fix stabs.texinfo xref bugs
[deliverable/binutils-gdb.git] / gdb / doc / stabs.texinfo
1 \input texinfo
2 @setfilename stabs.info
3
4 @ifinfo
5 @format
6 START-INFO-DIR-ENTRY
7 * Stabs: (stabs). The "stabs" debugging information format.
8 END-INFO-DIR-ENTRY
9 @end format
10 @end ifinfo
11
12 @ifinfo
13 This document describes GNU stabs (debugging symbol tables) in a.out files.
14
15 Copyright 1992 Free Software Foundation, Inc.
16 Contributed by Cygnus Support. Written by Julia Menapace.
17
18 Permission is granted to make and distribute verbatim copies of
19 this manual provided the copyright notice and this permission notice
20 are preserved on all copies.
21
22 @ignore
23 Permission is granted to process this file through Tex and print the
24 results, provided the printed document carries copying permission
25 notice identical to this one except for the removal of this paragraph
26 (this paragraph not being relevant to the printed manual).
27
28 @end ignore
29 Permission is granted to copy or distribute modified versions of this
30 manual under the terms of the GPL (for which purpose this text may be
31 regarded as a program in the language TeX).
32 @end ifinfo
33
34 @setchapternewpage odd
35 @settitle STABS
36 @titlepage
37 @title The ``stabs'' debug format
38 @author Julia Menapace
39 @author Cygnus Support
40 @page
41 @tex
42 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
43 \xdef\manvers{\$Revision$} % For use in headers, footers too
44 {\parskip=0pt
45 \hfill Cygnus Support\par
46 \hfill \manvers\par
47 \hfill \TeX{}info \texinfoversion\par
48 }
49 @end tex
50
51 @vskip 0pt plus 1filll
52 Copyright @copyright{} 1992 Free Software Foundation, Inc.
53 Contributed by Cygnus Support.
54
55 Permission is granted to make and distribute verbatim copies of
56 this manual provided the copyright notice and this permission notice
57 are preserved on all copies.
58
59 @end titlepage
60
61 @ifinfo
62 @node Top
63 @top The "stabs" representation of debugging information
64
65 This document describes the GNU stabs debugging format in a.out files.
66
67 @menu
68 * Overview:: Overview of stabs
69 * Program structure:: Encoding of the structure of the program
70 * Simple types::
71 * Example:: A comprehensive example in C
72 * Variables::
73 * Aggregate Types::
74 * Symbol tables:: Symbol information in symbol tables
75 * GNU Cplusplus stabs::
76
77 Appendixes:
78 * Example2.c:: Source code for extended example
79 * Example2.s:: Assembly code for extended example
80 * Quick reference:: Various refernce tables
81 * Expanded reference:: Reference information by stab type
82 * Questions:: Questions and anomolies
83 * xcoff-differences:: Differences between GNU stabs in a.out
84 and GNU stabs in xcoff
85 * Sun-differences:: Differences between GNU stabs and Sun
86 native stabs
87 @end menu
88 @end ifinfo
89
90
91 @node Overview
92 @chapter Overview of stabs
93
94 @dfn{Stabs} refers to a format for information that describes a program
95 to a debugger. This format was apparently invented by
96 @c FIXME! <<name of inventor>> at
97 the University of California at Berkeley, for the @code{pdx} Pascal
98 debugger; the format has spread widely since then.
99
100 @menu
101 * Flow:: Overview of debugging information flow
102 * Stabs format:: Overview of stab format
103 * C example:: A simple example in C source
104 * Assembly code:: The simple example at the assembly level
105 @end menu
106
107 @node Flow
108 @section Overview of debugging information flow
109
110 The GNU C compiler compiles C source in a @file{.c} file into assembly
111 language in a @file{.s} file, which is translated by the assembler into
112 a @file{.o} file, and then linked with other @file{.o} files and
113 libraries to produce an executable file.
114
115 With the @samp{-g} option, GCC puts additional debugging information in
116 the @file{.s} file, which is slightly transformed by the assembler and
117 linker, and carried through into the final executable. This debugging
118 information describes features of the source file like line numbers,
119 the types and scopes of variables, and functions, their parameters and
120 their scopes.
121
122 For some object file formats, the debugging information is
123 encapsulated in assembler directives known collectively as `stab' (symbol
124 table) directives, interspersed with the generated code. Stabs are
125 the native format for debugging information in the a.out and xcoff
126 object file formats. The GNU tools can also emit stabs in the coff
127 and ecoff object file formats.
128
129 The assembler adds the information from stabs to the symbol information
130 it places by default in the symbol table and the string table of the
131 @file{.o} file it is building. The linker consolidates the @file{.o}
132 files into one executable file, with one symbol table and one string
133 table. Debuggers use the symbol and string tables in the executable as
134 a source of debugging information about the program.
135
136 @node Stabs format
137 @section Overview of stab format
138
139 There are three overall formats for stab assembler directives
140 differentiated by the first word of the stab. The name of the directive
141 describes what combination of four possible data fields will follow. It
142 is either @code{.stabs} (string), @code{.stabn} (number), or
143 @code{.stabd} (dot).
144
145 The overall format of each class of stab is:
146
147 @example
148 .stabs "@var{string}",@var{type},0,@var{desc},@var{value}
149 .stabn @var{type},0,@var{desc},@var{value}
150 .stabd @var{type},0,@var{desc}
151 @end example
152
153 In general, in @code{.stabs} the @var{string} field contains name and type
154 information. For @code{.stabd} the value field is implicit and has the value
155 of the current file location. Otherwise the value field often
156 contains a relocatable address, frame pointer offset, or register
157 number, that maps to the source code element described by the stab.
158
159 The real key to decoding the meaning of a stab is the number in its type
160 field. Each possible type number defines a different stab type. The
161 stab type further defines the exact interpretation of, and possible
162 values for, any remaining @code{"@var{string}"}, @var{desc}, or
163 @var{value} fields present in the stab. Table A (@pxref{Stab
164 types,,Table A: Symbol types from stabs}) lists in numeric order
165 the possible type field values for stab directives. The reference
166 section that follows Table A describes the meaning of the fields for
167 each stab type in detail. The examples that follow this overview
168 introduce the stab types in terms of the source code elements they
169 describe.
170
171 For @code{.stabs} the @code{"@var{string}"} field holds the meat of the
172 debugging information. The generally unstructured nature of this field
173 is what makes stabs extensible. For some stab types the string field
174 contains only a name. For other stab types the contents can be a great
175 deal more complex.
176
177 The overall format is of the @code{"@var{string}"} field is:
178
179 @example
180 "@var{name}@r{[}:@var{symbol_descriptor}@r{]}
181 @r{[}@var{type_number}@r{[}=@var{type_descriptor} @r{@dots{}]]}"
182 @end example
183
184 @var{name} is the name of the symbol represented by the stab.
185
186 The @var{symbol_descriptor} following the @samp{:} is an alphabetic
187 character that tells more specifically what kind of symbol the stab
188 represents. If the @var{symbol_descriptor} is omitted, but type
189 information follows, then the stab represents a local variable. For a
190 list of symbol_descriptors, see @ref{Symbol descriptors,,Table C: Symbol
191 descriptors}.
192
193 Type information is either a @var{type_number}, or a
194 @samp{@var{type_number}=}. The @var{type_number} alone is a type
195 reference, referring directly to a type that has already been defined.
196
197 The @samp{@var{type_number}=} is a type definition, where the number
198 represents a new type which is about to be defined. The type definition
199 may refer to other types by number, and those type numbers may be
200 followed by @samp{=} and nested definitions.
201
202 In a type definition, if the character that follows the equals sign is
203 non-numeric then it is a @var{type_descriptor}, and tells what kind of
204 type is about to be defined. Any other values following the
205 @var{type_descriptor} vary, depending on the @var{type_descriptor}. If
206 a number follows the @samp{=} then the number is a @var{type_reference}.
207 This is described more thoroughly in the section on types. @xref{Type
208 Descriptors,,Table D: Type Descriptors}, for a list of
209 @var{type_descriptor} values.
210
211 All this can make the @code{"@var{string}"} field quite long. All
212 versions of GDB, and some versions of DBX, can handle arbitrarily long
213 strings. But many versions of DBX cretinously limit the strings to
214 about 80 characters, so compilers which must work with such DBX's need
215 to split the @code{.stabs} directive into several @code{.stabs}
216 directives. Each stab duplicates exactly all but the
217 @code{"@var{string}"} field. The @code{"@var{string}"} field of the
218 every stab except the last is marked as continued with a
219 double-backslash at the end. Removing the backslashes and concatenating
220 the @code{"@var{string}"} fields of each stab produces the original,
221 long string.
222
223 @node C example
224 @section A simple example in C source
225
226 To get the flavor of how stabs describe source information for a C
227 program, let's look at the simple program:
228
229 @example
230 main()
231 @{
232 printf("Hello world");
233 @}
234 @end example
235
236 When compiled with @samp{-g}, the program above yields the following
237 @file{.s} file. Line numbers have been added to make it easier to refer
238 to parts of the @file{.s} file in the description of the stabs that
239 follows.
240
241 @node Assembly code
242 @section The simple example at the assembly level
243
244 @example
245 1 gcc2_compiled.:
246 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
247 3 .stabs "hello.c",100,0,0,Ltext0
248 4 .text
249 5 Ltext0:
250 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
251 7 .stabs "char:t2=r2;0;127;",128,0,0,0
252 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
253 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
254 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
255 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
256 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
257 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
258 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
259 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
260 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
261 17 .stabs "float:t12=r1;4;0;",128,0,0,0
262 18 .stabs "double:t13=r1;8;0;",128,0,0,0
263 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
264 20 .stabs "void:t15=15",128,0,0,0
265 21 .align 4
266 22 LC0:
267 23 .ascii "Hello, world!\12\0"
268 24 .align 4
269 25 .global _main
270 26 .proc 1
271 27 _main:
272 28 .stabn 68,0,4,LM1
273 29 LM1:
274 30 !#PROLOGUE# 0
275 31 save %sp,-136,%sp
276 32 !#PROLOGUE# 1
277 33 call ___main,0
278 34 nop
279 35 .stabn 68,0,5,LM2
280 36 LM2:
281 37 LBB2:
282 38 sethi %hi(LC0),%o1
283 39 or %o1,%lo(LC0),%o0
284 40 call _printf,0
285 41 nop
286 42 .stabn 68,0,6,LM3
287 43 LM3:
288 44 LBE2:
289 45 .stabn 68,0,6,LM4
290 46 LM4:
291 47 L1:
292 48 ret
293 49 restore
294 50 .stabs "main:F1",36,0,0,_main
295 51 .stabn 192,0,0,LBB2
296 52 .stabn 224,0,0,LBE2
297 @end example
298
299 This simple ``hello world'' example demonstrates several of the stab
300 types used to describe C language source files.
301
302 @node Program structure
303 @chapter Encoding for the structure of the program
304
305 @menu
306 * Source file:: The path and name of the source file
307 * Line numbers::
308 * Procedures::
309 * Block Structure::
310 @end menu
311
312 @node Source file
313 @section The path and name of the source file
314
315 @table @strong
316 @item Directive:
317 @code{.stabs}
318 @item Type:
319 @code{N_SO}
320 @end table
321
322 The first stabs in the .s file contain the name and path of the source
323 file that was compiled to produce the .s file. This information is
324 contained in two records of stab type N_SO (100).
325
326 @example
327 .stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
328 .stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start
329 @end example
330
331 @example
332 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
333 3 .stabs "hello.c",100,0,0,Ltext0
334 4 .text
335 5 Ltext0:
336 @end example
337
338 @node Line numbers
339 @section Line Numbers
340
341 @table @strong
342 @item Directive:
343 @code{.stabn}
344 @item Type:
345 @code{N_SLINE}
346 @end table
347
348 The start of source lines is represented by the @code{N_SLINE} (68) stab
349 type.
350
351 @example
352 .stabn N_SLINE, NIL, @var{line}, @var{address}
353 @end example
354
355 @var{line} is a source line number; @var{address} represents the code
356 address for the start of that source line.
357
358 @example
359 27 _main:
360 28 .stabn 68,0,4,LM1
361 29 LM1:
362 30 !#PROLOGUE# 0
363 @end example
364
365 @node Procedures
366 @section Procedures
367
368 @table @strong
369 @item Directive:
370 @code{.stabs}
371 @item Type:
372 @code{N_FUN}
373 @item Symbol Descriptors:
374 @code{f} (local), @code{F} (global)
375 @end table
376
377 Procedures are described by the @code{N_FUN} stab type. The symbol
378 descriptor for a procedure is @samp{F} if the procedure is globally
379 scoped and @samp{f} if the procedure is static (locally scoped).
380
381 The @code{N_FUN} stab representing a procedure is located immediately
382 following the code of the procedure. The @code{N_FUN} stab is in turn
383 directly followed by a group of other stabs describing elements of the
384 procedure. These other stabs describe the procedure's parameters, its
385 block local variables and its block structure.
386
387 @example
388 48 ret
389 49 restore
390 @end example
391
392 The @code{.stabs} entry after this code fragment shows the @var{name} of
393 the procedure (@code{main}); the type descriptor @var{desc} (@code{F},
394 for a global procedure); a reference to the predefined type @code{int}
395 for the return type; and the starting @var{address} of the procedure.
396
397 Here is an exploded summary (with whitespace introduced for clarity),
398 followed by line 50 of our sample assembly output, which has this form:
399
400 @example
401 .stabs "@var{name}:
402 @var{desc} @r{(global proc @samp{F})}
403 @var{return_type_ref} @r{(int)}
404 ",N_FUN, NIL, NIL,
405 @var{address}
406 @end example
407
408 @example
409 50 .stabs "main:F1",36,0,0,_main
410 @end example
411
412 @node Block Structure
413 @section Block Structure
414
415 @table @strong
416 @item Directive:
417 @code{.stabn}
418 @item Types:
419 @code{N_LBRAC}, @code{N_RBRAC}
420 @end table
421
422 The program's block structure is represented by the @code{N_LBRAC} (left
423 brace) and the @code{N_RBRAC} (right brace) stab types. The following code
424 range, which is the body of @code{main}, is labeled with @samp{LBB2:} at the
425 beginning and @samp{LBE2:} at the end.
426
427 @example
428 37 LBB2:
429 38 sethi %hi(LC0),%o1
430 39 or %o1,%lo(LC0),%o0
431 40 call _printf,0
432 41 nop
433 42 .stabn 68,0,6,LM3
434 43 LM3:
435 44 LBE2:
436 @end example
437
438 The @code{N_LBRAC} and @code{N_RBRAC} stabs that describe the block
439 scope of the procedure are located after the @code{N_FUNC} stab that
440 represents the procedure itself. The @code{N_LBRAC} uses the
441 @code{LBB2} label as the code address in its value field, and the
442 @code{N_RBRAC} uses @code{LBE2}.
443
444 @example
445 50 .stabs "main:F1",36,0,0,_main
446 @end example
447
448 @example
449 .stabn N_LBRAC, NIL, NIL, @var{left-brace-address}
450 .stabn N_RBRAC, NIL, NIL, @var{right-brace-address}
451 @end example
452
453 @example
454 51 .stabn 192,0,0,LBB2
455 52 .stabn 224,0,0,LBE2
456 @end example
457
458 @node Simple types
459 @chapter Simple types
460
461 @menu
462 * Basic types:: Basic type definitions
463 * Range types:: Range types defined by min and max value
464 * Float "range" types:: Range type defined by size in bytes
465 @end menu
466
467 @node Basic types
468 @section Basic type definitions
469
470 @table @strong
471 @item Directive:
472 @code{.stabs}
473 @item Type:
474 @code{N_LSYM}
475 @item Symbol Descriptor:
476 @code{t}
477 @end table
478
479 The basic types for the language are described using the @code{N_LSYM} stab
480 type. They are boilerplate and are emited by the compiler for each
481 compilation unit. Basic type definitions are not always a complete
482 description of the type and are sometimes circular. The debugger
483 recognizes the type anyway, and knows how to read bits as that type.
484
485 Each language and compiler defines a slightly different set of basic
486 types. In this example we are looking at the basic types for C emited
487 by the GNU compiler targeting the Sun4. Here the basic types are
488 mostly defined as range types.
489
490
491 @node Range types
492 @section Range types defined by min and max value
493
494 @table @strong
495 @item Type Descriptor:
496 @code{r}
497 @end table
498
499 When defining a range type, if the number after the first semicolon is
500 smaller than the number after the second one, then the two numbers
501 represent the smallest and the largest values in the range.
502
503 @example
504 4 .text
505 5 Ltext0:
506
507 .stabs "@var{name}:
508 @var{descriptor} @r{(type)}
509 @var{type-def}=
510 @var{type-desc}
511 @var{type-ref};
512 @var{low-bound};
513 @var{high-bound};
514 ",
515 N_LSYM, NIL, NIL, NIL
516
517 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
518 7 .stabs "char:t2=r2;0;127;",128,0,0,0
519 @end example
520
521 Here the integer type (@code{1}) is defined as a range of the integer
522 type (@code{1}). Likewise @code{char} is a range of @code{char}. This
523 part of the definition is circular, but at least the high and low bound
524 values of the range hold more information about the type.
525
526 Here short unsigned int is defined as type number 8 and described as a
527 range of type @code{int}, with a minimum value of 0 and a maximum of 65535.
528
529 @example
530 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
531 @end example
532
533 @node Float "range" types
534 @section Range type defined by size in bytes
535
536 @table @strong
537 @item Type Descriptor:
538 @code{r}
539 @end table
540
541 In a range definition, if the first number after the semicolon is
542 positive and the second is zero, then the type being defined is a
543 floating point type, and the number after the first semicolon is the
544 number of bytes needed to represent the type. Note that this does not
545 provide a way to distinguish 8-byte real floating point types from
546 8-byte complex floating point types.
547
548 @example
549 .stabs "@var{name}:
550 @var{desc}
551 @var{type-def}=
552 @var{type-desc}
553 @var{type-ref};
554 @var{bit-count};
555 0;
556 ",
557 N_LSYM, NIL, NIL, NIL
558
559 17 .stabs "float:t12=r1;4;0;",128,0,0,0
560 18 .stabs "double:t13=r1;8;0;",128,0,0,0
561 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
562 @end example
563
564 Cosmically enough, the @code{void} type is defined directly in terms of
565 itself.
566
567 @example
568 .stabs "@var{name}:
569 @var{symbol-desc}
570 @var{type-def}=
571 @var{type-ref}
572 ",N_LSYM,NIL,NIL,NIL
573
574 20 .stabs "void:t15=15",128,0,0,0
575 @end example
576
577
578 @node Example
579 @chapter A Comprehensive Example in C
580
581 Now we'll examine a second program, @code{example2}, which builds on the
582 first example to introduce the rest of the stab types, symbol
583 descriptors, and type descriptors used in C.
584 @xref{Example2.c} for the complete @file{.c} source,
585 and @pxref{Example2.s} for the @file{.s} assembly code.
586 This description includes parts of those files.
587
588 @section Flow of control and nested scopes
589
590 @table @strong
591 @item Directive:
592 @code{.stabn}
593 @item Types:
594 @code{N_SLINE}, @code{N_LBRAC}, @code{N_RBRAC} (cont.)
595 @end table
596
597 Consider the body of @code{main}, from @file{example2.c}. It shows more
598 about how @code{N_SLINE}, @code{N_RBRAC}, and @code{N_LBRAC} stabs are used.
599
600 @example
601 20 @{
602 21 static float s_flap;
603 22 int times;
604 23 for (times=0; times < s_g_repeat; times++)@{
605 24 int inner;
606 25 printf ("Hello world\n");
607 26 @}
608 27 @};
609 @end example
610
611 Here we have a single source line, the @samp{for} line, that generates
612 non-linear flow of control, and non-contiguous code. In this case, an
613 @code{N_SLINE} stab with the same line number proceeds each block of
614 non-contiguous code generated from the same source line.
615
616 The example also shows nested scopes. The @code{N_LBRAC} and
617 @code{N_LBRAC} stabs that describe block structure are nested in the
618 same order as the corresponding code blocks, those of the for loop
619 inside those for the body of main.
620
621 @noindent
622 This is the label for the @code{N_LBRAC} (left brace) stab marking the
623 start of @code{main}.
624
625 @example
626 57 LBB2:
627 @end example
628
629 @noindent
630 In the first code range for C source line 23, the @code{for} loop
631 initialize and test, @code{N_SLINE} (68) records the line number:
632
633 @example
634 .stabn N_SLINE, NIL,
635 @var{line},
636 @var{address}
637
638 58 .stabn 68,0,23,LM2
639 59 LM2:
640 60 st %g0,[%fp-20]
641 61 L2:
642 62 sethi %hi(_s_g_repeat),%o0
643 63 ld [%fp-20],%o1
644 64 ld [%o0+%lo(_s_g_repeat)],%o0
645 65 cmp %o1,%o0
646 66 bge L3
647 67 nop
648
649 @exdent label for the @code{N_LBRAC} (start block) marking the start of @code{for} loop
650
651 68 LBB3:
652 69 .stabn 68,0,25,LM3
653 70 LM3:
654 71 sethi %hi(LC0),%o1
655 72 or %o1,%lo(LC0),%o0
656 73 call _printf,0
657 74 nop
658 75 .stabn 68,0,26,LM4
659 76 LM4:
660
661 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
662
663 77 LBE3:
664 @end example
665
666 @noindent
667 Now we come to the second code range for source line 23, the @code{for}
668 loop increment and return. Once again, @code{N_SLINE} (68) records the
669 source line number:
670
671 @example
672 .stabn, N_SLINE, NIL,
673 @var{line},
674 @var{address}
675
676 78 .stabn 68,0,23,LM5
677 79 LM5:
678 80 L4:
679 81 ld [%fp-20],%o0
680 82 add %o0,1,%o1
681 83 st %o1,[%fp-20]
682 84 b,a L2
683 85 L3:
684 86 .stabn 68,0,27,LM6
685 87 LM6:
686
687 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
688
689 88 LBE2:
690 89 .stabn 68,0,27,LM7
691 90 LM7:
692 91 L1:
693 92 ret
694 93 restore
695 94 .stabs "main:F1",36,0,0,_main
696 95 .stabs "argc:p1",160,0,0,68
697 96 .stabs "argv:p20=*21=*2",160,0,0,72
698 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
699 98 .stabs "times:1",128,0,0,-20
700 @end example
701
702 @noindent
703 Here is an illustration of stabs describing nested scopes. The scope
704 nesting is reflected in the nested bracketing stabs (@code{N_LBRAC},
705 192, appears here).
706
707 @example
708 .stabn N_LBRAC,NIL,NIL,
709 @var{block-start-address}
710
711 99 .stabn 192,0,0,LBB2 ## begin proc label
712 100 .stabs "inner:1",128,0,0,-24
713 101 .stabn 192,0,0,LBB3 ## begin for label
714 @end example
715
716 @noindent
717 @code{N_RBRAC} (224), ``right brace'' ends a lexical block (scope).
718
719 @example
720 .stabn N_RBRAC,NIL,NIL,
721 @var{block-end-address}
722
723 102 .stabn 224,0,0,LBE3 ## end for label
724 103 .stabn 224,0,0,LBE2 ## end proc label
725 @end example
726
727 @node Variables
728 @chapter Variables
729
730 @menu
731 * Automatic variables:: locally scoped
732 * Global Variables::
733 * Register variables::
734 * Initialized statics::
735 * Un-initialized statics::
736 * Parameters::
737 @end menu
738
739 @node Automatic variables
740 @section Locally scoped automatic variables
741
742 @table @strong
743 @item Directive:
744 @code{.stabs}
745 @item Type:
746 @code{N_LSYM}
747 @item Symbol Descriptor:
748 none
749 @end table
750
751
752 In addition to describing types, the @code{N_LSYM} stab type also
753 describes locally scoped automatic variables. Refer again to the body
754 of @code{main} in @file{example2.c}. It allocates two automatic
755 variables: @samp{times} is scoped to the body of @code{main}, and
756 @samp{inner} is scoped to the body of the @code{for} loop.
757 @samp{s_flap} is locally scoped but not automatic, and will be discussed
758 later.
759
760 @example
761 20 @{
762 21 static float s_flap;
763 22 int times;
764 23 for (times=0; times < s_g_repeat; times++)@{
765 24 int inner;
766 25 printf ("Hello world\n");
767 26 @}
768 27 @};
769 @end example
770
771 The @code{N_LSYM} stab for an automatic variable is located just before the
772 @code{N_LBRAC} stab describing the open brace of the block to which it is
773 scoped.
774
775 @example
776 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to @code{main}
777
778 .stabs "@var{name}:
779 @var{type-ref}",
780 N_LSYM, NIL, NIL,
781 @var{frame-pointer-offset}
782
783 98 .stabs "times:1",128,0,0,-20
784 99 .stabn 192,0,0,LBB2 ## begin `main' N_LBRAC
785
786 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to the @code{for} loop
787
788 .stabs "@var{name}:
789 @var{type-ref}",
790 N_LSYM, NIL, NIL,
791 @var{frame-pointer-offset}
792
793 100 .stabs "inner:1",128,0,0,-24
794 101 .stabn 192,0,0,LBB3 ## begin `for' loop N_LBRAC
795 @end example
796
797 Since the character in the string field following the colon is not a
798 letter, there is no symbol descriptor. This means that the stab
799 describes a local variable, and that the number after the colon is a
800 type reference. In this case it a a reference to the basic type @code{int}.
801 Notice also that the frame pointer offset is negative number for
802 automatic variables.
803
804
805 @node Global Variables
806 @section Global Variables
807
808 @table @strong
809 @item Directive:
810 @code{.stabs}
811 @item Type:
812 @code{N_GSYM}
813 @item Symbol Descriptor:
814 @code{G}
815 @end table
816
817 Global variables are represented by the @code{N_GSYM} stab type. The symbol
818 descriptor, following the colon in the string field, is @samp{G}. Following
819 the @samp{G} is a type reference or type definition. In this example it is a
820 type reference to the basic C type, @code{char}. The first source line in
821 @file{example2.c},
822
823 @example
824 1 char g_foo = 'c';
825 @end example
826
827 @noindent
828 yields the following stab. The stab immediately precedes the code that
829 allocates storage for the variable it describes.
830
831 @example
832 @exdent @code{N_GSYM} (32): global symbol
833
834 .stabs "@var{name}:
835 @var{descriptor}
836 @var{type-ref}",
837 N_GSYM, NIL, NIL, NIL
838
839 21 .stabs "g_foo:G2",32,0,0,0
840 22 .global _g_foo
841 23 .data
842 24 _g_foo:
843 25 .byte 99
844 @end example
845
846 The address of the variable represented by the @code{N_GSYM} is not contained
847 in the @code{N_GSYM} stab. The debugger gets this information from the
848 external symbol for the global variable.
849
850 @node Register variables
851 @section Global register variables
852
853 @table @strong
854 @item Directive:
855 @code{.stabs}
856 @item Type:
857 @code{N_RSYM}
858 @item Symbol Descriptor:
859 @code{r}
860 @end table
861
862 The following source line defines a global variable, @code{g_bar}, which is
863 explicitly allocated in global register @code{%g5}.
864
865 @example
866 2 register int g_bar asm ("%g5");
867 @end example
868
869 Register variables have their own stab type, @code{N_RSYM}, and their own
870 symbol descriptor, @code{r}. The stab's value field contains the number of
871 the register where the variable data will be stored. Since the
872 variable was not initialized in this compilation unit, the stab is
873 emited at the end of the object file, with the stabs for other
874 uninitialized globals (@code{bcc}).
875
876 @example
877 @exdent @code{N_RSYM} (64): register variable
878
879 .stabs "@var{name}:
880 @var{descriptor}
881 @var{type-ref}",
882 N_RSYM, NIL, NIL,
883 @var{register}
884
885 133 .stabs "g_bar:r1",64,0,0,5
886 @end example
887
888
889 @node Initialized statics
890 @section Initialized static variables
891
892 @table @strong
893 @item Directive:
894 @code{.stabs}
895 @item Type:
896 @code{N_STSYM}
897 @item Symbol Descriptors:
898 @code{S} (file scope), @code{V} (procedure scope)
899 @end table
900
901 Initialized static variables are represented by the @code{N_STSYM} stab
902 type. The symbol descriptor part of the string field shows if the
903 variable is file scope static (@samp{S}) or procedure scope static
904 (@samp{V}). The source line
905
906 @example
907 3 static int s_g_repeat = 2;
908 @end example
909
910 @noindent
911 yields the following code. The stab is located immediately preceding
912 the storage for the variable it represents. Since the variable in
913 this example is file scope static the symbol descriptor is @samp{S}.
914
915 @example
916 @exdent @code{N_STSYM} (38): initialized static variable (data seg w/internal linkage)
917
918 .stabs "@var{name}:
919 @var{descriptor}
920 @var{type-ref}",
921 N_STSYM,NIL,NIL,
922 @var{address}
923
924 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
925 27 .align 4
926 28 _s_g_repeat:
927 29 .word 2
928 @end example
929
930
931 @node Un-initialized statics
932 @section Un-initialized static variables
933
934 @table @strong
935 @item Directive:
936 @code{.stabs}
937 @item Type:
938 @code{N_LCSYM}
939 @item Symbol Descriptors:
940 @code{S} (file scope), @code{V} (procedure scope)
941 @end table
942
943 Un-initialized static variables are represented by the @code{N_LCSYM}
944 stab type. The symbol descriptor part of the string shows if the
945 variable is file scope static (@samp{S}) or procedure scope static
946 (@samp{V}). In this example it is procedure scope static. The source
947 line allocating @code{s_flap} immediately follows the open brace for the
948 procedure @code{main}.
949
950 @example
951 20 @{
952 21 static float s_flap;
953 @end example
954
955 The code that reserves storage for the variable @code{s_flap} precedes the
956 body of body of @code{main}.
957
958 @example
959 39 .reserve _s_flap.0,4,"bss",4
960 @end example
961
962 But since @code{s_flap} is scoped locally to @code{main}, its stab is
963 located with the other stabs representing symbols local to @code{main}.
964 The stab for @code{s_flap} is located just before the @code{N_LBRAC} for
965 @code{main}.
966
967 @example
968 @exdent @code{N_LCSYM} (40): uninitialized static var (BSS seg w/internal linkage)
969
970 .stabs "@var{name}:
971 @var{descriptor}
972 @var{type-ref}",
973 N_LCSYM, NIL, NIL,
974 @var{address}
975
976 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
977 98 .stabs "times:1",128,0,0,-20
978 99 .stabn 192,0,0,LBB2 # N_LBRAC for main.
979 @end example
980
981 @c ............................................................
982
983 @node Parameters
984 @section Parameters
985
986 The symbol descriptor @samp{p} is used to refer to parameters which are
987 in the arglist. Symbols have symbol type @samp{N_PSYM}. The value of
988 the symbol is the offset relative to the argument list.
989
990 If the parameter is passed in a register, then the traditional way to do
991 this is to provide two symbols for each argument:
992
993 @example
994 .stabs "arg:p1" . . . ; N_PSYM
995 .stabs "arg:r1" . . . ; N_RSYM
996 @end example
997
998 Debuggers are expected to use the second one to find the value, and the
999 first one to know that it is an argument.
1000
1001 Because this is kind of ugly, some compilers use symbol descriptor
1002 @samp{P} or @samp{R} to indicate an argument which is in a register.
1003 The symbol value is the register number. @samp{P} and @samp{R} mean the
1004 same thing, the difference is that @samp{P} is a GNU invention and
1005 @samp{R} is an IBM (xcoff) invention. As of version 4.9, GDB should
1006 handle either one. Symbol type @samp{C_RPSYM} is used with @samp{R} and
1007 @samp{N_RSYM} is used with @samp{P}.
1008
1009 There is another case similar to an argument in a register, which is an
1010 argument which is actually stored as a local variable. The only case I
1011 know of where this happens is when the argument was passed in a register
1012 and then the compiler stores it as a local variable. In this case the
1013 compiler would probably be much better off claiming that it's in a
1014 register, but at least in one case this isn't done. Some compilers are
1015 said to use the pair of symbols approach described above ("arg:p"
1016 followed by "arg:"), but I don't which if any. GCC, at least on the
1017 960, uses a @samp{p} symbol descriptor for this case but uses
1018 @samp{N_LSYM} instead of @samp{N_PSYM} to distinguish it. In this case
1019 the value of the symbol is an offset relative to the local variables for
1020 that function, not relative to the arguments.
1021
1022 As a simple example, the code
1023
1024 @example
1025 main (argc, argv)
1026 int argc;
1027 char **argv;
1028 @{
1029 @end example
1030
1031 produces the stabs
1032
1033 @example
1034 .stabs "main:F1",36,0,0,_main ; 36 is N_FUN
1035 .stabs "argc:p1",160,0,0,68 ; 160 is N_PSYM
1036 .stabs "argv:p20=*21=*2",160,0,0,72
1037 @end example
1038
1039 The type definition of argv is interesting because it contains several
1040 type definitions. Type 21 is ptr to type 2 (char) and argv (type 20) is
1041 ptr to type 21.
1042
1043 @node Aggregate Types
1044 @chapter Aggregate Types
1045
1046 Now let's look at some variable definitions involving complex types.
1047 This involves understanding better how types are described. In the
1048 examples so far types have been described as references to previously
1049 defined types or defined in terms of subranges of or pointers to
1050 previously defined types. The section that follows will talk about
1051 the various other type descriptors that may follow the = sign in a
1052 type definition.
1053
1054 @menu
1055 * Arrays::
1056 * Enumerations::
1057 * Structure tags::
1058 * Typedefs::
1059 * Unions::
1060 * Function types::
1061 @end menu
1062
1063 @node Arrays
1064 @section Array types
1065
1066 @table @strong
1067 @item Directive:
1068 @code{.stabs}
1069 @item Types:
1070 @code{N_GSYM}, @code{N_LSYM}
1071 @item Symbol Descriptor:
1072 @code{T}
1073 @item Type Descriptor:
1074 @code{a}
1075 @end table
1076
1077 As an example of an array type consider the global variable below.
1078
1079 @example
1080 15 char char_vec[3] = @{'a','b','c'@};
1081 @end example
1082
1083 Since the array is a global variable, it is described by the N_GSYM
1084 stab type. The symbol descriptor G, following the colon in stab's
1085 string field, also says the array is a global variable. Following the
1086 G is a definition for type (19) as shown by the equals sign after the
1087 type number.
1088
1089 After the equals sign is a type descriptor, a, which says that the type
1090 being defined is an array. Following the type descriptor for an array
1091 is the type of the index, a semicolon, and the type of the array elements.
1092
1093 The type of the index is often a range type, expressed as the letter r
1094 and some parameters. It defines the size of the array. In in the
1095 example below, the range @code{r1;0;2;} defines an index type which is
1096 a subrange of type 1 (integer), with a lower bound of 0 and an upper
1097 bound of 2. This defines the valid range of subscripts of a
1098 three-element C array.
1099
1100 The array definition above generates the assembly language that
1101 follows.
1102
1103 @example
1104 @exdent <32> N_GSYM - global variable
1105 @exdent .stabs "name:sym_desc(global)type_def(19)=type_desc(array)
1106 @exdent index_type_ref(range of int from 0 to 2);element_type_ref(char)";
1107 @exdent N_GSYM, NIL, NIL, NIL
1108
1109 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
1110 33 .global _char_vec
1111 34 .align 4
1112 35 _char_vec:
1113 36 .byte 97
1114 37 .byte 98
1115 38 .byte 99
1116 @end example
1117
1118 @node Enumerations
1119 @section Enumerations
1120
1121 @table @strong
1122 @item Directive:
1123 @code{.stabs}
1124 @item Type:
1125 @code{N_LSYM}
1126 @item Symbol Descriptor:
1127 @code{T}
1128 @item Type Descriptor:
1129 @code{e}
1130 @end table
1131
1132 The source line below declares an enumeration type. It is defined at
1133 file scope between the bodies of main and s_proc in example2.c.
1134 Because the N_LSYM is located after the N_RBRAC that marks the end of
1135 the previous procedure's block scope, and before the N_FUN that marks
1136 the beginning of the next procedure's block scope, the N_LSYM does not
1137 describe a block local symbol, but a file local one. The source line:
1138
1139 @example
1140 29 enum e_places @{first,second=3,last@};
1141 @end example
1142
1143 @noindent
1144 generates the following stab, located just after the N_RBRAC (close
1145 brace stab) for main. The type definition is in an N_LSYM stab
1146 because type definitions are file scope not global scope.
1147
1148 @display
1149 <128> N_LSYM - local symbol
1150 .stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
1151 enum_name:value(0),enum_name:value(3),enum_name:value(4),;",
1152 N_LSYM, NIL, NIL, NIL
1153 @end display
1154
1155 @example
1156 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
1157 @end example
1158
1159 The symbol descriptor (T) says that the stab describes a structure,
1160 enumeration, or type tag. The type descriptor e, following the 22= of
1161 the type definition narrows it down to an enumeration type. Following
1162 the e is a list of the elements of the enumeration. The format is
1163 name:value,. The list of elements ends with a ;.
1164
1165 @node Structure tags
1166 @section Structure Tags
1167
1168 @table @strong
1169 @item Directive:
1170 @code{.stabs}
1171 @item Type:
1172 @code{N_LSYM}
1173 @item Symbol Descriptor:
1174 @code{T}
1175 @item Type Descriptor:
1176 @code{s}
1177 @end table
1178
1179 The following source code declares a structure tag and defines an
1180 instance of the structure in global scope. Then a typedef equates the
1181 structure tag with a new type. A seperate stab is generated for the
1182 structure tag, the structure typedef, and the structure instance. The
1183 stabs for the tag and the typedef are emited when the definitions are
1184 encountered. Since the structure elements are not initialized, the
1185 stab and code for the structure variable itself is located at the end
1186 of the program in .common.
1187
1188 @example
1189 6 struct s_tag @{
1190 7 int s_int;
1191 8 float s_float;
1192 9 char s_char_vec[8];
1193 10 struct s_tag* s_next;
1194 11 @} g_an_s;
1195 12
1196 13 typedef struct s_tag s_typedef;
1197 @end example
1198
1199 The structure tag is an N_LSYM stab type because, like the enum, the
1200 symbol is file scope. Like the enum, the symbol descriptor is T, for
1201 enumeration, struct or tag type. The symbol descriptor s following
1202 the 16= of the type definition narrows the symbol type to struct.
1203
1204 Following the struct symbol descriptor is the number of bytes the
1205 struct occupies, followed by a description of each structure element.
1206 The structure element descriptions are of the form name:type, bit
1207 offset from the start of the struct, and number of bits in the
1208 element.
1209
1210
1211 @example
1212 <128> N_LSYM - type definition
1213 .stabs "name:sym_desc(struct tag) Type_def(16)=type_desc(struct type)
1214 struct_bytes
1215 elem_name:type_ref(int),bit_offset,field_bits;
1216 elem_name:type_ref(float),bit_offset,field_bits;
1217 elem_name:type_def(17)=type_desc(array)
1218 index_type(range of int from 0 to 7);
1219 element_type(char),bit_offset,field_bits;;",
1220 N_LSYM,NIL,NIL,NIL
1221
1222 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
1223 s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
1224 @end example
1225
1226 In this example, two of the structure elements are previously defined
1227 types. For these, the type following the name: part of the element
1228 description is a simple type reference. The other two structure
1229 elements are new types. In this case there is a type definition
1230 embedded after the name:. The type definition for the array element
1231 looks just like a type definition for a standalone array. The s_next
1232 field is a pointer to the same kind of structure that the field is an
1233 element of. So the definition of structure type 16 contains an type
1234 definition for an element which is a pointer to type 16.
1235
1236 @node Typedefs
1237 @section Typedefs
1238
1239 @table @strong
1240 @item Directive:
1241 @code{.stabs}
1242 @item Type:
1243 @code{N_LSYM}
1244 @item Symbol Descriptor:
1245 @code{t}
1246 @end table
1247
1248 Here is the stab for the typedef equating the structure tag with a
1249 type.
1250
1251 @display
1252 <128> N_LSYM - type definition
1253 .stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL,NIL
1254 @end display
1255
1256 @example
1257 31 .stabs "s_typedef:t16",128,0,0,0
1258 @end example
1259
1260 And here is the code generated for the structure variable.
1261
1262 @display
1263 <32> N_GSYM - global symbol
1264 .stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL
1265 @end display
1266
1267 @example
1268 136 .stabs "g_an_s:G16",32,0,0,0
1269 137 .common _g_an_s,20,"bss"
1270 @end example
1271
1272 Notice that the structure tag has the same type number as the typedef
1273 for the structure tag. It is impossible to distinguish between a
1274 variable of the struct type and one of its typedef by looking at the
1275 debugging information.
1276
1277
1278 @node Unions
1279 @section Unions
1280
1281 @table @strong
1282 @item Directive:
1283 @code{.stabs}
1284 @item Type:
1285 @code{N_LSYM}
1286 @item Symbol Descriptor:
1287 @code{T}
1288 @item Type Descriptor:
1289 @code{u}
1290 @end table
1291
1292 Next let's look at unions. In example2 this union type is declared
1293 locally to a procedure and an instance of the union is defined.
1294
1295 @example
1296 36 union u_tag @{
1297 37 int u_int;
1298 38 float u_float;
1299 39 char* u_char;
1300 40 @} an_u;
1301 @end example
1302
1303 This code generates a stab for the union tag and a stab for the union
1304 variable. Both use the N_LSYM stab type. Since the union variable is
1305 scoped locally to the procedure in which it is defined, its stab is
1306 located immediately preceding the N_LBRAC for the procedure's block
1307 start.
1308
1309 The stab for the union tag, however is located preceding the code for
1310 the procedure in which it is defined. The stab type is N_LSYM. This
1311 would seem to imply that the union type is file scope, like the struct
1312 type s_tag. This is not true. The contents and position of the stab
1313 for u_type do not convey any infomation about its procedure local
1314 scope.
1315
1316 @display
1317 <128> N_LSYM - type
1318 .stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
1319 byte_size(4)
1320 elem_name:type_ref(int),bit_offset(0),bit_size(32);
1321 elem_name:type_ref(float),bit_offset(0),bit_size(32);
1322 elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
1323 N_LSYM, NIL, NIL, NIL
1324 @end display
1325
1326 @smallexample
1327 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
1328 128,0,0,0
1329 @end smallexample
1330
1331 The symbol descriptor, T, following the name: means that the stab
1332 describes an enumeration, struct or type tag. The type descriptor u,
1333 following the 23= of the type definition, narrows it down to a union
1334 type definition. Following the u is the number of bytes in the union.
1335 After that is a list of union element descriptions. Their format is
1336 name:type, bit offset into the union, and number of bytes for the
1337 element;.
1338
1339 The stab for the union variable follows. Notice that the frame
1340 pointer offset for local variables is negative.
1341
1342 @display
1343 <128> N_LSYM - local variable (with no symbol descriptor)
1344 .stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset
1345 @end display
1346
1347 @example
1348 130 .stabs "an_u:23",128,0,0,-20
1349 @end example
1350
1351 @node Function types
1352 @section Function types
1353
1354 @display
1355 type descriptor f
1356 @end display
1357
1358 The last type descriptor in C which remains to be described is used
1359 for function types. Consider the following source line defining a
1360 global function pointer.
1361
1362 @example
1363 4 int (*g_pf)();
1364 @end example
1365
1366 It generates the following code. Since the variable is not
1367 initialized, the code is located in the common area at the end of the
1368 file.
1369
1370 @display
1371 <32> N_GSYM - global variable
1372 .stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
1373 type_def(func)type_ref(int)
1374 @end display
1375
1376 @example
1377 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
1378 135 .common _g_pf,4,"bss"
1379 @end example
1380
1381 Since the variable is global, the stab type is N_GSYM and the symbol
1382 descriptor is G. The variable defines a new type, 24, which is a
1383 pointer to another new type, 25, which is defined as a function
1384 returning int.
1385
1386 @node Symbol tables
1387 @chapter Symbol information in symbol tables
1388
1389 This section examines more closely the format of symbol table entries
1390 and how stab assembler directives map to them. It also describes what
1391 transformations the assembler and linker make on data from stabs.
1392
1393 Each time the assembler encounters a stab in its input file it puts
1394 each field of the stab into corresponding fields in a symbol table
1395 entry of its output file. If the stab contains a string field, the
1396 symbol table entry for that stab points to a string table entry
1397 containing the string data from the stab. Assembler labels become
1398 relocatable addresses. Symbol table entries in a.out have the format:
1399
1400 @example
1401 struct internal_nlist @{
1402 unsigned long n_strx; /* index into string table of name */
1403 unsigned char n_type; /* type of symbol */
1404 unsigned char n_other; /* misc info (usually empty) */
1405 unsigned short n_desc; /* description field */
1406 bfd_vma n_value; /* value of symbol */
1407 @};
1408 @end example
1409
1410 For .stabs directives, the n_strx field holds the character offset
1411 from the start of the string table to the string table entry
1412 containing the "string" field. For other classes of stabs (.stabn and
1413 .stabd) this field is null.
1414
1415 Symbol table entries with n_type fields containing a value greater or
1416 equal to 0x20 originated as stabs generated by the compiler (with one
1417 random exception). Those with n_type values less than 0x20 were
1418 placed in the symbol table of the executable by the assembler or the
1419 linker.
1420
1421 The linker concatenates object files and does fixups of externally
1422 defined symbols. You can see the transformations made on stab data by
1423 the assembler and linker by examining the symbol table after each pass
1424 of the build, first the assemble and then the link.
1425
1426 To do this use nm with the -ap options. This dumps the symbol table,
1427 including debugging information, unsorted. For stab entries the
1428 columns are: value, other, desc, type, string. For assembler and
1429 linker symbols, the columns are: value, type, string.
1430
1431 There are a few important things to notice about symbol tables. Where
1432 the value field of a stab contains a frame pointer offset, or a
1433 register number, that value is unchanged by the rest of the build.
1434
1435 Where the value field of a stab contains an assembly language label,
1436 it is transformed by each build step. The assembler turns it into a
1437 relocatable address and the linker turns it into an absolute address.
1438 This source line defines a static variable at file scope:
1439
1440 @example
1441 3 static int s_g_repeat
1442 @end example
1443
1444 @noindent
1445 The following stab describes the symbol.
1446
1447 @example
1448 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
1449 @end example
1450
1451 @noindent
1452 The assembler transforms the stab into this symbol table entry in the
1453 @file{.o} file. The location is expressed as a data segment offset.
1454
1455 @example
1456 21 00000084 - 00 0000 STSYM s_g_repeat:S1
1457 @end example
1458
1459 @noindent
1460 in the symbol table entry from the executable, the linker has made the
1461 relocatable address absolute.
1462
1463 @example
1464 22 0000e00c - 00 0000 STSYM s_g_repeat:S1
1465 @end example
1466
1467 Stabs for global variables do not contain location information. In
1468 this case the debugger finds location information in the assembler or
1469 linker symbol table entry describing the variable. The source line:
1470
1471 @example
1472 1 char g_foo = 'c';
1473 @end example
1474
1475 @noindent
1476 generates the stab:
1477
1478 @example
1479 21 .stabs "g_foo:G2",32,0,0,0
1480 @end example
1481
1482 The variable is represented by the following two symbol table entries
1483 in the object file. The first one originated as a stab. The second
1484 one is an external symbol. The upper case D signifies that the n_type
1485 field of the symbol table contains 7, N_DATA with local linkage (see
1486 Table B). The value field following the file's line number is empty
1487 for the stab entry. For the linker symbol it contains the
1488 rellocatable address corresponding to the variable.
1489
1490 @example
1491 19 00000000 - 00 0000 GSYM g_foo:G2
1492 20 00000080 D _g_foo
1493 @end example
1494
1495 @noindent
1496 These entries as transformed by the linker. The linker symbol table
1497 entry now holds an absolute address.
1498
1499 @example
1500 21 00000000 - 00 0000 GSYM g_foo:G2
1501 @dots{}
1502 215 0000e008 D _g_foo
1503 @end example
1504
1505 @node GNU Cplusplus stabs
1506 @chapter GNU C++ stabs
1507
1508 @menu
1509 * Basic Cplusplus types::
1510 * Simple classes::
1511 * Class instance::
1512 * Methods:: Method definition
1513 * Protections::
1514 * Method Modifiers:: (const, volatile, const volatile)
1515 * Virtual Methods::
1516 * Inheritence::
1517 * Virtual Base Classes::
1518 * Static Members::
1519 @end menu
1520
1521
1522 @subsection Symbol descriptors added for C++ descriptions:
1523
1524 @display
1525 P - register parameter.
1526 @end display
1527
1528 @subsection type descriptors added for C++ descriptions
1529
1530 @table @code
1531 @item #
1532 method type (two ## if minimal debug)
1533
1534 @item xs
1535 cross-reference
1536 @end table
1537
1538
1539 @node Basic Cplusplus types
1540 @section Basic types for C++
1541
1542 << the examples that follow are based on a01.C >>
1543
1544
1545 C++ adds two more builtin types to the set defined for C. These are
1546 the unknown type and the vtable record type. The unknown type, type
1547 16, is defined in terms of itself like the void type.
1548
1549 The vtable record type, type 17, is defined as a structure type and
1550 then as a structure tag. The structure has four fields, delta, index,
1551 pfn, and delta2. pfn is the function pointer.
1552
1553 << In boilerplate $vtbl_ptr_type, what are the fields delta,
1554 index, and delta2 used for? >>
1555
1556 This basic type is present in all C++ programs even if there are no
1557 virtual methods defined.
1558
1559 @display
1560 .stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
1561 elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
1562 elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
1563 elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),
1564 bit_offset(32),field_bits(32);
1565 elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
1566 N_LSYM, NIL, NIL
1567 @end display
1568
1569 @smallexample
1570 .stabs "$vtbl_ptr_type:t17=s8
1571 delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"
1572 ,128,0,0,0
1573 @end smallexample
1574
1575 @display
1576 .stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
1577 @end display
1578
1579 @example
1580 .stabs "$vtbl_ptr_type:T17",128,0,0,0
1581 @end example
1582
1583 @node Simple classes
1584 @section Simple class definition
1585
1586 The stabs describing C++ language features are an extension of the
1587 stabs describing C. Stabs representing C++ class types elaborate
1588 extensively on the stab format used to describe structure types in C.
1589 Stabs representing class type variables look just like stabs
1590 representing C language variables.
1591
1592 Consider the following very simple class definition.
1593
1594 @example
1595 class baseA @{
1596 public:
1597 int Adat;
1598 int Ameth(int in, char other);
1599 @};
1600 @end example
1601
1602 The class baseA is represented by two stabs. The first stab describes
1603 the class as a structure type. The second stab describes a structure
1604 tag of the class type. Both stabs are of stab type N_LSYM. Since the
1605 stab is not located between an N_FUN and a N_LBRAC stab this indicates
1606 that the class is defined at file scope. If it were, then the N_LSYM
1607 would signify a local variable.
1608
1609 A stab describing a C++ class type is similar in format to a stab
1610 describing a C struct, with each class member shown as a field in the
1611 structure. The part of the struct format describing fields is
1612 expanded to include extra information relevent to C++ class members.
1613 In addition, if the class has multiple base classes or virtual
1614 functions the struct format outside of the field parts is also
1615 augmented.
1616
1617 In this simple example the field part of the C++ class stab
1618 representing member data looks just like the field part of a C struct
1619 stab. The section on protections describes how its format is
1620 sometimes extended for member data.
1621
1622 The field part of a C++ class stab representing a member function
1623 differs substantially from the field part of a C struct stab. It
1624 still begins with `name:' but then goes on to define a new type number
1625 for the member function, describe its return type, its argument types,
1626 its protection level, any qualifiers applied to the method definition,
1627 and whether the method is virtual or not. If the method is virtual
1628 then the method description goes on to give the vtable index of the
1629 method, and the type number of the first base class defining the
1630 method.
1631
1632 When the field name is a method name it is followed by two colons
1633 rather than one. This is followed by a new type definition for the
1634 method. This is a number followed by an equal sign and then the
1635 symbol descriptor `##', indicating a method type. This is followed by
1636 a type reference showing the return type of the method and a
1637 semi-colon.
1638
1639 The format of an overloaded operator method name differs from that
1640 of other methods. It is "op$::XXXX." where XXXX is the operator name
1641 such as + or +=. The name ends with a period, and any characters except
1642 the period can occur in the XXXX string.
1643
1644 The next part of the method description represents the arguments to
1645 the method, preceeded by a colon and ending with a semi-colon. The
1646 types of the arguments are expressed in the same way argument types
1647 are expressed in C++ name mangling. In this example an int and a char
1648 map to `ic'.
1649
1650 This is followed by a number, a letter, and an asterisk or period,
1651 followed by another semicolon. The number indicates the protections
1652 that apply to the member function. Here the 2 means public. The
1653 letter encodes any qualifier applied to the method definition. In
1654 this case A means that it is a normal function definition. The dot
1655 shows that the method is not virtual. The sections that follow
1656 elaborate further on these fields and describe the additional
1657 information present for virtual methods.
1658
1659
1660 @display
1661 .stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
1662 field_name(Adat):type(int),bit_offset(0),field_bits(32);
1663
1664 method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
1665 :arg_types(int char);
1666 protection(public)qualifier(normal)virtual(no);;"
1667 N_LSYM,NIL,NIL,NIL
1668 @end display
1669
1670 @smallexample
1671 .stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0
1672
1673 .stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL
1674
1675 .stabs "baseA:T20",128,0,0,0
1676 @end smallexample
1677
1678 @node Class instance
1679 @section Class instance
1680
1681 As shown above, describing even a simple C++ class definition is
1682 accomplished by massively extending the stab format used in C to
1683 describe structure types. However, once the class is defined, C stabs
1684 with no modifications can be used to describe class instances. The
1685 following source:
1686
1687 @example
1688 main () @{
1689 baseA AbaseA;
1690 @}
1691 @end example
1692
1693 @noindent
1694 yields the following stab describing the class instance. It looks no
1695 different from a standard C stab describing a local variable.
1696
1697 @display
1698 .stabs "name:type_ref(baseA)", N_LSYM, NIL, NIL, frame_ptr_offset
1699 @end display
1700
1701 @example
1702 .stabs "AbaseA:20",128,0,0,-20
1703 @end example
1704
1705 @node Methods
1706 @section Method defintion
1707
1708 The class definition shown above declares Ameth. The C++ source below
1709 defines Ameth:
1710
1711 @example
1712 int
1713 baseA::Ameth(int in, char other)
1714 @{
1715 return in;
1716 @};
1717 @end example
1718
1719
1720 This method definition yields three stabs following the code of the
1721 method. One stab describes the method itself and following two
1722 describe its parameters. Although there is only one formal argument
1723 all methods have an implicit argument which is the `this' pointer.
1724 The `this' pointer is a pointer to the object on which the method was
1725 called. Note that the method name is mangled to encode the class name
1726 and argument types. << Name mangling is not described by this
1727 document - Is there already such a doc? >>
1728
1729 @example
1730 .stabs "name:symbol_desriptor(global function)return_type(int)",
1731 N_FUN, NIL, NIL, code_addr_of_method_start
1732
1733 .stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic
1734 @end example
1735
1736 Here is the stab for the `this' pointer implicit argument. The name
1737 of the `this' pointer is always `this.' Type 19, the `this' pointer is
1738 defined as a pointer to type 20, baseA, but a stab defining baseA has
1739 not yet been emited. Since the compiler knows it will be emited
1740 shortly, here it just outputs a cross reference to the undefined
1741 symbol, by prefixing the symbol name with xs.
1742
1743 @example
1744 .stabs "name:sym_desc(register param)type_def(19)=
1745 type_desc(ptr to)type_ref(baseA)=
1746 type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number
1747
1748 .stabs "this:P19=*20=xsbaseA:",64,0,0,8
1749 @end example
1750
1751 The stab for the explicit integer argument looks just like a parameter
1752 to a C function. The last field of the stab is the offset from the
1753 argument pointer, which in most systems is the same as the frame
1754 pointer.
1755
1756 @example
1757 .stabs "name:sym_desc(value parameter)type_ref(int)",
1758 N_PSYM,NIL,NIL,offset_from_arg_ptr
1759
1760 .stabs "in:p1",160,0,0,72
1761 @end example
1762
1763 << The examples that follow are based on A1.C >>
1764
1765 @node Protections
1766 @section Protections
1767
1768
1769 In the simple class definition shown above all member data and
1770 functions were publicly accessable. The example that follows
1771 contrasts public, protected and privately accessable fields and shows
1772 how these protections are encoded in C++ stabs.
1773
1774 Protections for class member data are signified by two characters
1775 embeded in the stab defining the class type. These characters are
1776 located after the name: part of the string. /0 means private, /1
1777 means protected, and /2 means public. If these characters are omited
1778 this means that the member is public. The following C++ source:
1779
1780 @example
1781 class all_data @{
1782 private:
1783 int priv_dat;
1784 protected:
1785 char prot_dat;
1786 public:
1787 float pub_dat;
1788 @};
1789 @end example
1790
1791 @noindent
1792 generates the following stab to describe the class type all_data.
1793
1794 @display
1795 .stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
1796 data_name:/protection(private)type_ref(int),bit_offset,num_bits;
1797 data_name:/protection(protected)type_ref(char),bit_offset,num_bits;
1798 data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
1799 N_LSYM,NIL,NIL,NIL
1800 @end display
1801
1802 @smallexample
1803 .stabs "all_data:t19=s12
1804 priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
1805 @end smallexample
1806
1807 Protections for member functions are signified by one digit embeded in
1808 the field part of the stab describing the method. The digit is 0 if
1809 private, 1 if protected and 2 if public. Consider the C++ class
1810 definition below:
1811
1812 @example
1813 class all_methods @{
1814 private:
1815 int priv_meth(int in)@{return in;@};
1816 protected:
1817 char protMeth(char in)@{return in;@};
1818 public:
1819 float pubMeth(float in)@{return in;@};
1820 @};
1821 @end example
1822
1823 It generates the following stab. The digit in question is to the left
1824 of an `A' in each case. Notice also that in this case two symbol
1825 descriptors apply to the class name struct tag and struct type.
1826
1827 @display
1828 .stabs "class_name:sym_desc(struct tag&type)type_def(21)=
1829 sym_desc(struct)struct_bytes(1)
1830 meth_name::type_def(22)=sym_desc(method)returning(int);
1831 :args(int);protection(private)modifier(normal)virtual(no);
1832 meth_name::type_def(23)=sym_desc(method)returning(char);
1833 :args(char);protection(protected)modifier(normal)virual(no);
1834 meth_name::type_def(24)=sym_desc(method)returning(float);
1835 :args(float);protection(public)modifier(normal)virtual(no);;",
1836 N_LSYM,NIL,NIL,NIL
1837 @end display
1838
1839 @smallexample
1840 .stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;
1841 pubMeth::24=##12;:f;2A.;;",128,0,0,0
1842 @end smallexample
1843
1844 @node Method Modifiers
1845 @section Method Modifiers (const, volatile, const volatile)
1846
1847 << based on a6.C >>
1848
1849 In the class example described above all the methods have the normal
1850 modifier. This method modifier information is located just after the
1851 protection information for the method. This field has four possible
1852 character values. Normal methods use A, const methods use B, volatile
1853 methods use C, and const volatile methods use D. Consider the class
1854 definition below:
1855
1856 @example
1857 class A @{
1858 public:
1859 int ConstMeth (int arg) const @{ return arg; @};
1860 char VolatileMeth (char arg) volatile @{ return arg; @};
1861 float ConstVolMeth (float arg) const volatile @{return arg; @};
1862 @};
1863 @end example
1864
1865 This class is described by the following stab:
1866
1867 @display
1868 .stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)
1869 meth_name(ConstMeth)::type_def(21)sym_desc(method)
1870 returning(int);:arg(int);protection(public)modifier(const)virtual(no);
1871 meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
1872 returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
1873 meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
1874 returning(float);:arg(float);protection(public)modifer(const volatile)
1875 virtual(no);;", @dots{}
1876 @end display
1877
1878 @example
1879 .stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;
1880 ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0
1881 @end example
1882
1883 @node Virtual Methods
1884 @section Virtual Methods
1885
1886 << The following examples are based on a4.C >>
1887
1888 The presence of virtual methods in a class definition adds additional
1889 data to the class description. The extra data is appended to the
1890 description of the virtual method and to the end of the class
1891 description. Consider the class definition below:
1892
1893 @example
1894 class A @{
1895 public:
1896 int Adat;
1897 virtual int A_virt (int arg) @{ return arg; @};
1898 @};
1899 @end example
1900
1901 This results in the stab below describing class A. It defines a new
1902 type (20) which is an 8 byte structure. The first field of the class
1903 struct is Adat, an integer, starting at structure offset 0 and
1904 occupying 32 bits.
1905
1906 The second field in the class struct is not explicitly defined by the
1907 C++ class definition but is implied by the fact that the class
1908 contains a virtual method. This field is the vtable pointer. The
1909 name of the vtable pointer field starts with $vf and continues with a
1910 type reference to the class it is part of. In this example the type
1911 reference for class A is 20 so the name of its vtable pointer field is
1912 $vf20, followed by the usual colon.
1913
1914 Next there is a type definition for the vtable pointer type (21).
1915 This is in turn defined as a pointer to another new type (22).
1916
1917 Type 22 is the vtable itself, which is defined as an array, indexed by
1918 a range of integers between 0 and 1, and whose elements are of type
1919 17. Type 17 was the vtable record type defined by the boilerplate C++
1920 type definitions, as shown earlier.
1921
1922 The bit offset of the vtable pointer field is 32. The number of bits
1923 in the field are not specified when the field is a vtable pointer.
1924
1925 Next is the method definition for the virtual member function A_virt.
1926 Its description starts out using the same format as the non-virtual
1927 member functions described above, except instead of a dot after the
1928 `A' there is an asterisk, indicating that the function is virtual.
1929 Since is is virtual some addition information is appended to the end
1930 of the method description.
1931
1932 The first number represents the vtable index of the method. This is a
1933 32 bit unsigned number with the high bit set, followed by a
1934 semi-colon.
1935
1936 The second number is a type reference to the first base class in the
1937 inheritence hierarchy defining the virtual member function. In this
1938 case the class stab describes a base class so the virtual function is
1939 not overriding any other definition of the method. Therefore the
1940 reference is to the type number of the class that the stab is
1941 describing (20).
1942
1943 This is followed by three semi-colons. One marks the end of the
1944 current sub-section, one marks the end of the method field, and the
1945 third marks the end of the struct definition.
1946
1947 For classes containing virtual functions the very last section of the
1948 string part of the stab holds a type reference to the first base
1949 class. This is preceeded by `~%' and followed by a final semi-colon.
1950
1951 @display
1952 .stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
1953 field_name(Adat):type_ref(int),bit_offset(0),field_bits(32);
1954 field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
1955 sym_desc(array)index_type_ref(range of int from 0 to 1);
1956 elem_type_ref(vtbl elem type),
1957 bit_offset(32);
1958 meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
1959 :arg_type(int),protection(public)normal(yes)virtual(yes)
1960 vtable_index(1);class_first_defining(A);;;~%first_base(A);",
1961 N_LSYM,NIL,NIL,NIL
1962 @end display
1963
1964 @example
1965 .stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
1966 @end example
1967
1968 @node Inheritence
1969 @section Inheritence
1970
1971 Stabs describing C++ derived classes include additional sections that
1972 describe the inheritence hierarchy of the class. A derived class stab
1973 also encodes the number of base classes. For each base class it tells
1974 if the base class is virtual or not, and if the inheritence is private
1975 or public. It also gives the offset into the object of the portion of
1976 the object corresponding to each base class.
1977
1978 This additional information is embeded in the class stab following the
1979 number of bytes in the struct. First the number of base classes
1980 appears bracketed by an exclamation point and a comma.
1981
1982 Then for each base type there repeats a series: two digits, a number,
1983 a comma, another number, and a semi-colon.
1984
1985 The first of the two digits is 1 if the base class is virtual and 0 if
1986 not. The second digit is 2 if the derivation is public and 0 if not.
1987
1988 The number following the first two digits is the offset from the start
1989 of the object to the part of the object pertaining to the base class.
1990
1991 After the comma, the second number is a type_descriptor for the base
1992 type. Finally a semi-colon ends the series, which repeats for each
1993 base class.
1994
1995 The source below defines three base classes A, B, and C and the
1996 derived class D.
1997
1998
1999 @example
2000 class A @{
2001 public:
2002 int Adat;
2003 virtual int A_virt (int arg) @{ return arg; @};
2004 @};
2005
2006 class B @{
2007 public:
2008 int B_dat;
2009 virtual int B_virt (int arg) @{return arg; @};
2010 @};
2011
2012 class C @{
2013 public:
2014 int Cdat;
2015 virtual int C_virt (int arg) @{return arg; @};
2016 @};
2017
2018 class D : A, virtual B, public C @{
2019 public:
2020 int Ddat;
2021 virtual int A_virt (int arg ) @{ return arg+1; @};
2022 virtual int B_virt (int arg) @{ return arg+2; @};
2023 virtual int C_virt (int arg) @{ return arg+3; @};
2024 virtual int D_virt (int arg) @{ return arg; @};
2025 @};
2026 @end example
2027
2028 Class stabs similar to the ones described earlier are generated for
2029 each base class.
2030
2031 @c FIXME!!! the linebreaks in the following example probably make the
2032 @c examples literally unusable, but I don't know any other way to get
2033 @c them on the page.
2034 @smallexample
2035 .stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;
2036 A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2037
2038 .stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;
2039 :i;2A*-2147483647;25;;;~%25;",128,0,0,0
2040
2041 .stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
2042 :i;2A*-2147483647;28;;;~%28;",128,0,0,0
2043 @end smallexample
2044
2045 In the stab describing derived class D below, the information about
2046 the derivation of this class is encoded as follows.
2047
2048 @display
2049 .stabs "derived_class_name:symbol_descriptors(struct tag&type)=
2050 type_descriptor(struct)struct_bytes(32)!num_bases(3),
2051 base_virtual(no)inheritence_public(no)base_offset(0),
2052 base_class_type_ref(A);
2053 base_virtual(yes)inheritence_public(no)base_offset(NIL),
2054 base_class_type_ref(B);
2055 base_virtual(no)inheritence_public(yes)base_offset(64),
2056 base_class_type_ref(C); @dots{}
2057 @end display
2058
2059 @c FIXME! fake linebreaks.
2060 @smallexample
2061 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:
2062 1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:
2063 :32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;
2064 28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2065 @end smallexample
2066
2067 @node Virtual Base Classes
2068 @section Virtual Base Classes
2069
2070 A derived class object consists of a concatination in memory of the
2071 data areas defined by each base class, starting with the leftmost and
2072 ending with the rightmost in the list of base classes. The exception
2073 to this rule is for virtual inheritence. In the example above, class
2074 D inherits virtually from base class B. This means that an instance
2075 of a D object will not contain it's own B part but merely a pointer to
2076 a B part, known as a virtual base pointer.
2077
2078 In a derived class stab, the base offset part of the derivation
2079 information, described above, shows how the base class parts are
2080 ordered. The base offset for a virtual base class is always given as
2081 0. Notice that the base offset for B is given as 0 even though B is
2082 not the first base class. The first base class A starts at offset 0.
2083
2084 The field information part of the stab for class D describes the field
2085 which is the pointer to the virtual base class B. The vbase pointer
2086 name is $vb followed by a type reference to the virtual base class.
2087 Since the type id for B in this example is 25, the vbase pointer name
2088 is $vb25.
2089
2090 @c FIXME!! fake linebreaks below
2091 @smallexample
2092 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
2093 160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;
2094 2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:
2095 :32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2096 @end smallexample
2097
2098 Following the name and a semicolon is a type reference describing the
2099 type of the virtual base class pointer, in this case 24. Type 24 was
2100 defined earlier as the type of the B class `this` pointer. The
2101 `this' pointer for a class is a pointer to the class type.
2102
2103 @example
2104 .stabs "this:P24=*25=xsB:",64,0,0,8
2105 @end example
2106
2107 Finally the field offset part of the vbase pointer field description
2108 shows that the vbase pointer is the first field in the D object,
2109 before any data fields defined by the class. The layout of a D class
2110 object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat
2111 at 64, the vtable pointer for C at 96, the virtual ase pointer for B
2112 at 128, and Ddat at 160.
2113
2114
2115 @node Static Members
2116 @section Static Members
2117
2118 The data area for a class is a concatenation of the space used by the
2119 data members of the class. If the class has virtual methods, a vtable
2120 pointer follows the class data. The field offset part of each field
2121 description in the class stab shows this ordering.
2122
2123 << How is this reflected in stabs? See Cygnus bug #677 for some info. >>
2124
2125 @node Example2.c
2126 @appendix Example2.c - source code for extended example
2127
2128 @example
2129 1 char g_foo = 'c';
2130 2 register int g_bar asm ("%g5");
2131 3 static int s_g_repeat = 2;
2132 4 int (*g_pf)();
2133 5
2134 6 struct s_tag @{
2135 7 int s_int;
2136 8 float s_float;
2137 9 char s_char_vec[8];
2138 10 struct s_tag* s_next;
2139 11 @} g_an_s;
2140 12
2141 13 typedef struct s_tag s_typedef;
2142 14
2143 15 char char_vec[3] = @{'a','b','c'@};
2144 16
2145 17 main (argc, argv)
2146 18 int argc;
2147 19 char* argv[];
2148 20 @{
2149 21 static float s_flap;
2150 22 int times;
2151 23 for (times=0; times < s_g_repeat; times++)@{
2152 24 int inner;
2153 25 printf ("Hello world\n");
2154 26 @}
2155 27 @};
2156 28
2157 29 enum e_places @{first,second=3,last@};
2158 30
2159 31 static s_proc (s_arg, s_ptr_arg, char_vec)
2160 32 s_typedef s_arg;
2161 33 s_typedef* s_ptr_arg;
2162 34 char* char_vec;
2163 35 @{
2164 36 union u_tag @{
2165 37 int u_int;
2166 38 float u_float;
2167 39 char* u_char;
2168 40 @} an_u;
2169 41 @}
2170 42
2171 43
2172 @end example
2173
2174 @node Example2.s
2175 @appendix Example2.s - assembly code for extended example
2176
2177 @example
2178 1 gcc2_compiled.:
2179 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
2180 3 .stabs "example2.c",100,0,0,Ltext0
2181 4 .text
2182 5 Ltext0:
2183 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
2184 7 .stabs "char:t2=r2;0;127;",128,0,0,0
2185 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
2186 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
2187 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
2188 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
2189 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
2190 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
2191 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
2192 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
2193 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
2194 17 .stabs "float:t12=r1;4;0;",128,0,0,0
2195 18 .stabs "double:t13=r1;8;0;",128,0,0,0
2196 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
2197 20 .stabs "void:t15=15",128,0,0,0
2198 21 .stabs "g_foo:G2",32,0,0,0
2199 22 .global _g_foo
2200 23 .data
2201 24 _g_foo:
2202 25 .byte 99
2203 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
2204 27 .align 4
2205 28 _s_g_repeat:
2206 29 .word 2
2207 @c FIXME! fake linebreak in line 30
2208 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:
2209 17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
2210 31 .stabs "s_typedef:t16",128,0,0,0
2211 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
2212 33 .global _char_vec
2213 34 .align 4
2214 35 _char_vec:
2215 36 .byte 97
2216 37 .byte 98
2217 38 .byte 99
2218 39 .reserve _s_flap.0,4,"bss",4
2219 40 .text
2220 41 .align 4
2221 42 LC0:
2222 43 .ascii "Hello world\12\0"
2223 44 .align 4
2224 45 .global _main
2225 46 .proc 1
2226 47 _main:
2227 48 .stabn 68,0,20,LM1
2228 49 LM1:
2229 50 !#PROLOGUE# 0
2230 51 save %sp,-144,%sp
2231 52 !#PROLOGUE# 1
2232 53 st %i0,[%fp+68]
2233 54 st %i1,[%fp+72]
2234 55 call ___main,0
2235 56 nop
2236 57 LBB2:
2237 58 .stabn 68,0,23,LM2
2238 59 LM2:
2239 60 st %g0,[%fp-20]
2240 61 L2:
2241 62 sethi %hi(_s_g_repeat),%o0
2242 63 ld [%fp-20],%o1
2243 64 ld [%o0+%lo(_s_g_repeat)],%o0
2244 65 cmp %o1,%o0
2245 66 bge L3
2246 67 nop
2247 68 LBB3:
2248 69 .stabn 68,0,25,LM3
2249 70 LM3:
2250 71 sethi %hi(LC0),%o1
2251 72 or %o1,%lo(LC0),%o0
2252 73 call _printf,0
2253 74 nop
2254 75 .stabn 68,0,26,LM4
2255 76 LM4:
2256 77 LBE3:
2257 78 .stabn 68,0,23,LM5
2258 79 LM5:
2259 80 L4:
2260 81 ld [%fp-20],%o0
2261 82 add %o0,1,%o1
2262 83 st %o1,[%fp-20]
2263 84 b,a L2
2264 85 L3:
2265 86 .stabn 68,0,27,LM6
2266 87 LM6:
2267 88 LBE2:
2268 89 .stabn 68,0,27,LM7
2269 90 LM7:
2270 91 L1:
2271 92 ret
2272 93 restore
2273 94 .stabs "main:F1",36,0,0,_main
2274 95 .stabs "argc:p1",160,0,0,68
2275 96 .stabs "argv:p20=*21=*2",160,0,0,72
2276 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
2277 98 .stabs "times:1",128,0,0,-20
2278 99 .stabn 192,0,0,LBB2
2279 100 .stabs "inner:1",128,0,0,-24
2280 101 .stabn 192,0,0,LBB3
2281 102 .stabn 224,0,0,LBE3
2282 103 .stabn 224,0,0,LBE2
2283 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
2284 @c FIXME: fake linebreak in line 105
2285 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
2286 128,0,0,0
2287 106 .align 4
2288 107 .proc 1
2289 108 _s_proc:
2290 109 .stabn 68,0,35,LM8
2291 110 LM8:
2292 111 !#PROLOGUE# 0
2293 112 save %sp,-120,%sp
2294 113 !#PROLOGUE# 1
2295 114 mov %i0,%o0
2296 115 st %i1,[%fp+72]
2297 116 st %i2,[%fp+76]
2298 117 LBB4:
2299 118 .stabn 68,0,41,LM9
2300 119 LM9:
2301 120 LBE4:
2302 121 .stabn 68,0,41,LM10
2303 122 LM10:
2304 123 L5:
2305 124 ret
2306 125 restore
2307 126 .stabs "s_proc:f1",36,0,0,_s_proc
2308 127 .stabs "s_arg:p16",160,0,0,0
2309 128 .stabs "s_ptr_arg:p18",160,0,0,72
2310 129 .stabs "char_vec:p21",160,0,0,76
2311 130 .stabs "an_u:23",128,0,0,-20
2312 131 .stabn 192,0,0,LBB4
2313 132 .stabn 224,0,0,LBE4
2314 133 .stabs "g_bar:r1",64,0,0,5
2315 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
2316 135 .common _g_pf,4,"bss"
2317 136 .stabs "g_an_s:G16",32,0,0,0
2318 137 .common _g_an_s,20,"bss"
2319 @end example
2320
2321
2322 @node Quick reference
2323 @appendix Quick reference
2324
2325 @menu
2326 * Stab types:: Table A: Symbol types from stabs
2327 * Assembler types:: Table B: Symbol types from assembler and linker
2328 * Symbol descriptors:: Table C
2329 * Type Descriptors:: Table D
2330 @end menu
2331
2332 @node Stab types
2333 @section Table A: Symbol types from stabs
2334
2335 Table A lists stab types sorted by type number. Stab type numbers are
2336 32 and greater. This is the full list of stab numbers, including stab
2337 types that are used in languages other than C.
2338
2339 The #define names for these stab types are defined in:
2340 devo/include/aout/stab.def
2341
2342 @smallexample
2343 type type #define used to describe
2344 dec hex name source program feature
2345 ------------------------------------------------
2346 32 0x20 N_GYSM global symbol
2347 34 0X22 N_FNAME function name (for BSD Fortran)
2348 36 0x24 N_FUN function name or text segment variable for C
2349 38 0x26 N_STSYM static symbol (data segment w/internal linkage)
2350 40 0x28 N_LCSYM .lcomm symbol(BSS-seg variable w/internal linkage)
2351 42 0x2a N_MAIN Name of main routine (not used in C)
2352 48 0x30 N_PC global symbol (for Pascal)
2353 50 0x32 N_NSYMS number of symbols (according to Ultrix V4.0)
2354 52 0x34 N_NOMAP no DST map for sym (according to Ultrix V4.0)
2355 64 0x40 N_RSYM register variable
2356 66 0x42 N_M2C Modula-2 compilation unit
2357 68 0x44 N_SLINE line number in text segment
2358 70 0x46 N_DSLINE line number in data segment
2359
2360 72 0x48 N_BSLINE line number in bss segment
2361 72 0x48 N_BROWS Sun source code browser, path to .cb file
2362
2363 74 0x4a N_DEFD GNU Modula2 definition module dependency
2364
2365 80 0x50 N_EHDECL GNU C++ exception variable
2366 80 0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0)
2367
2368 84 0x54 N_CATCH GNU C++ "catch" clause
2369 96 0x60 N_SSYM structure of union element
2370 100 0x64 N_SO path and name of source file
2371 128 0x80 N_LSYM automatic var in the stack
2372 (also used for type desc.)
2373 130 0x82 N_BINCL beginning of an include file (Sun only)
2374 132 0x84 N_SOL Name of sub-source (#include) file.
2375 160 0xa0 N_PSYM parameter variable
2376 162 0xa2 N_EINCL end of an include file
2377 164 0xa4 N_ENTRY alternate entry point
2378 192 0xc0 N_LBRAC beginning of a lexical block
2379 194 0xc2 N_EXCL place holder for a deleted include file
2380 196 0xc4 N_SCOPE modula2 scope information (Sun linker)
2381 224 0xe0 N_RBRAC end of a lexical block
2382 226 0xe2 N_BCOMM begin named common block
2383 228 0xe4 N_ECOMM end named common block
2384 232 0xe8 N_ECOML end common (local name)
2385
2386 << used on Gould systems for non-base registers syms >>
2387 240 0xf0 N_NBTEXT ??
2388 242 0xf2 N_NBDATA ??
2389 244 0xf4 N_NBBSS ??
2390 246 0xf6 N_NBSTS ??
2391 248 0xf8 N_NBLCS ??
2392 @end smallexample
2393
2394 @node Assembler types
2395 @section Table B: Symbol types from assembler and linker
2396
2397 Table B shows the types of symbol table entries that hold assembler
2398 and linker symbols.
2399
2400 The #define names for these n_types values are defined in
2401 /include/aout/aout64.h
2402
2403 @smallexample
2404 dec hex #define
2405 n_type n_type name used to describe
2406 ------------------------------------------
2407 1 0x0 N_UNDF undefined symbol
2408 2 0x2 N_ABS absolute symbol -- defined at a particular address
2409 3 0x3 extern " (vs. file scope)
2410 4 0x4 N_TEXT text symbol -- defined at offset in text segment
2411 5 0x5 extern " (vs. file scope)
2412 6 0x6 N_DATA data symbol -- defined at offset in data segment
2413 7 0x7 extern " (vs. file scope)
2414 8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
2415 9 extern " (vs. file scope)
2416
2417 12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
2418
2419 49 0x12 N_COMM common sym -- visable after shared lib dynamic link
2420 31 0x1f N_FN file name of a .o file
2421 @end smallexample
2422
2423 @node Symbol descriptors
2424 @section Table C: Symbol descriptors
2425
2426 @table @code
2427 @item (empty)
2428 Local variable, @xref{Automatic variables}.
2429
2430 @item f
2431 Local function, @xref{Procedures}.
2432
2433 @item F
2434 Global function, @xref{Procedures}.
2435
2436 @item t
2437 Type name, @xref{Typedefs}.
2438
2439 @item T
2440 enumeration, struct or union tag, @xref{Unions}.
2441
2442 @item G
2443 Global variable, @xref{Global Variables}.
2444
2445 @item r
2446 Register variable, @xref{Register variables}.
2447
2448 @item S
2449 Static file scope variable @xref{Initialized statics},
2450 @xref{Un-initialized statics}.
2451
2452 @item V
2453 Static procedure scope variable @xref{Initialized statics},
2454 @xref{Un-initialized statics}.
2455
2456 @item p
2457 Argument list parameter @xref{Parameters}.
2458
2459 @item P
2460 @item R
2461 Register parameter @xref{Parameters}.
2462 @end table
2463
2464 @node Type Descriptors
2465 @section Table D: Type Descriptors
2466
2467 @example
2468 descriptor meaning
2469 -------------------------------------
2470 (empty) type reference
2471 a array type
2472 e enumeration type
2473 f function type
2474 r range type
2475 s structure type
2476 u union specifications
2477 * pointer type
2478 @end example
2479
2480
2481 @node Expanded reference
2482 @appendix Expanded reference by stab type.
2483
2484 Format of an entry:
2485
2486 The first line is the symbol type expressed in decimal, hexadecimal,
2487 and as a #define (see devo/include/aout/stab.def).
2488
2489 The second line describes the language constructs the symbol type
2490 represents.
2491
2492 The third line is the stab format with the significant stab fields
2493 named and the rest NIL.
2494
2495 Subsequent lines expand upon the meaning and possible values for each
2496 significant stab field. # stands in for the type descriptor.
2497
2498 Finally, any further information.
2499
2500 @menu
2501 * N_GSYM:: Global variable
2502 * N_FNAME:: Function name (BSD Fortran)
2503 * N_FUN:: C Function name or text segment variable
2504 * N_STSYM:: Initialized static symbol
2505 * N_LCSYM:: Uninitialized static symbol
2506 * N_MAIN:: Name of main routine (not for C)
2507 * N_PC:: Pascal global symbol
2508 * N_NSYMS:: Number of symbols
2509 * N_NOMAP:: No DST map
2510 * N_RSYM:: Register variable
2511 * N_M2C:: Modula-2 compilation unit
2512 * N_SLINE:: Line number in text segment
2513 * N_DSLINE:: Line number in data segment
2514 * N_BSLINE:: Line number in bss segment
2515 * N_BROWS:: Path to .cb file for Sun source code browser
2516 * N_DEFD:: GNU Modula2 definition module dependency
2517 * N_EHDECL:: GNU C++ exception variable
2518 * N_MOD2:: Modula2 information "for imc"
2519 * N_CATCH:: GNU C++ "catch" clause
2520 * N_SSYM:: Structure or union element
2521 * N_SO:: Source file containing main
2522 * N_LSYM:: Automatic variable
2523 * N_BINCL:: Beginning of include file (Sun only)
2524 * N_SOL:: Name of include file
2525 * N_PSYM:: Parameter variable
2526 * N_EINCL:: End of include file
2527 * N_ENTRY:: Alternate entry point
2528 * N_LBRAC:: Beginning of lexical block
2529 * N_EXCL:: Deleted include file
2530 * N_SCOPE:: Modula2 scope information (Sun only)
2531 * N_RBRAC:: End of lexical block
2532 * N_BCOMM:: Begin named common block
2533 * N_ECOMM:: End named common block
2534 * N_ECOML:: End common
2535 * Gould:: non-base register symbols used on Gould systems
2536 * N_LENG:: Length of preceding entry
2537 @end menu
2538
2539 @node N_GSYM
2540 @section 32 - 0x20 - N_GYSM
2541
2542 @display
2543 Global variable.
2544
2545 .stabs "name", N_GSYM, NIL, NIL, NIL
2546 @end display
2547
2548 @example
2549 "name" -> "symbol_name:#type"
2550 # -> G
2551 @end example
2552
2553 Only the "name" field is significant. The location of the variable is
2554 obtained from the corresponding external symbol.
2555
2556 @node N_FNAME
2557 @section 34 - 0x22 - N_FNAME
2558 Function name (for BSD Fortran)
2559
2560 @display
2561 .stabs "name", N_FNAME, NIL, NIL, NIL
2562 @end display
2563
2564 @example
2565 "name" -> "function_name"
2566 @end example
2567
2568 Only the "name" field is significant. The location of the symbol is
2569 obtained from the corresponding extern symbol.
2570
2571 @node N_FUN
2572 @section 36 - 0x24 - N_FUN
2573 Function name or text segment variable for C.
2574
2575 @display
2576 .stabs "name", N_FUN, NIL, desc, value
2577 @end display
2578
2579 @example
2580 @exdent @emph{For functions:}
2581 "name" -> "proc_name:#return_type"
2582 # -> F (global function)
2583 f (local function)
2584 desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)
2585 value -> Code address of proc start.
2586
2587 @exdent @emph{For text segment variables:}
2588 <<How to create one?>>
2589 @end example
2590
2591 @node N_STSYM
2592 @section 38 - 0x26 - N_STSYM
2593 Initialized static symbol (data segment w/internal linkage).
2594
2595 @display
2596 .stabs "name", N_STSYM, NIL, NIL, value
2597 @end display
2598
2599 @example
2600 "name" -> "symbol_name#type"
2601 # -> S (scope global to compilation unit)
2602 -> V (scope local to a procedure)
2603 value -> Data Address
2604 @end example
2605
2606 @node N_LCSYM
2607 @section 40 - 0x28 - N_LCSYM
2608 Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
2609
2610 @display
2611 .stabs "name", N_LCLSYM, NIL, NIL, value
2612 @end display
2613
2614 @example
2615 "name" -> "symbol_name#type"
2616 # -> S (scope global to compilation unit)
2617 -> V (scope local to procedure)
2618 value -> BSS Address
2619 @end example
2620
2621 @node N_MAIN
2622 @section 42 - 0x2a - N_MAIN
2623 Name of main routine (not used in C)
2624
2625 @display
2626 .stabs "name", N_MAIN, NIL, NIL, NIL
2627 @end display
2628
2629 @example
2630 "name" -> "name_of_main_routine"
2631 @end example
2632
2633 @node N_PC
2634 @section 48 - 0x30 - N_PC
2635 Global symbol (for Pascal)
2636
2637 @display
2638 .stabs "name", N_PC, NIL, NIL, value
2639 @end display
2640
2641 @example
2642 "name" -> "symbol_name" <<?>>
2643 value -> supposedly the line number (stab.def is skeptical)
2644 @end example
2645
2646 @display
2647 stabdump.c says:
2648
2649 global pascal symbol: name,,0,subtype,line
2650 << subtype? >>
2651 @end display
2652
2653 @node N_NSYMS
2654 @section 50 - 0x32 - N_NSYMS
2655 Number of symbols (according to Ultrix V4.0)
2656
2657 @display
2658 0, files,,funcs,lines (stab.def)
2659 @end display
2660
2661 @node N_NOMAP
2662 @section 52 - 0x34 - N_NOMAP
2663 no DST map for sym (according to Ultrix V4.0)
2664
2665 @display
2666 name, ,0,type,ignored (stab.def)
2667 @end display
2668
2669 @node N_RSYM
2670 @section 64 - 0x40 - N_RSYM
2671 register variable
2672
2673 @display
2674 .stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)
2675 @end display
2676
2677 @node N_M2C
2678 @section 66 - 0x42 - N_M2C
2679 Modula-2 compilation unit
2680
2681 @display
2682 .stabs "name", N_M2C, 0, desc, value
2683 @end display
2684
2685 @example
2686 "name" -> "unit_name,unit_time_stamp[,code_time_stamp]
2687 desc -> unit_number
2688 value -> 0 (main unit)
2689 1 (any other unit)
2690 @end example
2691
2692 @node N_SLINE
2693 @section 68 - 0x44 - N_SLINE
2694 Line number in text segment
2695
2696 @display
2697 .stabn N_SLINE, 0, desc, value
2698 @end display
2699
2700 @example
2701 desc -> line_number
2702 value -> code_address (relocatable addr where the corresponding code starts)
2703 @end example
2704
2705 For single source lines that generate discontiguous code, such as flow
2706 of control statements, there may be more than one N_SLINE stab for the
2707 same source line. In this case there is a stab at the start of each
2708 code range, each with the same line number.
2709
2710 @node N_DSLINE
2711 @section 70 - 0x46 - N_DSLINE
2712 Line number in data segment
2713
2714 @display
2715 .stabn N_DSLINE, 0, desc, value
2716 @end display
2717
2718 @example
2719 desc -> line_number
2720 value -> data_address (relocatable addr where the corresponding code
2721 starts)
2722 @end example
2723
2724 See comment for N_SLINE above.
2725
2726 @node N_BSLINE
2727 @section 72 - 0x48 - N_BSLINE
2728 Line number in bss segment
2729
2730 @display
2731 .stabn N_BSLINE, 0, desc, value
2732 @end display
2733
2734 @example
2735 desc -> line_number
2736 value -> bss_address (relocatable addr where the corresponding code
2737 starts)
2738 @end example
2739
2740 See comment for N_SLINE above.
2741
2742 @node N_BROWS
2743 @section 72 - 0x48 - N_BROWS
2744 Sun source code browser, path to .cb file
2745
2746 <<?>>
2747 "path to associated .cb file"
2748
2749 Note: type field value overlaps with N_BSLINE
2750
2751 @node N_DEFD
2752 @section 74 - 0x4a - N_DEFD
2753 GNU Modula2 definition module dependency
2754
2755 GNU Modula-2 definition module dependency. Value is the modification
2756 time of the definition file. Other is non-zero if it is imported with
2757 the GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
2758 are enough empty fields?
2759
2760 @node N_EHDECL
2761 @section 80 - 0x50 - N_EHDECL
2762 GNU C++ exception variable <<?>>
2763
2764 "name is variable name"
2765
2766 Note: conflicts with N_MOD2.
2767
2768 @node N_MOD2
2769 @section 80 - 0x50 - N_MOD2
2770 Modula2 info "for imc" (according to Ultrix V4.0)
2771
2772 Note: conflicts with N_EHDECL <<?>>
2773
2774 @node N_CATCH
2775 @section 84 - 0x54 - N_CATCH
2776 GNU C++ "catch" clause
2777
2778 GNU C++ `catch' clause. Value is its address. Desc is nonzero if
2779 this entry is immediately followed by a CAUGHT stab saying what
2780 exception was caught. Multiple CAUGHT stabs means that multiple
2781 exceptions can be caught here. If Desc is 0, it means all exceptions
2782 are caught here.
2783
2784 @node N_SSYM
2785 @section 96 - 0x60 - N_SSYM
2786 Structure or union element
2787
2788 Value is offset in the structure.
2789
2790 <<?looking at structs and unions in C I didn't see these>>
2791
2792 @node N_SO
2793 @section 100 - 0x64 - N_SO
2794 Path and name of source file containing main routine
2795
2796 @display
2797 .stabs "name", N_SO, NIL, NIL, value
2798 @end display
2799
2800 @example
2801 "name" -> /source/directory/
2802 -> source_file
2803
2804 value -> the starting text address of the compilation.
2805 @end example
2806
2807 These are found two in a row. The name field of the first N_SO contains
2808 the directory that the source file is relative to. The name field of
2809 the second N_SO contains the name of the source file itself.
2810
2811 Only some compilers (e.g. gcc2, Sun cc) include the directory; this
2812 symbol can be distinguished by the fact that it ends in a slash.
2813 According to a comment in GDB's partial-stab.h, other compilers
2814 (especially unnamed C++ compilers) put out useless N_SO's for
2815 nonexistent source files (after the N_SO for the real source file).
2816
2817 @node N_LSYM
2818 @section 128 - 0x80 - N_LSYM
2819 Automatic var in the stack (also used for type descriptors.)
2820
2821 @display
2822 .stabs "name" N_LSYM, NIL, NIL, value
2823 @end display
2824
2825 @example
2826 @exdent @emph{For stack based local variables:}
2827
2828 "name" -> name of the variable
2829 value -> offset from frame pointer (negative)
2830
2831 @exdent @emph{For type descriptors:}
2832
2833 "name" -> "name_of_the_type:#type"
2834 # -> t
2835
2836 type -> type_ref (or) type_def
2837
2838 type_ref -> type_number
2839 type_def -> type_number=type_desc etc.
2840 @end example
2841
2842 Type may be either a type reference or a type definition. A type
2843 reference is a number that refers to a previously defined type. A
2844 type definition is the number that will refer to this type, followed
2845 by an equals sign, a type descriptor and the additional data that
2846 defines the type. See the Table D for type descriptors and the
2847 section on types for what data follows each type descriptor.
2848
2849 @node N_BINCL
2850 @section 130 - 0x82 - N_BINCL
2851
2852 Beginning of an include file (Sun only)
2853
2854 Beginning of an include file. Only Sun uses this. In an object file,
2855 only the name is significant. The Sun linker puts data into some of
2856 the other fields.
2857
2858 @node N_SOL
2859 @section 132 - 0x84 - N_SOL
2860
2861 Name of a sub-source file (#include file). Value is starting address
2862 of the compilation.
2863 <<?>>
2864
2865 @node N_PSYM
2866 @section 160 - 0xa0 - N_PSYM
2867
2868 Parameter variable
2869
2870 @display
2871 stabs. "name", N_PSYM, NIL, NIL, value
2872 @end display
2873
2874 @example
2875 "name" -> "param_name:#type"
2876 # -> p (value parameter)
2877 -> i (value parameter by reference, indirect access)
2878 -> v (variable parameter by reference)
2879 -> C (read-only parameter, conformant array bound)
2880 -> x (conformant array value parameter)
2881 -> pP (<<??>>)
2882 -> pF (<<??>>)
2883 -> X (function result variable)
2884 -> b (based variable)
2885
2886 value -> offset from the argument pointer (positive).
2887 @end example
2888
2889 On most machines the argument pointer is the same as the frame
2890 pointer.
2891
2892 @node N_EINCL
2893 @section 162 - 0xa2 - N_EINCL
2894
2895 End of an include file. This and N_BINCL act as brackets around the
2896 file's output. In an ojbect file, there is no significant data in
2897 this entry. The Sun linker puts data into some of the fields.
2898 <<?>>
2899
2900 @node N_ENTRY
2901 @section 164 - 0xa4 - N_ENTRY
2902
2903 Alternate entry point.
2904 Value is its address.
2905 <<?>>
2906
2907 @node N_LBRAC
2908 @section 192 - 0xc0 - N_LBRAC
2909
2910 Beginning of a lexical block (left brace). The variable defined
2911 inside the block precede the N_LBRAC symbol. Or can they follow as
2912 well as long as a new N_FUNC was not encountered. <<?>>
2913
2914 @display
2915 .stabn N_LBRAC, NIL, NIL, value
2916 @end display
2917
2918 @example
2919 value -> code address of block start.
2920 @end example
2921
2922 @node N_EXCL
2923 @section 194 - 0xc2 - N_EXCL
2924
2925 Place holder for a deleted include file. Replaces a N_BINCL and
2926 everything up to the corresponding N_EINCL. The Sun linker generates
2927 these when it finds multiple indentical copies of the symbols from an
2928 included file. This appears only in output from the Sun linker.
2929 <<?>>
2930
2931 @node N_SCOPE
2932 @section 196 - 0xc4 - N_SCOPE
2933
2934 Modula2 scope information (Sun linker)
2935 <<?>>
2936
2937 @node N_RBRAC
2938 @section 224 - 0xe0 - N_RBRAC
2939
2940 End of a lexical block (right brace)
2941
2942 @display
2943 .stabn N_RBRAC, NIL, NIL, value
2944 @end display
2945
2946 @example
2947 value -> code address of the end of the block.
2948 @end example
2949
2950 @node N_BCOMM
2951 @section 226 - 0xe2 - N_BCOMM
2952
2953 Begin named common block.
2954
2955 Only the name is significant.
2956 <<?>>
2957
2958 @node N_ECOMM
2959 @section 228 - 0xe4 - N_ECOMM
2960
2961 End named common block.
2962
2963 Only the name is significant and it should match the N_BCOMM
2964 <<?>>
2965
2966 @node N_ECOML
2967 @section 232 - 0xe8 - N_ECOML
2968
2969 End common (local name)
2970
2971 value is address.
2972 <<?>>
2973
2974 @node Gould
2975 @section Non-base registers on Gould systems
2976 << used on Gould systems for non-base registers syms, values assigned
2977 at random, need real info from Gould. >>
2978 <<?>>
2979
2980 @example
2981 240 0xf0 N_NBTEXT ??
2982 242 0xf2 N_NBDATA ??
2983 244 0xf4 N_NBBSS ??
2984 246 0xf6 N_NBSTS ??
2985 248 0xf8 N_NBLCS ??
2986 @end example
2987
2988 @node N_LENG
2989 @section - 0xfe - N_LENG
2990
2991 Second symbol entry containing a length-value for the preceding entry.
2992 The value is the length.
2993
2994 @node Questions
2995 @appendix Questions and anomalies
2996
2997 @itemize @bullet
2998 @item
2999 For GNU C stabs defining local and global variables (N_LSYM and
3000 N_GSYM), the desc field is supposed to contain the source line number
3001 on which the variable is defined. In reality the desc field is always
3002 0. (This behavour is defined in dbxout.c and putting a line number in
3003 desc is controlled by #ifdef WINNING_GDB which defaults to false). Gdb
3004 supposedly uses this information if you say 'list var'. In reality
3005 var can be a variable defined in the program and gdb says `function
3006 var not defined'
3007
3008 @item
3009 In GNU C stabs there seems to be no way to differentiate tag types:
3010 structures, unions, and enums (symbol descriptor T) and typedefs
3011 (symbol descriptor t) defined at file scope from types defined locally
3012 to a procedure or other more local scope. They all use the N_LSYM
3013 stab type. Types defined at procedure scope are emited after the
3014 N_RBRAC of the preceding function and before the code of the
3015 procedure in which they are defined. This is exactly the same as
3016 types defined in the source file between the two procedure bodies.
3017 GDB overcompensates by placing all types in block #1, the block for
3018 symbols of file scope. This is true for default, -ansi and
3019 -traditional compiler options. (Bugs gcc/1063, gdb/1066.)
3020
3021 @item
3022 What ends the procedure scope? Is it the proc block's N_RBRAC or the
3023 next N_FUN? (I believe its the first.)
3024
3025 @item
3026 The comment in xcoff.h says DBX_STATIC_CONST_VAR_CODE is used for
3027 static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN by
3028 default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM.
3029 But testing the default behaviour, my Sun4 native example shows
3030 N_STSYM not N_FUN is used to describe file static initialized
3031 variables. (the code tests for TREE_READONLY(decl) &&
3032 !TREE_THIS_VOLATILE(decl) and if true uses DBX_STATIC_CONST_VAR_CODE).
3033
3034 @item
3035 Global variable stabs don't have location information. This comes
3036 from the external symbol for the same variable. The external symbol
3037 has a leading underbar on the _name of the variable and the stab does
3038 not. How do we know these two symbol table entries are talking about
3039 the same symbol when their names are different?
3040
3041 @item
3042 Can gcc be configured to output stabs the way the Sun compiler
3043 does, so that their native debugging tools work? <NO?> It doesn't by
3044 default. GDB reads either format of stab. (gcc or SunC). How about
3045 dbx?
3046 @end itemize
3047
3048 @node xcoff-differences
3049 @appendix Differences between GNU stabs in a.out and GNU stabs in xcoff
3050
3051 @c FIXME: Merge *all* these into the main body of the document.
3052 (The AIX/RS6000 native object file format is xcoff with stabs). This
3053 appendix only covers those differences which are not covered in the main
3054 body of this document.
3055
3056 @itemize @bullet
3057 @item
3058 Instead of .stabs, xcoff uses .stabx.
3059
3060 @item
3061 The data fields of an xcoff .stabx are in a different order than an
3062 a.out .stabs. The order is: string, value, type. The desc and null
3063 fields present in a.out stabs are missing in xcoff stabs. For N_GSYM
3064 the value field is the name of the symbol.
3065
3066 @item
3067 BSD a.out stab types correspond to AIX xcoff storage classes. In general the
3068 mapping is N_STABTYPE becomes C_STABTYPE. Some stab types in a.out
3069 are not supported in xcoff. See Table E. for full mappings.
3070
3071 exception:
3072 initialised static N_STSYM and un-initialized static N_LCSYM both map
3073 to the C_STSYM storage class. But the destinction is preserved
3074 because in xcoff N_STSYM and N_LCSYM must be emited in a named static
3075 block. Begin the block with .bs s[RW] data_section_name for N_STSYM
3076 or .bs s bss_section_name for N_LCSYM. End the block with .es
3077
3078 @item
3079 xcoff stabs describing tags and typedefs use the N_DECL (0x8c)instead
3080 of N_LSYM stab type.
3081
3082 @item
3083 xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register
3084 variables. If the register variable is also a value parameter, then
3085 use R instead of P for the symbol descriptor.
3086
3087 6.
3088 xcoff uses negative numbers as type references to the basic types.
3089 There are no boilerplate type definitions emited for these basic
3090 types. << make table of basic types and type numbers for C >>
3091
3092 @item
3093 xcoff .stabx sometimes don't have the name part of the string field.
3094
3095 @item
3096 xcoff uses a .file stab type to represent the source file name. There
3097 is no stab for the path to the source file.
3098
3099 @item
3100 xcoff uses a .line stab type to represent source lines. The format
3101 is: .line line_number.
3102
3103 @item
3104 xcoff emits line numbers relative to the start of the current
3105 function. The start of a function is marked by .bf. If a function
3106 includes lines from a seperate file, then those line numbers are
3107 absolute line numbers in the <<sub-?>> file being compiled.
3108
3109 @item
3110 The start of current include file is marked with: .bi "filename" and
3111 the end marked with .ei "filename"
3112
3113 @item
3114 If the xcoff stab is a N_FUN (C_FUN) then follow the string field with
3115 ,. instead of just ,
3116 @end itemize
3117
3118
3119 (I think that's it for .s file differences. They could stand to be
3120 better presented. This is just a list of what I have noticed so far.
3121 There are a *lot* of differences in the information in the symbol
3122 tables of the executable and object files.)
3123
3124 Table E: mapping a.out stab types to xcoff storage classes
3125
3126 @example
3127 stab type storage class
3128 -------------------------------
3129 N_GSYM C_GSYM
3130 N_FNAME unknown
3131 N_FUN C_FUN
3132 N_STSYM C_STSYM
3133 N_LCSYM C_STSYM
3134 N_MAIN unkown
3135 N_PC unknown
3136 N_RSYM C_RSYM
3137 N_RPSYM (0x8e) C_RPSYM
3138 N_M2C unknown
3139 N_SLINE unknown
3140 N_DSLINE unknown
3141 N_BSLINE unknown
3142 N_BROWSE unchanged
3143 N_CATCH unknown
3144 N_SSYM unknown
3145 N_SO unknown
3146 N_LSYM C_LSYM
3147 N_DECL (0x8c) C_DECL
3148 N_BINCL unknown
3149 N_SOL unknown
3150 N_PSYM C_PSYM
3151 N_EINCL unknown
3152 N_ENTRY C_ENTRY
3153 N_LBRAC unknown
3154 N_EXCL unknown
3155 N_SCOPE unknown
3156 N_RBRAC unknown
3157 N_BCOMM C_BCOMM
3158 N_ECOMM C_ECOMM
3159 N_ECOML C_ECOML
3160
3161 N_LENG unknown
3162 @end example
3163
3164 @node Sun-differences
3165 @appendix Differences between GNU stabs and Sun native stabs.
3166
3167 @c FIXME: Merge all this stuff into the main body of the document.
3168
3169 @itemize @bullet
3170 @item
3171 GNU C stabs define *all* types, file or procedure scope, as
3172 N_LSYM. Sun doc talks about using N_GSYM too.
3173
3174 @item
3175 Stabs describing block scopes, N_LBRAC and N_RBRAC are supposed to
3176 contain the nesting level of the block in the desc field, re Sun doc.
3177 GNU stabs always have 0 in that field. dbx seems not to care.
3178
3179 @item
3180 Sun C stabs use type number pairs in the format (a,b) where a is a
3181 number starting with 1 and incremented for each sub-source file in the
3182 compilation. b is a number starting with 1 and incremented for each
3183 new type defined in the compilation. GNU C stabs use the type number
3184 alone, with no source file number.
3185 @end itemize
3186
3187 @contents
3188 @bye
This page took 0.091803 seconds and 5 git commands to generate.