
1140 N_LSYM, NIL, NIL, NIL
1141 @end display
1142
1143 @example
1144 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
1145 @end example
1146
1147 The symbol descriptor (T) says that the stab describes a structure,
1148 enumeration, or type tag. The type descriptor e, following the 22= of
1149 the type definition narrows it down to an enumeration type. Following
1150 the e is a list of the elements of the enumeration. The format is
1151 name:value,. The list of elements ends with a ;.
1152
1153 @node Structure tags
1154 @section Structure Tags
1155
1156 @table @strong
1157 @item Directive:
1158 @code{.stabs}
1159 @item Type:
1160 @code{N_LSYM}
1161 @item Symbol Descriptor:
1162 @code{T}
1163 @item Type Descriptor:
1164 @code{s}
1165 @end table
1166
1167 The following source code declares a structure tag and defines an
1168 instance of the structure in global scope. Then a typedef equates the
1169 structure tag with a new type. A seperate stab is generated for the
1170 structure tag, the structure typedef, and the structure instance. The
1171 stabs for the tag and the typedef are emited when the definitions are
1172 encountered. Since the structure elements are not initialized, the
1173 stab and code for the structure variable itself is located at the end
1174 of the program in .common.
1175
1176 @example
1177 6 struct s_tag @{
1178 7 int s_int;
1179 8 float s_float;
1180 9 char s_char_vec[8];
1181 10 struct s_tag* s_next;
1182 11 @} g_an_s;
1183 12
1184 13 typedef struct s_tag s_typedef;
1185 @end example
1186
1187 The structure tag is an N_LSYM stab type because, like the enum, the
1188 symbol is file scope. Like the enum, the symbol descriptor is T, for
1189 enumeration, struct or tag type. The symbol descriptor s following
1190 the 16= of the type definition narrows the symbol type to struct.
1191
1192 Following the struct symbol descriptor is the number of bytes the
1193 struct occupies, followed by a description of each structure element.
1194 The structure element descriptions are of the form name:type, bit
1195 offset from the start of the struct, and number of bits in the
1196 element.
1197
1198
1199 @example
1200 <128> N_LSYM - type definition
1201 .stabs "name:sym_desc(struct tag) Type_def(16)=type_desc(struct type)
1202 struct_bytes
1203 elem_name:type_ref(int),bit_offset,field_bits;
1204 elem_name:type_ref(float),bit_offset,field_bits;
1205 elem_name:type_def(17)=type_desc(dynamic array) index_type(int);NIL;
1206 high_bound(7);element_type(char),bit_offset,field_bits;;",
1207 N_LSYM,NIL,NIL,NIL
1208
1209 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
1210 s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
1211 @end example
1212
1213 In this example, two of the structure elements are previously defined
1214 types. For these, the type following the name: part of the element
1215 description is a simple type reference. The other two structure
1216 elements are new types. In this case there is a type definition
1217 embedded after the name:. The type definition for the array element
1218 looks just like a type definition for a standalone array. The s_next
1219 field is a pointer to the same kind of structure that the field is an
1220 element of. So the definition of structure type 16 contains an type
1221 definition for an element which is a pointer to type 16.
1222
1223 @node Typedefs
1224 @section Typedefs
1225
1226 @table @strong
1227 @item Directive:
1228 @code{.stabs}
1229 @item Type:
1230 @code{N_LSYM}
1231 @item Symbol Descriptor:
1232 @code{t}
1233 @end table
1234
1235 Here is the stab for the typedef equating the structure tag with a
1236 type.
1237
1238 @display
1239 <128> N_LSYM - type definition
1240 .stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL,NIL
1241 @end display
1242
1243 @example
1244 31 .stabs "s_typedef:t16",128,0,0,0
1245 @end example
1246
1247 And here is the code generated for the structure variable.
1248
1249 @display
1250 <32> N_GSYM - global symbol
1251 .stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL
1252 @end display
1253
1254 @example
1255 136 .stabs "g_an_s:G16",32,0,0,0
1256 137 .common _g_an_s,20,"bss"
1257 @end example
1258
1259 Notice that the structure tag has the same type number as the typedef
1260 for the structure tag. It is impossible to distinguish between a
1261 variable of the struct type and one of its typedef by looking at the
1262 debugging information.
1263
1264
1265 @node Unions
1266 @section Unions
1267
1268 @table @strong
1269 @item Directive:
1270 @code{.stabs}
1271 @item Type:
1272 @code{N_LSYM}
1273 @item Symbol Descriptor:
1274 @code{T}
1275 @item Type Descriptor:
1276 @code{u}
1277 @end table
1278
1279 Next let's look at unions. In example2 this union type is declared
1280 locally to a procedure and an instance of the union is defined.
1281
1282 @example
1283 36 union u_tag @{
1284 37 int u_int;
1285 38 float u_float;
1286 39 char* u_char;
1287 40 @} an_u;
1288 @end example
1289
1290 This code generates a stab for the union tag and a stab for the union
1291 variable. Both use the N_LSYM stab type. Since the union variable is
1292 scoped locally to the procedure in which it is defined, its stab is
1293 located immediately preceding the N_LBRAC for the procedure's block
1294 start.
1295
1296 The stab for the union tag, however is located preceding the code for
1297 the procedure in which it is defined. The stab type is N_LSYM. This
1298 would seem to imply that the union type is file scope, like the struct
1299 type s_tag. This is not true. The contents and position of the stab
1300 for u_type do not convey any infomation about its procedure local
1301 scope.
1302
1303 @display
1304 <128> N_LSYM - type
1305 .stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
1306 byte_size(4)
1307 elem_name:type_ref(int),bit_offset(0),bit_size(32);
1308 elem_name:type_ref(float),bit_offset(0),bit_size(32);
1309 elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
1310 N_LSYM, NIL, NIL, NIL
1311 @end display
1312
1313 @smallexample
1314 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
1315 128,0,0,0
1316 @end smallexample
1317
1318 The symbol descriptor, T, following the name: means that the stab
1319 describes an enumeration struct or type tag. The type descriptor u,
1320 following the 23= of the type definition, narrows it down to a union
1321 type definition. Following the u is the number of bytes in the union.
1322 After that is a list of union element descriptions. Their format is
1323 name:type, bit offset into the union, and number of bytes for the
1324 element;.
1325
1326 The stab for the union variable follows. Notice that the frame
1327 pointer offset for local variables is negative.
1328
1329 @display
1330 <128> N_LSYM - local variable (with no symbol descriptor)
1331 .stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset
1332 @end display
1333
1334 @example
1335 130 .stabs "an_u:23",128,0,0,-20
1336 @end example
1337
1338 @node Function types
1339 @section Function types
1340
1341 @display
1342 type descriptor f
1343 @end display
1344
1345 The last type descriptor in C which remains to be described is used
1346 for function types. Consider the following source line defining a
1347 global function pointer.
1348
1349 @example
1350 4 int (*g_pf)();
1351 @end example
1352
1353 It generates the following code. Since the variable is not
1354 initialized, the code is located in the common area at the end of the
1355 file.
1356
1357 @display
1358 <32> N_GSYM - global variable
1359 .stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
1360 type_def(func)type_ref(int)
1361 @end display
1362
1363 @example
1364 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
1365 135 .common _g_pf,4,"bss"
1366 @end example
1367
1368 Since the variable is global, the stab type is N_GSYM and the symbol
1369 descriptor is G. The variable defines a new type, 24, which is a
1370 pointer to another new type, 25, which is defined as a function
1371 returning int.
1372
1373 @node Symbol tables
1374 @chapter Symbol information in symbol tables
1375
1376 This section examines more closely the format of symbol table entries
1377 and how stab assembler directives map to them. It also describes what
1378 transformations the assembler and linker make on data from stabs.
1379
1380 Each time the assembler encounters a stab in its input file it puts
1381 each field of the stab into corresponding fields in a symbol table
1382 entry of its output file. If the stab contains a string field, the
1383 symbol table entry for that stab points to a string table entry
1384 containing the string data from the stab. Assembler labels become
1385 relocatable addresses. Symbol table entries in a.out have the format:
1386
1387 @example
1388 struct internal_nlist @{
1389 unsigned long n_strx; /* index into string table of name */
1390 unsigned char n_type; /* type of symbol */
1391 unsigned char n_other; /* misc info (usually empty) */
1392 unsigned short n_desc; /* description field */
1393 bfd_vma n_value; /* value of symbol */
1394 @};
1395 @end example
1396
1397 For .stabs directives, the n_strx field holds the character offset
1398 from the start of the string table to the string table entry
1399 containing the "string" field. For other classes of stabs (.stabn and
1400 .stabd) this field is null.
1401
1402 Symbol table entries with n_type fields containing a value greater or
1403 equal to 0x20 originated as stabs generated by the compiler (with one
1404 random exception). Those with n_type values less than 0x20 were
1405 placed in the symbol table of the executable by the assembler or the
1406 linker.
1407
1408 The linker concatenates object files and does fixups of externally
1409 defined symbols. You can see the transformations made on stab data by
1410 the assembler and linker by examining the symbol table after each pass
1411 of the build, first the assemble and then the link.
1412
1413 To do this use nm with the -ap options. This dumps the symbol table,
1414 including debugging information, unsorted. For stab entries the
1415 columns are: value, other, desc, type, string. For assembler and
1416 linker symbols, the columns are: value, type, string.
1417
1418 There are a few important things to notice about symbol tables. Where
1419 the value field of a stab contains a frame pointer offset, or a
1420 register number, that value is unchanged by the rest of the build.
1421
1422 Where the value field of a stab contains an assembly language label,
1423 it is transformed by each build step. The assembler turns it into a
1424 relocatable address and the linker turns it into an absolute address.
1425 This source line defines a static variable at file scope:
1426
1427 @example
1428 3 static int s_g_repeat
1429 @end example
1430
1431 @noindent
1432 The following stab describes the symbol.
1433
1434 @example
1435 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
1436 @end example
1437
1438 @noindent
1439 The assembler transforms the stab into this symbol table entry in the
1440 @file{.o} file. The location is expressed as a data segment offset.
1441
1442 @example
1443 21 00000084 - 00 0000 STSYM s_g_repeat:S1
1444 @end example
1445
1446 @noindent
1447 in the symbol table entry from the executable, the linker has made the
1448 relocatable address absolute.
1449
1450 @example
1451 22 0000e00c - 00 0000 STSYM s_g_repeat:S1
1452 @end example
1453
1454 Stabs for global variables do not contain location information. In
1455 this case the debugger finds location information in the assembler or
1456 linker symbol table entry describing the variable. The source line:
1457
1458 @example
1459 1 char g_foo = 'c';
1460 @end example
1461
1462 @noindent
1463 generates the stab:
1464
1465 @example
1466 21 .stabs "g_foo:G2",32,0,0,0
1467 @end example
1468
1469 The variable is represented by the following two symbol table entries
1470 in the object file. The first one originated as a stab. The second
1471 one is an external symbol. The upper case D signifies that the n_type
1472 field of the symbol table contains 7, N_DATA with local linkage (see
1473 Table B). The value field following the file's line number is empty
1474 for the stab entry. For the linker symbol it contains the
1475 rellocatable address corresponding to the variable.
1476
1477 @example
1478 19 00000000 - 00 0000 GSYM g_foo:G2
1479 20 00000080 D _g_foo
1480 @end example
1481
1482 @noindent
1483 These entries as transformed by the linker. The linker symbol table
1484 entry now holds an absolute address.
1485
1486 @example
1487 21 00000000 - 00 0000 GSYM g_foo:G2
1488 @dots{}
1489 215 0000e008 D _g_foo
1490 @end example
1491
1492 @node GNU Cplusplus stabs
1493 @chapter GNU C++ stabs
1494
1495 @menu
1496 * Basic Cplusplus types::
1497 * Simple classes::
1498 * Class instance::
1499 * Methods:: Method definition
1500 * Protections::
1501 * Method Modifiers:: (const, volatile, const volatile)
1502 * Virtual Methods::
1503 * Inheritence::
1504 * Virtual Base Classes::
1505 * Static Members::
1506 @end menu
1507
1508
1509 @subsection Symbol descriptors added for C++ descriptions:
1510
1511 @display
1512 P - register parameter.
1513 @end display
1514
1515 @subsection type descriptors added for C++ descriptions
1516
1517 @table @code
1518 @item #
1519 method type (two ## if minimal debug)
1520
1521 @item xs
1522 cross-reference
1523 @end table
1524
1525
1526 @node Basic Cplusplus types
1527 @section Basic types for C++
1528
1529 << the examples that follow are based on a01.C >>
1530
1531
1532 C++ adds two more builtin types to the set defined for C. These are
1533 the unknown type and the vtable record type. The unknown type, type
1534 16, is defined in terms of itself like the void type.
1535
1536 The vtable record type, type 17, is defined as a structure type and
1537 then as a structure tag. The structure has four fields, delta, index,
1538 pfn, and delta2. pfn is the function pointer.
1539
1540 << In boilerplate $vtbl_ptr_type, what are the fields delta,
1541 index, and delta2 used for? >>
1542
1543 This basic type is present in all C++ programs even if there are no
1544 virtual methods defined.
1545
1546 @display
1547 .stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
1548 elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
1549 elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
1550 elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),
1551 bit_offset(32),field_bits(32);
1552 elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
1553 N_LSYM, NIL, NIL
1554 @end display
1555
1556 @smallexample
1557 .stabs "$vtbl_ptr_type:t17=s8
1558 delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"
1559 ,128,0,0,0
1560 @end smallexample
1561
1562 @display
1563 .stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
1564 @end display
1565
1566 @example
1567 .stabs "$vtbl_ptr_type:T17",128,0,0,0
1568 @end example
1569
1570 @node Simple classes
1571 @section Simple class definition
1572
1573 The stabs describing C++ language features are an extension of the
1574 stabs describing C. Stabs representing C++ class types elaborate
1575 extensively on the stab format used to describe structure types in C.
1576 Stabs representing class type variables look just like stabs
1577 representing C language variables.
1578
1579 Consider the following very simple class definition.
1580
1581 @example
1582 class baseA @{
1583 public:
1584 int Adat;
1585 int Ameth(int in, char other);
1586 @};
1587 @end example
1588
1589 The class baseA is represented by two stabs. The first stab describes
1590 the class as a structure type. The second stab describes a structure
1591 tag of the class type. Both stabs are of stab type N_LSYM. Since the
1592 stab is not located between an N_FUN and a N_LBRAC stab this indicates
1593 that the class is defined at file scope. If it were, then the N_LSYM
1594 would signify a local variable.
1595
1596 A stab describing a C++ class type is similar in format to a stab
1597 describing a C struct, with each class member shown as a field in the
1598 structure. The part of the struct format describing fields is
1599 expanded to include extra information relevent to C++ class members.
1600 In addition, if the class has multiple base classes or virtual
1601 functions the struct format outside of the field parts is also
1602 augmented.
1603
1604 In this simple example the field part of the C++ class stab
1605 representing member data looks just like the field part of a C struct
1606 stab. The section on protections describes how its format is
1607 sometimes extended for member data.
1608
1609 The field part of a C++ class stab representing a member function
1610 differs substantially from the field part of a C struct stab. It
1611 still begins with `name:' but then goes on to define a new type number
1612 for the member function, describe its return type, its argument types,
1613 its protection level, any qualifiers applied to the method definition,
1614 and whether the method is virtual or not. If the method is virtual
1615 then the method description goes on to give the vtable index of the
1616 method, and the type number of the first base class defining the
1617 method.
1618
1619 When the field name is a method name it is followed by two colons
1620 rather than one. This is followed by a new type definition for the
1621 method. This is a number followed by an equal sign and then the
1622 symbol descriptor `##', indicating a method type. This is followed by
1623 a type reference showing the return type of the method and a
1624 semi-colon.
1625
1626 The format of an overloaded operator method name differs from that
1627 of other methods. It is "op$::XXXX." where XXXX is the operator name
1628 such as + or +=. The name ends with a period, and any characters except
1629 the period can occur in the XXXX string.
1630
1631 The next part of the method description represents the arguments to
1632 the method, preceeded by a colon and ending with a semi-colon. The
1633 types of the arguments are expressed in the same way argument types
1634 are expressed in C++ name mangling. In this example an int and a char
1635 map to `ic'.
1636
1637 This is followed by a number, a letter, and an asterisk or period,
1638 followed by another semicolon. The number indicates the protections
1639 that apply to the member function. Here the 2 means public. The
1640 letter encodes any qualifier applied to the method definition. In
1641 this case A means that it is a normal function definition. The dot
1642 shows that the method is not virtual. The sections that follow
1643 elaborate further on these fields and describe the additional
1644 information present for virtual methods.
1645
1646
1647 @display
1648 .stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
1649 field_name(Adat):type(int),bit_offset(0),field_bits(32);
1650
1651 method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
1652 :arg_types(int char);
1653 protection(public)qualifier(normal)virtual(no);;"
1654 N_LSYM,NIL,NIL,NIL
1655 @end display
1656
1657 @smallexample
1658 .stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0
1659
1660 .stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL
1661
1662 .stabs "baseA:T20",128,0,0,0
1663 @end smallexample
1664
1665 @node Class instance
1666 @section Class instance
1667
1668 As shown above, describing even a simple C++ class definition is
1669 accomplished by massively extending the stab format used in C to
1670 describe structure types. However, once the class is defined, C stabs
1671 with no modifications can be used to describe class instances. The
1672 following source:
1673
1674 @example
1675 main () @{
1676 baseA AbaseA;
1677 @}
1678 @end example
1679
1680 @noindent
1681 yields the following stab describing the class instance. It looks no
1682 different from a standard C stab describing a local variable.
1683
1684 @display
1685 .stabs "name:type_ref(baseA)", N_LSYM, NIL, NIL, frame_ptr_offset
1686 @end display
1687
1688 @example
1689 .stabs "AbaseA:20",128,0,0,-20
1690 @end example
1691
1692 @node Methods
1693 @section Method defintion
1694
1695 The class definition shown above declares Ameth. The C++ source below
1696 defines Ameth:
1697
1698 @example
1699 int
1700 baseA::Ameth(int in, char other)
1701 @{
1702 return in;
1703 @};
1704 @end example
1705
1706
1707 This method definition yields three stabs following the code of the
1708 method. One stab describes the method itself and following two
1709 describe its parameters. Although there is only one formal argument
1710 all methods have an implicit argument which is the `this' pointer.
1711 The `this' pointer is a pointer to the object on which the method was
1712 called. Note that the method name is mangled to encode the class name
1713 and argument types. << Name mangling is not described by this
1714 document - Is there already such a doc? >>
1715
1716 @example
1717 .stabs "name:symbol_desriptor(global function)return_type(int)",
1718 N_FUN, NIL, NIL, code_addr_of_method_start
1719
1720 .stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic
1721 @end example
1722
1723 Here is the stab for the `this' pointer implicit argument. The name
1724 of the `this' pointer is always `this.' Type 19, the `this' pointer is
1725 defined as a pointer to type 20, baseA, but a stab defining baseA has
1726 not yet been emited. Since the compiler knows it will be emited
1727 shortly, here it just outputs a cross reference to the undefined
1728 symbol, by prefixing the symbol name with xs.
1729
1730 @example
1731 .stabs "name:sym_desc(register param)type_def(19)=
1732 type_desc(ptr to)type_ref(baseA)=
1733 type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number
1734
1735 .stabs "this:P19=*20=xsbaseA:",64,0,0,8
1736 @end example
1737
1738 The stab for the explicit integer argument looks just like a parameter
1739 to a C function. The last field of the stab is the offset from the
1740 argument pointer, which in most systems is the same as the frame
1741 pointer.
1742
1743 @example
1744 .stabs "name:sym_desc(value parameter)type_ref(int)",
1745 N_PSYM,NIL,NIL,offset_from_arg_ptr
1746
1747 .stabs "in:p1",160,0,0,72
1748 @end example
1749
1750 << The examples that follow are based on A1.C >>
1751
1752 @node Protections
1753 @section Protections
1754
1755
1756 In the simple class definition shown above all member data and
1757 functions were publicly accessable. The example that follows
1758 contrasts public, protected and privately accessable fields and shows
1759 how these protections are encoded in C++ stabs.
1760
1761 Protections for class member data are signified by two characters
1762 embeded in the stab defining the class type. These characters are
1763 located after the name: part of the string. /0 means private, /1
1764 means protected, and /2 means public. If these characters are omited
1765 this means that the member is public. The following C++ source:
1766
1767 @example
1768 class all_data @{
1769 private:
1770 int priv_dat;
1771 protected:
1772 char prot_dat;
1773 public:
1774 float pub_dat;
1775 @};
1776 @end example
1777
1778 @noindent
1779 generates the following stab to describe the class type all_data.
1780
1781 @display
1782 .stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
1783 data_name:/protection(private)type_ref(int),bit_offset,num_bits;
1784 data_name:/protection(protected)type_ref(char),bit_offset,num_bits;
1785 data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
1786 N_LSYM,NIL,NIL,NIL
1787 @end display
1788
1789 @smallexample
1790 .stabs "all_data:t19=s12
1791 priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
1792 @end smallexample
1793
1794 Protections for member functions are signified by one digit embeded in
1795 the field part of the stab describing the method. The digit is 0 if
1796 private, 1 if protected and 2 if public. Consider the C++ class
1797 definition below:
1798
1799 @example
1800 class all_methods @{
1801 private:
1802 int priv_meth(int in)@{return in;@};
1803 protected:
1804 char protMeth(char in)@{return in;@};
1805 public:
1806 float pubMeth(float in)@{return in;@};
1807 @};
1808 @end example
1809
1810 It generates the following stab. The digit in question is to the left
1811 of an `A' in each case. Notice also that in this case two symbol
1812 descriptors apply to the class name struct tag and struct type.
1813
1814 @display
1815 .stabs "class_name:sym_desc(struct tag&type)type_def(21)=
1816 sym_desc(struct)struct_bytes(1)
1817 meth_name::type_def(22)=sym_desc(method)returning(int);
1818 :args(int);protection(private)modifier(normal)virtual(no);
1819 meth_name::type_def(23)=sym_desc(method)returning(char);
1820 :args(char);protection(protected)modifier(normal)virual(no);
1821 meth_name::type_def(24)=sym_desc(method)returning(float);
1822 :args(float);protection(public)modifier(normal)virtual(no);;",
1823 N_LSYM,NIL,NIL,NIL
1824 @end display
1825
1826 @smallexample
1827 .stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;
1828 pubMeth::24=##12;:f;2A.;;",128,0,0,0
1829 @end smallexample
1830
1831 @node Method Modifiers
1832 @section Method Modifiers (const, volatile, const volatile)
1833
1834 << based on a6.C >>
1835
1836 In the class example described above all the methods have the normal
1837 modifier. This method modifier information is located just after the
1838 protection information for the method. This field has four possible
1839 character values. Normal methods use A, const methods use B, volatile
1840 methods use C, and const volatile methods use D. Consider the class
1841 definition below:
1842
1843 @example
1844 class A @{
1845 public:
1846 int ConstMeth (int arg) const @{ return arg; @};
1847 char VolatileMeth (char arg) volatile @{ return arg; @};
1848 float ConstVolMeth (float arg) const volatile @{return arg; @};
1849 @};
1850 @end example
1851
1852 This class is described by the following stab:
1853
1854 @display
1855 .stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)
1856 meth_name(ConstMeth)::type_def(21)sym_desc(method)
1857 returning(int);:arg(int);protection(public)modifier(const)virtual(no);
1858 meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
1859 returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
1860 meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
1861 returning(float);:arg(float);protection(public)modifer(const volatile)
1862 virtual(no);;", @dots{}
1863 @end display
1864
1865 @example
1866 .stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;
1867 ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0
1868 @end example
1869
1870 @node Virtual Methods
1871 @section Virtual Methods
1872
1873 << The following examples are based on a4.C >>
1874
1875 The presence of virtual methods in a class definition adds additional
1876 data to the class description. The extra data is appended to the
1877 description of the virtual method and to the end of the class
1878 description. Consider the class definition below:
1879
1880 @example
1881 class A @{
1882 public:
1883 int Adat;
1884 virtual int A_virt (int arg) @{ return arg; @};
1885 @};
1886 @end example
1887
1888 This results in the stab below describing class A. It defines a new
1889 type (20) which is an 8 byte structure. The first field of the class
1890 struct is Adat, an integer, starting at structure offset 0 and
1891 occupying 32 bits.
1892
1893 The second field in the class struct is not explicitly defined by the
1894 C++ class definition but is implied by the fact that the class
1895 contains a virtual method. This field is the vtable pointer. The
1896 name of the vtable pointer field starts with $vf and continues with a
1897 type reference to the class it is part of. In this example the type
1898 reference for class A is 20 so the name of its vtable pointer field is
1899 $vf20, followed by the usual colon.
1900
1901 Next there is a type definition for the vtable pointer type (21).
1902 This is in turn defined as a pointer to another new type (22).
1903
1904 Type 22 is the vtable itself, which is defined as an array, indexed by
1905 integers, with a high bound of 1, and elements of type 17. Type 17
1906 was the vtable record type defined by the boilerplate C++ type
1907 definitions, as shown earlier.
1908
1909 The bit offset of the vtable pointer field is 32. The number of bits
1910 in the field are not specified when the field is a vtable pointer.
1911
1912 Next is the method definition for the virtual member function A_virt.
1913 Its description starts out using the same format as the non-virtual
1914 member functions described above, except instead of a dot after the
1915 `A' there is an asterisk, indicating that the function is virtual.
1916 Since is is virtual some addition information is appended to the end
1917 of the method description.
1918
1919 The first number represents the vtable index of the method. This is a
1920 32 bit unsigned number with the high bit set, followed by a
1921 semi-colon.
1922
1923 The second number is a type reference to the first base class in the
1924 inheritence hierarchy defining the virtual member function. In this
1925 case the class stab describes a base class so the virtual function is
1926 not overriding any other definition of the method. Therefore the
1927 reference is to the type number of the class that the stab is
1928 describing (20).
1929
1930 This is followed by three semi-colons. One marks the end of the
1931 current sub-section, one marks the end of the method field, and the
1932 third marks the end of the struct definition.
1933
1934 For classes containing virtual functions the very last section of the
1935 string part of the stab holds a type reference to the first base
1936 class. This is preceeded by `~%' and followed by a final semi-colon.
1937
1938 @display
1939 .stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
1940 field_name(Adat):type_ref(int),bit_offset(0),field_bits(32);
1941 field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
1942 sym_desc(array)index_type_ref(int);NIL;elem_type_ref(vtbl elem type);
1943 bit_offset(32);
1944 meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
1945 :arg_type(int),protection(public)normal(yes)virtual(yes)
1946 vtable_index(1);class_first_defining(A);;;~%first_base(A);",
1947 N_LSYM,NIL,NIL,NIL
1948 @end display
1949
1950 @example
1951 .stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
1952 @end example
1953
1954 @node Inheritence
1955 @section Inheritence
1956
1957 Stabs describing C++ derived classes include additional sections that
1958 describe the inheritence hierarchy of the class. A derived class stab
1959 also encodes the number of base classes. For each base class it tells
1960 if the base class is virtual or not, and if the inheritence is private
1961 or public. It also gives the offset into the object of the portion of
1962 the object corresponding to each base class.
1963
1964 This additional information is embeded in the class stab following the
1965 number of bytes in the struct. First the number of base classes
1966 appears bracketed by an exclamation point and a comma.
1967
1968 Then for each base type there repeats a series: two digits, a number,
1969 a comma, another number, and a semi-colon.
1970
1971 The first of the two digits is 1 if the base class is virtual and 0 if
1972 not. The second digit is 2 if the derivation is public and 0 if not.
1973
1974 The number following the first two digits is the offset from the start
1975 of the object to the part of the object pertaining to the base class.
1976
1977 After the comma, the second number is a type_descriptor for the base
1978 type. Finally a semi-colon ends the series, which repeats for each
1979 base class.
1980
1981 The source below defines three base classes A, B, and C and the
1982 derived class D.
1983
1984
1985 @example
1986 class A @{
1987 public:
1988 int Adat;
1989 virtual int A_virt (int arg) @{ return arg; @};
1990 @};
1991
1992 class B @{
1993 public:
1994 int B_dat;
1995 virtual int B_virt (int arg) @{return arg; @};
1996 @};
1997
1998 class C @{
1999 public:
2000 int Cdat;
2001 virtual int C_virt (int arg) @{return arg; @};
2002 @};
2003
2004 class D : A, virtual B, public C @{
2005 public:
2006 int Ddat;
2007 virtual int A_virt (int arg ) @{ return arg+1; @};
2008 virtual int B_virt (int arg) @{ return arg+2; @};
2009 virtual int C_virt (int arg) @{ return arg+3; @};
2010 virtual int D_virt (int arg) @{ return arg; @};
2011 @};
2012 @end example
2013
2014 Class stabs similar to the ones described earlier are generated for
2015 each base class.
2016
2017 @c FIXME!!! the linebreaks in the following example probably make the
2018 @c examples literally unusable, but I don't know any other way to get
2019 @c them on the page.
2020 @smallexample
2021 .stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;
2022 A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2023
2024 .stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;
2025 :i;2A*-2147483647;25;;;~%25;",128,0,0,0
2026
2027 .stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
2028 :i;2A*-2147483647;28;;;~%28;",128,0,0,0
2029 @end smallexample
2030
2031 In the stab describing derived class D below, the information about
2032 the derivation of this class is encoded as follows.
2033
2034 @display
2035 .stabs "derived_class_name:symbol_descriptors(struct tag&type)=
2036 type_descriptor(struct)struct_bytes(32)!num_bases(3),
2037 base_virtual(no)inheritence_public(no)base_offset(0),
2038 base_class_type_ref(A);
2039 base_virtual(yes)inheritence_public(no)base_offset(NIL),
2040 base_class_type_ref(B);
2041 base_virtual(no)inheritence_public(yes)base_offset(64),
2042 base_class_type_ref(C); @dots{}
2043 @end display
2044
2045 @c FIXME! fake linebreaks.
2046 @smallexample
2047 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:
2048 1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:
2049 :32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;
2050 28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2051 @end smallexample
2052
2053 @node Virtual Base Classes
2054 @section Virtual Base Classes
2055
2056 A derived class object consists of a concatination in memory of the
2057 data areas defined by each base class, starting with the leftmost and
2058 ending with the rightmost in the list of base classes. The exception
2059 to this rule is for virtual inheritence. In the example above, class
2060 D inherits virtually from base class B. This means that an instance
2061 of a D object will not contain it's own B part but merely a pointer to
2062 a B part, known as a virtual base pointer.
2063
2064 In a derived class stab, the base offset part of the derivation
2065 information, described above, shows how the base class parts are
2066 ordered. The base offset for a virtual base class is always given as
2067 0. Notice that the base offset for B is given as 0 even though B is
2068 not the first base class. The first base class A starts at offset 0.
2069
2070 The field information part of the stab for class D describes the field
2071 which is the pointer to the virtual base class B. The vbase pointer
2072 name is $vb followed by a type reference to the virtual base class.
2073 Since the type id for B in this example is 25, the vbase pointer name
2074 is $vb25.
2075
2076 @c FIXME!! fake linebreaks below
2077 @smallexample
2078 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
2079 160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;
2080 2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:
2081 :32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2082 @end smallexample
2083
2084 Following the name and a semicolon is a type reference describing the
2085 type of the virtual base class pointer, in this case 24. Type 24 was
2086 defined earlier as the type of the B class `this` pointer. The
2087 `this' pointer for a class is a pointer to the class type.
2088
2089 @example
2090 .stabs "this:P24=*25=xsB:",64,0,0,8
2091 @end example
2092
2093 Finally the field offset part of the vbase pointer field description
2094 shows that the vbase pointer is the first field in the D object,
2095 before any data fields defined by the class. The layout of a D class
2096 object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat
2097 at 64, the vtable pointer for C at 96, the virtual ase pointer for B
2098 at 128, and Ddat at 160.
2099
2100
2101 @node Static Members
2102 @section Static Members
2103
2104 The data area for a class is a concatenation of the space used by the
2105 data members of the class. If the class has virtual methods, a vtable
2106 pointer follows the class data. The field offset part of each field
2107 description in the class stab shows this ordering.
2108
2109 << How is this reflected in stabs? See Cygnus bug #677 for some info. >>
2110
2111 @node Example2.c
2112 @appendix Example2.c - source code for extended example
2113
2114 @example
2115 1 char g_foo = 'c';
2116 2 register int g_bar asm ("%g5");
2117 3 static int s_g_repeat = 2;
2118 4 int (*g_pf)();
2119 5
2120 6 struct s_tag @{
2121 7 int s_int;
2122 8 float s_float;
2123 9 char s_char_vec[8];
2124 10 struct s_tag* s_next;
2125 11 @} g_an_s;
2126 12
2127 13 typedef struct s_tag s_typedef;
2128 14
2129 15 char char_vec[3] = @{'a','b','c'@};
2130 16
2131 17 main (argc, argv)
2132 18 int argc;
2133 19 char* argv[];
2134 20 @{
2135 21 static float s_flap;
2136 22 int times;
2137 23 for (times=0; times < s_g_repeat; times++)@{
2138 24 int inner;
2139 25 printf ("Hello world\n");
2140 26 @}
2141 27 @};
2142 28
2143 29 enum e_places @{first,second=3,last@};
2144 30
2145 31 static s_proc (s_arg, s_ptr_arg, char_vec)
2146 32 s_typedef s_arg;
2147 33 s_typedef* s_ptr_arg;
2148 34 char* char_vec;
2149 35 @{
2150 36 union u_tag @{
2151 37 int u_int;
2152 38 float u_float;
2153 39 char* u_char;
2154 40 @} an_u;
2155 41 @}
2156 42
2157 43
2158 @end example
2159
2160 @node Example2.s
2161 @appendix Example2.s - assembly code for extended example
2162
2163 @example
2164 1 gcc2_compiled.:
2165 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
2166 3 .stabs "example2.c",100,0,0,Ltext0
2167 4 .text
2168 5 Ltext0:
2169 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
2170 7 .stabs "char:t2=r2;0;127;",128,0,0,0
2171 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
2172 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
2173 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
2174 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
2175 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
2176 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
2177 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
2178 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
2179 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
2180 17 .stabs "float:t12=r1;4;0;",128,0,0,0
2181 18 .stabs "double:t13=r1;8;0;",128,0,0,0
2182 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
2183 20 .stabs "void:t15=15",128,0,0,0
2184 21 .stabs "g_foo:G2",32,0,0,0
2185 22 .global _g_foo
2186 23 .data
2187 24 _g_foo:
2188 25 .byte 99
2189 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
2190 27 .align 4
2191 28 _s_g_repeat:
2192 29 .word 2
2193 @c FIXME! fake linebreak in line 30
2194 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:
2195 17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
2196 31 .stabs "s_typedef:t16",128,0,0,0
2197 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
2198 33 .global _char_vec
2199 34 .align 4
2200 35 _char_vec:
2201 36 .byte 97
2202 37 .byte 98
2203 38 .byte 99
2204 39 .reserve _s_flap.0,4,"bss",4
2205 40 .text
2206 41 .align 4
2207 42 LC0:
2208 43 .ascii "Hello world\12\0"
2209 44 .align 4
2210 45 .global _main
2211 46 .proc 1
2212 47 _main:
2213 48 .stabn 68,0,20,LM1
2214 49 LM1:
2215 50 !#PROLOGUE# 0
2216 51 save %sp,-144,%sp
2217 52 !#PROLOGUE# 1
2218 53 st %i0,[%fp+68]
2219 54 st %i1,[%fp+72]
2220 55 call ___main,0
2221 56 nop
2222 57 LBB2:
2223 58 .stabn 68,0,23,LM2
2224 59 LM2:
2225 60 st %g0,[%fp-20]
2226 61 L2:
2227 62 sethi %hi(_s_g_repeat),%o0
2228 63 ld [%fp-20],%o1
2229 64 ld [%o0+%lo(_s_g_repeat)],%o0
2230 65 cmp %o1,%o0
2231 66 bge L3
2232 67 nop
2233 68 LBB3:
2234 69 .stabn 68,0,25,LM3
2235 70 LM3:
2236 71 sethi %hi(LC0),%o1
2237 72 or %o1,%lo(LC0),%o0
2238 73 call _printf,0
2239 74 nop
2240 75 .stabn 68,0,26,LM4
2241 76 LM4:
2242 77 LBE3:
2243 78 .stabn 68,0,23,LM5
2244 79 LM5:
2245 80 L4:
2246 81 ld [%fp-20],%o0
2247 82 add %o0,1,%o1
2248 83 st %o1,[%fp-20]
2249 84 b,a L2
2250 85 L3:
2251 86 .stabn 68,0,27,LM6
2252 87 LM6:
2253 88 LBE2:
2254 89 .stabn 68,0,27,LM7
2255 90 LM7:
2256 91 L1:
2257 92 ret
2258 93 restore
2259 94 .stabs "main:F1",36,0,0,_main
2260 95 .stabs "argc:p1",160,0,0,68
2261 96 .stabs "argv:p20=*21=*2",160,0,0,72
2262 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
2263 98 .stabs "times:1",128,0,0,-20
2264 99 .stabn 192,0,0,LBB2
2265 100 .stabs "inner:1",128,0,0,-24
2266 101 .stabn 192,0,0,LBB3
2267 102 .stabn 224,0,0,LBE3
2268 103 .stabn 224,0,0,LBE2
2269 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
2270 @c FIXME: fake linebreak in line 105
2271 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
2272 128,0,0,0
2273 106 .align 4
2274 107 .proc 1
2275 108 _s_proc:
2276 109 .stabn 68,0,35,LM8
2277 110 LM8:
2278 111 !#PROLOGUE# 0
2279 112 save %sp,-120,%sp
2280 113 !#PROLOGUE# 1
2281 114 mov %i0,%o0
2282 115 st %i1,[%fp+72]
2283 116 st %i2,[%fp+76]
2284 117 LBB4:
2285 118 .stabn 68,0,41,LM9
2286 119 LM9:
2287 120 LBE4:
2288 121 .stabn 68,0,41,LM10
2289 122 LM10:
2290 123 L5:
2291 124 ret
2292 125 restore
2293 126 .stabs "s_proc:f1",36,0,0,_s_proc
2294 127 .stabs "s_arg:p16",160,0,0,0
2295 128 .stabs "s_ptr_arg:p18",160,0,0,72
2296 129 .stabs "char_vec:p21",160,0,0,76
2297 130 .stabs "an_u:23",128,0,0,-20
2298 131 .stabn 192,0,0,LBB4
2299 132 .stabn 224,0,0,LBE4
2300 133 .stabs "g_bar:r1",64,0,0,5
2301 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
2302 135 .common _g_pf,4,"bss"
2303 136 .stabs "g_an_s:G16",32,0,0,0
2304 137 .common _g_an_s,20,"bss"
2305 @end example
2306
2307
2308 @node Quick reference
2309 @appendix Quick reference
2310
2311 @menu
2312 * Stab types:: Table A: Symbol types from stabs
2313 * Assembler types:: Table B: Symbol types from assembler and linker
2314 * Symbol descriptors:: Table C
2315 * Type Descriptors:: Table D
2316 @end menu
2317
2318 @node Stab types
2319 @section Table A: Symbol types from stabs
2320
2321 Table A lists stab types sorted by type number. Stab type numbers are
2322 32 and greater. This is the full list of stab numbers, including stab
2323 types that are used in languages other than C.
2324
2325 The #define names for these stab types are defined in:
2326 devo/include/aout/stab.def
2327
2328 @smallexample
2329 type type #define used to describe
2330 dec hex name source program feature
2331 ------------------------------------------------
2332 32 0x20 N_GYSM global symbol
2333 34 0X22 N_FNAME function name (for BSD Fortran)
2334 36 0x24 N_FUN function name or text segment variable for C
2335 38 0x26 N_STSYM static symbol (data segment w/internal linkage)
2336 40 0x28 N_LCSYM .lcomm symbol(BSS-seg variable w/internal linkage)
2337 42 0x2a N_MAIN Name of main routine (not used in C)
2338 48 0x30 N_PC global symbol (for Pascal)
2339 50 0x32 N_NSYMS number of symbols (according to Ultrix V4.0)
2340 52 0x34 N_NOMAP no DST map for sym (according to Ultrix V4.0)
2341 64 0x40 N_RSYM register variable
2342 66 0x42 N_M2C Modula-2 compilation unit
2343 68 0x44 N_SLINE line number in text segment
2344 70 0x46 N_DSLINE line number in data segment
2345
2346 72 0x48 N_BSLINE line number in bss segment
2347 72 0x48 N_BROWS Sun source code browser, path to .cb file
2348
2349 74 0x4a N_DEFD GNU Modula2 definition module dependency
2350
2351 80 0x50 N_EHDECL GNU C++ exception variable
2352 80 0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0)
2353
2354 84 0x54 N_CATCH GNU C++ "catch" clause
2355 96 0x60 N_SSYM structure of union element
2356 100 0x64 N_SO path and name of source file
2357 128 0x80 N_LSYM automatic var in the stack
2358 (also used for type desc.)
2359 130 0x82 N_BINCL beginning of an include file (Sun only)
2360 132 0x84 N_SOL Name of sub-source (#include) file.
2361 160 0xa0 N_PSYM parameter variable
2362 162 0xa2 N_EINCL end of an include file
2363 164 0xa4 N_ENTRY alternate entry point
2364 192 0xc0 N_LBRAC beginning of a lexical block
2365 194 0xc2 N_EXCL place holder for a deleted include file
2366 196 0xc4 N_SCOPE modula2 scope information (Sun linker)
2367 224 0xe0 N_RBRAC end of a lexical block
2368 226 0xe2 N_BCOMM begin named common block
2369 228 0xe4 N_ECOMM end named common block
2370 232 0xe8 N_ECOML end common (local name)
2371
2372 << used on Gould systems for non-base registers syms >>
2373 240 0xf0 N_NBTEXT ??
2374 242 0xf2 N_NBDATA ??
2375 244 0xf4 N_NBBSS ??
2376 246 0xf6 N_NBSTS ??
2377 248 0xf8 N_NBLCS ??
2378 @end smallexample
2379
2380 @node Assembler types
2381 @section Table B: Symbol types from assembler and linker
2382
2383 Table B shows the types of symbol table entries that hold assembler
2384 and linker symbols.
2385
2386 The #define names for these n_types values are defined in
2387 /include/aout/aout64.h
2388
2389 @smallexample
2390 dec hex #define
2391 n_type n_type name used to describe
2392 ------------------------------------------
2393 1 0x0 N_UNDF undefined symbol
2394 2 0x2 N_ABS absolute symbol -- defined at a particular address
2395 3 0x3 extern " (vs. file scope)
2396 4 0x4 N_TEXT text symbol -- defined at offset in text segment
2397 5 0x5 extern " (vs. file scope)
2398 6 0x6 N_DATA data symbol -- defined at offset in data segment
2399 7 0x7 extern " (vs. file scope)
2400 8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
2401 9 extern " (vs. file scope)
2402
2403 12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
2404
2405 49 0x12 N_COMM common sym -- visable after shared lib dynamic link
2406 31 0x1f N_FN file name of a .o file
2407 @end smallexample
2408
2409 @node Symbol descriptors
2410 @section Table C: Symbol descriptors
2411
2412 @example
2413 descriptor meaning
2414 -------------------------------------------------
2415 (empty) local variable
2416 f local function
2417 F global function
2418 G global variable
2419 p value parameter
2420 r register variable
2421 S static global variable
2422 t type name
2423 T enumeration, struct or type tag
2424 V static local variable
2425 @end example
2426
2427 @node Type Descriptors
2428 @section Table D: Type Descriptors
2429
2430 @example
2431 descriptor meaning
2432 -------------------------------------
2433 (empty) type reference
2434 a array type
2435 e enumeration type
2436 f function type
2437 r range type
2438 s structure type
2439 u union specifications
2440 * pointer type
2441 @end example
2442
2443
2444 @node Expanded reference
2445 @appendix Expanded reference by stab type.
2446
2447 Format of an entry:
2448
2449 The first line is the symbol type expressed in decimal, hexadecimal,
2450 and as a #define (see devo/include/aout/stab.def).
2451
2452 The second line describes the language constructs the symbol type
2453 represents.
2454
2455 The third line is the stab format with the significant stab fields
2456 named and the rest NIL.
2457
2458 Subsequent lines expand upon the meaning and possible values for each
2459 significant stab field. # stands in for the type descriptor.
2460
2461 Finally, any further information.
2462
2463 @menu
2464 * N_GSYM:: Global variable
2465 * N_FNAME:: Function name (BSD Fortran)
2466 * N_FUN:: C Function name or text segment variable
2467 * N_STSYM:: Initialized static symbol
2468 * N_LCSYM:: Uninitialized static symbol
2469 * N_MAIN:: Name of main routine (not for C)
2470 * N_PC:: Pascal global symbol
2471 * N_NSYMS:: Number of symbols
2472 * N_NOMAP:: No DST map
2473 * N_RSYM:: Register variable
2474 * N_M2C:: Modula-2 compilation unit
2475 * N_SLINE:: Line number in text segment
2476 * N_DSLINE:: Line number in data segment
2477 * N_BSLINE:: Line number in bss segment
2478 * N_BROWS:: Path to .cb file for Sun source code browser
2479 * N_DEFD:: GNU Modula2 definition module dependency
2480 * N_EHDECL:: GNU C++ exception variable
2481 * N_MOD2:: Modula2 information "for imc"
2482 * N_CATCH:: GNU C++ "catch" clause
2483 * N_SSYM:: Structure or union element
2484 * N_SO:: Source file containing main
2485 * N_LSYM:: Automatic variable
2486 * N_BINCL:: Beginning of include file (Sun only)
2487 * N_SOL:: Name of include file
2488 * N_PSYM:: Parameter variable
2489 * N_EINCL:: End of include file
2490 * N_ENTRY:: Alternate entry point
2491 * N_LBRAC:: Beginning of lexical block
2492 * N_EXCL:: Deleted include file
2493 * N_SCOPE:: Modula2 scope information (Sun only)
2494 * N_RBRAC:: End of lexical block
2495 * N_BCOMM:: Begin named common block
2496 * N_ECOMM:: End named common block
2497 * N_ECOML:: End common
2498 * Gould:: non-base register symbols used on Gould systems
2499 * N_LENG:: Length of preceding entry
2500 @end menu
2501
2502 @node N_GSYM
2503 @section 32 - 0x20 - N_GYSM
2504
2505 @display
2506 Global variable.
2507
2508 .stabs "name", N_GSYM, NIL, NIL, NIL
2509 @end display
2510
2511 @example
2512 "name" -> "symbol_name:#type"
2513 # -> G
2514 @end example
2515
2516 Only the "name" field is significant. the location of the variable is
2517 obtained from the corresponding external symbol.
2518
2519 @node N_FNAME
2520 @section 34 - 0x22 - N_FNAME
2521 Function name (for BSD Fortran)
2522
2523 @display
2524 .stabs "name", N_FNAME, NIL, NIL, NIL
2525 @end display
2526
2527 @example
2528 "name" -> "function_name"
2529 @end example
2530
2531 Only the "name" field is significant. The location of the symbol is
2532 obtained from the corresponding extern symbol.
2533
2534 @node N_FUN
2535 @section 36 - 0x24 - N_FUN
2536 Function name or text segment variable for C.
2537
2538 @display
2539 .stabs "name", N_FUN, NIL, desc, value
2540 @end display
2541
2542 @example
2543 @exdent @emph{For functions:}
2544 "name" -> "proc_name:#return_type"
2545 # -> F (global function)
2546 f (local function)
2547 desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)
2548 value -> Code address of proc start.
2549
2550 @exdent @emph{For text segment variables:}
2551 <<How to create one?>>
2552 @end example
2553
2554 @node N_STSYM
2555 @section 38 - 0x26 - N_STSYM
2556 Initialized static symbol (data segment w/internal linkage).
2557
2558 @display
2559 .stabs "name", N_STSYM, NIL, NIL, value
2560 @end display
2561
2562 @example
2563 "name" -> "symbol_name#type"
2564 # -> S (scope global to compilation unit)
2565 -> V (scope local to a procedure)
2566 value -> Data Address
2567 @end example
2568
2569 @node N_LCSYM
2570 @section 40 - 0x28 - N_LCSYM
2571 Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
2572
2573 @display
2574 .stabs "name", N_LCLSYM, NIL, NIL, value
2575 @end display
2576
2577 @example
2578 "name" -> "symbol_name#type"
2579 # -> S (scope global to compilation unit)
2580 -> V (scope local to procedure)
2581 value -> BSS Address
2582 @end example
2583
2584 @node N_MAIN
2585 @section 42 - 0x2a - N_MAIN
2586 Name of main routine (not used in C)
2587
2588 @display
2589 .stabs "name", N_MAIN, NIL, NIL, NIL
2590 @end display
2591
2592 @example
2593 "name" -> "name_of_main_routine"
2594 @end example
2595
2596 @node N_PC
2597 @section 48 - 0x30 - N_PC
2598 Global symbol (for Pascal)
2599
2600 @display
2601 .stabs "name", N_PC, NIL, NIL, value
2602 @end display
2603
2604 @example
2605 "name" -> "symbol_name" <<?>>
2606 value -> supposedly the line number (stab.def is skeptical)
2607 @end example
2608
2609 @display
2610 stabdump.c says:
2611
2612 global pascal symbol: name,,0,subtype,line
2613 << subtype? >>
2614 @end display
2615
2616 @node N_NSYMS
2617 @section 50 - 0x32 - N_NSYMS
2618 Number of symbols (according to Ultrix V4.0)
2619
2620 @display
2621 0, files,,funcs,lines (stab.def)
2622 @end display
2623
2624 @node N_NOMAP
2625 @section 52 - 0x34 - N_NOMAP
2626 no DST map for sym (according to Ultrix V4.0)
2627
2628 @display
2629 name, ,0,type,ignored (stab.def)
2630 @end display
2631
2632 @node N_RSYM
2633 @section 64 - 0x40 - N_RSYM
2634 register variable
2635
2636 @display
2637 .stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)
2638 @end display
2639
2640 @node N_M2C
2641 @section 66 - 0x42 - N_M2C
2642 Modula-2 compilation unit
2643
2644 @display
2645 .stabs "name", N_M2C, 0, desc, value
2646 @end display
2647
2648 @example
2649 "name" -> "unit_name,unit_time_stamp[,code_time_stamp]
2650 desc -> unit_number
2651 value -> 0 (main unit)
2652 1 (any other unit)
2653 @end example
2654
2655 @node N_SLINE
2656 @section 68 - 0x44 - N_SLINE
2657 Line number in text segment
2658
2659 @display
2660 .stabn N_SLINE, 0, desc, value
2661 @end display
2662
2663 @example
2664 desc -> line_number
2665 value -> code_address (relocatable addr where the corresponding code starts)
2666 @end example
2667
2668 For single source lines that generate discontiguous code, such as flow
2669 of control statements, there may be more than one N_SLINE stab for the
2670 same source line. In this case there is a stab at the start of each
2671 code range, each with the same line number.
2672
2673 @node N_DSLINE
2674 @section 70 - 0x46 - N_DSLINE
2675 Line number in data segment
2676
2677 @display
2678 .stabn N_DSLINE, 0, desc, value
2679 @end display
2680
2681 @example
2682 desc -> line_number
2683 value -> data_address (relocatable addr where the corresponding code
2684 starts)
2685 @end example
2686
2687 See comment for N_SLINE above.
2688
2689 @node N_BSLINE
2690 @section 72 - 0x48 - N_BSLINE
2691 Line number in bss segment
2692
2693 @display
2694 .stabn N_BSLINE, 0, desc, value
2695 @end display
2696
2697 @example
2698 desc -> line_number
2699 value -> bss_address (relocatable addr where the corresponding code
2700 starts)
2701 @end example
2702
2703 See comment for N_SLINE above.
2704
2705 @node N_BROWS
2706 @section 72 - 0x48 - N_BROWS
2707 Sun source code browser, path to .cb file
2708
2709 <<?>>
2710 "path to associated .cb file"
2711
2712 Note: type field value overlaps with N_BSLINE
2713
2714 @node N_DEFD
2715 @section 74 - 0x4a - N_DEFD
2716 GNU Modula2 definition module dependency
2717
2718 GNU Modula-2 definition module dependency. Value is the modification
2719 time of the definition file. Other is non-zero if it is imported with
2720 the GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
2721 are enough empty fields?
2722
2723 @node N_EHDECL
2724 @section 80 - 0x50 - N_EHDECL
2725 GNU C++ exception variable <<?>>
2726
2727 "name is variable name"
2728
2729 Note: conflicts with N_MOD2.
2730
2731 @node N_MOD2
2732 @section 80 - 0x50 - N_MOD2
2733 Modula2 info "for imc" (according to Ultrix V4.0)
2734
2735 Note: conflicts with N_EHDECL <<?>>
2736
2737 @node N_CATCH
2738 @section 84 - 0x54 - N_CATCH
2739 GNU C++ "catch" clause
2740
2741 GNU C++ `catch' clause. Value is its address. Desc is nonzero if
2742 this entry is immediately followed by a CAUGHT stab saying what
2743 exception was caught. Multiple CAUGHT stabs means that multiple
2744 exceptions can be caught here. If Desc is 0, it means all exceptions
2745 are caught here.
2746
2747 @node N_SSYM
2748 @section 96 - 0x60 - N_SSYM
2749 Structure or union element
2750
2751 Value is offset in the structure.
2752
2753 <<?looking at structs and unions in C I didn't see these>>
2754
2755 @node N_SO
2756 @section 100 - 0x64 - N_SO
2757 Path and name of source file containing main routine
2758
2759 @display
2760 .stabs "name", N_SO, NIL, NIL, value
2761 @end display
2762
2763 @example
2764 "name" -> /path/to/source/file
2765 -> source_file_terminal_name
2766
2767 value -> the starting text address of the compilation.
2768 @end example
2769
2770 These are found two in a row. The name field of the first N_SO
2771 contains the path to the source file. The name field of the second
2772 N_SO contains the terminal name of the source file itself.
2773
2774 @node N_LSYM
2775 @section 128 - 0x80 - N_LSYM
2776 Automatic var in the stack (also used for type descriptors.)
2777
2778 @display
2779 .stabs "name" N_LSYM, NIL, NIL, value
2780 @end display
2781
2782 @example
2783 @exdent @emph{For stack based local variables:}
2784
2785 "name" -> name of the variable
2786 value -> offset from frame pointer (negative)
2787
2788 @exdent @emph{For type descriptors:}
2789
2790 "name" -> "name_of_the_type:#type"
2791 # -> t
2792
2793 type -> type_ref (or) type_def
2794
2795 type_ref -> type_number
2796 type_def -> type_number=type_desc etc.
2797 @end example
2798
2799 Type may be either a type reference or a type definition. A type
2800 reference is a number that refers to a previously defined type. A
2801 type definition is the number that will refer to this type, followed
2802 by an equals sign, a type descriptor and the additional data that
2803 defines the type. See the Table D for type descriptors and the
2804 section on types for what data follows each type descriptor.
2805
2806 @node N_BINCL
2807 @section 130 - 0x82 - N_BINCL
2808
2809 Beginning of an include file (Sun only)
2810
2811 Beginning of an include file. Only Sun uses this. In an object file,
2812 only the name is significant. The Sun linker puts data into some of
2813 the other fields.
2814
2815 @node N_SOL
2816 @section 132 - 0x84 - N_SOL
2817
2818 Name of a sub-source file (#include file). Value is starting address
2819 of the compilation.
2820 <<?>>
2821
2822 @node N_PSYM
2823 @section 160 - 0xa0 - N_PSYM
2824
2825 Parameter variable
2826
2827 @display
2828 stabs. "name", N_PSYM, NIL, NIL, value
2829 @end display
2830
2831 @example
2832 "name" -> "param_name:#type"
2833 # -> p (value parameter)
2834 -> i (value parameter by reference, indirect access)
2835 -> v (variable parameter by reference)
2836 -> C ( read-only parameter, conformant array bound)
2837 -> x (confomant array value parameter)
2838 -> pP (<<??>>)
2839 -> pF (<<??>>)
2840 -> X (function result variable)
2841 -> b (based variable)
2842
2843 value -> offset from the argument pointer (positive).
2844 @end example
2845
2846 On most machines the argument pointer is the same as the frame
2847 pointer.
2848
2849 @node N_EINCL
2850 @section 162 - 0xa2 - N_EINCL
2851
2852 End of an include file. This and N_BINCL act as brackets around the
2853 file's output. In an ojbect file, there is no significant data in
2854 this entry. The Sun linker puts data into some of the fields.
2855 <<?>>
2856
2857 @node N_ENTRY
2858 @section 164 - 0xa4 - N_ENTRY
2859
2860 Alternate entry point.
2861 Value is its address.
2862 <<?>>
2863
2864 @node N_LBRAC
2865 @section 192 - 0xc0 - N_LBRAC
2866
2867 Beginning of a lexical block (left brace). The variable defined
2868 inside the block precede the N_LBRAC symbol. Or can they follow as
2869 well as long as a new N_FUNC was not encountered. <<?>>
2870
2871 @display
2872 .stabn N_LBRAC, NIL, NIL, value
2873 @end display
2874
2875 @example
2876 value -> code address of block start.
2877 @end example
2878
2879 @node N_EXCL
2880 @section 194 - 0xc2 - N_EXCL
2881
2882 Place holder for a deleted include file. Replaces a N_BINCL and
2883 everything up to the corresponding N_EINCL. The Sun linker generates
2884 these when it finds multiple indentical copies of the symbols from an
2885 included file. This appears only in output from the Sun linker.
2886 <<?>>
2887
2888 @node N_SCOPE
2889 @section 196 - 0xc4 - N_SCOPE
2890
2891 Modula2 scope information (Sun linker)
2892 <<?>>
2893
2894 @node N_RBRAC
2895 @section 224 - 0xe0 - N_RBRAC
2896
2897 End of a lexical block (right brace)
2898
2899 @display
2900 .stabn N_RBRAC, NIL, NIL, value
2901 @end display
2902
2903 @example
2904 value -> code address of the end of the block.
2905 @end example
2906
2907 @node N_BCOMM
2908 @section 226 - 0xe2 - N_BCOMM
2909
2910 Begin named common block.
2911
2912 Only the name is significant.
2913 <<?>>
2914
2915 @node N_ECOMM
2916 @section 228 - 0xe4 - N_ECOMM
2917
2918 End named common block.
2919
2920 Only the name is significant and it should match the N_BCOMM
2921 <<?>>
2922
2923 @node N_ECOML
2924 @section 232 - 0xe8 - N_ECOML
2925
2926 End common (local name)
2927
2928 value is address.
2929 <<?>>
2930
2931 @node Gould
2932 @section Non-base registers on Gould systems
2933 << used on Gould systems for non-base registers syms, values assigned
2934 at random, need real info from Gould. >>
2935 <<?>>
2936
2937 @example
2938 240 0xf0 N_NBTEXT ??
2939 242 0xf2 N_NBDATA ??
2940 244 0xf4 N_NBBSS ??
2941 246 0xf6 N_NBSTS ??
2942 248 0xf8 N_NBLCS ??
2943 @end example
2944
2945 @node N_LENG
2946 @section - 0xfe - N_LENG
2947
2948 Second symbol entry containing a length-value for the preceding entry.
2949 The value is the length.
2950
2951 @node Questions
2952 @appendix Questions and anomalies
2953
2954 @itemize @bullet
2955 @item
2956 For GNU C stabs defining local and global variables (N_LSYM and
2957 N_GSYM), the desc field is supposed to contain the source line number
2958 on which the variable is defined. In reality the desc field is always
2959 0. (This behavour is defined in dbxout.c and putting a line number in
2960 desc is controlled by #ifdef WINNING_GDB which defaults to false). Gdb
2961 supposedly uses this information if you say 'list var'. In reality
2962 var can be a variable defined in the program and gdb says `function
2963 var not defined'
2964
2965 @item
2966 In GNU C stabs there seems to be no way to differentiate tag types:
2967 structures, unions, and enums (symbol descriptor T) and typedefs
2968 (symbol descriptor t) defined at file scope from types defined locally
2969 to a procedure or other more local scope. They all use the N_LSYM
2970 stab type. Types defined at procedure scope are emited after the
2971 N_RBRAC of the preceding function and before the code of the
2972 procedure in which they are defined. This is exactly the same as
2973 types defined in the source file between the two procedure bodies.
2974 GDB overcompensates by placing all types in block #1 the block for
2975 symbols of file scope. This is true for default, -ansi and
2976 -traditional compiler options. (p0001063-gcc, p0001066-gdb)
2977
2978 @item
2979 What ends the procedure scope? Is it the proc block's N_RBRAC or the
2980 next N_FUN? (I believe its the first.)
2981
2982 @item
2983 The comment in xcoff.h says DBX_STATIC_CONST_VAR_CODE is used for
2984 static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN by
2985 default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM.
2986 But testing the default behaviour, my Sun4 native example shows
2987 N_STSYM not N_FUN is used to describe file static initialized
2988 variables. (the code tests for TREE_READONLY(decl) &&
2989 !TREE_THIS_VOLATILE(decl) and if true uses DBX_STATIC_CONST_VAR_CODE).
2990
2991 @item
2992 Global variable stabs don't have location information. This comes
2993 from the external symbol for the same variable. The external symbol
2994 has a leading underbar on the _name of the variable and the stab does
2995 not. How do we know these two symbol table entries are talking about
2996 the same symbol when their names are different?
2997
2998 @item
2999 Can gcc be configured to output stabs the way the Sun compiler
3000 does, so that their native debugging tools work? <NO?> It doesn't by
3001 default. GDB reads either format of stab. (gcc or SunC). How about
3002 dbx?
3003 @end itemize
3004
3005 @node xcoff-differences
3006 @appendix Differences between GNU stabs in a.out and GNU stabs in xcoff
3007
3008 (The AIX/RS6000 native object file format is xcoff with stabs)
3009
3010 @itemize @bullet
3011 @item
3012 Instead of .stabs, xcoff uses .stabx.
3013
3014 @item
3015 The data fields of an xcoff .stabx are in a different order than an
3016 a.out .stabs. The order is: string, value, type. The desc and null
3017 fields present in a.out stabs are missing in xcoff stabs. For N_GSYM
3018 the value field is the name of the symbol.
3019
3020 @item
3021 BSD a.out stab types correspond to AIX xcoff storage classes. In general the
3022 mapping is N_STABTYPE becomes C_STABTYPE. Some stab types in a.out
3023 are not supported in xcoff. See Table E. for full mappings.
3024
3025 exception:
3026 initialised static N_STSYM and un-initialized static N_LCSYM both map
3027 to the C_STSYM storage class. But the destinction is preserved
3028 because in xcoff N_STSYM and N_LCSYM must be emited in a named static
3029 block. Begin the block with .bs s[RW] data_section_name for N_STSYM
3030 or .bs s bss_section_name for N_LCSYM. End the block with .es
3031
3032 @item
3033 xcoff stabs describing tags and typedefs use the N_DECL (0x8c)instead
3034 of N_LSYM stab type.
3035
3036 @item
3037 xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register
3038 variables. If the register variable is also a value parameter, then
3039 use R instead of P for the symbol descriptor.
3040
3041 6.
3042 xcoff uses negative numbers as type references to the basic types.
3043 There are no boilerplate type definitions emited for these basic
3044 types. << make table of basic types and type numbers for C >>
3045
3046 @item
3047 xcoff .stabx sometimes don't have the name part of the string field.
3048
3049 @item
3050 xcoff uses a .file stab type to represent the source file name. There
3051 is no stab for the path to the source file.
3052
3053 @item
3054 xcoff uses a .line stab type to represent source lines. The format
3055 is: .line line_number.
3056
3057 @item
3058 xcoff emits line numbers relative to the start of the current
3059 function. The start of a function is marked by .bf. If a function
3060 includes lines from a seperate file, then those line numbers are
3061 absolute line numbers in the <<sub-?>> file being compiled.
3062
3063 @item
3064 The start of current include file is marked with: .bi "filename" and
3065 the end marked with .ei "filename"
3066
3067 @item
3068 If the xcoff stab is a N_FUN (C_FUN) then follow the string field with
3069 ,. instead of just ,
3070
3071 @item
3072 The symbol descriptor for register parameters is P for a.out and R for
3073 xcoff.
3074 @end itemize
3075
3076
3077 (I think that's it for .s file differences. They could stand to be
3078 better presented. This is just a list of what I have noticed so far.
3079 There are a *lot* of differences in the information in the symbol
3080 tables of the executable and object files.)
3081
3082 Table E: mapping a.out stab types to xcoff storage classes
3083
3084 @example
3085 stab type storage class
3086 -------------------------------
3087 N_GSYM C_GSYM
3088 N_FNAME unknown
3089 N_FUN C_FUN
3090 N_STSYM C_STSYM
3091 N_LCSYM C_STSYM
3092 N_MAIN unkown
3093 N_PC unknown
3094 N_RSYM C_RSYM
3095 N_RPSYM (0x8e) C_RPSYM
3096 N_M2C unknown
3097 N_SLINE unknown
3098 N_DSLINE unknown
3099 N_BSLINE unknown
3100 N_BROWSE unchanged
3101 N_CATCH unknown
3102 N_SSYM unknown
3103 N_SO unknown
3104 N_LSYM C_LSYM
3105 N_DECL (0x8c) C_DECL
3106 N_BINCL unknown
3107 N_SOL unknown
3108 N_PSYM C_PSYM
3109 N_EINCL unknown
3110 N_ENTRY C_ENTRY
3111 N_LBRAC unknown
3112 N_EXCL unknown
3113 N_SCOPE unknown
3114 N_RBRAC unknown
3115 N_BCOMM C_BCOMM
3116 N_ECOMM C_ECOMM
3117 N_ECOML C_ECOML
3118
3119 N_LENG unknown
3120 @end example
3121
3122 @node Sun-differences
3123 @appendix Differences between GNU stabs and Sun native stabs.
3124
3125 @itemize @bullet
3126 @item
3127 GNU C stabs define *all* types, file or procedure scope, as
3128 N_LSYM. Sun doc talks about using N_GSYM too.
3129
3130 @item
3131 @c FIXME: are you sure? The 'a' is usually followed by an 'r' which means
3132 @c "range type" but that doesn't mean the type descriptor is 'ar'.
3133 @c A (non-C) array could be indexed by an enum, for example. -kingdon
3134 GNU C stabs use `ar' as type descriptor when defining arrays vs. just
3135 `a' in Sun doc.
3136
3137 @item
3138 Stabs describing block scopes, N_LBRAC and N_RBRAC are supposed to
3139 contain the nesting level of the block in the desc field, re Sun doc.
3140 GNU stabs always have 0 in that field.
3141
3142 @item
3143 Sun C stabs use type number pairs in the format (a,b) where a is a
3144 number starting with 1 and incremented for each sub-source file in the
3145 compilation. b is a number starting with 1 and incremented for each
3146 new type defined in the compilation. GNU C stabs use the type number
3147 alone, with no source file number.
3148 @end itemize
3149
3150 @contents
3151 @bye
This page took 0.094975 seconds and 4 git commands to generate.