case fixes in node names
[deliverable/binutils-gdb.git] / gdb / doc / stabs.texinfo
1 \input texinfo
2 @setfilename stabs.info
3
4 @ifinfo
5 @format
6 START-INFO-DIR-ENTRY
7 * Stabs: (stabs). The "stabs" debugging information format.
8 END-INFO-DIR-ENTRY
9 @end format
10 @end ifinfo
11
12 @ifinfo
13 This document describes GNU stabs (debugging symbol tables) in a.out files.
14
15 Copyright 1992 Free Software Foundation, Inc.
16 Contributed by Cygnus Support. Written by Julia Menapace.
17
18 Permission is granted to make and distribute verbatim copies of
19 this manual provided the copyright notice and this permission notice
20 are preserved on all copies.
21
22 @ignore
23 Permission is granted to process this file through Tex and print the
24 results, provided the printed document carries copying permission
25 notice identical to this one except for the removal of this paragraph
26 (this paragraph not being relevant to the printed manual).
27
28 @end ignore
29 Permission is granted to copy or distribute modified versions of this
30 manual under the terms of the GPL (for which purpose this text may be
31 regarded as a program in the language TeX).
32 @end ifinfo
33
34 @setchapternewpage odd
35 @settitle STABS
36 @titlepage
37 @title The ``stabs'' debug format
38 @author Julia Menapace
39 @author Cygnus Support
40 @page
41 @tex
42 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
43 \xdef\manvers{\$Revision$} % For use in headers, footers too
44 {\parskip=0pt
45 \hfill Cygnus Support\par
46 \hfill \manvers\par
47 \hfill \TeX{}info \texinfoversion\par
48 }
49 @end tex
50
51 @vskip 0pt plus 1filll
52 Copyright @copyright{} 1992 Free Software Foundation, Inc.
53 Contributed by Cygnus Support.
54
55 Permission is granted to make and distribute verbatim copies of
56 this manual provided the copyright notice and this permission notice
57 are preserved on all copies.
58
59 @end titlepage
60
61 @ifinfo
62 @node Top
63 @top The "stabs" representation of debugging information
64
65 This document describes the GNU stabs debugging format in a.out files.
66
67 @menu
68 * Overview:: Overview of stabs
69 * Program structure:: Encoding of the structure of the program
70 * Simple types::
71 * Example:: A comprehensive example in C
72 * Variables::
73 * Aggregate Types::
74 * Symbol tables:: Symbol information in symbol tables
75 * GNU Cplusplus stabs::
76
77 Appendixes:
78 * Example2.c:: Source code for extended example
79 * Example2.s:: Assembly code for extended example
80 * Quick reference:: Various refernce tables
81 * Expanded reference:: Reference information by stab type
82 * Questions:: Questions and anomolies
83 * xcoff-differences:: Differences between GNU stabs in a.out
84 and GNU stabs in xcoff
85 * Sun-differences:: Differences between GNU stabs and Sun
86 native stabs
87 @end menu
88 @end ifinfo
89
90
91 @node Overview
92 @chapter Overview of stabs
93
94 @dfn{Stabs} refers to a format for information that describes a program
95 to a debugger. This format was apparently invented by
96 @c FIXME! <<name of inventor>> at
97 the University of California at Berkeley, for the @code{pdx} Pascal
98 debugger; the format has spread widely since then.
99
100 @menu
101 * Flow:: Overview of debugging information flow
102 * Stabs format:: Overview of stab format
103 * C example:: A simple example in C source
104 * Assembly code:: The simple example at the assembly level
105 @end menu
106
107 @node Flow
108 @section Overview of debugging information flow
109
110 The GNU C compiler compiles C source in a @file{.c} file into assembly
111 language in a @file{.s} file, which is translated by the assembler into
112 a @file{.o} file, and then linked with other @file{.o} files and
113 libraries to produce an executable file.
114
115 With the @samp{-g} option, GCC puts additional debugging information in
116 the @file{.s} file, which is slightly transformed by the assembler and
117 linker, and carried through into the final executable. This debugging
118 information describes features of the source file like line numbers,
119 the types and scopes of variables, and functions, their parameters and
120 their scopes.
121
122 For some object file formats, the debugging information is
123 encapsulated in assembler directives known collectively as `stab' (symbol
124 table) directives, interspersed with the generated code. Stabs are
125 the native format for debugging information in the a.out and xcoff
126 object file formats. The GNU tools can also emit stabs in the coff
127 and ecoff object file formats.
128
129 The assembler adds the information from stabs to the symbol information
130 it places by default in the symbol table and the string table of the
131 @file{.o} file it is building. The linker consolidates the @file{.o}
132 files into one executable file, with one symbol table and one string
133 table. Debuggers use the symbol and string tables in the executable as
134 a source of debugging information about the program.
135
136 @node Stabs format
137 @section Overview of stab format
138
139 There are three overall formats for stab assembler directives
140 differentiated by the first word of the stab. The name of the directive
141 describes what combination of four possible data fields will follow. It
142 is either @code{.stabs} (string), @code{.stabn} (number), or
143 @code{.stabd} (dot).
144
145 The overall format of each class of stab is:
146
147 @example
148 .stabs "@var{string}",@var{type},0,@var{desc},@var{value}
149 .stabn @var{type},0,@var{desc},@var{value}
150 .stabd @var{type},0,@var{desc}
151 @end example
152
153 In general, in @code{.stabs} the @var{string} field contains name and type
154 information. For @code{.stabd} the value field is implicit and has the value
155 of the current file location. Otherwise the value field often
156 contains a relocatable address, frame pointer offset, or register
157 number, that maps to the source code element described by the stab.
158
159 The real key to decoding the meaning of a stab is the number in its type
160 field. Each possible type number defines a different stab type. The
161 stab type further defines the exact interpretation of, and possible
162 values for, any remaining @code{"@var{string}"}, @var{desc}, or
163 @var{value} fields present in the stab. Table A (@pxref{Stab
164 types,,Table A: Symbol types from stabs}) lists in numeric order
165 the possible type field values for stab directives. The reference
166 section that follows Table A describes the meaning of the fields for
167 each stab type in detail. The examples that follow this overview
168 introduce the stab types in terms of the source code elements they
169 describe.
170
171 For @code{.stabs} the @code{"@var{string}"} field holds the meat of the
172 debugging information. The generally unstructured nature of this field
173 is what makes stabs extensible. For some stab types the string field
174 contains only a name. For other stab types the contents can be a great
175 deal more complex.
176
177 The overall format is of the @code{"@var{string}"} field is:
178
179 @example
180 "@var{name}@r{[}:@var{symbol_descriptor}@r{]}
181 @r{[}@var{type_number}@r{[}=@var{type_descriptor} @r{@dots{}]]}"
182 @end example
183
184 @var{name} is the name of the symbol represented by the stab.
185
186 The @var{symbol_descriptor} following the @samp{:} is an alphabetic
187 character that tells more specifically what kind of symbol the stab
188 represents. If the @var{symbol_descriptor} is omitted, but type
189 information follows, then the stab represents a local variable. For a
190 list of symbol_descriptors, see @ref{Symbol descriptors,,Table C: Symbol
191 descriptors}.
192
193 Type information is either a @var{type_number}, or a
194 @samp{@var{type_number}=}. The @var{type_number} alone is a type
195 reference, referring directly to a type that has already been defined.
196
197 The @samp{@var{type_number}=} is a type definition, where the number
198 represents a new type which is about to be defined. The type definition
199 may refer to other types by number, and those type numbers may be
200 followed by @samp{=} and nested definitions.
201
202 In a type definition, if the character that follows the equals sign is
203 non-numeric then it is a @var{type_descriptor}, and tells what kind of
204 type is about to be defined. Any other values following the
205 @var{type_descriptor} vary, depending on the @var{type_descriptor}. If
206 a number follows the @samp{=} then the number is a @var{type_reference}.
207 This is described more thoroughly in the section on types. @xref{Type
208 Descriptors,,Table D: Type Descriptors}, for a list of
209 @var{type_descriptor} values.
210
211 @c FIXME! "too long" below introduced at J Gilmore's request; used to
212 @c say "more than 80 chars". Why is vaguer better?
213 All this can make the @code{"@var{string}"} field quite long. When the
214 @code{"@var{string}"} part of a stab is too long, the compiler splits
215 the @code{.stabs} directive into two @code{.stabs} directives. Both
216 stabs duplicate exactly all but the @code{"@var{string}"} field. The
217 @code{"@var{string}"} field of the first stab contains the first part of
218 the overlong string, marked as continued with a double-backslash at the
219 end. The @code{"@var{string}"} field of the second stab holds the
220 second half of the overlong string.
221
222 @node C example
223 @section A simple example in C source
224
225 To get the flavor of how stabs describe source information for a C
226 program, let's look at the simple program:
227
228 @example
229 main()
230 @{
231 printf("Hello world");
232 @}
233 @end example
234
235 When compiled with @samp{-g}, the program above yields the following
236 @file{.s} file. Line numbers have been added to make it easier to refer
237 to parts of the @file{.s} file in the description of the stabs that
238 follows.
239
240 @node Assembly code
241 @section The simple example at the assembly level
242
243 @example
244 1 gcc2_compiled.:
245 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
246 3 .stabs "hello.c",100,0,0,Ltext0
247 4 .text
248 5 Ltext0:
249 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
250 7 .stabs "char:t2=r2;0;127;",128,0,0,0
251 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
252 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
253 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
254 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
255 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
256 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
257 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
258 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
259 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
260 17 .stabs "float:t12=r1;4;0;",128,0,0,0
261 18 .stabs "double:t13=r1;8;0;",128,0,0,0
262 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
263 20 .stabs "void:t15=15",128,0,0,0
264 21 .align 4
265 22 LC0:
266 23 .ascii "Hello, world!\12\0"
267 24 .align 4
268 25 .global _main
269 26 .proc 1
270 27 _main:
271 28 .stabn 68,0,4,LM1
272 29 LM1:
273 30 !#PROLOGUE# 0
274 31 save %sp,-136,%sp
275 32 !#PROLOGUE# 1
276 33 call ___main,0
277 34 nop
278 35 .stabn 68,0,5,LM2
279 36 LM2:
280 37 LBB2:
281 38 sethi %hi(LC0),%o1
282 39 or %o1,%lo(LC0),%o0
283 40 call _printf,0
284 41 nop
285 42 .stabn 68,0,6,LM3
286 43 LM3:
287 44 LBE2:
288 45 .stabn 68,0,6,LM4
289 46 LM4:
290 47 L1:
291 48 ret
292 49 restore
293 50 .stabs "main:F1",36,0,0,_main
294 51 .stabn 192,0,0,LBB2
295 52 .stabn 224,0,0,LBE2
296 @end example
297
298 This simple ``hello world'' example demonstrates several of the stab
299 types used to describe C language source files.
300
301 @node Program structure
302 @chapter Encoding for the structure of the program
303
304 @menu
305 * Source file:: The path and name of the source file
306 * Line numbers::
307 * Procedures::
308 * Block Structure::
309 @end menu
310
311 @node Source file
312 @section The path and name of the source file
313
314 @table @strong
315 @item Directive:
316 @code{.stabs}
317 @item Type:
318 @code{N_SO}
319 @end table
320
321 The first stabs in the .s file contain the name and path of the source
322 file that was compiled to produce the .s file. This information is
323 contained in two records of stab type N_SO (100).
324
325 @example
326 .stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
327 .stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start
328 @end example
329
330 @example
331 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
332 3 .stabs "hello.c",100,0,0,Ltext0
333 4 .text
334 5 Ltext0:
335 @end example
336
337 @node Line numbers
338 @section Line Numbers
339
340 @table @strong
341 @item Directive:
342 @code{.stabn}
343 @item Type:
344 @code{N_SLINE}
345 @end table
346
347 The start of source lines is represented by the @code{N_SLINE} (68) stab
348 type.
349
350 @example
351 .stabn N_SLINE, NIL, @var{line}, @var{address}
352 @end example
353
354 @var{line} is a source line number; @var{address} represents the code
355 address for the start of that source line.
356
357 @example
358 27 _main:
359 28 .stabn 68,0,4,LM1
360 29 LM1:
361 30 !#PROLOGUE# 0
362 @end example
363
364 @node Procedures
365 @section Procedures
366
367 @table @strong
368 @item Directive:
369 @code{.stabs}
370 @item Type:
371 @code{N_FUN}
372 @item Symbol Descriptors:
373 @code{f} (local), @code{F} (global)
374 @end table
375
376 Procedures are described by the @code{N_FUN} stab type. The symbol
377 descriptor for a procedure is @samp{F} if the procedure is globally
378 scoped and @samp{f} if the procedure is static (locally scoped).
379
380 The @code{N_FUN} stab representing a procedure is located immediately
381 following the code of the procedure. The @code{N_FUN} stab is in turn
382 directly followed by a group of other stabs describing elements of the
383 procedure. These other stabs describe the procedure's parameters, its
384 block local variables and its block structure.
385
386 @example
387 48 ret
388 49 restore
389 @end example
390
391 The @code{.stabs} entry after this code fragment shows the @var{name} of
392 the procedure (@code{main}); the type descriptor @var{desc} (@code{F},
393 for a global procedure); a reference to the predefined type @code{int}
394 for the return type; and the starting @var{address} of the procedure.
395
396 Here is an exploded summary (with whitespace introduced for clarity),
397 followed by line 50 of our sample assembly output, which has this form:
398
399 @example
400 .stabs "@var{name}:
401 @var{desc} @r{(global proc @samp{F})}
402 @var{return_type_ref} @r{(int)}
403 ",N_FUN, NIL, NIL,
404 @var{address}
405 @end example
406
407 @example
408 50 .stabs "main:F1",36,0,0,_main
409 @end example
410
411 @node Block Structure
412 @section Block Structure
413
414 @table @strong
415 @item Directive:
416 @code{.stabn}
417 @item Types:
418 @code{N_LBRAC}, @code{N_RBRAC}
419 @end table
420
421 The program's block structure is represented by the @code{N_LBRAC} (left
422 brace) and the @code{N_RBRAC} (right brace) stab types. The following code
423 range, which is the body of @code{main}, is labeled with @samp{LBB2:} at the
424 beginning and @samp{LBE2:} at the end.
425
426 @example
427 37 LBB2:
428 38 sethi %hi(LC0),%o1
429 39 or %o1,%lo(LC0),%o0
430 40 call _printf,0
431 41 nop
432 42 .stabn 68,0,6,LM3
433 43 LM3:
434 44 LBE2:
435 @end example
436
437 The @code{N_LBRAC} and @code{N_RBRAC} stabs that describe the block
438 scope of the procedure are located after the @code{N_FUNC} stab that
439 represents the procedure itself. The @code{N_LBRAC} uses the
440 @code{LBB2} label as the code address in its value field, and the
441 @code{N_RBRAC} uses @code{LBE2}.
442
443 @example
444 50 .stabs "main:F1",36,0,0,_main
445 @end example
446
447 @example
448 .stabn N_LBRAC, NIL, NIL, @var{left-brace-address}
449 .stabn N_RBRAC, NIL, NIL, @var{right-brace-address}
450 @end example
451
452 @example
453 51 .stabn 192,0,0,LBB2
454 52 .stabn 224,0,0,LBE2
455 @end example
456
457 @node Simple types
458 @chapter Simple types
459
460 @menu
461 * Basic types:: Basic type definitions
462 * Range types:: Range types defined by min and max value
463 * Float "range" types:: Range type defined by size in bytes
464 @end menu
465
466 @node Basic types
467 @section Basic type definitions
468
469 @table @strong
470 @item Directive:
471 @code{.stabs}
472 @item Type:
473 @code{N_LSYM}
474 @item Symbol Descriptor:
475 @code{t}
476 @end table
477
478 The basic types for the language are described using the @code{N_LSYM} stab
479 type. They are boilerplate and are emited by the compiler for each
480 compilation unit. Basic type definitions are not always a complete
481 description of the type and are sometimes circular. The debugger
482 recognizes the type anyway, and knows how to read bits as that type.
483
484 Each language and compiler defines a slightly different set of basic
485 types. In this example we are looking at the basic types for C emited
486 by the GNU compiler targeting the Sun4. Here the basic types are
487 mostly defined as range types.
488
489
490 @node Range types
491 @section Range types defined by min and max value
492
493 @table @strong
494 @item Type Descriptor:
495 @code{r}
496 @end table
497
498 When defining a range type, if the number after the first semicolon is
499 smaller than the number after the second one, then the two numbers
500 represent the smallest and the largest values in the range.
501
502 @example
503 4 .text
504 5 Ltext0:
505
506 .stabs "@var{name}:
507 @var{descriptor} @r{(type)}
508 @var{type-def}=
509 @var{type-desc}
510 @var{type-ref};
511 @var{low-bound};
512 @var{high-bound};
513 ",
514 N_LSYM, NIL, NIL, NIL
515
516 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
517 7 .stabs "char:t2=r2;0;127;",128,0,0,0
518 @end example
519
520 Here the integer type (@code{1}) is defined as a range of the integer
521 type (@code{1}). Likewise @code{char} is a range of @code{char}. This
522 part of the definition is circular, but at least the high and low bound
523 values of the range hold more information about the type.
524
525 Here short unsigned int is defined as type number 8 and described as a
526 range of type @code{int}, with a minimum value of 0 and a maximum of 65535.
527
528 @example
529 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
530 @end example
531
532 @node Float "range" types
533 @section Range type defined by size in bytes
534
535 @table @strong
536 @item Type Descriptor:
537 @code{r}
538 @end table
539
540 In a range definition, if the first number after the semicolon is
541 positive and the second is zero, then the type being defined is a
542 floating point type, and the number after the first semicolon is the
543 number of bytes needed to represent the type. Note that this does not
544 provide a way to distinguish 8-byte real floating point types from
545 8-byte complex floating point types.
546
547 @example
548 .stabs "@var{name}:
549 @var{desc}
550 @var{type-def}=
551 @var{type-desc}
552 @var{type-ref};
553 @var{bit-count};
554 0;
555 ",
556 N_LSYM, NIL, NIL, NIL
557
558 17 .stabs "float:t12=r1;4;0;",128,0,0,0
559 18 .stabs "double:t13=r1;8;0;",128,0,0,0
560 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
561 @end example
562
563 Cosmically enough, the @code{void} type is defined directly in terms of
564 itself.
565
566 @example
567 .stabs "@var{name}:
568 @var{symbol-desc}
569 @var{type-def}=
570 @var{type-ref}
571 ",N_LSYM,NIL,NIL,NIL
572
573 20 .stabs "void:t15=15",128,0,0,0
574 @end example
575
576
577 @node Example
578 @chapter A Comprehensive Example in C
579
580 Now we'll examine a second program, @code{example2}, which builds on the
581 first example to introduce the rest of the stab types, symbol
582 descriptors, and type descriptors used in C.
583 @xref{Example2.c} for the complete @file{.c} source,
584 and @pxref{Example2.s} for the @file{.s} assembly code.
585 This description includes parts of those files.
586
587 @section Flow of control and nested scopes
588
589 @table @strong
590 @item Directive:
591 @code{.stabn}
592 @item Types:
593 @code{N_SLINE}, @code{N_LBRAC}, @code{N_RBRAC} (cont.)
594 @end table
595
596 Consider the body of @code{main}, from @file{example2.c}. It shows more
597 about how @code{N_SLINE}, @code{N_RBRAC}, and @code{N_LBRAC} stabs are used.
598
599 @example
600 20 @{
601 21 static float s_flap;
602 22 int times;
603 23 for (times=0; times < s_g_repeat; times++)@{
604 24 int inner;
605 25 printf ("Hello world\n");
606 26 @}
607 27 @};
608 @end example
609
610 Here we have a single source line, the @samp{for} line, that generates
611 non-linear flow of control, and non-contiguous code. In this case, an
612 @code{N_SLINE} stab with the same line number proceeds each block of
613 non-contiguous code generated from the same source line.
614
615 The example also shows nested scopes. The @code{N_LBRAC} and
616 @code{N_LBRAC} stabs that describe block structure are nested in the
617 same order as the corresponding code blocks, those of the for loop
618 inside those for the body of main.
619
620 @noindent
621 This is the label for the @code{N_LBRAC} (left brace) stab marking the
622 start of @code{main}.
623
624 @example
625 57 LBB2:
626 @end example
627
628 @noindent
629 In the first code range for C source line 23, the @code{for} loop
630 initialize and test, @code{N_SLINE} (68) records the line number:
631
632 @example
633 .stabn N_SLINE, NIL,
634 @var{line},
635 @var{address}
636
637 58 .stabn 68,0,23,LM2
638 59 LM2:
639 60 st %g0,[%fp-20]
640 61 L2:
641 62 sethi %hi(_s_g_repeat),%o0
642 63 ld [%fp-20],%o1
643 64 ld [%o0+%lo(_s_g_repeat)],%o0
644 65 cmp %o1,%o0
645 66 bge L3
646 67 nop
647
648 @exdent label for the @code{N_LBRAC} (start block) marking the start of @code{for} loop
649
650 68 LBB3:
651 69 .stabn 68,0,25,LM3
652 70 LM3:
653 71 sethi %hi(LC0),%o1
654 72 or %o1,%lo(LC0),%o0
655 73 call _printf,0
656 74 nop
657 75 .stabn 68,0,26,LM4
658 76 LM4:
659
660 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
661
662 77 LBE3:
663 @end example
664
665 @noindent
666 Now we come to the second code range for source line 23, the @code{for}
667 loop increment and return. Once again, @code{N_SLINE} (68) records the
668 source line number:
669
670 @example
671 .stabn, N_SLINE, NIL,
672 @var{line},
673 @var{address}
674
675 78 .stabn 68,0,23,LM5
676 79 LM5:
677 80 L4:
678 81 ld [%fp-20],%o0
679 82 add %o0,1,%o1
680 83 st %o1,[%fp-20]
681 84 b,a L2
682 85 L3:
683 86 .stabn 68,0,27,LM6
684 87 LM6:
685
686 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
687
688 88 LBE2:
689 89 .stabn 68,0,27,LM7
690 90 LM7:
691 91 L1:
692 92 ret
693 93 restore
694 94 .stabs "main:F1",36,0,0,_main
695 95 .stabs "argc:p1",160,0,0,68
696 96 .stabs "argv:p20=*21=*2",160,0,0,72
697 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
698 98 .stabs "times:1",128,0,0,-20
699 @end example
700
701 @noindent
702 Here is an illustration of stabs describing nested scopes. The scope
703 nesting is reflected in the nested bracketing stabs (@code{N_LBRAC},
704 192, appears here).
705
706 @example
707 .stabn N_LBRAC,NIL,NIL,
708 @var{block-start-address}
709
710 99 .stabn 192,0,0,LBB2 ## begin proc label
711 100 .stabs "inner:1",128,0,0,-24
712 101 .stabn 192,0,0,LBB3 ## begin for label
713 @end example
714
715 @noindent
716 @code{N_RBRAC} (224), ``right brace'' ends a lexical block (scope).
717
718 @example
719 .stabn N_RBRAC,NIL,NIL,
720 @var{block-end-address}
721
722 102 .stabn 224,0,0,LBE3 ## end for label
723 103 .stabn 224,0,0,LBE2 ## end proc label
724 @end example
725
726 @node Variables
727 @chapter Variables
728
729 @menu
730 * Automatic variables:: locally scoped
731 * Global Variables::
732 * Register variables::
733 * Initialized statics::
734 * Un-initialized statics::
735 * Parameters::
736 @end menu
737
738 @node Automatic variables
739 @section Locally scoped automatic variables
740
741 @table @strong
742 @item Directive:
743 @code{.stabs}
744 @item Type:
745 @code{N_LSYM}
746 @item Symbol Descriptor:
747 none
748 @end table
749
750
751 In addition to describing types, the @code{N_LSYM} stab type also
752 describes locally scoped automatic variables. Refer again to the body
753 of @code{main} in @file{example2.c}. It allocates two automatic
754 variables: @samp{times} is scoped to the body of @code{main}, and
755 @samp{inner} is scoped to the body of the @code{for} loop.
756 @samp{s_flap} is locally scoped but not automatic, and will be discussed
757 later.
758
759 @example
760 20 @{
761 21 static float s_flap;
762 22 int times;
763 23 for (times=0; times < s_g_repeat; times++)@{
764 24 int inner;
765 25 printf ("Hello world\n");
766 26 @}
767 27 @};
768 @end example
769
770 The @code{N_LSYM} stab for an automatic variable is located just before the
771 @code{N_LBRAC} stab describing the open brace of the block to which it is
772 scoped.
773
774 @example
775 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to @code{main}
776
777 .stabs "@var{name}:
778 @var{type-ref}",
779 N_LSYM, NIL, NIL,
780 @var{frame-pointer-offset}
781
782 98 .stabs "times:1",128,0,0,-20
783 99 .stabn 192,0,0,LBB2 ## begin `main' N_LBRAC
784
785 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to the @code{for} loop
786
787 .stabs "@var{name}:
788 @var{type-ref}",
789 N_LSYM, NIL, NIL,
790 @var{frame-pointer-offset}
791
792 100 .stabs "inner:1",128,0,0,-24
793 101 .stabn 192,0,0,LBB3 ## begin `for' loop N_LBRAC
794 @end example
795
796 Since the character in the string field following the colon is not a
797 letter, there is no symbol descriptor. This means that the stab
798 describes a local variable, and that the number after the colon is a
799 type reference. In this case it a a reference to the basic type @code{int}.
800 Notice also that the frame pointer offset is negative number for
801 automatic variables.
802
803
804 @node Global Variables
805 @section Global Variables
806
807 @table @strong
808 @item Directive:
809 @code{.stabs}
810 @item Type:
811 @code{N_GSYM}
812 @item Symbol Descriptor:
813 @code{G}
814 @end table
815
816 Global variables are represented by the @code{N_GSYM} stab type. The symbol
817 descriptor, following the colon in the string field, is @samp{G}. Following
818 the @samp{G} is a type reference or type definition. In this example it is a
819 type reference to the basic C type, @code{char}. The first source line in
820 @file{example2.c},
821
822 @example
823 1 char g_foo = 'c';
824 @end example
825
826 @noindent
827 yields the following stab. The stab immediately precedes the code that
828 allocates storage for the variable it describes.
829
830 @example
831 @exdent @code{N_GSYM} (32): global symbol
832
833 .stabs "@var{name}:
834 @var{descriptor}
835 @var{type-ref}",
836 N_GSYM, NIL, NIL, NIL
837
838 21 .stabs "g_foo:G2",32,0,0,0
839 22 .global _g_foo
840 23 .data
841 24 _g_foo:
842 25 .byte 99
843 @end example
844
845 The address of the variable represented by the @code{N_GSYM} is not contained
846 in the @code{N_GSYM} stab. The debugger gets this information from the
847 external symbol for the global variable.
848
849 @node Register variables
850 @section Global register variables
851
852 @table @strong
853 @item Directive:
854 @code{.stabs}
855 @item Type:
856 @code{N_RSYM}
857 @item Symbol Descriptor:
858 @code{r}
859 @end table
860
861 The following source line defines a global variable, @code{g_bar}, which is
862 explicitly allocated in global register @code{%g5}.
863
864 @example
865 2 register int g_bar asm ("%g5");
866 @end example
867
868 Register variables have their own stab type, @code{N_RSYM}, and their own
869 symbol descriptor, @code{r}. The stab's value field contains the number of
870 the register where the variable data will be stored. Since the
871 variable was not initialized in this compilation unit, the stab is
872 emited at the end of the object file, with the stabs for other
873 uninitialized globals (@code{bcc}).
874
875 @example
876 @exdent @code{N_RSYM} (64): register variable
877
878 .stabs "@var{name}:
879 @var{descriptor}
880 @var{type-ref}",
881 N_RSYM, NIL, NIL,
882 @var{register}
883
884 133 .stabs "g_bar:r1",64,0,0,5
885 @end example
886
887
888 @node Initialized statics
889 @section Initialized static variables
890
891 @table @strong
892 @item Directive:
893 @code{.stabs}
894 @item Type:
895 @code{N_STSYM}
896 @item Symbol Descriptors:
897 @code{S} (file scope), @code{V} (procedure scope)
898 @end table
899
900 Initialized static variables are represented by the @code{N_STSYM} stab
901 type. The symbol descriptor part of the string field shows if the
902 variable is file scope static (@samp{S}) or procedure scope static
903 (@samp{V}). The source line
904
905 @example
906 3 static int s_g_repeat = 2;
907 @end example
908
909 @noindent
910 yields the following code. The stab is located immediately preceding
911 the storage for the variable it represents. Since the variable in
912 this example is file scope static the symbol descriptor is @samp{S}.
913
914 @example
915 @exdent @code{N_STSYM} (38): initialized static variable (data seg w/internal linkage)
916
917 .stabs "@var{name}:
918 @var{descriptor}
919 @var{type-ref}",
920 N_STSYM,NIL,NIL,
921 @var{address}
922
923 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
924 27 .align 4
925 28 _s_g_repeat:
926 29 .word 2
927 @end example
928
929
930 @node Un-initialized statics
931 @section Un-initialized static variables
932
933 @table @strong
934 @item Directive:
935 @code{.stabs}
936 @item Type:
937 @code{N_LCSYM}
938 @item Symbol Descriptors:
939 @code{S} (file scope), @code{V} (procedure scope)
940 @end table
941
942 Un-initialized static variables are represented by the @code{N_LCSYM}
943 stab type. The symbol descriptor part of the string shows if the
944 variable is file scope static (@samp{S}) or procedure scope static
945 (@samp{V}). In this example it is procedure scope static. The source
946 line allocating @code{s_flap} immediately follows the open brace for the
947 procedure @code{main}.
948
949 @example
950 20 @{
951 21 static float s_flap;
952 @end example
953
954 The code that reserves storage for the variable @code{s_flap} precedes the
955 body of body of @code{main}.
956
957 @example
958 39 .reserve _s_flap.0,4,"bss",4
959 @end example
960
961 But since @code{s_flap} is scoped locally to @code{main}, its stab is
962 located with the other stabs representing symbols local to @code{main}.
963 The stab for @code{s_flap} is located just before the @code{N_LBRAC} for
964 @code{main}.
965
966 @example
967 @exdent @code{N_LCSYM} (40): uninitialized static var (BSS seg w/internal linkage)
968
969 .stabs "@var{name}:
970 @var{descriptor}
971 @var{type-ref}",
972 N_LCSYM, NIL, NIL,
973 @var{address}
974
975 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
976 98 .stabs "times:1",128,0,0,-20
977 99 .stabn 192,0,0,LBB2 # N_LBRAC for main.
978 @end example
979
980 @c ............................................................
981
982 @node Parameters
983 @section Parameters
984
985 @table @strong
986 @item Directive:
987 @code{.stabs}
988 @item Type:
989 @code{N_PSYM}
990 @item Symbol Descriptor:
991 @code{p}
992 @end table
993
994 Procedure parameters are represented by the N_PSYM stab type. The
995 following source lines show the parameters of the main routine.
996
997 @example
998 17 main (argc, argv)
999 18 int argc;
1000 19 char* argv[];
1001 20 @{
1002 @end example
1003
1004 The N_PSYM stabs describing parameters to a function directly follow
1005 the N_FUN stab that represents the procedure itself. The N_FUN stab
1006 immediately follows the code of the procedure it describes. Following
1007 the N_PSYM parameter stabs are any N_LSYM stabs representing local
1008 variables.
1009
1010 @example
1011 @exdent <36> N_FUN - describing the procedure main
1012
1013 94 .stabs "main:F1",36,0,0,_main
1014
1015 @exdent <160> N_PSYM - parameters
1016 @exdent .stabs "name:sym_desc(value_param)type_ref(int)", N_PSYM,
1017 @exdent NIL, NIL, frame_ptr_offset
1018
1019 95 .stabs "argc:p1",160,0,0,68
1020
1021 @exdent <160> N_PSYM - parameter
1022 @exdent .stabs "name:sym_desc(value_param)type_def(20)=ptr_to type_def(21)=
1023 @exdent ptr_to type_ref(char)
1024
1025 96 .stabs "argv:p20=*21=*2",160,0,0,72
1026 @end example
1027
1028 The type definition of argv is interesting because it defines two new
1029 types in terms of an existing one. The array argv contains character
1030 pointers. The type of the array name is a pointer to the type the
1031 array holds. Thus the type of argv is ptr to ptr to char. The stab
1032 for argv contains nested type_definitions. Type 21 is ptr to type 2
1033 (char) and argv (type 20) is ptr to type 21.
1034
1035 @node Aggregate Types
1036 @chapter Aggregate Types
1037
1038 Now let's look at some variable definitions involving complex types.
1039 This involves understanding better how types are described. In the
1040 examples so far types have been described as references to previously
1041 defined types or defined in terms of subranges of or pointers to
1042 previously defined types. The section that follows will talk about
1043 the various other type descriptors that may follow the = sign in a
1044 type definition.
1045
1046 @menu
1047 * Arrays::
1048 * Enumerations::
1049 * Structure tags::
1050 * Typedefs::
1051 * Unions::
1052 * Function types::
1053 @end menu
1054
1055 @node Arrays
1056 @section Array types
1057
1058 @table @strong
1059 @item Directive:
1060 @code{.stabs}
1061 @item Types:
1062 @code{N_GSYM}, @code{N_LSYM}
1063 @item Symbol Descriptor:
1064 @code{T}
1065 @item Type Descriptor:
1066 @code{ar}
1067 @end table
1068
1069 As an example of an array type consider the global variable below.
1070
1071 @example
1072 15 char char_vec[3] = @{'a','b','c'@};
1073 @end example
1074
1075 Since the array is a global variable, it is described by the N_GSYM
1076 stab type. The symbol descriptor G, following the colon in stab's
1077 string field, also says the array is a global variable. Following the
1078 G is a definition for type (19) as shown by the equals sign after the
1079 type number.
1080
1081 After the equals sign is a type descriptor, ar, which says that the
1082 type being defined is an array. Following the type descriptor for an
1083 array is the type of the index, a null field, the upper bound of the
1084 array indexing, and the type of the array elements.
1085
1086 The array definition above generates the assembly language that
1087 follows.
1088
1089 @example
1090 @exdent <32> N_GSYM - global variable
1091 @exdent .stabs "name:sym_desc(global)type_def(19)=type_desc(array)
1092 @exdent index_type_ref(int);NIL;high_bound(2);element_type_ref(char)";
1093 @exdent N_GSYM, NIL, NIL, NIL
1094
1095 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
1096 33 .global _char_vec
1097 34 .align 4
1098 35 _char_vec:
1099 36 .byte 97
1100 37 .byte 98
1101 38 .byte 99
1102 @end example
1103
1104 @node Enumerations
1105 @section Enumerations
1106
1107 @table @strong
1108 @item Directive:
1109 @code{.stabs}
1110 @item Type:
1111 @code{N_LSYM}
1112 @item Symbol Descriptor:
1113 @code{T}
1114 @item Type Descriptor:
1115 @code{e}
1116 @end table
1117
1118 The source line below declares an enumeration type. It is defined at
1119 file scope between the bodies of main and s_proc in example2.c.
1120 Because the N_LSYM is located after the N_RBRAC that marks the end of
1121 the previous procedure's block scope, and before the N_FUN that marks
1122 the beginning of the next procedure's block scope, the N_LSYM does not
1123 describe a block local symbol, but a file local one. The source line:
1124
1125 @example
1126 29 enum e_places @{first,second=3,last@};
1127 @end example
1128
1129 @noindent
1130 generates the following stab, located just after the N_RBRAC (close
1131 brace stab) for main. The type definition is in an N_LSYM stab
1132 because type definitions are file scope not global scope.
1133
1134 @display
1135 <128> N_LSYM - local symbol
1136 .stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
1137 enum_name:value(0),enum_name:value(3),enum_name:value(4),;",
1138 N_LSYM, NIL, NIL, NIL
1139 @end display
1140
1141 @example
1142 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
1143 @end example
1144
1145 The symbol descriptor (T) says that the stab describes a structure,
1146 enumeration, or type tag. The type descriptor e, following the 22= of
1147 the type definition narrows it down to an enumeration type. Following
1148 the e is a list of the elements of the enumeration. The format is
1149 name:value,. The list of elements ends with a ;.
1150
1151 @node Structure tags
1152 @section Structure Tags
1153
1154 @table @strong
1155 @item Directive:
1156 @code{.stabs}
1157 @item Type:
1158 @code{N_LSYM}
1159 @item Symbol Descriptor:
1160 @code{T}
1161 @item Type Descriptor:
1162 @code{s}
1163 @end table
1164
1165 The following source code declares a structure tag and defines an
1166 instance of the structure in global scope. Then a typedef equates the
1167 structure tag with a new type. A seperate stab is generated for the
1168 structure tag, the structure typedef, and the structure instance. The
1169 stabs for the tag and the typedef are emited when the definitions are
1170 encountered. Since the structure elements are not initialized, the
1171 stab and code for the structure variable itself is located at the end
1172 of the program in .common.
1173
1174 @example
1175 6 struct s_tag @{
1176 7 int s_int;
1177 8 float s_float;
1178 9 char s_char_vec[8];
1179 10 struct s_tag* s_next;
1180 11 @} g_an_s;
1181 12
1182 13 typedef struct s_tag s_typedef;
1183 @end example
1184
1185 The structure tag is an N_LSYM stab type because, like the enum, the
1186 symbol is file scope. Like the enum, the symbol descriptor is T, for
1187 enumeration, struct or tag type. The symbol descriptor s following
1188 the 16= of the type definition narrows the symbol type to struct.
1189
1190 Following the struct symbol descriptor is the number of bytes the
1191 struct occupies, followed by a description of each structure element.
1192 The structure element descriptions are of the form name:type, bit
1193 offset from the start of the struct, and number of bits in the
1194 element.
1195
1196
1197 @example
1198 <128> N_LSYM - type definition
1199 .stabs "name:sym_desc(struct tag) Type_def(16)=type_desc(struct type)
1200 struct_bytes
1201 elem_name:type_ref(int),bit_offset,field_bits;
1202 elem_name:type_ref(float),bit_offset,field_bits;
1203 elem_name:type_def(17)=type_desc(dynamic array) index_type(int);NIL;
1204 high_bound(7);element_type(char),bit_offset,field_bits;;",
1205 N_LSYM,NIL,NIL,NIL
1206
1207 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
1208 s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
1209 @end example
1210
1211 In this example, two of the structure elements are previously defined
1212 types. For these, the type following the name: part of the element
1213 description is a simple type reference. The other two structure
1214 elements are new types. In this case there is a type definition
1215 embedded after the name:. The type definition for the array element
1216 looks just like a type definition for a standalone array. The s_next
1217 field is a pointer to the same kind of structure that the field is an
1218 element of. So the definition of structure type 16 contains an type
1219 definition for an element which is a pointer to type 16.
1220
1221 @node Typedefs
1222 @section Typedefs
1223
1224 @table @strong
1225 @item Directive:
1226 @code{.stabs}
1227 @item Type:
1228 @code{N_LSYM}
1229 @item Symbol Descriptor:
1230 @code{t}
1231 @end table
1232
1233 Here is the stab for the typedef equating the structure tag with a
1234 type.
1235
1236 @display
1237 <128> N_LSYM - type definition
1238 .stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL,NIL
1239 @end display
1240
1241 @example
1242 31 .stabs "s_typedef:t16",128,0,0,0
1243 @end example
1244
1245 And here is the code generated for the structure variable.
1246
1247 @display
1248 <32> N_GSYM - global symbol
1249 .stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL
1250 @end display
1251
1252 @example
1253 136 .stabs "g_an_s:G16",32,0,0,0
1254 137 .common _g_an_s,20,"bss"
1255 @end example
1256
1257 Notice that the structure tag has the same type number as the typedef
1258 for the structure tag. It is impossible to distinguish between a
1259 variable of the struct type and one of its typedef by looking at the
1260 debugging information.
1261
1262
1263 @node Unions
1264 @section Unions
1265
1266 @table @strong
1267 @item Directive:
1268 @code{.stabs}
1269 @item Type:
1270 @code{N_LSYM}
1271 @item Symbol Descriptor:
1272 @code{T}
1273 @item Type Descriptor:
1274 @code{u}
1275 @end table
1276
1277 Next let's look at unions. In example2 this union type is declared
1278 locally to a procedure and an instance of the union is defined.
1279
1280 @example
1281 36 union u_tag @{
1282 37 int u_int;
1283 38 float u_float;
1284 39 char* u_char;
1285 40 @} an_u;
1286 @end example
1287
1288 This code generates a stab for the union tag and a stab for the union
1289 variable. Both use the N_LSYM stab type. Since the union variable is
1290 scoped locally to the procedure in which it is defined, its stab is
1291 located immediately preceding the N_LBRAC for the procedure's block
1292 start.
1293
1294 The stab for the union tag, however is located preceding the code for
1295 the procedure in which it is defined. The stab type is N_LSYM. This
1296 would seem to imply that the union type is file scope, like the struct
1297 type s_tag. This is not true. The contents and position of the stab
1298 for u_type do not convey any infomation about its procedure local
1299 scope.
1300
1301 @display
1302 <128> N_LSYM - type
1303 .stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
1304 byte_size(4)
1305 elem_name:type_ref(int),bit_offset(0),bit_size(32);
1306 elem_name:type_ref(float),bit_offset(0),bit_size(32);
1307 elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
1308 N_LSYM, NIL, NIL, NIL
1309 @end display
1310
1311 @smallexample
1312 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
1313 128,0,0,0
1314 @end smallexample
1315
1316 The symbol descriptor, T, following the name: means that the stab
1317 describes an enumeration struct or type tag. The type descriptor u,
1318 following the 23= of the type definition, narrows it down to a union
1319 type definition. Following the u is the number of bytes in the union.
1320 After that is a list of union element descriptions. Their format is
1321 name:type, bit offset into the union, and number of bytes for the
1322 element;.
1323
1324 The stab for the union variable follows. Notice that the frame
1325 pointer offset for local variables is negative.
1326
1327 @display
1328 <128> N_LSYM - local variable (with no symbol descriptor)
1329 .stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset
1330 @end display
1331
1332 @example
1333 130 .stabs "an_u:23",128,0,0,-20
1334 @end example
1335
1336 @node Function types
1337 @section Function types
1338
1339 @display
1340 type descriptor f
1341 @end display
1342
1343 The last type descriptor in C which remains to be described is used
1344 for function types. Consider the following source line defining a
1345 global function pointer.
1346
1347 @example
1348 4 int (*g_pf)();
1349 @end example
1350
1351 It generates the following code. Since the variable is not
1352 initialized, the code is located in the common area at the end of the
1353 file.
1354
1355 @display
1356 <32> N_GSYM - global variable
1357 .stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
1358 type_def(func)type_ref(int)
1359 @end display
1360
1361 @example
1362 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
1363 135 .common _g_pf,4,"bss"
1364 @end example
1365
1366 Since the variable is global, the stab type is N_GSYM and the symbol
1367 descriptor is G. The variable defines a new type, 24, which is a
1368 pointer to another new type, 25, which is defined as a function
1369 returning int.
1370
1371 @node Symbol tables
1372 @chapter Symbol information in symbol tables
1373
1374 This section examines more closely the format of symbol table entries
1375 and how stab assembler directives map to them. It also describes what
1376 transformations the assembler and linker make on data from stabs.
1377
1378 Each time the assembler encounters a stab in its input file it puts
1379 each field of the stab into corresponding fields in a symbol table
1380 entry of its output file. If the stab contains a string field, the
1381 symbol table entry for that stab points to a string table entry
1382 containing the string data from the stab. Assembler labels become
1383 relocatable addresses. Symbol table entries in a.out have the format:
1384
1385 @example
1386 struct internal_nlist @{
1387 unsigned long n_strx; /* index into string table of name */
1388 unsigned char n_type; /* type of symbol */
1389 unsigned char n_other; /* misc info (usually empty) */
1390 unsigned short n_desc; /* description field */
1391 bfd_vma n_value; /* value of symbol */
1392 @};
1393 @end example
1394
1395 For .stabs directives, the n_strx field holds the character offset
1396 from the start of the string table to the string table entry
1397 containing the "string" field. For other classes of stabs (.stabn and
1398 .stabd) this field is null.
1399
1400 Symbol table entries with n_type fields containing a value greater or
1401 equal to 0x20 originated as stabs generated by the compiler (with one
1402 random exception). Those with n_type values less than 0x20 were
1403 placed in the symbol table of the executable by the assembler or the
1404 linker.
1405
1406 The linker concatenates object files and does fixups of externally
1407 defined symbols. You can see the transformations made on stab data by
1408 the assembler and linker by examining the symbol table after each pass
1409 of the build, first the assemble and then the link.
1410
1411 To do this use nm with the -ap options. This dumps the symbol table,
1412 including debugging information, unsorted. For stab entries the
1413 columns are: value, other, desc, type, string. For assembler and
1414 linker symbols, the columns are: value, type, string.
1415
1416 There are a few important things to notice about symbol tables. Where
1417 the value field of a stab contains a frame pointer offset, or a
1418 register number, that value is unchanged by the rest of the build.
1419
1420 Where the value field of a stab contains an assembly language label,
1421 it is transformed by each build step. The assembler turns it into a
1422 relocatable address and the linker turns it into an absolute address.
1423 This source line defines a static variable at file scope:
1424
1425 @example
1426 3 static int s_g_repeat
1427 @end example
1428
1429 @noindent
1430 The following stab describes the symbol.
1431
1432 @example
1433 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
1434 @end example
1435
1436 @noindent
1437 The assembler transforms the stab into this symbol table entry in the
1438 @file{.o} file. The location is expressed as a data segment offset.
1439
1440 @example
1441 21 00000084 - 00 0000 STSYM s_g_repeat:S1
1442 @end example
1443
1444 @noindent
1445 in the symbol table entry from the executable, the linker has made the
1446 relocatable address absolute.
1447
1448 @example
1449 22 0000e00c - 00 0000 STSYM s_g_repeat:S1
1450 @end example
1451
1452 Stabs for global variables do not contain location information. In
1453 this case the debugger finds location information in the assembler or
1454 linker symbol table entry describing the variable. The source line:
1455
1456 @example
1457 1 char g_foo = 'c';
1458 @end example
1459
1460 @noindent
1461 generates the stab:
1462
1463 @example
1464 21 .stabs "g_foo:G2",32,0,0,0
1465 @end example
1466
1467 The variable is represented by the following two symbol table entries
1468 in the object file. The first one originated as a stab. The second
1469 one is an external symbol. The upper case D signifies that the n_type
1470 field of the symbol table contains 7, N_DATA with local linkage (see
1471 Table B). The value field following the file's line number is empty
1472 for the stab entry. For the linker symbol it contains the
1473 rellocatable address corresponding to the variable.
1474
1475 @example
1476 19 00000000 - 00 0000 GSYM g_foo:G2
1477 20 00000080 D _g_foo
1478 @end example
1479
1480 @noindent
1481 These entries as transformed by the linker. The linker symbol table
1482 entry now holds an absolute address.
1483
1484 @example
1485 21 00000000 - 00 0000 GSYM g_foo:G2
1486 @dots{}
1487 215 0000e008 D _g_foo
1488 @end example
1489
1490 @node GNU Cplusplus stabs
1491 @chapter GNU C++ stabs
1492
1493 @menu
1494 * Basic Cplusplus types::
1495 * Simple classes::
1496 * Class instance::
1497 * Methods:: Method definition
1498 * Protections::
1499 * Method Modifiers:: (const, volatile, const volatile)
1500 * Virtual Methods::
1501 * Inheritence::
1502 * Virtual Base Classes::
1503 * Static Members::
1504 @end menu
1505
1506
1507 @subsection Symbol descriptors added for C++ descriptions:
1508
1509 @display
1510 P - register parameter.
1511 @end display
1512
1513 @subsection type descriptors added for C++ descriptions
1514
1515 @table @code
1516 @item #
1517 method type (two ## if minimal debug)
1518
1519 @item xs
1520 cross-reference
1521 @end table
1522
1523
1524 @node Basic Cplusplus types
1525 @section Basic types for C++
1526
1527 << the examples that follow are based on a01.C >>
1528
1529
1530 C++ adds two more builtin types to the set defined for C. These are
1531 the unknown type and the vtable record type. The unknown type, type
1532 16, is defined in terms of itself like the void type.
1533
1534 The vtable record type, type 17, is defined as a structure type and
1535 then as a structure tag. The structure has four fields, delta, index,
1536 pfn, and delta2. pfn is the function pointer.
1537
1538 << In boilerplate $vtbl_ptr_type, what are the fields delta,
1539 index, and delta2 used for? >>
1540
1541 This basic type is present in all C++ programs even if there are no
1542 virtual methods defined.
1543
1544 @display
1545 .stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
1546 elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
1547 elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
1548 elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),
1549 bit_offset(32),field_bits(32);
1550 elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
1551 N_LSYM, NIL, NIL
1552 @end display
1553
1554 @smallexample
1555 .stabs "$vtbl_ptr_type:t17=s8
1556 delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"
1557 ,128,0,0,0
1558 @end smallexample
1559
1560 @display
1561 .stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
1562 @end display
1563
1564 @example
1565 .stabs "$vtbl_ptr_type:T17",128,0,0,0
1566 @end example
1567
1568 @node Simple classes
1569 @section Simple class definition
1570
1571 The stabs describing C++ language features are an extension of the
1572 stabs describing C. Stabs representing C++ class types elaborate
1573 extensively on the stab format used to describe structure types in C.
1574 Stabs representing class type variables look just like stabs
1575 representing C language variables.
1576
1577 Consider the following very simple class definition.
1578
1579 @example
1580 class baseA @{
1581 public:
1582 int Adat;
1583 int Ameth(int in, char other);
1584 @};
1585 @end example
1586
1587 The class baseA is represented by two stabs. The first stab describes
1588 the class as a structure type. The second stab describes a structure
1589 tag of the class type. Both stabs are of stab type N_LSYM. Since the
1590 stab is not located between an N_FUN and a N_LBRAC stab this indicates
1591 that the class is defined at file scope. If it were, then the N_LSYM
1592 would signify a local variable.
1593
1594 A stab describing a C++ class type is similar in format to a stab
1595 describing a C struct, with each class member shown as a field in the
1596 structure. The part of the struct format describing fields is
1597 expanded to include extra information relevent to C++ class members.
1598 In addition, if the class has multiple base classes or virtual
1599 functions the struct format outside of the field parts is also
1600 augmented.
1601
1602 In this simple example the field part of the C++ class stab
1603 representing member data looks just like the field part of a C struct
1604 stab. The section on protections describes how its format is
1605 sometimes extended for member data.
1606
1607 The field part of a C++ class stab representing a member function
1608 differs substantially from the field part of a C struct stab. It
1609 still begins with `name:' but then goes on to define a new type number
1610 for the member function, describe its return type, its argument types,
1611 its protection level, any qualifiers applied to the method definition,
1612 and whether the method is virtual or not. If the method is virtual
1613 then the method description goes on to give the vtable index of the
1614 method, and the type number of the first base class defining the
1615 method.
1616
1617 When the field name is a method name it is followed by two colons
1618 rather than one. This is followed by a new type definition for the
1619 method. This is a number followed by an equal sign and then the
1620 symbol descriptor `##', indicating a method type. This is followed by
1621 a type reference showing the return type of the method and a
1622 semi-colon.
1623
1624 The format of an overloaded operator method name differs from that
1625 of other methods. It is "op$::XXXX." where XXXX is the operator name
1626 such as + or +=. The name ends with a period, and any characters except
1627 the period can occur in the XXXX string.
1628
1629 The next part of the method description represents the arguments to
1630 the method, preceeded by a colon and ending with a semi-colon. The
1631 types of the arguments are expressed in the same way argument types
1632 are expressed in C++ name mangling. In this example an int and a char
1633 map to `ic'.
1634
1635 This is followed by a number, a letter, and an asterisk or period,
1636 followed by another semicolon. The number indicates the protections
1637 that apply to the member function. Here the 2 means public. The
1638 letter encodes any qualifier applied to the method definition. In
1639 this case A means that it is a normal function definition. The dot
1640 shows that the method is not virtual. The sections that follow
1641 elaborate further on these fields and describe the additional
1642 information present for virtual methods.
1643
1644
1645 @display
1646 .stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
1647 field_name(Adat):type(int),bit_offset(0),field_bits(32);
1648
1649 method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
1650 :arg_types(int char);
1651 protection(public)qualifier(normal)virtual(no);;"
1652 N_LSYM,NIL,NIL,NIL
1653 @end display
1654
1655 @smallexample
1656 .stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0
1657
1658 .stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL
1659
1660 .stabs "baseA:T20",128,0,0,0
1661 @end smallexample
1662
1663 @node Class instance
1664 @section Class instance
1665
1666 As shown above, describing even a simple C++ class definition is
1667 accomplished by massively extending the stab format used in C to
1668 describe structure types. However, once the class is defined, C stabs
1669 with no modifications can be used to describe class instances. The
1670 following source:
1671
1672 @example
1673 main () @{
1674 baseA AbaseA;
1675 @}
1676 @end example
1677
1678 @noindent
1679 yields the following stab describing the class instance. It looks no
1680 different from a standard C stab describing a local variable.
1681
1682 @display
1683 .stabs "name:type_ref(baseA)", N_LSYM, NIL, NIL, frame_ptr_offset
1684 @end display
1685
1686 @example
1687 .stabs "AbaseA:20",128,0,0,-20
1688 @end example
1689
1690 @node Methods
1691 @section Method defintion
1692
1693 The class definition shown above declares Ameth. The C++ source below
1694 defines Ameth:
1695
1696 @example
1697 int
1698 baseA::Ameth(int in, char other)
1699 @{
1700 return in;
1701 @};
1702 @end example
1703
1704
1705 This method definition yields three stabs following the code of the
1706 method. One stab describes the method itself and following two
1707 describe its parameters. Although there is only one formal argument
1708 all methods have an implicit argument which is the `this' pointer.
1709 The `this' pointer is a pointer to the object on which the method was
1710 called. Note that the method name is mangled to encode the class name
1711 and argument types. << Name mangling is not described by this
1712 document - Is there already such a doc? >>
1713
1714 @example
1715 .stabs "name:symbol_desriptor(global function)return_type(int)",
1716 N_FUN, NIL, NIL, code_addr_of_method_start
1717
1718 .stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic
1719 @end example
1720
1721 Here is the stab for the `this' pointer implicit argument. The name
1722 of the `this' pointer is always $t. Type 19, the `this' pointer is
1723 defined as a pointer to type 20, baseA, but a stab defining baseA has
1724 not yet been emited. Since the compiler knows it will be emited
1725 shortly, here it just outputs a cross reference to the undefined
1726 symbol, by prefixing the symbol name with xs.
1727
1728 @example
1729 .stabs "name:sym_desc(register param)type_def(19)=
1730 type_desc(ptr to)type_ref(baseA)=
1731 type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number
1732
1733 .stabs "$t:P19=*20=xsbaseA:",64,0,0,8
1734 @end example
1735
1736 The stab for the explicit integer argument looks just like a parameter
1737 to a C function. The last field of the stab is the offset from the
1738 argument pointer, which in most systems is the same as the frame
1739 pointer.
1740
1741 @example
1742 .stabs "name:sym_desc(value parameter)type_ref(int)",
1743 N_PSYM,NIL,NIL,offset_from_arg_ptr
1744
1745 .stabs "in:p1",160,0,0,72
1746 @end example
1747
1748 << The examples that follow are based on A1.C >>
1749
1750 @node Protections
1751 @section Protections
1752
1753
1754 In the simple class definition shown above all member data and
1755 functions were publicly accessable. The example that follows
1756 contrasts public, protected and privately accessable fields and shows
1757 how these protections are encoded in C++ stabs.
1758
1759 Protections for class member data are signified by two characters
1760 embeded in the stab defining the class type. These characters are
1761 located after the name: part of the string. /0 means private, /1
1762 means protected, and /2 means public. If these characters are omited
1763 this means that the member is public. The following C++ source:
1764
1765 @example
1766 class all_data @{
1767 private:
1768 int priv_dat;
1769 protected:
1770 char prot_dat;
1771 public:
1772 float pub_dat;
1773 @};
1774 @end example
1775
1776 @noindent
1777 generates the following stab to describe the class type all_data.
1778
1779 @display
1780 .stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
1781 data_name:/protection(private)type_ref(int),bit_offset,num_bits;
1782 data_name:/protection(protected)type_ref(char),bit_offset,num_bits;
1783 data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
1784 N_LSYM,NIL,NIL,NIL
1785 @end display
1786
1787 @smallexample
1788 .stabs "all_data:t19=s12
1789 priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
1790 @end smallexample
1791
1792 Protections for member functions are signified by one digit embeded in
1793 the field part of the stab describing the method. The digit is 0 if
1794 private, 1 if protected and 2 if public. Consider the C++ class
1795 definition below:
1796
1797 @example
1798 class all_methods @{
1799 private:
1800 int priv_meth(int in)@{return in;@};
1801 protected:
1802 char protMeth(char in)@{return in;@};
1803 public:
1804 float pubMeth(float in)@{return in;@};
1805 @};
1806 @end example
1807
1808 It generates the following stab. The digit in question is to the left
1809 of an `A' in each case. Notice also that in this case two symbol
1810 descriptors apply to the class name struct tag and struct type.
1811
1812 @display
1813 .stabs "class_name:sym_desc(struct tag&type)type_def(21)=
1814 sym_desc(struct)struct_bytes(1)
1815 meth_name::type_def(22)=sym_desc(method)returning(int);
1816 :args(int);protection(private)modifier(normal)virtual(no);
1817 meth_name::type_def(23)=sym_desc(method)returning(char);
1818 :args(char);protection(protected)modifier(normal)virual(no);
1819 meth_name::type_def(24)=sym_desc(method)returning(float);
1820 :args(float);protection(public)modifier(normal)virtual(no);;",
1821 N_LSYM,NIL,NIL,NIL
1822 @end display
1823
1824 @smallexample
1825 .stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;
1826 pubMeth::24=##12;:f;2A.;;",128,0,0,0
1827 @end smallexample
1828
1829 @node Method Modifiers
1830 @section Method Modifiers (const, volatile, const volatile)
1831
1832 << based on a6.C >>
1833
1834 In the class example described above all the methods have the normal
1835 modifier. This method modifier information is located just after the
1836 protection information for the method. This field has four possible
1837 character values. Normal methods use A, const methods use B, volatile
1838 methods use C, and const volatile methods use D. Consider the class
1839 definition below:
1840
1841 @example
1842 class A @{
1843 public:
1844 int ConstMeth (int arg) const @{ return arg; @};
1845 char VolatileMeth (char arg) volatile @{ return arg; @};
1846 float ConstVolMeth (float arg) const volatile @{return arg; @};
1847 @};
1848 @end example
1849
1850 This class is described by the following stab:
1851
1852 @display
1853 .stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)
1854 meth_name(ConstMeth)::type_def(21)sym_desc(method)
1855 returning(int);:arg(int);protection(public)modifier(const)virtual(no);
1856 meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
1857 returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
1858 meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
1859 returning(float);:arg(float);protection(public)modifer(const volatile)
1860 virtual(no);;", @dots{}
1861 @end display
1862
1863 @example
1864 .stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;
1865 ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0
1866 @end example
1867
1868 @node Virtual Methods
1869 @section Virtual Methods
1870
1871 << The following examples are based on a4.C >>
1872
1873 The presence of virtual methods in a class definition adds additional
1874 data to the class description. The extra data is appended to the
1875 description of the virtual method and to the end of the class
1876 description. Consider the class definition below:
1877
1878 @example
1879 class A @{
1880 public:
1881 int Adat;
1882 virtual int A_virt (int arg) @{ return arg; @};
1883 @};
1884 @end example
1885
1886 This results in the stab below describing class A. It defines a new
1887 type (20) which is an 8 byte structure. The first field of the class
1888 struct is Adat, an integer, starting at structure offset 0 and
1889 occupying 32 bits.
1890
1891 The second field in the class struct is not explicitly defined by the
1892 C++ class definition but is implied by the fact that the class
1893 contains a virtual method. This field is the vtable pointer. The
1894 name of the vtable pointer field starts with $vf and continues with a
1895 type reference to the class it is part of. In this example the type
1896 reference for class A is 20 so the name of its vtable pointer field is
1897 $vf20, followed by the usual colon.
1898
1899 Next there is a type definition for the vtable pointer type (21).
1900 This is in turn defined as a pointer to another new type (22).
1901
1902 Type 22 is the vtable itself, which is defined as an array, indexed by
1903 integers, with a high bound of 1, and elements of type 17. Type 17
1904 was the vtable record type defined by the boilerplate C++ type
1905 definitions, as shown earlier.
1906
1907 The bit offset of the vtable pointer field is 32. The number of bits
1908 in the field are not specified when the field is a vtable pointer.
1909
1910 Next is the method definition for the virtual member function A_virt.
1911 Its description starts out using the same format as the non-virtual
1912 member functions described above, except instead of a dot after the
1913 `A' there is an asterisk, indicating that the function is virtual.
1914 Since is is virtual some addition information is appended to the end
1915 of the method description.
1916
1917 The first number represents the vtable index of the method. This is a
1918 32 bit unsigned number with the high bit set, followed by a
1919 semi-colon.
1920
1921 The second number is a type reference to the first base class in the
1922 inheritence hierarchy defining the virtual member function. In this
1923 case the class stab describes a base class so the virtual function is
1924 not overriding any other definition of the method. Therefore the
1925 reference is to the type number of the class that the stab is
1926 describing (20).
1927
1928 This is followed by three semi-colons. One marks the end of the
1929 current sub-section, one marks the end of the method field, and the
1930 third marks the end of the struct definition.
1931
1932 For classes containing virtual functions the very last section of the
1933 string part of the stab holds a type reference to the first base
1934 class. This is preceeded by `~%' and followed by a final semi-colon.
1935
1936 @display
1937 .stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
1938 field_name(Adat):type_ref(int),bit_offset(0),field_bits(32);
1939 field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
1940 sym_desc(array)index_type_ref(int);NIL;elem_type_ref(vtbl elem type);
1941 bit_offset(32);
1942 meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
1943 :arg_type(int),protection(public)normal(yes)virtual(yes)
1944 vtable_index(1);class_first_defining(A);;;~%first_base(A);",
1945 N_LSYM,NIL,NIL,NIL
1946 @end display
1947
1948 @example
1949 .stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
1950 @end example
1951
1952 @node Inheritence
1953 @section Inheritence
1954
1955 Stabs describing C++ derived classes include additional sections that
1956 describe the inheritence hierarchy of the class. A derived class stab
1957 also encodes the number of base classes. For each base class it tells
1958 if the base class is virtual or not, and if the inheritence is private
1959 or public. It also gives the offset into the object of the portion of
1960 the object corresponding to each base class.
1961
1962 This additional information is embeded in the class stab following the
1963 number of bytes in the struct. First the number of base classes
1964 appears bracketed by an exclamation point and a comma.
1965
1966 Then for each base type there repeats a series: two digits, a number,
1967 a comma, another number, and a semi-colon.
1968
1969 The first of the two digits is 1 if the base class is virtual and 0 if
1970 not. The second digit is 2 if the derivation is public and 0 if not.
1971
1972 The number following the first two digits is the offset from the start
1973 of the object to the part of the object pertaining to the base class.
1974
1975 After the comma, the second number is a type_descriptor for the base
1976 type. Finally a semi-colon ends the series, which repeats for each
1977 base class.
1978
1979 The source below defines three base classes A, B, and C and the
1980 derived class D.
1981
1982
1983 @example
1984 class A @{
1985 public:
1986 int Adat;
1987 virtual int A_virt (int arg) @{ return arg; @};
1988 @};
1989
1990 class B @{
1991 public:
1992 int B_dat;
1993 virtual int B_virt (int arg) @{return arg; @};
1994 @};
1995
1996 class C @{
1997 public:
1998 int Cdat;
1999 virtual int C_virt (int arg) @{return arg; @};
2000 @};
2001
2002 class D : A, virtual B, public C @{
2003 public:
2004 int Ddat;
2005 virtual int A_virt (int arg ) @{ return arg+1; @};
2006 virtual int B_virt (int arg) @{ return arg+2; @};
2007 virtual int C_virt (int arg) @{ return arg+3; @};
2008 virtual int D_virt (int arg) @{ return arg; @};
2009 @};
2010 @end example
2011
2012 Class stabs similar to the ones described earlier are generated for
2013 each base class.
2014
2015 @c FIXME!!! the linebreaks in the following example probably make the
2016 @c examples literally unusable, but I don't know any other way to get
2017 @c them on the page.
2018 @smallexample
2019 .stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;
2020 A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2021
2022 .stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;
2023 :i;2A*-2147483647;25;;;~%25;",128,0,0,0
2024
2025 .stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
2026 :i;2A*-2147483647;28;;;~%28;",128,0,0,0
2027 @end smallexample
2028
2029 In the stab describing derived class D below, the information about
2030 the derivation of this class is encoded as follows.
2031
2032 @display
2033 .stabs "derived_class_name:symbol_descriptors(struct tag&type)=
2034 type_descriptor(struct)struct_bytes(32)!num_bases(3),
2035 base_virtual(no)inheritence_public(no)base_offset(0),
2036 base_class_type_ref(A);
2037 base_virtual(yes)inheritence_public(no)base_offset(NIL),
2038 base_class_type_ref(B);
2039 base_virtual(no)inheritence_public(yes)base_offset(64),
2040 base_class_type_ref(C); @dots{}
2041 @end display
2042
2043 @c FIXME! fake linebreaks.
2044 @smallexample
2045 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:
2046 1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:
2047 :32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;
2048 28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2049 @end smallexample
2050
2051 @node Virtual Base Classes
2052 @section Virtual Base Classes
2053
2054 A derived class object consists of a concatination in memory of the
2055 data areas defined by each base class, starting with the leftmost and
2056 ending with the rightmost in the list of base classes. The exception
2057 to this rule is for virtual inheritence. In the example above, class
2058 D inherits virtually from base class B. This means that an instance
2059 of a D object will not contain it's own B part but merely a pointer to
2060 a B part, known as a virtual base pointer.
2061
2062 In a derived class stab, the base offset part of the derivation
2063 information, described above, shows how the base class parts are
2064 ordered. The base offset for a virtual base class is always given as
2065 0. Notice that the base offset for B is given as 0 even though B is
2066 not the first base class. The first base class A starts at offset 0.
2067
2068 The field information part of the stab for class D describes the field
2069 which is the pointer to the virtual base class B. The vbase pointer
2070 name is $vb followed by a type reference to the virtual base class.
2071 Since the type id for B in this example is 25, the vbase pointer name
2072 is $vb25.
2073
2074 @c FIXME!! fake linebreaks below
2075 @smallexample
2076 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
2077 160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;
2078 2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:
2079 :32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2080 @end smallexample
2081
2082 Following the name and a semicolon is a type reference describing the
2083 type of the virtual base class pointer, in this case 24. Type 24 was
2084 defined earlier as the type of the B class `this` pointer, $t. The
2085 `this' pointer for a class is a pointer to the class type.
2086
2087 @example
2088 .stabs "$t:P24=*25=xsB:",64,0,0,8
2089 @end example
2090
2091 Finally the field offset part of the vbase pointer field description
2092 shows that the vbase pointer is the first field in the D object,
2093 before any data fields defined by the class. The layout of a D class
2094 object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat
2095 at 64, the vtable pointer for C at 96, the virtual ase pointer for B
2096 at 128, and Ddat at 160.
2097
2098
2099 @node Static Members
2100 @section Static Members
2101
2102 The data area for a class is a concatenation of the space used by the
2103 data members of the class. If the class has virtual methods, a vtable
2104 pointer follows the class data. The field offset part of each field
2105 description in the class stab shows this ordering.
2106
2107 << How is this reflected in stabs? See Cygnus bug #677 for some info. >>
2108
2109 @node Example2.c
2110 @appendix Example2.c - source code for extended example
2111
2112 @example
2113 1 char g_foo = 'c';
2114 2 register int g_bar asm ("%g5");
2115 3 static int s_g_repeat = 2;
2116 4 int (*g_pf)();
2117 5
2118 6 struct s_tag @{
2119 7 int s_int;
2120 8 float s_float;
2121 9 char s_char_vec[8];
2122 10 struct s_tag* s_next;
2123 11 @} g_an_s;
2124 12
2125 13 typedef struct s_tag s_typedef;
2126 14
2127 15 char char_vec[3] = @{'a','b','c'@};
2128 16
2129 17 main (argc, argv)
2130 18 int argc;
2131 19 char* argv[];
2132 20 @{
2133 21 static float s_flap;
2134 22 int times;
2135 23 for (times=0; times < s_g_repeat; times++)@{
2136 24 int inner;
2137 25 printf ("Hello world\n");
2138 26 @}
2139 27 @};
2140 28
2141 29 enum e_places @{first,second=3,last@};
2142 30
2143 31 static s_proc (s_arg, s_ptr_arg, char_vec)
2144 32 s_typedef s_arg;
2145 33 s_typedef* s_ptr_arg;
2146 34 char* char_vec;
2147 35 @{
2148 36 union u_tag @{
2149 37 int u_int;
2150 38 float u_float;
2151 39 char* u_char;
2152 40 @} an_u;
2153 41 @}
2154 42
2155 43
2156 @end example
2157
2158 @node Example2.s
2159 @appendix Example2.s - assembly code for extended example
2160
2161 @example
2162 1 gcc2_compiled.:
2163 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
2164 3 .stabs "example2.c",100,0,0,Ltext0
2165 4 .text
2166 5 Ltext0:
2167 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
2168 7 .stabs "char:t2=r2;0;127;",128,0,0,0
2169 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
2170 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
2171 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
2172 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
2173 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
2174 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
2175 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
2176 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
2177 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
2178 17 .stabs "float:t12=r1;4;0;",128,0,0,0
2179 18 .stabs "double:t13=r1;8;0;",128,0,0,0
2180 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
2181 20 .stabs "void:t15=15",128,0,0,0
2182 21 .stabs "g_foo:G2",32,0,0,0
2183 22 .global _g_foo
2184 23 .data
2185 24 _g_foo:
2186 25 .byte 99
2187 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
2188 27 .align 4
2189 28 _s_g_repeat:
2190 29 .word 2
2191 @c FIXME! fake linebreak in line 30
2192 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:
2193 17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
2194 31 .stabs "s_typedef:t16",128,0,0,0
2195 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
2196 33 .global _char_vec
2197 34 .align 4
2198 35 _char_vec:
2199 36 .byte 97
2200 37 .byte 98
2201 38 .byte 99
2202 39 .reserve _s_flap.0,4,"bss",4
2203 40 .text
2204 41 .align 4
2205 42 LC0:
2206 43 .ascii "Hello world\12\0"
2207 44 .align 4
2208 45 .global _main
2209 46 .proc 1
2210 47 _main:
2211 48 .stabn 68,0,20,LM1
2212 49 LM1:
2213 50 !#PROLOGUE# 0
2214 51 save %sp,-144,%sp
2215 52 !#PROLOGUE# 1
2216 53 st %i0,[%fp+68]
2217 54 st %i1,[%fp+72]
2218 55 call ___main,0
2219 56 nop
2220 57 LBB2:
2221 58 .stabn 68,0,23,LM2
2222 59 LM2:
2223 60 st %g0,[%fp-20]
2224 61 L2:
2225 62 sethi %hi(_s_g_repeat),%o0
2226 63 ld [%fp-20],%o1
2227 64 ld [%o0+%lo(_s_g_repeat)],%o0
2228 65 cmp %o1,%o0
2229 66 bge L3
2230 67 nop
2231 68 LBB3:
2232 69 .stabn 68,0,25,LM3
2233 70 LM3:
2234 71 sethi %hi(LC0),%o1
2235 72 or %o1,%lo(LC0),%o0
2236 73 call _printf,0
2237 74 nop
2238 75 .stabn 68,0,26,LM4
2239 76 LM4:
2240 77 LBE3:
2241 78 .stabn 68,0,23,LM5
2242 79 LM5:
2243 80 L4:
2244 81 ld [%fp-20],%o0
2245 82 add %o0,1,%o1
2246 83 st %o1,[%fp-20]
2247 84 b,a L2
2248 85 L3:
2249 86 .stabn 68,0,27,LM6
2250 87 LM6:
2251 88 LBE2:
2252 89 .stabn 68,0,27,LM7
2253 90 LM7:
2254 91 L1:
2255 92 ret
2256 93 restore
2257 94 .stabs "main:F1",36,0,0,_main
2258 95 .stabs "argc:p1",160,0,0,68
2259 96 .stabs "argv:p20=*21=*2",160,0,0,72
2260 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
2261 98 .stabs "times:1",128,0,0,-20
2262 99 .stabn 192,0,0,LBB2
2263 100 .stabs "inner:1",128,0,0,-24
2264 101 .stabn 192,0,0,LBB3
2265 102 .stabn 224,0,0,LBE3
2266 103 .stabn 224,0,0,LBE2
2267 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
2268 @c FIXME: fake linebreak in line 105
2269 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
2270 128,0,0,0
2271 106 .align 4
2272 107 .proc 1
2273 108 _s_proc:
2274 109 .stabn 68,0,35,LM8
2275 110 LM8:
2276 111 !#PROLOGUE# 0
2277 112 save %sp,-120,%sp
2278 113 !#PROLOGUE# 1
2279 114 mov %i0,%o0
2280 115 st %i1,[%fp+72]
2281 116 st %i2,[%fp+76]
2282 117 LBB4:
2283 118 .stabn 68,0,41,LM9
2284 119 LM9:
2285 120 LBE4:
2286 121 .stabn 68,0,41,LM10
2287 122 LM10:
2288 123 L5:
2289 124 ret
2290 125 restore
2291 126 .stabs "s_proc:f1",36,0,0,_s_proc
2292 127 .stabs "s_arg:p16",160,0,0,0
2293 128 .stabs "s_ptr_arg:p18",160,0,0,72
2294 129 .stabs "char_vec:p21",160,0,0,76
2295 130 .stabs "an_u:23",128,0,0,-20
2296 131 .stabn 192,0,0,LBB4
2297 132 .stabn 224,0,0,LBE4
2298 133 .stabs "g_bar:r1",64,0,0,5
2299 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
2300 135 .common _g_pf,4,"bss"
2301 136 .stabs "g_an_s:G16",32,0,0,0
2302 137 .common _g_an_s,20,"bss"
2303 @end example
2304
2305
2306 @node Quick reference
2307 @appendix Quick reference
2308
2309 @menu
2310 * Stab types:: Table A: Symbol types from stabs
2311 * Assembler types:: Table B: Symbol types from assembler and linker
2312 * Symbol descriptors:: Table C
2313 * Type Descriptors:: Table D
2314 @end menu
2315
2316 @node Stab types
2317 @section Table A: Symbol types from stabs
2318
2319 Table A lists stab types sorted by type number. Stab type numbers are
2320 32 and greater. This is the full list of stab numbers, including stab
2321 types that are used in languages other than C.
2322
2323 The #define names for these stab types are defined in:
2324 devo/include/aout/stab.def
2325
2326 @smallexample
2327 type type #define used to describe
2328 dec hex name source program feature
2329 ------------------------------------------------
2330 32 0x20 N_GYSM global symbol
2331 34 0X22 N_FNAME function name (for BSD Fortran)
2332 36 0x24 N_FUN function name or text segment variable for C
2333 38 0x26 N_STSYM static symbol (data segment w/internal linkage)
2334 40 0x28 N_LCSYM .lcomm symbol(BSS-seg variable w/internal linkage)
2335 42 0x2a N_MAIN Name of main routine (not used in C)
2336 48 0x30 N_PC global symbol (for Pascal)
2337 50 0x32 N_NSYMS number of symbols (according to Ultrix V4.0)
2338 52 0x34 N_NOMAP no DST map for sym (according to Ultrix V4.0)
2339 64 0x40 N_RSYM register variable
2340 66 0x42 N_M2C Modula-2 compilation unit
2341 68 0x44 N_SLINE line number in text segment
2342 70 0x46 N_DSLINE line number in data segment
2343
2344 72 0x48 N_BSLINE line number in bss segment
2345 72 0x48 N_BROWS Sun source code browser, path to .cb file
2346
2347 74 0x4a N_DEFD GNU Modula2 definition module dependency
2348
2349 80 0x50 N_EHDECL GNU C++ exception variable
2350 80 0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0)
2351
2352 84 0x54 N_CATCH GNU C++ "catch" clause
2353 96 0x60 N_SSYM structure of union element
2354 100 0x64 N_SO path and name of source file
2355 128 0x80 N_LSYM automatic var in the stack
2356 (also used for type desc.)
2357 130 0x82 N_BINCL beginning of an include file (Sun only)
2358 132 0x84 N_SOL Name of sub-source (#include) file.
2359 160 0xa0 N_PSYM parameter variable
2360 162 0xa2 N_EINCL end of an include file
2361 164 0xa4 N_ENTRY alternate entry point
2362 192 0xc0 N_LBRAC beginning of a lexical block
2363 194 0xc2 N_EXCL place holder for a deleted include file
2364 196 0xc4 N_SCOPE modula2 scope information (Sun linker)
2365 224 0xe0 N_RBRAC end of a lexical block
2366 226 0xe2 N_BCOMM begin named common block
2367 228 0xe4 N_ECOMM end named common block
2368 232 0xe8 N_ECOML end common (local name)
2369
2370 << used on Gould systems for non-base registers syms >>
2371 240 0xf0 N_NBTEXT ??
2372 242 0xf2 N_NBDATA ??
2373 244 0xf4 N_NBBSS ??
2374 246 0xf6 N_NBSTS ??
2375 248 0xf8 N_NBLCS ??
2376 @end smallexample
2377
2378 @node Assembler types
2379 @section Table B: Symbol types from assembler and linker
2380
2381 Table B shows the types of symbol table entries that hold assembler
2382 and linker symbols.
2383
2384 The #define names for these n_types values are defined in
2385 /include/aout/aout64.h
2386
2387 @smallexample
2388 dec hex #define
2389 n_type n_type name used to describe
2390 ------------------------------------------
2391 1 0x0 N_UNDF undefined symbol
2392 2 0x2 N_ABS absolute symbol -- defined at a particular address
2393 3 0x3 extern " (vs. file scope)
2394 4 0x4 N_TEXT text symbol -- defined at offset in text segment
2395 5 0x5 extern " (vs. file scope)
2396 6 0x6 N_DATA data symbol -- defined at offset in data segment
2397 7 0x7 extern " (vs. file scope)
2398 8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
2399 9 extern " (vs. file scope)
2400
2401 12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
2402
2403 49 0x12 N_COMM common sym -- visable after shared lib dynamic link
2404 31 0x1f N_FN file name of a .o file
2405 @end smallexample
2406
2407 @node Symbol descriptors
2408 @section Table C: Symbol descriptors
2409
2410 @example
2411 descriptor meaning
2412 -------------------------------------------------
2413 (empty) local variable
2414 f local function
2415 F global function
2416 G global variable
2417 p value parameter
2418 r register variable
2419 S static global variable
2420 t type name
2421 T enumeration, struct or type tag
2422 V static local variable
2423 @end example
2424
2425 @node Type Descriptors
2426 @section Table D: Type Descriptors
2427
2428 @example
2429 descriptor meaning
2430 -------------------------------------
2431 (empty) type reference
2432 a array type
2433 e enumeration type
2434 f function type
2435 r range type
2436 s structure type
2437 u union specifications
2438 * pointer type
2439 @end example
2440
2441
2442 @node Expanded reference
2443 @appendix Expanded reference by stab type.
2444
2445 Format of an entry:
2446
2447 The first line is the symbol type expressed in decimal, hexadecimal,
2448 and as a #define (see devo/include/aout/stab.def).
2449
2450 The second line describes the language constructs the symbol type
2451 represents.
2452
2453 The third line is the stab format with the significant stab fields
2454 named and the rest NIL.
2455
2456 Subsequent lines expand upon the meaning and possible values for each
2457 significant stab field. # stands in for the type descriptor.
2458
2459 Finally, any further information.
2460
2461 @menu
2462 * N_GSYM:: Global variable
2463 * N_FNAME:: Function name (BSD Fortran)
2464 * N_FUN:: C Function name or text segment variable
2465 * N_STSYM:: Initialized static symbol
2466 * N_LCSYM:: Uninitialized static symbol
2467 * N_MAIN:: Name of main routine (not for C)
2468 * N_PC:: Pascal global symbol
2469 * N_NSYMS:: Number of symbols
2470 * N_NOMAP:: No DST map
2471 * N_RSYM:: Register variable
2472 * N_M2C:: Modula-2 compilation unit
2473 * N_SLINE:: Line number in text segment
2474 * N_DSLINE:: Line number in data segment
2475 * N_BSLINE:: Line number in bss segment
2476 * N_BROWS:: Path to .cb file for Sun source code browser
2477 * N_DEFD:: GNU Modula2 definition module dependency
2478 * N_EHDECL:: GNU C++ exception variable
2479 * N_MOD2:: Modula2 information "for imc"
2480 * N_CATCH:: GNU C++ "catch" clause
2481 * N_SSYM:: Structure or union element
2482 * N_SO:: Source file containing main
2483 * N_LSYM:: Automatic variable
2484 * N_BINCL:: Beginning of include file (Sun only)
2485 * N_SOL:: Name of include file
2486 * N_PSYM:: Parameter variable
2487 * N_EINCL:: End of include file
2488 * N_ENTRY:: Alternate entry point
2489 * N_LBRAC:: Beginning of lexical block
2490 * N_EXCL:: Deleted include file
2491 * N_SCOPE:: Modula2 scope information (Sun only)
2492 * N_RBRAC:: End of lexical block
2493 * N_BCOMM:: Begin named common block
2494 * N_ECOMM:: End named common block
2495 * N_ECOML:: End common
2496 * Gould:: non-base register symbols used on Gould systems
2497 * N_LENG:: Length of preceding entry
2498 @end menu
2499
2500 @node N_GSYM
2501 @section 32 - 0x20 - N_GYSM
2502
2503 @display
2504 Global variable.
2505
2506 .stabs "name", N_GSYM, NIL, NIL, NIL
2507 @end display
2508
2509 @example
2510 "name" -> "symbol_name:#type"
2511 # -> G
2512 @end example
2513
2514 Only the "name" field is significant. the location of the variable is
2515 obtained from the corresponding external symbol.
2516
2517 @node N_FNAME
2518 @section 34 - 0x22 - N_FNAME
2519 Function name (for BSD Fortran)
2520
2521 @display
2522 .stabs "name", N_FNAME, NIL, NIL, NIL
2523 @end display
2524
2525 @example
2526 "name" -> "function_name"
2527 @end example
2528
2529 Only the "name" field is significant. The location of the symbol is
2530 obtained from the corresponding extern symbol.
2531
2532 @node N_FUN
2533 @section 36 - 0x24 - N_FUN
2534 Function name or text segment variable for C.
2535
2536 @display
2537 .stabs "name", N_FUN, NIL, desc, value
2538 @end display
2539
2540 @example
2541 @exdent @emph{For functions:}
2542 "name" -> "proc_name:#return_type"
2543 # -> F (global function)
2544 f (local function)
2545 desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)
2546 value -> Code address of proc start.
2547
2548 @exdent @emph{For text segment variables:}
2549 <<How to create one?>>
2550 @end example
2551
2552 @node N_STSYM
2553 @section 38 - 0x26 - N_STSYM
2554 Initialized static symbol (data segment w/internal linkage).
2555
2556 @display
2557 .stabs "name", N_STSYM, NIL, NIL, value
2558 @end display
2559
2560 @example
2561 "name" -> "symbol_name#type"
2562 # -> S (scope global to compilation unit)
2563 -> V (scope local to a procedure)
2564 value -> Data Address
2565 @end example
2566
2567 @node N_LCSYM
2568 @section 40 - 0x28 - N_LCSYM
2569 Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
2570
2571 @display
2572 .stabs "name", N_LCLSYM, NIL, NIL, value
2573 @end display
2574
2575 @example
2576 "name" -> "symbol_name#type"
2577 # -> S (scope global to compilation unit)
2578 -> V (scope local to procedure)
2579 value -> BSS Address
2580 @end example
2581
2582 @node N_MAIN
2583 @section 42 - 0x2a - N_MAIN
2584 Name of main routine (not used in C)
2585
2586 @display
2587 .stabs "name", N_MAIN, NIL, NIL, NIL
2588 @end display
2589
2590 @example
2591 "name" -> "name_of_main_routine"
2592 @end example
2593
2594 @node N_PC
2595 @section 48 - 0x30 - N_PC
2596 Global symbol (for Pascal)
2597
2598 @display
2599 .stabs "name", N_PC, NIL, NIL, value
2600 @end display
2601
2602 @example
2603 "name" -> "symbol_name" <<?>>
2604 value -> supposedly the line number (stab.def is skeptical)
2605 @end example
2606
2607 @display
2608 stabdump.c says:
2609
2610 global pascal symbol: name,,0,subtype,line
2611 << subtype? >>
2612 @end display
2613
2614 @node N_NSYMS
2615 @section 50 - 0x32 - N_NSYMS
2616 Number of symbols (according to Ultrix V4.0)
2617
2618 @display
2619 0, files,,funcs,lines (stab.def)
2620 @end display
2621
2622 @node N_NOMAP
2623 @section 52 - 0x34 - N_NOMAP
2624 no DST map for sym (according to Ultrix V4.0)
2625
2626 @display
2627 name, ,0,type,ignored (stab.def)
2628 @end display
2629
2630 @node N_RSYM
2631 @section 64 - 0x40 - N_RSYM
2632 register variable
2633
2634 @display
2635 .stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)
2636 @end display
2637
2638 @node N_M2C
2639 @section 66 - 0x42 - N_M2C
2640 Modula-2 compilation unit
2641
2642 @display
2643 .stabs "name", N_M2C, 0, desc, value
2644 @end display
2645
2646 @example
2647 "name" -> "unit_name,unit_time_stamp[,code_time_stamp]
2648 desc -> unit_number
2649 value -> 0 (main unit)
2650 1 (any other unit)
2651 @end example
2652
2653 @node N_SLINE
2654 @section 68 - 0x44 - N_SLINE
2655 Line number in text segment
2656
2657 @display
2658 .stabn N_SLINE, 0, desc, value
2659 @end display
2660
2661 @example
2662 desc -> line_number
2663 value -> code_address (relocatable addr where the corresponding code starts)
2664 @end example
2665
2666 For single source lines that generate discontiguous code, such as flow
2667 of control statements, there may be more than one N_SLINE stab for the
2668 same source line. In this case there is a stab at the start of each
2669 code range, each with the same line number.
2670
2671 @node N_DSLINE
2672 @section 70 - 0x46 - N_DSLINE
2673 Line number in data segment
2674
2675 @display
2676 .stabn N_DSLINE, 0, desc, value
2677 @end display
2678
2679 @example
2680 desc -> line_number
2681 value -> data_address (relocatable addr where the corresponding code
2682 starts)
2683 @end example
2684
2685 See comment for N_SLINE above.
2686
2687 @node N_BSLINE
2688 @section 72 - 0x48 - N_BSLINE
2689 Line number in bss segment
2690
2691 @display
2692 .stabn N_BSLINE, 0, desc, value
2693 @end display
2694
2695 @example
2696 desc -> line_number
2697 value -> bss_address (relocatable addr where the corresponding code
2698 starts)
2699 @end example
2700
2701 See comment for N_SLINE above.
2702
2703 @node N_BROWS
2704 @section 72 - 0x48 - N_BROWS
2705 Sun source code browser, path to .cb file
2706
2707 <<?>>
2708 "path to associated .cb file"
2709
2710 Note: type field value overlaps with N_BSLINE
2711
2712 @node N_DEFD
2713 @section 74 - 0x4a - N_DEFD
2714 GNU Modula2 definition module dependency
2715
2716 GNU Modula-2 definition module dependency. Value is the modification
2717 time of the definition file. Other is non-zero if it is imported with
2718 the GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
2719 are enough empty fields?
2720
2721 @node N_EHDECL
2722 @section 80 - 0x50 - N_EHDECL
2723 GNU C++ exception variable <<?>>
2724
2725 "name is variable name"
2726
2727 Note: conflicts with N_MOD2.
2728
2729 @node N_MOD2
2730 @section 80 - 0x50 - N_MOD2
2731 Modula2 info "for imc" (according to Ultrix V4.0)
2732
2733 Note: conflicts with N_EHDECL <<?>>
2734
2735 @node N_CATCH
2736 @section 84 - 0x54 - N_CATCH
2737 GNU C++ "catch" clause
2738
2739 GNU C++ `catch' clause. Value is its address. Desc is nonzero if
2740 this entry is immediately followed by a CAUGHT stab saying what
2741 exception was caught. Multiple CAUGHT stabs means that multiple
2742 exceptions can be caught here. If Desc is 0, it means all exceptions
2743 are caught here.
2744
2745 @node N_SSYM
2746 @section 96 - 0x60 - N_SSYM
2747 Structure or union element
2748
2749 Value is offset in the structure.
2750
2751 <<?looking at structs and unions in C I didn't see these>>
2752
2753 @node N_SO
2754 @section 100 - 0x64 - N_SO
2755 Path and name of source file containing main routine
2756
2757 @display
2758 .stabs "name", N_SO, NIL, NIL, value
2759 @end display
2760
2761 @example
2762 "name" -> /path/to/source/file
2763 -> source_file_terminal_name
2764
2765 value -> the starting text address of the compilation.
2766 @end example
2767
2768 These are found two in a row. The name field of the first N_SO
2769 contains the path to the source file. The name field of the second
2770 N_SO contains the terminal name of the source file itself.
2771
2772 @node N_LSYM
2773 @section 128 - 0x80 - N_LSYM
2774 Automatic var in the stack (also used for type descriptors.)
2775
2776 @display
2777 .stabs "name" N_LSYM, NIL, NIL, value
2778 @end display
2779
2780 @example
2781 @exdent @emph{For stack based local variables:}
2782
2783 "name" -> name of the variable
2784 value -> offset from frame pointer (negative)
2785
2786 @exdent @emph{For type descriptors:}
2787
2788 "name" -> "name_of_the_type:#type"
2789 # -> t
2790
2791 type -> type_ref (or) type_def
2792
2793 type_ref -> type_number
2794 type_def -> type_number=type_desc etc.
2795 @end example
2796
2797 Type may be either a type reference or a type definition. A type
2798 reference is a number that refers to a previously defined type. A
2799 type definition is the number that will refer to this type, followed
2800 by an equals sign, a type descriptor and the additional data that
2801 defines the type. See the Table D for type descriptors and the
2802 section on types for what data follows each type descriptor.
2803
2804 @node N_BINCL
2805 @section 130 - 0x82 - N_BINCL
2806
2807 Beginning of an include file (Sun only)
2808
2809 Beginning of an include file. Only Sun uses this. In an object file,
2810 only the name is significant. The Sun linker puts data into some of
2811 the other fields.
2812
2813 @node N_SOL
2814 @section 132 - 0x84 - N_SOL
2815
2816 Name of a sub-source file (#include file). Value is starting address
2817 of the compilation.
2818 <<?>>
2819
2820 @node N_PSYM
2821 @section 160 - 0xa0 - N_PSYM
2822
2823 Parameter variable
2824
2825 @display
2826 stabs. "name", N_PSYM, NIL, NIL, value
2827 @end display
2828
2829 @example
2830 "name" -> "param_name:#type"
2831 # -> p (value parameter)
2832 -> i (value parameter by reference, indirect access)
2833 -> v (variable parameter by reference)
2834 -> C ( read-only parameter, conformant array bound)
2835 -> x (confomant array value parameter)
2836 -> pP (<<??>>)
2837 -> pF (<<??>>)
2838 -> X (function result variable)
2839 -> b (based variable)
2840
2841 value -> offset from the argument pointer (positive).
2842 @end example
2843
2844 On most machines the argument pointer is the same as the frame
2845 pointer.
2846
2847 @node N_EINCL
2848 @section 162 - 0xa2 - N_EINCL
2849
2850 End of an include file. This and N_BINCL act as brackets around the
2851 file's output. In an ojbect file, there is no significant data in
2852 this entry. The Sun linker puts data into some of the fields.
2853 <<?>>
2854
2855 @node N_ENTRY
2856 @section 164 - 0xa4 - N_ENTRY
2857
2858 Alternate entry point.
2859 Value is its address.
2860 <<?>>
2861
2862 @node N_LBRAC
2863 @section 192 - 0xc0 - N_LBRAC
2864
2865 Beginning of a lexical block (left brace). The variable defined
2866 inside the block precede the N_LBRAC symbol. Or can they follow as
2867 well as long as a new N_FUNC was not encountered. <<?>>
2868
2869 @display
2870 .stabn N_LBRAC, NIL, NIL, value
2871 @end display
2872
2873 @example
2874 value -> code address of block start.
2875 @end example
2876
2877 @node N_EXCL
2878 @section 194 - 0xc2 - N_EXCL
2879
2880 Place holder for a deleted include file. Replaces a N_BINCL and
2881 everything up to the corresponding N_EINCL. The Sun linker generates
2882 these when it finds multiple indentical copies of the symbols from an
2883 included file. This appears only in output from the Sun linker.
2884 <<?>>
2885
2886 @node N_SCOPE
2887 @section 196 - 0xc4 - N_SCOPE
2888
2889 Modula2 scope information (Sun linker)
2890 <<?>>
2891
2892 @node N_RBRAC
2893 @section 224 - 0xe0 - N_RBRAC
2894
2895 End of a lexical block (right brace)
2896
2897 @display
2898 .stabn N_RBRAC, NIL, NIL, value
2899 @end display
2900
2901 @example
2902 value -> code address of the end of the block.
2903 @end example
2904
2905 @node N_BCOMM
2906 @section 226 - 0xe2 - N_BCOMM
2907
2908 Begin named common block.
2909
2910 Only the name is significant.
2911 <<?>>
2912
2913 @node N_ECOMM
2914 @section 228 - 0xe4 - N_ECOMM
2915
2916 End named common block.
2917
2918 Only the name is significant and it should match the N_BCOMM
2919 <<?>>
2920
2921 @node N_ECOML
2922 @section 232 - 0xe8 - N_ECOML
2923
2924 End common (local name)
2925
2926 value is address.
2927 <<?>>
2928
2929 @node Gould
2930 @section Non-base registers on Gould systems
2931 << used on Gould systems for non-base registers syms, values assigned
2932 at random, need real info from Gould. >>
2933 <<?>>
2934
2935 @example
2936 240 0xf0 N_NBTEXT ??
2937 242 0xf2 N_NBDATA ??
2938 244 0xf4 N_NBBSS ??
2939 246 0xf6 N_NBSTS ??
2940 248 0xf8 N_NBLCS ??
2941 @end example
2942
2943 @node N_LENG
2944 @section - 0xfe - N_LENG
2945
2946 Second symbol entry containing a length-value for the preceding entry.
2947 The value is the length.
2948
2949 @node Questions
2950 @appendix Questions and anomalies
2951
2952 @itemize @bullet
2953 @item
2954 For GNU C stabs defining local and global variables (N_LSYM and
2955 N_GSYM), the desc field is supposed to contain the source line number
2956 on which the variable is defined. In reality the desc field is always
2957 0. (This behavour is defined in dbxout.c and putting a line number in
2958 desc is controlled by #ifdef WINNING_GDB which defaults to false). Gdb
2959 supposedly uses this information if you say 'list var'. In reality
2960 var can be a variable defined in the program and gdb says `function
2961 var not defined'
2962
2963 @item
2964 In GNU C stabs there seems to be no way to differentiate tag types:
2965 structures, unions, and enums (symbol descriptor T) and typedefs
2966 (symbol descriptor t) defined at file scope from types defined locally
2967 to a procedure or other more local scope. They all use the N_LSYM
2968 stab type. Types defined at procedure scope are emited after the
2969 N_RBRAC of the preceding function and before the code of the
2970 procedure in which they are defined. This is exactly the same as
2971 types defined in the source file between the two procedure bodies.
2972 GDB overcompensates by placing all types in block #1 the block for
2973 symbols of file scope. This is true for default, -ansi and
2974 -traditional compiler options. (p0001063-gcc, p0001066-gdb)
2975
2976 @item
2977 What ends the procedure scope? Is it the proc block's N_RBRAC or the
2978 next N_FUN? (I believe its the first.)
2979
2980 @item
2981 The comment in xcoff.h says DBX_STATIC_CONST_VAR_CODE is used for
2982 static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN by
2983 default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM.
2984 But testing the default behaviour, my Sun4 native example shows
2985 N_STSYM not N_FUN is used to describe file static initialized
2986 variables. (the code tests for TREE_READONLY(decl) &&
2987 !TREE_THIS_VOLATILE(decl) and if true uses DBX_STATIC_CONST_VAR_CODE).
2988
2989 @item
2990 Global variable stabs don't have location information. This comes
2991 from the external symbol for the same variable. The external symbol
2992 has a leading underbar on the _name of the variable and the stab does
2993 not. How do we know these two symbol table entries are talking about
2994 the same symbol when their names are different?
2995
2996 @item
2997 Can gcc be configured to output stabs the way the Sun compiler
2998 does, so that their native debugging tools work? <NO?> It doesn't by
2999 default. GDB reads either format of stab. (gcc or SunC). How about
3000 dbx?
3001 @end itemize
3002
3003 @node xcoff-differences
3004 @appendix Differences between GNU stabs in a.out and GNU stabs in xcoff
3005
3006 (The AIX/RS6000 native object file format is xcoff with stabs)
3007
3008 @itemize @bullet
3009 @item
3010 Instead of .stabs, xcoff uses .stabx.
3011
3012 @item
3013 The data fields of an xcoff .stabx are in a different order than an
3014 a.out .stabs. The order is: string, value, type. The desc and null
3015 fields present in a.out stabs are missing in xcoff stabs. For N_GSYM
3016 the value field is the name of the symbol.
3017
3018 @item
3019 BSD a.out stab types correspond to AIX xcoff storage classes. In general the
3020 mapping is N_STABTYPE becomes C_STABTYPE. Some stab types in a.out
3021 are not supported in xcoff. See Table E. for full mappings.
3022
3023 exception:
3024 initialised static N_STSYM and un-initialized static N_LCSYM both map
3025 to the C_STSYM storage class. But the destinction is preserved
3026 because in xcoff N_STSYM and N_LCSYM must be emited in a named static
3027 block. Begin the block with .bs s[RW] data_section_name for N_STSYM
3028 or .bs s bss_section_name for N_LCSYM. End the block with .es
3029
3030 @item
3031 xcoff stabs describing tags and typedefs use the N_DECL (0x8c)instead
3032 of N_LSYM stab type.
3033
3034 @item
3035 xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register
3036 variables. If the register variable is also a value parameter, then
3037 use R instead of P for the symbol descriptor.
3038
3039 6.
3040 xcoff uses negative numbers as type references to the basic types.
3041 There are no boilerplate type definitions emited for these basic
3042 types. << make table of basic types and type numbers for C >>
3043
3044 @item
3045 xcoff .stabx sometimes don't have the name part of the string field.
3046
3047 @item
3048 xcoff uses a .file stab type to represent the source file name. There
3049 is no stab for the path to the source file.
3050
3051 @item
3052 xcoff uses a .line stab type to represent source lines. The format
3053 is: .line line_number.
3054
3055 @item
3056 xcoff emits line numbers relative to the start of the current
3057 function. The start of a function is marked by .bf. If a function
3058 includes lines from a seperate file, then those line numbers are
3059 absolute line numbers in the <<sub-?>> file being compiled.
3060
3061 @item
3062 The start of current include file is marked with: .bi "filename" and
3063 the end marked with .ei "filename"
3064
3065 @item
3066 If the xcoff stab is a N_FUN (C_FUN) then follow the string field with
3067 ,. instead of just ,
3068
3069 @item
3070 The symbol descriptor for register parameters is P for a.out and R for
3071 xcoff.
3072 @end itemize
3073
3074
3075 (I think that's it for .s file differences. They could stand to be
3076 better presented. This is just a list of what I have noticed so far.
3077 There are a *lot* of differences in the information in the symbol
3078 tables of the executable and object files.)
3079
3080 Table E: mapping a.out stab types to xcoff storage classes
3081
3082 @example
3083 stab type storage class
3084 -------------------------------
3085 N_GSYM C_GSYM
3086 N_FNAME unknown
3087 N_FUN C_FUN
3088 N_STSYM C_STSYM
3089 N_LCSYM C_STSYM
3090 N_MAIN unkown
3091 N_PC unknown
3092 N_RSYM C_RSYM
3093 N_RPSYM (0x8e) C_RPSYM
3094 N_M2C unknown
3095 N_SLINE unknown
3096 N_DSLINE unknown
3097 N_BSLINE unknown
3098 N_BROWSE unchanged
3099 N_CATCH unknown
3100 N_SSYM unknown
3101 N_SO unknown
3102 N_LSYM C_LSYM
3103 N_DECL (0x8c) C_DECL
3104 N_BINCL unknown
3105 N_SOL unknown
3106 N_PSYM C_PSYM
3107 N_EINCL unknown
3108 N_ENTRY C_ENTRY
3109 N_LBRAC unknown
3110 N_EXCL unknown
3111 N_SCOPE unknown
3112 N_RBRAC unknown
3113 N_BCOMM C_BCOMM
3114 N_ECOMM C_ECOMM
3115 N_ECOML C_ECOML
3116
3117 N_LENG unknown
3118 @end example
3119
3120 @node Sun-differences
3121 @appendix Differences between GNU stabs and Sun native stabs.
3122
3123 @itemize @bullet
3124 @item
3125 GNU C stabs define *all* types, file or procedure scope, as
3126 N_LSYM. Sun doc talks about using N_GSYM too.
3127
3128 @item
3129 GNU C stabs use `ar' as type descriptor when defining arrays vs. just
3130 `a' in Sun doc.
3131
3132 @item
3133 Stabs describing block scopes, N_LBRAC and N_RBRAC are supposed to
3134 contain the nesting level of the block in the desc field, re Sun doc.
3135 GNU stabs always have 0 in that field.
3136
3137 @item
3138 Sun C stabs use type number pairs in the format (a,b) where a is a
3139 number starting with 1 and incremented for each sub-source file in the
3140 compilation. b is a number starting with 1 and incremented for each
3141 new type defined in the compilation. GNU C stabs use the type number
3142 alone, with no source file number.
3143 @end itemize
3144
3145 @contents
3146 @bye
This page took 0.129405 seconds and 5 git commands to generate.