Fix non executable stack handling when calling functions in the inferior.
[deliverable/binutils-gdb.git] / gdb / dtrace-probe.c
1 /* DTrace probe support for GDB.
2
3 Copyright (C) 2014-2015 Free Software Foundation, Inc.
4
5 Contributed by Oracle, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "probe.h"
24 #include "vec.h"
25 #include "elf-bfd.h"
26 #include "gdbtypes.h"
27 #include "obstack.h"
28 #include "objfiles.h"
29 #include "complaints.h"
30 #include "value.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "language.h"
34 #include "parser-defs.h"
35 #include "inferior.h"
36
37 /* The type of the ELF sections where we will find the DOF programs
38 with information about probes. */
39
40 #ifndef SHT_SUNW_dof
41 # define SHT_SUNW_dof 0x6ffffff4
42 #endif
43
44 /* Forward declaration. */
45
46 static const struct probe_ops dtrace_probe_ops;
47
48 /* The following structure represents a single argument for the
49 probe. */
50
51 struct dtrace_probe_arg
52 {
53 /* The type of the probe argument. */
54 struct type *type;
55
56 /* A string describing the type. */
57 char *type_str;
58
59 /* The argument converted to an internal GDB expression. */
60 struct expression *expr;
61 };
62
63 typedef struct dtrace_probe_arg dtrace_probe_arg_s;
64 DEF_VEC_O (dtrace_probe_arg_s);
65
66 /* The following structure represents an enabler for a probe. */
67
68 struct dtrace_probe_enabler
69 {
70 /* Program counter where the is-enabled probe is installed. The
71 contents (nops, whatever...) stored at this address are
72 architecture dependent. */
73 CORE_ADDR address;
74 };
75
76 typedef struct dtrace_probe_enabler dtrace_probe_enabler_s;
77 DEF_VEC_O (dtrace_probe_enabler_s);
78
79 /* The following structure represents a dtrace probe. */
80
81 struct dtrace_probe
82 {
83 /* Generic information about the probe. This must be the first
84 element of this struct, in order to maintain binary compatibility
85 with the `struct probe' and be able to fully abstract it. */
86 struct probe p;
87
88 /* A probe can have zero or more arguments. */
89 int probe_argc;
90 VEC (dtrace_probe_arg_s) *args;
91
92 /* A probe can have zero or more "enablers" associated with it. */
93 VEC (dtrace_probe_enabler_s) *enablers;
94
95 /* Whether the expressions for the arguments have been built. */
96 unsigned int args_expr_built : 1;
97 };
98
99 /* Implementation of the probe_is_linespec method. */
100
101 static int
102 dtrace_probe_is_linespec (const char **linespecp)
103 {
104 static const char *const keywords[] = { "-pdtrace", "-probe-dtrace", NULL };
105
106 return probe_is_linespec_by_keyword (linespecp, keywords);
107 }
108
109 /* DOF programs can contain an arbitrary number of sections of 26
110 different types. In order to support DTrace USDT probes we only
111 need to handle a subset of these section types, fortunately. These
112 section types are defined in the following enumeration.
113
114 See linux/dtrace/dof_defines.h for a complete list of section types
115 along with their values. */
116
117 enum dtrace_dof_sect_type
118 {
119 /* Null section. */
120 DTRACE_DOF_SECT_TYPE_NONE = 0,
121 /* A dof_ecbdesc_t. */
122 DTRACE_DOF_SECT_TYPE_ECBDESC = 3,
123 /* A string table. */
124 DTRACE_DOF_SECT_TYPE_STRTAB = 8,
125 /* A dof_provider_t */
126 DTRACE_DOF_SECT_TYPE_PROVIDER = 15,
127 /* Array of dof_probe_t */
128 DTRACE_DOF_SECT_TYPE_PROBES = 16,
129 /* An array of probe arg mappings. */
130 DTRACE_DOF_SECT_TYPE_PRARGS = 17,
131 /* An array of probe arg offsets. */
132 DTRACE_DOF_SECT_TYPE_PROFFS = 18,
133 /* An array of probe is-enabled offsets. */
134 DTRACE_DOF_SECT_TYPE_PRENOFFS = 26
135 };
136
137 /* The following collection of data structures map the structure of
138 DOF entities. Again, we only cover the subset of DOF used to
139 implement USDT probes.
140
141 See linux/dtrace/dof.h header for a complete list of data
142 structures. */
143
144 /* Offsets to index the dofh_ident[] array defined below. */
145
146 enum dtrace_dof_ident
147 {
148 /* First byte of the magic number. */
149 DTRACE_DOF_ID_MAG0 = 0,
150 /* Second byte of the magic number. */
151 DTRACE_DOF_ID_MAG1 = 1,
152 /* Third byte of the magic number. */
153 DTRACE_DOF_ID_MAG2 = 2,
154 /* Fourth byte of the magic number. */
155 DTRACE_DOF_ID_MAG3 = 3,
156 /* An enum_dof_encoding value. */
157 DTRACE_DOF_ID_ENCODING = 5
158 };
159
160 /* Possible values for dofh_ident[DOF_ID_ENCODING]. */
161
162 enum dtrace_dof_encoding
163 {
164 /* The DOF program is little-endian. */
165 DTRACE_DOF_ENCODE_LSB = 1,
166 /* The DOF program is big-endian. */
167 DTRACE_DOF_ENCODE_MSB = 2
168 };
169
170 /* A DOF header, which describes the contents of a DOF program: number
171 of sections, size, etc. */
172
173 struct dtrace_dof_hdr
174 {
175 /* Identification bytes (see above). */
176 uint8_t dofh_ident[16];
177 /* File attribute flags (if any). */
178 uint32_t dofh_flags;
179 /* Size of file header in bytes. */
180 uint32_t dofh_hdrsize;
181 /* Size of section header in bytes. */
182 uint32_t dofh_secsize;
183 /* Number of section headers. */
184 uint32_t dofh_secnum;
185 /* File offset of section headers. */
186 uint64_t dofh_secoff;
187 /* File size of loadable portion. */
188 uint64_t dofh_loadsz;
189 /* File size of entire DOF file. */
190 uint64_t dofh_filesz;
191 /* Reserved for future use. */
192 uint64_t dofh_pad;
193 };
194
195 /* A DOF section, whose contents depend on its type. The several
196 supported section types are described in the enum
197 dtrace_dof_sect_type above. */
198
199 struct dtrace_dof_sect
200 {
201 /* Section type (see the define above). */
202 uint32_t dofs_type;
203 /* Section data memory alignment. */
204 uint32_t dofs_align;
205 /* Section flags (if any). */
206 uint32_t dofs_flags;
207 /* Size of section entry (if table). */
208 uint32_t dofs_entsize;
209 /* DOF + offset points to the section data. */
210 uint64_t dofs_offset;
211 /* Size of section data in bytes. */
212 uint64_t dofs_size;
213 };
214
215 /* A DOF provider, which is the provider of a probe. */
216
217 struct dtrace_dof_provider
218 {
219 /* Link to a DTRACE_DOF_SECT_TYPE_STRTAB section. */
220 uint32_t dofpv_strtab;
221 /* Link to a DTRACE_DOF_SECT_TYPE_PROBES section. */
222 uint32_t dofpv_probes;
223 /* Link to a DTRACE_DOF_SECT_TYPE_PRARGS section. */
224 uint32_t dofpv_prargs;
225 /* Link to a DTRACE_DOF_SECT_TYPE_PROFFS section. */
226 uint32_t dofpv_proffs;
227 /* Provider name string. */
228 uint32_t dofpv_name;
229 /* Provider attributes. */
230 uint32_t dofpv_provattr;
231 /* Module attributes. */
232 uint32_t dofpv_modattr;
233 /* Function attributes. */
234 uint32_t dofpv_funcattr;
235 /* Name attributes. */
236 uint32_t dofpv_nameattr;
237 /* Args attributes. */
238 uint32_t dofpv_argsattr;
239 /* Link to a DTRACE_DOF_SECT_PRENOFFS section. */
240 uint32_t dofpv_prenoffs;
241 };
242
243 /* A set of DOF probes and is-enabled probes sharing a base address
244 and several attributes. The particular locations and attributes of
245 each probe are maintained in arrays in several other DOF sections.
246 See the comment in dtrace_process_dof_probe for details on how
247 these attributes are stored. */
248
249 struct dtrace_dof_probe
250 {
251 /* Probe base address or offset. */
252 uint64_t dofpr_addr;
253 /* Probe function string. */
254 uint32_t dofpr_func;
255 /* Probe name string. */
256 uint32_t dofpr_name;
257 /* Native argument type strings. */
258 uint32_t dofpr_nargv;
259 /* Translated argument type strings. */
260 uint32_t dofpr_xargv;
261 /* Index of first argument mapping. */
262 uint32_t dofpr_argidx;
263 /* Index of first offset entry. */
264 uint32_t dofpr_offidx;
265 /* Native argument count. */
266 uint8_t dofpr_nargc;
267 /* Translated argument count. */
268 uint8_t dofpr_xargc;
269 /* Number of offset entries for probe. */
270 uint16_t dofpr_noffs;
271 /* Index of first is-enabled offset. */
272 uint32_t dofpr_enoffidx;
273 /* Number of is-enabled offsets. */
274 uint16_t dofpr_nenoffs;
275 /* Reserved for future use. */
276 uint16_t dofpr_pad1;
277 /* Reserved for future use. */
278 uint32_t dofpr_pad2;
279 };
280
281 /* DOF supports two different encodings: MSB (big-endian) and LSB
282 (little-endian). The encoding is itself encoded in the DOF header.
283 The following function returns an unsigned value in the host
284 endianness. */
285
286 #define DOF_UINT(dof, field) \
287 extract_unsigned_integer ((gdb_byte *) &(field), \
288 sizeof ((field)), \
289 (((dof)->dofh_ident[DTRACE_DOF_ID_ENCODING] \
290 == DTRACE_DOF_ENCODE_MSB) \
291 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE))
292
293 /* The following macro applies a given byte offset to a DOF (a pointer
294 to a dtrace_dof_hdr structure) and returns the resulting
295 address. */
296
297 #define DTRACE_DOF_PTR(dof, offset) (&((char *) (dof))[(offset)])
298
299 /* The following macro returns a pointer to the beginning of a given
300 section in a DOF object. The section is referred to by its index
301 in the sections array. */
302
303 #define DTRACE_DOF_SECT(dof, idx) \
304 ((struct dtrace_dof_sect *) \
305 DTRACE_DOF_PTR ((dof), \
306 DOF_UINT ((dof), (dof)->dofh_secoff) \
307 + ((idx) * DOF_UINT ((dof), (dof)->dofh_secsize))))
308
309 /* Helper function to examine the probe described by the given PROBE
310 and PROVIDER data structures and add it to the PROBESP vector.
311 STRTAB, OFFTAB, EOFFTAB and ARGTAB are pointers to tables in the
312 DOF program containing the attributes for the probe. */
313
314 static void
315 dtrace_process_dof_probe (struct objfile *objfile,
316 struct gdbarch *gdbarch, VEC (probe_p) **probesp,
317 struct dtrace_dof_hdr *dof,
318 struct dtrace_dof_probe *probe,
319 struct dtrace_dof_provider *provider,
320 char *strtab, char *offtab, char *eofftab,
321 char *argtab, uint64_t strtab_size)
322 {
323 int i, j, num_probes, num_enablers;
324 struct cleanup *cleanup;
325 VEC (dtrace_probe_enabler_s) *enablers;
326 char *p;
327
328 /* Each probe section can define zero or more probes of two
329 different types:
330
331 - probe->dofpr_noffs regular probes whose program counters are
332 stored in 32bit words starting at probe->dofpr_addr +
333 offtab[probe->dofpr_offidx].
334
335 - probe->dofpr_nenoffs is-enabled probes whose program counters
336 are stored in 32bit words starting at probe->dofpr_addr +
337 eofftab[probe->dofpr_enoffidx].
338
339 However is-enabled probes are not probes per-se, but an
340 optimization hack that is implemented in the kernel in a very
341 similar way than normal probes. This is how we support
342 is-enabled probes on GDB:
343
344 - Our probes are always DTrace regular probes.
345
346 - Our probes can be associated with zero or more "enablers". The
347 list of enablers is built from the is-enabled probes defined in
348 the Probe section.
349
350 - Probes having a non-empty list of enablers can be enabled or
351 disabled using the `enable probe' and `disable probe' commands
352 respectively. The `Enabled' column in the output of `info
353 probes' will read `yes' if the enablers are activated, `no'
354 otherwise.
355
356 - Probes having an empty list of enablers are always enabled.
357 The `Enabled' column in the output of `info probes' will
358 read `always'.
359
360 It follows that if there are DTrace is-enabled probes defined for
361 some provider/name but no DTrace regular probes defined then the
362 GDB user wont be able to enable/disable these conditionals. */
363
364 num_probes = DOF_UINT (dof, probe->dofpr_noffs);
365 if (num_probes == 0)
366 return;
367
368 /* Build the list of enablers for the probes defined in this Probe
369 DOF section. */
370 enablers = NULL;
371 cleanup
372 = make_cleanup (VEC_cleanup (dtrace_probe_enabler_s), &enablers);
373 num_enablers = DOF_UINT (dof, probe->dofpr_nenoffs);
374 for (i = 0; i < num_enablers; i++)
375 {
376 struct dtrace_probe_enabler enabler;
377 uint32_t enabler_offset
378 = ((uint32_t *) eofftab)[DOF_UINT (dof, probe->dofpr_enoffidx) + i];
379
380 enabler.address = DOF_UINT (dof, probe->dofpr_addr)
381 + DOF_UINT (dof, enabler_offset);
382 VEC_safe_push (dtrace_probe_enabler_s, enablers, &enabler);
383 }
384
385 for (i = 0; i < num_probes; i++)
386 {
387 uint32_t probe_offset
388 = ((uint32_t *) offtab)[DOF_UINT (dof, probe->dofpr_offidx) + i];
389 struct dtrace_probe *ret
390 = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret));
391
392 ret->p.pops = &dtrace_probe_ops;
393 ret->p.arch = gdbarch;
394 ret->args_expr_built = 0;
395
396 /* Set the provider and the name of the probe. */
397 ret->p.provider
398 = xstrdup (strtab + DOF_UINT (dof, provider->dofpv_name));
399 ret->p.name = xstrdup (strtab + DOF_UINT (dof, probe->dofpr_name));
400
401 /* The probe address. */
402 ret->p.address
403 = DOF_UINT (dof, probe->dofpr_addr) + DOF_UINT (dof, probe_offset);
404
405 /* Number of arguments in the probe. */
406 ret->probe_argc = DOF_UINT (dof, probe->dofpr_nargc);
407
408 /* Store argument type descriptions. A description of the type
409 of the argument is in the (J+1)th null-terminated string
410 starting at 'strtab' + 'probe->dofpr_nargv'. */
411 ret->args = NULL;
412 p = strtab + DOF_UINT (dof, probe->dofpr_nargv);
413 for (j = 0; j < ret->probe_argc; j++)
414 {
415 struct dtrace_probe_arg arg;
416 struct expression *expr;
417
418 arg.type_str = xstrdup (p);
419
420 /* Use strtab_size as a sentinel. */
421 while (*p++ != '\0' && p - strtab < strtab_size);
422
423 /* Try to parse a type expression from the type string. If
424 this does not work then we set the type to `long
425 int'. */
426 arg.type = builtin_type (gdbarch)->builtin_long;
427 expr = parse_expression (arg.type_str);
428 if (expr->elts[0].opcode == OP_TYPE)
429 arg.type = expr->elts[1].type;
430
431 VEC_safe_push (dtrace_probe_arg_s, ret->args, &arg);
432 }
433
434 /* Add the vector of enablers to this probe, if any. */
435 ret->enablers = VEC_copy (dtrace_probe_enabler_s, enablers);
436
437 /* Successfully created probe. */
438 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
439 }
440
441 do_cleanups (cleanup);
442 }
443
444 /* Helper function to collect the probes described in the DOF program
445 whose header is pointed by DOF and add them to the PROBESP vector.
446 SECT is the ELF section containing the DOF program and OBJFILE is
447 its containing object file. */
448
449 static void
450 dtrace_process_dof (asection *sect, struct objfile *objfile,
451 VEC (probe_p) **probesp, struct dtrace_dof_hdr *dof)
452 {
453 bfd *abfd = objfile->obfd;
454 int size = bfd_get_arch_size (abfd) / 8;
455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
456 struct dtrace_dof_sect *section;
457 int i;
458
459 /* The first step is to check for the DOF magic number. If no valid
460 DOF data is found in the section then a complaint is issued to
461 the user and the section skipped. */
462 if (dof->dofh_ident[DTRACE_DOF_ID_MAG0] != 0x7F
463 || dof->dofh_ident[DTRACE_DOF_ID_MAG1] != 'D'
464 || dof->dofh_ident[DTRACE_DOF_ID_MAG2] != 'O'
465 || dof->dofh_ident[DTRACE_DOF_ID_MAG3] != 'F')
466 goto invalid_dof_data;
467
468 /* Make sure the encoding mark is either DTRACE_DOF_ENCODE_LSB or
469 DTRACE_DOF_ENCODE_MSB. */
470 if (dof->dofh_ident[DTRACE_DOF_ID_ENCODING] != DTRACE_DOF_ENCODE_LSB
471 && dof->dofh_ident[DTRACE_DOF_ID_ENCODING] != DTRACE_DOF_ENCODE_MSB)
472 goto invalid_dof_data;
473
474 /* Make sure this DOF is not an enabling DOF, i.e. there are no ECB
475 Description sections. */
476 section = (struct dtrace_dof_sect *) DTRACE_DOF_PTR (dof,
477 DOF_UINT (dof, dof->dofh_secoff));
478 for (i = 0; i < DOF_UINT (dof, dof->dofh_secnum); i++, section++)
479 if (section->dofs_type == DTRACE_DOF_SECT_TYPE_ECBDESC)
480 return;
481
482 /* Iterate over any section of type Provider and extract the probe
483 information from them. If there are no "provider" sections on
484 the DOF then we just return. */
485 section = (struct dtrace_dof_sect *) DTRACE_DOF_PTR (dof,
486 DOF_UINT (dof, dof->dofh_secoff));
487 for (i = 0; i < DOF_UINT (dof, dof->dofh_secnum); i++, section++)
488 if (DOF_UINT (dof, section->dofs_type) == DTRACE_DOF_SECT_TYPE_PROVIDER)
489 {
490 struct dtrace_dof_provider *provider = (struct dtrace_dof_provider *)
491 DTRACE_DOF_PTR (dof, DOF_UINT (dof, section->dofs_offset));
492 struct dtrace_dof_sect *strtab_s
493 = DTRACE_DOF_SECT (dof, DOF_UINT (dof, provider->dofpv_strtab));
494 struct dtrace_dof_sect *probes_s
495 = DTRACE_DOF_SECT (dof, DOF_UINT (dof, provider->dofpv_probes));
496 struct dtrace_dof_sect *args_s
497 = DTRACE_DOF_SECT (dof, DOF_UINT (dof, provider->dofpv_prargs));
498 struct dtrace_dof_sect *offsets_s
499 = DTRACE_DOF_SECT (dof, DOF_UINT (dof, provider->dofpv_proffs));
500 struct dtrace_dof_sect *eoffsets_s
501 = DTRACE_DOF_SECT (dof, DOF_UINT (dof, provider->dofpv_prenoffs));
502 char *strtab = DTRACE_DOF_PTR (dof, DOF_UINT (dof, strtab_s->dofs_offset));
503 char *offtab = DTRACE_DOF_PTR (dof, DOF_UINT (dof, offsets_s->dofs_offset));
504 char *eofftab = DTRACE_DOF_PTR (dof, DOF_UINT (dof, eoffsets_s->dofs_offset));
505 char *argtab = DTRACE_DOF_PTR (dof, DOF_UINT (dof, args_s->dofs_offset));
506 unsigned int entsize = DOF_UINT (dof, probes_s->dofs_entsize);
507 int num_probes;
508
509 /* Very, unlikely, but could crash gdb if not handled
510 properly. */
511 if (entsize == 0)
512 goto invalid_dof_data;
513
514 num_probes = DOF_UINT (dof, probes_s->dofs_size) / entsize;
515
516 for (i = 0; i < num_probes; i++)
517 {
518 struct dtrace_dof_probe *probe = (struct dtrace_dof_probe *)
519 DTRACE_DOF_PTR (dof, DOF_UINT (dof, probes_s->dofs_offset)
520 + (i * DOF_UINT (dof, probes_s->dofs_entsize)));
521
522 dtrace_process_dof_probe (objfile,
523 gdbarch, probesp,
524 dof, probe,
525 provider, strtab, offtab, eofftab, argtab,
526 DOF_UINT (dof, strtab_s->dofs_size));
527 }
528 }
529
530 return;
531
532 invalid_dof_data:
533 complaint (&symfile_complaints,
534 _("skipping section '%s' which does not contain valid DOF data."),
535 sect->name);
536 }
537
538 /* Helper function to build the GDB internal expressiosn that, once
539 evaluated, will calculate the values of the arguments of a given
540 PROBE. */
541
542 static void
543 dtrace_build_arg_exprs (struct dtrace_probe *probe,
544 struct gdbarch *gdbarch)
545 {
546 struct parser_state pstate;
547 struct dtrace_probe_arg *arg;
548 int i;
549
550 probe->args_expr_built = 1;
551
552 /* Iterate over the arguments in the probe and build the
553 corresponding GDB internal expression that will generate the
554 value of the argument when executed at the PC of the probe. */
555 for (i = 0; i < probe->probe_argc; i++)
556 {
557 struct cleanup *back_to;
558
559 arg = VEC_index (dtrace_probe_arg_s, probe->args, i);
560
561 /* Initialize the expression buffer in the parser state. The
562 language does not matter, since we are using our own
563 parser. */
564 initialize_expout (&pstate, 10, current_language, gdbarch);
565 back_to = make_cleanup (free_current_contents, &pstate.expout);
566
567 /* The argument value, which is ABI dependent and casted to
568 `long int'. */
569 gdbarch_dtrace_parse_probe_argument (gdbarch, &pstate, i);
570
571 discard_cleanups (back_to);
572
573 /* Casting to the expected type, but only if the type was
574 recognized at probe load time. Otherwise the argument will
575 be evaluated as the long integer passed to the probe. */
576 if (arg->type != NULL)
577 {
578 write_exp_elt_opcode (&pstate, UNOP_CAST);
579 write_exp_elt_type (&pstate, arg->type);
580 write_exp_elt_opcode (&pstate, UNOP_CAST);
581 }
582
583 reallocate_expout (&pstate);
584 arg->expr = pstate.expout;
585 prefixify_expression (arg->expr);
586 }
587 }
588
589 /* Helper function to return the Nth argument of a given PROBE. */
590
591 static struct dtrace_probe_arg *
592 dtrace_get_arg (struct dtrace_probe *probe, unsigned n,
593 struct gdbarch *gdbarch)
594 {
595 if (!probe->args_expr_built)
596 dtrace_build_arg_exprs (probe, gdbarch);
597
598 return VEC_index (dtrace_probe_arg_s, probe->args, n);
599 }
600
601 /* Implementation of the get_probes method. */
602
603 static void
604 dtrace_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
605 {
606 bfd *abfd = objfile->obfd;
607 asection *sect = NULL;
608
609 /* Do nothing in case this is a .debug file, instead of the objfile
610 itself. */
611 if (objfile->separate_debug_objfile_backlink != NULL)
612 return;
613
614 /* Iterate over the sections in OBJFILE looking for DTrace
615 information. */
616 for (sect = abfd->sections; sect != NULL; sect = sect->next)
617 {
618 if (elf_section_data (sect)->this_hdr.sh_type == SHT_SUNW_dof)
619 {
620 struct dtrace_dof_hdr *dof;
621
622 /* Read the contents of the DOF section and then process it to
623 extract the information of any probe defined into it. */
624 if (!bfd_malloc_and_get_section (abfd, sect, (bfd_byte **) &dof))
625 complaint (&symfile_complaints,
626 _("could not obtain the contents of"
627 "section '%s' in objfile `%s'."),
628 sect->name, abfd->filename);
629
630 dtrace_process_dof (sect, objfile, probesp, dof);
631 xfree (dof);
632 }
633 }
634 }
635
636 /* Helper function to determine whether a given probe is "enabled" or
637 "disabled". A disabled probe is a probe in which one or more
638 enablers are disabled. */
639
640 static int
641 dtrace_probe_is_enabled (struct dtrace_probe *probe)
642 {
643 int i;
644 struct gdbarch *gdbarch = probe->p.arch;
645 struct dtrace_probe_enabler *enabler;
646
647 for (i = 0;
648 VEC_iterate (dtrace_probe_enabler_s, probe->enablers, i, enabler);
649 i++)
650 if (!gdbarch_dtrace_probe_is_enabled (gdbarch, enabler->address))
651 return 0;
652
653 return 1;
654 }
655
656 /* Implementation of the get_probe_address method. */
657
658 static CORE_ADDR
659 dtrace_get_probe_address (struct probe *probe, struct objfile *objfile)
660 {
661 gdb_assert (probe->pops == &dtrace_probe_ops);
662 return probe->address + ANOFFSET (objfile->section_offsets,
663 SECT_OFF_DATA (objfile));
664 }
665
666 /* Implementation of the get_probe_argument_count method. */
667
668 static unsigned
669 dtrace_get_probe_argument_count (struct probe *probe_generic,
670 struct frame_info *frame)
671 {
672 struct dtrace_probe *dtrace_probe = (struct dtrace_probe *) probe_generic;
673
674 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
675
676 return dtrace_probe->probe_argc;
677 }
678
679 /* Implementation of the can_evaluate_probe_arguments method. */
680
681 static int
682 dtrace_can_evaluate_probe_arguments (struct probe *probe_generic)
683 {
684 struct gdbarch *gdbarch = probe_generic->arch;
685
686 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
687 return gdbarch_dtrace_parse_probe_argument_p (gdbarch);
688 }
689
690 /* Implementation of the evaluate_probe_argument method. */
691
692 static struct value *
693 dtrace_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
694 struct frame_info *frame)
695 {
696 struct gdbarch *gdbarch = probe_generic->arch;
697 struct dtrace_probe *dtrace_probe = (struct dtrace_probe *) probe_generic;
698 struct dtrace_probe_arg *arg;
699 int pos = 0;
700
701 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
702
703 arg = dtrace_get_arg (dtrace_probe, n, gdbarch);
704 return evaluate_subexp_standard (arg->type, arg->expr, &pos, EVAL_NORMAL);
705 }
706
707 /* Implementation of the compile_to_ax method. */
708
709 static void
710 dtrace_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
711 struct axs_value *value, unsigned n)
712 {
713 struct dtrace_probe *dtrace_probe = (struct dtrace_probe *) probe_generic;
714 struct dtrace_probe_arg *arg;
715 union exp_element *pc;
716
717 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
718
719 arg = dtrace_get_arg (dtrace_probe, n, expr->gdbarch);
720
721 pc = arg->expr->elts;
722 gen_expr (arg->expr, &pc, expr, value);
723
724 require_rvalue (expr, value);
725 value->type = arg->type;
726 }
727
728 /* Implementation of the probe_destroy method. */
729
730 static void
731 dtrace_probe_destroy (struct probe *probe_generic)
732 {
733 struct dtrace_probe *probe = (struct dtrace_probe *) probe_generic;
734 struct dtrace_probe_arg *arg;
735 int i;
736
737 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
738
739 for (i = 0; VEC_iterate (dtrace_probe_arg_s, probe->args, i, arg); i++)
740 {
741 xfree (arg->type_str);
742 xfree (arg->expr);
743 }
744
745 VEC_free (dtrace_probe_enabler_s, probe->enablers);
746 VEC_free (dtrace_probe_arg_s, probe->args);
747 }
748
749 /* Implementation of the type_name method. */
750
751 static const char *
752 dtrace_type_name (struct probe *probe_generic)
753 {
754 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
755 return "dtrace";
756 }
757
758 /* Implementation of the gen_info_probes_table_header method. */
759
760 static void
761 dtrace_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
762 {
763 info_probe_column_s dtrace_probe_column;
764
765 dtrace_probe_column.field_name = "enabled";
766 dtrace_probe_column.print_name = _("Enabled");
767
768 VEC_safe_push (info_probe_column_s, *heads, &dtrace_probe_column);
769 }
770
771 /* Implementation of the gen_info_probes_table_values method. */
772
773 static void
774 dtrace_gen_info_probes_table_values (struct probe *probe_generic,
775 VEC (const_char_ptr) **ret)
776 {
777 struct dtrace_probe *probe = (struct dtrace_probe *) probe_generic;
778 const char *val = NULL;
779
780 gdb_assert (probe_generic->pops == &dtrace_probe_ops);
781
782 if (VEC_empty (dtrace_probe_enabler_s, probe->enablers))
783 val = "always";
784 else if (!gdbarch_dtrace_probe_is_enabled_p (probe_generic->arch))
785 val = "unknown";
786 else if (dtrace_probe_is_enabled (probe))
787 val = "yes";
788 else
789 val = "no";
790
791 VEC_safe_push (const_char_ptr, *ret, val);
792 }
793
794 /* Implementation of the enable_probe method. */
795
796 static void
797 dtrace_enable_probe (struct probe *probe)
798 {
799 struct gdbarch *gdbarch = probe->arch;
800 struct dtrace_probe *dtrace_probe = (struct dtrace_probe *) probe;
801 struct dtrace_probe_enabler *enabler;
802 int i;
803
804 gdb_assert (probe->pops == &dtrace_probe_ops);
805
806 /* Enabling a dtrace probe implies patching the text section of the
807 running process, so make sure the inferior is indeed running. */
808 if (ptid_equal (inferior_ptid, null_ptid))
809 error (_("No inferior running"));
810
811 /* Fast path. */
812 if (dtrace_probe_is_enabled (dtrace_probe))
813 return;
814
815 /* Iterate over all defined enabler in the given probe and enable
816 them all using the corresponding gdbarch hook. */
817
818 for (i = 0;
819 VEC_iterate (dtrace_probe_enabler_s, dtrace_probe->enablers, i, enabler);
820 i++)
821 if (gdbarch_dtrace_enable_probe_p (gdbarch))
822 gdbarch_dtrace_enable_probe (gdbarch, enabler->address);
823 }
824
825
826 /* Implementation of the disable_probe method. */
827
828 static void
829 dtrace_disable_probe (struct probe *probe)
830 {
831 struct gdbarch *gdbarch = probe->arch;
832 struct dtrace_probe *dtrace_probe = (struct dtrace_probe *) probe;
833 struct dtrace_probe_enabler *enabler;
834 int i;
835
836 gdb_assert (probe->pops == &dtrace_probe_ops);
837
838 /* Disabling a dtrace probe implies patching the text section of the
839 running process, so make sure the inferior is indeed running. */
840 if (ptid_equal (inferior_ptid, null_ptid))
841 error (_("No inferior running"));
842
843 /* Fast path. */
844 if (!dtrace_probe_is_enabled (dtrace_probe))
845 return;
846
847 /* Are we trying to disable a probe that does not have any enabler
848 associated? */
849 if (VEC_empty (dtrace_probe_enabler_s, dtrace_probe->enablers))
850 error (_("Probe %s:%s cannot be disabled: no enablers."), probe->provider, probe->name);
851
852 /* Iterate over all defined enabler in the given probe and disable
853 them all using the corresponding gdbarch hook. */
854
855 for (i = 0;
856 VEC_iterate (dtrace_probe_enabler_s, dtrace_probe->enablers, i, enabler);
857 i++)
858 if (gdbarch_dtrace_disable_probe_p (gdbarch))
859 gdbarch_dtrace_disable_probe (gdbarch, enabler->address);
860 }
861
862 /* DTrace probe_ops. */
863
864 static const struct probe_ops dtrace_probe_ops =
865 {
866 dtrace_probe_is_linespec,
867 dtrace_get_probes,
868 dtrace_get_probe_address,
869 dtrace_get_probe_argument_count,
870 dtrace_can_evaluate_probe_arguments,
871 dtrace_evaluate_probe_argument,
872 dtrace_compile_to_ax,
873 NULL, /* set_semaphore */
874 NULL, /* clear_semaphore */
875 dtrace_probe_destroy,
876 dtrace_type_name,
877 dtrace_gen_info_probes_table_header,
878 dtrace_gen_info_probes_table_values,
879 dtrace_enable_probe,
880 dtrace_disable_probe
881 };
882
883 /* Implementation of the `info probes dtrace' command. */
884
885 static void
886 info_probes_dtrace_command (char *arg, int from_tty)
887 {
888 info_probes_for_ops (arg, from_tty, &dtrace_probe_ops);
889 }
890
891 void _initialize_dtrace_probe (void);
892
893 void
894 _initialize_dtrace_probe (void)
895 {
896 VEC_safe_push (probe_ops_cp, all_probe_ops, &dtrace_probe_ops);
897
898 add_cmd ("dtrace", class_info, info_probes_dtrace_command,
899 _("\
900 Show information about DTrace static probes.\n\
901 Usage: info probes dtrace [PROVIDER [NAME [OBJECT]]]\n\
902 Each argument is a regular expression, used to select probes.\n\
903 PROVIDER matches probe provider names.\n\
904 NAME matches the probe names.\n\
905 OBJECT matches the executable or shared library name."),
906 info_probes_cmdlist_get ());
907 }
This page took 0.047607 seconds and 4 git commands to generate.