gdb: remove FIELD_TYPE macro
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 /* This is used to store the data that is always per objfile. */
109 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
110
111 /* These are used to store the dwarf2_per_bfd objects.
112
113 objfiles having the same BFD, which doesn't require relocations, are going to
114 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
115
116 Other objfiles are not going to share a dwarf2_per_bfd with any other
117 objfiles, so they'll have their own version kept in the _objfile_data_key
118 version. */
119 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
120 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
121
122 /* The "aclass" indices for various kinds of computed DWARF symbols. */
123
124 static int dwarf2_locexpr_index;
125 static int dwarf2_loclist_index;
126 static int dwarf2_locexpr_block_index;
127 static int dwarf2_loclist_block_index;
128
129 /* Size of .debug_loclists section header for 32-bit DWARF format. */
130 #define LOCLIST_HEADER_SIZE32 12
131
132 /* Size of .debug_loclists section header for 64-bit DWARF format. */
133 #define LOCLIST_HEADER_SIZE64 20
134
135 /* An index into a (C++) symbol name component in a symbol name as
136 recorded in the mapped_index's symbol table. For each C++ symbol
137 in the symbol table, we record one entry for the start of each
138 component in the symbol in a table of name components, and then
139 sort the table, in order to be able to binary search symbol names,
140 ignoring leading namespaces, both completion and regular look up.
141 For example, for symbol "A::B::C", we'll have an entry that points
142 to "A::B::C", another that points to "B::C", and another for "C".
143 Note that function symbols in GDB index have no parameter
144 information, just the function/method names. You can convert a
145 name_component to a "const char *" using the
146 'mapped_index::symbol_name_at(offset_type)' method. */
147
148 struct name_component
149 {
150 /* Offset in the symbol name where the component starts. Stored as
151 a (32-bit) offset instead of a pointer to save memory and improve
152 locality on 64-bit architectures. */
153 offset_type name_offset;
154
155 /* The symbol's index in the symbol and constant pool tables of a
156 mapped_index. */
157 offset_type idx;
158 };
159
160 /* Base class containing bits shared by both .gdb_index and
161 .debug_name indexes. */
162
163 struct mapped_index_base
164 {
165 mapped_index_base () = default;
166 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
167
168 /* The name_component table (a sorted vector). See name_component's
169 description above. */
170 std::vector<name_component> name_components;
171
172 /* How NAME_COMPONENTS is sorted. */
173 enum case_sensitivity name_components_casing;
174
175 /* Return the number of names in the symbol table. */
176 virtual size_t symbol_name_count () const = 0;
177
178 /* Get the name of the symbol at IDX in the symbol table. */
179 virtual const char *symbol_name_at
180 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
181
182 /* Return whether the name at IDX in the symbol table should be
183 ignored. */
184 virtual bool symbol_name_slot_invalid (offset_type idx) const
185 {
186 return false;
187 }
188
189 /* Build the symbol name component sorted vector, if we haven't
190 yet. */
191 void build_name_components (dwarf2_per_objfile *per_objfile);
192
193 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
194 possible matches for LN_NO_PARAMS in the name component
195 vector. */
196 std::pair<std::vector<name_component>::const_iterator,
197 std::vector<name_component>::const_iterator>
198 find_name_components_bounds (const lookup_name_info &ln_no_params,
199 enum language lang,
200 dwarf2_per_objfile *per_objfile) const;
201
202 /* Prevent deleting/destroying via a base class pointer. */
203 protected:
204 ~mapped_index_base() = default;
205 };
206
207 /* A description of the mapped index. The file format is described in
208 a comment by the code that writes the index. */
209 struct mapped_index final : public mapped_index_base
210 {
211 /* A slot/bucket in the symbol table hash. */
212 struct symbol_table_slot
213 {
214 const offset_type name;
215 const offset_type vec;
216 };
217
218 /* Index data format version. */
219 int version = 0;
220
221 /* The address table data. */
222 gdb::array_view<const gdb_byte> address_table;
223
224 /* The symbol table, implemented as a hash table. */
225 gdb::array_view<symbol_table_slot> symbol_table;
226
227 /* A pointer to the constant pool. */
228 const char *constant_pool = nullptr;
229
230 bool symbol_name_slot_invalid (offset_type idx) const override
231 {
232 const auto &bucket = this->symbol_table[idx];
233 return bucket.name == 0 && bucket.vec == 0;
234 }
235
236 /* Convenience method to get at the name of the symbol at IDX in the
237 symbol table. */
238 const char *symbol_name_at
239 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
240 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
241
242 size_t symbol_name_count () const override
243 { return this->symbol_table.size (); }
244 };
245
246 /* A description of the mapped .debug_names.
247 Uninitialized map has CU_COUNT 0. */
248 struct mapped_debug_names final : public mapped_index_base
249 {
250 bfd_endian dwarf5_byte_order;
251 bool dwarf5_is_dwarf64;
252 bool augmentation_is_gdb;
253 uint8_t offset_size;
254 uint32_t cu_count = 0;
255 uint32_t tu_count, bucket_count, name_count;
256 const gdb_byte *cu_table_reordered, *tu_table_reordered;
257 const uint32_t *bucket_table_reordered, *hash_table_reordered;
258 const gdb_byte *name_table_string_offs_reordered;
259 const gdb_byte *name_table_entry_offs_reordered;
260 const gdb_byte *entry_pool;
261
262 struct index_val
263 {
264 ULONGEST dwarf_tag;
265 struct attr
266 {
267 /* Attribute name DW_IDX_*. */
268 ULONGEST dw_idx;
269
270 /* Attribute form DW_FORM_*. */
271 ULONGEST form;
272
273 /* Value if FORM is DW_FORM_implicit_const. */
274 LONGEST implicit_const;
275 };
276 std::vector<attr> attr_vec;
277 };
278
279 std::unordered_map<ULONGEST, index_val> abbrev_map;
280
281 const char *namei_to_name
282 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
283
284 /* Implementation of the mapped_index_base virtual interface, for
285 the name_components cache. */
286
287 const char *symbol_name_at
288 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
289 { return namei_to_name (idx, per_objfile); }
290
291 size_t symbol_name_count () const override
292 { return this->name_count; }
293 };
294
295 /* See dwarf2read.h. */
296
297 dwarf2_per_objfile *
298 get_dwarf2_per_objfile (struct objfile *objfile)
299 {
300 return dwarf2_objfile_data_key.get (objfile);
301 }
302
303 /* Default names of the debugging sections. */
304
305 /* Note that if the debugging section has been compressed, it might
306 have a name like .zdebug_info. */
307
308 static const struct dwarf2_debug_sections dwarf2_elf_names =
309 {
310 { ".debug_info", ".zdebug_info" },
311 { ".debug_abbrev", ".zdebug_abbrev" },
312 { ".debug_line", ".zdebug_line" },
313 { ".debug_loc", ".zdebug_loc" },
314 { ".debug_loclists", ".zdebug_loclists" },
315 { ".debug_macinfo", ".zdebug_macinfo" },
316 { ".debug_macro", ".zdebug_macro" },
317 { ".debug_str", ".zdebug_str" },
318 { ".debug_str_offsets", ".zdebug_str_offsets" },
319 { ".debug_line_str", ".zdebug_line_str" },
320 { ".debug_ranges", ".zdebug_ranges" },
321 { ".debug_rnglists", ".zdebug_rnglists" },
322 { ".debug_types", ".zdebug_types" },
323 { ".debug_addr", ".zdebug_addr" },
324 { ".debug_frame", ".zdebug_frame" },
325 { ".eh_frame", NULL },
326 { ".gdb_index", ".zgdb_index" },
327 { ".debug_names", ".zdebug_names" },
328 { ".debug_aranges", ".zdebug_aranges" },
329 23
330 };
331
332 /* List of DWO/DWP sections. */
333
334 static const struct dwop_section_names
335 {
336 struct dwarf2_section_names abbrev_dwo;
337 struct dwarf2_section_names info_dwo;
338 struct dwarf2_section_names line_dwo;
339 struct dwarf2_section_names loc_dwo;
340 struct dwarf2_section_names loclists_dwo;
341 struct dwarf2_section_names macinfo_dwo;
342 struct dwarf2_section_names macro_dwo;
343 struct dwarf2_section_names str_dwo;
344 struct dwarf2_section_names str_offsets_dwo;
345 struct dwarf2_section_names types_dwo;
346 struct dwarf2_section_names cu_index;
347 struct dwarf2_section_names tu_index;
348 }
349 dwop_section_names =
350 {
351 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
352 { ".debug_info.dwo", ".zdebug_info.dwo" },
353 { ".debug_line.dwo", ".zdebug_line.dwo" },
354 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
355 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
356 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
357 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
358 { ".debug_str.dwo", ".zdebug_str.dwo" },
359 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
360 { ".debug_types.dwo", ".zdebug_types.dwo" },
361 { ".debug_cu_index", ".zdebug_cu_index" },
362 { ".debug_tu_index", ".zdebug_tu_index" },
363 };
364
365 /* local data types */
366
367 /* The location list section (.debug_loclists) begins with a header,
368 which contains the following information. */
369 struct loclist_header
370 {
371 /* A 4-byte or 12-byte length containing the length of the
372 set of entries for this compilation unit, not including the
373 length field itself. */
374 unsigned int length;
375
376 /* A 2-byte version identifier. */
377 short version;
378
379 /* A 1-byte unsigned integer containing the size in bytes of an address on
380 the target system. */
381 unsigned char addr_size;
382
383 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
384 on the target system. */
385 unsigned char segment_collector_size;
386
387 /* A 4-byte count of the number of offsets that follow the header. */
388 unsigned int offset_entry_count;
389 };
390
391 /* Type used for delaying computation of method physnames.
392 See comments for compute_delayed_physnames. */
393 struct delayed_method_info
394 {
395 /* The type to which the method is attached, i.e., its parent class. */
396 struct type *type;
397
398 /* The index of the method in the type's function fieldlists. */
399 int fnfield_index;
400
401 /* The index of the method in the fieldlist. */
402 int index;
403
404 /* The name of the DIE. */
405 const char *name;
406
407 /* The DIE associated with this method. */
408 struct die_info *die;
409 };
410
411 /* Internal state when decoding a particular compilation unit. */
412 struct dwarf2_cu
413 {
414 explicit dwarf2_cu (dwarf2_per_cu_data *per_cu,
415 dwarf2_per_objfile *per_objfile);
416
417 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
418
419 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
420 Create the set of symtabs used by this TU, or if this TU is sharing
421 symtabs with another TU and the symtabs have already been created
422 then restore those symtabs in the line header.
423 We don't need the pc/line-number mapping for type units. */
424 void setup_type_unit_groups (struct die_info *die);
425
426 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
427 buildsym_compunit constructor. */
428 struct compunit_symtab *start_symtab (const char *name,
429 const char *comp_dir,
430 CORE_ADDR low_pc);
431
432 /* Reset the builder. */
433 void reset_builder () { m_builder.reset (); }
434
435 /* Return a type that is a generic pointer type, the size of which
436 matches the address size given in the compilation unit header for
437 this CU. */
438 struct type *addr_type () const;
439
440 /* Find an integer type the same size as the address size given in
441 the compilation unit header for this CU. UNSIGNED_P controls if
442 the integer is unsigned or not. */
443 struct type *addr_sized_int_type (bool unsigned_p) const;
444
445 /* The header of the compilation unit. */
446 struct comp_unit_head header {};
447
448 /* Base address of this compilation unit. */
449 gdb::optional<CORE_ADDR> base_address;
450
451 /* The language we are debugging. */
452 enum language language = language_unknown;
453 const struct language_defn *language_defn = nullptr;
454
455 const char *producer = nullptr;
456
457 private:
458 /* The symtab builder for this CU. This is only non-NULL when full
459 symbols are being read. */
460 std::unique_ptr<buildsym_compunit> m_builder;
461
462 public:
463 /* The generic symbol table building routines have separate lists for
464 file scope symbols and all all other scopes (local scopes). So
465 we need to select the right one to pass to add_symbol_to_list().
466 We do it by keeping a pointer to the correct list in list_in_scope.
467
468 FIXME: The original dwarf code just treated the file scope as the
469 first local scope, and all other local scopes as nested local
470 scopes, and worked fine. Check to see if we really need to
471 distinguish these in buildsym.c. */
472 struct pending **list_in_scope = nullptr;
473
474 /* Hash table holding all the loaded partial DIEs
475 with partial_die->offset.SECT_OFF as hash. */
476 htab_t partial_dies = nullptr;
477
478 /* Storage for things with the same lifetime as this read-in compilation
479 unit, including partial DIEs. */
480 auto_obstack comp_unit_obstack;
481
482 /* Backlink to our per_cu entry. */
483 struct dwarf2_per_cu_data *per_cu;
484
485 /* The dwarf2_per_objfile that owns this. */
486 dwarf2_per_objfile *per_objfile;
487
488 /* How many compilation units ago was this CU last referenced? */
489 int last_used = 0;
490
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
494
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
497
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
502
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_bfd::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
511
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
515
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
518
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
527 is non-NULL). */
528 struct dwo_unit *dwo_unit = nullptr;
529
530 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
531 Note this value comes from the Fission stub CU/TU's DIE. */
532 gdb::optional<ULONGEST> addr_base;
533
534 /* The DW_AT_rnglists_base attribute if present.
535 Note this value comes from the Fission stub CU/TU's DIE.
536 Also note that the value is zero in the non-DWO case so this value can
537 be used without needing to know whether DWO files are in use or not.
538 N.B. This does not apply to DW_AT_ranges appearing in
539 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
540 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
541 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
542 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
543 ULONGEST ranges_base = 0;
544
545 /* The DW_AT_loclists_base attribute if present. */
546 ULONGEST loclist_base = 0;
547
548 /* When reading debug info generated by older versions of rustc, we
549 have to rewrite some union types to be struct types with a
550 variant part. This rewriting must be done after the CU is fully
551 read in, because otherwise at the point of rewriting some struct
552 type might not have been fully processed. So, we keep a list of
553 all such types here and process them after expansion. */
554 std::vector<struct type *> rust_unions;
555
556 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
557 files, the value is implicitly zero. For DWARF 5 version DWO files, the
558 value is often implicit and is the size of the header of
559 .debug_str_offsets section (8 or 4, depending on the address size). */
560 gdb::optional<ULONGEST> str_offsets_base;
561
562 /* Mark used when releasing cached dies. */
563 bool mark : 1;
564
565 /* This CU references .debug_loc. See the symtab->locations_valid field.
566 This test is imperfect as there may exist optimized debug code not using
567 any location list and still facing inlining issues if handled as
568 unoptimized code. For a future better test see GCC PR other/32998. */
569 bool has_loclist : 1;
570
571 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
572 if all the producer_is_* fields are valid. This information is cached
573 because profiling CU expansion showed excessive time spent in
574 producer_is_gxx_lt_4_6. */
575 bool checked_producer : 1;
576 bool producer_is_gxx_lt_4_6 : 1;
577 bool producer_is_gcc_lt_4_3 : 1;
578 bool producer_is_icc : 1;
579 bool producer_is_icc_lt_14 : 1;
580 bool producer_is_codewarrior : 1;
581
582 /* When true, the file that we're processing is known to have
583 debugging info for C++ namespaces. GCC 3.3.x did not produce
584 this information, but later versions do. */
585
586 bool processing_has_namespace_info : 1;
587
588 struct partial_die_info *find_partial_die (sect_offset sect_off);
589
590 /* If this CU was inherited by another CU (via specification,
591 abstract_origin, etc), this is the ancestor CU. */
592 dwarf2_cu *ancestor;
593
594 /* Get the buildsym_compunit for this CU. */
595 buildsym_compunit *get_builder ()
596 {
597 /* If this CU has a builder associated with it, use that. */
598 if (m_builder != nullptr)
599 return m_builder.get ();
600
601 /* Otherwise, search ancestors for a valid builder. */
602 if (ancestor != nullptr)
603 return ancestor->get_builder ();
604
605 return nullptr;
606 }
607 };
608
609 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
610 This includes type_unit_group and quick_file_names. */
611
612 struct stmt_list_hash
613 {
614 /* The DWO unit this table is from or NULL if there is none. */
615 struct dwo_unit *dwo_unit;
616
617 /* Offset in .debug_line or .debug_line.dwo. */
618 sect_offset line_sect_off;
619 };
620
621 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
622 an object of this type. This contains elements of type unit groups
623 that can be shared across objfiles. The non-shareable parts are in
624 type_unit_group_unshareable. */
625
626 struct type_unit_group
627 {
628 /* dwarf2read.c's main "handle" on a TU symtab.
629 To simplify things we create an artificial CU that "includes" all the
630 type units using this stmt_list so that the rest of the code still has
631 a "per_cu" handle on the symtab. */
632 struct dwarf2_per_cu_data per_cu;
633
634 /* The TUs that share this DW_AT_stmt_list entry.
635 This is added to while parsing type units to build partial symtabs,
636 and is deleted afterwards and not used again. */
637 std::vector<signatured_type *> *tus;
638
639 /* The data used to construct the hash key. */
640 struct stmt_list_hash hash;
641 };
642
643 /* These sections are what may appear in a (real or virtual) DWO file. */
644
645 struct dwo_sections
646 {
647 struct dwarf2_section_info abbrev;
648 struct dwarf2_section_info line;
649 struct dwarf2_section_info loc;
650 struct dwarf2_section_info loclists;
651 struct dwarf2_section_info macinfo;
652 struct dwarf2_section_info macro;
653 struct dwarf2_section_info str;
654 struct dwarf2_section_info str_offsets;
655 /* In the case of a virtual DWO file, these two are unused. */
656 struct dwarf2_section_info info;
657 std::vector<dwarf2_section_info> types;
658 };
659
660 /* CUs/TUs in DWP/DWO files. */
661
662 struct dwo_unit
663 {
664 /* Backlink to the containing struct dwo_file. */
665 struct dwo_file *dwo_file;
666
667 /* The "id" that distinguishes this CU/TU.
668 .debug_info calls this "dwo_id", .debug_types calls this "signature".
669 Since signatures came first, we stick with it for consistency. */
670 ULONGEST signature;
671
672 /* The section this CU/TU lives in, in the DWO file. */
673 struct dwarf2_section_info *section;
674
675 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
676 sect_offset sect_off;
677 unsigned int length;
678
679 /* For types, offset in the type's DIE of the type defined by this TU. */
680 cu_offset type_offset_in_tu;
681 };
682
683 /* include/dwarf2.h defines the DWP section codes.
684 It defines a max value but it doesn't define a min value, which we
685 use for error checking, so provide one. */
686
687 enum dwp_v2_section_ids
688 {
689 DW_SECT_MIN = 1
690 };
691
692 /* Data for one DWO file.
693
694 This includes virtual DWO files (a virtual DWO file is a DWO file as it
695 appears in a DWP file). DWP files don't really have DWO files per se -
696 comdat folding of types "loses" the DWO file they came from, and from
697 a high level view DWP files appear to contain a mass of random types.
698 However, to maintain consistency with the non-DWP case we pretend DWP
699 files contain virtual DWO files, and we assign each TU with one virtual
700 DWO file (generally based on the line and abbrev section offsets -
701 a heuristic that seems to work in practice). */
702
703 struct dwo_file
704 {
705 dwo_file () = default;
706 DISABLE_COPY_AND_ASSIGN (dwo_file);
707
708 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
709 For virtual DWO files the name is constructed from the section offsets
710 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
711 from related CU+TUs. */
712 const char *dwo_name = nullptr;
713
714 /* The DW_AT_comp_dir attribute. */
715 const char *comp_dir = nullptr;
716
717 /* The bfd, when the file is open. Otherwise this is NULL.
718 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 gdb_bfd_ref_ptr dbfd;
720
721 /* The sections that make up this DWO file.
722 Remember that for virtual DWO files in DWP V2, these are virtual
723 sections (for lack of a better name). */
724 struct dwo_sections sections {};
725
726 /* The CUs in the file.
727 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
728 an extension to handle LLVM's Link Time Optimization output (where
729 multiple source files may be compiled into a single object/dwo pair). */
730 htab_up cus;
731
732 /* Table of TUs in the file.
733 Each element is a struct dwo_unit. */
734 htab_up tus;
735 };
736
737 /* These sections are what may appear in a DWP file. */
738
739 struct dwp_sections
740 {
741 /* These are used by both DWP version 1 and 2. */
742 struct dwarf2_section_info str;
743 struct dwarf2_section_info cu_index;
744 struct dwarf2_section_info tu_index;
745
746 /* These are only used by DWP version 2 files.
747 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
748 sections are referenced by section number, and are not recorded here.
749 In DWP version 2 there is at most one copy of all these sections, each
750 section being (effectively) comprised of the concatenation of all of the
751 individual sections that exist in the version 1 format.
752 To keep the code simple we treat each of these concatenated pieces as a
753 section itself (a virtual section?). */
754 struct dwarf2_section_info abbrev;
755 struct dwarf2_section_info info;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str_offsets;
761 struct dwarf2_section_info types;
762 };
763
764 /* These sections are what may appear in a virtual DWO file in DWP version 1.
765 A virtual DWO file is a DWO file as it appears in a DWP file. */
766
767 struct virtual_v1_dwo_sections
768 {
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
778 };
779
780 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
781 In version 2, the sections of the DWO files are concatenated together
782 and stored in one section of that name. Thus each ELF section contains
783 several "virtual" sections. */
784
785 struct virtual_v2_dwo_sections
786 {
787 bfd_size_type abbrev_offset;
788 bfd_size_type abbrev_size;
789
790 bfd_size_type line_offset;
791 bfd_size_type line_size;
792
793 bfd_size_type loc_offset;
794 bfd_size_type loc_size;
795
796 bfd_size_type macinfo_offset;
797 bfd_size_type macinfo_size;
798
799 bfd_size_type macro_offset;
800 bfd_size_type macro_size;
801
802 bfd_size_type str_offsets_offset;
803 bfd_size_type str_offsets_size;
804
805 /* Each DWP hash table entry records one CU or one TU.
806 That is recorded here, and copied to dwo_unit.section. */
807 bfd_size_type info_or_types_offset;
808 bfd_size_type info_or_types_size;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t version, nr_columns;
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table;
818 union
819 {
820 struct
821 {
822 const gdb_byte *indices;
823 } v1;
824 struct
825 {
826 /* This is indexed by column number and gives the id of the section
827 in that column. */
828 #define MAX_NR_V2_DWO_SECTIONS \
829 (1 /* .debug_info or .debug_types */ \
830 + 1 /* .debug_abbrev */ \
831 + 1 /* .debug_line */ \
832 + 1 /* .debug_loc */ \
833 + 1 /* .debug_str_offsets */ \
834 + 1 /* .debug_macro or .debug_macinfo */)
835 int section_ids[MAX_NR_V2_DWO_SECTIONS];
836 const gdb_byte *offsets;
837 const gdb_byte *sizes;
838 } v2;
839 } section_pool;
840 };
841
842 /* Data for one DWP file. */
843
844 struct dwp_file
845 {
846 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
847 : name (name_),
848 dbfd (std::move (abfd))
849 {
850 }
851
852 /* Name of the file. */
853 const char *name;
854
855 /* File format version. */
856 int version = 0;
857
858 /* The bfd. */
859 gdb_bfd_ref_ptr dbfd;
860
861 /* Section info for this file. */
862 struct dwp_sections sections {};
863
864 /* Table of CUs in the file. */
865 const struct dwp_hash_table *cus = nullptr;
866
867 /* Table of TUs in the file. */
868 const struct dwp_hash_table *tus = nullptr;
869
870 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
871 htab_up loaded_cus;
872 htab_up loaded_tus;
873
874 /* Table to map ELF section numbers to their sections.
875 This is only needed for the DWP V1 file format. */
876 unsigned int num_sections = 0;
877 asection **elf_sections = nullptr;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The abbreviation table to use when reading the DIEs. */
907 struct abbrev_table *abbrev_table;
908 };
909
910 /* A subclass of die_reader_specs that holds storage and has complex
911 constructor and destructor behavior. */
912
913 class cutu_reader : public die_reader_specs
914 {
915 public:
916
917 cutu_reader (dwarf2_per_cu_data *this_cu,
918 dwarf2_per_objfile *per_objfile,
919 struct abbrev_table *abbrev_table,
920 dwarf2_cu *existing_cu,
921 bool skip_partial);
922
923 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
924 dwarf2_per_objfile *per_objfile,
925 struct dwarf2_cu *parent_cu = nullptr,
926 struct dwo_file *dwo_file = nullptr);
927
928 DISABLE_COPY_AND_ASSIGN (cutu_reader);
929
930 const gdb_byte *info_ptr = nullptr;
931 struct die_info *comp_unit_die = nullptr;
932 bool dummy_p = false;
933
934 /* Release the new CU, putting it on the chain. This cannot be done
935 for dummy CUs. */
936 void keep ();
937
938 private:
939 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
940 dwarf2_per_objfile *per_objfile,
941 dwarf2_cu *existing_cu);
942
943 struct dwarf2_per_cu_data *m_this_cu;
944 std::unique_ptr<dwarf2_cu> m_new_cu;
945
946 /* The ordinary abbreviation table. */
947 abbrev_table_up m_abbrev_table_holder;
948
949 /* The DWO abbreviation table. */
950 abbrev_table_up m_dwo_abbrev_table;
951 };
952
953 /* When we construct a partial symbol table entry we only
954 need this much information. */
955 struct partial_die_info : public allocate_on_obstack
956 {
957 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
958
959 /* Disable assign but still keep copy ctor, which is needed
960 load_partial_dies. */
961 partial_die_info& operator=(const partial_die_info& rhs) = delete;
962
963 /* Adjust the partial die before generating a symbol for it. This
964 function may set the is_external flag or change the DIE's
965 name. */
966 void fixup (struct dwarf2_cu *cu);
967
968 /* Read a minimal amount of information into the minimal die
969 structure. */
970 const gdb_byte *read (const struct die_reader_specs *reader,
971 const struct abbrev_info &abbrev,
972 const gdb_byte *info_ptr);
973
974 /* Compute the name of this partial DIE. This memoizes the
975 result, so it is safe to call multiple times. */
976 const char *name (dwarf2_cu *cu);
977
978 /* Offset of this DIE. */
979 const sect_offset sect_off;
980
981 /* DWARF-2 tag for this DIE. */
982 const ENUM_BITFIELD(dwarf_tag) tag : 16;
983
984 /* Assorted flags describing the data found in this DIE. */
985 const unsigned int has_children : 1;
986
987 unsigned int is_external : 1;
988 unsigned int is_declaration : 1;
989 unsigned int has_type : 1;
990 unsigned int has_specification : 1;
991 unsigned int has_pc_info : 1;
992 unsigned int may_be_inlined : 1;
993
994 /* This DIE has been marked DW_AT_main_subprogram. */
995 unsigned int main_subprogram : 1;
996
997 /* Flag set if the SCOPE field of this structure has been
998 computed. */
999 unsigned int scope_set : 1;
1000
1001 /* Flag set if the DIE has a byte_size attribute. */
1002 unsigned int has_byte_size : 1;
1003
1004 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1005 unsigned int has_const_value : 1;
1006
1007 /* Flag set if any of the DIE's children are template arguments. */
1008 unsigned int has_template_arguments : 1;
1009
1010 /* Flag set if fixup has been called on this die. */
1011 unsigned int fixup_called : 1;
1012
1013 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1014 unsigned int is_dwz : 1;
1015
1016 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1017 unsigned int spec_is_dwz : 1;
1018
1019 unsigned int canonical_name : 1;
1020
1021 /* The name of this DIE. Normally the value of DW_AT_name, but
1022 sometimes a default name for unnamed DIEs. */
1023 const char *raw_name = nullptr;
1024
1025 /* The linkage name, if present. */
1026 const char *linkage_name = nullptr;
1027
1028 /* The scope to prepend to our children. This is generally
1029 allocated on the comp_unit_obstack, so will disappear
1030 when this compilation unit leaves the cache. */
1031 const char *scope = nullptr;
1032
1033 /* Some data associated with the partial DIE. The tag determines
1034 which field is live. */
1035 union
1036 {
1037 /* The location description associated with this DIE, if any. */
1038 struct dwarf_block *locdesc;
1039 /* The offset of an import, for DW_TAG_imported_unit. */
1040 sect_offset sect_off;
1041 } d {};
1042
1043 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1044 CORE_ADDR lowpc = 0;
1045 CORE_ADDR highpc = 0;
1046
1047 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1048 DW_AT_sibling, if any. */
1049 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1050 could return DW_AT_sibling values to its caller load_partial_dies. */
1051 const gdb_byte *sibling = nullptr;
1052
1053 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1054 DW_AT_specification (or DW_AT_abstract_origin or
1055 DW_AT_extension). */
1056 sect_offset spec_offset {};
1057
1058 /* Pointers to this DIE's parent, first child, and next sibling,
1059 if any. */
1060 struct partial_die_info *die_parent = nullptr;
1061 struct partial_die_info *die_child = nullptr;
1062 struct partial_die_info *die_sibling = nullptr;
1063
1064 friend struct partial_die_info *
1065 dwarf2_cu::find_partial_die (sect_offset sect_off);
1066
1067 private:
1068 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1069 partial_die_info (sect_offset sect_off)
1070 : partial_die_info (sect_off, DW_TAG_padding, 0)
1071 {
1072 }
1073
1074 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1075 int has_children_)
1076 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1077 {
1078 is_external = 0;
1079 is_declaration = 0;
1080 has_type = 0;
1081 has_specification = 0;
1082 has_pc_info = 0;
1083 may_be_inlined = 0;
1084 main_subprogram = 0;
1085 scope_set = 0;
1086 has_byte_size = 0;
1087 has_const_value = 0;
1088 has_template_arguments = 0;
1089 fixup_called = 0;
1090 is_dwz = 0;
1091 spec_is_dwz = 0;
1092 canonical_name = 0;
1093 }
1094 };
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 struct variant_part_builder;
1102
1103 /* When reading a variant, we track a bit more information about the
1104 field, and store it in an object of this type. */
1105
1106 struct variant_field
1107 {
1108 int first_field = -1;
1109 int last_field = -1;
1110
1111 /* A variant can contain other variant parts. */
1112 std::vector<variant_part_builder> variant_parts;
1113
1114 /* If we see a DW_TAG_variant, then this will be set if this is the
1115 default branch. */
1116 bool default_branch = false;
1117 /* If we see a DW_AT_discr_value, then this will be the discriminant
1118 value. */
1119 ULONGEST discriminant_value = 0;
1120 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1121 data. */
1122 struct dwarf_block *discr_list_data = nullptr;
1123 };
1124
1125 /* This represents a DW_TAG_variant_part. */
1126
1127 struct variant_part_builder
1128 {
1129 /* The offset of the discriminant field. */
1130 sect_offset discriminant_offset {};
1131
1132 /* Variants that are direct children of this variant part. */
1133 std::vector<variant_field> variants;
1134
1135 /* True if we're currently reading a variant. */
1136 bool processing_variant = false;
1137 };
1138
1139 struct nextfield
1140 {
1141 int accessibility = 0;
1142 int virtuality = 0;
1143 /* Variant parts need to find the discriminant, which is a DIE
1144 reference. We track the section offset of each field to make
1145 this link. */
1146 sect_offset offset;
1147 struct field field {};
1148 };
1149
1150 struct fnfieldlist
1151 {
1152 const char *name = nullptr;
1153 std::vector<struct fn_field> fnfields;
1154 };
1155
1156 /* The routines that read and process dies for a C struct or C++ class
1157 pass lists of data member fields and lists of member function fields
1158 in an instance of a field_info structure, as defined below. */
1159 struct field_info
1160 {
1161 /* List of data member and baseclasses fields. */
1162 std::vector<struct nextfield> fields;
1163 std::vector<struct nextfield> baseclasses;
1164
1165 /* Set if the accessibility of one of the fields is not public. */
1166 int non_public_fields = 0;
1167
1168 /* Member function fieldlist array, contains name of possibly overloaded
1169 member function, number of overloaded member functions and a pointer
1170 to the head of the member function field chain. */
1171 std::vector<struct fnfieldlist> fnfieldlists;
1172
1173 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1174 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1175 std::vector<struct decl_field> typedef_field_list;
1176
1177 /* Nested types defined by this class and the number of elements in this
1178 list. */
1179 std::vector<struct decl_field> nested_types_list;
1180
1181 /* If non-null, this is the variant part we are currently
1182 reading. */
1183 variant_part_builder *current_variant_part = nullptr;
1184 /* This holds all the top-level variant parts attached to the type
1185 we're reading. */
1186 std::vector<variant_part_builder> variant_parts;
1187
1188 /* Return the total number of fields (including baseclasses). */
1189 int nfields () const
1190 {
1191 return fields.size () + baseclasses.size ();
1192 }
1193 };
1194
1195 /* Loaded secondary compilation units are kept in memory until they
1196 have not been referenced for the processing of this many
1197 compilation units. Set this to zero to disable caching. Cache
1198 sizes of up to at least twenty will improve startup time for
1199 typical inter-CU-reference binaries, at an obvious memory cost. */
1200 static int dwarf_max_cache_age = 5;
1201 static void
1202 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1203 struct cmd_list_element *c, const char *value)
1204 {
1205 fprintf_filtered (file, _("The upper bound on the age of cached "
1206 "DWARF compilation units is %s.\n"),
1207 value);
1208 }
1209 \f
1210 /* local function prototypes */
1211
1212 static void dwarf2_find_base_address (struct die_info *die,
1213 struct dwarf2_cu *cu);
1214
1215 static dwarf2_psymtab *create_partial_symtab
1216 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1217 const char *name);
1218
1219 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1220 const gdb_byte *info_ptr,
1221 struct die_info *type_unit_die);
1222
1223 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1224
1225 static void scan_partial_symbols (struct partial_die_info *,
1226 CORE_ADDR *, CORE_ADDR *,
1227 int, struct dwarf2_cu *);
1228
1229 static void add_partial_symbol (struct partial_die_info *,
1230 struct dwarf2_cu *);
1231
1232 static void add_partial_namespace (struct partial_die_info *pdi,
1233 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1234 int set_addrmap, struct dwarf2_cu *cu);
1235
1236 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1237 CORE_ADDR *highpc, int set_addrmap,
1238 struct dwarf2_cu *cu);
1239
1240 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1241 struct dwarf2_cu *cu);
1242
1243 static void add_partial_subprogram (struct partial_die_info *pdi,
1244 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1245 int need_pc, struct dwarf2_cu *cu);
1246
1247 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1248
1249 static struct partial_die_info *load_partial_dies
1250 (const struct die_reader_specs *, const gdb_byte *, int);
1251
1252 /* A pair of partial_die_info and compilation unit. */
1253 struct cu_partial_die_info
1254 {
1255 /* The compilation unit of the partial_die_info. */
1256 struct dwarf2_cu *cu;
1257 /* A partial_die_info. */
1258 struct partial_die_info *pdi;
1259
1260 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1261 : cu (cu),
1262 pdi (pdi)
1263 { /* Nothing. */ }
1264
1265 private:
1266 cu_partial_die_info () = delete;
1267 };
1268
1269 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1270 struct dwarf2_cu *);
1271
1272 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1273 struct attribute *, struct attr_abbrev *,
1274 const gdb_byte *, bool *need_reprocess);
1275
1276 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1277 struct attribute *attr);
1278
1279 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1280
1281 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1282 dwarf2_section_info *, sect_offset);
1283
1284 static const char *read_indirect_string
1285 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1286 const struct comp_unit_head *, unsigned int *);
1287
1288 static const char *read_indirect_string_at_offset
1289 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1290
1291 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1292 const gdb_byte *,
1293 unsigned int *);
1294
1295 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1296 ULONGEST str_index);
1297
1298 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1299 ULONGEST str_index);
1300
1301 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1302
1303 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1304 struct dwarf2_cu *);
1305
1306 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1307 struct dwarf2_cu *cu);
1308
1309 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1310
1311 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1312 struct dwarf2_cu *cu);
1313
1314 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1315
1316 static struct die_info *die_specification (struct die_info *die,
1317 struct dwarf2_cu **);
1318
1319 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1320 struct dwarf2_cu *cu);
1321
1322 static void dwarf_decode_lines (struct line_header *, const char *,
1323 struct dwarf2_cu *, dwarf2_psymtab *,
1324 CORE_ADDR, int decode_mapping);
1325
1326 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1327 const char *);
1328
1329 static struct symbol *new_symbol (struct die_info *, struct type *,
1330 struct dwarf2_cu *, struct symbol * = NULL);
1331
1332 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1333 struct dwarf2_cu *);
1334
1335 static void dwarf2_const_value_attr (const struct attribute *attr,
1336 struct type *type,
1337 const char *name,
1338 struct obstack *obstack,
1339 struct dwarf2_cu *cu, LONGEST *value,
1340 const gdb_byte **bytes,
1341 struct dwarf2_locexpr_baton **baton);
1342
1343 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1344
1345 static int need_gnat_info (struct dwarf2_cu *);
1346
1347 static struct type *die_descriptive_type (struct die_info *,
1348 struct dwarf2_cu *);
1349
1350 static void set_descriptive_type (struct type *, struct die_info *,
1351 struct dwarf2_cu *);
1352
1353 static struct type *die_containing_type (struct die_info *,
1354 struct dwarf2_cu *);
1355
1356 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1357 struct dwarf2_cu *);
1358
1359 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1360
1361 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1362
1363 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1364
1365 static char *typename_concat (struct obstack *obs, const char *prefix,
1366 const char *suffix, int physname,
1367 struct dwarf2_cu *cu);
1368
1369 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1370
1371 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1372
1373 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1374
1375 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1376
1377 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1378
1379 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1380
1381 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1382 struct dwarf2_cu *, dwarf2_psymtab *);
1383
1384 /* Return the .debug_loclists section to use for cu. */
1385 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1386
1387 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1388 values. Keep the items ordered with increasing constraints compliance. */
1389 enum pc_bounds_kind
1390 {
1391 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1392 PC_BOUNDS_NOT_PRESENT,
1393
1394 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1395 were present but they do not form a valid range of PC addresses. */
1396 PC_BOUNDS_INVALID,
1397
1398 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1399 PC_BOUNDS_RANGES,
1400
1401 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1402 PC_BOUNDS_HIGH_LOW,
1403 };
1404
1405 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1406 CORE_ADDR *, CORE_ADDR *,
1407 struct dwarf2_cu *,
1408 dwarf2_psymtab *);
1409
1410 static void get_scope_pc_bounds (struct die_info *,
1411 CORE_ADDR *, CORE_ADDR *,
1412 struct dwarf2_cu *);
1413
1414 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1415 CORE_ADDR, struct dwarf2_cu *);
1416
1417 static void dwarf2_add_field (struct field_info *, struct die_info *,
1418 struct dwarf2_cu *);
1419
1420 static void dwarf2_attach_fields_to_type (struct field_info *,
1421 struct type *, struct dwarf2_cu *);
1422
1423 static void dwarf2_add_member_fn (struct field_info *,
1424 struct die_info *, struct type *,
1425 struct dwarf2_cu *);
1426
1427 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1428 struct type *,
1429 struct dwarf2_cu *);
1430
1431 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1432
1433 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1434
1435 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1436
1437 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1438
1439 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1440
1441 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1442
1443 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1444
1445 static struct type *read_module_type (struct die_info *die,
1446 struct dwarf2_cu *cu);
1447
1448 static const char *namespace_name (struct die_info *die,
1449 int *is_anonymous, struct dwarf2_cu *);
1450
1451 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1454 bool * = nullptr);
1455
1456 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1457 struct dwarf2_cu *);
1458
1459 static struct die_info *read_die_and_siblings_1
1460 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1461 struct die_info *);
1462
1463 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1464 const gdb_byte *info_ptr,
1465 const gdb_byte **new_info_ptr,
1466 struct die_info *parent);
1467
1468 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1469 struct die_info **, const gdb_byte *,
1470 int);
1471
1472 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1473 struct die_info **, const gdb_byte *);
1474
1475 static void process_die (struct die_info *, struct dwarf2_cu *);
1476
1477 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1478 struct objfile *);
1479
1480 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1481
1482 static const char *dwarf2_full_name (const char *name,
1483 struct die_info *die,
1484 struct dwarf2_cu *cu);
1485
1486 static const char *dwarf2_physname (const char *name, struct die_info *die,
1487 struct dwarf2_cu *cu);
1488
1489 static struct die_info *dwarf2_extension (struct die_info *die,
1490 struct dwarf2_cu **);
1491
1492 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1493
1494 static void dump_die_for_error (struct die_info *);
1495
1496 static void dump_die_1 (struct ui_file *, int level, int max_level,
1497 struct die_info *);
1498
1499 /*static*/ void dump_die (struct die_info *, int max_level);
1500
1501 static void store_in_ref_table (struct die_info *,
1502 struct dwarf2_cu *);
1503
1504 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu **);
1507
1508 static struct die_info *follow_die_ref (struct die_info *,
1509 const struct attribute *,
1510 struct dwarf2_cu **);
1511
1512 static struct die_info *follow_die_sig (struct die_info *,
1513 const struct attribute *,
1514 struct dwarf2_cu **);
1515
1516 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1517 struct dwarf2_cu *);
1518
1519 static struct type *get_DW_AT_signature_type (struct die_info *,
1520 const struct attribute *,
1521 struct dwarf2_cu *);
1522
1523 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1524 dwarf2_per_objfile *per_objfile);
1525
1526 static void read_signatured_type (signatured_type *sig_type,
1527 dwarf2_per_objfile *per_objfile);
1528
1529 static int attr_to_dynamic_prop (const struct attribute *attr,
1530 struct die_info *die, struct dwarf2_cu *cu,
1531 struct dynamic_prop *prop, struct type *type);
1532
1533 /* memory allocation interface */
1534
1535 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1536
1537 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1538
1539 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1540
1541 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1542 struct dwarf2_loclist_baton *baton,
1543 const struct attribute *attr);
1544
1545 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1546 struct symbol *sym,
1547 struct dwarf2_cu *cu,
1548 int is_block);
1549
1550 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1551 const gdb_byte *info_ptr,
1552 struct abbrev_info *abbrev);
1553
1554 static hashval_t partial_die_hash (const void *item);
1555
1556 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1557
1558 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1559 (sect_offset sect_off, unsigned int offset_in_dwz,
1560 dwarf2_per_objfile *per_objfile);
1561
1562 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1563 struct die_info *comp_unit_die,
1564 enum language pretend_language);
1565
1566 static struct type *set_die_type (struct die_info *, struct type *,
1567 struct dwarf2_cu *);
1568
1569 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1570
1571 static int create_all_type_units (dwarf2_per_objfile *per_objfile);
1572
1573 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1574 dwarf2_per_objfile *per_objfile,
1575 bool skip_partial,
1576 enum language pretend_language);
1577
1578 static void process_full_comp_unit (dwarf2_cu *cu,
1579 enum language pretend_language);
1580
1581 static void process_full_type_unit (dwarf2_cu *cu,
1582 enum language pretend_language);
1583
1584 static void dwarf2_add_dependence (struct dwarf2_cu *,
1585 struct dwarf2_per_cu_data *);
1586
1587 static void dwarf2_mark (struct dwarf2_cu *);
1588
1589 static struct type *get_die_type_at_offset (sect_offset,
1590 dwarf2_per_cu_data *per_cu,
1591 dwarf2_per_objfile *per_objfile);
1592
1593 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1594
1595 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1596 dwarf2_per_objfile *per_objfile,
1597 enum language pretend_language);
1598
1599 static void process_queue (dwarf2_per_objfile *per_objfile);
1600
1601 /* Class, the destructor of which frees all allocated queue entries. This
1602 will only have work to do if an error was thrown while processing the
1603 dwarf. If no error was thrown then the queue entries should have all
1604 been processed, and freed, as we went along. */
1605
1606 class dwarf2_queue_guard
1607 {
1608 public:
1609 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1610 : m_per_objfile (per_objfile)
1611 {
1612 }
1613
1614 /* Free any entries remaining on the queue. There should only be
1615 entries left if we hit an error while processing the dwarf. */
1616 ~dwarf2_queue_guard ()
1617 {
1618 /* Ensure that no memory is allocated by the queue. */
1619 std::queue<dwarf2_queue_item> empty;
1620 std::swap (m_per_objfile->per_bfd->queue, empty);
1621 }
1622
1623 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1624
1625 private:
1626 dwarf2_per_objfile *m_per_objfile;
1627 };
1628
1629 dwarf2_queue_item::~dwarf2_queue_item ()
1630 {
1631 /* Anything still marked queued is likely to be in an
1632 inconsistent state, so discard it. */
1633 if (per_cu->queued)
1634 {
1635 per_objfile->remove_cu (per_cu);
1636 per_cu->queued = 0;
1637 }
1638 }
1639
1640 /* The return type of find_file_and_directory. Note, the enclosed
1641 string pointers are only valid while this object is valid. */
1642
1643 struct file_and_directory
1644 {
1645 /* The filename. This is never NULL. */
1646 const char *name;
1647
1648 /* The compilation directory. NULL if not known. If we needed to
1649 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1650 points directly to the DW_AT_comp_dir string attribute owned by
1651 the obstack that owns the DIE. */
1652 const char *comp_dir;
1653
1654 /* If we needed to build a new string for comp_dir, this is what
1655 owns the storage. */
1656 std::string comp_dir_storage;
1657 };
1658
1659 static file_and_directory find_file_and_directory (struct die_info *die,
1660 struct dwarf2_cu *cu);
1661
1662 static htab_up allocate_signatured_type_table ();
1663
1664 static htab_up allocate_dwo_unit_table ();
1665
1666 static struct dwo_unit *lookup_dwo_unit_in_dwp
1667 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1668 const char *comp_dir, ULONGEST signature, int is_debug_types);
1669
1670 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1671
1672 static struct dwo_unit *lookup_dwo_comp_unit
1673 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1674 ULONGEST signature);
1675
1676 static struct dwo_unit *lookup_dwo_type_unit
1677 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1678
1679 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1680
1681 /* A unique pointer to a dwo_file. */
1682
1683 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1684
1685 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1686
1687 static void check_producer (struct dwarf2_cu *cu);
1688
1689 static void free_line_header_voidp (void *arg);
1690 \f
1691 /* Various complaints about symbol reading that don't abort the process. */
1692
1693 static void
1694 dwarf2_debug_line_missing_file_complaint (void)
1695 {
1696 complaint (_(".debug_line section has line data without a file"));
1697 }
1698
1699 static void
1700 dwarf2_debug_line_missing_end_sequence_complaint (void)
1701 {
1702 complaint (_(".debug_line section has line "
1703 "program sequence without an end"));
1704 }
1705
1706 static void
1707 dwarf2_complex_location_expr_complaint (void)
1708 {
1709 complaint (_("location expression too complex"));
1710 }
1711
1712 static void
1713 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1714 int arg3)
1715 {
1716 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1717 arg1, arg2, arg3);
1718 }
1719
1720 static void
1721 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1722 {
1723 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1724 arg1, arg2);
1725 }
1726
1727 /* Hash function for line_header_hash. */
1728
1729 static hashval_t
1730 line_header_hash (const struct line_header *ofs)
1731 {
1732 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1733 }
1734
1735 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1736
1737 static hashval_t
1738 line_header_hash_voidp (const void *item)
1739 {
1740 const struct line_header *ofs = (const struct line_header *) item;
1741
1742 return line_header_hash (ofs);
1743 }
1744
1745 /* Equality function for line_header_hash. */
1746
1747 static int
1748 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1749 {
1750 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1751 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1752
1753 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1754 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1755 }
1756
1757 \f
1758
1759 /* See declaration. */
1760
1761 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1762 bool can_copy_)
1763 : obfd (obfd),
1764 can_copy (can_copy_)
1765 {
1766 if (names == NULL)
1767 names = &dwarf2_elf_names;
1768
1769 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1770 locate_sections (obfd, sec, *names);
1771 }
1772
1773 dwarf2_per_bfd::~dwarf2_per_bfd ()
1774 {
1775 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1776 per_cu->imported_symtabs_free ();
1777
1778 for (signatured_type *sig_type : all_type_units)
1779 sig_type->per_cu.imported_symtabs_free ();
1780
1781 /* Everything else should be on this->obstack. */
1782 }
1783
1784 /* See read.h. */
1785
1786 void
1787 dwarf2_per_objfile::remove_all_cus ()
1788 {
1789 for (auto pair : m_dwarf2_cus)
1790 delete pair.second;
1791
1792 m_dwarf2_cus.clear ();
1793 }
1794
1795 /* A helper class that calls free_cached_comp_units on
1796 destruction. */
1797
1798 class free_cached_comp_units
1799 {
1800 public:
1801
1802 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1803 : m_per_objfile (per_objfile)
1804 {
1805 }
1806
1807 ~free_cached_comp_units ()
1808 {
1809 m_per_objfile->remove_all_cus ();
1810 }
1811
1812 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1813
1814 private:
1815
1816 dwarf2_per_objfile *m_per_objfile;
1817 };
1818
1819 /* See read.h. */
1820
1821 bool
1822 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1823 {
1824 gdb_assert (per_cu->index < this->m_symtabs.size ());
1825
1826 return this->m_symtabs[per_cu->index] != nullptr;
1827 }
1828
1829 /* See read.h. */
1830
1831 compunit_symtab *
1832 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1833 {
1834 gdb_assert (per_cu->index < this->m_symtabs.size ());
1835
1836 return this->m_symtabs[per_cu->index];
1837 }
1838
1839 /* See read.h. */
1840
1841 void
1842 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1843 compunit_symtab *symtab)
1844 {
1845 gdb_assert (per_cu->index < this->m_symtabs.size ());
1846 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1847
1848 this->m_symtabs[per_cu->index] = symtab;
1849 }
1850
1851 /* Try to locate the sections we need for DWARF 2 debugging
1852 information and return true if we have enough to do something.
1853 NAMES points to the dwarf2 section names, or is NULL if the standard
1854 ELF names are used. CAN_COPY is true for formats where symbol
1855 interposition is possible and so symbol values must follow copy
1856 relocation rules. */
1857
1858 int
1859 dwarf2_has_info (struct objfile *objfile,
1860 const struct dwarf2_debug_sections *names,
1861 bool can_copy)
1862 {
1863 if (objfile->flags & OBJF_READNEVER)
1864 return 0;
1865
1866 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1867
1868 if (per_objfile == NULL)
1869 {
1870 dwarf2_per_bfd *per_bfd;
1871
1872 /* We can share a "dwarf2_per_bfd" with other objfiles if the BFD
1873 doesn't require relocations and if there aren't partial symbols
1874 from some other reader. */
1875 if (!objfile_has_partial_symbols (objfile)
1876 && !gdb_bfd_requires_relocations (objfile->obfd))
1877 {
1878 /* See if one has been created for this BFD yet. */
1879 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1880
1881 if (per_bfd == nullptr)
1882 {
1883 /* No, create it now. */
1884 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1885 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1886 }
1887 }
1888 else
1889 {
1890 /* No sharing possible, create one specifically for this objfile. */
1891 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1892 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1893 }
1894
1895 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1896 }
1897
1898 return (!per_objfile->per_bfd->info.is_virtual
1899 && per_objfile->per_bfd->info.s.section != NULL
1900 && !per_objfile->per_bfd->abbrev.is_virtual
1901 && per_objfile->per_bfd->abbrev.s.section != NULL);
1902 }
1903
1904 /* When loading sections, we look either for uncompressed section or for
1905 compressed section names. */
1906
1907 static int
1908 section_is_p (const char *section_name,
1909 const struct dwarf2_section_names *names)
1910 {
1911 if (names->normal != NULL
1912 && strcmp (section_name, names->normal) == 0)
1913 return 1;
1914 if (names->compressed != NULL
1915 && strcmp (section_name, names->compressed) == 0)
1916 return 1;
1917 return 0;
1918 }
1919
1920 /* See declaration. */
1921
1922 void
1923 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1924 const dwarf2_debug_sections &names)
1925 {
1926 flagword aflag = bfd_section_flags (sectp);
1927
1928 if ((aflag & SEC_HAS_CONTENTS) == 0)
1929 {
1930 }
1931 else if (elf_section_data (sectp)->this_hdr.sh_size
1932 > bfd_get_file_size (abfd))
1933 {
1934 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1935 warning (_("Discarding section %s which has a section size (%s"
1936 ") larger than the file size [in module %s]"),
1937 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1938 bfd_get_filename (abfd));
1939 }
1940 else if (section_is_p (sectp->name, &names.info))
1941 {
1942 this->info.s.section = sectp;
1943 this->info.size = bfd_section_size (sectp);
1944 }
1945 else if (section_is_p (sectp->name, &names.abbrev))
1946 {
1947 this->abbrev.s.section = sectp;
1948 this->abbrev.size = bfd_section_size (sectp);
1949 }
1950 else if (section_is_p (sectp->name, &names.line))
1951 {
1952 this->line.s.section = sectp;
1953 this->line.size = bfd_section_size (sectp);
1954 }
1955 else if (section_is_p (sectp->name, &names.loc))
1956 {
1957 this->loc.s.section = sectp;
1958 this->loc.size = bfd_section_size (sectp);
1959 }
1960 else if (section_is_p (sectp->name, &names.loclists))
1961 {
1962 this->loclists.s.section = sectp;
1963 this->loclists.size = bfd_section_size (sectp);
1964 }
1965 else if (section_is_p (sectp->name, &names.macinfo))
1966 {
1967 this->macinfo.s.section = sectp;
1968 this->macinfo.size = bfd_section_size (sectp);
1969 }
1970 else if (section_is_p (sectp->name, &names.macro))
1971 {
1972 this->macro.s.section = sectp;
1973 this->macro.size = bfd_section_size (sectp);
1974 }
1975 else if (section_is_p (sectp->name, &names.str))
1976 {
1977 this->str.s.section = sectp;
1978 this->str.size = bfd_section_size (sectp);
1979 }
1980 else if (section_is_p (sectp->name, &names.str_offsets))
1981 {
1982 this->str_offsets.s.section = sectp;
1983 this->str_offsets.size = bfd_section_size (sectp);
1984 }
1985 else if (section_is_p (sectp->name, &names.line_str))
1986 {
1987 this->line_str.s.section = sectp;
1988 this->line_str.size = bfd_section_size (sectp);
1989 }
1990 else if (section_is_p (sectp->name, &names.addr))
1991 {
1992 this->addr.s.section = sectp;
1993 this->addr.size = bfd_section_size (sectp);
1994 }
1995 else if (section_is_p (sectp->name, &names.frame))
1996 {
1997 this->frame.s.section = sectp;
1998 this->frame.size = bfd_section_size (sectp);
1999 }
2000 else if (section_is_p (sectp->name, &names.eh_frame))
2001 {
2002 this->eh_frame.s.section = sectp;
2003 this->eh_frame.size = bfd_section_size (sectp);
2004 }
2005 else if (section_is_p (sectp->name, &names.ranges))
2006 {
2007 this->ranges.s.section = sectp;
2008 this->ranges.size = bfd_section_size (sectp);
2009 }
2010 else if (section_is_p (sectp->name, &names.rnglists))
2011 {
2012 this->rnglists.s.section = sectp;
2013 this->rnglists.size = bfd_section_size (sectp);
2014 }
2015 else if (section_is_p (sectp->name, &names.types))
2016 {
2017 struct dwarf2_section_info type_section;
2018
2019 memset (&type_section, 0, sizeof (type_section));
2020 type_section.s.section = sectp;
2021 type_section.size = bfd_section_size (sectp);
2022
2023 this->types.push_back (type_section);
2024 }
2025 else if (section_is_p (sectp->name, &names.gdb_index))
2026 {
2027 this->gdb_index.s.section = sectp;
2028 this->gdb_index.size = bfd_section_size (sectp);
2029 }
2030 else if (section_is_p (sectp->name, &names.debug_names))
2031 {
2032 this->debug_names.s.section = sectp;
2033 this->debug_names.size = bfd_section_size (sectp);
2034 }
2035 else if (section_is_p (sectp->name, &names.debug_aranges))
2036 {
2037 this->debug_aranges.s.section = sectp;
2038 this->debug_aranges.size = bfd_section_size (sectp);
2039 }
2040
2041 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2042 && bfd_section_vma (sectp) == 0)
2043 this->has_section_at_zero = true;
2044 }
2045
2046 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2047 SECTION_NAME. */
2048
2049 void
2050 dwarf2_get_section_info (struct objfile *objfile,
2051 enum dwarf2_section_enum sect,
2052 asection **sectp, const gdb_byte **bufp,
2053 bfd_size_type *sizep)
2054 {
2055 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2056 struct dwarf2_section_info *info;
2057
2058 /* We may see an objfile without any DWARF, in which case we just
2059 return nothing. */
2060 if (per_objfile == NULL)
2061 {
2062 *sectp = NULL;
2063 *bufp = NULL;
2064 *sizep = 0;
2065 return;
2066 }
2067 switch (sect)
2068 {
2069 case DWARF2_DEBUG_FRAME:
2070 info = &per_objfile->per_bfd->frame;
2071 break;
2072 case DWARF2_EH_FRAME:
2073 info = &per_objfile->per_bfd->eh_frame;
2074 break;
2075 default:
2076 gdb_assert_not_reached ("unexpected section");
2077 }
2078
2079 info->read (objfile);
2080
2081 *sectp = info->get_bfd_section ();
2082 *bufp = info->buffer;
2083 *sizep = info->size;
2084 }
2085
2086 /* A helper function to find the sections for a .dwz file. */
2087
2088 static void
2089 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2090 {
2091 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2092
2093 /* Note that we only support the standard ELF names, because .dwz
2094 is ELF-only (at the time of writing). */
2095 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2096 {
2097 dwz_file->abbrev.s.section = sectp;
2098 dwz_file->abbrev.size = bfd_section_size (sectp);
2099 }
2100 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2101 {
2102 dwz_file->info.s.section = sectp;
2103 dwz_file->info.size = bfd_section_size (sectp);
2104 }
2105 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2106 {
2107 dwz_file->str.s.section = sectp;
2108 dwz_file->str.size = bfd_section_size (sectp);
2109 }
2110 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2111 {
2112 dwz_file->line.s.section = sectp;
2113 dwz_file->line.size = bfd_section_size (sectp);
2114 }
2115 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2116 {
2117 dwz_file->macro.s.section = sectp;
2118 dwz_file->macro.size = bfd_section_size (sectp);
2119 }
2120 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2121 {
2122 dwz_file->gdb_index.s.section = sectp;
2123 dwz_file->gdb_index.size = bfd_section_size (sectp);
2124 }
2125 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2126 {
2127 dwz_file->debug_names.s.section = sectp;
2128 dwz_file->debug_names.size = bfd_section_size (sectp);
2129 }
2130 }
2131
2132 /* See dwarf2read.h. */
2133
2134 struct dwz_file *
2135 dwarf2_get_dwz_file (dwarf2_per_bfd *per_bfd)
2136 {
2137 const char *filename;
2138 bfd_size_type buildid_len_arg;
2139 size_t buildid_len;
2140 bfd_byte *buildid;
2141
2142 if (per_bfd->dwz_file != NULL)
2143 return per_bfd->dwz_file.get ();
2144
2145 bfd_set_error (bfd_error_no_error);
2146 gdb::unique_xmalloc_ptr<char> data
2147 (bfd_get_alt_debug_link_info (per_bfd->obfd,
2148 &buildid_len_arg, &buildid));
2149 if (data == NULL)
2150 {
2151 if (bfd_get_error () == bfd_error_no_error)
2152 return NULL;
2153 error (_("could not read '.gnu_debugaltlink' section: %s"),
2154 bfd_errmsg (bfd_get_error ()));
2155 }
2156
2157 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2158
2159 buildid_len = (size_t) buildid_len_arg;
2160
2161 filename = data.get ();
2162
2163 std::string abs_storage;
2164 if (!IS_ABSOLUTE_PATH (filename))
2165 {
2166 gdb::unique_xmalloc_ptr<char> abs
2167 = gdb_realpath (bfd_get_filename (per_bfd->obfd));
2168
2169 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2170 filename = abs_storage.c_str ();
2171 }
2172
2173 /* First try the file name given in the section. If that doesn't
2174 work, try to use the build-id instead. */
2175 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2176 if (dwz_bfd != NULL)
2177 {
2178 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2179 dwz_bfd.reset (nullptr);
2180 }
2181
2182 if (dwz_bfd == NULL)
2183 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2184
2185 if (dwz_bfd == nullptr)
2186 {
2187 gdb::unique_xmalloc_ptr<char> alt_filename;
2188 const char *origname = bfd_get_filename (per_bfd->obfd);
2189
2190 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2191 buildid_len,
2192 origname,
2193 &alt_filename));
2194
2195 if (fd.get () >= 0)
2196 {
2197 /* File successfully retrieved from server. */
2198 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2199
2200 if (dwz_bfd == nullptr)
2201 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2202 alt_filename.get ());
2203 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2204 dwz_bfd.reset (nullptr);
2205 }
2206 }
2207
2208 if (dwz_bfd == NULL)
2209 error (_("could not find '.gnu_debugaltlink' file for %s"),
2210 bfd_get_filename (per_bfd->obfd));
2211
2212 std::unique_ptr<struct dwz_file> result
2213 (new struct dwz_file (std::move (dwz_bfd)));
2214
2215 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2216 result.get ());
2217
2218 gdb_bfd_record_inclusion (per_bfd->obfd, result->dwz_bfd.get ());
2219 per_bfd->dwz_file = std::move (result);
2220 return per_bfd->dwz_file.get ();
2221 }
2222 \f
2223 /* DWARF quick_symbols_functions support. */
2224
2225 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2226 unique line tables, so we maintain a separate table of all .debug_line
2227 derived entries to support the sharing.
2228 All the quick functions need is the list of file names. We discard the
2229 line_header when we're done and don't need to record it here. */
2230 struct quick_file_names
2231 {
2232 /* The data used to construct the hash key. */
2233 struct stmt_list_hash hash;
2234
2235 /* The number of entries in file_names, real_names. */
2236 unsigned int num_file_names;
2237
2238 /* The file names from the line table, after being run through
2239 file_full_name. */
2240 const char **file_names;
2241
2242 /* The file names from the line table after being run through
2243 gdb_realpath. These are computed lazily. */
2244 const char **real_names;
2245 };
2246
2247 /* When using the index (and thus not using psymtabs), each CU has an
2248 object of this type. This is used to hold information needed by
2249 the various "quick" methods. */
2250 struct dwarf2_per_cu_quick_data
2251 {
2252 /* The file table. This can be NULL if there was no file table
2253 or it's currently not read in.
2254 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2255 struct quick_file_names *file_names;
2256
2257 /* A temporary mark bit used when iterating over all CUs in
2258 expand_symtabs_matching. */
2259 unsigned int mark : 1;
2260
2261 /* True if we've tried to read the file table and found there isn't one.
2262 There will be no point in trying to read it again next time. */
2263 unsigned int no_file_data : 1;
2264 };
2265
2266 /* Utility hash function for a stmt_list_hash. */
2267
2268 static hashval_t
2269 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2270 {
2271 hashval_t v = 0;
2272
2273 if (stmt_list_hash->dwo_unit != NULL)
2274 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2275 v += to_underlying (stmt_list_hash->line_sect_off);
2276 return v;
2277 }
2278
2279 /* Utility equality function for a stmt_list_hash. */
2280
2281 static int
2282 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2283 const struct stmt_list_hash *rhs)
2284 {
2285 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2286 return 0;
2287 if (lhs->dwo_unit != NULL
2288 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2289 return 0;
2290
2291 return lhs->line_sect_off == rhs->line_sect_off;
2292 }
2293
2294 /* Hash function for a quick_file_names. */
2295
2296 static hashval_t
2297 hash_file_name_entry (const void *e)
2298 {
2299 const struct quick_file_names *file_data
2300 = (const struct quick_file_names *) e;
2301
2302 return hash_stmt_list_entry (&file_data->hash);
2303 }
2304
2305 /* Equality function for a quick_file_names. */
2306
2307 static int
2308 eq_file_name_entry (const void *a, const void *b)
2309 {
2310 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2311 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2312
2313 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2314 }
2315
2316 /* Delete function for a quick_file_names. */
2317
2318 static void
2319 delete_file_name_entry (void *e)
2320 {
2321 struct quick_file_names *file_data = (struct quick_file_names *) e;
2322 int i;
2323
2324 for (i = 0; i < file_data->num_file_names; ++i)
2325 {
2326 xfree ((void*) file_data->file_names[i]);
2327 if (file_data->real_names)
2328 xfree ((void*) file_data->real_names[i]);
2329 }
2330
2331 /* The space for the struct itself lives on the obstack, so we don't
2332 free it here. */
2333 }
2334
2335 /* Create a quick_file_names hash table. */
2336
2337 static htab_up
2338 create_quick_file_names_table (unsigned int nr_initial_entries)
2339 {
2340 return htab_up (htab_create_alloc (nr_initial_entries,
2341 hash_file_name_entry, eq_file_name_entry,
2342 delete_file_name_entry, xcalloc, xfree));
2343 }
2344
2345 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2346 function is unrelated to symtabs, symtab would have to be created afterwards.
2347 You should call age_cached_comp_units after processing the CU. */
2348
2349 static dwarf2_cu *
2350 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2351 bool skip_partial)
2352 {
2353 if (per_cu->is_debug_types)
2354 load_full_type_unit (per_cu, per_objfile);
2355 else
2356 load_full_comp_unit (per_cu, per_objfile, skip_partial, language_minimal);
2357
2358 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2359 if (cu == nullptr)
2360 return nullptr; /* Dummy CU. */
2361
2362 dwarf2_find_base_address (cu->dies, cu);
2363
2364 return cu;
2365 }
2366
2367 /* Read in the symbols for PER_CU in the context of DWARF"_PER_OBJFILE. */
2368
2369 static void
2370 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2371 dwarf2_per_objfile *per_objfile, bool skip_partial)
2372 {
2373 /* Skip type_unit_groups, reading the type units they contain
2374 is handled elsewhere. */
2375 if (per_cu->type_unit_group_p ())
2376 return;
2377
2378 /* The destructor of dwarf2_queue_guard frees any entries left on
2379 the queue. After this point we're guaranteed to leave this function
2380 with the dwarf queue empty. */
2381 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2382
2383 if (!per_objfile->symtab_set_p (per_cu))
2384 {
2385 queue_comp_unit (per_cu, per_objfile, language_minimal);
2386 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2387
2388 /* If we just loaded a CU from a DWO, and we're working with an index
2389 that may badly handle TUs, load all the TUs in that DWO as well.
2390 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2391 if (!per_cu->is_debug_types
2392 && cu != NULL
2393 && cu->dwo_unit != NULL
2394 && per_objfile->per_bfd->index_table != NULL
2395 && per_objfile->per_bfd->index_table->version <= 7
2396 /* DWP files aren't supported yet. */
2397 && get_dwp_file (per_objfile) == NULL)
2398 queue_and_load_all_dwo_tus (cu);
2399 }
2400
2401 process_queue (per_objfile);
2402
2403 /* Age the cache, releasing compilation units that have not
2404 been used recently. */
2405 per_objfile->age_comp_units ();
2406 }
2407
2408 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2409 the per-objfile for which this symtab is instantiated.
2410
2411 Returns the resulting symbol table. */
2412
2413 static struct compunit_symtab *
2414 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2415 dwarf2_per_objfile *per_objfile,
2416 bool skip_partial)
2417 {
2418 gdb_assert (per_objfile->per_bfd->using_index);
2419
2420 if (!per_objfile->symtab_set_p (per_cu))
2421 {
2422 free_cached_comp_units freer (per_objfile);
2423 scoped_restore decrementer = increment_reading_symtab ();
2424 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2425 process_cu_includes (per_objfile);
2426 }
2427
2428 return per_objfile->get_symtab (per_cu);
2429 }
2430
2431 /* See declaration. */
2432
2433 dwarf2_per_cu_data *
2434 dwarf2_per_bfd::get_cutu (int index)
2435 {
2436 if (index >= this->all_comp_units.size ())
2437 {
2438 index -= this->all_comp_units.size ();
2439 gdb_assert (index < this->all_type_units.size ());
2440 return &this->all_type_units[index]->per_cu;
2441 }
2442
2443 return this->all_comp_units[index];
2444 }
2445
2446 /* See declaration. */
2447
2448 dwarf2_per_cu_data *
2449 dwarf2_per_bfd::get_cu (int index)
2450 {
2451 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2452
2453 return this->all_comp_units[index];
2454 }
2455
2456 /* See declaration. */
2457
2458 signatured_type *
2459 dwarf2_per_bfd::get_tu (int index)
2460 {
2461 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2462
2463 return this->all_type_units[index];
2464 }
2465
2466 /* See read.h. */
2467
2468 dwarf2_per_cu_data *
2469 dwarf2_per_bfd::allocate_per_cu ()
2470 {
2471 dwarf2_per_cu_data *result = OBSTACK_ZALLOC (&obstack, dwarf2_per_cu_data);
2472 result->per_bfd = this;
2473 result->index = m_num_psymtabs++;
2474 return result;
2475 }
2476
2477 /* See read.h. */
2478
2479 signatured_type *
2480 dwarf2_per_bfd::allocate_signatured_type ()
2481 {
2482 signatured_type *result = OBSTACK_ZALLOC (&obstack, signatured_type);
2483 result->per_cu.per_bfd = this;
2484 result->per_cu.index = m_num_psymtabs++;
2485 return result;
2486 }
2487
2488 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2489 obstack, and constructed with the specified field values. */
2490
2491 static dwarf2_per_cu_data *
2492 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2493 struct dwarf2_section_info *section,
2494 int is_dwz,
2495 sect_offset sect_off, ULONGEST length)
2496 {
2497 dwarf2_per_cu_data *the_cu = per_bfd->allocate_per_cu ();
2498 the_cu->sect_off = sect_off;
2499 the_cu->length = length;
2500 the_cu->section = section;
2501 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2502 struct dwarf2_per_cu_quick_data);
2503 the_cu->is_dwz = is_dwz;
2504 return the_cu;
2505 }
2506
2507 /* A helper for create_cus_from_index that handles a given list of
2508 CUs. */
2509
2510 static void
2511 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2512 const gdb_byte *cu_list, offset_type n_elements,
2513 struct dwarf2_section_info *section,
2514 int is_dwz)
2515 {
2516 for (offset_type i = 0; i < n_elements; i += 2)
2517 {
2518 gdb_static_assert (sizeof (ULONGEST) >= 8);
2519
2520 sect_offset sect_off
2521 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2522 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2523 cu_list += 2 * 8;
2524
2525 dwarf2_per_cu_data *per_cu
2526 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2527 length);
2528 per_bfd->all_comp_units.push_back (per_cu);
2529 }
2530 }
2531
2532 /* Read the CU list from the mapped index, and use it to create all
2533 the CU objects for PER_BFD. */
2534
2535 static void
2536 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2537 const gdb_byte *cu_list, offset_type cu_list_elements,
2538 const gdb_byte *dwz_list, offset_type dwz_elements)
2539 {
2540 gdb_assert (per_bfd->all_comp_units.empty ());
2541 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2542
2543 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2544 &per_bfd->info, 0);
2545
2546 if (dwz_elements == 0)
2547 return;
2548
2549 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2550 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2551 &dwz->info, 1);
2552 }
2553
2554 /* Create the signatured type hash table from the index. */
2555
2556 static void
2557 create_signatured_type_table_from_index
2558 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2559 const gdb_byte *bytes, offset_type elements)
2560 {
2561 gdb_assert (per_bfd->all_type_units.empty ());
2562 per_bfd->all_type_units.reserve (elements / 3);
2563
2564 htab_up sig_types_hash = allocate_signatured_type_table ();
2565
2566 for (offset_type i = 0; i < elements; i += 3)
2567 {
2568 struct signatured_type *sig_type;
2569 ULONGEST signature;
2570 void **slot;
2571 cu_offset type_offset_in_tu;
2572
2573 gdb_static_assert (sizeof (ULONGEST) >= 8);
2574 sect_offset sect_off
2575 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2576 type_offset_in_tu
2577 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2578 BFD_ENDIAN_LITTLE);
2579 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2580 bytes += 3 * 8;
2581
2582 sig_type = per_bfd->allocate_signatured_type ();
2583 sig_type->signature = signature;
2584 sig_type->type_offset_in_tu = type_offset_in_tu;
2585 sig_type->per_cu.is_debug_types = 1;
2586 sig_type->per_cu.section = section;
2587 sig_type->per_cu.sect_off = sect_off;
2588 sig_type->per_cu.v.quick
2589 = OBSTACK_ZALLOC (&per_bfd->obstack,
2590 struct dwarf2_per_cu_quick_data);
2591
2592 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2593 *slot = sig_type;
2594
2595 per_bfd->all_type_units.push_back (sig_type);
2596 }
2597
2598 per_bfd->signatured_types = std::move (sig_types_hash);
2599 }
2600
2601 /* Create the signatured type hash table from .debug_names. */
2602
2603 static void
2604 create_signatured_type_table_from_debug_names
2605 (dwarf2_per_objfile *per_objfile,
2606 const mapped_debug_names &map,
2607 struct dwarf2_section_info *section,
2608 struct dwarf2_section_info *abbrev_section)
2609 {
2610 struct objfile *objfile = per_objfile->objfile;
2611
2612 section->read (objfile);
2613 abbrev_section->read (objfile);
2614
2615 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
2616 per_objfile->per_bfd->all_type_units.reserve (map.tu_count);
2617
2618 htab_up sig_types_hash = allocate_signatured_type_table ();
2619
2620 for (uint32_t i = 0; i < map.tu_count; ++i)
2621 {
2622 struct signatured_type *sig_type;
2623 void **slot;
2624
2625 sect_offset sect_off
2626 = (sect_offset) (extract_unsigned_integer
2627 (map.tu_table_reordered + i * map.offset_size,
2628 map.offset_size,
2629 map.dwarf5_byte_order));
2630
2631 comp_unit_head cu_header;
2632 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2633 abbrev_section,
2634 section->buffer + to_underlying (sect_off),
2635 rcuh_kind::TYPE);
2636
2637 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
2638 sig_type->signature = cu_header.signature;
2639 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2640 sig_type->per_cu.is_debug_types = 1;
2641 sig_type->per_cu.section = section;
2642 sig_type->per_cu.sect_off = sect_off;
2643 sig_type->per_cu.v.quick
2644 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2645 struct dwarf2_per_cu_quick_data);
2646
2647 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2648 *slot = sig_type;
2649
2650 per_objfile->per_bfd->all_type_units.push_back (sig_type);
2651 }
2652
2653 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2654 }
2655
2656 /* Read the address map data from the mapped index, and use it to
2657 populate the objfile's psymtabs_addrmap. */
2658
2659 static void
2660 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2661 struct mapped_index *index)
2662 {
2663 struct objfile *objfile = per_objfile->objfile;
2664 struct gdbarch *gdbarch = objfile->arch ();
2665 const gdb_byte *iter, *end;
2666 struct addrmap *mutable_map;
2667 CORE_ADDR baseaddr;
2668
2669 auto_obstack temp_obstack;
2670
2671 mutable_map = addrmap_create_mutable (&temp_obstack);
2672
2673 iter = index->address_table.data ();
2674 end = iter + index->address_table.size ();
2675
2676 baseaddr = objfile->text_section_offset ();
2677
2678 while (iter < end)
2679 {
2680 ULONGEST hi, lo, cu_index;
2681 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2682 iter += 8;
2683 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2684 iter += 8;
2685 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2686 iter += 4;
2687
2688 if (lo > hi)
2689 {
2690 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2691 hex_string (lo), hex_string (hi));
2692 continue;
2693 }
2694
2695 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
2696 {
2697 complaint (_(".gdb_index address table has invalid CU number %u"),
2698 (unsigned) cu_index);
2699 continue;
2700 }
2701
2702 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2703 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2704 addrmap_set_empty (mutable_map, lo, hi - 1,
2705 per_objfile->per_bfd->get_cu (cu_index));
2706 }
2707
2708 objfile->partial_symtabs->psymtabs_addrmap
2709 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2710 }
2711
2712 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2713 populate the objfile's psymtabs_addrmap. */
2714
2715 static void
2716 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2717 struct dwarf2_section_info *section)
2718 {
2719 struct objfile *objfile = per_objfile->objfile;
2720 bfd *abfd = objfile->obfd;
2721 struct gdbarch *gdbarch = objfile->arch ();
2722 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2723
2724 auto_obstack temp_obstack;
2725 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2726
2727 std::unordered_map<sect_offset,
2728 dwarf2_per_cu_data *,
2729 gdb::hash_enum<sect_offset>>
2730 debug_info_offset_to_per_cu;
2731 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
2732 {
2733 const auto insertpair
2734 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2735 if (!insertpair.second)
2736 {
2737 warning (_("Section .debug_aranges in %s has duplicate "
2738 "debug_info_offset %s, ignoring .debug_aranges."),
2739 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2740 return;
2741 }
2742 }
2743
2744 section->read (objfile);
2745
2746 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2747
2748 const gdb_byte *addr = section->buffer;
2749
2750 while (addr < section->buffer + section->size)
2751 {
2752 const gdb_byte *const entry_addr = addr;
2753 unsigned int bytes_read;
2754
2755 const LONGEST entry_length = read_initial_length (abfd, addr,
2756 &bytes_read);
2757 addr += bytes_read;
2758
2759 const gdb_byte *const entry_end = addr + entry_length;
2760 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2761 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2762 if (addr + entry_length > section->buffer + section->size)
2763 {
2764 warning (_("Section .debug_aranges in %s entry at offset %s "
2765 "length %s exceeds section length %s, "
2766 "ignoring .debug_aranges."),
2767 objfile_name (objfile),
2768 plongest (entry_addr - section->buffer),
2769 plongest (bytes_read + entry_length),
2770 pulongest (section->size));
2771 return;
2772 }
2773
2774 /* The version number. */
2775 const uint16_t version = read_2_bytes (abfd, addr);
2776 addr += 2;
2777 if (version != 2)
2778 {
2779 warning (_("Section .debug_aranges in %s entry at offset %s "
2780 "has unsupported version %d, ignoring .debug_aranges."),
2781 objfile_name (objfile),
2782 plongest (entry_addr - section->buffer), version);
2783 return;
2784 }
2785
2786 const uint64_t debug_info_offset
2787 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2788 addr += offset_size;
2789 const auto per_cu_it
2790 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2791 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2792 {
2793 warning (_("Section .debug_aranges in %s entry at offset %s "
2794 "debug_info_offset %s does not exists, "
2795 "ignoring .debug_aranges."),
2796 objfile_name (objfile),
2797 plongest (entry_addr - section->buffer),
2798 pulongest (debug_info_offset));
2799 return;
2800 }
2801 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2802
2803 const uint8_t address_size = *addr++;
2804 if (address_size < 1 || address_size > 8)
2805 {
2806 warning (_("Section .debug_aranges in %s entry at offset %s "
2807 "address_size %u is invalid, ignoring .debug_aranges."),
2808 objfile_name (objfile),
2809 plongest (entry_addr - section->buffer), address_size);
2810 return;
2811 }
2812
2813 const uint8_t segment_selector_size = *addr++;
2814 if (segment_selector_size != 0)
2815 {
2816 warning (_("Section .debug_aranges in %s entry at offset %s "
2817 "segment_selector_size %u is not supported, "
2818 "ignoring .debug_aranges."),
2819 objfile_name (objfile),
2820 plongest (entry_addr - section->buffer),
2821 segment_selector_size);
2822 return;
2823 }
2824
2825 /* Must pad to an alignment boundary that is twice the address
2826 size. It is undocumented by the DWARF standard but GCC does
2827 use it. */
2828 for (size_t padding = ((-(addr - section->buffer))
2829 & (2 * address_size - 1));
2830 padding > 0; padding--)
2831 if (*addr++ != 0)
2832 {
2833 warning (_("Section .debug_aranges in %s entry at offset %s "
2834 "padding is not zero, ignoring .debug_aranges."),
2835 objfile_name (objfile),
2836 plongest (entry_addr - section->buffer));
2837 return;
2838 }
2839
2840 for (;;)
2841 {
2842 if (addr + 2 * address_size > entry_end)
2843 {
2844 warning (_("Section .debug_aranges in %s entry at offset %s "
2845 "address list is not properly terminated, "
2846 "ignoring .debug_aranges."),
2847 objfile_name (objfile),
2848 plongest (entry_addr - section->buffer));
2849 return;
2850 }
2851 ULONGEST start = extract_unsigned_integer (addr, address_size,
2852 dwarf5_byte_order);
2853 addr += address_size;
2854 ULONGEST length = extract_unsigned_integer (addr, address_size,
2855 dwarf5_byte_order);
2856 addr += address_size;
2857 if (start == 0 && length == 0)
2858 break;
2859 if (start == 0 && !per_objfile->per_bfd->has_section_at_zero)
2860 {
2861 /* Symbol was eliminated due to a COMDAT group. */
2862 continue;
2863 }
2864 ULONGEST end = start + length;
2865 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2866 - baseaddr);
2867 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2868 - baseaddr);
2869 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2870 }
2871 }
2872
2873 objfile->partial_symtabs->psymtabs_addrmap
2874 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2875 }
2876
2877 /* Find a slot in the mapped index INDEX for the object named NAME.
2878 If NAME is found, set *VEC_OUT to point to the CU vector in the
2879 constant pool and return true. If NAME cannot be found, return
2880 false. */
2881
2882 static bool
2883 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2884 offset_type **vec_out)
2885 {
2886 offset_type hash;
2887 offset_type slot, step;
2888 int (*cmp) (const char *, const char *);
2889
2890 gdb::unique_xmalloc_ptr<char> without_params;
2891 if (current_language->la_language == language_cplus
2892 || current_language->la_language == language_fortran
2893 || current_language->la_language == language_d)
2894 {
2895 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2896 not contain any. */
2897
2898 if (strchr (name, '(') != NULL)
2899 {
2900 without_params = cp_remove_params (name);
2901
2902 if (without_params != NULL)
2903 name = without_params.get ();
2904 }
2905 }
2906
2907 /* Index version 4 did not support case insensitive searches. But the
2908 indices for case insensitive languages are built in lowercase, therefore
2909 simulate our NAME being searched is also lowercased. */
2910 hash = mapped_index_string_hash ((index->version == 4
2911 && case_sensitivity == case_sensitive_off
2912 ? 5 : index->version),
2913 name);
2914
2915 slot = hash & (index->symbol_table.size () - 1);
2916 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2917 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2918
2919 for (;;)
2920 {
2921 const char *str;
2922
2923 const auto &bucket = index->symbol_table[slot];
2924 if (bucket.name == 0 && bucket.vec == 0)
2925 return false;
2926
2927 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2928 if (!cmp (name, str))
2929 {
2930 *vec_out = (offset_type *) (index->constant_pool
2931 + MAYBE_SWAP (bucket.vec));
2932 return true;
2933 }
2934
2935 slot = (slot + step) & (index->symbol_table.size () - 1);
2936 }
2937 }
2938
2939 /* A helper function that reads the .gdb_index from BUFFER and fills
2940 in MAP. FILENAME is the name of the file containing the data;
2941 it is used for error reporting. DEPRECATED_OK is true if it is
2942 ok to use deprecated sections.
2943
2944 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2945 out parameters that are filled in with information about the CU and
2946 TU lists in the section.
2947
2948 Returns true if all went well, false otherwise. */
2949
2950 static bool
2951 read_gdb_index_from_buffer (const char *filename,
2952 bool deprecated_ok,
2953 gdb::array_view<const gdb_byte> buffer,
2954 struct mapped_index *map,
2955 const gdb_byte **cu_list,
2956 offset_type *cu_list_elements,
2957 const gdb_byte **types_list,
2958 offset_type *types_list_elements)
2959 {
2960 const gdb_byte *addr = &buffer[0];
2961
2962 /* Version check. */
2963 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2964 /* Versions earlier than 3 emitted every copy of a psymbol. This
2965 causes the index to behave very poorly for certain requests. Version 3
2966 contained incomplete addrmap. So, it seems better to just ignore such
2967 indices. */
2968 if (version < 4)
2969 {
2970 static int warning_printed = 0;
2971 if (!warning_printed)
2972 {
2973 warning (_("Skipping obsolete .gdb_index section in %s."),
2974 filename);
2975 warning_printed = 1;
2976 }
2977 return 0;
2978 }
2979 /* Index version 4 uses a different hash function than index version
2980 5 and later.
2981
2982 Versions earlier than 6 did not emit psymbols for inlined
2983 functions. Using these files will cause GDB not to be able to
2984 set breakpoints on inlined functions by name, so we ignore these
2985 indices unless the user has done
2986 "set use-deprecated-index-sections on". */
2987 if (version < 6 && !deprecated_ok)
2988 {
2989 static int warning_printed = 0;
2990 if (!warning_printed)
2991 {
2992 warning (_("\
2993 Skipping deprecated .gdb_index section in %s.\n\
2994 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2995 to use the section anyway."),
2996 filename);
2997 warning_printed = 1;
2998 }
2999 return 0;
3000 }
3001 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3002 of the TU (for symbols coming from TUs),
3003 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3004 Plus gold-generated indices can have duplicate entries for global symbols,
3005 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3006 These are just performance bugs, and we can't distinguish gdb-generated
3007 indices from gold-generated ones, so issue no warning here. */
3008
3009 /* Indexes with higher version than the one supported by GDB may be no
3010 longer backward compatible. */
3011 if (version > 8)
3012 return 0;
3013
3014 map->version = version;
3015
3016 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3017
3018 int i = 0;
3019 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3020 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3021 / 8);
3022 ++i;
3023
3024 *types_list = addr + MAYBE_SWAP (metadata[i]);
3025 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3026 - MAYBE_SWAP (metadata[i]))
3027 / 8);
3028 ++i;
3029
3030 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3031 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3032 map->address_table
3033 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3034 ++i;
3035
3036 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3037 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3038 map->symbol_table
3039 = gdb::array_view<mapped_index::symbol_table_slot>
3040 ((mapped_index::symbol_table_slot *) symbol_table,
3041 (mapped_index::symbol_table_slot *) symbol_table_end);
3042
3043 ++i;
3044 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3045
3046 return 1;
3047 }
3048
3049 /* Callback types for dwarf2_read_gdb_index. */
3050
3051 typedef gdb::function_view
3052 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
3053 get_gdb_index_contents_ftype;
3054 typedef gdb::function_view
3055 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3056 get_gdb_index_contents_dwz_ftype;
3057
3058 /* Read .gdb_index. If everything went ok, initialize the "quick"
3059 elements of all the CUs and return 1. Otherwise, return 0. */
3060
3061 static int
3062 dwarf2_read_gdb_index
3063 (dwarf2_per_objfile *per_objfile,
3064 get_gdb_index_contents_ftype get_gdb_index_contents,
3065 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3066 {
3067 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3068 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3069 struct dwz_file *dwz;
3070 struct objfile *objfile = per_objfile->objfile;
3071 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
3072
3073 gdb::array_view<const gdb_byte> main_index_contents
3074 = get_gdb_index_contents (objfile, per_bfd);
3075
3076 if (main_index_contents.empty ())
3077 return 0;
3078
3079 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3080 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3081 use_deprecated_index_sections,
3082 main_index_contents, map.get (), &cu_list,
3083 &cu_list_elements, &types_list,
3084 &types_list_elements))
3085 return 0;
3086
3087 /* Don't use the index if it's empty. */
3088 if (map->symbol_table.empty ())
3089 return 0;
3090
3091 /* If there is a .dwz file, read it so we can get its CU list as
3092 well. */
3093 dwz = dwarf2_get_dwz_file (per_bfd);
3094 if (dwz != NULL)
3095 {
3096 struct mapped_index dwz_map;
3097 const gdb_byte *dwz_types_ignore;
3098 offset_type dwz_types_elements_ignore;
3099
3100 gdb::array_view<const gdb_byte> dwz_index_content
3101 = get_gdb_index_contents_dwz (objfile, dwz);
3102
3103 if (dwz_index_content.empty ())
3104 return 0;
3105
3106 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3107 1, dwz_index_content, &dwz_map,
3108 &dwz_list, &dwz_list_elements,
3109 &dwz_types_ignore,
3110 &dwz_types_elements_ignore))
3111 {
3112 warning (_("could not read '.gdb_index' section from %s; skipping"),
3113 bfd_get_filename (dwz->dwz_bfd.get ()));
3114 return 0;
3115 }
3116 }
3117
3118 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
3119 dwz_list_elements);
3120
3121 if (types_list_elements)
3122 {
3123 /* We can only handle a single .debug_types when we have an
3124 index. */
3125 if (per_bfd->types.size () != 1)
3126 return 0;
3127
3128 dwarf2_section_info *section = &per_bfd->types[0];
3129
3130 create_signatured_type_table_from_index (per_bfd, section, types_list,
3131 types_list_elements);
3132 }
3133
3134 create_addrmap_from_index (per_objfile, map.get ());
3135
3136 per_bfd->index_table = std::move (map);
3137 per_bfd->using_index = 1;
3138 per_bfd->quick_file_names_table =
3139 create_quick_file_names_table (per_bfd->all_comp_units.size ());
3140
3141 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
3142 objfiles using the same BFD. */
3143 gdb_assert (per_bfd->partial_symtabs == nullptr);
3144 per_bfd->partial_symtabs = objfile->partial_symtabs;
3145
3146 return 1;
3147 }
3148
3149 /* die_reader_func for dw2_get_file_names. */
3150
3151 static void
3152 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3153 const gdb_byte *info_ptr,
3154 struct die_info *comp_unit_die)
3155 {
3156 struct dwarf2_cu *cu = reader->cu;
3157 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3158 dwarf2_per_objfile *per_objfile = cu->per_objfile;
3159 struct dwarf2_per_cu_data *lh_cu;
3160 struct attribute *attr;
3161 void **slot;
3162 struct quick_file_names *qfn;
3163
3164 gdb_assert (! this_cu->is_debug_types);
3165
3166 /* Our callers never want to match partial units -- instead they
3167 will match the enclosing full CU. */
3168 if (comp_unit_die->tag == DW_TAG_partial_unit)
3169 {
3170 this_cu->v.quick->no_file_data = 1;
3171 return;
3172 }
3173
3174 lh_cu = this_cu;
3175 slot = NULL;
3176
3177 line_header_up lh;
3178 sect_offset line_offset {};
3179
3180 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3181 if (attr != nullptr)
3182 {
3183 struct quick_file_names find_entry;
3184
3185 line_offset = (sect_offset) DW_UNSND (attr);
3186
3187 /* We may have already read in this line header (TU line header sharing).
3188 If we have we're done. */
3189 find_entry.hash.dwo_unit = cu->dwo_unit;
3190 find_entry.hash.line_sect_off = line_offset;
3191 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3192 &find_entry, INSERT);
3193 if (*slot != NULL)
3194 {
3195 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3196 return;
3197 }
3198
3199 lh = dwarf_decode_line_header (line_offset, cu);
3200 }
3201 if (lh == NULL)
3202 {
3203 lh_cu->v.quick->no_file_data = 1;
3204 return;
3205 }
3206
3207 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3208 qfn->hash.dwo_unit = cu->dwo_unit;
3209 qfn->hash.line_sect_off = line_offset;
3210 gdb_assert (slot != NULL);
3211 *slot = qfn;
3212
3213 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3214
3215 int offset = 0;
3216 if (strcmp (fnd.name, "<unknown>") != 0)
3217 ++offset;
3218
3219 qfn->num_file_names = offset + lh->file_names_size ();
3220 qfn->file_names =
3221 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3222 qfn->num_file_names);
3223 if (offset != 0)
3224 qfn->file_names[0] = xstrdup (fnd.name);
3225 for (int i = 0; i < lh->file_names_size (); ++i)
3226 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3227 fnd.comp_dir).release ();
3228 qfn->real_names = NULL;
3229
3230 lh_cu->v.quick->file_names = qfn;
3231 }
3232
3233 /* A helper for the "quick" functions which attempts to read the line
3234 table for THIS_CU. */
3235
3236 static struct quick_file_names *
3237 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3238 dwarf2_per_objfile *per_objfile)
3239 {
3240 /* This should never be called for TUs. */
3241 gdb_assert (! this_cu->is_debug_types);
3242 /* Nor type unit groups. */
3243 gdb_assert (! this_cu->type_unit_group_p ());
3244
3245 if (this_cu->v.quick->file_names != NULL)
3246 return this_cu->v.quick->file_names;
3247 /* If we know there is no line data, no point in looking again. */
3248 if (this_cu->v.quick->no_file_data)
3249 return NULL;
3250
3251 cutu_reader reader (this_cu, per_objfile);
3252 if (!reader.dummy_p)
3253 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3254
3255 if (this_cu->v.quick->no_file_data)
3256 return NULL;
3257 return this_cu->v.quick->file_names;
3258 }
3259
3260 /* A helper for the "quick" functions which computes and caches the
3261 real path for a given file name from the line table. */
3262
3263 static const char *
3264 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3265 struct quick_file_names *qfn, int index)
3266 {
3267 if (qfn->real_names == NULL)
3268 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3269 qfn->num_file_names, const char *);
3270
3271 if (qfn->real_names[index] == NULL)
3272 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3273
3274 return qfn->real_names[index];
3275 }
3276
3277 static struct symtab *
3278 dw2_find_last_source_symtab (struct objfile *objfile)
3279 {
3280 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3281 dwarf2_per_cu_data *dwarf_cu = per_objfile->per_bfd->all_comp_units.back ();
3282 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3283
3284 if (cust == NULL)
3285 return NULL;
3286
3287 return compunit_primary_filetab (cust);
3288 }
3289
3290 /* Traversal function for dw2_forget_cached_source_info. */
3291
3292 static int
3293 dw2_free_cached_file_names (void **slot, void *info)
3294 {
3295 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3296
3297 if (file_data->real_names)
3298 {
3299 int i;
3300
3301 for (i = 0; i < file_data->num_file_names; ++i)
3302 {
3303 xfree ((void*) file_data->real_names[i]);
3304 file_data->real_names[i] = NULL;
3305 }
3306 }
3307
3308 return 1;
3309 }
3310
3311 static void
3312 dw2_forget_cached_source_info (struct objfile *objfile)
3313 {
3314 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3315
3316 htab_traverse_noresize (per_objfile->per_bfd->quick_file_names_table.get (),
3317 dw2_free_cached_file_names, NULL);
3318 }
3319
3320 /* Helper function for dw2_map_symtabs_matching_filename that expands
3321 the symtabs and calls the iterator. */
3322
3323 static int
3324 dw2_map_expand_apply (struct objfile *objfile,
3325 struct dwarf2_per_cu_data *per_cu,
3326 const char *name, const char *real_path,
3327 gdb::function_view<bool (symtab *)> callback)
3328 {
3329 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3330
3331 /* Don't visit already-expanded CUs. */
3332 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3333 if (per_objfile->symtab_set_p (per_cu))
3334 return 0;
3335
3336 /* This may expand more than one symtab, and we want to iterate over
3337 all of them. */
3338 dw2_instantiate_symtab (per_cu, per_objfile, false);
3339
3340 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3341 last_made, callback);
3342 }
3343
3344 /* Implementation of the map_symtabs_matching_filename method. */
3345
3346 static bool
3347 dw2_map_symtabs_matching_filename
3348 (struct objfile *objfile, const char *name, const char *real_path,
3349 gdb::function_view<bool (symtab *)> callback)
3350 {
3351 const char *name_basename = lbasename (name);
3352 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3353
3354 /* The rule is CUs specify all the files, including those used by
3355 any TU, so there's no need to scan TUs here. */
3356
3357 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3358 {
3359 /* We only need to look at symtabs not already expanded. */
3360 if (per_objfile->symtab_set_p (per_cu))
3361 continue;
3362
3363 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3364 if (file_data == NULL)
3365 continue;
3366
3367 for (int j = 0; j < file_data->num_file_names; ++j)
3368 {
3369 const char *this_name = file_data->file_names[j];
3370 const char *this_real_name;
3371
3372 if (compare_filenames_for_search (this_name, name))
3373 {
3374 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3375 callback))
3376 return true;
3377 continue;
3378 }
3379
3380 /* Before we invoke realpath, which can get expensive when many
3381 files are involved, do a quick comparison of the basenames. */
3382 if (! basenames_may_differ
3383 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3384 continue;
3385
3386 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
3387 if (compare_filenames_for_search (this_real_name, name))
3388 {
3389 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3390 callback))
3391 return true;
3392 continue;
3393 }
3394
3395 if (real_path != NULL)
3396 {
3397 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3398 gdb_assert (IS_ABSOLUTE_PATH (name));
3399 if (this_real_name != NULL
3400 && FILENAME_CMP (real_path, this_real_name) == 0)
3401 {
3402 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3403 callback))
3404 return true;
3405 continue;
3406 }
3407 }
3408 }
3409 }
3410
3411 return false;
3412 }
3413
3414 /* Struct used to manage iterating over all CUs looking for a symbol. */
3415
3416 struct dw2_symtab_iterator
3417 {
3418 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3419 dwarf2_per_objfile *per_objfile;
3420 /* If set, only look for symbols that match that block. Valid values are
3421 GLOBAL_BLOCK and STATIC_BLOCK. */
3422 gdb::optional<block_enum> block_index;
3423 /* The kind of symbol we're looking for. */
3424 domain_enum domain;
3425 /* The list of CUs from the index entry of the symbol,
3426 or NULL if not found. */
3427 offset_type *vec;
3428 /* The next element in VEC to look at. */
3429 int next;
3430 /* The number of elements in VEC, or zero if there is no match. */
3431 int length;
3432 /* Have we seen a global version of the symbol?
3433 If so we can ignore all further global instances.
3434 This is to work around gold/15646, inefficient gold-generated
3435 indices. */
3436 int global_seen;
3437 };
3438
3439 /* Initialize the index symtab iterator ITER. */
3440
3441 static void
3442 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3443 dwarf2_per_objfile *per_objfile,
3444 gdb::optional<block_enum> block_index,
3445 domain_enum domain,
3446 const char *name)
3447 {
3448 iter->per_objfile = per_objfile;
3449 iter->block_index = block_index;
3450 iter->domain = domain;
3451 iter->next = 0;
3452 iter->global_seen = 0;
3453
3454 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3455
3456 /* index is NULL if OBJF_READNOW. */
3457 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3458 iter->length = MAYBE_SWAP (*iter->vec);
3459 else
3460 {
3461 iter->vec = NULL;
3462 iter->length = 0;
3463 }
3464 }
3465
3466 /* Return the next matching CU or NULL if there are no more. */
3467
3468 static struct dwarf2_per_cu_data *
3469 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3470 {
3471 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3472
3473 for ( ; iter->next < iter->length; ++iter->next)
3474 {
3475 offset_type cu_index_and_attrs =
3476 MAYBE_SWAP (iter->vec[iter->next + 1]);
3477 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3478 gdb_index_symbol_kind symbol_kind =
3479 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3480 /* Only check the symbol attributes if they're present.
3481 Indices prior to version 7 don't record them,
3482 and indices >= 7 may elide them for certain symbols
3483 (gold does this). */
3484 int attrs_valid =
3485 (per_objfile->per_bfd->index_table->version >= 7
3486 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3487
3488 /* Don't crash on bad data. */
3489 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
3490 + per_objfile->per_bfd->all_type_units.size ()))
3491 {
3492 complaint (_(".gdb_index entry has bad CU index"
3493 " [in module %s]"), objfile_name (per_objfile->objfile));
3494 continue;
3495 }
3496
3497 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
3498
3499 /* Skip if already read in. */
3500 if (per_objfile->symtab_set_p (per_cu))
3501 continue;
3502
3503 /* Check static vs global. */
3504 if (attrs_valid)
3505 {
3506 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3507
3508 if (iter->block_index.has_value ())
3509 {
3510 bool want_static = *iter->block_index == STATIC_BLOCK;
3511
3512 if (is_static != want_static)
3513 continue;
3514 }
3515
3516 /* Work around gold/15646. */
3517 if (!is_static
3518 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3519 {
3520 if (iter->global_seen)
3521 continue;
3522
3523 iter->global_seen = 1;
3524 }
3525 }
3526
3527 /* Only check the symbol's kind if it has one. */
3528 if (attrs_valid)
3529 {
3530 switch (iter->domain)
3531 {
3532 case VAR_DOMAIN:
3533 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3534 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3535 /* Some types are also in VAR_DOMAIN. */
3536 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3537 continue;
3538 break;
3539 case STRUCT_DOMAIN:
3540 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3541 continue;
3542 break;
3543 case LABEL_DOMAIN:
3544 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3545 continue;
3546 break;
3547 case MODULE_DOMAIN:
3548 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3549 continue;
3550 break;
3551 default:
3552 break;
3553 }
3554 }
3555
3556 ++iter->next;
3557 return per_cu;
3558 }
3559
3560 return NULL;
3561 }
3562
3563 static struct compunit_symtab *
3564 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3565 const char *name, domain_enum domain)
3566 {
3567 struct compunit_symtab *stab_best = NULL;
3568 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3569
3570 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3571
3572 struct dw2_symtab_iterator iter;
3573 struct dwarf2_per_cu_data *per_cu;
3574
3575 dw2_symtab_iter_init (&iter, per_objfile, block_index, domain, name);
3576
3577 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3578 {
3579 struct symbol *sym, *with_opaque = NULL;
3580 struct compunit_symtab *stab
3581 = dw2_instantiate_symtab (per_cu, per_objfile, false);
3582 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3583 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3584
3585 sym = block_find_symbol (block, name, domain,
3586 block_find_non_opaque_type_preferred,
3587 &with_opaque);
3588
3589 /* Some caution must be observed with overloaded functions
3590 and methods, since the index will not contain any overload
3591 information (but NAME might contain it). */
3592
3593 if (sym != NULL
3594 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3595 return stab;
3596 if (with_opaque != NULL
3597 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3598 stab_best = stab;
3599
3600 /* Keep looking through other CUs. */
3601 }
3602
3603 return stab_best;
3604 }
3605
3606 static void
3607 dw2_print_stats (struct objfile *objfile)
3608 {
3609 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3610 int total = (per_objfile->per_bfd->all_comp_units.size ()
3611 + per_objfile->per_bfd->all_type_units.size ());
3612 int count = 0;
3613
3614 for (int i = 0; i < total; ++i)
3615 {
3616 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3617
3618 if (!per_objfile->symtab_set_p (per_cu))
3619 ++count;
3620 }
3621 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3622 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3623 }
3624
3625 /* This dumps minimal information about the index.
3626 It is called via "mt print objfiles".
3627 One use is to verify .gdb_index has been loaded by the
3628 gdb.dwarf2/gdb-index.exp testcase. */
3629
3630 static void
3631 dw2_dump (struct objfile *objfile)
3632 {
3633 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3634
3635 gdb_assert (per_objfile->per_bfd->using_index);
3636 printf_filtered (".gdb_index:");
3637 if (per_objfile->per_bfd->index_table != NULL)
3638 {
3639 printf_filtered (" version %d\n",
3640 per_objfile->per_bfd->index_table->version);
3641 }
3642 else
3643 printf_filtered (" faked for \"readnow\"\n");
3644 printf_filtered ("\n");
3645 }
3646
3647 static void
3648 dw2_expand_symtabs_for_function (struct objfile *objfile,
3649 const char *func_name)
3650 {
3651 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3652
3653 struct dw2_symtab_iterator iter;
3654 struct dwarf2_per_cu_data *per_cu;
3655
3656 dw2_symtab_iter_init (&iter, per_objfile, {}, VAR_DOMAIN, func_name);
3657
3658 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3659 dw2_instantiate_symtab (per_cu, per_objfile, false);
3660
3661 }
3662
3663 static void
3664 dw2_expand_all_symtabs (struct objfile *objfile)
3665 {
3666 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3667 int total_units = (per_objfile->per_bfd->all_comp_units.size ()
3668 + per_objfile->per_bfd->all_type_units.size ());
3669
3670 for (int i = 0; i < total_units; ++i)
3671 {
3672 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3673
3674 /* We don't want to directly expand a partial CU, because if we
3675 read it with the wrong language, then assertion failures can
3676 be triggered later on. See PR symtab/23010. So, tell
3677 dw2_instantiate_symtab to skip partial CUs -- any important
3678 partial CU will be read via DW_TAG_imported_unit anyway. */
3679 dw2_instantiate_symtab (per_cu, per_objfile, true);
3680 }
3681 }
3682
3683 static void
3684 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3685 const char *fullname)
3686 {
3687 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3688
3689 /* We don't need to consider type units here.
3690 This is only called for examining code, e.g. expand_line_sal.
3691 There can be an order of magnitude (or more) more type units
3692 than comp units, and we avoid them if we can. */
3693
3694 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3695 {
3696 /* We only need to look at symtabs not already expanded. */
3697 if (per_objfile->symtab_set_p (per_cu))
3698 continue;
3699
3700 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3701 if (file_data == NULL)
3702 continue;
3703
3704 for (int j = 0; j < file_data->num_file_names; ++j)
3705 {
3706 const char *this_fullname = file_data->file_names[j];
3707
3708 if (filename_cmp (this_fullname, fullname) == 0)
3709 {
3710 dw2_instantiate_symtab (per_cu, per_objfile, false);
3711 break;
3712 }
3713 }
3714 }
3715 }
3716
3717 static void
3718 dw2_expand_symtabs_matching_symbol
3719 (mapped_index_base &index,
3720 const lookup_name_info &lookup_name_in,
3721 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3722 enum search_domain kind,
3723 gdb::function_view<bool (offset_type)> match_callback,
3724 dwarf2_per_objfile *per_objfile);
3725
3726 static void
3727 dw2_expand_symtabs_matching_one
3728 (dwarf2_per_cu_data *per_cu,
3729 dwarf2_per_objfile *per_objfile,
3730 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3731 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3732
3733 static void
3734 dw2_map_matching_symbols
3735 (struct objfile *objfile,
3736 const lookup_name_info &name, domain_enum domain,
3737 int global,
3738 gdb::function_view<symbol_found_callback_ftype> callback,
3739 symbol_compare_ftype *ordered_compare)
3740 {
3741 /* Used for Ada. */
3742 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3743
3744 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3745
3746 if (per_objfile->per_bfd->index_table != nullptr)
3747 {
3748 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3749 here though if the current language is Ada for a non-Ada objfile
3750 using GNU index. */
3751 mapped_index &index = *per_objfile->per_bfd->index_table;
3752
3753 const char *match_name = name.ada ().lookup_name ().c_str ();
3754 auto matcher = [&] (const char *symname)
3755 {
3756 if (ordered_compare == nullptr)
3757 return true;
3758 return ordered_compare (symname, match_name) == 0;
3759 };
3760
3761 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3762 [&] (offset_type namei)
3763 {
3764 struct dw2_symtab_iterator iter;
3765 struct dwarf2_per_cu_data *per_cu;
3766
3767 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3768 match_name);
3769 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3770 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3771 nullptr);
3772 return true;
3773 }, per_objfile);
3774 }
3775 else
3776 {
3777 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3778 proceed assuming all symtabs have been read in. */
3779 }
3780
3781 for (compunit_symtab *cust : objfile->compunits ())
3782 {
3783 const struct block *block;
3784
3785 if (cust == NULL)
3786 continue;
3787 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3788 if (!iterate_over_symbols_terminated (block, name,
3789 domain, callback))
3790 return;
3791 }
3792 }
3793
3794 /* Starting from a search name, return the string that finds the upper
3795 bound of all strings that start with SEARCH_NAME in a sorted name
3796 list. Returns the empty string to indicate that the upper bound is
3797 the end of the list. */
3798
3799 static std::string
3800 make_sort_after_prefix_name (const char *search_name)
3801 {
3802 /* When looking to complete "func", we find the upper bound of all
3803 symbols that start with "func" by looking for where we'd insert
3804 the closest string that would follow "func" in lexicographical
3805 order. Usually, that's "func"-with-last-character-incremented,
3806 i.e. "fund". Mind non-ASCII characters, though. Usually those
3807 will be UTF-8 multi-byte sequences, but we can't be certain.
3808 Especially mind the 0xff character, which is a valid character in
3809 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3810 rule out compilers allowing it in identifiers. Note that
3811 conveniently, strcmp/strcasecmp are specified to compare
3812 characters interpreted as unsigned char. So what we do is treat
3813 the whole string as a base 256 number composed of a sequence of
3814 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3815 to 0, and carries 1 to the following more-significant position.
3816 If the very first character in SEARCH_NAME ends up incremented
3817 and carries/overflows, then the upper bound is the end of the
3818 list. The string after the empty string is also the empty
3819 string.
3820
3821 Some examples of this operation:
3822
3823 SEARCH_NAME => "+1" RESULT
3824
3825 "abc" => "abd"
3826 "ab\xff" => "ac"
3827 "\xff" "a" "\xff" => "\xff" "b"
3828 "\xff" => ""
3829 "\xff\xff" => ""
3830 "" => ""
3831
3832 Then, with these symbols for example:
3833
3834 func
3835 func1
3836 fund
3837
3838 completing "func" looks for symbols between "func" and
3839 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3840 which finds "func" and "func1", but not "fund".
3841
3842 And with:
3843
3844 funcÿ (Latin1 'ÿ' [0xff])
3845 funcÿ1
3846 fund
3847
3848 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3849 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3850
3851 And with:
3852
3853 ÿÿ (Latin1 'ÿ' [0xff])
3854 ÿÿ1
3855
3856 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3857 the end of the list.
3858 */
3859 std::string after = search_name;
3860 while (!after.empty () && (unsigned char) after.back () == 0xff)
3861 after.pop_back ();
3862 if (!after.empty ())
3863 after.back () = (unsigned char) after.back () + 1;
3864 return after;
3865 }
3866
3867 /* See declaration. */
3868
3869 std::pair<std::vector<name_component>::const_iterator,
3870 std::vector<name_component>::const_iterator>
3871 mapped_index_base::find_name_components_bounds
3872 (const lookup_name_info &lookup_name_without_params, language lang,
3873 dwarf2_per_objfile *per_objfile) const
3874 {
3875 auto *name_cmp
3876 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3877
3878 const char *lang_name
3879 = lookup_name_without_params.language_lookup_name (lang);
3880
3881 /* Comparison function object for lower_bound that matches against a
3882 given symbol name. */
3883 auto lookup_compare_lower = [&] (const name_component &elem,
3884 const char *name)
3885 {
3886 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3887 const char *elem_name = elem_qualified + elem.name_offset;
3888 return name_cmp (elem_name, name) < 0;
3889 };
3890
3891 /* Comparison function object for upper_bound that matches against a
3892 given symbol name. */
3893 auto lookup_compare_upper = [&] (const char *name,
3894 const name_component &elem)
3895 {
3896 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3897 const char *elem_name = elem_qualified + elem.name_offset;
3898 return name_cmp (name, elem_name) < 0;
3899 };
3900
3901 auto begin = this->name_components.begin ();
3902 auto end = this->name_components.end ();
3903
3904 /* Find the lower bound. */
3905 auto lower = [&] ()
3906 {
3907 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3908 return begin;
3909 else
3910 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3911 } ();
3912
3913 /* Find the upper bound. */
3914 auto upper = [&] ()
3915 {
3916 if (lookup_name_without_params.completion_mode ())
3917 {
3918 /* In completion mode, we want UPPER to point past all
3919 symbols names that have the same prefix. I.e., with
3920 these symbols, and completing "func":
3921
3922 function << lower bound
3923 function1
3924 other_function << upper bound
3925
3926 We find the upper bound by looking for the insertion
3927 point of "func"-with-last-character-incremented,
3928 i.e. "fund". */
3929 std::string after = make_sort_after_prefix_name (lang_name);
3930 if (after.empty ())
3931 return end;
3932 return std::lower_bound (lower, end, after.c_str (),
3933 lookup_compare_lower);
3934 }
3935 else
3936 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3937 } ();
3938
3939 return {lower, upper};
3940 }
3941
3942 /* See declaration. */
3943
3944 void
3945 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
3946 {
3947 if (!this->name_components.empty ())
3948 return;
3949
3950 this->name_components_casing = case_sensitivity;
3951 auto *name_cmp
3952 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3953
3954 /* The code below only knows how to break apart components of C++
3955 symbol names (and other languages that use '::' as
3956 namespace/module separator) and Ada symbol names. */
3957 auto count = this->symbol_name_count ();
3958 for (offset_type idx = 0; idx < count; idx++)
3959 {
3960 if (this->symbol_name_slot_invalid (idx))
3961 continue;
3962
3963 const char *name = this->symbol_name_at (idx, per_objfile);
3964
3965 /* Add each name component to the name component table. */
3966 unsigned int previous_len = 0;
3967
3968 if (strstr (name, "::") != nullptr)
3969 {
3970 for (unsigned int current_len = cp_find_first_component (name);
3971 name[current_len] != '\0';
3972 current_len += cp_find_first_component (name + current_len))
3973 {
3974 gdb_assert (name[current_len] == ':');
3975 this->name_components.push_back ({previous_len, idx});
3976 /* Skip the '::'. */
3977 current_len += 2;
3978 previous_len = current_len;
3979 }
3980 }
3981 else
3982 {
3983 /* Handle the Ada encoded (aka mangled) form here. */
3984 for (const char *iter = strstr (name, "__");
3985 iter != nullptr;
3986 iter = strstr (iter, "__"))
3987 {
3988 this->name_components.push_back ({previous_len, idx});
3989 iter += 2;
3990 previous_len = iter - name;
3991 }
3992 }
3993
3994 this->name_components.push_back ({previous_len, idx});
3995 }
3996
3997 /* Sort name_components elements by name. */
3998 auto name_comp_compare = [&] (const name_component &left,
3999 const name_component &right)
4000 {
4001 const char *left_qualified
4002 = this->symbol_name_at (left.idx, per_objfile);
4003 const char *right_qualified
4004 = this->symbol_name_at (right.idx, per_objfile);
4005
4006 const char *left_name = left_qualified + left.name_offset;
4007 const char *right_name = right_qualified + right.name_offset;
4008
4009 return name_cmp (left_name, right_name) < 0;
4010 };
4011
4012 std::sort (this->name_components.begin (),
4013 this->name_components.end (),
4014 name_comp_compare);
4015 }
4016
4017 /* Helper for dw2_expand_symtabs_matching that works with a
4018 mapped_index_base instead of the containing objfile. This is split
4019 to a separate function in order to be able to unit test the
4020 name_components matching using a mock mapped_index_base. For each
4021 symbol name that matches, calls MATCH_CALLBACK, passing it the
4022 symbol's index in the mapped_index_base symbol table. */
4023
4024 static void
4025 dw2_expand_symtabs_matching_symbol
4026 (mapped_index_base &index,
4027 const lookup_name_info &lookup_name_in,
4028 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4029 enum search_domain kind,
4030 gdb::function_view<bool (offset_type)> match_callback,
4031 dwarf2_per_objfile *per_objfile)
4032 {
4033 lookup_name_info lookup_name_without_params
4034 = lookup_name_in.make_ignore_params ();
4035
4036 /* Build the symbol name component sorted vector, if we haven't
4037 yet. */
4038 index.build_name_components (per_objfile);
4039
4040 /* The same symbol may appear more than once in the range though.
4041 E.g., if we're looking for symbols that complete "w", and we have
4042 a symbol named "w1::w2", we'll find the two name components for
4043 that same symbol in the range. To be sure we only call the
4044 callback once per symbol, we first collect the symbol name
4045 indexes that matched in a temporary vector and ignore
4046 duplicates. */
4047 std::vector<offset_type> matches;
4048
4049 struct name_and_matcher
4050 {
4051 symbol_name_matcher_ftype *matcher;
4052 const char *name;
4053
4054 bool operator== (const name_and_matcher &other) const
4055 {
4056 return matcher == other.matcher && strcmp (name, other.name) == 0;
4057 }
4058 };
4059
4060 /* A vector holding all the different symbol name matchers, for all
4061 languages. */
4062 std::vector<name_and_matcher> matchers;
4063
4064 for (int i = 0; i < nr_languages; i++)
4065 {
4066 enum language lang_e = (enum language) i;
4067
4068 const language_defn *lang = language_def (lang_e);
4069 symbol_name_matcher_ftype *name_matcher
4070 = get_symbol_name_matcher (lang, lookup_name_without_params);
4071
4072 name_and_matcher key {
4073 name_matcher,
4074 lookup_name_without_params.language_lookup_name (lang_e)
4075 };
4076
4077 /* Don't insert the same comparison routine more than once.
4078 Note that we do this linear walk. This is not a problem in
4079 practice because the number of supported languages is
4080 low. */
4081 if (std::find (matchers.begin (), matchers.end (), key)
4082 != matchers.end ())
4083 continue;
4084 matchers.push_back (std::move (key));
4085
4086 auto bounds
4087 = index.find_name_components_bounds (lookup_name_without_params,
4088 lang_e, per_objfile);
4089
4090 /* Now for each symbol name in range, check to see if we have a name
4091 match, and if so, call the MATCH_CALLBACK callback. */
4092
4093 for (; bounds.first != bounds.second; ++bounds.first)
4094 {
4095 const char *qualified
4096 = index.symbol_name_at (bounds.first->idx, per_objfile);
4097
4098 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4099 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4100 continue;
4101
4102 matches.push_back (bounds.first->idx);
4103 }
4104 }
4105
4106 std::sort (matches.begin (), matches.end ());
4107
4108 /* Finally call the callback, once per match. */
4109 ULONGEST prev = -1;
4110 for (offset_type idx : matches)
4111 {
4112 if (prev != idx)
4113 {
4114 if (!match_callback (idx))
4115 break;
4116 prev = idx;
4117 }
4118 }
4119
4120 /* Above we use a type wider than idx's for 'prev', since 0 and
4121 (offset_type)-1 are both possible values. */
4122 static_assert (sizeof (prev) > sizeof (offset_type), "");
4123 }
4124
4125 #if GDB_SELF_TEST
4126
4127 namespace selftests { namespace dw2_expand_symtabs_matching {
4128
4129 /* A mock .gdb_index/.debug_names-like name index table, enough to
4130 exercise dw2_expand_symtabs_matching_symbol, which works with the
4131 mapped_index_base interface. Builds an index from the symbol list
4132 passed as parameter to the constructor. */
4133 class mock_mapped_index : public mapped_index_base
4134 {
4135 public:
4136 mock_mapped_index (gdb::array_view<const char *> symbols)
4137 : m_symbol_table (symbols)
4138 {}
4139
4140 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4141
4142 /* Return the number of names in the symbol table. */
4143 size_t symbol_name_count () const override
4144 {
4145 return m_symbol_table.size ();
4146 }
4147
4148 /* Get the name of the symbol at IDX in the symbol table. */
4149 const char *symbol_name_at
4150 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
4151 {
4152 return m_symbol_table[idx];
4153 }
4154
4155 private:
4156 gdb::array_view<const char *> m_symbol_table;
4157 };
4158
4159 /* Convenience function that converts a NULL pointer to a "<null>"
4160 string, to pass to print routines. */
4161
4162 static const char *
4163 string_or_null (const char *str)
4164 {
4165 return str != NULL ? str : "<null>";
4166 }
4167
4168 /* Check if a lookup_name_info built from
4169 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4170 index. EXPECTED_LIST is the list of expected matches, in expected
4171 matching order. If no match expected, then an empty list is
4172 specified. Returns true on success. On failure prints a warning
4173 indicating the file:line that failed, and returns false. */
4174
4175 static bool
4176 check_match (const char *file, int line,
4177 mock_mapped_index &mock_index,
4178 const char *name, symbol_name_match_type match_type,
4179 bool completion_mode,
4180 std::initializer_list<const char *> expected_list,
4181 dwarf2_per_objfile *per_objfile)
4182 {
4183 lookup_name_info lookup_name (name, match_type, completion_mode);
4184
4185 bool matched = true;
4186
4187 auto mismatch = [&] (const char *expected_str,
4188 const char *got)
4189 {
4190 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4191 "expected=\"%s\", got=\"%s\"\n"),
4192 file, line,
4193 (match_type == symbol_name_match_type::FULL
4194 ? "FULL" : "WILD"),
4195 name, string_or_null (expected_str), string_or_null (got));
4196 matched = false;
4197 };
4198
4199 auto expected_it = expected_list.begin ();
4200 auto expected_end = expected_list.end ();
4201
4202 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4203 NULL, ALL_DOMAIN,
4204 [&] (offset_type idx)
4205 {
4206 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
4207 const char *expected_str
4208 = expected_it == expected_end ? NULL : *expected_it++;
4209
4210 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4211 mismatch (expected_str, matched_name);
4212 return true;
4213 }, per_objfile);
4214
4215 const char *expected_str
4216 = expected_it == expected_end ? NULL : *expected_it++;
4217 if (expected_str != NULL)
4218 mismatch (expected_str, NULL);
4219
4220 return matched;
4221 }
4222
4223 /* The symbols added to the mock mapped_index for testing (in
4224 canonical form). */
4225 static const char *test_symbols[] = {
4226 "function",
4227 "std::bar",
4228 "std::zfunction",
4229 "std::zfunction2",
4230 "w1::w2",
4231 "ns::foo<char*>",
4232 "ns::foo<int>",
4233 "ns::foo<long>",
4234 "ns2::tmpl<int>::foo2",
4235 "(anonymous namespace)::A::B::C",
4236
4237 /* These are used to check that the increment-last-char in the
4238 matching algorithm for completion doesn't match "t1_fund" when
4239 completing "t1_func". */
4240 "t1_func",
4241 "t1_func1",
4242 "t1_fund",
4243 "t1_fund1",
4244
4245 /* A UTF-8 name with multi-byte sequences to make sure that
4246 cp-name-parser understands this as a single identifier ("função"
4247 is "function" in PT). */
4248 u8"u8função",
4249
4250 /* \377 (0xff) is Latin1 'ÿ'. */
4251 "yfunc\377",
4252
4253 /* \377 (0xff) is Latin1 'ÿ'. */
4254 "\377",
4255 "\377\377123",
4256
4257 /* A name with all sorts of complications. Starts with "z" to make
4258 it easier for the completion tests below. */
4259 #define Z_SYM_NAME \
4260 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4261 "::tuple<(anonymous namespace)::ui*, " \
4262 "std::default_delete<(anonymous namespace)::ui>, void>"
4263
4264 Z_SYM_NAME
4265 };
4266
4267 /* Returns true if the mapped_index_base::find_name_component_bounds
4268 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4269 in completion mode. */
4270
4271 static bool
4272 check_find_bounds_finds (mapped_index_base &index,
4273 const char *search_name,
4274 gdb::array_view<const char *> expected_syms,
4275 dwarf2_per_objfile *per_objfile)
4276 {
4277 lookup_name_info lookup_name (search_name,
4278 symbol_name_match_type::FULL, true);
4279
4280 auto bounds = index.find_name_components_bounds (lookup_name,
4281 language_cplus,
4282 per_objfile);
4283
4284 size_t distance = std::distance (bounds.first, bounds.second);
4285 if (distance != expected_syms.size ())
4286 return false;
4287
4288 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4289 {
4290 auto nc_elem = bounds.first + exp_elem;
4291 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
4292 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4293 return false;
4294 }
4295
4296 return true;
4297 }
4298
4299 /* Test the lower-level mapped_index::find_name_component_bounds
4300 method. */
4301
4302 static void
4303 test_mapped_index_find_name_component_bounds ()
4304 {
4305 mock_mapped_index mock_index (test_symbols);
4306
4307 mock_index.build_name_components (NULL /* per_objfile */);
4308
4309 /* Test the lower-level mapped_index::find_name_component_bounds
4310 method in completion mode. */
4311 {
4312 static const char *expected_syms[] = {
4313 "t1_func",
4314 "t1_func1",
4315 };
4316
4317 SELF_CHECK (check_find_bounds_finds
4318 (mock_index, "t1_func", expected_syms,
4319 NULL /* per_objfile */));
4320 }
4321
4322 /* Check that the increment-last-char in the name matching algorithm
4323 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4324 {
4325 static const char *expected_syms1[] = {
4326 "\377",
4327 "\377\377123",
4328 };
4329 SELF_CHECK (check_find_bounds_finds
4330 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
4331
4332 static const char *expected_syms2[] = {
4333 "\377\377123",
4334 };
4335 SELF_CHECK (check_find_bounds_finds
4336 (mock_index, "\377\377", expected_syms2,
4337 NULL /* per_objfile */));
4338 }
4339 }
4340
4341 /* Test dw2_expand_symtabs_matching_symbol. */
4342
4343 static void
4344 test_dw2_expand_symtabs_matching_symbol ()
4345 {
4346 mock_mapped_index mock_index (test_symbols);
4347
4348 /* We let all tests run until the end even if some fails, for debug
4349 convenience. */
4350 bool any_mismatch = false;
4351
4352 /* Create the expected symbols list (an initializer_list). Needed
4353 because lists have commas, and we need to pass them to CHECK,
4354 which is a macro. */
4355 #define EXPECT(...) { __VA_ARGS__ }
4356
4357 /* Wrapper for check_match that passes down the current
4358 __FILE__/__LINE__. */
4359 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4360 any_mismatch |= !check_match (__FILE__, __LINE__, \
4361 mock_index, \
4362 NAME, MATCH_TYPE, COMPLETION_MODE, \
4363 EXPECTED_LIST, NULL)
4364
4365 /* Identity checks. */
4366 for (const char *sym : test_symbols)
4367 {
4368 /* Should be able to match all existing symbols. */
4369 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4370 EXPECT (sym));
4371
4372 /* Should be able to match all existing symbols with
4373 parameters. */
4374 std::string with_params = std::string (sym) + "(int)";
4375 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4376 EXPECT (sym));
4377
4378 /* Should be able to match all existing symbols with
4379 parameters and qualifiers. */
4380 with_params = std::string (sym) + " ( int ) const";
4381 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4382 EXPECT (sym));
4383
4384 /* This should really find sym, but cp-name-parser.y doesn't
4385 know about lvalue/rvalue qualifiers yet. */
4386 with_params = std::string (sym) + " ( int ) &&";
4387 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4388 {});
4389 }
4390
4391 /* Check that the name matching algorithm for completion doesn't get
4392 confused with Latin1 'ÿ' / 0xff. */
4393 {
4394 static const char str[] = "\377";
4395 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4396 EXPECT ("\377", "\377\377123"));
4397 }
4398
4399 /* Check that the increment-last-char in the matching algorithm for
4400 completion doesn't match "t1_fund" when completing "t1_func". */
4401 {
4402 static const char str[] = "t1_func";
4403 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4404 EXPECT ("t1_func", "t1_func1"));
4405 }
4406
4407 /* Check that completion mode works at each prefix of the expected
4408 symbol name. */
4409 {
4410 static const char str[] = "function(int)";
4411 size_t len = strlen (str);
4412 std::string lookup;
4413
4414 for (size_t i = 1; i < len; i++)
4415 {
4416 lookup.assign (str, i);
4417 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4418 EXPECT ("function"));
4419 }
4420 }
4421
4422 /* While "w" is a prefix of both components, the match function
4423 should still only be called once. */
4424 {
4425 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4426 EXPECT ("w1::w2"));
4427 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4428 EXPECT ("w1::w2"));
4429 }
4430
4431 /* Same, with a "complicated" symbol. */
4432 {
4433 static const char str[] = Z_SYM_NAME;
4434 size_t len = strlen (str);
4435 std::string lookup;
4436
4437 for (size_t i = 1; i < len; i++)
4438 {
4439 lookup.assign (str, i);
4440 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4441 EXPECT (Z_SYM_NAME));
4442 }
4443 }
4444
4445 /* In FULL mode, an incomplete symbol doesn't match. */
4446 {
4447 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4448 {});
4449 }
4450
4451 /* A complete symbol with parameters matches any overload, since the
4452 index has no overload info. */
4453 {
4454 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4455 EXPECT ("std::zfunction", "std::zfunction2"));
4456 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4457 EXPECT ("std::zfunction", "std::zfunction2"));
4458 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4459 EXPECT ("std::zfunction", "std::zfunction2"));
4460 }
4461
4462 /* Check that whitespace is ignored appropriately. A symbol with a
4463 template argument list. */
4464 {
4465 static const char expected[] = "ns::foo<int>";
4466 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4467 EXPECT (expected));
4468 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4469 EXPECT (expected));
4470 }
4471
4472 /* Check that whitespace is ignored appropriately. A symbol with a
4473 template argument list that includes a pointer. */
4474 {
4475 static const char expected[] = "ns::foo<char*>";
4476 /* Try both completion and non-completion modes. */
4477 static const bool completion_mode[2] = {false, true};
4478 for (size_t i = 0; i < 2; i++)
4479 {
4480 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4481 completion_mode[i], EXPECT (expected));
4482 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4483 completion_mode[i], EXPECT (expected));
4484
4485 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4486 completion_mode[i], EXPECT (expected));
4487 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4488 completion_mode[i], EXPECT (expected));
4489 }
4490 }
4491
4492 {
4493 /* Check method qualifiers are ignored. */
4494 static const char expected[] = "ns::foo<char*>";
4495 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4496 symbol_name_match_type::FULL, true, EXPECT (expected));
4497 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4498 symbol_name_match_type::FULL, true, EXPECT (expected));
4499 CHECK_MATCH ("foo < char * > ( int ) const",
4500 symbol_name_match_type::WILD, true, EXPECT (expected));
4501 CHECK_MATCH ("foo < char * > ( int ) &&",
4502 symbol_name_match_type::WILD, true, EXPECT (expected));
4503 }
4504
4505 /* Test lookup names that don't match anything. */
4506 {
4507 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4508 {});
4509
4510 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4511 {});
4512 }
4513
4514 /* Some wild matching tests, exercising "(anonymous namespace)",
4515 which should not be confused with a parameter list. */
4516 {
4517 static const char *syms[] = {
4518 "A::B::C",
4519 "B::C",
4520 "C",
4521 "A :: B :: C ( int )",
4522 "B :: C ( int )",
4523 "C ( int )",
4524 };
4525
4526 for (const char *s : syms)
4527 {
4528 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4529 EXPECT ("(anonymous namespace)::A::B::C"));
4530 }
4531 }
4532
4533 {
4534 static const char expected[] = "ns2::tmpl<int>::foo2";
4535 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4536 EXPECT (expected));
4537 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4538 EXPECT (expected));
4539 }
4540
4541 SELF_CHECK (!any_mismatch);
4542
4543 #undef EXPECT
4544 #undef CHECK_MATCH
4545 }
4546
4547 static void
4548 run_test ()
4549 {
4550 test_mapped_index_find_name_component_bounds ();
4551 test_dw2_expand_symtabs_matching_symbol ();
4552 }
4553
4554 }} // namespace selftests::dw2_expand_symtabs_matching
4555
4556 #endif /* GDB_SELF_TEST */
4557
4558 /* If FILE_MATCHER is NULL or if PER_CU has
4559 dwarf2_per_cu_quick_data::MARK set (see
4560 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4561 EXPANSION_NOTIFY on it. */
4562
4563 static void
4564 dw2_expand_symtabs_matching_one
4565 (dwarf2_per_cu_data *per_cu,
4566 dwarf2_per_objfile *per_objfile,
4567 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4568 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4569 {
4570 if (file_matcher == NULL || per_cu->v.quick->mark)
4571 {
4572 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4573
4574 compunit_symtab *symtab
4575 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4576 gdb_assert (symtab != nullptr);
4577
4578 if (expansion_notify != NULL && symtab_was_null)
4579 expansion_notify (symtab);
4580 }
4581 }
4582
4583 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4584 matched, to expand corresponding CUs that were marked. IDX is the
4585 index of the symbol name that matched. */
4586
4587 static void
4588 dw2_expand_marked_cus
4589 (dwarf2_per_objfile *per_objfile, offset_type idx,
4590 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4591 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4592 search_domain kind)
4593 {
4594 offset_type *vec, vec_len, vec_idx;
4595 bool global_seen = false;
4596 mapped_index &index = *per_objfile->per_bfd->index_table;
4597
4598 vec = (offset_type *) (index.constant_pool
4599 + MAYBE_SWAP (index.symbol_table[idx].vec));
4600 vec_len = MAYBE_SWAP (vec[0]);
4601 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4602 {
4603 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4604 /* This value is only valid for index versions >= 7. */
4605 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4606 gdb_index_symbol_kind symbol_kind =
4607 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4608 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4609 /* Only check the symbol attributes if they're present.
4610 Indices prior to version 7 don't record them,
4611 and indices >= 7 may elide them for certain symbols
4612 (gold does this). */
4613 int attrs_valid =
4614 (index.version >= 7
4615 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4616
4617 /* Work around gold/15646. */
4618 if (attrs_valid
4619 && !is_static
4620 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4621 {
4622 if (global_seen)
4623 continue;
4624
4625 global_seen = true;
4626 }
4627
4628 /* Only check the symbol's kind if it has one. */
4629 if (attrs_valid)
4630 {
4631 switch (kind)
4632 {
4633 case VARIABLES_DOMAIN:
4634 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4635 continue;
4636 break;
4637 case FUNCTIONS_DOMAIN:
4638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4639 continue;
4640 break;
4641 case TYPES_DOMAIN:
4642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4643 continue;
4644 break;
4645 case MODULES_DOMAIN:
4646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4647 continue;
4648 break;
4649 default:
4650 break;
4651 }
4652 }
4653
4654 /* Don't crash on bad data. */
4655 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
4656 + per_objfile->per_bfd->all_type_units.size ()))
4657 {
4658 complaint (_(".gdb_index entry has bad CU index"
4659 " [in module %s]"), objfile_name (per_objfile->objfile));
4660 continue;
4661 }
4662
4663 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
4664 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4665 expansion_notify);
4666 }
4667 }
4668
4669 /* If FILE_MATCHER is non-NULL, set all the
4670 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4671 that match FILE_MATCHER. */
4672
4673 static void
4674 dw_expand_symtabs_matching_file_matcher
4675 (dwarf2_per_objfile *per_objfile,
4676 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4677 {
4678 if (file_matcher == NULL)
4679 return;
4680
4681 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4682 htab_eq_pointer,
4683 NULL, xcalloc, xfree));
4684 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4685 htab_eq_pointer,
4686 NULL, xcalloc, xfree));
4687
4688 /* The rule is CUs specify all the files, including those used by
4689 any TU, so there's no need to scan TUs here. */
4690
4691 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4692 {
4693 QUIT;
4694
4695 per_cu->v.quick->mark = 0;
4696
4697 /* We only need to look at symtabs not already expanded. */
4698 if (per_objfile->symtab_set_p (per_cu))
4699 continue;
4700
4701 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4702 if (file_data == NULL)
4703 continue;
4704
4705 if (htab_find (visited_not_found.get (), file_data) != NULL)
4706 continue;
4707 else if (htab_find (visited_found.get (), file_data) != NULL)
4708 {
4709 per_cu->v.quick->mark = 1;
4710 continue;
4711 }
4712
4713 for (int j = 0; j < file_data->num_file_names; ++j)
4714 {
4715 const char *this_real_name;
4716
4717 if (file_matcher (file_data->file_names[j], false))
4718 {
4719 per_cu->v.quick->mark = 1;
4720 break;
4721 }
4722
4723 /* Before we invoke realpath, which can get expensive when many
4724 files are involved, do a quick comparison of the basenames. */
4725 if (!basenames_may_differ
4726 && !file_matcher (lbasename (file_data->file_names[j]),
4727 true))
4728 continue;
4729
4730 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4731 if (file_matcher (this_real_name, false))
4732 {
4733 per_cu->v.quick->mark = 1;
4734 break;
4735 }
4736 }
4737
4738 void **slot = htab_find_slot (per_cu->v.quick->mark
4739 ? visited_found.get ()
4740 : visited_not_found.get (),
4741 file_data, INSERT);
4742 *slot = file_data;
4743 }
4744 }
4745
4746 static void
4747 dw2_expand_symtabs_matching
4748 (struct objfile *objfile,
4749 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4750 const lookup_name_info *lookup_name,
4751 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4752 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4753 enum search_domain kind)
4754 {
4755 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4756
4757 /* index_table is NULL if OBJF_READNOW. */
4758 if (!per_objfile->per_bfd->index_table)
4759 return;
4760
4761 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4762
4763 if (symbol_matcher == NULL && lookup_name == NULL)
4764 {
4765 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4766 {
4767 QUIT;
4768
4769 dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4770 file_matcher, expansion_notify);
4771 }
4772 return;
4773 }
4774
4775 mapped_index &index = *per_objfile->per_bfd->index_table;
4776
4777 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4778 symbol_matcher,
4779 kind, [&] (offset_type idx)
4780 {
4781 dw2_expand_marked_cus (per_objfile, idx, file_matcher, expansion_notify,
4782 kind);
4783 return true;
4784 }, per_objfile);
4785 }
4786
4787 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4788 symtab. */
4789
4790 static struct compunit_symtab *
4791 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4792 CORE_ADDR pc)
4793 {
4794 int i;
4795
4796 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4797 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4798 return cust;
4799
4800 if (cust->includes == NULL)
4801 return NULL;
4802
4803 for (i = 0; cust->includes[i]; ++i)
4804 {
4805 struct compunit_symtab *s = cust->includes[i];
4806
4807 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4808 if (s != NULL)
4809 return s;
4810 }
4811
4812 return NULL;
4813 }
4814
4815 static struct compunit_symtab *
4816 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4817 struct bound_minimal_symbol msymbol,
4818 CORE_ADDR pc,
4819 struct obj_section *section,
4820 int warn_if_readin)
4821 {
4822 struct dwarf2_per_cu_data *data;
4823 struct compunit_symtab *result;
4824
4825 if (!objfile->partial_symtabs->psymtabs_addrmap)
4826 return NULL;
4827
4828 CORE_ADDR baseaddr = objfile->text_section_offset ();
4829 data = (struct dwarf2_per_cu_data *) addrmap_find
4830 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4831 if (!data)
4832 return NULL;
4833
4834 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4835 if (warn_if_readin && per_objfile->symtab_set_p (data))
4836 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4837 paddress (objfile->arch (), pc));
4838
4839 result = recursively_find_pc_sect_compunit_symtab
4840 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4841
4842 gdb_assert (result != NULL);
4843 return result;
4844 }
4845
4846 static void
4847 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4848 void *data, int need_fullname)
4849 {
4850 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4851
4852 if (!per_objfile->per_bfd->filenames_cache)
4853 {
4854 per_objfile->per_bfd->filenames_cache.emplace ();
4855
4856 htab_up visited (htab_create_alloc (10,
4857 htab_hash_pointer, htab_eq_pointer,
4858 NULL, xcalloc, xfree));
4859
4860 /* The rule is CUs specify all the files, including those used
4861 by any TU, so there's no need to scan TUs here. We can
4862 ignore file names coming from already-expanded CUs. */
4863
4864 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4865 {
4866 if (per_objfile->symtab_set_p (per_cu))
4867 {
4868 void **slot = htab_find_slot (visited.get (),
4869 per_cu->v.quick->file_names,
4870 INSERT);
4871
4872 *slot = per_cu->v.quick->file_names;
4873 }
4874 }
4875
4876 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4877 {
4878 /* We only need to look at symtabs not already expanded. */
4879 if (per_objfile->symtab_set_p (per_cu))
4880 continue;
4881
4882 quick_file_names *file_data
4883 = dw2_get_file_names (per_cu, per_objfile);
4884 if (file_data == NULL)
4885 continue;
4886
4887 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4888 if (*slot)
4889 {
4890 /* Already visited. */
4891 continue;
4892 }
4893 *slot = file_data;
4894
4895 for (int j = 0; j < file_data->num_file_names; ++j)
4896 {
4897 const char *filename = file_data->file_names[j];
4898 per_objfile->per_bfd->filenames_cache->seen (filename);
4899 }
4900 }
4901 }
4902
4903 per_objfile->per_bfd->filenames_cache->traverse ([&] (const char *filename)
4904 {
4905 gdb::unique_xmalloc_ptr<char> this_real_name;
4906
4907 if (need_fullname)
4908 this_real_name = gdb_realpath (filename);
4909 (*fun) (filename, this_real_name.get (), data);
4910 });
4911 }
4912
4913 static int
4914 dw2_has_symbols (struct objfile *objfile)
4915 {
4916 return 1;
4917 }
4918
4919 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4920 {
4921 dw2_has_symbols,
4922 dw2_find_last_source_symtab,
4923 dw2_forget_cached_source_info,
4924 dw2_map_symtabs_matching_filename,
4925 dw2_lookup_symbol,
4926 NULL,
4927 dw2_print_stats,
4928 dw2_dump,
4929 dw2_expand_symtabs_for_function,
4930 dw2_expand_all_symtabs,
4931 dw2_expand_symtabs_with_fullname,
4932 dw2_map_matching_symbols,
4933 dw2_expand_symtabs_matching,
4934 dw2_find_pc_sect_compunit_symtab,
4935 NULL,
4936 dw2_map_symbol_filenames
4937 };
4938
4939 /* DWARF-5 debug_names reader. */
4940
4941 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4942 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4943
4944 /* A helper function that reads the .debug_names section in SECTION
4945 and fills in MAP. FILENAME is the name of the file containing the
4946 section; it is used for error reporting.
4947
4948 Returns true if all went well, false otherwise. */
4949
4950 static bool
4951 read_debug_names_from_section (struct objfile *objfile,
4952 const char *filename,
4953 struct dwarf2_section_info *section,
4954 mapped_debug_names &map)
4955 {
4956 if (section->empty ())
4957 return false;
4958
4959 /* Older elfutils strip versions could keep the section in the main
4960 executable while splitting it for the separate debug info file. */
4961 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4962 return false;
4963
4964 section->read (objfile);
4965
4966 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4967
4968 const gdb_byte *addr = section->buffer;
4969
4970 bfd *const abfd = section->get_bfd_owner ();
4971
4972 unsigned int bytes_read;
4973 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4974 addr += bytes_read;
4975
4976 map.dwarf5_is_dwarf64 = bytes_read != 4;
4977 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4978 if (bytes_read + length != section->size)
4979 {
4980 /* There may be multiple per-CU indices. */
4981 warning (_("Section .debug_names in %s length %s does not match "
4982 "section length %s, ignoring .debug_names."),
4983 filename, plongest (bytes_read + length),
4984 pulongest (section->size));
4985 return false;
4986 }
4987
4988 /* The version number. */
4989 uint16_t version = read_2_bytes (abfd, addr);
4990 addr += 2;
4991 if (version != 5)
4992 {
4993 warning (_("Section .debug_names in %s has unsupported version %d, "
4994 "ignoring .debug_names."),
4995 filename, version);
4996 return false;
4997 }
4998
4999 /* Padding. */
5000 uint16_t padding = read_2_bytes (abfd, addr);
5001 addr += 2;
5002 if (padding != 0)
5003 {
5004 warning (_("Section .debug_names in %s has unsupported padding %d, "
5005 "ignoring .debug_names."),
5006 filename, padding);
5007 return false;
5008 }
5009
5010 /* comp_unit_count - The number of CUs in the CU list. */
5011 map.cu_count = read_4_bytes (abfd, addr);
5012 addr += 4;
5013
5014 /* local_type_unit_count - The number of TUs in the local TU
5015 list. */
5016 map.tu_count = read_4_bytes (abfd, addr);
5017 addr += 4;
5018
5019 /* foreign_type_unit_count - The number of TUs in the foreign TU
5020 list. */
5021 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5022 addr += 4;
5023 if (foreign_tu_count != 0)
5024 {
5025 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5026 "ignoring .debug_names."),
5027 filename, static_cast<unsigned long> (foreign_tu_count));
5028 return false;
5029 }
5030
5031 /* bucket_count - The number of hash buckets in the hash lookup
5032 table. */
5033 map.bucket_count = read_4_bytes (abfd, addr);
5034 addr += 4;
5035
5036 /* name_count - The number of unique names in the index. */
5037 map.name_count = read_4_bytes (abfd, addr);
5038 addr += 4;
5039
5040 /* abbrev_table_size - The size in bytes of the abbreviations
5041 table. */
5042 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5043 addr += 4;
5044
5045 /* augmentation_string_size - The size in bytes of the augmentation
5046 string. This value is rounded up to a multiple of 4. */
5047 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5048 addr += 4;
5049 map.augmentation_is_gdb = ((augmentation_string_size
5050 == sizeof (dwarf5_augmentation))
5051 && memcmp (addr, dwarf5_augmentation,
5052 sizeof (dwarf5_augmentation)) == 0);
5053 augmentation_string_size += (-augmentation_string_size) & 3;
5054 addr += augmentation_string_size;
5055
5056 /* List of CUs */
5057 map.cu_table_reordered = addr;
5058 addr += map.cu_count * map.offset_size;
5059
5060 /* List of Local TUs */
5061 map.tu_table_reordered = addr;
5062 addr += map.tu_count * map.offset_size;
5063
5064 /* Hash Lookup Table */
5065 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5066 addr += map.bucket_count * 4;
5067 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5068 addr += map.name_count * 4;
5069
5070 /* Name Table */
5071 map.name_table_string_offs_reordered = addr;
5072 addr += map.name_count * map.offset_size;
5073 map.name_table_entry_offs_reordered = addr;
5074 addr += map.name_count * map.offset_size;
5075
5076 const gdb_byte *abbrev_table_start = addr;
5077 for (;;)
5078 {
5079 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5080 addr += bytes_read;
5081 if (index_num == 0)
5082 break;
5083
5084 const auto insertpair
5085 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5086 if (!insertpair.second)
5087 {
5088 warning (_("Section .debug_names in %s has duplicate index %s, "
5089 "ignoring .debug_names."),
5090 filename, pulongest (index_num));
5091 return false;
5092 }
5093 mapped_debug_names::index_val &indexval = insertpair.first->second;
5094 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5095 addr += bytes_read;
5096
5097 for (;;)
5098 {
5099 mapped_debug_names::index_val::attr attr;
5100 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5101 addr += bytes_read;
5102 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5103 addr += bytes_read;
5104 if (attr.form == DW_FORM_implicit_const)
5105 {
5106 attr.implicit_const = read_signed_leb128 (abfd, addr,
5107 &bytes_read);
5108 addr += bytes_read;
5109 }
5110 if (attr.dw_idx == 0 && attr.form == 0)
5111 break;
5112 indexval.attr_vec.push_back (std::move (attr));
5113 }
5114 }
5115 if (addr != abbrev_table_start + abbrev_table_size)
5116 {
5117 warning (_("Section .debug_names in %s has abbreviation_table "
5118 "of size %s vs. written as %u, ignoring .debug_names."),
5119 filename, plongest (addr - abbrev_table_start),
5120 abbrev_table_size);
5121 return false;
5122 }
5123 map.entry_pool = addr;
5124
5125 return true;
5126 }
5127
5128 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5129 list. */
5130
5131 static void
5132 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
5133 const mapped_debug_names &map,
5134 dwarf2_section_info &section,
5135 bool is_dwz)
5136 {
5137 if (!map.augmentation_is_gdb)
5138 {
5139 for (uint32_t i = 0; i < map.cu_count; ++i)
5140 {
5141 sect_offset sect_off
5142 = (sect_offset) (extract_unsigned_integer
5143 (map.cu_table_reordered + i * map.offset_size,
5144 map.offset_size,
5145 map.dwarf5_byte_order));
5146 /* We don't know the length of the CU, because the CU list in a
5147 .debug_names index can be incomplete, so we can't use the start of
5148 the next CU as end of this CU. We create the CUs here with length 0,
5149 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5150 dwarf2_per_cu_data *per_cu
5151 = create_cu_from_index_list (per_bfd, &section, is_dwz, sect_off, 0);
5152 per_bfd->all_comp_units.push_back (per_cu);
5153 }
5154 }
5155
5156 sect_offset sect_off_prev;
5157 for (uint32_t i = 0; i <= map.cu_count; ++i)
5158 {
5159 sect_offset sect_off_next;
5160 if (i < map.cu_count)
5161 {
5162 sect_off_next
5163 = (sect_offset) (extract_unsigned_integer
5164 (map.cu_table_reordered + i * map.offset_size,
5165 map.offset_size,
5166 map.dwarf5_byte_order));
5167 }
5168 else
5169 sect_off_next = (sect_offset) section.size;
5170 if (i >= 1)
5171 {
5172 const ULONGEST length = sect_off_next - sect_off_prev;
5173 dwarf2_per_cu_data *per_cu
5174 = create_cu_from_index_list (per_bfd, &section, is_dwz,
5175 sect_off_prev, length);
5176 per_bfd->all_comp_units.push_back (per_cu);
5177 }
5178 sect_off_prev = sect_off_next;
5179 }
5180 }
5181
5182 /* Read the CU list from the mapped index, and use it to create all
5183 the CU objects for this dwarf2_per_objfile. */
5184
5185 static void
5186 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
5187 const mapped_debug_names &map,
5188 const mapped_debug_names &dwz_map)
5189 {
5190 gdb_assert (per_bfd->all_comp_units.empty ());
5191 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5192
5193 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
5194 false /* is_dwz */);
5195
5196 if (dwz_map.cu_count == 0)
5197 return;
5198
5199 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5200 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
5201 true /* is_dwz */);
5202 }
5203
5204 /* Read .debug_names. If everything went ok, initialize the "quick"
5205 elements of all the CUs and return true. Otherwise, return false. */
5206
5207 static bool
5208 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
5209 {
5210 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
5211 mapped_debug_names dwz_map;
5212 struct objfile *objfile = per_objfile->objfile;
5213 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5214
5215 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5216 &per_objfile->per_bfd->debug_names, *map))
5217 return false;
5218
5219 /* Don't use the index if it's empty. */
5220 if (map->name_count == 0)
5221 return false;
5222
5223 /* If there is a .dwz file, read it so we can get its CU list as
5224 well. */
5225 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5226 if (dwz != NULL)
5227 {
5228 if (!read_debug_names_from_section (objfile,
5229 bfd_get_filename (dwz->dwz_bfd.get ()),
5230 &dwz->debug_names, dwz_map))
5231 {
5232 warning (_("could not read '.debug_names' section from %s; skipping"),
5233 bfd_get_filename (dwz->dwz_bfd.get ()));
5234 return false;
5235 }
5236 }
5237
5238 create_cus_from_debug_names (per_bfd, *map, dwz_map);
5239
5240 if (map->tu_count != 0)
5241 {
5242 /* We can only handle a single .debug_types when we have an
5243 index. */
5244 if (per_bfd->types.size () != 1)
5245 return false;
5246
5247 dwarf2_section_info *section = &per_bfd->types[0];
5248
5249 create_signatured_type_table_from_debug_names
5250 (per_objfile, *map, section, &per_bfd->abbrev);
5251 }
5252
5253 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
5254
5255 per_bfd->debug_names_table = std::move (map);
5256 per_bfd->using_index = 1;
5257 per_bfd->quick_file_names_table =
5258 create_quick_file_names_table (per_objfile->per_bfd->all_comp_units.size ());
5259
5260 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
5261 objfiles using the same BFD. */
5262 gdb_assert (per_bfd->partial_symtabs == nullptr);
5263 per_bfd->partial_symtabs = objfile->partial_symtabs;
5264
5265 return true;
5266 }
5267
5268 /* Type used to manage iterating over all CUs looking for a symbol for
5269 .debug_names. */
5270
5271 class dw2_debug_names_iterator
5272 {
5273 public:
5274 dw2_debug_names_iterator (const mapped_debug_names &map,
5275 gdb::optional<block_enum> block_index,
5276 domain_enum domain,
5277 const char *name, dwarf2_per_objfile *per_objfile)
5278 : m_map (map), m_block_index (block_index), m_domain (domain),
5279 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
5280 m_per_objfile (per_objfile)
5281 {}
5282
5283 dw2_debug_names_iterator (const mapped_debug_names &map,
5284 search_domain search, uint32_t namei, dwarf2_per_objfile *per_objfile)
5285 : m_map (map),
5286 m_search (search),
5287 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5288 m_per_objfile (per_objfile)
5289 {}
5290
5291 dw2_debug_names_iterator (const mapped_debug_names &map,
5292 block_enum block_index, domain_enum domain,
5293 uint32_t namei, dwarf2_per_objfile *per_objfile)
5294 : m_map (map), m_block_index (block_index), m_domain (domain),
5295 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5296 m_per_objfile (per_objfile)
5297 {}
5298
5299 /* Return the next matching CU or NULL if there are no more. */
5300 dwarf2_per_cu_data *next ();
5301
5302 private:
5303 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5304 const char *name,
5305 dwarf2_per_objfile *per_objfile);
5306 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5307 uint32_t namei,
5308 dwarf2_per_objfile *per_objfile);
5309
5310 /* The internalized form of .debug_names. */
5311 const mapped_debug_names &m_map;
5312
5313 /* If set, only look for symbols that match that block. Valid values are
5314 GLOBAL_BLOCK and STATIC_BLOCK. */
5315 const gdb::optional<block_enum> m_block_index;
5316
5317 /* The kind of symbol we're looking for. */
5318 const domain_enum m_domain = UNDEF_DOMAIN;
5319 const search_domain m_search = ALL_DOMAIN;
5320
5321 /* The list of CUs from the index entry of the symbol, or NULL if
5322 not found. */
5323 const gdb_byte *m_addr;
5324
5325 dwarf2_per_objfile *m_per_objfile;
5326 };
5327
5328 const char *
5329 mapped_debug_names::namei_to_name
5330 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
5331 {
5332 const ULONGEST namei_string_offs
5333 = extract_unsigned_integer ((name_table_string_offs_reordered
5334 + namei * offset_size),
5335 offset_size,
5336 dwarf5_byte_order);
5337 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5338 }
5339
5340 /* Find a slot in .debug_names for the object named NAME. If NAME is
5341 found, return pointer to its pool data. If NAME cannot be found,
5342 return NULL. */
5343
5344 const gdb_byte *
5345 dw2_debug_names_iterator::find_vec_in_debug_names
5346 (const mapped_debug_names &map, const char *name,
5347 dwarf2_per_objfile *per_objfile)
5348 {
5349 int (*cmp) (const char *, const char *);
5350
5351 gdb::unique_xmalloc_ptr<char> without_params;
5352 if (current_language->la_language == language_cplus
5353 || current_language->la_language == language_fortran
5354 || current_language->la_language == language_d)
5355 {
5356 /* NAME is already canonical. Drop any qualifiers as
5357 .debug_names does not contain any. */
5358
5359 if (strchr (name, '(') != NULL)
5360 {
5361 without_params = cp_remove_params (name);
5362 if (without_params != NULL)
5363 name = without_params.get ();
5364 }
5365 }
5366
5367 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5368
5369 const uint32_t full_hash = dwarf5_djb_hash (name);
5370 uint32_t namei
5371 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5372 (map.bucket_table_reordered
5373 + (full_hash % map.bucket_count)), 4,
5374 map.dwarf5_byte_order);
5375 if (namei == 0)
5376 return NULL;
5377 --namei;
5378 if (namei >= map.name_count)
5379 {
5380 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5381 "[in module %s]"),
5382 namei, map.name_count,
5383 objfile_name (per_objfile->objfile));
5384 return NULL;
5385 }
5386
5387 for (;;)
5388 {
5389 const uint32_t namei_full_hash
5390 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5391 (map.hash_table_reordered + namei), 4,
5392 map.dwarf5_byte_order);
5393 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5394 return NULL;
5395
5396 if (full_hash == namei_full_hash)
5397 {
5398 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5399
5400 #if 0 /* An expensive sanity check. */
5401 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5402 {
5403 complaint (_("Wrong .debug_names hash for string at index %u "
5404 "[in module %s]"),
5405 namei, objfile_name (dwarf2_per_objfile->objfile));
5406 return NULL;
5407 }
5408 #endif
5409
5410 if (cmp (namei_string, name) == 0)
5411 {
5412 const ULONGEST namei_entry_offs
5413 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5414 + namei * map.offset_size),
5415 map.offset_size, map.dwarf5_byte_order);
5416 return map.entry_pool + namei_entry_offs;
5417 }
5418 }
5419
5420 ++namei;
5421 if (namei >= map.name_count)
5422 return NULL;
5423 }
5424 }
5425
5426 const gdb_byte *
5427 dw2_debug_names_iterator::find_vec_in_debug_names
5428 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5429 {
5430 if (namei >= map.name_count)
5431 {
5432 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5433 "[in module %s]"),
5434 namei, map.name_count,
5435 objfile_name (per_objfile->objfile));
5436 return NULL;
5437 }
5438
5439 const ULONGEST namei_entry_offs
5440 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5441 + namei * map.offset_size),
5442 map.offset_size, map.dwarf5_byte_order);
5443 return map.entry_pool + namei_entry_offs;
5444 }
5445
5446 /* See dw2_debug_names_iterator. */
5447
5448 dwarf2_per_cu_data *
5449 dw2_debug_names_iterator::next ()
5450 {
5451 if (m_addr == NULL)
5452 return NULL;
5453
5454 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5455 struct objfile *objfile = m_per_objfile->objfile;
5456 bfd *const abfd = objfile->obfd;
5457
5458 again:
5459
5460 unsigned int bytes_read;
5461 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5462 m_addr += bytes_read;
5463 if (abbrev == 0)
5464 return NULL;
5465
5466 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5467 if (indexval_it == m_map.abbrev_map.cend ())
5468 {
5469 complaint (_("Wrong .debug_names undefined abbrev code %s "
5470 "[in module %s]"),
5471 pulongest (abbrev), objfile_name (objfile));
5472 return NULL;
5473 }
5474 const mapped_debug_names::index_val &indexval = indexval_it->second;
5475 enum class symbol_linkage {
5476 unknown,
5477 static_,
5478 extern_,
5479 } symbol_linkage_ = symbol_linkage::unknown;
5480 dwarf2_per_cu_data *per_cu = NULL;
5481 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5482 {
5483 ULONGEST ull;
5484 switch (attr.form)
5485 {
5486 case DW_FORM_implicit_const:
5487 ull = attr.implicit_const;
5488 break;
5489 case DW_FORM_flag_present:
5490 ull = 1;
5491 break;
5492 case DW_FORM_udata:
5493 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5494 m_addr += bytes_read;
5495 break;
5496 case DW_FORM_ref4:
5497 ull = read_4_bytes (abfd, m_addr);
5498 m_addr += 4;
5499 break;
5500 case DW_FORM_ref8:
5501 ull = read_8_bytes (abfd, m_addr);
5502 m_addr += 8;
5503 break;
5504 case DW_FORM_ref_sig8:
5505 ull = read_8_bytes (abfd, m_addr);
5506 m_addr += 8;
5507 break;
5508 default:
5509 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5510 dwarf_form_name (attr.form),
5511 objfile_name (objfile));
5512 return NULL;
5513 }
5514 switch (attr.dw_idx)
5515 {
5516 case DW_IDX_compile_unit:
5517 /* Don't crash on bad data. */
5518 if (ull >= m_per_objfile->per_bfd->all_comp_units.size ())
5519 {
5520 complaint (_(".debug_names entry has bad CU index %s"
5521 " [in module %s]"),
5522 pulongest (ull),
5523 objfile_name (objfile));
5524 continue;
5525 }
5526 per_cu = per_bfd->get_cutu (ull);
5527 break;
5528 case DW_IDX_type_unit:
5529 /* Don't crash on bad data. */
5530 if (ull >= per_bfd->all_type_units.size ())
5531 {
5532 complaint (_(".debug_names entry has bad TU index %s"
5533 " [in module %s]"),
5534 pulongest (ull),
5535 objfile_name (objfile));
5536 continue;
5537 }
5538 per_cu = &per_bfd->get_tu (ull)->per_cu;
5539 break;
5540 case DW_IDX_die_offset:
5541 /* In a per-CU index (as opposed to a per-module index), index
5542 entries without CU attribute implicitly refer to the single CU. */
5543 if (per_cu == NULL)
5544 per_cu = per_bfd->get_cu (0);
5545 break;
5546 case DW_IDX_GNU_internal:
5547 if (!m_map.augmentation_is_gdb)
5548 break;
5549 symbol_linkage_ = symbol_linkage::static_;
5550 break;
5551 case DW_IDX_GNU_external:
5552 if (!m_map.augmentation_is_gdb)
5553 break;
5554 symbol_linkage_ = symbol_linkage::extern_;
5555 break;
5556 }
5557 }
5558
5559 /* Skip if already read in. */
5560 if (m_per_objfile->symtab_set_p (per_cu))
5561 goto again;
5562
5563 /* Check static vs global. */
5564 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5565 {
5566 const bool want_static = *m_block_index == STATIC_BLOCK;
5567 const bool symbol_is_static =
5568 symbol_linkage_ == symbol_linkage::static_;
5569 if (want_static != symbol_is_static)
5570 goto again;
5571 }
5572
5573 /* Match dw2_symtab_iter_next, symbol_kind
5574 and debug_names::psymbol_tag. */
5575 switch (m_domain)
5576 {
5577 case VAR_DOMAIN:
5578 switch (indexval.dwarf_tag)
5579 {
5580 case DW_TAG_variable:
5581 case DW_TAG_subprogram:
5582 /* Some types are also in VAR_DOMAIN. */
5583 case DW_TAG_typedef:
5584 case DW_TAG_structure_type:
5585 break;
5586 default:
5587 goto again;
5588 }
5589 break;
5590 case STRUCT_DOMAIN:
5591 switch (indexval.dwarf_tag)
5592 {
5593 case DW_TAG_typedef:
5594 case DW_TAG_structure_type:
5595 break;
5596 default:
5597 goto again;
5598 }
5599 break;
5600 case LABEL_DOMAIN:
5601 switch (indexval.dwarf_tag)
5602 {
5603 case 0:
5604 case DW_TAG_variable:
5605 break;
5606 default:
5607 goto again;
5608 }
5609 break;
5610 case MODULE_DOMAIN:
5611 switch (indexval.dwarf_tag)
5612 {
5613 case DW_TAG_module:
5614 break;
5615 default:
5616 goto again;
5617 }
5618 break;
5619 default:
5620 break;
5621 }
5622
5623 /* Match dw2_expand_symtabs_matching, symbol_kind and
5624 debug_names::psymbol_tag. */
5625 switch (m_search)
5626 {
5627 case VARIABLES_DOMAIN:
5628 switch (indexval.dwarf_tag)
5629 {
5630 case DW_TAG_variable:
5631 break;
5632 default:
5633 goto again;
5634 }
5635 break;
5636 case FUNCTIONS_DOMAIN:
5637 switch (indexval.dwarf_tag)
5638 {
5639 case DW_TAG_subprogram:
5640 break;
5641 default:
5642 goto again;
5643 }
5644 break;
5645 case TYPES_DOMAIN:
5646 switch (indexval.dwarf_tag)
5647 {
5648 case DW_TAG_typedef:
5649 case DW_TAG_structure_type:
5650 break;
5651 default:
5652 goto again;
5653 }
5654 break;
5655 case MODULES_DOMAIN:
5656 switch (indexval.dwarf_tag)
5657 {
5658 case DW_TAG_module:
5659 break;
5660 default:
5661 goto again;
5662 }
5663 default:
5664 break;
5665 }
5666
5667 return per_cu;
5668 }
5669
5670 static struct compunit_symtab *
5671 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5672 const char *name, domain_enum domain)
5673 {
5674 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5675
5676 const auto &mapp = per_objfile->per_bfd->debug_names_table;
5677 if (!mapp)
5678 {
5679 /* index is NULL if OBJF_READNOW. */
5680 return NULL;
5681 }
5682 const auto &map = *mapp;
5683
5684 dw2_debug_names_iterator iter (map, block_index, domain, name, per_objfile);
5685
5686 struct compunit_symtab *stab_best = NULL;
5687 struct dwarf2_per_cu_data *per_cu;
5688 while ((per_cu = iter.next ()) != NULL)
5689 {
5690 struct symbol *sym, *with_opaque = NULL;
5691 compunit_symtab *stab
5692 = dw2_instantiate_symtab (per_cu, per_objfile, false);
5693 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5694 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5695
5696 sym = block_find_symbol (block, name, domain,
5697 block_find_non_opaque_type_preferred,
5698 &with_opaque);
5699
5700 /* Some caution must be observed with overloaded functions and
5701 methods, since the index will not contain any overload
5702 information (but NAME might contain it). */
5703
5704 if (sym != NULL
5705 && strcmp_iw (sym->search_name (), name) == 0)
5706 return stab;
5707 if (with_opaque != NULL
5708 && strcmp_iw (with_opaque->search_name (), name) == 0)
5709 stab_best = stab;
5710
5711 /* Keep looking through other CUs. */
5712 }
5713
5714 return stab_best;
5715 }
5716
5717 /* This dumps minimal information about .debug_names. It is called
5718 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5719 uses this to verify that .debug_names has been loaded. */
5720
5721 static void
5722 dw2_debug_names_dump (struct objfile *objfile)
5723 {
5724 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5725
5726 gdb_assert (per_objfile->per_bfd->using_index);
5727 printf_filtered (".debug_names:");
5728 if (per_objfile->per_bfd->debug_names_table)
5729 printf_filtered (" exists\n");
5730 else
5731 printf_filtered (" faked for \"readnow\"\n");
5732 printf_filtered ("\n");
5733 }
5734
5735 static void
5736 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5737 const char *func_name)
5738 {
5739 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5740
5741 /* per_objfile->per_bfd->debug_names_table is NULL if OBJF_READNOW. */
5742 if (per_objfile->per_bfd->debug_names_table)
5743 {
5744 const mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5745
5746 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name,
5747 per_objfile);
5748
5749 struct dwarf2_per_cu_data *per_cu;
5750 while ((per_cu = iter.next ()) != NULL)
5751 dw2_instantiate_symtab (per_cu, per_objfile, false);
5752 }
5753 }
5754
5755 static void
5756 dw2_debug_names_map_matching_symbols
5757 (struct objfile *objfile,
5758 const lookup_name_info &name, domain_enum domain,
5759 int global,
5760 gdb::function_view<symbol_found_callback_ftype> callback,
5761 symbol_compare_ftype *ordered_compare)
5762 {
5763 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5764
5765 /* debug_names_table is NULL if OBJF_READNOW. */
5766 if (!per_objfile->per_bfd->debug_names_table)
5767 return;
5768
5769 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5770 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5771
5772 const char *match_name = name.ada ().lookup_name ().c_str ();
5773 auto matcher = [&] (const char *symname)
5774 {
5775 if (ordered_compare == nullptr)
5776 return true;
5777 return ordered_compare (symname, match_name) == 0;
5778 };
5779
5780 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5781 [&] (offset_type namei)
5782 {
5783 /* The name was matched, now expand corresponding CUs that were
5784 marked. */
5785 dw2_debug_names_iterator iter (map, block_kind, domain, namei,
5786 per_objfile);
5787
5788 struct dwarf2_per_cu_data *per_cu;
5789 while ((per_cu = iter.next ()) != NULL)
5790 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5791 nullptr);
5792 return true;
5793 }, per_objfile);
5794
5795 /* It's a shame we couldn't do this inside the
5796 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5797 that have already been expanded. Instead, this loop matches what
5798 the psymtab code does. */
5799 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5800 {
5801 compunit_symtab *symtab = per_objfile->get_symtab (per_cu);
5802 if (symtab != nullptr)
5803 {
5804 const struct block *block
5805 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5806 if (!iterate_over_symbols_terminated (block, name,
5807 domain, callback))
5808 break;
5809 }
5810 }
5811 }
5812
5813 static void
5814 dw2_debug_names_expand_symtabs_matching
5815 (struct objfile *objfile,
5816 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5817 const lookup_name_info *lookup_name,
5818 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5819 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5820 enum search_domain kind)
5821 {
5822 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5823
5824 /* debug_names_table is NULL if OBJF_READNOW. */
5825 if (!per_objfile->per_bfd->debug_names_table)
5826 return;
5827
5828 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5829
5830 if (symbol_matcher == NULL && lookup_name == NULL)
5831 {
5832 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5833 {
5834 QUIT;
5835
5836 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5837 expansion_notify);
5838 }
5839 return;
5840 }
5841
5842 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5843
5844 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5845 symbol_matcher,
5846 kind, [&] (offset_type namei)
5847 {
5848 /* The name was matched, now expand corresponding CUs that were
5849 marked. */
5850 dw2_debug_names_iterator iter (map, kind, namei, per_objfile);
5851
5852 struct dwarf2_per_cu_data *per_cu;
5853 while ((per_cu = iter.next ()) != NULL)
5854 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5855 expansion_notify);
5856 return true;
5857 }, per_objfile);
5858 }
5859
5860 const struct quick_symbol_functions dwarf2_debug_names_functions =
5861 {
5862 dw2_has_symbols,
5863 dw2_find_last_source_symtab,
5864 dw2_forget_cached_source_info,
5865 dw2_map_symtabs_matching_filename,
5866 dw2_debug_names_lookup_symbol,
5867 NULL,
5868 dw2_print_stats,
5869 dw2_debug_names_dump,
5870 dw2_debug_names_expand_symtabs_for_function,
5871 dw2_expand_all_symtabs,
5872 dw2_expand_symtabs_with_fullname,
5873 dw2_debug_names_map_matching_symbols,
5874 dw2_debug_names_expand_symtabs_matching,
5875 dw2_find_pc_sect_compunit_symtab,
5876 NULL,
5877 dw2_map_symbol_filenames
5878 };
5879
5880 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5881 to either a dwarf2_per_bfd or dwz_file object. */
5882
5883 template <typename T>
5884 static gdb::array_view<const gdb_byte>
5885 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5886 {
5887 dwarf2_section_info *section = &section_owner->gdb_index;
5888
5889 if (section->empty ())
5890 return {};
5891
5892 /* Older elfutils strip versions could keep the section in the main
5893 executable while splitting it for the separate debug info file. */
5894 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5895 return {};
5896
5897 section->read (obj);
5898
5899 /* dwarf2_section_info::size is a bfd_size_type, while
5900 gdb::array_view works with size_t. On 32-bit hosts, with
5901 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5902 is 32-bit. So we need an explicit narrowing conversion here.
5903 This is fine, because it's impossible to allocate or mmap an
5904 array/buffer larger than what size_t can represent. */
5905 return gdb::make_array_view (section->buffer, section->size);
5906 }
5907
5908 /* Lookup the index cache for the contents of the index associated to
5909 DWARF2_OBJ. */
5910
5911 static gdb::array_view<const gdb_byte>
5912 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5913 {
5914 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5915 if (build_id == nullptr)
5916 return {};
5917
5918 return global_index_cache.lookup_gdb_index (build_id,
5919 &dwarf2_per_bfd->index_cache_res);
5920 }
5921
5922 /* Same as the above, but for DWZ. */
5923
5924 static gdb::array_view<const gdb_byte>
5925 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5926 {
5927 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5928 if (build_id == nullptr)
5929 return {};
5930
5931 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5932 }
5933
5934 /* See symfile.h. */
5935
5936 bool
5937 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5938 {
5939 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5940 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5941
5942 /* If we're about to read full symbols, don't bother with the
5943 indices. In this case we also don't care if some other debug
5944 format is making psymtabs, because they are all about to be
5945 expanded anyway. */
5946 if ((objfile->flags & OBJF_READNOW))
5947 {
5948 /* When using READNOW, the using_index flag (set below) indicates that
5949 PER_BFD was already initialized, when we loaded some other objfile. */
5950 if (per_bfd->using_index)
5951 {
5952 *index_kind = dw_index_kind::GDB_INDEX;
5953 per_objfile->resize_symtabs ();
5954 return true;
5955 }
5956
5957 per_bfd->using_index = 1;
5958 create_all_comp_units (per_objfile);
5959 create_all_type_units (per_objfile);
5960 per_bfd->quick_file_names_table
5961 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
5962 per_objfile->resize_symtabs ();
5963
5964 for (int i = 0; i < (per_bfd->all_comp_units.size ()
5965 + per_bfd->all_type_units.size ()); ++i)
5966 {
5967 dwarf2_per_cu_data *per_cu = per_bfd->get_cutu (i);
5968
5969 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
5970 struct dwarf2_per_cu_quick_data);
5971 }
5972
5973 /* Return 1 so that gdb sees the "quick" functions. However,
5974 these functions will be no-ops because we will have expanded
5975 all symtabs. */
5976 *index_kind = dw_index_kind::GDB_INDEX;
5977 return true;
5978 }
5979
5980 /* Was a debug names index already read when we processed an objfile sharing
5981 PER_BFD? */
5982 if (per_bfd->debug_names_table != nullptr)
5983 {
5984 *index_kind = dw_index_kind::DEBUG_NAMES;
5985 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
5986 per_objfile->resize_symtabs ();
5987 return true;
5988 }
5989
5990 /* Was a GDB index already read when we processed an objfile sharing
5991 PER_BFD? */
5992 if (per_bfd->index_table != nullptr)
5993 {
5994 *index_kind = dw_index_kind::GDB_INDEX;
5995 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
5996 per_objfile->resize_symtabs ();
5997 return true;
5998 }
5999
6000 if (dwarf2_read_debug_names (per_objfile))
6001 {
6002 *index_kind = dw_index_kind::DEBUG_NAMES;
6003 per_objfile->resize_symtabs ();
6004 return true;
6005 }
6006
6007 if (dwarf2_read_gdb_index (per_objfile,
6008 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
6009 get_gdb_index_contents_from_section<dwz_file>))
6010 {
6011 *index_kind = dw_index_kind::GDB_INDEX;
6012 per_objfile->resize_symtabs ();
6013 return true;
6014 }
6015
6016 /* ... otherwise, try to find the index in the index cache. */
6017 if (dwarf2_read_gdb_index (per_objfile,
6018 get_gdb_index_contents_from_cache,
6019 get_gdb_index_contents_from_cache_dwz))
6020 {
6021 global_index_cache.hit ();
6022 *index_kind = dw_index_kind::GDB_INDEX;
6023 per_objfile->resize_symtabs ();
6024 return true;
6025 }
6026
6027 global_index_cache.miss ();
6028 return false;
6029 }
6030
6031 \f
6032
6033 /* Build a partial symbol table. */
6034
6035 void
6036 dwarf2_build_psymtabs (struct objfile *objfile)
6037 {
6038 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6039 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6040
6041 if (per_bfd->partial_symtabs != nullptr)
6042 {
6043 /* Partial symbols were already read, so now we can simply
6044 attach them. */
6045 objfile->partial_symtabs = per_bfd->partial_symtabs;
6046 per_objfile->resize_symtabs ();
6047 return;
6048 }
6049
6050 init_psymbol_list (objfile, 1024);
6051
6052 try
6053 {
6054 /* This isn't really ideal: all the data we allocate on the
6055 objfile's obstack is still uselessly kept around. However,
6056 freeing it seems unsafe. */
6057 psymtab_discarder psymtabs (objfile);
6058 dwarf2_build_psymtabs_hard (per_objfile);
6059 psymtabs.keep ();
6060
6061 per_objfile->resize_symtabs ();
6062
6063 /* (maybe) store an index in the cache. */
6064 global_index_cache.store (per_objfile);
6065 }
6066 catch (const gdb_exception_error &except)
6067 {
6068 exception_print (gdb_stderr, except);
6069 }
6070
6071 /* Finish by setting the local reference to partial symtabs, so that
6072 we don't try to read them again if reading another objfile with the same
6073 BFD. If we can't in fact share, this won't make a difference anyway as
6074 the dwarf2_per_bfd object won't be shared. */
6075 per_bfd->partial_symtabs = objfile->partial_symtabs;
6076 }
6077
6078 /* Find the base address of the compilation unit for range lists and
6079 location lists. It will normally be specified by DW_AT_low_pc.
6080 In DWARF-3 draft 4, the base address could be overridden by
6081 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6082 compilation units with discontinuous ranges. */
6083
6084 static void
6085 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6086 {
6087 struct attribute *attr;
6088
6089 cu->base_address.reset ();
6090
6091 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6092 if (attr != nullptr)
6093 cu->base_address = attr->value_as_address ();
6094 else
6095 {
6096 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6097 if (attr != nullptr)
6098 cu->base_address = attr->value_as_address ();
6099 }
6100 }
6101
6102 /* Helper function that returns the proper abbrev section for
6103 THIS_CU. */
6104
6105 static struct dwarf2_section_info *
6106 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6107 {
6108 struct dwarf2_section_info *abbrev;
6109 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
6110
6111 if (this_cu->is_dwz)
6112 abbrev = &dwarf2_get_dwz_file (per_bfd)->abbrev;
6113 else
6114 abbrev = &per_bfd->abbrev;
6115
6116 return abbrev;
6117 }
6118
6119 /* Fetch the abbreviation table offset from a comp or type unit header. */
6120
6121 static sect_offset
6122 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
6123 struct dwarf2_section_info *section,
6124 sect_offset sect_off)
6125 {
6126 bfd *abfd = section->get_bfd_owner ();
6127 const gdb_byte *info_ptr;
6128 unsigned int initial_length_size, offset_size;
6129 uint16_t version;
6130
6131 section->read (per_objfile->objfile);
6132 info_ptr = section->buffer + to_underlying (sect_off);
6133 read_initial_length (abfd, info_ptr, &initial_length_size);
6134 offset_size = initial_length_size == 4 ? 4 : 8;
6135 info_ptr += initial_length_size;
6136
6137 version = read_2_bytes (abfd, info_ptr);
6138 info_ptr += 2;
6139 if (version >= 5)
6140 {
6141 /* Skip unit type and address size. */
6142 info_ptr += 2;
6143 }
6144
6145 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6146 }
6147
6148 /* A partial symtab that is used only for include files. */
6149 struct dwarf2_include_psymtab : public partial_symtab
6150 {
6151 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6152 : partial_symtab (filename, objfile)
6153 {
6154 }
6155
6156 void read_symtab (struct objfile *objfile) override
6157 {
6158 /* It's an include file, no symbols to read for it.
6159 Everything is in the includer symtab. */
6160
6161 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6162 expansion of the includer psymtab. We use the dependencies[0] field to
6163 model the includer. But if we go the regular route of calling
6164 expand_psymtab here, and having expand_psymtab call expand_dependencies
6165 to expand the includer, we'll only use expand_psymtab on the includer
6166 (making it a non-toplevel psymtab), while if we expand the includer via
6167 another path, we'll use read_symtab (making it a toplevel psymtab).
6168 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6169 psymtab, and trigger read_symtab on the includer here directly. */
6170 includer ()->read_symtab (objfile);
6171 }
6172
6173 void expand_psymtab (struct objfile *objfile) override
6174 {
6175 /* This is not called by read_symtab, and should not be called by any
6176 expand_dependencies. */
6177 gdb_assert (false);
6178 }
6179
6180 bool readin_p (struct objfile *objfile) const override
6181 {
6182 return includer ()->readin_p (objfile);
6183 }
6184
6185 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
6186 {
6187 return nullptr;
6188 }
6189
6190 private:
6191 partial_symtab *includer () const
6192 {
6193 /* An include psymtab has exactly one dependency: the psymtab that
6194 includes it. */
6195 gdb_assert (this->number_of_dependencies == 1);
6196 return this->dependencies[0];
6197 }
6198 };
6199
6200 /* Allocate a new partial symtab for file named NAME and mark this new
6201 partial symtab as being an include of PST. */
6202
6203 static void
6204 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6205 struct objfile *objfile)
6206 {
6207 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6208
6209 if (!IS_ABSOLUTE_PATH (subpst->filename))
6210 subpst->dirname = pst->dirname;
6211
6212 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6213 subpst->dependencies[0] = pst;
6214 subpst->number_of_dependencies = 1;
6215 }
6216
6217 /* Read the Line Number Program data and extract the list of files
6218 included by the source file represented by PST. Build an include
6219 partial symtab for each of these included files. */
6220
6221 static void
6222 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6223 struct die_info *die,
6224 dwarf2_psymtab *pst)
6225 {
6226 line_header_up lh;
6227 struct attribute *attr;
6228
6229 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6230 if (attr != nullptr)
6231 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6232 if (lh == NULL)
6233 return; /* No linetable, so no includes. */
6234
6235 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6236 that we pass in the raw text_low here; that is ok because we're
6237 only decoding the line table to make include partial symtabs, and
6238 so the addresses aren't really used. */
6239 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6240 pst->raw_text_low (), 1);
6241 }
6242
6243 static hashval_t
6244 hash_signatured_type (const void *item)
6245 {
6246 const struct signatured_type *sig_type
6247 = (const struct signatured_type *) item;
6248
6249 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6250 return sig_type->signature;
6251 }
6252
6253 static int
6254 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6255 {
6256 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6257 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6258
6259 return lhs->signature == rhs->signature;
6260 }
6261
6262 /* Allocate a hash table for signatured types. */
6263
6264 static htab_up
6265 allocate_signatured_type_table ()
6266 {
6267 return htab_up (htab_create_alloc (41,
6268 hash_signatured_type,
6269 eq_signatured_type,
6270 NULL, xcalloc, xfree));
6271 }
6272
6273 /* A helper function to add a signatured type CU to a table. */
6274
6275 static int
6276 add_signatured_type_cu_to_table (void **slot, void *datum)
6277 {
6278 struct signatured_type *sigt = (struct signatured_type *) *slot;
6279 std::vector<signatured_type *> *all_type_units
6280 = (std::vector<signatured_type *> *) datum;
6281
6282 all_type_units->push_back (sigt);
6283
6284 return 1;
6285 }
6286
6287 /* A helper for create_debug_types_hash_table. Read types from SECTION
6288 and fill them into TYPES_HTAB. It will process only type units,
6289 therefore DW_UT_type. */
6290
6291 static void
6292 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
6293 struct dwo_file *dwo_file,
6294 dwarf2_section_info *section, htab_up &types_htab,
6295 rcuh_kind section_kind)
6296 {
6297 struct objfile *objfile = per_objfile->objfile;
6298 struct dwarf2_section_info *abbrev_section;
6299 bfd *abfd;
6300 const gdb_byte *info_ptr, *end_ptr;
6301
6302 abbrev_section = (dwo_file != NULL
6303 ? &dwo_file->sections.abbrev
6304 : &per_objfile->per_bfd->abbrev);
6305
6306 if (dwarf_read_debug)
6307 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6308 section->get_name (),
6309 abbrev_section->get_file_name ());
6310
6311 section->read (objfile);
6312 info_ptr = section->buffer;
6313
6314 if (info_ptr == NULL)
6315 return;
6316
6317 /* We can't set abfd until now because the section may be empty or
6318 not present, in which case the bfd is unknown. */
6319 abfd = section->get_bfd_owner ();
6320
6321 /* We don't use cutu_reader here because we don't need to read
6322 any dies: the signature is in the header. */
6323
6324 end_ptr = info_ptr + section->size;
6325 while (info_ptr < end_ptr)
6326 {
6327 struct signatured_type *sig_type;
6328 struct dwo_unit *dwo_tu;
6329 void **slot;
6330 const gdb_byte *ptr = info_ptr;
6331 struct comp_unit_head header;
6332 unsigned int length;
6333
6334 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6335
6336 /* Initialize it due to a false compiler warning. */
6337 header.signature = -1;
6338 header.type_cu_offset_in_tu = (cu_offset) -1;
6339
6340 /* We need to read the type's signature in order to build the hash
6341 table, but we don't need anything else just yet. */
6342
6343 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
6344 abbrev_section, ptr, section_kind);
6345
6346 length = header.get_length ();
6347
6348 /* Skip dummy type units. */
6349 if (ptr >= info_ptr + length
6350 || peek_abbrev_code (abfd, ptr) == 0
6351 || header.unit_type != DW_UT_type)
6352 {
6353 info_ptr += length;
6354 continue;
6355 }
6356
6357 if (types_htab == NULL)
6358 {
6359 if (dwo_file)
6360 types_htab = allocate_dwo_unit_table ();
6361 else
6362 types_htab = allocate_signatured_type_table ();
6363 }
6364
6365 if (dwo_file)
6366 {
6367 sig_type = NULL;
6368 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
6369 dwo_tu->dwo_file = dwo_file;
6370 dwo_tu->signature = header.signature;
6371 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6372 dwo_tu->section = section;
6373 dwo_tu->sect_off = sect_off;
6374 dwo_tu->length = length;
6375 }
6376 else
6377 {
6378 /* N.B.: type_offset is not usable if this type uses a DWO file.
6379 The real type_offset is in the DWO file. */
6380 dwo_tu = NULL;
6381 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6382 sig_type->signature = header.signature;
6383 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6384 sig_type->per_cu.is_debug_types = 1;
6385 sig_type->per_cu.section = section;
6386 sig_type->per_cu.sect_off = sect_off;
6387 sig_type->per_cu.length = length;
6388 }
6389
6390 slot = htab_find_slot (types_htab.get (),
6391 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6392 INSERT);
6393 gdb_assert (slot != NULL);
6394 if (*slot != NULL)
6395 {
6396 sect_offset dup_sect_off;
6397
6398 if (dwo_file)
6399 {
6400 const struct dwo_unit *dup_tu
6401 = (const struct dwo_unit *) *slot;
6402
6403 dup_sect_off = dup_tu->sect_off;
6404 }
6405 else
6406 {
6407 const struct signatured_type *dup_tu
6408 = (const struct signatured_type *) *slot;
6409
6410 dup_sect_off = dup_tu->per_cu.sect_off;
6411 }
6412
6413 complaint (_("debug type entry at offset %s is duplicate to"
6414 " the entry at offset %s, signature %s"),
6415 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6416 hex_string (header.signature));
6417 }
6418 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6419
6420 if (dwarf_read_debug > 1)
6421 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6422 sect_offset_str (sect_off),
6423 hex_string (header.signature));
6424
6425 info_ptr += length;
6426 }
6427 }
6428
6429 /* Create the hash table of all entries in the .debug_types
6430 (or .debug_types.dwo) section(s).
6431 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6432 otherwise it is NULL.
6433
6434 The result is a pointer to the hash table or NULL if there are no types.
6435
6436 Note: This function processes DWO files only, not DWP files. */
6437
6438 static void
6439 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
6440 struct dwo_file *dwo_file,
6441 gdb::array_view<dwarf2_section_info> type_sections,
6442 htab_up &types_htab)
6443 {
6444 for (dwarf2_section_info &section : type_sections)
6445 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
6446 rcuh_kind::TYPE);
6447 }
6448
6449 /* Create the hash table of all entries in the .debug_types section,
6450 and initialize all_type_units.
6451 The result is zero if there is an error (e.g. missing .debug_types section),
6452 otherwise non-zero. */
6453
6454 static int
6455 create_all_type_units (dwarf2_per_objfile *per_objfile)
6456 {
6457 htab_up types_htab;
6458
6459 create_debug_type_hash_table (per_objfile, NULL, &per_objfile->per_bfd->info,
6460 types_htab, rcuh_kind::COMPILE);
6461 create_debug_types_hash_table (per_objfile, NULL, per_objfile->per_bfd->types,
6462 types_htab);
6463 if (types_htab == NULL)
6464 {
6465 per_objfile->per_bfd->signatured_types = NULL;
6466 return 0;
6467 }
6468
6469 per_objfile->per_bfd->signatured_types = std::move (types_htab);
6470
6471 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
6472 per_objfile->per_bfd->all_type_units.reserve
6473 (htab_elements (per_objfile->per_bfd->signatured_types.get ()));
6474
6475 htab_traverse_noresize (per_objfile->per_bfd->signatured_types.get (),
6476 add_signatured_type_cu_to_table,
6477 &per_objfile->per_bfd->all_type_units);
6478
6479 return 1;
6480 }
6481
6482 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
6483 If SLOT is non-NULL, it is the entry to use in the hash table.
6484 Otherwise we find one. */
6485
6486 static struct signatured_type *
6487 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6488 {
6489 if (per_objfile->per_bfd->all_type_units.size ()
6490 == per_objfile->per_bfd->all_type_units.capacity ())
6491 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6492
6493 signatured_type *sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6494
6495 per_objfile->resize_symtabs ();
6496
6497 per_objfile->per_bfd->all_type_units.push_back (sig_type);
6498 sig_type->signature = sig;
6499 sig_type->per_cu.is_debug_types = 1;
6500 if (per_objfile->per_bfd->using_index)
6501 {
6502 sig_type->per_cu.v.quick =
6503 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6504 struct dwarf2_per_cu_quick_data);
6505 }
6506
6507 if (slot == NULL)
6508 {
6509 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6510 sig_type, INSERT);
6511 }
6512 gdb_assert (*slot == NULL);
6513 *slot = sig_type;
6514 /* The rest of sig_type must be filled in by the caller. */
6515 return sig_type;
6516 }
6517
6518 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6519 Fill in SIG_ENTRY with DWO_ENTRY. */
6520
6521 static void
6522 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6523 struct signatured_type *sig_entry,
6524 struct dwo_unit *dwo_entry)
6525 {
6526 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6527
6528 /* Make sure we're not clobbering something we don't expect to. */
6529 gdb_assert (! sig_entry->per_cu.queued);
6530 gdb_assert (per_objfile->get_cu (&sig_entry->per_cu) == NULL);
6531 if (per_bfd->using_index)
6532 {
6533 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6534 gdb_assert (!per_objfile->symtab_set_p (&sig_entry->per_cu));
6535 }
6536 else
6537 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6538 gdb_assert (sig_entry->signature == dwo_entry->signature);
6539 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6540 gdb_assert (sig_entry->type_unit_group == NULL);
6541 gdb_assert (sig_entry->dwo_unit == NULL);
6542
6543 sig_entry->per_cu.section = dwo_entry->section;
6544 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6545 sig_entry->per_cu.length = dwo_entry->length;
6546 sig_entry->per_cu.reading_dwo_directly = 1;
6547 sig_entry->per_cu.per_bfd = per_bfd;
6548 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6549 sig_entry->dwo_unit = dwo_entry;
6550 }
6551
6552 /* Subroutine of lookup_signatured_type.
6553 If we haven't read the TU yet, create the signatured_type data structure
6554 for a TU to be read in directly from a DWO file, bypassing the stub.
6555 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6556 using .gdb_index, then when reading a CU we want to stay in the DWO file
6557 containing that CU. Otherwise we could end up reading several other DWO
6558 files (due to comdat folding) to process the transitive closure of all the
6559 mentioned TUs, and that can be slow. The current DWO file will have every
6560 type signature that it needs.
6561 We only do this for .gdb_index because in the psymtab case we already have
6562 to read all the DWOs to build the type unit groups. */
6563
6564 static struct signatured_type *
6565 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6566 {
6567 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6568 struct dwo_file *dwo_file;
6569 struct dwo_unit find_dwo_entry, *dwo_entry;
6570 struct signatured_type find_sig_entry, *sig_entry;
6571 void **slot;
6572
6573 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6574
6575 /* If TU skeletons have been removed then we may not have read in any
6576 TUs yet. */
6577 if (per_objfile->per_bfd->signatured_types == NULL)
6578 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6579
6580 /* We only ever need to read in one copy of a signatured type.
6581 Use the global signatured_types array to do our own comdat-folding
6582 of types. If this is the first time we're reading this TU, and
6583 the TU has an entry in .gdb_index, replace the recorded data from
6584 .gdb_index with this TU. */
6585
6586 find_sig_entry.signature = sig;
6587 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6588 &find_sig_entry, INSERT);
6589 sig_entry = (struct signatured_type *) *slot;
6590
6591 /* We can get here with the TU already read, *or* in the process of being
6592 read. Don't reassign the global entry to point to this DWO if that's
6593 the case. Also note that if the TU is already being read, it may not
6594 have come from a DWO, the program may be a mix of Fission-compiled
6595 code and non-Fission-compiled code. */
6596
6597 /* Have we already tried to read this TU?
6598 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6599 needn't exist in the global table yet). */
6600 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6601 return sig_entry;
6602
6603 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6604 dwo_unit of the TU itself. */
6605 dwo_file = cu->dwo_unit->dwo_file;
6606
6607 /* Ok, this is the first time we're reading this TU. */
6608 if (dwo_file->tus == NULL)
6609 return NULL;
6610 find_dwo_entry.signature = sig;
6611 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6612 &find_dwo_entry);
6613 if (dwo_entry == NULL)
6614 return NULL;
6615
6616 /* If the global table doesn't have an entry for this TU, add one. */
6617 if (sig_entry == NULL)
6618 sig_entry = add_type_unit (per_objfile, sig, slot);
6619
6620 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6621 sig_entry->per_cu.tu_read = 1;
6622 return sig_entry;
6623 }
6624
6625 /* Subroutine of lookup_signatured_type.
6626 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6627 then try the DWP file. If the TU stub (skeleton) has been removed then
6628 it won't be in .gdb_index. */
6629
6630 static struct signatured_type *
6631 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6632 {
6633 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6634 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6635 struct dwo_unit *dwo_entry;
6636 struct signatured_type find_sig_entry, *sig_entry;
6637 void **slot;
6638
6639 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6640 gdb_assert (dwp_file != NULL);
6641
6642 /* If TU skeletons have been removed then we may not have read in any
6643 TUs yet. */
6644 if (per_objfile->per_bfd->signatured_types == NULL)
6645 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6646
6647 find_sig_entry.signature = sig;
6648 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6649 &find_sig_entry, INSERT);
6650 sig_entry = (struct signatured_type *) *slot;
6651
6652 /* Have we already tried to read this TU?
6653 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6654 needn't exist in the global table yet). */
6655 if (sig_entry != NULL)
6656 return sig_entry;
6657
6658 if (dwp_file->tus == NULL)
6659 return NULL;
6660 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6661 1 /* is_debug_types */);
6662 if (dwo_entry == NULL)
6663 return NULL;
6664
6665 sig_entry = add_type_unit (per_objfile, sig, slot);
6666 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6667
6668 return sig_entry;
6669 }
6670
6671 /* Lookup a signature based type for DW_FORM_ref_sig8.
6672 Returns NULL if signature SIG is not present in the table.
6673 It is up to the caller to complain about this. */
6674
6675 static struct signatured_type *
6676 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6677 {
6678 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6679
6680 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6681 {
6682 /* We're in a DWO/DWP file, and we're using .gdb_index.
6683 These cases require special processing. */
6684 if (get_dwp_file (per_objfile) == NULL)
6685 return lookup_dwo_signatured_type (cu, sig);
6686 else
6687 return lookup_dwp_signatured_type (cu, sig);
6688 }
6689 else
6690 {
6691 struct signatured_type find_entry, *entry;
6692
6693 if (per_objfile->per_bfd->signatured_types == NULL)
6694 return NULL;
6695 find_entry.signature = sig;
6696 entry = ((struct signatured_type *)
6697 htab_find (per_objfile->per_bfd->signatured_types.get (),
6698 &find_entry));
6699 return entry;
6700 }
6701 }
6702
6703 /* Low level DIE reading support. */
6704
6705 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6706
6707 static void
6708 init_cu_die_reader (struct die_reader_specs *reader,
6709 struct dwarf2_cu *cu,
6710 struct dwarf2_section_info *section,
6711 struct dwo_file *dwo_file,
6712 struct abbrev_table *abbrev_table)
6713 {
6714 gdb_assert (section->readin && section->buffer != NULL);
6715 reader->abfd = section->get_bfd_owner ();
6716 reader->cu = cu;
6717 reader->dwo_file = dwo_file;
6718 reader->die_section = section;
6719 reader->buffer = section->buffer;
6720 reader->buffer_end = section->buffer + section->size;
6721 reader->abbrev_table = abbrev_table;
6722 }
6723
6724 /* Subroutine of cutu_reader to simplify it.
6725 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6726 There's just a lot of work to do, and cutu_reader is big enough
6727 already.
6728
6729 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6730 from it to the DIE in the DWO. If NULL we are skipping the stub.
6731 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6732 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6733 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6734 STUB_COMP_DIR may be non-NULL.
6735 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6736 are filled in with the info of the DIE from the DWO file.
6737 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6738 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6739 kept around for at least as long as *RESULT_READER.
6740
6741 The result is non-zero if a valid (non-dummy) DIE was found. */
6742
6743 static int
6744 read_cutu_die_from_dwo (dwarf2_cu *cu,
6745 struct dwo_unit *dwo_unit,
6746 struct die_info *stub_comp_unit_die,
6747 const char *stub_comp_dir,
6748 struct die_reader_specs *result_reader,
6749 const gdb_byte **result_info_ptr,
6750 struct die_info **result_comp_unit_die,
6751 abbrev_table_up *result_dwo_abbrev_table)
6752 {
6753 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6754 dwarf2_per_cu_data *per_cu = cu->per_cu;
6755 struct objfile *objfile = per_objfile->objfile;
6756 bfd *abfd;
6757 const gdb_byte *begin_info_ptr, *info_ptr;
6758 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6759 int i,num_extra_attrs;
6760 struct dwarf2_section_info *dwo_abbrev_section;
6761 struct die_info *comp_unit_die;
6762
6763 /* At most one of these may be provided. */
6764 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6765
6766 /* These attributes aren't processed until later:
6767 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6768 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6769 referenced later. However, these attributes are found in the stub
6770 which we won't have later. In order to not impose this complication
6771 on the rest of the code, we read them here and copy them to the
6772 DWO CU/TU die. */
6773
6774 stmt_list = NULL;
6775 low_pc = NULL;
6776 high_pc = NULL;
6777 ranges = NULL;
6778 comp_dir = NULL;
6779
6780 if (stub_comp_unit_die != NULL)
6781 {
6782 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6783 DWO file. */
6784 if (!per_cu->is_debug_types)
6785 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6786 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6787 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6788 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6789 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6790
6791 cu->addr_base = stub_comp_unit_die->addr_base ();
6792
6793 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6794 here (if needed). We need the value before we can process
6795 DW_AT_ranges. */
6796 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6797 }
6798 else if (stub_comp_dir != NULL)
6799 {
6800 /* Reconstruct the comp_dir attribute to simplify the code below. */
6801 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6802 comp_dir->name = DW_AT_comp_dir;
6803 comp_dir->form = DW_FORM_string;
6804 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6805 DW_STRING (comp_dir) = stub_comp_dir;
6806 }
6807
6808 /* Set up for reading the DWO CU/TU. */
6809 cu->dwo_unit = dwo_unit;
6810 dwarf2_section_info *section = dwo_unit->section;
6811 section->read (objfile);
6812 abfd = section->get_bfd_owner ();
6813 begin_info_ptr = info_ptr = (section->buffer
6814 + to_underlying (dwo_unit->sect_off));
6815 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6816
6817 if (per_cu->is_debug_types)
6818 {
6819 signatured_type *sig_type = (struct signatured_type *) per_cu;
6820
6821 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6822 section, dwo_abbrev_section,
6823 info_ptr, rcuh_kind::TYPE);
6824 /* This is not an assert because it can be caused by bad debug info. */
6825 if (sig_type->signature != cu->header.signature)
6826 {
6827 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6828 " TU at offset %s [in module %s]"),
6829 hex_string (sig_type->signature),
6830 hex_string (cu->header.signature),
6831 sect_offset_str (dwo_unit->sect_off),
6832 bfd_get_filename (abfd));
6833 }
6834 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6835 /* For DWOs coming from DWP files, we don't know the CU length
6836 nor the type's offset in the TU until now. */
6837 dwo_unit->length = cu->header.get_length ();
6838 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6839
6840 /* Establish the type offset that can be used to lookup the type.
6841 For DWO files, we don't know it until now. */
6842 sig_type->type_offset_in_section
6843 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6844 }
6845 else
6846 {
6847 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6848 section, dwo_abbrev_section,
6849 info_ptr, rcuh_kind::COMPILE);
6850 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6851 /* For DWOs coming from DWP files, we don't know the CU length
6852 until now. */
6853 dwo_unit->length = cu->header.get_length ();
6854 }
6855
6856 *result_dwo_abbrev_table
6857 = abbrev_table::read (objfile, dwo_abbrev_section,
6858 cu->header.abbrev_sect_off);
6859 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6860 result_dwo_abbrev_table->get ());
6861
6862 /* Read in the die, but leave space to copy over the attributes
6863 from the stub. This has the benefit of simplifying the rest of
6864 the code - all the work to maintain the illusion of a single
6865 DW_TAG_{compile,type}_unit DIE is done here. */
6866 num_extra_attrs = ((stmt_list != NULL)
6867 + (low_pc != NULL)
6868 + (high_pc != NULL)
6869 + (ranges != NULL)
6870 + (comp_dir != NULL));
6871 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6872 num_extra_attrs);
6873
6874 /* Copy over the attributes from the stub to the DIE we just read in. */
6875 comp_unit_die = *result_comp_unit_die;
6876 i = comp_unit_die->num_attrs;
6877 if (stmt_list != NULL)
6878 comp_unit_die->attrs[i++] = *stmt_list;
6879 if (low_pc != NULL)
6880 comp_unit_die->attrs[i++] = *low_pc;
6881 if (high_pc != NULL)
6882 comp_unit_die->attrs[i++] = *high_pc;
6883 if (ranges != NULL)
6884 comp_unit_die->attrs[i++] = *ranges;
6885 if (comp_dir != NULL)
6886 comp_unit_die->attrs[i++] = *comp_dir;
6887 comp_unit_die->num_attrs += num_extra_attrs;
6888
6889 if (dwarf_die_debug)
6890 {
6891 fprintf_unfiltered (gdb_stdlog,
6892 "Read die from %s@0x%x of %s:\n",
6893 section->get_name (),
6894 (unsigned) (begin_info_ptr - section->buffer),
6895 bfd_get_filename (abfd));
6896 dump_die (comp_unit_die, dwarf_die_debug);
6897 }
6898
6899 /* Skip dummy compilation units. */
6900 if (info_ptr >= begin_info_ptr + dwo_unit->length
6901 || peek_abbrev_code (abfd, info_ptr) == 0)
6902 return 0;
6903
6904 *result_info_ptr = info_ptr;
6905 return 1;
6906 }
6907
6908 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6909 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6910 signature is part of the header. */
6911 static gdb::optional<ULONGEST>
6912 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6913 {
6914 if (cu->header.version >= 5)
6915 return cu->header.signature;
6916 struct attribute *attr;
6917 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6918 if (attr == nullptr)
6919 return gdb::optional<ULONGEST> ();
6920 return DW_UNSND (attr);
6921 }
6922
6923 /* Subroutine of cutu_reader to simplify it.
6924 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6925 Returns NULL if the specified DWO unit cannot be found. */
6926
6927 static struct dwo_unit *
6928 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6929 {
6930 dwarf2_per_cu_data *per_cu = cu->per_cu;
6931 struct dwo_unit *dwo_unit;
6932 const char *comp_dir;
6933
6934 gdb_assert (cu != NULL);
6935
6936 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6937 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6938 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6939
6940 if (per_cu->is_debug_types)
6941 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
6942 else
6943 {
6944 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6945
6946 if (!signature.has_value ())
6947 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6948 " [in module %s]"),
6949 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
6950
6951 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
6952 }
6953
6954 return dwo_unit;
6955 }
6956
6957 /* Subroutine of cutu_reader to simplify it.
6958 See it for a description of the parameters.
6959 Read a TU directly from a DWO file, bypassing the stub. */
6960
6961 void
6962 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
6963 dwarf2_per_objfile *per_objfile,
6964 dwarf2_cu *existing_cu)
6965 {
6966 struct signatured_type *sig_type;
6967
6968 /* Verify we can do the following downcast, and that we have the
6969 data we need. */
6970 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6971 sig_type = (struct signatured_type *) this_cu;
6972 gdb_assert (sig_type->dwo_unit != NULL);
6973
6974 dwarf2_cu *cu;
6975
6976 if (existing_cu != nullptr)
6977 {
6978 cu = existing_cu;
6979 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
6980 /* There's no need to do the rereading_dwo_cu handling that
6981 cutu_reader does since we don't read the stub. */
6982 }
6983 else
6984 {
6985 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6986 in per_objfile yet. */
6987 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6988 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6989 cu = m_new_cu.get ();
6990 }
6991
6992 /* A future optimization, if needed, would be to use an existing
6993 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6994 could share abbrev tables. */
6995
6996 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
6997 NULL /* stub_comp_unit_die */,
6998 sig_type->dwo_unit->dwo_file->comp_dir,
6999 this, &info_ptr,
7000 &comp_unit_die,
7001 &m_dwo_abbrev_table) == 0)
7002 {
7003 /* Dummy die. */
7004 dummy_p = true;
7005 }
7006 }
7007
7008 /* Initialize a CU (or TU) and read its DIEs.
7009 If the CU defers to a DWO file, read the DWO file as well.
7010
7011 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7012 Otherwise the table specified in the comp unit header is read in and used.
7013 This is an optimization for when we already have the abbrev table.
7014
7015 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
7016 allocated. */
7017
7018 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7019 dwarf2_per_objfile *per_objfile,
7020 struct abbrev_table *abbrev_table,
7021 dwarf2_cu *existing_cu,
7022 bool skip_partial)
7023 : die_reader_specs {},
7024 m_this_cu (this_cu)
7025 {
7026 struct objfile *objfile = per_objfile->objfile;
7027 struct dwarf2_section_info *section = this_cu->section;
7028 bfd *abfd = section->get_bfd_owner ();
7029 const gdb_byte *begin_info_ptr;
7030 struct signatured_type *sig_type = NULL;
7031 struct dwarf2_section_info *abbrev_section;
7032 /* Non-zero if CU currently points to a DWO file and we need to
7033 reread it. When this happens we need to reread the skeleton die
7034 before we can reread the DWO file (this only applies to CUs, not TUs). */
7035 int rereading_dwo_cu = 0;
7036
7037 if (dwarf_die_debug)
7038 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7039 this_cu->is_debug_types ? "type" : "comp",
7040 sect_offset_str (this_cu->sect_off));
7041
7042 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7043 file (instead of going through the stub), short-circuit all of this. */
7044 if (this_cu->reading_dwo_directly)
7045 {
7046 /* Narrow down the scope of possibilities to have to understand. */
7047 gdb_assert (this_cu->is_debug_types);
7048 gdb_assert (abbrev_table == NULL);
7049 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
7050 return;
7051 }
7052
7053 /* This is cheap if the section is already read in. */
7054 section->read (objfile);
7055
7056 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7057
7058 abbrev_section = get_abbrev_section_for_cu (this_cu);
7059
7060 dwarf2_cu *cu;
7061
7062 if (existing_cu != nullptr)
7063 {
7064 cu = existing_cu;
7065 /* If this CU is from a DWO file we need to start over, we need to
7066 refetch the attributes from the skeleton CU.
7067 This could be optimized by retrieving those attributes from when we
7068 were here the first time: the previous comp_unit_die was stored in
7069 comp_unit_obstack. But there's no data yet that we need this
7070 optimization. */
7071 if (cu->dwo_unit != NULL)
7072 rereading_dwo_cu = 1;
7073 }
7074 else
7075 {
7076 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7077 in per_objfile yet. */
7078 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7079 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7080 cu = m_new_cu.get ();
7081 }
7082
7083 /* Get the header. */
7084 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7085 {
7086 /* We already have the header, there's no need to read it in again. */
7087 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7088 }
7089 else
7090 {
7091 if (this_cu->is_debug_types)
7092 {
7093 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7094 section, abbrev_section,
7095 info_ptr, rcuh_kind::TYPE);
7096
7097 /* Since per_cu is the first member of struct signatured_type,
7098 we can go from a pointer to one to a pointer to the other. */
7099 sig_type = (struct signatured_type *) this_cu;
7100 gdb_assert (sig_type->signature == cu->header.signature);
7101 gdb_assert (sig_type->type_offset_in_tu
7102 == cu->header.type_cu_offset_in_tu);
7103 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7104
7105 /* LENGTH has not been set yet for type units if we're
7106 using .gdb_index. */
7107 this_cu->length = cu->header.get_length ();
7108
7109 /* Establish the type offset that can be used to lookup the type. */
7110 sig_type->type_offset_in_section =
7111 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7112
7113 this_cu->dwarf_version = cu->header.version;
7114 }
7115 else
7116 {
7117 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7118 section, abbrev_section,
7119 info_ptr,
7120 rcuh_kind::COMPILE);
7121
7122 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7123 if (this_cu->length == 0)
7124 this_cu->length = cu->header.get_length ();
7125 else
7126 gdb_assert (this_cu->length == cu->header.get_length ());
7127 this_cu->dwarf_version = cu->header.version;
7128 }
7129 }
7130
7131 /* Skip dummy compilation units. */
7132 if (info_ptr >= begin_info_ptr + this_cu->length
7133 || peek_abbrev_code (abfd, info_ptr) == 0)
7134 {
7135 dummy_p = true;
7136 return;
7137 }
7138
7139 /* If we don't have them yet, read the abbrevs for this compilation unit.
7140 And if we need to read them now, make sure they're freed when we're
7141 done. */
7142 if (abbrev_table != NULL)
7143 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7144 else
7145 {
7146 m_abbrev_table_holder
7147 = abbrev_table::read (objfile, abbrev_section,
7148 cu->header.abbrev_sect_off);
7149 abbrev_table = m_abbrev_table_holder.get ();
7150 }
7151
7152 /* Read the top level CU/TU die. */
7153 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7154 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7155
7156 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7157 {
7158 dummy_p = true;
7159 return;
7160 }
7161
7162 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7163 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7164 table from the DWO file and pass the ownership over to us. It will be
7165 referenced from READER, so we must make sure to free it after we're done
7166 with READER.
7167
7168 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7169 DWO CU, that this test will fail (the attribute will not be present). */
7170 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7171 if (dwo_name != nullptr)
7172 {
7173 struct dwo_unit *dwo_unit;
7174 struct die_info *dwo_comp_unit_die;
7175
7176 if (comp_unit_die->has_children)
7177 {
7178 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7179 " has children (offset %s) [in module %s]"),
7180 sect_offset_str (this_cu->sect_off),
7181 bfd_get_filename (abfd));
7182 }
7183 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
7184 if (dwo_unit != NULL)
7185 {
7186 if (read_cutu_die_from_dwo (cu, dwo_unit,
7187 comp_unit_die, NULL,
7188 this, &info_ptr,
7189 &dwo_comp_unit_die,
7190 &m_dwo_abbrev_table) == 0)
7191 {
7192 /* Dummy die. */
7193 dummy_p = true;
7194 return;
7195 }
7196 comp_unit_die = dwo_comp_unit_die;
7197 }
7198 else
7199 {
7200 /* Yikes, we couldn't find the rest of the DIE, we only have
7201 the stub. A complaint has already been logged. There's
7202 not much more we can do except pass on the stub DIE to
7203 die_reader_func. We don't want to throw an error on bad
7204 debug info. */
7205 }
7206 }
7207 }
7208
7209 void
7210 cutu_reader::keep ()
7211 {
7212 /* Done, clean up. */
7213 gdb_assert (!dummy_p);
7214 if (m_new_cu != NULL)
7215 {
7216 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
7217 now. */
7218 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
7219 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
7220 }
7221 }
7222
7223 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7224 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7225 assumed to have already done the lookup to find the DWO file).
7226
7227 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7228 THIS_CU->is_debug_types, but nothing else.
7229
7230 We fill in THIS_CU->length.
7231
7232 THIS_CU->cu is always freed when done.
7233 This is done in order to not leave THIS_CU->cu in a state where we have
7234 to care whether it refers to the "main" CU or the DWO CU.
7235
7236 When parent_cu is passed, it is used to provide a default value for
7237 str_offsets_base and addr_base from the parent. */
7238
7239 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7240 dwarf2_per_objfile *per_objfile,
7241 struct dwarf2_cu *parent_cu,
7242 struct dwo_file *dwo_file)
7243 : die_reader_specs {},
7244 m_this_cu (this_cu)
7245 {
7246 struct objfile *objfile = per_objfile->objfile;
7247 struct dwarf2_section_info *section = this_cu->section;
7248 bfd *abfd = section->get_bfd_owner ();
7249 struct dwarf2_section_info *abbrev_section;
7250 const gdb_byte *begin_info_ptr, *info_ptr;
7251
7252 if (dwarf_die_debug)
7253 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7254 this_cu->is_debug_types ? "type" : "comp",
7255 sect_offset_str (this_cu->sect_off));
7256
7257 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7258
7259 abbrev_section = (dwo_file != NULL
7260 ? &dwo_file->sections.abbrev
7261 : get_abbrev_section_for_cu (this_cu));
7262
7263 /* This is cheap if the section is already read in. */
7264 section->read (objfile);
7265
7266 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7267
7268 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7269 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
7270 section, abbrev_section, info_ptr,
7271 (this_cu->is_debug_types
7272 ? rcuh_kind::TYPE
7273 : rcuh_kind::COMPILE));
7274
7275 if (parent_cu != nullptr)
7276 {
7277 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7278 m_new_cu->addr_base = parent_cu->addr_base;
7279 }
7280 this_cu->length = m_new_cu->header.get_length ();
7281
7282 /* Skip dummy compilation units. */
7283 if (info_ptr >= begin_info_ptr + this_cu->length
7284 || peek_abbrev_code (abfd, info_ptr) == 0)
7285 {
7286 dummy_p = true;
7287 return;
7288 }
7289
7290 m_abbrev_table_holder
7291 = abbrev_table::read (objfile, abbrev_section,
7292 m_new_cu->header.abbrev_sect_off);
7293
7294 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7295 m_abbrev_table_holder.get ());
7296 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7297 }
7298
7299 \f
7300 /* Type Unit Groups.
7301
7302 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7303 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7304 so that all types coming from the same compilation (.o file) are grouped
7305 together. A future step could be to put the types in the same symtab as
7306 the CU the types ultimately came from. */
7307
7308 static hashval_t
7309 hash_type_unit_group (const void *item)
7310 {
7311 const struct type_unit_group *tu_group
7312 = (const struct type_unit_group *) item;
7313
7314 return hash_stmt_list_entry (&tu_group->hash);
7315 }
7316
7317 static int
7318 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7319 {
7320 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7321 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7322
7323 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7324 }
7325
7326 /* Allocate a hash table for type unit groups. */
7327
7328 static htab_up
7329 allocate_type_unit_groups_table ()
7330 {
7331 return htab_up (htab_create_alloc (3,
7332 hash_type_unit_group,
7333 eq_type_unit_group,
7334 NULL, xcalloc, xfree));
7335 }
7336
7337 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7338 partial symtabs. We combine several TUs per psymtab to not let the size
7339 of any one psymtab grow too big. */
7340 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7341 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7342
7343 /* Helper routine for get_type_unit_group.
7344 Create the type_unit_group object used to hold one or more TUs. */
7345
7346 static struct type_unit_group *
7347 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7348 {
7349 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7350 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7351 struct dwarf2_per_cu_data *per_cu;
7352 struct type_unit_group *tu_group;
7353
7354 tu_group = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, type_unit_group);
7355 per_cu = &tu_group->per_cu;
7356 per_cu->per_bfd = per_bfd;
7357
7358 if (per_bfd->using_index)
7359 {
7360 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
7361 struct dwarf2_per_cu_quick_data);
7362 }
7363 else
7364 {
7365 unsigned int line_offset = to_underlying (line_offset_struct);
7366 dwarf2_psymtab *pst;
7367 std::string name;
7368
7369 /* Give the symtab a useful name for debug purposes. */
7370 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7371 name = string_printf ("<type_units_%d>",
7372 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7373 else
7374 name = string_printf ("<type_units_at_0x%x>", line_offset);
7375
7376 pst = create_partial_symtab (per_cu, per_objfile, name.c_str ());
7377 pst->anonymous = true;
7378 }
7379
7380 tu_group->hash.dwo_unit = cu->dwo_unit;
7381 tu_group->hash.line_sect_off = line_offset_struct;
7382
7383 return tu_group;
7384 }
7385
7386 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7387 STMT_LIST is a DW_AT_stmt_list attribute. */
7388
7389 static struct type_unit_group *
7390 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7391 {
7392 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7393 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7394 struct type_unit_group *tu_group;
7395 void **slot;
7396 unsigned int line_offset;
7397 struct type_unit_group type_unit_group_for_lookup;
7398
7399 if (per_objfile->per_bfd->type_unit_groups == NULL)
7400 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
7401
7402 /* Do we need to create a new group, or can we use an existing one? */
7403
7404 if (stmt_list)
7405 {
7406 line_offset = DW_UNSND (stmt_list);
7407 ++tu_stats->nr_symtab_sharers;
7408 }
7409 else
7410 {
7411 /* Ugh, no stmt_list. Rare, but we have to handle it.
7412 We can do various things here like create one group per TU or
7413 spread them over multiple groups to split up the expansion work.
7414 To avoid worst case scenarios (too many groups or too large groups)
7415 we, umm, group them in bunches. */
7416 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7417 | (tu_stats->nr_stmt_less_type_units
7418 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7419 ++tu_stats->nr_stmt_less_type_units;
7420 }
7421
7422 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7423 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7424 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
7425 &type_unit_group_for_lookup, INSERT);
7426 if (*slot != NULL)
7427 {
7428 tu_group = (struct type_unit_group *) *slot;
7429 gdb_assert (tu_group != NULL);
7430 }
7431 else
7432 {
7433 sect_offset line_offset_struct = (sect_offset) line_offset;
7434 tu_group = create_type_unit_group (cu, line_offset_struct);
7435 *slot = tu_group;
7436 ++tu_stats->nr_symtabs;
7437 }
7438
7439 return tu_group;
7440 }
7441 \f
7442 /* Partial symbol tables. */
7443
7444 /* Create a psymtab named NAME and assign it to PER_CU.
7445
7446 The caller must fill in the following details:
7447 dirname, textlow, texthigh. */
7448
7449 static dwarf2_psymtab *
7450 create_partial_symtab (dwarf2_per_cu_data *per_cu,
7451 dwarf2_per_objfile *per_objfile,
7452 const char *name)
7453 {
7454 struct objfile *objfile = per_objfile->objfile;
7455 dwarf2_psymtab *pst;
7456
7457 pst = new dwarf2_psymtab (name, objfile, per_cu);
7458
7459 pst->psymtabs_addrmap_supported = true;
7460
7461 /* This is the glue that links PST into GDB's symbol API. */
7462 per_cu->v.psymtab = pst;
7463
7464 return pst;
7465 }
7466
7467 /* DIE reader function for process_psymtab_comp_unit. */
7468
7469 static void
7470 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7471 const gdb_byte *info_ptr,
7472 struct die_info *comp_unit_die,
7473 enum language pretend_language)
7474 {
7475 struct dwarf2_cu *cu = reader->cu;
7476 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7477 struct objfile *objfile = per_objfile->objfile;
7478 struct gdbarch *gdbarch = objfile->arch ();
7479 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7480 CORE_ADDR baseaddr;
7481 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7482 dwarf2_psymtab *pst;
7483 enum pc_bounds_kind cu_bounds_kind;
7484 const char *filename;
7485
7486 gdb_assert (! per_cu->is_debug_types);
7487
7488 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7489
7490 /* Allocate a new partial symbol table structure. */
7491 gdb::unique_xmalloc_ptr<char> debug_filename;
7492 static const char artificial[] = "<artificial>";
7493 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7494 if (filename == NULL)
7495 filename = "";
7496 else if (strcmp (filename, artificial) == 0)
7497 {
7498 debug_filename.reset (concat (artificial, "@",
7499 sect_offset_str (per_cu->sect_off),
7500 (char *) NULL));
7501 filename = debug_filename.get ();
7502 }
7503
7504 pst = create_partial_symtab (per_cu, per_objfile, filename);
7505
7506 /* This must be done before calling dwarf2_build_include_psymtabs. */
7507 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7508
7509 baseaddr = objfile->text_section_offset ();
7510
7511 dwarf2_find_base_address (comp_unit_die, cu);
7512
7513 /* Possibly set the default values of LOWPC and HIGHPC from
7514 `DW_AT_ranges'. */
7515 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7516 &best_highpc, cu, pst);
7517 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7518 {
7519 CORE_ADDR low
7520 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7521 - baseaddr);
7522 CORE_ADDR high
7523 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7524 - baseaddr - 1);
7525 /* Store the contiguous range if it is not empty; it can be
7526 empty for CUs with no code. */
7527 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7528 low, high, pst);
7529 }
7530
7531 /* Check if comp unit has_children.
7532 If so, read the rest of the partial symbols from this comp unit.
7533 If not, there's no more debug_info for this comp unit. */
7534 if (comp_unit_die->has_children)
7535 {
7536 struct partial_die_info *first_die;
7537 CORE_ADDR lowpc, highpc;
7538
7539 lowpc = ((CORE_ADDR) -1);
7540 highpc = ((CORE_ADDR) 0);
7541
7542 first_die = load_partial_dies (reader, info_ptr, 1);
7543
7544 scan_partial_symbols (first_die, &lowpc, &highpc,
7545 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7546
7547 /* If we didn't find a lowpc, set it to highpc to avoid
7548 complaints from `maint check'. */
7549 if (lowpc == ((CORE_ADDR) -1))
7550 lowpc = highpc;
7551
7552 /* If the compilation unit didn't have an explicit address range,
7553 then use the information extracted from its child dies. */
7554 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7555 {
7556 best_lowpc = lowpc;
7557 best_highpc = highpc;
7558 }
7559 }
7560 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7561 best_lowpc + baseaddr)
7562 - baseaddr);
7563 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7564 best_highpc + baseaddr)
7565 - baseaddr);
7566
7567 end_psymtab_common (objfile, pst);
7568
7569 if (!cu->per_cu->imported_symtabs_empty ())
7570 {
7571 int i;
7572 int len = cu->per_cu->imported_symtabs_size ();
7573
7574 /* Fill in 'dependencies' here; we fill in 'users' in a
7575 post-pass. */
7576 pst->number_of_dependencies = len;
7577 pst->dependencies
7578 = objfile->partial_symtabs->allocate_dependencies (len);
7579 for (i = 0; i < len; ++i)
7580 {
7581 pst->dependencies[i]
7582 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7583 }
7584
7585 cu->per_cu->imported_symtabs_free ();
7586 }
7587
7588 /* Get the list of files included in the current compilation unit,
7589 and build a psymtab for each of them. */
7590 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7591
7592 if (dwarf_read_debug)
7593 fprintf_unfiltered (gdb_stdlog,
7594 "Psymtab for %s unit @%s: %s - %s"
7595 ", %d global, %d static syms\n",
7596 per_cu->is_debug_types ? "type" : "comp",
7597 sect_offset_str (per_cu->sect_off),
7598 paddress (gdbarch, pst->text_low (objfile)),
7599 paddress (gdbarch, pst->text_high (objfile)),
7600 pst->n_global_syms, pst->n_static_syms);
7601 }
7602
7603 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7604 Process compilation unit THIS_CU for a psymtab. */
7605
7606 static void
7607 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7608 dwarf2_per_objfile *per_objfile,
7609 bool want_partial_unit,
7610 enum language pretend_language)
7611 {
7612 /* If this compilation unit was already read in, free the
7613 cached copy in order to read it in again. This is
7614 necessary because we skipped some symbols when we first
7615 read in the compilation unit (see load_partial_dies).
7616 This problem could be avoided, but the benefit is unclear. */
7617 per_objfile->remove_cu (this_cu);
7618
7619 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7620
7621 switch (reader.comp_unit_die->tag)
7622 {
7623 case DW_TAG_compile_unit:
7624 this_cu->unit_type = DW_UT_compile;
7625 break;
7626 case DW_TAG_partial_unit:
7627 this_cu->unit_type = DW_UT_partial;
7628 break;
7629 default:
7630 abort ();
7631 }
7632
7633 if (reader.dummy_p)
7634 {
7635 /* Nothing. */
7636 }
7637 else if (this_cu->is_debug_types)
7638 build_type_psymtabs_reader (&reader, reader.info_ptr,
7639 reader.comp_unit_die);
7640 else if (want_partial_unit
7641 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7642 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7643 reader.comp_unit_die,
7644 pretend_language);
7645
7646 this_cu->lang = reader.cu->language;
7647
7648 /* Age out any secondary CUs. */
7649 per_objfile->age_comp_units ();
7650 }
7651
7652 /* Reader function for build_type_psymtabs. */
7653
7654 static void
7655 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7656 const gdb_byte *info_ptr,
7657 struct die_info *type_unit_die)
7658 {
7659 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7660 struct objfile *objfile = per_objfile->objfile;
7661 struct dwarf2_cu *cu = reader->cu;
7662 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7663 struct signatured_type *sig_type;
7664 struct type_unit_group *tu_group;
7665 struct attribute *attr;
7666 struct partial_die_info *first_die;
7667 CORE_ADDR lowpc, highpc;
7668 dwarf2_psymtab *pst;
7669
7670 gdb_assert (per_cu->is_debug_types);
7671 sig_type = (struct signatured_type *) per_cu;
7672
7673 if (! type_unit_die->has_children)
7674 return;
7675
7676 attr = type_unit_die->attr (DW_AT_stmt_list);
7677 tu_group = get_type_unit_group (cu, attr);
7678
7679 if (tu_group->tus == nullptr)
7680 tu_group->tus = new std::vector<signatured_type *>;
7681 tu_group->tus->push_back (sig_type);
7682
7683 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7684 pst = create_partial_symtab (per_cu, per_objfile, "");
7685 pst->anonymous = true;
7686
7687 first_die = load_partial_dies (reader, info_ptr, 1);
7688
7689 lowpc = (CORE_ADDR) -1;
7690 highpc = (CORE_ADDR) 0;
7691 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7692
7693 end_psymtab_common (objfile, pst);
7694 }
7695
7696 /* Struct used to sort TUs by their abbreviation table offset. */
7697
7698 struct tu_abbrev_offset
7699 {
7700 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7701 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7702 {}
7703
7704 signatured_type *sig_type;
7705 sect_offset abbrev_offset;
7706 };
7707
7708 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7709
7710 static bool
7711 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7712 const struct tu_abbrev_offset &b)
7713 {
7714 return a.abbrev_offset < b.abbrev_offset;
7715 }
7716
7717 /* Efficiently read all the type units.
7718 This does the bulk of the work for build_type_psymtabs.
7719
7720 The efficiency is because we sort TUs by the abbrev table they use and
7721 only read each abbrev table once. In one program there are 200K TUs
7722 sharing 8K abbrev tables.
7723
7724 The main purpose of this function is to support building the
7725 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7726 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7727 can collapse the search space by grouping them by stmt_list.
7728 The savings can be significant, in the same program from above the 200K TUs
7729 share 8K stmt_list tables.
7730
7731 FUNC is expected to call get_type_unit_group, which will create the
7732 struct type_unit_group if necessary and add it to
7733 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7734
7735 static void
7736 build_type_psymtabs_1 (dwarf2_per_objfile *per_objfile)
7737 {
7738 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7739 abbrev_table_up abbrev_table;
7740 sect_offset abbrev_offset;
7741
7742 /* It's up to the caller to not call us multiple times. */
7743 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7744
7745 if (per_objfile->per_bfd->all_type_units.empty ())
7746 return;
7747
7748 /* TUs typically share abbrev tables, and there can be way more TUs than
7749 abbrev tables. Sort by abbrev table to reduce the number of times we
7750 read each abbrev table in.
7751 Alternatives are to punt or to maintain a cache of abbrev tables.
7752 This is simpler and efficient enough for now.
7753
7754 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7755 symtab to use). Typically TUs with the same abbrev offset have the same
7756 stmt_list value too so in practice this should work well.
7757
7758 The basic algorithm here is:
7759
7760 sort TUs by abbrev table
7761 for each TU with same abbrev table:
7762 read abbrev table if first user
7763 read TU top level DIE
7764 [IWBN if DWO skeletons had DW_AT_stmt_list]
7765 call FUNC */
7766
7767 if (dwarf_read_debug)
7768 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7769
7770 /* Sort in a separate table to maintain the order of all_type_units
7771 for .gdb_index: TU indices directly index all_type_units. */
7772 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7773 sorted_by_abbrev.reserve (per_objfile->per_bfd->all_type_units.size ());
7774
7775 for (signatured_type *sig_type : per_objfile->per_bfd->all_type_units)
7776 sorted_by_abbrev.emplace_back
7777 (sig_type, read_abbrev_offset (per_objfile, sig_type->per_cu.section,
7778 sig_type->per_cu.sect_off));
7779
7780 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7781 sort_tu_by_abbrev_offset);
7782
7783 abbrev_offset = (sect_offset) ~(unsigned) 0;
7784
7785 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7786 {
7787 /* Switch to the next abbrev table if necessary. */
7788 if (abbrev_table == NULL
7789 || tu.abbrev_offset != abbrev_offset)
7790 {
7791 abbrev_offset = tu.abbrev_offset;
7792 abbrev_table =
7793 abbrev_table::read (per_objfile->objfile,
7794 &per_objfile->per_bfd->abbrev, abbrev_offset);
7795 ++tu_stats->nr_uniq_abbrev_tables;
7796 }
7797
7798 cutu_reader reader (&tu.sig_type->per_cu, per_objfile,
7799 abbrev_table.get (), nullptr, false);
7800 if (!reader.dummy_p)
7801 build_type_psymtabs_reader (&reader, reader.info_ptr,
7802 reader.comp_unit_die);
7803 }
7804 }
7805
7806 /* Print collected type unit statistics. */
7807
7808 static void
7809 print_tu_stats (dwarf2_per_objfile *per_objfile)
7810 {
7811 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7812
7813 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7814 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7815 per_objfile->per_bfd->all_type_units.size ());
7816 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7817 tu_stats->nr_uniq_abbrev_tables);
7818 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7819 tu_stats->nr_symtabs);
7820 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7821 tu_stats->nr_symtab_sharers);
7822 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7823 tu_stats->nr_stmt_less_type_units);
7824 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7825 tu_stats->nr_all_type_units_reallocs);
7826 }
7827
7828 /* Traversal function for build_type_psymtabs. */
7829
7830 static int
7831 build_type_psymtab_dependencies (void **slot, void *info)
7832 {
7833 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7834 struct objfile *objfile = per_objfile->objfile;
7835 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7836 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7837 dwarf2_psymtab *pst = per_cu->v.psymtab;
7838 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7839 int i;
7840
7841 gdb_assert (len > 0);
7842 gdb_assert (per_cu->type_unit_group_p ());
7843
7844 pst->number_of_dependencies = len;
7845 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7846 for (i = 0; i < len; ++i)
7847 {
7848 struct signatured_type *iter = tu_group->tus->at (i);
7849 gdb_assert (iter->per_cu.is_debug_types);
7850 pst->dependencies[i] = iter->per_cu.v.psymtab;
7851 iter->type_unit_group = tu_group;
7852 }
7853
7854 delete tu_group->tus;
7855 tu_group->tus = nullptr;
7856
7857 return 1;
7858 }
7859
7860 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7861 Build partial symbol tables for the .debug_types comp-units. */
7862
7863 static void
7864 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7865 {
7866 if (! create_all_type_units (per_objfile))
7867 return;
7868
7869 build_type_psymtabs_1 (per_objfile);
7870 }
7871
7872 /* Traversal function for process_skeletonless_type_unit.
7873 Read a TU in a DWO file and build partial symbols for it. */
7874
7875 static int
7876 process_skeletonless_type_unit (void **slot, void *info)
7877 {
7878 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7879 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7880 struct signatured_type find_entry, *entry;
7881
7882 /* If this TU doesn't exist in the global table, add it and read it in. */
7883
7884 if (per_objfile->per_bfd->signatured_types == NULL)
7885 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7886
7887 find_entry.signature = dwo_unit->signature;
7888 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7889 &find_entry, INSERT);
7890 /* If we've already seen this type there's nothing to do. What's happening
7891 is we're doing our own version of comdat-folding here. */
7892 if (*slot != NULL)
7893 return 1;
7894
7895 /* This does the job that create_all_type_units would have done for
7896 this TU. */
7897 entry = add_type_unit (per_objfile, dwo_unit->signature, slot);
7898 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7899 *slot = entry;
7900
7901 /* This does the job that build_type_psymtabs_1 would have done. */
7902 cutu_reader reader (&entry->per_cu, per_objfile, nullptr, nullptr, false);
7903 if (!reader.dummy_p)
7904 build_type_psymtabs_reader (&reader, reader.info_ptr,
7905 reader.comp_unit_die);
7906
7907 return 1;
7908 }
7909
7910 /* Traversal function for process_skeletonless_type_units. */
7911
7912 static int
7913 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7914 {
7915 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7916
7917 if (dwo_file->tus != NULL)
7918 htab_traverse_noresize (dwo_file->tus.get (),
7919 process_skeletonless_type_unit, info);
7920
7921 return 1;
7922 }
7923
7924 /* Scan all TUs of DWO files, verifying we've processed them.
7925 This is needed in case a TU was emitted without its skeleton.
7926 Note: This can't be done until we know what all the DWO files are. */
7927
7928 static void
7929 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
7930 {
7931 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7932 if (get_dwp_file (per_objfile) == NULL
7933 && per_objfile->per_bfd->dwo_files != NULL)
7934 {
7935 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
7936 process_dwo_file_for_skeletonless_type_units,
7937 per_objfile);
7938 }
7939 }
7940
7941 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7942
7943 static void
7944 set_partial_user (dwarf2_per_objfile *per_objfile)
7945 {
7946 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
7947 {
7948 dwarf2_psymtab *pst = per_cu->v.psymtab;
7949
7950 if (pst == NULL)
7951 continue;
7952
7953 for (int j = 0; j < pst->number_of_dependencies; ++j)
7954 {
7955 /* Set the 'user' field only if it is not already set. */
7956 if (pst->dependencies[j]->user == NULL)
7957 pst->dependencies[j]->user = pst;
7958 }
7959 }
7960 }
7961
7962 /* Build the partial symbol table by doing a quick pass through the
7963 .debug_info and .debug_abbrev sections. */
7964
7965 static void
7966 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
7967 {
7968 struct objfile *objfile = per_objfile->objfile;
7969
7970 if (dwarf_read_debug)
7971 {
7972 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7973 objfile_name (objfile));
7974 }
7975
7976 scoped_restore restore_reading_psyms
7977 = make_scoped_restore (&per_objfile->per_bfd->reading_partial_symbols,
7978 true);
7979
7980 per_objfile->per_bfd->info.read (objfile);
7981
7982 /* Any cached compilation units will be linked by the per-objfile
7983 read_in_chain. Make sure to free them when we're done. */
7984 free_cached_comp_units freer (per_objfile);
7985
7986 build_type_psymtabs (per_objfile);
7987
7988 create_all_comp_units (per_objfile);
7989
7990 /* Create a temporary address map on a temporary obstack. We later
7991 copy this to the final obstack. */
7992 auto_obstack temp_obstack;
7993
7994 scoped_restore save_psymtabs_addrmap
7995 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7996 addrmap_create_mutable (&temp_obstack));
7997
7998 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
7999 {
8000 if (per_cu->v.psymtab != NULL)
8001 /* In case a forward DW_TAG_imported_unit has read the CU already. */
8002 continue;
8003 process_psymtab_comp_unit (per_cu, per_objfile, false,
8004 language_minimal);
8005 }
8006
8007 /* This has to wait until we read the CUs, we need the list of DWOs. */
8008 process_skeletonless_type_units (per_objfile);
8009
8010 /* Now that all TUs have been processed we can fill in the dependencies. */
8011 if (per_objfile->per_bfd->type_unit_groups != NULL)
8012 {
8013 htab_traverse_noresize (per_objfile->per_bfd->type_unit_groups.get (),
8014 build_type_psymtab_dependencies, per_objfile);
8015 }
8016
8017 if (dwarf_read_debug)
8018 print_tu_stats (per_objfile);
8019
8020 set_partial_user (per_objfile);
8021
8022 objfile->partial_symtabs->psymtabs_addrmap
8023 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8024 objfile->partial_symtabs->obstack ());
8025 /* At this point we want to keep the address map. */
8026 save_psymtabs_addrmap.release ();
8027
8028 if (dwarf_read_debug)
8029 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8030 objfile_name (objfile));
8031 }
8032
8033 /* Load the partial DIEs for a secondary CU into memory.
8034 This is also used when rereading a primary CU with load_all_dies. */
8035
8036 static void
8037 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
8038 dwarf2_per_objfile *per_objfile,
8039 dwarf2_cu *existing_cu)
8040 {
8041 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
8042
8043 if (!reader.dummy_p)
8044 {
8045 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8046 language_minimal);
8047
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8051 if (reader.comp_unit_die->has_children)
8052 load_partial_dies (&reader, reader.info_ptr, 0);
8053
8054 reader.keep ();
8055 }
8056 }
8057
8058 static void
8059 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
8060 struct dwarf2_section_info *section,
8061 struct dwarf2_section_info *abbrev_section,
8062 unsigned int is_dwz)
8063 {
8064 const gdb_byte *info_ptr;
8065 struct objfile *objfile = per_objfile->objfile;
8066
8067 if (dwarf_read_debug)
8068 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8069 section->get_name (),
8070 section->get_file_name ());
8071
8072 section->read (objfile);
8073
8074 info_ptr = section->buffer;
8075
8076 while (info_ptr < section->buffer + section->size)
8077 {
8078 struct dwarf2_per_cu_data *this_cu;
8079
8080 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8081
8082 comp_unit_head cu_header;
8083 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
8084 abbrev_section, info_ptr,
8085 rcuh_kind::COMPILE);
8086
8087 /* Save the compilation unit for later lookup. */
8088 if (cu_header.unit_type != DW_UT_type)
8089 this_cu = per_objfile->per_bfd->allocate_per_cu ();
8090 else
8091 {
8092 auto sig_type = per_objfile->per_bfd->allocate_signatured_type ();
8093 sig_type->signature = cu_header.signature;
8094 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8095 this_cu = &sig_type->per_cu;
8096 }
8097 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8098 this_cu->sect_off = sect_off;
8099 this_cu->length = cu_header.length + cu_header.initial_length_size;
8100 this_cu->is_dwz = is_dwz;
8101 this_cu->section = section;
8102
8103 per_objfile->per_bfd->all_comp_units.push_back (this_cu);
8104
8105 info_ptr = info_ptr + this_cu->length;
8106 }
8107 }
8108
8109 /* Create a list of all compilation units in OBJFILE.
8110 This is only done for -readnow and building partial symtabs. */
8111
8112 static void
8113 create_all_comp_units (dwarf2_per_objfile *per_objfile)
8114 {
8115 gdb_assert (per_objfile->per_bfd->all_comp_units.empty ());
8116 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
8117 &per_objfile->per_bfd->abbrev, 0);
8118
8119 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
8120 if (dwz != NULL)
8121 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1);
8122 }
8123
8124 /* Process all loaded DIEs for compilation unit CU, starting at
8125 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8126 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8127 DW_AT_ranges). See the comments of add_partial_subprogram on how
8128 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8129
8130 static void
8131 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8132 CORE_ADDR *highpc, int set_addrmap,
8133 struct dwarf2_cu *cu)
8134 {
8135 struct partial_die_info *pdi;
8136
8137 /* Now, march along the PDI's, descending into ones which have
8138 interesting children but skipping the children of the other ones,
8139 until we reach the end of the compilation unit. */
8140
8141 pdi = first_die;
8142
8143 while (pdi != NULL)
8144 {
8145 pdi->fixup (cu);
8146
8147 /* Anonymous namespaces or modules have no name but have interesting
8148 children, so we need to look at them. Ditto for anonymous
8149 enums. */
8150
8151 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
8152 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8153 || pdi->tag == DW_TAG_imported_unit
8154 || pdi->tag == DW_TAG_inlined_subroutine)
8155 {
8156 switch (pdi->tag)
8157 {
8158 case DW_TAG_subprogram:
8159 case DW_TAG_inlined_subroutine:
8160 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8161 if (cu->language == language_cplus)
8162 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8163 set_addrmap, cu);
8164 break;
8165 case DW_TAG_constant:
8166 case DW_TAG_variable:
8167 case DW_TAG_typedef:
8168 case DW_TAG_union_type:
8169 if (!pdi->is_declaration
8170 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8171 {
8172 add_partial_symbol (pdi, cu);
8173 }
8174 break;
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 if (!pdi->is_declaration)
8179 {
8180 add_partial_symbol (pdi, cu);
8181 }
8182 if ((cu->language == language_rust
8183 || cu->language == language_cplus) && pdi->has_children)
8184 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8185 set_addrmap, cu);
8186 break;
8187 case DW_TAG_enumeration_type:
8188 if (!pdi->is_declaration)
8189 add_partial_enumeration (pdi, cu);
8190 break;
8191 case DW_TAG_base_type:
8192 case DW_TAG_subrange_type:
8193 /* File scope base type definitions are added to the partial
8194 symbol table. */
8195 add_partial_symbol (pdi, cu);
8196 break;
8197 case DW_TAG_namespace:
8198 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8199 break;
8200 case DW_TAG_module:
8201 if (!pdi->is_declaration)
8202 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8203 break;
8204 case DW_TAG_imported_unit:
8205 {
8206 struct dwarf2_per_cu_data *per_cu;
8207
8208 /* For now we don't handle imported units in type units. */
8209 if (cu->per_cu->is_debug_types)
8210 {
8211 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8212 " supported in type units [in module %s]"),
8213 objfile_name (cu->per_objfile->objfile));
8214 }
8215
8216 per_cu = dwarf2_find_containing_comp_unit
8217 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
8218
8219 /* Go read the partial unit, if needed. */
8220 if (per_cu->v.psymtab == NULL)
8221 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
8222 cu->language);
8223
8224 cu->per_cu->imported_symtabs_push (per_cu);
8225 }
8226 break;
8227 case DW_TAG_imported_declaration:
8228 add_partial_symbol (pdi, cu);
8229 break;
8230 default:
8231 break;
8232 }
8233 }
8234
8235 /* If the die has a sibling, skip to the sibling. */
8236
8237 pdi = pdi->die_sibling;
8238 }
8239 }
8240
8241 /* Functions used to compute the fully scoped name of a partial DIE.
8242
8243 Normally, this is simple. For C++, the parent DIE's fully scoped
8244 name is concatenated with "::" and the partial DIE's name.
8245 Enumerators are an exception; they use the scope of their parent
8246 enumeration type, i.e. the name of the enumeration type is not
8247 prepended to the enumerator.
8248
8249 There are two complexities. One is DW_AT_specification; in this
8250 case "parent" means the parent of the target of the specification,
8251 instead of the direct parent of the DIE. The other is compilers
8252 which do not emit DW_TAG_namespace; in this case we try to guess
8253 the fully qualified name of structure types from their members'
8254 linkage names. This must be done using the DIE's children rather
8255 than the children of any DW_AT_specification target. We only need
8256 to do this for structures at the top level, i.e. if the target of
8257 any DW_AT_specification (if any; otherwise the DIE itself) does not
8258 have a parent. */
8259
8260 /* Compute the scope prefix associated with PDI's parent, in
8261 compilation unit CU. The result will be allocated on CU's
8262 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8263 field. NULL is returned if no prefix is necessary. */
8264 static const char *
8265 partial_die_parent_scope (struct partial_die_info *pdi,
8266 struct dwarf2_cu *cu)
8267 {
8268 const char *grandparent_scope;
8269 struct partial_die_info *parent, *real_pdi;
8270
8271 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8272 then this means the parent of the specification DIE. */
8273
8274 real_pdi = pdi;
8275 while (real_pdi->has_specification)
8276 {
8277 auto res = find_partial_die (real_pdi->spec_offset,
8278 real_pdi->spec_is_dwz, cu);
8279 real_pdi = res.pdi;
8280 cu = res.cu;
8281 }
8282
8283 parent = real_pdi->die_parent;
8284 if (parent == NULL)
8285 return NULL;
8286
8287 if (parent->scope_set)
8288 return parent->scope;
8289
8290 parent->fixup (cu);
8291
8292 grandparent_scope = partial_die_parent_scope (parent, cu);
8293
8294 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8295 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8296 Work around this problem here. */
8297 if (cu->language == language_cplus
8298 && parent->tag == DW_TAG_namespace
8299 && strcmp (parent->name (cu), "::") == 0
8300 && grandparent_scope == NULL)
8301 {
8302 parent->scope = NULL;
8303 parent->scope_set = 1;
8304 return NULL;
8305 }
8306
8307 /* Nested subroutines in Fortran get a prefix. */
8308 if (pdi->tag == DW_TAG_enumerator)
8309 /* Enumerators should not get the name of the enumeration as a prefix. */
8310 parent->scope = grandparent_scope;
8311 else if (parent->tag == DW_TAG_namespace
8312 || parent->tag == DW_TAG_module
8313 || parent->tag == DW_TAG_structure_type
8314 || parent->tag == DW_TAG_class_type
8315 || parent->tag == DW_TAG_interface_type
8316 || parent->tag == DW_TAG_union_type
8317 || parent->tag == DW_TAG_enumeration_type
8318 || (cu->language == language_fortran
8319 && parent->tag == DW_TAG_subprogram
8320 && pdi->tag == DW_TAG_subprogram))
8321 {
8322 if (grandparent_scope == NULL)
8323 parent->scope = parent->name (cu);
8324 else
8325 parent->scope = typename_concat (&cu->comp_unit_obstack,
8326 grandparent_scope,
8327 parent->name (cu), 0, cu);
8328 }
8329 else
8330 {
8331 /* FIXME drow/2004-04-01: What should we be doing with
8332 function-local names? For partial symbols, we should probably be
8333 ignoring them. */
8334 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8335 dwarf_tag_name (parent->tag),
8336 sect_offset_str (pdi->sect_off));
8337 parent->scope = grandparent_scope;
8338 }
8339
8340 parent->scope_set = 1;
8341 return parent->scope;
8342 }
8343
8344 /* Return the fully scoped name associated with PDI, from compilation unit
8345 CU. The result will be allocated with malloc. */
8346
8347 static gdb::unique_xmalloc_ptr<char>
8348 partial_die_full_name (struct partial_die_info *pdi,
8349 struct dwarf2_cu *cu)
8350 {
8351 const char *parent_scope;
8352
8353 /* If this is a template instantiation, we can not work out the
8354 template arguments from partial DIEs. So, unfortunately, we have
8355 to go through the full DIEs. At least any work we do building
8356 types here will be reused if full symbols are loaded later. */
8357 if (pdi->has_template_arguments)
8358 {
8359 pdi->fixup (cu);
8360
8361 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
8362 {
8363 struct die_info *die;
8364 struct attribute attr;
8365 struct dwarf2_cu *ref_cu = cu;
8366
8367 /* DW_FORM_ref_addr is using section offset. */
8368 attr.name = (enum dwarf_attribute) 0;
8369 attr.form = DW_FORM_ref_addr;
8370 attr.u.unsnd = to_underlying (pdi->sect_off);
8371 die = follow_die_ref (NULL, &attr, &ref_cu);
8372
8373 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8374 }
8375 }
8376
8377 parent_scope = partial_die_parent_scope (pdi, cu);
8378 if (parent_scope == NULL)
8379 return NULL;
8380 else
8381 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8382 pdi->name (cu),
8383 0, cu));
8384 }
8385
8386 static void
8387 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8388 {
8389 dwarf2_per_objfile *per_objfile = cu->per_objfile;
8390 struct objfile *objfile = per_objfile->objfile;
8391 struct gdbarch *gdbarch = objfile->arch ();
8392 CORE_ADDR addr = 0;
8393 const char *actual_name = NULL;
8394 CORE_ADDR baseaddr;
8395
8396 baseaddr = objfile->text_section_offset ();
8397
8398 gdb::unique_xmalloc_ptr<char> built_actual_name
8399 = partial_die_full_name (pdi, cu);
8400 if (built_actual_name != NULL)
8401 actual_name = built_actual_name.get ();
8402
8403 if (actual_name == NULL)
8404 actual_name = pdi->name (cu);
8405
8406 partial_symbol psymbol;
8407 memset (&psymbol, 0, sizeof (psymbol));
8408 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8409 psymbol.ginfo.section = -1;
8410
8411 /* The code below indicates that the psymbol should be installed by
8412 setting this. */
8413 gdb::optional<psymbol_placement> where;
8414
8415 switch (pdi->tag)
8416 {
8417 case DW_TAG_inlined_subroutine:
8418 case DW_TAG_subprogram:
8419 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8420 - baseaddr);
8421 if (pdi->is_external
8422 || cu->language == language_ada
8423 || (cu->language == language_fortran
8424 && pdi->die_parent != NULL
8425 && pdi->die_parent->tag == DW_TAG_subprogram))
8426 {
8427 /* Normally, only "external" DIEs are part of the global scope.
8428 But in Ada and Fortran, we want to be able to access nested
8429 procedures globally. So all Ada and Fortran subprograms are
8430 stored in the global scope. */
8431 where = psymbol_placement::GLOBAL;
8432 }
8433 else
8434 where = psymbol_placement::STATIC;
8435
8436 psymbol.domain = VAR_DOMAIN;
8437 psymbol.aclass = LOC_BLOCK;
8438 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8439 psymbol.ginfo.value.address = addr;
8440
8441 if (pdi->main_subprogram && actual_name != NULL)
8442 set_objfile_main_name (objfile, actual_name, cu->language);
8443 break;
8444 case DW_TAG_constant:
8445 psymbol.domain = VAR_DOMAIN;
8446 psymbol.aclass = LOC_STATIC;
8447 where = (pdi->is_external
8448 ? psymbol_placement::GLOBAL
8449 : psymbol_placement::STATIC);
8450 break;
8451 case DW_TAG_variable:
8452 if (pdi->d.locdesc)
8453 addr = decode_locdesc (pdi->d.locdesc, cu);
8454
8455 if (pdi->d.locdesc
8456 && addr == 0
8457 && !per_objfile->per_bfd->has_section_at_zero)
8458 {
8459 /* A global or static variable may also have been stripped
8460 out by the linker if unused, in which case its address
8461 will be nullified; do not add such variables into partial
8462 symbol table then. */
8463 }
8464 else if (pdi->is_external)
8465 {
8466 /* Global Variable.
8467 Don't enter into the minimal symbol tables as there is
8468 a minimal symbol table entry from the ELF symbols already.
8469 Enter into partial symbol table if it has a location
8470 descriptor or a type.
8471 If the location descriptor is missing, new_symbol will create
8472 a LOC_UNRESOLVED symbol, the address of the variable will then
8473 be determined from the minimal symbol table whenever the variable
8474 is referenced.
8475 The address for the partial symbol table entry is not
8476 used by GDB, but it comes in handy for debugging partial symbol
8477 table building. */
8478
8479 if (pdi->d.locdesc || pdi->has_type)
8480 {
8481 psymbol.domain = VAR_DOMAIN;
8482 psymbol.aclass = LOC_STATIC;
8483 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8484 psymbol.ginfo.value.address = addr;
8485 where = psymbol_placement::GLOBAL;
8486 }
8487 }
8488 else
8489 {
8490 int has_loc = pdi->d.locdesc != NULL;
8491
8492 /* Static Variable. Skip symbols whose value we cannot know (those
8493 without location descriptors or constant values). */
8494 if (!has_loc && !pdi->has_const_value)
8495 return;
8496
8497 psymbol.domain = VAR_DOMAIN;
8498 psymbol.aclass = LOC_STATIC;
8499 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8500 if (has_loc)
8501 psymbol.ginfo.value.address = addr;
8502 where = psymbol_placement::STATIC;
8503 }
8504 break;
8505 case DW_TAG_typedef:
8506 case DW_TAG_base_type:
8507 case DW_TAG_subrange_type:
8508 psymbol.domain = VAR_DOMAIN;
8509 psymbol.aclass = LOC_TYPEDEF;
8510 where = psymbol_placement::STATIC;
8511 break;
8512 case DW_TAG_imported_declaration:
8513 case DW_TAG_namespace:
8514 psymbol.domain = VAR_DOMAIN;
8515 psymbol.aclass = LOC_TYPEDEF;
8516 where = psymbol_placement::GLOBAL;
8517 break;
8518 case DW_TAG_module:
8519 /* With Fortran 77 there might be a "BLOCK DATA" module
8520 available without any name. If so, we skip the module as it
8521 doesn't bring any value. */
8522 if (actual_name != nullptr)
8523 {
8524 psymbol.domain = MODULE_DOMAIN;
8525 psymbol.aclass = LOC_TYPEDEF;
8526 where = psymbol_placement::GLOBAL;
8527 }
8528 break;
8529 case DW_TAG_class_type:
8530 case DW_TAG_interface_type:
8531 case DW_TAG_structure_type:
8532 case DW_TAG_union_type:
8533 case DW_TAG_enumeration_type:
8534 /* Skip external references. The DWARF standard says in the section
8535 about "Structure, Union, and Class Type Entries": "An incomplete
8536 structure, union or class type is represented by a structure,
8537 union or class entry that does not have a byte size attribute
8538 and that has a DW_AT_declaration attribute." */
8539 if (!pdi->has_byte_size && pdi->is_declaration)
8540 return;
8541
8542 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8543 static vs. global. */
8544 psymbol.domain = STRUCT_DOMAIN;
8545 psymbol.aclass = LOC_TYPEDEF;
8546 where = (cu->language == language_cplus
8547 ? psymbol_placement::GLOBAL
8548 : psymbol_placement::STATIC);
8549 break;
8550 case DW_TAG_enumerator:
8551 psymbol.domain = VAR_DOMAIN;
8552 psymbol.aclass = LOC_CONST;
8553 where = (cu->language == language_cplus
8554 ? psymbol_placement::GLOBAL
8555 : psymbol_placement::STATIC);
8556 break;
8557 default:
8558 break;
8559 }
8560
8561 if (where.has_value ())
8562 {
8563 if (built_actual_name != nullptr)
8564 actual_name = objfile->intern (actual_name);
8565 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8566 psymbol.ginfo.set_linkage_name (actual_name);
8567 else
8568 {
8569 psymbol.ginfo.set_demangled_name (actual_name,
8570 &objfile->objfile_obstack);
8571 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8572 }
8573 add_psymbol_to_list (psymbol, *where, objfile);
8574 }
8575 }
8576
8577 /* Read a partial die corresponding to a namespace; also, add a symbol
8578 corresponding to that namespace to the symbol table. NAMESPACE is
8579 the name of the enclosing namespace. */
8580
8581 static void
8582 add_partial_namespace (struct partial_die_info *pdi,
8583 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8584 int set_addrmap, struct dwarf2_cu *cu)
8585 {
8586 /* Add a symbol for the namespace. */
8587
8588 add_partial_symbol (pdi, cu);
8589
8590 /* Now scan partial symbols in that namespace. */
8591
8592 if (pdi->has_children)
8593 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8594 }
8595
8596 /* Read a partial die corresponding to a Fortran module. */
8597
8598 static void
8599 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8600 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8601 {
8602 /* Add a symbol for the namespace. */
8603
8604 add_partial_symbol (pdi, cu);
8605
8606 /* Now scan partial symbols in that module. */
8607
8608 if (pdi->has_children)
8609 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8610 }
8611
8612 /* Read a partial die corresponding to a subprogram or an inlined
8613 subprogram and create a partial symbol for that subprogram.
8614 When the CU language allows it, this routine also defines a partial
8615 symbol for each nested subprogram that this subprogram contains.
8616 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8617 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8618
8619 PDI may also be a lexical block, in which case we simply search
8620 recursively for subprograms defined inside that lexical block.
8621 Again, this is only performed when the CU language allows this
8622 type of definitions. */
8623
8624 static void
8625 add_partial_subprogram (struct partial_die_info *pdi,
8626 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8627 int set_addrmap, struct dwarf2_cu *cu)
8628 {
8629 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8630 {
8631 if (pdi->has_pc_info)
8632 {
8633 if (pdi->lowpc < *lowpc)
8634 *lowpc = pdi->lowpc;
8635 if (pdi->highpc > *highpc)
8636 *highpc = pdi->highpc;
8637 if (set_addrmap)
8638 {
8639 struct objfile *objfile = cu->per_objfile->objfile;
8640 struct gdbarch *gdbarch = objfile->arch ();
8641 CORE_ADDR baseaddr;
8642 CORE_ADDR this_highpc;
8643 CORE_ADDR this_lowpc;
8644
8645 baseaddr = objfile->text_section_offset ();
8646 this_lowpc
8647 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8648 pdi->lowpc + baseaddr)
8649 - baseaddr);
8650 this_highpc
8651 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8652 pdi->highpc + baseaddr)
8653 - baseaddr);
8654 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8655 this_lowpc, this_highpc - 1,
8656 cu->per_cu->v.psymtab);
8657 }
8658 }
8659
8660 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8661 {
8662 if (!pdi->is_declaration)
8663 /* Ignore subprogram DIEs that do not have a name, they are
8664 illegal. Do not emit a complaint at this point, we will
8665 do so when we convert this psymtab into a symtab. */
8666 if (pdi->name (cu))
8667 add_partial_symbol (pdi, cu);
8668 }
8669 }
8670
8671 if (! pdi->has_children)
8672 return;
8673
8674 if (cu->language == language_ada || cu->language == language_fortran)
8675 {
8676 pdi = pdi->die_child;
8677 while (pdi != NULL)
8678 {
8679 pdi->fixup (cu);
8680 if (pdi->tag == DW_TAG_subprogram
8681 || pdi->tag == DW_TAG_inlined_subroutine
8682 || pdi->tag == DW_TAG_lexical_block)
8683 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8684 pdi = pdi->die_sibling;
8685 }
8686 }
8687 }
8688
8689 /* Read a partial die corresponding to an enumeration type. */
8690
8691 static void
8692 add_partial_enumeration (struct partial_die_info *enum_pdi,
8693 struct dwarf2_cu *cu)
8694 {
8695 struct partial_die_info *pdi;
8696
8697 if (enum_pdi->name (cu) != NULL)
8698 add_partial_symbol (enum_pdi, cu);
8699
8700 pdi = enum_pdi->die_child;
8701 while (pdi)
8702 {
8703 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8704 complaint (_("malformed enumerator DIE ignored"));
8705 else
8706 add_partial_symbol (pdi, cu);
8707 pdi = pdi->die_sibling;
8708 }
8709 }
8710
8711 /* Return the initial uleb128 in the die at INFO_PTR. */
8712
8713 static unsigned int
8714 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8715 {
8716 unsigned int bytes_read;
8717
8718 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8719 }
8720
8721 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8722 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8723
8724 Return the corresponding abbrev, or NULL if the number is zero (indicating
8725 an empty DIE). In either case *BYTES_READ will be set to the length of
8726 the initial number. */
8727
8728 static struct abbrev_info *
8729 peek_die_abbrev (const die_reader_specs &reader,
8730 const gdb_byte *info_ptr, unsigned int *bytes_read)
8731 {
8732 dwarf2_cu *cu = reader.cu;
8733 bfd *abfd = cu->per_objfile->objfile->obfd;
8734 unsigned int abbrev_number
8735 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8736
8737 if (abbrev_number == 0)
8738 return NULL;
8739
8740 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8741 if (!abbrev)
8742 {
8743 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8744 " at offset %s [in module %s]"),
8745 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8746 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8747 }
8748
8749 return abbrev;
8750 }
8751
8752 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8753 Returns a pointer to the end of a series of DIEs, terminated by an empty
8754 DIE. Any children of the skipped DIEs will also be skipped. */
8755
8756 static const gdb_byte *
8757 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8758 {
8759 while (1)
8760 {
8761 unsigned int bytes_read;
8762 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8763
8764 if (abbrev == NULL)
8765 return info_ptr + bytes_read;
8766 else
8767 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8768 }
8769 }
8770
8771 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8772 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8773 abbrev corresponding to that skipped uleb128 should be passed in
8774 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8775 children. */
8776
8777 static const gdb_byte *
8778 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8779 struct abbrev_info *abbrev)
8780 {
8781 unsigned int bytes_read;
8782 struct attribute attr;
8783 bfd *abfd = reader->abfd;
8784 struct dwarf2_cu *cu = reader->cu;
8785 const gdb_byte *buffer = reader->buffer;
8786 const gdb_byte *buffer_end = reader->buffer_end;
8787 unsigned int form, i;
8788
8789 for (i = 0; i < abbrev->num_attrs; i++)
8790 {
8791 /* The only abbrev we care about is DW_AT_sibling. */
8792 if (abbrev->attrs[i].name == DW_AT_sibling)
8793 {
8794 bool ignored;
8795 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8796 &ignored);
8797 if (attr.form == DW_FORM_ref_addr)
8798 complaint (_("ignoring absolute DW_AT_sibling"));
8799 else
8800 {
8801 sect_offset off = attr.get_ref_die_offset ();
8802 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8803
8804 if (sibling_ptr < info_ptr)
8805 complaint (_("DW_AT_sibling points backwards"));
8806 else if (sibling_ptr > reader->buffer_end)
8807 reader->die_section->overflow_complaint ();
8808 else
8809 return sibling_ptr;
8810 }
8811 }
8812
8813 /* If it isn't DW_AT_sibling, skip this attribute. */
8814 form = abbrev->attrs[i].form;
8815 skip_attribute:
8816 switch (form)
8817 {
8818 case DW_FORM_ref_addr:
8819 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8820 and later it is offset sized. */
8821 if (cu->header.version == 2)
8822 info_ptr += cu->header.addr_size;
8823 else
8824 info_ptr += cu->header.offset_size;
8825 break;
8826 case DW_FORM_GNU_ref_alt:
8827 info_ptr += cu->header.offset_size;
8828 break;
8829 case DW_FORM_addr:
8830 info_ptr += cu->header.addr_size;
8831 break;
8832 case DW_FORM_data1:
8833 case DW_FORM_ref1:
8834 case DW_FORM_flag:
8835 case DW_FORM_strx1:
8836 info_ptr += 1;
8837 break;
8838 case DW_FORM_flag_present:
8839 case DW_FORM_implicit_const:
8840 break;
8841 case DW_FORM_data2:
8842 case DW_FORM_ref2:
8843 case DW_FORM_strx2:
8844 info_ptr += 2;
8845 break;
8846 case DW_FORM_strx3:
8847 info_ptr += 3;
8848 break;
8849 case DW_FORM_data4:
8850 case DW_FORM_ref4:
8851 case DW_FORM_strx4:
8852 info_ptr += 4;
8853 break;
8854 case DW_FORM_data8:
8855 case DW_FORM_ref8:
8856 case DW_FORM_ref_sig8:
8857 info_ptr += 8;
8858 break;
8859 case DW_FORM_data16:
8860 info_ptr += 16;
8861 break;
8862 case DW_FORM_string:
8863 read_direct_string (abfd, info_ptr, &bytes_read);
8864 info_ptr += bytes_read;
8865 break;
8866 case DW_FORM_sec_offset:
8867 case DW_FORM_strp:
8868 case DW_FORM_GNU_strp_alt:
8869 info_ptr += cu->header.offset_size;
8870 break;
8871 case DW_FORM_exprloc:
8872 case DW_FORM_block:
8873 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8874 info_ptr += bytes_read;
8875 break;
8876 case DW_FORM_block1:
8877 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8878 break;
8879 case DW_FORM_block2:
8880 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8881 break;
8882 case DW_FORM_block4:
8883 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8884 break;
8885 case DW_FORM_addrx:
8886 case DW_FORM_strx:
8887 case DW_FORM_sdata:
8888 case DW_FORM_udata:
8889 case DW_FORM_ref_udata:
8890 case DW_FORM_GNU_addr_index:
8891 case DW_FORM_GNU_str_index:
8892 case DW_FORM_rnglistx:
8893 case DW_FORM_loclistx:
8894 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8895 break;
8896 case DW_FORM_indirect:
8897 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8898 info_ptr += bytes_read;
8899 /* We need to continue parsing from here, so just go back to
8900 the top. */
8901 goto skip_attribute;
8902
8903 default:
8904 error (_("Dwarf Error: Cannot handle %s "
8905 "in DWARF reader [in module %s]"),
8906 dwarf_form_name (form),
8907 bfd_get_filename (abfd));
8908 }
8909 }
8910
8911 if (abbrev->has_children)
8912 return skip_children (reader, info_ptr);
8913 else
8914 return info_ptr;
8915 }
8916
8917 /* Locate ORIG_PDI's sibling.
8918 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8919
8920 static const gdb_byte *
8921 locate_pdi_sibling (const struct die_reader_specs *reader,
8922 struct partial_die_info *orig_pdi,
8923 const gdb_byte *info_ptr)
8924 {
8925 /* Do we know the sibling already? */
8926
8927 if (orig_pdi->sibling)
8928 return orig_pdi->sibling;
8929
8930 /* Are there any children to deal with? */
8931
8932 if (!orig_pdi->has_children)
8933 return info_ptr;
8934
8935 /* Skip the children the long way. */
8936
8937 return skip_children (reader, info_ptr);
8938 }
8939
8940 /* Expand this partial symbol table into a full symbol table. SELF is
8941 not NULL. */
8942
8943 void
8944 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8945 {
8946 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8947
8948 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
8949
8950 /* If this psymtab is constructed from a debug-only objfile, the
8951 has_section_at_zero flag will not necessarily be correct. We
8952 can get the correct value for this flag by looking at the data
8953 associated with the (presumably stripped) associated objfile. */
8954 if (objfile->separate_debug_objfile_backlink)
8955 {
8956 dwarf2_per_objfile *per_objfile_backlink
8957 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8958
8959 per_objfile->per_bfd->has_section_at_zero
8960 = per_objfile_backlink->per_bfd->has_section_at_zero;
8961 }
8962
8963 expand_psymtab (objfile);
8964
8965 process_cu_includes (per_objfile);
8966 }
8967 \f
8968 /* Reading in full CUs. */
8969
8970 /* Add PER_CU to the queue. */
8971
8972 static void
8973 queue_comp_unit (dwarf2_per_cu_data *per_cu,
8974 dwarf2_per_objfile *per_objfile,
8975 enum language pretend_language)
8976 {
8977 per_cu->queued = 1;
8978 per_cu->per_bfd->queue.emplace (per_cu, per_objfile, pretend_language);
8979 }
8980
8981 /* If PER_CU is not yet queued, add it to the queue.
8982 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8983 dependency.
8984 The result is non-zero if PER_CU was queued, otherwise the result is zero
8985 meaning either PER_CU is already queued or it is already loaded.
8986
8987 N.B. There is an invariant here that if a CU is queued then it is loaded.
8988 The caller is required to load PER_CU if we return non-zero. */
8989
8990 static int
8991 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8992 dwarf2_per_cu_data *per_cu,
8993 dwarf2_per_objfile *per_objfile,
8994 enum language pretend_language)
8995 {
8996 /* We may arrive here during partial symbol reading, if we need full
8997 DIEs to process an unusual case (e.g. template arguments). Do
8998 not queue PER_CU, just tell our caller to load its DIEs. */
8999 if (per_cu->per_bfd->reading_partial_symbols)
9000 {
9001 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9002
9003 if (cu == NULL || cu->dies == NULL)
9004 return 1;
9005 return 0;
9006 }
9007
9008 /* Mark the dependence relation so that we don't flush PER_CU
9009 too early. */
9010 if (dependent_cu != NULL)
9011 dwarf2_add_dependence (dependent_cu, per_cu);
9012
9013 /* If it's already on the queue, we have nothing to do. */
9014 if (per_cu->queued)
9015 return 0;
9016
9017 /* If the compilation unit is already loaded, just mark it as
9018 used. */
9019 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9020 if (cu != nullptr)
9021 {
9022 cu->last_used = 0;
9023 return 0;
9024 }
9025
9026 /* Add it to the queue. */
9027 queue_comp_unit (per_cu, per_objfile, pretend_language);
9028
9029 return 1;
9030 }
9031
9032 /* Process the queue. */
9033
9034 static void
9035 process_queue (dwarf2_per_objfile *per_objfile)
9036 {
9037 if (dwarf_read_debug)
9038 {
9039 fprintf_unfiltered (gdb_stdlog,
9040 "Expanding one or more symtabs of objfile %s ...\n",
9041 objfile_name (per_objfile->objfile));
9042 }
9043
9044 /* The queue starts out with one item, but following a DIE reference
9045 may load a new CU, adding it to the end of the queue. */
9046 while (!per_objfile->per_bfd->queue.empty ())
9047 {
9048 dwarf2_queue_item &item = per_objfile->per_bfd->queue.front ();
9049 dwarf2_per_cu_data *per_cu = item.per_cu;
9050
9051 if (!per_objfile->symtab_set_p (per_cu))
9052 {
9053 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9054
9055 /* Skip dummy CUs. */
9056 if (cu != nullptr)
9057 {
9058 unsigned int debug_print_threshold;
9059 char buf[100];
9060
9061 if (per_cu->is_debug_types)
9062 {
9063 struct signatured_type *sig_type =
9064 (struct signatured_type *) per_cu;
9065
9066 sprintf (buf, "TU %s at offset %s",
9067 hex_string (sig_type->signature),
9068 sect_offset_str (per_cu->sect_off));
9069 /* There can be 100s of TUs.
9070 Only print them in verbose mode. */
9071 debug_print_threshold = 2;
9072 }
9073 else
9074 {
9075 sprintf (buf, "CU at offset %s",
9076 sect_offset_str (per_cu->sect_off));
9077 debug_print_threshold = 1;
9078 }
9079
9080 if (dwarf_read_debug >= debug_print_threshold)
9081 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9082
9083 if (per_cu->is_debug_types)
9084 process_full_type_unit (cu, item.pretend_language);
9085 else
9086 process_full_comp_unit (cu, item.pretend_language);
9087
9088 if (dwarf_read_debug >= debug_print_threshold)
9089 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9090 }
9091 }
9092
9093 per_cu->queued = 0;
9094 per_objfile->per_bfd->queue.pop ();
9095 }
9096
9097 if (dwarf_read_debug)
9098 {
9099 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9100 objfile_name (per_objfile->objfile));
9101 }
9102 }
9103
9104 /* Read in full symbols for PST, and anything it depends on. */
9105
9106 void
9107 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9108 {
9109 gdb_assert (!readin_p (objfile));
9110
9111 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9112 free_cached_comp_units freer (per_objfile);
9113 expand_dependencies (objfile);
9114
9115 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
9116 gdb_assert (get_compunit_symtab (objfile) != nullptr);
9117 }
9118
9119 /* See psympriv.h. */
9120
9121 bool
9122 dwarf2_psymtab::readin_p (struct objfile *objfile) const
9123 {
9124 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9125 return per_objfile->symtab_set_p (per_cu_data);
9126 }
9127
9128 /* See psympriv.h. */
9129
9130 compunit_symtab *
9131 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
9132 {
9133 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9134 return per_objfile->get_symtab (per_cu_data);
9135 }
9136
9137 /* Trivial hash function for die_info: the hash value of a DIE
9138 is its offset in .debug_info for this objfile. */
9139
9140 static hashval_t
9141 die_hash (const void *item)
9142 {
9143 const struct die_info *die = (const struct die_info *) item;
9144
9145 return to_underlying (die->sect_off);
9146 }
9147
9148 /* Trivial comparison function for die_info structures: two DIEs
9149 are equal if they have the same offset. */
9150
9151 static int
9152 die_eq (const void *item_lhs, const void *item_rhs)
9153 {
9154 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9155 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9156
9157 return die_lhs->sect_off == die_rhs->sect_off;
9158 }
9159
9160 /* Load the DIEs associated with PER_CU into memory. */
9161
9162 static void
9163 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
9164 dwarf2_per_objfile *per_objfile,
9165 bool skip_partial,
9166 enum language pretend_language)
9167 {
9168 gdb_assert (! this_cu->is_debug_types);
9169
9170 dwarf2_cu *existing_cu = per_objfile->get_cu (this_cu);
9171 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
9172 if (reader.dummy_p)
9173 return;
9174
9175 struct dwarf2_cu *cu = reader.cu;
9176 const gdb_byte *info_ptr = reader.info_ptr;
9177
9178 gdb_assert (cu->die_hash == NULL);
9179 cu->die_hash =
9180 htab_create_alloc_ex (cu->header.length / 12,
9181 die_hash,
9182 die_eq,
9183 NULL,
9184 &cu->comp_unit_obstack,
9185 hashtab_obstack_allocate,
9186 dummy_obstack_deallocate);
9187
9188 if (reader.comp_unit_die->has_children)
9189 reader.comp_unit_die->child
9190 = read_die_and_siblings (&reader, reader.info_ptr,
9191 &info_ptr, reader.comp_unit_die);
9192 cu->dies = reader.comp_unit_die;
9193 /* comp_unit_die is not stored in die_hash, no need. */
9194
9195 /* We try not to read any attributes in this function, because not
9196 all CUs needed for references have been loaded yet, and symbol
9197 table processing isn't initialized. But we have to set the CU language,
9198 or we won't be able to build types correctly.
9199 Similarly, if we do not read the producer, we can not apply
9200 producer-specific interpretation. */
9201 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9202
9203 reader.keep ();
9204 }
9205
9206 /* Add a DIE to the delayed physname list. */
9207
9208 static void
9209 add_to_method_list (struct type *type, int fnfield_index, int index,
9210 const char *name, struct die_info *die,
9211 struct dwarf2_cu *cu)
9212 {
9213 struct delayed_method_info mi;
9214 mi.type = type;
9215 mi.fnfield_index = fnfield_index;
9216 mi.index = index;
9217 mi.name = name;
9218 mi.die = die;
9219 cu->method_list.push_back (mi);
9220 }
9221
9222 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9223 "const" / "volatile". If so, decrements LEN by the length of the
9224 modifier and return true. Otherwise return false. */
9225
9226 template<size_t N>
9227 static bool
9228 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9229 {
9230 size_t mod_len = sizeof (mod) - 1;
9231 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9232 {
9233 len -= mod_len;
9234 return true;
9235 }
9236 return false;
9237 }
9238
9239 /* Compute the physnames of any methods on the CU's method list.
9240
9241 The computation of method physnames is delayed in order to avoid the
9242 (bad) condition that one of the method's formal parameters is of an as yet
9243 incomplete type. */
9244
9245 static void
9246 compute_delayed_physnames (struct dwarf2_cu *cu)
9247 {
9248 /* Only C++ delays computing physnames. */
9249 if (cu->method_list.empty ())
9250 return;
9251 gdb_assert (cu->language == language_cplus);
9252
9253 for (const delayed_method_info &mi : cu->method_list)
9254 {
9255 const char *physname;
9256 struct fn_fieldlist *fn_flp
9257 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9258 physname = dwarf2_physname (mi.name, mi.die, cu);
9259 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9260 = physname ? physname : "";
9261
9262 /* Since there's no tag to indicate whether a method is a
9263 const/volatile overload, extract that information out of the
9264 demangled name. */
9265 if (physname != NULL)
9266 {
9267 size_t len = strlen (physname);
9268
9269 while (1)
9270 {
9271 if (physname[len] == ')') /* shortcut */
9272 break;
9273 else if (check_modifier (physname, len, " const"))
9274 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9275 else if (check_modifier (physname, len, " volatile"))
9276 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9277 else
9278 break;
9279 }
9280 }
9281 }
9282
9283 /* The list is no longer needed. */
9284 cu->method_list.clear ();
9285 }
9286
9287 /* Go objects should be embedded in a DW_TAG_module DIE,
9288 and it's not clear if/how imported objects will appear.
9289 To keep Go support simple until that's worked out,
9290 go back through what we've read and create something usable.
9291 We could do this while processing each DIE, and feels kinda cleaner,
9292 but that way is more invasive.
9293 This is to, for example, allow the user to type "p var" or "b main"
9294 without having to specify the package name, and allow lookups
9295 of module.object to work in contexts that use the expression
9296 parser. */
9297
9298 static void
9299 fixup_go_packaging (struct dwarf2_cu *cu)
9300 {
9301 gdb::unique_xmalloc_ptr<char> package_name;
9302 struct pending *list;
9303 int i;
9304
9305 for (list = *cu->get_builder ()->get_global_symbols ();
9306 list != NULL;
9307 list = list->next)
9308 {
9309 for (i = 0; i < list->nsyms; ++i)
9310 {
9311 struct symbol *sym = list->symbol[i];
9312
9313 if (sym->language () == language_go
9314 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9315 {
9316 gdb::unique_xmalloc_ptr<char> this_package_name
9317 (go_symbol_package_name (sym));
9318
9319 if (this_package_name == NULL)
9320 continue;
9321 if (package_name == NULL)
9322 package_name = std::move (this_package_name);
9323 else
9324 {
9325 struct objfile *objfile = cu->per_objfile->objfile;
9326 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9327 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9328 (symbol_symtab (sym) != NULL
9329 ? symtab_to_filename_for_display
9330 (symbol_symtab (sym))
9331 : objfile_name (objfile)),
9332 this_package_name.get (), package_name.get ());
9333 }
9334 }
9335 }
9336 }
9337
9338 if (package_name != NULL)
9339 {
9340 struct objfile *objfile = cu->per_objfile->objfile;
9341 const char *saved_package_name = objfile->intern (package_name.get ());
9342 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9343 saved_package_name);
9344 struct symbol *sym;
9345
9346 sym = new (&objfile->objfile_obstack) symbol;
9347 sym->set_language (language_go, &objfile->objfile_obstack);
9348 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9349 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9350 e.g., "main" finds the "main" module and not C's main(). */
9351 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9352 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9353 SYMBOL_TYPE (sym) = type;
9354
9355 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9356 }
9357 }
9358
9359 /* Allocate a fully-qualified name consisting of the two parts on the
9360 obstack. */
9361
9362 static const char *
9363 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9364 {
9365 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9366 }
9367
9368 /* A helper that allocates a variant part to attach to a Rust enum
9369 type. OBSTACK is where the results should be allocated. TYPE is
9370 the type we're processing. DISCRIMINANT_INDEX is the index of the
9371 discriminant. It must be the index of one of the fields of TYPE.
9372 DEFAULT_INDEX is the index of the default field; or -1 if there is
9373 no default. RANGES is indexed by "effective" field number (the
9374 field index, but omitting the discriminant and default fields) and
9375 must hold the discriminant values used by the variants. Note that
9376 RANGES must have a lifetime at least as long as OBSTACK -- either
9377 already allocated on it, or static. */
9378
9379 static void
9380 alloc_rust_variant (struct obstack *obstack, struct type *type,
9381 int discriminant_index, int default_index,
9382 gdb::array_view<discriminant_range> ranges)
9383 {
9384 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9385 must be handled by the caller. */
9386 gdb_assert (discriminant_index >= 0
9387 && discriminant_index < type->num_fields ());
9388 gdb_assert (default_index == -1
9389 || (default_index >= 0 && default_index < type->num_fields ()));
9390
9391 /* We have one variant for each non-discriminant field. */
9392 int n_variants = type->num_fields () - 1;
9393
9394 variant *variants = new (obstack) variant[n_variants];
9395 int var_idx = 0;
9396 int range_idx = 0;
9397 for (int i = 0; i < type->num_fields (); ++i)
9398 {
9399 if (i == discriminant_index)
9400 continue;
9401
9402 variants[var_idx].first_field = i;
9403 variants[var_idx].last_field = i + 1;
9404
9405 /* The default field does not need a range, but other fields do.
9406 We skipped the discriminant above. */
9407 if (i != default_index)
9408 {
9409 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9410 ++range_idx;
9411 }
9412
9413 ++var_idx;
9414 }
9415
9416 gdb_assert (range_idx == ranges.size ());
9417 gdb_assert (var_idx == n_variants);
9418
9419 variant_part *part = new (obstack) variant_part;
9420 part->discriminant_index = discriminant_index;
9421 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9422 discriminant_index));
9423 part->variants = gdb::array_view<variant> (variants, n_variants);
9424
9425 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9426 gdb::array_view<variant_part> *prop_value
9427 = new (storage) gdb::array_view<variant_part> (part, 1);
9428
9429 struct dynamic_prop prop;
9430 prop.kind = PROP_VARIANT_PARTS;
9431 prop.data.variant_parts = prop_value;
9432
9433 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9434 }
9435
9436 /* Some versions of rustc emitted enums in an unusual way.
9437
9438 Ordinary enums were emitted as unions. The first element of each
9439 structure in the union was named "RUST$ENUM$DISR". This element
9440 held the discriminant.
9441
9442 These versions of Rust also implemented the "non-zero"
9443 optimization. When the enum had two values, and one is empty and
9444 the other holds a pointer that cannot be zero, the pointer is used
9445 as the discriminant, with a zero value meaning the empty variant.
9446 Here, the union's first member is of the form
9447 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9448 where the fieldnos are the indices of the fields that should be
9449 traversed in order to find the field (which may be several fields deep)
9450 and the variantname is the name of the variant of the case when the
9451 field is zero.
9452
9453 This function recognizes whether TYPE is of one of these forms,
9454 and, if so, smashes it to be a variant type. */
9455
9456 static void
9457 quirk_rust_enum (struct type *type, struct objfile *objfile)
9458 {
9459 gdb_assert (type->code () == TYPE_CODE_UNION);
9460
9461 /* We don't need to deal with empty enums. */
9462 if (type->num_fields () == 0)
9463 return;
9464
9465 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9466 if (type->num_fields () == 1
9467 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9468 {
9469 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9470
9471 /* Decode the field name to find the offset of the
9472 discriminant. */
9473 ULONGEST bit_offset = 0;
9474 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9475 while (name[0] >= '0' && name[0] <= '9')
9476 {
9477 char *tail;
9478 unsigned long index = strtoul (name, &tail, 10);
9479 name = tail;
9480 if (*name != '$'
9481 || index >= field_type->num_fields ()
9482 || (TYPE_FIELD_LOC_KIND (field_type, index)
9483 != FIELD_LOC_KIND_BITPOS))
9484 {
9485 complaint (_("Could not parse Rust enum encoding string \"%s\""
9486 "[in module %s]"),
9487 TYPE_FIELD_NAME (type, 0),
9488 objfile_name (objfile));
9489 return;
9490 }
9491 ++name;
9492
9493 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9494 field_type = TYPE_FIELD_TYPE (field_type, index);
9495 }
9496
9497 /* Smash this type to be a structure type. We have to do this
9498 because the type has already been recorded. */
9499 type->set_code (TYPE_CODE_STRUCT);
9500 type->set_num_fields (3);
9501 /* Save the field we care about. */
9502 struct field saved_field = type->field (0);
9503 type->set_fields
9504 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9505
9506 /* Put the discriminant at index 0. */
9507 type->field (0).set_type (field_type);
9508 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9509 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9510 SET_FIELD_BITPOS (type->field (0), bit_offset);
9511
9512 /* The order of fields doesn't really matter, so put the real
9513 field at index 1 and the data-less field at index 2. */
9514 type->field (1) = saved_field;
9515 TYPE_FIELD_NAME (type, 1)
9516 = rust_last_path_segment (TYPE_FIELD_TYPE (type, 1)->name ());
9517 TYPE_FIELD_TYPE (type, 1)->set_name
9518 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9519 TYPE_FIELD_NAME (type, 1)));
9520
9521 const char *dataless_name
9522 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9523 name);
9524 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9525 dataless_name);
9526 type->field (2).set_type (dataless_type);
9527 /* NAME points into the original discriminant name, which
9528 already has the correct lifetime. */
9529 TYPE_FIELD_NAME (type, 2) = name;
9530 SET_FIELD_BITPOS (type->field (2), 0);
9531
9532 /* Indicate that this is a variant type. */
9533 static discriminant_range ranges[1] = { { 0, 0 } };
9534 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9535 }
9536 /* A union with a single anonymous field is probably an old-style
9537 univariant enum. */
9538 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9539 {
9540 /* Smash this type to be a structure type. We have to do this
9541 because the type has already been recorded. */
9542 type->set_code (TYPE_CODE_STRUCT);
9543
9544 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9545 const char *variant_name
9546 = rust_last_path_segment (field_type->name ());
9547 TYPE_FIELD_NAME (type, 0) = variant_name;
9548 field_type->set_name
9549 (rust_fully_qualify (&objfile->objfile_obstack,
9550 type->name (), variant_name));
9551 }
9552 else
9553 {
9554 struct type *disr_type = nullptr;
9555 for (int i = 0; i < type->num_fields (); ++i)
9556 {
9557 disr_type = TYPE_FIELD_TYPE (type, i);
9558
9559 if (disr_type->code () != TYPE_CODE_STRUCT)
9560 {
9561 /* All fields of a true enum will be structs. */
9562 return;
9563 }
9564 else if (disr_type->num_fields () == 0)
9565 {
9566 /* Could be data-less variant, so keep going. */
9567 disr_type = nullptr;
9568 }
9569 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9570 "RUST$ENUM$DISR") != 0)
9571 {
9572 /* Not a Rust enum. */
9573 return;
9574 }
9575 else
9576 {
9577 /* Found one. */
9578 break;
9579 }
9580 }
9581
9582 /* If we got here without a discriminant, then it's probably
9583 just a union. */
9584 if (disr_type == nullptr)
9585 return;
9586
9587 /* Smash this type to be a structure type. We have to do this
9588 because the type has already been recorded. */
9589 type->set_code (TYPE_CODE_STRUCT);
9590
9591 /* Make space for the discriminant field. */
9592 struct field *disr_field = &disr_type->field (0);
9593 field *new_fields
9594 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9595 * sizeof (struct field)));
9596 memcpy (new_fields + 1, type->fields (),
9597 type->num_fields () * sizeof (struct field));
9598 type->set_fields (new_fields);
9599 type->set_num_fields (type->num_fields () + 1);
9600
9601 /* Install the discriminant at index 0 in the union. */
9602 type->field (0) = *disr_field;
9603 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9604 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9605
9606 /* We need a way to find the correct discriminant given a
9607 variant name. For convenience we build a map here. */
9608 struct type *enum_type = disr_field->type ();
9609 std::unordered_map<std::string, ULONGEST> discriminant_map;
9610 for (int i = 0; i < enum_type->num_fields (); ++i)
9611 {
9612 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9613 {
9614 const char *name
9615 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9616 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9617 }
9618 }
9619
9620 int n_fields = type->num_fields ();
9621 /* We don't need a range entry for the discriminant, but we do
9622 need one for every other field, as there is no default
9623 variant. */
9624 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9625 discriminant_range,
9626 n_fields - 1);
9627 /* Skip the discriminant here. */
9628 for (int i = 1; i < n_fields; ++i)
9629 {
9630 /* Find the final word in the name of this variant's type.
9631 That name can be used to look up the correct
9632 discriminant. */
9633 const char *variant_name
9634 = rust_last_path_segment (TYPE_FIELD_TYPE (type, i)->name ());
9635
9636 auto iter = discriminant_map.find (variant_name);
9637 if (iter != discriminant_map.end ())
9638 {
9639 ranges[i].low = iter->second;
9640 ranges[i].high = iter->second;
9641 }
9642
9643 /* Remove the discriminant field, if it exists. */
9644 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9645 if (sub_type->num_fields () > 0)
9646 {
9647 sub_type->set_num_fields (sub_type->num_fields () - 1);
9648 sub_type->set_fields (sub_type->fields () + 1);
9649 }
9650 TYPE_FIELD_NAME (type, i) = variant_name;
9651 sub_type->set_name
9652 (rust_fully_qualify (&objfile->objfile_obstack,
9653 type->name (), variant_name));
9654 }
9655
9656 /* Indicate that this is a variant type. */
9657 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9658 gdb::array_view<discriminant_range> (ranges,
9659 n_fields - 1));
9660 }
9661 }
9662
9663 /* Rewrite some Rust unions to be structures with variants parts. */
9664
9665 static void
9666 rust_union_quirks (struct dwarf2_cu *cu)
9667 {
9668 gdb_assert (cu->language == language_rust);
9669 for (type *type_ : cu->rust_unions)
9670 quirk_rust_enum (type_, cu->per_objfile->objfile);
9671 /* We don't need this any more. */
9672 cu->rust_unions.clear ();
9673 }
9674
9675 /* See read.h. */
9676
9677 type_unit_group_unshareable *
9678 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9679 {
9680 auto iter = this->m_type_units.find (tu_group);
9681 if (iter != this->m_type_units.end ())
9682 return iter->second.get ();
9683
9684 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9685 type_unit_group_unshareable *result = uniq.get ();
9686 this->m_type_units[tu_group] = std::move (uniq);
9687 return result;
9688 }
9689
9690 struct type *
9691 dwarf2_per_objfile::get_type_for_signatured_type
9692 (signatured_type *sig_type) const
9693 {
9694 auto iter = this->m_type_map.find (sig_type);
9695 if (iter == this->m_type_map.end ())
9696 return nullptr;
9697
9698 return iter->second;
9699 }
9700
9701 void dwarf2_per_objfile::set_type_for_signatured_type
9702 (signatured_type *sig_type, struct type *type)
9703 {
9704 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9705
9706 this->m_type_map[sig_type] = type;
9707 }
9708
9709 /* A helper function for computing the list of all symbol tables
9710 included by PER_CU. */
9711
9712 static void
9713 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9714 htab_t all_children, htab_t all_type_symtabs,
9715 dwarf2_per_cu_data *per_cu,
9716 dwarf2_per_objfile *per_objfile,
9717 struct compunit_symtab *immediate_parent)
9718 {
9719 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9720 if (*slot != NULL)
9721 {
9722 /* This inclusion and its children have been processed. */
9723 return;
9724 }
9725
9726 *slot = per_cu;
9727
9728 /* Only add a CU if it has a symbol table. */
9729 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9730 if (cust != NULL)
9731 {
9732 /* If this is a type unit only add its symbol table if we haven't
9733 seen it yet (type unit per_cu's can share symtabs). */
9734 if (per_cu->is_debug_types)
9735 {
9736 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9737 if (*slot == NULL)
9738 {
9739 *slot = cust;
9740 result->push_back (cust);
9741 if (cust->user == NULL)
9742 cust->user = immediate_parent;
9743 }
9744 }
9745 else
9746 {
9747 result->push_back (cust);
9748 if (cust->user == NULL)
9749 cust->user = immediate_parent;
9750 }
9751 }
9752
9753 if (!per_cu->imported_symtabs_empty ())
9754 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9755 {
9756 recursively_compute_inclusions (result, all_children,
9757 all_type_symtabs, ptr, per_objfile,
9758 cust);
9759 }
9760 }
9761
9762 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9763 PER_CU. */
9764
9765 static void
9766 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9767 dwarf2_per_objfile *per_objfile)
9768 {
9769 gdb_assert (! per_cu->is_debug_types);
9770
9771 if (!per_cu->imported_symtabs_empty ())
9772 {
9773 int len;
9774 std::vector<compunit_symtab *> result_symtabs;
9775 htab_t all_children, all_type_symtabs;
9776 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9777
9778 /* If we don't have a symtab, we can just skip this case. */
9779 if (cust == NULL)
9780 return;
9781
9782 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9783 NULL, xcalloc, xfree);
9784 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9785 NULL, xcalloc, xfree);
9786
9787 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9788 {
9789 recursively_compute_inclusions (&result_symtabs, all_children,
9790 all_type_symtabs, ptr, per_objfile,
9791 cust);
9792 }
9793
9794 /* Now we have a transitive closure of all the included symtabs. */
9795 len = result_symtabs.size ();
9796 cust->includes
9797 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9798 struct compunit_symtab *, len + 1);
9799 memcpy (cust->includes, result_symtabs.data (),
9800 len * sizeof (compunit_symtab *));
9801 cust->includes[len] = NULL;
9802
9803 htab_delete (all_children);
9804 htab_delete (all_type_symtabs);
9805 }
9806 }
9807
9808 /* Compute the 'includes' field for the symtabs of all the CUs we just
9809 read. */
9810
9811 static void
9812 process_cu_includes (dwarf2_per_objfile *per_objfile)
9813 {
9814 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9815 {
9816 if (! iter->is_debug_types)
9817 compute_compunit_symtab_includes (iter, per_objfile);
9818 }
9819
9820 per_objfile->per_bfd->just_read_cus.clear ();
9821 }
9822
9823 /* Generate full symbol information for CU, whose DIEs have
9824 already been loaded into memory. */
9825
9826 static void
9827 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9828 {
9829 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9830 struct objfile *objfile = per_objfile->objfile;
9831 struct gdbarch *gdbarch = objfile->arch ();
9832 CORE_ADDR lowpc, highpc;
9833 struct compunit_symtab *cust;
9834 CORE_ADDR baseaddr;
9835 struct block *static_block;
9836 CORE_ADDR addr;
9837
9838 baseaddr = objfile->text_section_offset ();
9839
9840 /* Clear the list here in case something was left over. */
9841 cu->method_list.clear ();
9842
9843 cu->language = pretend_language;
9844 cu->language_defn = language_def (cu->language);
9845
9846 /* Do line number decoding in read_file_scope () */
9847 process_die (cu->dies, cu);
9848
9849 /* For now fudge the Go package. */
9850 if (cu->language == language_go)
9851 fixup_go_packaging (cu);
9852
9853 /* Now that we have processed all the DIEs in the CU, all the types
9854 should be complete, and it should now be safe to compute all of the
9855 physnames. */
9856 compute_delayed_physnames (cu);
9857
9858 if (cu->language == language_rust)
9859 rust_union_quirks (cu);
9860
9861 /* Some compilers don't define a DW_AT_high_pc attribute for the
9862 compilation unit. If the DW_AT_high_pc is missing, synthesize
9863 it, by scanning the DIE's below the compilation unit. */
9864 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9865
9866 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9867 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9868
9869 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9870 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9871 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9872 addrmap to help ensure it has an accurate map of pc values belonging to
9873 this comp unit. */
9874 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9875
9876 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9877 SECT_OFF_TEXT (objfile),
9878 0);
9879
9880 if (cust != NULL)
9881 {
9882 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9883
9884 /* Set symtab language to language from DW_AT_language. If the
9885 compilation is from a C file generated by language preprocessors, do
9886 not set the language if it was already deduced by start_subfile. */
9887 if (!(cu->language == language_c
9888 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9889 COMPUNIT_FILETABS (cust)->language = cu->language;
9890
9891 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9892 produce DW_AT_location with location lists but it can be possibly
9893 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9894 there were bugs in prologue debug info, fixed later in GCC-4.5
9895 by "unwind info for epilogues" patch (which is not directly related).
9896
9897 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9898 needed, it would be wrong due to missing DW_AT_producer there.
9899
9900 Still one can confuse GDB by using non-standard GCC compilation
9901 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9902 */
9903 if (cu->has_loclist && gcc_4_minor >= 5)
9904 cust->locations_valid = 1;
9905
9906 if (gcc_4_minor >= 5)
9907 cust->epilogue_unwind_valid = 1;
9908
9909 cust->call_site_htab = cu->call_site_htab;
9910 }
9911
9912 per_objfile->set_symtab (cu->per_cu, cust);
9913
9914 /* Push it for inclusion processing later. */
9915 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9916
9917 /* Not needed any more. */
9918 cu->reset_builder ();
9919 }
9920
9921 /* Generate full symbol information for type unit CU, whose DIEs have
9922 already been loaded into memory. */
9923
9924 static void
9925 process_full_type_unit (dwarf2_cu *cu,
9926 enum language pretend_language)
9927 {
9928 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9929 struct objfile *objfile = per_objfile->objfile;
9930 struct compunit_symtab *cust;
9931 struct signatured_type *sig_type;
9932
9933 gdb_assert (cu->per_cu->is_debug_types);
9934 sig_type = (struct signatured_type *) cu->per_cu;
9935
9936 /* Clear the list here in case something was left over. */
9937 cu->method_list.clear ();
9938
9939 cu->language = pretend_language;
9940 cu->language_defn = language_def (cu->language);
9941
9942 /* The symbol tables are set up in read_type_unit_scope. */
9943 process_die (cu->dies, cu);
9944
9945 /* For now fudge the Go package. */
9946 if (cu->language == language_go)
9947 fixup_go_packaging (cu);
9948
9949 /* Now that we have processed all the DIEs in the CU, all the types
9950 should be complete, and it should now be safe to compute all of the
9951 physnames. */
9952 compute_delayed_physnames (cu);
9953
9954 if (cu->language == language_rust)
9955 rust_union_quirks (cu);
9956
9957 /* TUs share symbol tables.
9958 If this is the first TU to use this symtab, complete the construction
9959 of it with end_expandable_symtab. Otherwise, complete the addition of
9960 this TU's symbols to the existing symtab. */
9961 type_unit_group_unshareable *tug_unshare =
9962 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
9963 if (tug_unshare->compunit_symtab == NULL)
9964 {
9965 buildsym_compunit *builder = cu->get_builder ();
9966 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9967 tug_unshare->compunit_symtab = cust;
9968
9969 if (cust != NULL)
9970 {
9971 /* Set symtab language to language from DW_AT_language. If the
9972 compilation is from a C file generated by language preprocessors,
9973 do not set the language if it was already deduced by
9974 start_subfile. */
9975 if (!(cu->language == language_c
9976 && COMPUNIT_FILETABS (cust)->language != language_c))
9977 COMPUNIT_FILETABS (cust)->language = cu->language;
9978 }
9979 }
9980 else
9981 {
9982 cu->get_builder ()->augment_type_symtab ();
9983 cust = tug_unshare->compunit_symtab;
9984 }
9985
9986 per_objfile->set_symtab (cu->per_cu, cust);
9987
9988 /* Not needed any more. */
9989 cu->reset_builder ();
9990 }
9991
9992 /* Process an imported unit DIE. */
9993
9994 static void
9995 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9996 {
9997 struct attribute *attr;
9998
9999 /* For now we don't handle imported units in type units. */
10000 if (cu->per_cu->is_debug_types)
10001 {
10002 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10003 " supported in type units [in module %s]"),
10004 objfile_name (cu->per_objfile->objfile));
10005 }
10006
10007 attr = dwarf2_attr (die, DW_AT_import, cu);
10008 if (attr != NULL)
10009 {
10010 sect_offset sect_off = attr->get_ref_die_offset ();
10011 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10012 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10013 dwarf2_per_cu_data *per_cu
10014 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
10015
10016 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
10017 into another compilation unit, at root level. Regard this as a hint,
10018 and ignore it. */
10019 if (die->parent && die->parent->parent == NULL
10020 && per_cu->unit_type == DW_UT_compile
10021 && per_cu->lang == language_cplus)
10022 return;
10023
10024 /* If necessary, add it to the queue and load its DIEs. */
10025 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
10026 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
10027
10028 cu->per_cu->imported_symtabs_push (per_cu);
10029 }
10030 }
10031
10032 /* RAII object that represents a process_die scope: i.e.,
10033 starts/finishes processing a DIE. */
10034 class process_die_scope
10035 {
10036 public:
10037 process_die_scope (die_info *die, dwarf2_cu *cu)
10038 : m_die (die), m_cu (cu)
10039 {
10040 /* We should only be processing DIEs not already in process. */
10041 gdb_assert (!m_die->in_process);
10042 m_die->in_process = true;
10043 }
10044
10045 ~process_die_scope ()
10046 {
10047 m_die->in_process = false;
10048
10049 /* If we're done processing the DIE for the CU that owns the line
10050 header, we don't need the line header anymore. */
10051 if (m_cu->line_header_die_owner == m_die)
10052 {
10053 delete m_cu->line_header;
10054 m_cu->line_header = NULL;
10055 m_cu->line_header_die_owner = NULL;
10056 }
10057 }
10058
10059 private:
10060 die_info *m_die;
10061 dwarf2_cu *m_cu;
10062 };
10063
10064 /* Process a die and its children. */
10065
10066 static void
10067 process_die (struct die_info *die, struct dwarf2_cu *cu)
10068 {
10069 process_die_scope scope (die, cu);
10070
10071 switch (die->tag)
10072 {
10073 case DW_TAG_padding:
10074 break;
10075 case DW_TAG_compile_unit:
10076 case DW_TAG_partial_unit:
10077 read_file_scope (die, cu);
10078 break;
10079 case DW_TAG_type_unit:
10080 read_type_unit_scope (die, cu);
10081 break;
10082 case DW_TAG_subprogram:
10083 /* Nested subprograms in Fortran get a prefix. */
10084 if (cu->language == language_fortran
10085 && die->parent != NULL
10086 && die->parent->tag == DW_TAG_subprogram)
10087 cu->processing_has_namespace_info = true;
10088 /* Fall through. */
10089 case DW_TAG_inlined_subroutine:
10090 read_func_scope (die, cu);
10091 break;
10092 case DW_TAG_lexical_block:
10093 case DW_TAG_try_block:
10094 case DW_TAG_catch_block:
10095 read_lexical_block_scope (die, cu);
10096 break;
10097 case DW_TAG_call_site:
10098 case DW_TAG_GNU_call_site:
10099 read_call_site_scope (die, cu);
10100 break;
10101 case DW_TAG_class_type:
10102 case DW_TAG_interface_type:
10103 case DW_TAG_structure_type:
10104 case DW_TAG_union_type:
10105 process_structure_scope (die, cu);
10106 break;
10107 case DW_TAG_enumeration_type:
10108 process_enumeration_scope (die, cu);
10109 break;
10110
10111 /* These dies have a type, but processing them does not create
10112 a symbol or recurse to process the children. Therefore we can
10113 read them on-demand through read_type_die. */
10114 case DW_TAG_subroutine_type:
10115 case DW_TAG_set_type:
10116 case DW_TAG_array_type:
10117 case DW_TAG_pointer_type:
10118 case DW_TAG_ptr_to_member_type:
10119 case DW_TAG_reference_type:
10120 case DW_TAG_rvalue_reference_type:
10121 case DW_TAG_string_type:
10122 break;
10123
10124 case DW_TAG_base_type:
10125 case DW_TAG_subrange_type:
10126 case DW_TAG_typedef:
10127 /* Add a typedef symbol for the type definition, if it has a
10128 DW_AT_name. */
10129 new_symbol (die, read_type_die (die, cu), cu);
10130 break;
10131 case DW_TAG_common_block:
10132 read_common_block (die, cu);
10133 break;
10134 case DW_TAG_common_inclusion:
10135 break;
10136 case DW_TAG_namespace:
10137 cu->processing_has_namespace_info = true;
10138 read_namespace (die, cu);
10139 break;
10140 case DW_TAG_module:
10141 cu->processing_has_namespace_info = true;
10142 read_module (die, cu);
10143 break;
10144 case DW_TAG_imported_declaration:
10145 cu->processing_has_namespace_info = true;
10146 if (read_namespace_alias (die, cu))
10147 break;
10148 /* The declaration is not a global namespace alias. */
10149 /* Fall through. */
10150 case DW_TAG_imported_module:
10151 cu->processing_has_namespace_info = true;
10152 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10153 || cu->language != language_fortran))
10154 complaint (_("Tag '%s' has unexpected children"),
10155 dwarf_tag_name (die->tag));
10156 read_import_statement (die, cu);
10157 break;
10158
10159 case DW_TAG_imported_unit:
10160 process_imported_unit_die (die, cu);
10161 break;
10162
10163 case DW_TAG_variable:
10164 read_variable (die, cu);
10165 break;
10166
10167 default:
10168 new_symbol (die, NULL, cu);
10169 break;
10170 }
10171 }
10172 \f
10173 /* DWARF name computation. */
10174
10175 /* A helper function for dwarf2_compute_name which determines whether DIE
10176 needs to have the name of the scope prepended to the name listed in the
10177 die. */
10178
10179 static int
10180 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10181 {
10182 struct attribute *attr;
10183
10184 switch (die->tag)
10185 {
10186 case DW_TAG_namespace:
10187 case DW_TAG_typedef:
10188 case DW_TAG_class_type:
10189 case DW_TAG_interface_type:
10190 case DW_TAG_structure_type:
10191 case DW_TAG_union_type:
10192 case DW_TAG_enumeration_type:
10193 case DW_TAG_enumerator:
10194 case DW_TAG_subprogram:
10195 case DW_TAG_inlined_subroutine:
10196 case DW_TAG_member:
10197 case DW_TAG_imported_declaration:
10198 return 1;
10199
10200 case DW_TAG_variable:
10201 case DW_TAG_constant:
10202 /* We only need to prefix "globally" visible variables. These include
10203 any variable marked with DW_AT_external or any variable that
10204 lives in a namespace. [Variables in anonymous namespaces
10205 require prefixing, but they are not DW_AT_external.] */
10206
10207 if (dwarf2_attr (die, DW_AT_specification, cu))
10208 {
10209 struct dwarf2_cu *spec_cu = cu;
10210
10211 return die_needs_namespace (die_specification (die, &spec_cu),
10212 spec_cu);
10213 }
10214
10215 attr = dwarf2_attr (die, DW_AT_external, cu);
10216 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10217 && die->parent->tag != DW_TAG_module)
10218 return 0;
10219 /* A variable in a lexical block of some kind does not need a
10220 namespace, even though in C++ such variables may be external
10221 and have a mangled name. */
10222 if (die->parent->tag == DW_TAG_lexical_block
10223 || die->parent->tag == DW_TAG_try_block
10224 || die->parent->tag == DW_TAG_catch_block
10225 || die->parent->tag == DW_TAG_subprogram)
10226 return 0;
10227 return 1;
10228
10229 default:
10230 return 0;
10231 }
10232 }
10233
10234 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10235 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10236 defined for the given DIE. */
10237
10238 static struct attribute *
10239 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10240 {
10241 struct attribute *attr;
10242
10243 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10244 if (attr == NULL)
10245 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10246
10247 return attr;
10248 }
10249
10250 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10251 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10252 defined for the given DIE. */
10253
10254 static const char *
10255 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10256 {
10257 const char *linkage_name;
10258
10259 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10260 if (linkage_name == NULL)
10261 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10262
10263 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10264 See https://github.com/rust-lang/rust/issues/32925. */
10265 if (cu->language == language_rust && linkage_name != NULL
10266 && strchr (linkage_name, '{') != NULL)
10267 linkage_name = NULL;
10268
10269 return linkage_name;
10270 }
10271
10272 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10273 compute the physname for the object, which include a method's:
10274 - formal parameters (C++),
10275 - receiver type (Go),
10276
10277 The term "physname" is a bit confusing.
10278 For C++, for example, it is the demangled name.
10279 For Go, for example, it's the mangled name.
10280
10281 For Ada, return the DIE's linkage name rather than the fully qualified
10282 name. PHYSNAME is ignored..
10283
10284 The result is allocated on the objfile->per_bfd's obstack and
10285 canonicalized. */
10286
10287 static const char *
10288 dwarf2_compute_name (const char *name,
10289 struct die_info *die, struct dwarf2_cu *cu,
10290 int physname)
10291 {
10292 struct objfile *objfile = cu->per_objfile->objfile;
10293
10294 if (name == NULL)
10295 name = dwarf2_name (die, cu);
10296
10297 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10298 but otherwise compute it by typename_concat inside GDB.
10299 FIXME: Actually this is not really true, or at least not always true.
10300 It's all very confusing. compute_and_set_names doesn't try to demangle
10301 Fortran names because there is no mangling standard. So new_symbol
10302 will set the demangled name to the result of dwarf2_full_name, and it is
10303 the demangled name that GDB uses if it exists. */
10304 if (cu->language == language_ada
10305 || (cu->language == language_fortran && physname))
10306 {
10307 /* For Ada unit, we prefer the linkage name over the name, as
10308 the former contains the exported name, which the user expects
10309 to be able to reference. Ideally, we want the user to be able
10310 to reference this entity using either natural or linkage name,
10311 but we haven't started looking at this enhancement yet. */
10312 const char *linkage_name = dw2_linkage_name (die, cu);
10313
10314 if (linkage_name != NULL)
10315 return linkage_name;
10316 }
10317
10318 /* These are the only languages we know how to qualify names in. */
10319 if (name != NULL
10320 && (cu->language == language_cplus
10321 || cu->language == language_fortran || cu->language == language_d
10322 || cu->language == language_rust))
10323 {
10324 if (die_needs_namespace (die, cu))
10325 {
10326 const char *prefix;
10327 const char *canonical_name = NULL;
10328
10329 string_file buf;
10330
10331 prefix = determine_prefix (die, cu);
10332 if (*prefix != '\0')
10333 {
10334 gdb::unique_xmalloc_ptr<char> prefixed_name
10335 (typename_concat (NULL, prefix, name, physname, cu));
10336
10337 buf.puts (prefixed_name.get ());
10338 }
10339 else
10340 buf.puts (name);
10341
10342 /* Template parameters may be specified in the DIE's DW_AT_name, or
10343 as children with DW_TAG_template_type_param or
10344 DW_TAG_value_type_param. If the latter, add them to the name
10345 here. If the name already has template parameters, then
10346 skip this step; some versions of GCC emit both, and
10347 it is more efficient to use the pre-computed name.
10348
10349 Something to keep in mind about this process: it is very
10350 unlikely, or in some cases downright impossible, to produce
10351 something that will match the mangled name of a function.
10352 If the definition of the function has the same debug info,
10353 we should be able to match up with it anyway. But fallbacks
10354 using the minimal symbol, for instance to find a method
10355 implemented in a stripped copy of libstdc++, will not work.
10356 If we do not have debug info for the definition, we will have to
10357 match them up some other way.
10358
10359 When we do name matching there is a related problem with function
10360 templates; two instantiated function templates are allowed to
10361 differ only by their return types, which we do not add here. */
10362
10363 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10364 {
10365 struct attribute *attr;
10366 struct die_info *child;
10367 int first = 1;
10368
10369 die->building_fullname = 1;
10370
10371 for (child = die->child; child != NULL; child = child->sibling)
10372 {
10373 struct type *type;
10374 LONGEST value;
10375 const gdb_byte *bytes;
10376 struct dwarf2_locexpr_baton *baton;
10377 struct value *v;
10378
10379 if (child->tag != DW_TAG_template_type_param
10380 && child->tag != DW_TAG_template_value_param)
10381 continue;
10382
10383 if (first)
10384 {
10385 buf.puts ("<");
10386 first = 0;
10387 }
10388 else
10389 buf.puts (", ");
10390
10391 attr = dwarf2_attr (child, DW_AT_type, cu);
10392 if (attr == NULL)
10393 {
10394 complaint (_("template parameter missing DW_AT_type"));
10395 buf.puts ("UNKNOWN_TYPE");
10396 continue;
10397 }
10398 type = die_type (child, cu);
10399
10400 if (child->tag == DW_TAG_template_type_param)
10401 {
10402 c_print_type (type, "", &buf, -1, 0, cu->language,
10403 &type_print_raw_options);
10404 continue;
10405 }
10406
10407 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10408 if (attr == NULL)
10409 {
10410 complaint (_("template parameter missing "
10411 "DW_AT_const_value"));
10412 buf.puts ("UNKNOWN_VALUE");
10413 continue;
10414 }
10415
10416 dwarf2_const_value_attr (attr, type, name,
10417 &cu->comp_unit_obstack, cu,
10418 &value, &bytes, &baton);
10419
10420 if (TYPE_NOSIGN (type))
10421 /* GDB prints characters as NUMBER 'CHAR'. If that's
10422 changed, this can use value_print instead. */
10423 c_printchar (value, type, &buf);
10424 else
10425 {
10426 struct value_print_options opts;
10427
10428 if (baton != NULL)
10429 v = dwarf2_evaluate_loc_desc (type, NULL,
10430 baton->data,
10431 baton->size,
10432 baton->per_cu,
10433 baton->per_objfile);
10434 else if (bytes != NULL)
10435 {
10436 v = allocate_value (type);
10437 memcpy (value_contents_writeable (v), bytes,
10438 TYPE_LENGTH (type));
10439 }
10440 else
10441 v = value_from_longest (type, value);
10442
10443 /* Specify decimal so that we do not depend on
10444 the radix. */
10445 get_formatted_print_options (&opts, 'd');
10446 opts.raw = 1;
10447 value_print (v, &buf, &opts);
10448 release_value (v);
10449 }
10450 }
10451
10452 die->building_fullname = 0;
10453
10454 if (!first)
10455 {
10456 /* Close the argument list, with a space if necessary
10457 (nested templates). */
10458 if (!buf.empty () && buf.string ().back () == '>')
10459 buf.puts (" >");
10460 else
10461 buf.puts (">");
10462 }
10463 }
10464
10465 /* For C++ methods, append formal parameter type
10466 information, if PHYSNAME. */
10467
10468 if (physname && die->tag == DW_TAG_subprogram
10469 && cu->language == language_cplus)
10470 {
10471 struct type *type = read_type_die (die, cu);
10472
10473 c_type_print_args (type, &buf, 1, cu->language,
10474 &type_print_raw_options);
10475
10476 if (cu->language == language_cplus)
10477 {
10478 /* Assume that an artificial first parameter is
10479 "this", but do not crash if it is not. RealView
10480 marks unnamed (and thus unused) parameters as
10481 artificial; there is no way to differentiate
10482 the two cases. */
10483 if (type->num_fields () > 0
10484 && TYPE_FIELD_ARTIFICIAL (type, 0)
10485 && TYPE_FIELD_TYPE (type, 0)->code () == TYPE_CODE_PTR
10486 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10487 0))))
10488 buf.puts (" const");
10489 }
10490 }
10491
10492 const std::string &intermediate_name = buf.string ();
10493
10494 if (cu->language == language_cplus)
10495 canonical_name
10496 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10497 objfile);
10498
10499 /* If we only computed INTERMEDIATE_NAME, or if
10500 INTERMEDIATE_NAME is already canonical, then we need to
10501 intern it. */
10502 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10503 name = objfile->intern (intermediate_name);
10504 else
10505 name = canonical_name;
10506 }
10507 }
10508
10509 return name;
10510 }
10511
10512 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10513 If scope qualifiers are appropriate they will be added. The result
10514 will be allocated on the storage_obstack, or NULL if the DIE does
10515 not have a name. NAME may either be from a previous call to
10516 dwarf2_name or NULL.
10517
10518 The output string will be canonicalized (if C++). */
10519
10520 static const char *
10521 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10522 {
10523 return dwarf2_compute_name (name, die, cu, 0);
10524 }
10525
10526 /* Construct a physname for the given DIE in CU. NAME may either be
10527 from a previous call to dwarf2_name or NULL. The result will be
10528 allocated on the objfile_objstack or NULL if the DIE does not have a
10529 name.
10530
10531 The output string will be canonicalized (if C++). */
10532
10533 static const char *
10534 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10535 {
10536 struct objfile *objfile = cu->per_objfile->objfile;
10537 const char *retval, *mangled = NULL, *canon = NULL;
10538 int need_copy = 1;
10539
10540 /* In this case dwarf2_compute_name is just a shortcut not building anything
10541 on its own. */
10542 if (!die_needs_namespace (die, cu))
10543 return dwarf2_compute_name (name, die, cu, 1);
10544
10545 if (cu->language != language_rust)
10546 mangled = dw2_linkage_name (die, cu);
10547
10548 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10549 has computed. */
10550 gdb::unique_xmalloc_ptr<char> demangled;
10551 if (mangled != NULL)
10552 {
10553
10554 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10555 {
10556 /* Do nothing (do not demangle the symbol name). */
10557 }
10558 else if (cu->language == language_go)
10559 {
10560 /* This is a lie, but we already lie to the caller new_symbol.
10561 new_symbol assumes we return the mangled name.
10562 This just undoes that lie until things are cleaned up. */
10563 }
10564 else
10565 {
10566 /* Use DMGL_RET_DROP for C++ template functions to suppress
10567 their return type. It is easier for GDB users to search
10568 for such functions as `name(params)' than `long name(params)'.
10569 In such case the minimal symbol names do not match the full
10570 symbol names but for template functions there is never a need
10571 to look up their definition from their declaration so
10572 the only disadvantage remains the minimal symbol variant
10573 `long name(params)' does not have the proper inferior type. */
10574 demangled.reset (gdb_demangle (mangled,
10575 (DMGL_PARAMS | DMGL_ANSI
10576 | DMGL_RET_DROP)));
10577 }
10578 if (demangled)
10579 canon = demangled.get ();
10580 else
10581 {
10582 canon = mangled;
10583 need_copy = 0;
10584 }
10585 }
10586
10587 if (canon == NULL || check_physname)
10588 {
10589 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10590
10591 if (canon != NULL && strcmp (physname, canon) != 0)
10592 {
10593 /* It may not mean a bug in GDB. The compiler could also
10594 compute DW_AT_linkage_name incorrectly. But in such case
10595 GDB would need to be bug-to-bug compatible. */
10596
10597 complaint (_("Computed physname <%s> does not match demangled <%s> "
10598 "(from linkage <%s>) - DIE at %s [in module %s]"),
10599 physname, canon, mangled, sect_offset_str (die->sect_off),
10600 objfile_name (objfile));
10601
10602 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10603 is available here - over computed PHYSNAME. It is safer
10604 against both buggy GDB and buggy compilers. */
10605
10606 retval = canon;
10607 }
10608 else
10609 {
10610 retval = physname;
10611 need_copy = 0;
10612 }
10613 }
10614 else
10615 retval = canon;
10616
10617 if (need_copy)
10618 retval = objfile->intern (retval);
10619
10620 return retval;
10621 }
10622
10623 /* Inspect DIE in CU for a namespace alias. If one exists, record
10624 a new symbol for it.
10625
10626 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10627
10628 static int
10629 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10630 {
10631 struct attribute *attr;
10632
10633 /* If the die does not have a name, this is not a namespace
10634 alias. */
10635 attr = dwarf2_attr (die, DW_AT_name, cu);
10636 if (attr != NULL)
10637 {
10638 int num;
10639 struct die_info *d = die;
10640 struct dwarf2_cu *imported_cu = cu;
10641
10642 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10643 keep inspecting DIEs until we hit the underlying import. */
10644 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10645 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10646 {
10647 attr = dwarf2_attr (d, DW_AT_import, cu);
10648 if (attr == NULL)
10649 break;
10650
10651 d = follow_die_ref (d, attr, &imported_cu);
10652 if (d->tag != DW_TAG_imported_declaration)
10653 break;
10654 }
10655
10656 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10657 {
10658 complaint (_("DIE at %s has too many recursively imported "
10659 "declarations"), sect_offset_str (d->sect_off));
10660 return 0;
10661 }
10662
10663 if (attr != NULL)
10664 {
10665 struct type *type;
10666 sect_offset sect_off = attr->get_ref_die_offset ();
10667
10668 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10669 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10670 {
10671 /* This declaration is a global namespace alias. Add
10672 a symbol for it whose type is the aliased namespace. */
10673 new_symbol (die, type, cu);
10674 return 1;
10675 }
10676 }
10677 }
10678
10679 return 0;
10680 }
10681
10682 /* Return the using directives repository (global or local?) to use in the
10683 current context for CU.
10684
10685 For Ada, imported declarations can materialize renamings, which *may* be
10686 global. However it is impossible (for now?) in DWARF to distinguish
10687 "external" imported declarations and "static" ones. As all imported
10688 declarations seem to be static in all other languages, make them all CU-wide
10689 global only in Ada. */
10690
10691 static struct using_direct **
10692 using_directives (struct dwarf2_cu *cu)
10693 {
10694 if (cu->language == language_ada
10695 && cu->get_builder ()->outermost_context_p ())
10696 return cu->get_builder ()->get_global_using_directives ();
10697 else
10698 return cu->get_builder ()->get_local_using_directives ();
10699 }
10700
10701 /* Read the import statement specified by the given die and record it. */
10702
10703 static void
10704 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10705 {
10706 struct objfile *objfile = cu->per_objfile->objfile;
10707 struct attribute *import_attr;
10708 struct die_info *imported_die, *child_die;
10709 struct dwarf2_cu *imported_cu;
10710 const char *imported_name;
10711 const char *imported_name_prefix;
10712 const char *canonical_name;
10713 const char *import_alias;
10714 const char *imported_declaration = NULL;
10715 const char *import_prefix;
10716 std::vector<const char *> excludes;
10717
10718 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10719 if (import_attr == NULL)
10720 {
10721 complaint (_("Tag '%s' has no DW_AT_import"),
10722 dwarf_tag_name (die->tag));
10723 return;
10724 }
10725
10726 imported_cu = cu;
10727 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10728 imported_name = dwarf2_name (imported_die, imported_cu);
10729 if (imported_name == NULL)
10730 {
10731 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10732
10733 The import in the following code:
10734 namespace A
10735 {
10736 typedef int B;
10737 }
10738
10739 int main ()
10740 {
10741 using A::B;
10742 B b;
10743 return b;
10744 }
10745
10746 ...
10747 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10748 <52> DW_AT_decl_file : 1
10749 <53> DW_AT_decl_line : 6
10750 <54> DW_AT_import : <0x75>
10751 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10752 <59> DW_AT_name : B
10753 <5b> DW_AT_decl_file : 1
10754 <5c> DW_AT_decl_line : 2
10755 <5d> DW_AT_type : <0x6e>
10756 ...
10757 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10758 <76> DW_AT_byte_size : 4
10759 <77> DW_AT_encoding : 5 (signed)
10760
10761 imports the wrong die ( 0x75 instead of 0x58 ).
10762 This case will be ignored until the gcc bug is fixed. */
10763 return;
10764 }
10765
10766 /* Figure out the local name after import. */
10767 import_alias = dwarf2_name (die, cu);
10768
10769 /* Figure out where the statement is being imported to. */
10770 import_prefix = determine_prefix (die, cu);
10771
10772 /* Figure out what the scope of the imported die is and prepend it
10773 to the name of the imported die. */
10774 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10775
10776 if (imported_die->tag != DW_TAG_namespace
10777 && imported_die->tag != DW_TAG_module)
10778 {
10779 imported_declaration = imported_name;
10780 canonical_name = imported_name_prefix;
10781 }
10782 else if (strlen (imported_name_prefix) > 0)
10783 canonical_name = obconcat (&objfile->objfile_obstack,
10784 imported_name_prefix,
10785 (cu->language == language_d ? "." : "::"),
10786 imported_name, (char *) NULL);
10787 else
10788 canonical_name = imported_name;
10789
10790 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10791 for (child_die = die->child; child_die && child_die->tag;
10792 child_die = child_die->sibling)
10793 {
10794 /* DWARF-4: A Fortran use statement with a “rename list” may be
10795 represented by an imported module entry with an import attribute
10796 referring to the module and owned entries corresponding to those
10797 entities that are renamed as part of being imported. */
10798
10799 if (child_die->tag != DW_TAG_imported_declaration)
10800 {
10801 complaint (_("child DW_TAG_imported_declaration expected "
10802 "- DIE at %s [in module %s]"),
10803 sect_offset_str (child_die->sect_off),
10804 objfile_name (objfile));
10805 continue;
10806 }
10807
10808 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10809 if (import_attr == NULL)
10810 {
10811 complaint (_("Tag '%s' has no DW_AT_import"),
10812 dwarf_tag_name (child_die->tag));
10813 continue;
10814 }
10815
10816 imported_cu = cu;
10817 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10818 &imported_cu);
10819 imported_name = dwarf2_name (imported_die, imported_cu);
10820 if (imported_name == NULL)
10821 {
10822 complaint (_("child DW_TAG_imported_declaration has unknown "
10823 "imported name - DIE at %s [in module %s]"),
10824 sect_offset_str (child_die->sect_off),
10825 objfile_name (objfile));
10826 continue;
10827 }
10828
10829 excludes.push_back (imported_name);
10830
10831 process_die (child_die, cu);
10832 }
10833
10834 add_using_directive (using_directives (cu),
10835 import_prefix,
10836 canonical_name,
10837 import_alias,
10838 imported_declaration,
10839 excludes,
10840 0,
10841 &objfile->objfile_obstack);
10842 }
10843
10844 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10845 types, but gives them a size of zero. Starting with version 14,
10846 ICC is compatible with GCC. */
10847
10848 static bool
10849 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10850 {
10851 if (!cu->checked_producer)
10852 check_producer (cu);
10853
10854 return cu->producer_is_icc_lt_14;
10855 }
10856
10857 /* ICC generates a DW_AT_type for C void functions. This was observed on
10858 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10859 which says that void functions should not have a DW_AT_type. */
10860
10861 static bool
10862 producer_is_icc (struct dwarf2_cu *cu)
10863 {
10864 if (!cu->checked_producer)
10865 check_producer (cu);
10866
10867 return cu->producer_is_icc;
10868 }
10869
10870 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10871 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10872 this, it was first present in GCC release 4.3.0. */
10873
10874 static bool
10875 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10876 {
10877 if (!cu->checked_producer)
10878 check_producer (cu);
10879
10880 return cu->producer_is_gcc_lt_4_3;
10881 }
10882
10883 static file_and_directory
10884 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10885 {
10886 file_and_directory res;
10887
10888 /* Find the filename. Do not use dwarf2_name here, since the filename
10889 is not a source language identifier. */
10890 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10891 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10892
10893 if (res.comp_dir == NULL
10894 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10895 && IS_ABSOLUTE_PATH (res.name))
10896 {
10897 res.comp_dir_storage = ldirname (res.name);
10898 if (!res.comp_dir_storage.empty ())
10899 res.comp_dir = res.comp_dir_storage.c_str ();
10900 }
10901 if (res.comp_dir != NULL)
10902 {
10903 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10904 directory, get rid of it. */
10905 const char *cp = strchr (res.comp_dir, ':');
10906
10907 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10908 res.comp_dir = cp + 1;
10909 }
10910
10911 if (res.name == NULL)
10912 res.name = "<unknown>";
10913
10914 return res;
10915 }
10916
10917 /* Handle DW_AT_stmt_list for a compilation unit.
10918 DIE is the DW_TAG_compile_unit die for CU.
10919 COMP_DIR is the compilation directory. LOWPC is passed to
10920 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10921
10922 static void
10923 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10924 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10925 {
10926 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10927 struct attribute *attr;
10928 struct line_header line_header_local;
10929 hashval_t line_header_local_hash;
10930 void **slot;
10931 int decode_mapping;
10932
10933 gdb_assert (! cu->per_cu->is_debug_types);
10934
10935 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10936 if (attr == NULL)
10937 return;
10938
10939 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10940
10941 /* The line header hash table is only created if needed (it exists to
10942 prevent redundant reading of the line table for partial_units).
10943 If we're given a partial_unit, we'll need it. If we're given a
10944 compile_unit, then use the line header hash table if it's already
10945 created, but don't create one just yet. */
10946
10947 if (per_objfile->line_header_hash == NULL
10948 && die->tag == DW_TAG_partial_unit)
10949 {
10950 per_objfile->line_header_hash
10951 .reset (htab_create_alloc (127, line_header_hash_voidp,
10952 line_header_eq_voidp,
10953 free_line_header_voidp,
10954 xcalloc, xfree));
10955 }
10956
10957 line_header_local.sect_off = line_offset;
10958 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10959 line_header_local_hash = line_header_hash (&line_header_local);
10960 if (per_objfile->line_header_hash != NULL)
10961 {
10962 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10963 &line_header_local,
10964 line_header_local_hash, NO_INSERT);
10965
10966 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10967 is not present in *SLOT (since if there is something in *SLOT then
10968 it will be for a partial_unit). */
10969 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10970 {
10971 gdb_assert (*slot != NULL);
10972 cu->line_header = (struct line_header *) *slot;
10973 return;
10974 }
10975 }
10976
10977 /* dwarf_decode_line_header does not yet provide sufficient information.
10978 We always have to call also dwarf_decode_lines for it. */
10979 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10980 if (lh == NULL)
10981 return;
10982
10983 cu->line_header = lh.release ();
10984 cu->line_header_die_owner = die;
10985
10986 if (per_objfile->line_header_hash == NULL)
10987 slot = NULL;
10988 else
10989 {
10990 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10991 &line_header_local,
10992 line_header_local_hash, INSERT);
10993 gdb_assert (slot != NULL);
10994 }
10995 if (slot != NULL && *slot == NULL)
10996 {
10997 /* This newly decoded line number information unit will be owned
10998 by line_header_hash hash table. */
10999 *slot = cu->line_header;
11000 cu->line_header_die_owner = NULL;
11001 }
11002 else
11003 {
11004 /* We cannot free any current entry in (*slot) as that struct line_header
11005 may be already used by multiple CUs. Create only temporary decoded
11006 line_header for this CU - it may happen at most once for each line
11007 number information unit. And if we're not using line_header_hash
11008 then this is what we want as well. */
11009 gdb_assert (die->tag != DW_TAG_partial_unit);
11010 }
11011 decode_mapping = (die->tag != DW_TAG_partial_unit);
11012 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11013 decode_mapping);
11014
11015 }
11016
11017 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11018
11019 static void
11020 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11021 {
11022 dwarf2_per_objfile *per_objfile = cu->per_objfile;
11023 struct objfile *objfile = per_objfile->objfile;
11024 struct gdbarch *gdbarch = objfile->arch ();
11025 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11026 CORE_ADDR highpc = ((CORE_ADDR) 0);
11027 struct attribute *attr;
11028 struct die_info *child_die;
11029 CORE_ADDR baseaddr;
11030
11031 prepare_one_comp_unit (cu, die, cu->language);
11032 baseaddr = objfile->text_section_offset ();
11033
11034 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11035
11036 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11037 from finish_block. */
11038 if (lowpc == ((CORE_ADDR) -1))
11039 lowpc = highpc;
11040 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11041
11042 file_and_directory fnd = find_file_and_directory (die, cu);
11043
11044 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11045 standardised yet. As a workaround for the language detection we fall
11046 back to the DW_AT_producer string. */
11047 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11048 cu->language = language_opencl;
11049
11050 /* Similar hack for Go. */
11051 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11052 set_cu_language (DW_LANG_Go, cu);
11053
11054 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11055
11056 /* Decode line number information if present. We do this before
11057 processing child DIEs, so that the line header table is available
11058 for DW_AT_decl_file. */
11059 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11060
11061 /* Process all dies in compilation unit. */
11062 if (die->child != NULL)
11063 {
11064 child_die = die->child;
11065 while (child_die && child_die->tag)
11066 {
11067 process_die (child_die, cu);
11068 child_die = child_die->sibling;
11069 }
11070 }
11071
11072 /* Decode macro information, if present. Dwarf 2 macro information
11073 refers to information in the line number info statement program
11074 header, so we can only read it if we've read the header
11075 successfully. */
11076 attr = dwarf2_attr (die, DW_AT_macros, cu);
11077 if (attr == NULL)
11078 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11079 if (attr && cu->line_header)
11080 {
11081 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11082 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11083
11084 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11085 }
11086 else
11087 {
11088 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11089 if (attr && cu->line_header)
11090 {
11091 unsigned int macro_offset = DW_UNSND (attr);
11092
11093 dwarf_decode_macros (cu, macro_offset, 0);
11094 }
11095 }
11096 }
11097
11098 void
11099 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11100 {
11101 struct type_unit_group *tu_group;
11102 int first_time;
11103 struct attribute *attr;
11104 unsigned int i;
11105 struct signatured_type *sig_type;
11106
11107 gdb_assert (per_cu->is_debug_types);
11108 sig_type = (struct signatured_type *) per_cu;
11109
11110 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11111
11112 /* If we're using .gdb_index (includes -readnow) then
11113 per_cu->type_unit_group may not have been set up yet. */
11114 if (sig_type->type_unit_group == NULL)
11115 sig_type->type_unit_group = get_type_unit_group (this, attr);
11116 tu_group = sig_type->type_unit_group;
11117
11118 /* If we've already processed this stmt_list there's no real need to
11119 do it again, we could fake it and just recreate the part we need
11120 (file name,index -> symtab mapping). If data shows this optimization
11121 is useful we can do it then. */
11122 type_unit_group_unshareable *tug_unshare
11123 = per_objfile->get_type_unit_group_unshareable (tu_group);
11124 first_time = tug_unshare->compunit_symtab == NULL;
11125
11126 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11127 debug info. */
11128 line_header_up lh;
11129 if (attr != NULL)
11130 {
11131 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11132 lh = dwarf_decode_line_header (line_offset, this);
11133 }
11134 if (lh == NULL)
11135 {
11136 if (first_time)
11137 start_symtab ("", NULL, 0);
11138 else
11139 {
11140 gdb_assert (tug_unshare->symtabs == NULL);
11141 gdb_assert (m_builder == nullptr);
11142 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11143 m_builder.reset (new struct buildsym_compunit
11144 (COMPUNIT_OBJFILE (cust), "",
11145 COMPUNIT_DIRNAME (cust),
11146 compunit_language (cust),
11147 0, cust));
11148 list_in_scope = get_builder ()->get_file_symbols ();
11149 }
11150 return;
11151 }
11152
11153 line_header = lh.release ();
11154 line_header_die_owner = die;
11155
11156 if (first_time)
11157 {
11158 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11159
11160 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11161 still initializing it, and our caller (a few levels up)
11162 process_full_type_unit still needs to know if this is the first
11163 time. */
11164
11165 tug_unshare->symtabs
11166 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11167 struct symtab *, line_header->file_names_size ());
11168
11169 auto &file_names = line_header->file_names ();
11170 for (i = 0; i < file_names.size (); ++i)
11171 {
11172 file_entry &fe = file_names[i];
11173 dwarf2_start_subfile (this, fe.name,
11174 fe.include_dir (line_header));
11175 buildsym_compunit *b = get_builder ();
11176 if (b->get_current_subfile ()->symtab == NULL)
11177 {
11178 /* NOTE: start_subfile will recognize when it's been
11179 passed a file it has already seen. So we can't
11180 assume there's a simple mapping from
11181 cu->line_header->file_names to subfiles, plus
11182 cu->line_header->file_names may contain dups. */
11183 b->get_current_subfile ()->symtab
11184 = allocate_symtab (cust, b->get_current_subfile ()->name);
11185 }
11186
11187 fe.symtab = b->get_current_subfile ()->symtab;
11188 tug_unshare->symtabs[i] = fe.symtab;
11189 }
11190 }
11191 else
11192 {
11193 gdb_assert (m_builder == nullptr);
11194 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11195 m_builder.reset (new struct buildsym_compunit
11196 (COMPUNIT_OBJFILE (cust), "",
11197 COMPUNIT_DIRNAME (cust),
11198 compunit_language (cust),
11199 0, cust));
11200 list_in_scope = get_builder ()->get_file_symbols ();
11201
11202 auto &file_names = line_header->file_names ();
11203 for (i = 0; i < file_names.size (); ++i)
11204 {
11205 file_entry &fe = file_names[i];
11206 fe.symtab = tug_unshare->symtabs[i];
11207 }
11208 }
11209
11210 /* The main symtab is allocated last. Type units don't have DW_AT_name
11211 so they don't have a "real" (so to speak) symtab anyway.
11212 There is later code that will assign the main symtab to all symbols
11213 that don't have one. We need to handle the case of a symbol with a
11214 missing symtab (DW_AT_decl_file) anyway. */
11215 }
11216
11217 /* Process DW_TAG_type_unit.
11218 For TUs we want to skip the first top level sibling if it's not the
11219 actual type being defined by this TU. In this case the first top
11220 level sibling is there to provide context only. */
11221
11222 static void
11223 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11224 {
11225 struct die_info *child_die;
11226
11227 prepare_one_comp_unit (cu, die, language_minimal);
11228
11229 /* Initialize (or reinitialize) the machinery for building symtabs.
11230 We do this before processing child DIEs, so that the line header table
11231 is available for DW_AT_decl_file. */
11232 cu->setup_type_unit_groups (die);
11233
11234 if (die->child != NULL)
11235 {
11236 child_die = die->child;
11237 while (child_die && child_die->tag)
11238 {
11239 process_die (child_die, cu);
11240 child_die = child_die->sibling;
11241 }
11242 }
11243 }
11244 \f
11245 /* DWO/DWP files.
11246
11247 http://gcc.gnu.org/wiki/DebugFission
11248 http://gcc.gnu.org/wiki/DebugFissionDWP
11249
11250 To simplify handling of both DWO files ("object" files with the DWARF info)
11251 and DWP files (a file with the DWOs packaged up into one file), we treat
11252 DWP files as having a collection of virtual DWO files. */
11253
11254 static hashval_t
11255 hash_dwo_file (const void *item)
11256 {
11257 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11258 hashval_t hash;
11259
11260 hash = htab_hash_string (dwo_file->dwo_name);
11261 if (dwo_file->comp_dir != NULL)
11262 hash += htab_hash_string (dwo_file->comp_dir);
11263 return hash;
11264 }
11265
11266 static int
11267 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11268 {
11269 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11270 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11271
11272 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11273 return 0;
11274 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11275 return lhs->comp_dir == rhs->comp_dir;
11276 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11277 }
11278
11279 /* Allocate a hash table for DWO files. */
11280
11281 static htab_up
11282 allocate_dwo_file_hash_table ()
11283 {
11284 auto delete_dwo_file = [] (void *item)
11285 {
11286 struct dwo_file *dwo_file = (struct dwo_file *) item;
11287
11288 delete dwo_file;
11289 };
11290
11291 return htab_up (htab_create_alloc (41,
11292 hash_dwo_file,
11293 eq_dwo_file,
11294 delete_dwo_file,
11295 xcalloc, xfree));
11296 }
11297
11298 /* Lookup DWO file DWO_NAME. */
11299
11300 static void **
11301 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
11302 const char *dwo_name,
11303 const char *comp_dir)
11304 {
11305 struct dwo_file find_entry;
11306 void **slot;
11307
11308 if (per_objfile->per_bfd->dwo_files == NULL)
11309 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
11310
11311 find_entry.dwo_name = dwo_name;
11312 find_entry.comp_dir = comp_dir;
11313 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
11314 INSERT);
11315
11316 return slot;
11317 }
11318
11319 static hashval_t
11320 hash_dwo_unit (const void *item)
11321 {
11322 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11323
11324 /* This drops the top 32 bits of the id, but is ok for a hash. */
11325 return dwo_unit->signature;
11326 }
11327
11328 static int
11329 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11330 {
11331 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11332 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11333
11334 /* The signature is assumed to be unique within the DWO file.
11335 So while object file CU dwo_id's always have the value zero,
11336 that's OK, assuming each object file DWO file has only one CU,
11337 and that's the rule for now. */
11338 return lhs->signature == rhs->signature;
11339 }
11340
11341 /* Allocate a hash table for DWO CUs,TUs.
11342 There is one of these tables for each of CUs,TUs for each DWO file. */
11343
11344 static htab_up
11345 allocate_dwo_unit_table ()
11346 {
11347 /* Start out with a pretty small number.
11348 Generally DWO files contain only one CU and maybe some TUs. */
11349 return htab_up (htab_create_alloc (3,
11350 hash_dwo_unit,
11351 eq_dwo_unit,
11352 NULL, xcalloc, xfree));
11353 }
11354
11355 /* die_reader_func for create_dwo_cu. */
11356
11357 static void
11358 create_dwo_cu_reader (const struct die_reader_specs *reader,
11359 const gdb_byte *info_ptr,
11360 struct die_info *comp_unit_die,
11361 struct dwo_file *dwo_file,
11362 struct dwo_unit *dwo_unit)
11363 {
11364 struct dwarf2_cu *cu = reader->cu;
11365 sect_offset sect_off = cu->per_cu->sect_off;
11366 struct dwarf2_section_info *section = cu->per_cu->section;
11367
11368 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11369 if (!signature.has_value ())
11370 {
11371 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11372 " its dwo_id [in module %s]"),
11373 sect_offset_str (sect_off), dwo_file->dwo_name);
11374 return;
11375 }
11376
11377 dwo_unit->dwo_file = dwo_file;
11378 dwo_unit->signature = *signature;
11379 dwo_unit->section = section;
11380 dwo_unit->sect_off = sect_off;
11381 dwo_unit->length = cu->per_cu->length;
11382
11383 if (dwarf_read_debug)
11384 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11385 sect_offset_str (sect_off),
11386 hex_string (dwo_unit->signature));
11387 }
11388
11389 /* Create the dwo_units for the CUs in a DWO_FILE.
11390 Note: This function processes DWO files only, not DWP files. */
11391
11392 static void
11393 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
11394 dwarf2_cu *cu, struct dwo_file &dwo_file,
11395 dwarf2_section_info &section, htab_up &cus_htab)
11396 {
11397 struct objfile *objfile = per_objfile->objfile;
11398 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
11399 const gdb_byte *info_ptr, *end_ptr;
11400
11401 section.read (objfile);
11402 info_ptr = section.buffer;
11403
11404 if (info_ptr == NULL)
11405 return;
11406
11407 if (dwarf_read_debug)
11408 {
11409 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11410 section.get_name (),
11411 section.get_file_name ());
11412 }
11413
11414 end_ptr = info_ptr + section.size;
11415 while (info_ptr < end_ptr)
11416 {
11417 struct dwarf2_per_cu_data per_cu;
11418 struct dwo_unit read_unit {};
11419 struct dwo_unit *dwo_unit;
11420 void **slot;
11421 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11422
11423 memset (&per_cu, 0, sizeof (per_cu));
11424 per_cu.per_bfd = per_bfd;
11425 per_cu.is_debug_types = 0;
11426 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11427 per_cu.section = &section;
11428
11429 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11430 if (!reader.dummy_p)
11431 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11432 &dwo_file, &read_unit);
11433 info_ptr += per_cu.length;
11434
11435 // If the unit could not be parsed, skip it.
11436 if (read_unit.dwo_file == NULL)
11437 continue;
11438
11439 if (cus_htab == NULL)
11440 cus_htab = allocate_dwo_unit_table ();
11441
11442 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11443 struct dwo_unit);
11444 *dwo_unit = read_unit;
11445 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11446 gdb_assert (slot != NULL);
11447 if (*slot != NULL)
11448 {
11449 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11450 sect_offset dup_sect_off = dup_cu->sect_off;
11451
11452 complaint (_("debug cu entry at offset %s is duplicate to"
11453 " the entry at offset %s, signature %s"),
11454 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11455 hex_string (dwo_unit->signature));
11456 }
11457 *slot = (void *)dwo_unit;
11458 }
11459 }
11460
11461 /* DWP file .debug_{cu,tu}_index section format:
11462 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11463
11464 DWP Version 1:
11465
11466 Both index sections have the same format, and serve to map a 64-bit
11467 signature to a set of section numbers. Each section begins with a header,
11468 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11469 indexes, and a pool of 32-bit section numbers. The index sections will be
11470 aligned at 8-byte boundaries in the file.
11471
11472 The index section header consists of:
11473
11474 V, 32 bit version number
11475 -, 32 bits unused
11476 N, 32 bit number of compilation units or type units in the index
11477 M, 32 bit number of slots in the hash table
11478
11479 Numbers are recorded using the byte order of the application binary.
11480
11481 The hash table begins at offset 16 in the section, and consists of an array
11482 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11483 order of the application binary). Unused slots in the hash table are 0.
11484 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11485
11486 The parallel table begins immediately after the hash table
11487 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11488 array of 32-bit indexes (using the byte order of the application binary),
11489 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11490 table contains a 32-bit index into the pool of section numbers. For unused
11491 hash table slots, the corresponding entry in the parallel table will be 0.
11492
11493 The pool of section numbers begins immediately following the hash table
11494 (at offset 16 + 12 * M from the beginning of the section). The pool of
11495 section numbers consists of an array of 32-bit words (using the byte order
11496 of the application binary). Each item in the array is indexed starting
11497 from 0. The hash table entry provides the index of the first section
11498 number in the set. Additional section numbers in the set follow, and the
11499 set is terminated by a 0 entry (section number 0 is not used in ELF).
11500
11501 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11502 section must be the first entry in the set, and the .debug_abbrev.dwo must
11503 be the second entry. Other members of the set may follow in any order.
11504
11505 ---
11506
11507 DWP Version 2:
11508
11509 DWP Version 2 combines all the .debug_info, etc. sections into one,
11510 and the entries in the index tables are now offsets into these sections.
11511 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11512 section.
11513
11514 Index Section Contents:
11515 Header
11516 Hash Table of Signatures dwp_hash_table.hash_table
11517 Parallel Table of Indices dwp_hash_table.unit_table
11518 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11519 Table of Section Sizes dwp_hash_table.v2.sizes
11520
11521 The index section header consists of:
11522
11523 V, 32 bit version number
11524 L, 32 bit number of columns in the table of section offsets
11525 N, 32 bit number of compilation units or type units in the index
11526 M, 32 bit number of slots in the hash table
11527
11528 Numbers are recorded using the byte order of the application binary.
11529
11530 The hash table has the same format as version 1.
11531 The parallel table of indices has the same format as version 1,
11532 except that the entries are origin-1 indices into the table of sections
11533 offsets and the table of section sizes.
11534
11535 The table of offsets begins immediately following the parallel table
11536 (at offset 16 + 12 * M from the beginning of the section). The table is
11537 a two-dimensional array of 32-bit words (using the byte order of the
11538 application binary), with L columns and N+1 rows, in row-major order.
11539 Each row in the array is indexed starting from 0. The first row provides
11540 a key to the remaining rows: each column in this row provides an identifier
11541 for a debug section, and the offsets in the same column of subsequent rows
11542 refer to that section. The section identifiers are:
11543
11544 DW_SECT_INFO 1 .debug_info.dwo
11545 DW_SECT_TYPES 2 .debug_types.dwo
11546 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11547 DW_SECT_LINE 4 .debug_line.dwo
11548 DW_SECT_LOC 5 .debug_loc.dwo
11549 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11550 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11551 DW_SECT_MACRO 8 .debug_macro.dwo
11552
11553 The offsets provided by the CU and TU index sections are the base offsets
11554 for the contributions made by each CU or TU to the corresponding section
11555 in the package file. Each CU and TU header contains an abbrev_offset
11556 field, used to find the abbreviations table for that CU or TU within the
11557 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11558 be interpreted as relative to the base offset given in the index section.
11559 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11560 should be interpreted as relative to the base offset for .debug_line.dwo,
11561 and offsets into other debug sections obtained from DWARF attributes should
11562 also be interpreted as relative to the corresponding base offset.
11563
11564 The table of sizes begins immediately following the table of offsets.
11565 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11566 with L columns and N rows, in row-major order. Each row in the array is
11567 indexed starting from 1 (row 0 is shared by the two tables).
11568
11569 ---
11570
11571 Hash table lookup is handled the same in version 1 and 2:
11572
11573 We assume that N and M will not exceed 2^32 - 1.
11574 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11575
11576 Given a 64-bit compilation unit signature or a type signature S, an entry
11577 in the hash table is located as follows:
11578
11579 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11580 the low-order k bits all set to 1.
11581
11582 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11583
11584 3) If the hash table entry at index H matches the signature, use that
11585 entry. If the hash table entry at index H is unused (all zeroes),
11586 terminate the search: the signature is not present in the table.
11587
11588 4) Let H = (H + H') modulo M. Repeat at Step 3.
11589
11590 Because M > N and H' and M are relatively prime, the search is guaranteed
11591 to stop at an unused slot or find the match. */
11592
11593 /* Create a hash table to map DWO IDs to their CU/TU entry in
11594 .debug_{info,types}.dwo in DWP_FILE.
11595 Returns NULL if there isn't one.
11596 Note: This function processes DWP files only, not DWO files. */
11597
11598 static struct dwp_hash_table *
11599 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11600 struct dwp_file *dwp_file, int is_debug_types)
11601 {
11602 struct objfile *objfile = per_objfile->objfile;
11603 bfd *dbfd = dwp_file->dbfd.get ();
11604 const gdb_byte *index_ptr, *index_end;
11605 struct dwarf2_section_info *index;
11606 uint32_t version, nr_columns, nr_units, nr_slots;
11607 struct dwp_hash_table *htab;
11608
11609 if (is_debug_types)
11610 index = &dwp_file->sections.tu_index;
11611 else
11612 index = &dwp_file->sections.cu_index;
11613
11614 if (index->empty ())
11615 return NULL;
11616 index->read (objfile);
11617
11618 index_ptr = index->buffer;
11619 index_end = index_ptr + index->size;
11620
11621 version = read_4_bytes (dbfd, index_ptr);
11622 index_ptr += 4;
11623 if (version == 2)
11624 nr_columns = read_4_bytes (dbfd, index_ptr);
11625 else
11626 nr_columns = 0;
11627 index_ptr += 4;
11628 nr_units = read_4_bytes (dbfd, index_ptr);
11629 index_ptr += 4;
11630 nr_slots = read_4_bytes (dbfd, index_ptr);
11631 index_ptr += 4;
11632
11633 if (version != 1 && version != 2)
11634 {
11635 error (_("Dwarf Error: unsupported DWP file version (%s)"
11636 " [in module %s]"),
11637 pulongest (version), dwp_file->name);
11638 }
11639 if (nr_slots != (nr_slots & -nr_slots))
11640 {
11641 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11642 " is not power of 2 [in module %s]"),
11643 pulongest (nr_slots), dwp_file->name);
11644 }
11645
11646 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11647 htab->version = version;
11648 htab->nr_columns = nr_columns;
11649 htab->nr_units = nr_units;
11650 htab->nr_slots = nr_slots;
11651 htab->hash_table = index_ptr;
11652 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11653
11654 /* Exit early if the table is empty. */
11655 if (nr_slots == 0 || nr_units == 0
11656 || (version == 2 && nr_columns == 0))
11657 {
11658 /* All must be zero. */
11659 if (nr_slots != 0 || nr_units != 0
11660 || (version == 2 && nr_columns != 0))
11661 {
11662 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11663 " all zero [in modules %s]"),
11664 dwp_file->name);
11665 }
11666 return htab;
11667 }
11668
11669 if (version == 1)
11670 {
11671 htab->section_pool.v1.indices =
11672 htab->unit_table + sizeof (uint32_t) * nr_slots;
11673 /* It's harder to decide whether the section is too small in v1.
11674 V1 is deprecated anyway so we punt. */
11675 }
11676 else
11677 {
11678 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11679 int *ids = htab->section_pool.v2.section_ids;
11680 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11681 /* Reverse map for error checking. */
11682 int ids_seen[DW_SECT_MAX + 1];
11683 int i;
11684
11685 if (nr_columns < 2)
11686 {
11687 error (_("Dwarf Error: bad DWP hash table, too few columns"
11688 " in section table [in module %s]"),
11689 dwp_file->name);
11690 }
11691 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11692 {
11693 error (_("Dwarf Error: bad DWP hash table, too many columns"
11694 " in section table [in module %s]"),
11695 dwp_file->name);
11696 }
11697 memset (ids, 255, sizeof_ids);
11698 memset (ids_seen, 255, sizeof (ids_seen));
11699 for (i = 0; i < nr_columns; ++i)
11700 {
11701 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11702
11703 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11704 {
11705 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11706 " in section table [in module %s]"),
11707 id, dwp_file->name);
11708 }
11709 if (ids_seen[id] != -1)
11710 {
11711 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11712 " id %d in section table [in module %s]"),
11713 id, dwp_file->name);
11714 }
11715 ids_seen[id] = i;
11716 ids[i] = id;
11717 }
11718 /* Must have exactly one info or types section. */
11719 if (((ids_seen[DW_SECT_INFO] != -1)
11720 + (ids_seen[DW_SECT_TYPES] != -1))
11721 != 1)
11722 {
11723 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11724 " DWO info/types section [in module %s]"),
11725 dwp_file->name);
11726 }
11727 /* Must have an abbrev section. */
11728 if (ids_seen[DW_SECT_ABBREV] == -1)
11729 {
11730 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11731 " section [in module %s]"),
11732 dwp_file->name);
11733 }
11734 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11735 htab->section_pool.v2.sizes =
11736 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11737 * nr_units * nr_columns);
11738 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11739 * nr_units * nr_columns))
11740 > index_end)
11741 {
11742 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11743 " [in module %s]"),
11744 dwp_file->name);
11745 }
11746 }
11747
11748 return htab;
11749 }
11750
11751 /* Update SECTIONS with the data from SECTP.
11752
11753 This function is like the other "locate" section routines that are
11754 passed to bfd_map_over_sections, but in this context the sections to
11755 read comes from the DWP V1 hash table, not the full ELF section table.
11756
11757 The result is non-zero for success, or zero if an error was found. */
11758
11759 static int
11760 locate_v1_virtual_dwo_sections (asection *sectp,
11761 struct virtual_v1_dwo_sections *sections)
11762 {
11763 const struct dwop_section_names *names = &dwop_section_names;
11764
11765 if (section_is_p (sectp->name, &names->abbrev_dwo))
11766 {
11767 /* There can be only one. */
11768 if (sections->abbrev.s.section != NULL)
11769 return 0;
11770 sections->abbrev.s.section = sectp;
11771 sections->abbrev.size = bfd_section_size (sectp);
11772 }
11773 else if (section_is_p (sectp->name, &names->info_dwo)
11774 || section_is_p (sectp->name, &names->types_dwo))
11775 {
11776 /* There can be only one. */
11777 if (sections->info_or_types.s.section != NULL)
11778 return 0;
11779 sections->info_or_types.s.section = sectp;
11780 sections->info_or_types.size = bfd_section_size (sectp);
11781 }
11782 else if (section_is_p (sectp->name, &names->line_dwo))
11783 {
11784 /* There can be only one. */
11785 if (sections->line.s.section != NULL)
11786 return 0;
11787 sections->line.s.section = sectp;
11788 sections->line.size = bfd_section_size (sectp);
11789 }
11790 else if (section_is_p (sectp->name, &names->loc_dwo))
11791 {
11792 /* There can be only one. */
11793 if (sections->loc.s.section != NULL)
11794 return 0;
11795 sections->loc.s.section = sectp;
11796 sections->loc.size = bfd_section_size (sectp);
11797 }
11798 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11799 {
11800 /* There can be only one. */
11801 if (sections->macinfo.s.section != NULL)
11802 return 0;
11803 sections->macinfo.s.section = sectp;
11804 sections->macinfo.size = bfd_section_size (sectp);
11805 }
11806 else if (section_is_p (sectp->name, &names->macro_dwo))
11807 {
11808 /* There can be only one. */
11809 if (sections->macro.s.section != NULL)
11810 return 0;
11811 sections->macro.s.section = sectp;
11812 sections->macro.size = bfd_section_size (sectp);
11813 }
11814 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11815 {
11816 /* There can be only one. */
11817 if (sections->str_offsets.s.section != NULL)
11818 return 0;
11819 sections->str_offsets.s.section = sectp;
11820 sections->str_offsets.size = bfd_section_size (sectp);
11821 }
11822 else
11823 {
11824 /* No other kind of section is valid. */
11825 return 0;
11826 }
11827
11828 return 1;
11829 }
11830
11831 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11832 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11833 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11834 This is for DWP version 1 files. */
11835
11836 static struct dwo_unit *
11837 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11838 struct dwp_file *dwp_file,
11839 uint32_t unit_index,
11840 const char *comp_dir,
11841 ULONGEST signature, int is_debug_types)
11842 {
11843 const struct dwp_hash_table *dwp_htab =
11844 is_debug_types ? dwp_file->tus : dwp_file->cus;
11845 bfd *dbfd = dwp_file->dbfd.get ();
11846 const char *kind = is_debug_types ? "TU" : "CU";
11847 struct dwo_file *dwo_file;
11848 struct dwo_unit *dwo_unit;
11849 struct virtual_v1_dwo_sections sections;
11850 void **dwo_file_slot;
11851 int i;
11852
11853 gdb_assert (dwp_file->version == 1);
11854
11855 if (dwarf_read_debug)
11856 {
11857 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11858 kind,
11859 pulongest (unit_index), hex_string (signature),
11860 dwp_file->name);
11861 }
11862
11863 /* Fetch the sections of this DWO unit.
11864 Put a limit on the number of sections we look for so that bad data
11865 doesn't cause us to loop forever. */
11866
11867 #define MAX_NR_V1_DWO_SECTIONS \
11868 (1 /* .debug_info or .debug_types */ \
11869 + 1 /* .debug_abbrev */ \
11870 + 1 /* .debug_line */ \
11871 + 1 /* .debug_loc */ \
11872 + 1 /* .debug_str_offsets */ \
11873 + 1 /* .debug_macro or .debug_macinfo */ \
11874 + 1 /* trailing zero */)
11875
11876 memset (&sections, 0, sizeof (sections));
11877
11878 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11879 {
11880 asection *sectp;
11881 uint32_t section_nr =
11882 read_4_bytes (dbfd,
11883 dwp_htab->section_pool.v1.indices
11884 + (unit_index + i) * sizeof (uint32_t));
11885
11886 if (section_nr == 0)
11887 break;
11888 if (section_nr >= dwp_file->num_sections)
11889 {
11890 error (_("Dwarf Error: bad DWP hash table, section number too large"
11891 " [in module %s]"),
11892 dwp_file->name);
11893 }
11894
11895 sectp = dwp_file->elf_sections[section_nr];
11896 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11897 {
11898 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11899 " [in module %s]"),
11900 dwp_file->name);
11901 }
11902 }
11903
11904 if (i < 2
11905 || sections.info_or_types.empty ()
11906 || sections.abbrev.empty ())
11907 {
11908 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11909 " [in module %s]"),
11910 dwp_file->name);
11911 }
11912 if (i == MAX_NR_V1_DWO_SECTIONS)
11913 {
11914 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11915 " [in module %s]"),
11916 dwp_file->name);
11917 }
11918
11919 /* It's easier for the rest of the code if we fake a struct dwo_file and
11920 have dwo_unit "live" in that. At least for now.
11921
11922 The DWP file can be made up of a random collection of CUs and TUs.
11923 However, for each CU + set of TUs that came from the same original DWO
11924 file, we can combine them back into a virtual DWO file to save space
11925 (fewer struct dwo_file objects to allocate). Remember that for really
11926 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11927
11928 std::string virtual_dwo_name =
11929 string_printf ("virtual-dwo/%d-%d-%d-%d",
11930 sections.abbrev.get_id (),
11931 sections.line.get_id (),
11932 sections.loc.get_id (),
11933 sections.str_offsets.get_id ());
11934 /* Can we use an existing virtual DWO file? */
11935 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11936 comp_dir);
11937 /* Create one if necessary. */
11938 if (*dwo_file_slot == NULL)
11939 {
11940 if (dwarf_read_debug)
11941 {
11942 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11943 virtual_dwo_name.c_str ());
11944 }
11945 dwo_file = new struct dwo_file;
11946 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11947 dwo_file->comp_dir = comp_dir;
11948 dwo_file->sections.abbrev = sections.abbrev;
11949 dwo_file->sections.line = sections.line;
11950 dwo_file->sections.loc = sections.loc;
11951 dwo_file->sections.macinfo = sections.macinfo;
11952 dwo_file->sections.macro = sections.macro;
11953 dwo_file->sections.str_offsets = sections.str_offsets;
11954 /* The "str" section is global to the entire DWP file. */
11955 dwo_file->sections.str = dwp_file->sections.str;
11956 /* The info or types section is assigned below to dwo_unit,
11957 there's no need to record it in dwo_file.
11958 Also, we can't simply record type sections in dwo_file because
11959 we record a pointer into the vector in dwo_unit. As we collect more
11960 types we'll grow the vector and eventually have to reallocate space
11961 for it, invalidating all copies of pointers into the previous
11962 contents. */
11963 *dwo_file_slot = dwo_file;
11964 }
11965 else
11966 {
11967 if (dwarf_read_debug)
11968 {
11969 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11970 virtual_dwo_name.c_str ());
11971 }
11972 dwo_file = (struct dwo_file *) *dwo_file_slot;
11973 }
11974
11975 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11976 dwo_unit->dwo_file = dwo_file;
11977 dwo_unit->signature = signature;
11978 dwo_unit->section =
11979 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11980 *dwo_unit->section = sections.info_or_types;
11981 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11982
11983 return dwo_unit;
11984 }
11985
11986 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11987 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11988 piece within that section used by a TU/CU, return a virtual section
11989 of just that piece. */
11990
11991 static struct dwarf2_section_info
11992 create_dwp_v2_section (dwarf2_per_objfile *per_objfile,
11993 struct dwarf2_section_info *section,
11994 bfd_size_type offset, bfd_size_type size)
11995 {
11996 struct dwarf2_section_info result;
11997 asection *sectp;
11998
11999 gdb_assert (section != NULL);
12000 gdb_assert (!section->is_virtual);
12001
12002 memset (&result, 0, sizeof (result));
12003 result.s.containing_section = section;
12004 result.is_virtual = true;
12005
12006 if (size == 0)
12007 return result;
12008
12009 sectp = section->get_bfd_section ();
12010
12011 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12012 bounds of the real section. This is a pretty-rare event, so just
12013 flag an error (easier) instead of a warning and trying to cope. */
12014 if (sectp == NULL
12015 || offset + size > bfd_section_size (sectp))
12016 {
12017 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12018 " in section %s [in module %s]"),
12019 sectp ? bfd_section_name (sectp) : "<unknown>",
12020 objfile_name (per_objfile->objfile));
12021 }
12022
12023 result.virtual_offset = offset;
12024 result.size = size;
12025 return result;
12026 }
12027
12028 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12029 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12030 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12031 This is for DWP version 2 files. */
12032
12033 static struct dwo_unit *
12034 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
12035 struct dwp_file *dwp_file,
12036 uint32_t unit_index,
12037 const char *comp_dir,
12038 ULONGEST signature, int is_debug_types)
12039 {
12040 const struct dwp_hash_table *dwp_htab =
12041 is_debug_types ? dwp_file->tus : dwp_file->cus;
12042 bfd *dbfd = dwp_file->dbfd.get ();
12043 const char *kind = is_debug_types ? "TU" : "CU";
12044 struct dwo_file *dwo_file;
12045 struct dwo_unit *dwo_unit;
12046 struct virtual_v2_dwo_sections sections;
12047 void **dwo_file_slot;
12048 int i;
12049
12050 gdb_assert (dwp_file->version == 2);
12051
12052 if (dwarf_read_debug)
12053 {
12054 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12055 kind,
12056 pulongest (unit_index), hex_string (signature),
12057 dwp_file->name);
12058 }
12059
12060 /* Fetch the section offsets of this DWO unit. */
12061
12062 memset (&sections, 0, sizeof (sections));
12063
12064 for (i = 0; i < dwp_htab->nr_columns; ++i)
12065 {
12066 uint32_t offset = read_4_bytes (dbfd,
12067 dwp_htab->section_pool.v2.offsets
12068 + (((unit_index - 1) * dwp_htab->nr_columns
12069 + i)
12070 * sizeof (uint32_t)));
12071 uint32_t size = read_4_bytes (dbfd,
12072 dwp_htab->section_pool.v2.sizes
12073 + (((unit_index - 1) * dwp_htab->nr_columns
12074 + i)
12075 * sizeof (uint32_t)));
12076
12077 switch (dwp_htab->section_pool.v2.section_ids[i])
12078 {
12079 case DW_SECT_INFO:
12080 case DW_SECT_TYPES:
12081 sections.info_or_types_offset = offset;
12082 sections.info_or_types_size = size;
12083 break;
12084 case DW_SECT_ABBREV:
12085 sections.abbrev_offset = offset;
12086 sections.abbrev_size = size;
12087 break;
12088 case DW_SECT_LINE:
12089 sections.line_offset = offset;
12090 sections.line_size = size;
12091 break;
12092 case DW_SECT_LOC:
12093 sections.loc_offset = offset;
12094 sections.loc_size = size;
12095 break;
12096 case DW_SECT_STR_OFFSETS:
12097 sections.str_offsets_offset = offset;
12098 sections.str_offsets_size = size;
12099 break;
12100 case DW_SECT_MACINFO:
12101 sections.macinfo_offset = offset;
12102 sections.macinfo_size = size;
12103 break;
12104 case DW_SECT_MACRO:
12105 sections.macro_offset = offset;
12106 sections.macro_size = size;
12107 break;
12108 }
12109 }
12110
12111 /* It's easier for the rest of the code if we fake a struct dwo_file and
12112 have dwo_unit "live" in that. At least for now.
12113
12114 The DWP file can be made up of a random collection of CUs and TUs.
12115 However, for each CU + set of TUs that came from the same original DWO
12116 file, we can combine them back into a virtual DWO file to save space
12117 (fewer struct dwo_file objects to allocate). Remember that for really
12118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12119
12120 std::string virtual_dwo_name =
12121 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12123 (long) (sections.line_size ? sections.line_offset : 0),
12124 (long) (sections.loc_size ? sections.loc_offset : 0),
12125 (long) (sections.str_offsets_size
12126 ? sections.str_offsets_offset : 0));
12127 /* Can we use an existing virtual DWO file? */
12128 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12129 comp_dir);
12130 /* Create one if necessary. */
12131 if (*dwo_file_slot == NULL)
12132 {
12133 if (dwarf_read_debug)
12134 {
12135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12136 virtual_dwo_name.c_str ());
12137 }
12138 dwo_file = new struct dwo_file;
12139 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12140 dwo_file->comp_dir = comp_dir;
12141 dwo_file->sections.abbrev =
12142 create_dwp_v2_section (per_objfile, &dwp_file->sections.abbrev,
12143 sections.abbrev_offset, sections.abbrev_size);
12144 dwo_file->sections.line =
12145 create_dwp_v2_section (per_objfile, &dwp_file->sections.line,
12146 sections.line_offset, sections.line_size);
12147 dwo_file->sections.loc =
12148 create_dwp_v2_section (per_objfile, &dwp_file->sections.loc,
12149 sections.loc_offset, sections.loc_size);
12150 dwo_file->sections.macinfo =
12151 create_dwp_v2_section (per_objfile, &dwp_file->sections.macinfo,
12152 sections.macinfo_offset, sections.macinfo_size);
12153 dwo_file->sections.macro =
12154 create_dwp_v2_section (per_objfile, &dwp_file->sections.macro,
12155 sections.macro_offset, sections.macro_size);
12156 dwo_file->sections.str_offsets =
12157 create_dwp_v2_section (per_objfile,
12158 &dwp_file->sections.str_offsets,
12159 sections.str_offsets_offset,
12160 sections.str_offsets_size);
12161 /* The "str" section is global to the entire DWP file. */
12162 dwo_file->sections.str = dwp_file->sections.str;
12163 /* The info or types section is assigned below to dwo_unit,
12164 there's no need to record it in dwo_file.
12165 Also, we can't simply record type sections in dwo_file because
12166 we record a pointer into the vector in dwo_unit. As we collect more
12167 types we'll grow the vector and eventually have to reallocate space
12168 for it, invalidating all copies of pointers into the previous
12169 contents. */
12170 *dwo_file_slot = dwo_file;
12171 }
12172 else
12173 {
12174 if (dwarf_read_debug)
12175 {
12176 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12177 virtual_dwo_name.c_str ());
12178 }
12179 dwo_file = (struct dwo_file *) *dwo_file_slot;
12180 }
12181
12182 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12183 dwo_unit->dwo_file = dwo_file;
12184 dwo_unit->signature = signature;
12185 dwo_unit->section =
12186 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12187 *dwo_unit->section = create_dwp_v2_section (per_objfile,
12188 is_debug_types
12189 ? &dwp_file->sections.types
12190 : &dwp_file->sections.info,
12191 sections.info_or_types_offset,
12192 sections.info_or_types_size);
12193 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12194
12195 return dwo_unit;
12196 }
12197
12198 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12199 Returns NULL if the signature isn't found. */
12200
12201 static struct dwo_unit *
12202 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12203 struct dwp_file *dwp_file, const char *comp_dir,
12204 ULONGEST signature, int is_debug_types)
12205 {
12206 const struct dwp_hash_table *dwp_htab =
12207 is_debug_types ? dwp_file->tus : dwp_file->cus;
12208 bfd *dbfd = dwp_file->dbfd.get ();
12209 uint32_t mask = dwp_htab->nr_slots - 1;
12210 uint32_t hash = signature & mask;
12211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12212 unsigned int i;
12213 void **slot;
12214 struct dwo_unit find_dwo_cu;
12215
12216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12217 find_dwo_cu.signature = signature;
12218 slot = htab_find_slot (is_debug_types
12219 ? dwp_file->loaded_tus.get ()
12220 : dwp_file->loaded_cus.get (),
12221 &find_dwo_cu, INSERT);
12222
12223 if (*slot != NULL)
12224 return (struct dwo_unit *) *slot;
12225
12226 /* Use a for loop so that we don't loop forever on bad debug info. */
12227 for (i = 0; i < dwp_htab->nr_slots; ++i)
12228 {
12229 ULONGEST signature_in_table;
12230
12231 signature_in_table =
12232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12233 if (signature_in_table == signature)
12234 {
12235 uint32_t unit_index =
12236 read_4_bytes (dbfd,
12237 dwp_htab->unit_table + hash * sizeof (uint32_t));
12238
12239 if (dwp_file->version == 1)
12240 {
12241 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12242 unit_index, comp_dir,
12243 signature, is_debug_types);
12244 }
12245 else
12246 {
12247 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12248 unit_index, comp_dir,
12249 signature, is_debug_types);
12250 }
12251 return (struct dwo_unit *) *slot;
12252 }
12253 if (signature_in_table == 0)
12254 return NULL;
12255 hash = (hash + hash2) & mask;
12256 }
12257
12258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12259 " [in module %s]"),
12260 dwp_file->name);
12261 }
12262
12263 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12264 Open the file specified by FILE_NAME and hand it off to BFD for
12265 preliminary analysis. Return a newly initialized bfd *, which
12266 includes a canonicalized copy of FILE_NAME.
12267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12268 SEARCH_CWD is true if the current directory is to be searched.
12269 It will be searched before debug-file-directory.
12270 If successful, the file is added to the bfd include table of the
12271 objfile's bfd (see gdb_bfd_record_inclusion).
12272 If unable to find/open the file, return NULL.
12273 NOTE: This function is derived from symfile_bfd_open. */
12274
12275 static gdb_bfd_ref_ptr
12276 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12277 const char *file_name, int is_dwp, int search_cwd)
12278 {
12279 int desc;
12280 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12281 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12282 to debug_file_directory. */
12283 const char *search_path;
12284 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12285
12286 gdb::unique_xmalloc_ptr<char> search_path_holder;
12287 if (search_cwd)
12288 {
12289 if (*debug_file_directory != '\0')
12290 {
12291 search_path_holder.reset (concat (".", dirname_separator_string,
12292 debug_file_directory,
12293 (char *) NULL));
12294 search_path = search_path_holder.get ();
12295 }
12296 else
12297 search_path = ".";
12298 }
12299 else
12300 search_path = debug_file_directory;
12301
12302 openp_flags flags = OPF_RETURN_REALPATH;
12303 if (is_dwp)
12304 flags |= OPF_SEARCH_IN_PATH;
12305
12306 gdb::unique_xmalloc_ptr<char> absolute_name;
12307 desc = openp (search_path, flags, file_name,
12308 O_RDONLY | O_BINARY, &absolute_name);
12309 if (desc < 0)
12310 return NULL;
12311
12312 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12313 gnutarget, desc));
12314 if (sym_bfd == NULL)
12315 return NULL;
12316 bfd_set_cacheable (sym_bfd.get (), 1);
12317
12318 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12319 return NULL;
12320
12321 /* Success. Record the bfd as having been included by the objfile's bfd.
12322 This is important because things like demangled_names_hash lives in the
12323 objfile's per_bfd space and may have references to things like symbol
12324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12325 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12326
12327 return sym_bfd;
12328 }
12329
12330 /* Try to open DWO file FILE_NAME.
12331 COMP_DIR is the DW_AT_comp_dir attribute.
12332 The result is the bfd handle of the file.
12333 If there is a problem finding or opening the file, return NULL.
12334 Upon success, the canonicalized path of the file is stored in the bfd,
12335 same as symfile_bfd_open. */
12336
12337 static gdb_bfd_ref_ptr
12338 open_dwo_file (dwarf2_per_objfile *per_objfile,
12339 const char *file_name, const char *comp_dir)
12340 {
12341 if (IS_ABSOLUTE_PATH (file_name))
12342 return try_open_dwop_file (per_objfile, file_name,
12343 0 /*is_dwp*/, 0 /*search_cwd*/);
12344
12345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12346
12347 if (comp_dir != NULL)
12348 {
12349 gdb::unique_xmalloc_ptr<char> path_to_try
12350 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12351
12352 /* NOTE: If comp_dir is a relative path, this will also try the
12353 search path, which seems useful. */
12354 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12355 0 /*is_dwp*/,
12356 1 /*search_cwd*/));
12357 if (abfd != NULL)
12358 return abfd;
12359 }
12360
12361 /* That didn't work, try debug-file-directory, which, despite its name,
12362 is a list of paths. */
12363
12364 if (*debug_file_directory == '\0')
12365 return NULL;
12366
12367 return try_open_dwop_file (per_objfile, file_name,
12368 0 /*is_dwp*/, 1 /*search_cwd*/);
12369 }
12370
12371 /* This function is mapped across the sections and remembers the offset and
12372 size of each of the DWO debugging sections we are interested in. */
12373
12374 static void
12375 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12376 {
12377 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12378 const struct dwop_section_names *names = &dwop_section_names;
12379
12380 if (section_is_p (sectp->name, &names->abbrev_dwo))
12381 {
12382 dwo_sections->abbrev.s.section = sectp;
12383 dwo_sections->abbrev.size = bfd_section_size (sectp);
12384 }
12385 else if (section_is_p (sectp->name, &names->info_dwo))
12386 {
12387 dwo_sections->info.s.section = sectp;
12388 dwo_sections->info.size = bfd_section_size (sectp);
12389 }
12390 else if (section_is_p (sectp->name, &names->line_dwo))
12391 {
12392 dwo_sections->line.s.section = sectp;
12393 dwo_sections->line.size = bfd_section_size (sectp);
12394 }
12395 else if (section_is_p (sectp->name, &names->loc_dwo))
12396 {
12397 dwo_sections->loc.s.section = sectp;
12398 dwo_sections->loc.size = bfd_section_size (sectp);
12399 }
12400 else if (section_is_p (sectp->name, &names->loclists_dwo))
12401 {
12402 dwo_sections->loclists.s.section = sectp;
12403 dwo_sections->loclists.size = bfd_section_size (sectp);
12404 }
12405 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12406 {
12407 dwo_sections->macinfo.s.section = sectp;
12408 dwo_sections->macinfo.size = bfd_section_size (sectp);
12409 }
12410 else if (section_is_p (sectp->name, &names->macro_dwo))
12411 {
12412 dwo_sections->macro.s.section = sectp;
12413 dwo_sections->macro.size = bfd_section_size (sectp);
12414 }
12415 else if (section_is_p (sectp->name, &names->str_dwo))
12416 {
12417 dwo_sections->str.s.section = sectp;
12418 dwo_sections->str.size = bfd_section_size (sectp);
12419 }
12420 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12421 {
12422 dwo_sections->str_offsets.s.section = sectp;
12423 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12424 }
12425 else if (section_is_p (sectp->name, &names->types_dwo))
12426 {
12427 struct dwarf2_section_info type_section;
12428
12429 memset (&type_section, 0, sizeof (type_section));
12430 type_section.s.section = sectp;
12431 type_section.size = bfd_section_size (sectp);
12432 dwo_sections->types.push_back (type_section);
12433 }
12434 }
12435
12436 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12437 by PER_CU. This is for the non-DWP case.
12438 The result is NULL if DWO_NAME can't be found. */
12439
12440 static struct dwo_file *
12441 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12442 const char *comp_dir)
12443 {
12444 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12445
12446 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12447 if (dbfd == NULL)
12448 {
12449 if (dwarf_read_debug)
12450 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12451 return NULL;
12452 }
12453
12454 dwo_file_up dwo_file (new struct dwo_file);
12455 dwo_file->dwo_name = dwo_name;
12456 dwo_file->comp_dir = comp_dir;
12457 dwo_file->dbfd = std::move (dbfd);
12458
12459 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12460 &dwo_file->sections);
12461
12462 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12463 dwo_file->cus);
12464
12465 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12466 dwo_file->sections.types, dwo_file->tus);
12467
12468 if (dwarf_read_debug)
12469 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12470
12471 return dwo_file.release ();
12472 }
12473
12474 /* This function is mapped across the sections and remembers the offset and
12475 size of each of the DWP debugging sections common to version 1 and 2 that
12476 we are interested in. */
12477
12478 static void
12479 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12480 void *dwp_file_ptr)
12481 {
12482 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12483 const struct dwop_section_names *names = &dwop_section_names;
12484 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12485
12486 /* Record the ELF section number for later lookup: this is what the
12487 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12488 gdb_assert (elf_section_nr < dwp_file->num_sections);
12489 dwp_file->elf_sections[elf_section_nr] = sectp;
12490
12491 /* Look for specific sections that we need. */
12492 if (section_is_p (sectp->name, &names->str_dwo))
12493 {
12494 dwp_file->sections.str.s.section = sectp;
12495 dwp_file->sections.str.size = bfd_section_size (sectp);
12496 }
12497 else if (section_is_p (sectp->name, &names->cu_index))
12498 {
12499 dwp_file->sections.cu_index.s.section = sectp;
12500 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12501 }
12502 else if (section_is_p (sectp->name, &names->tu_index))
12503 {
12504 dwp_file->sections.tu_index.s.section = sectp;
12505 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12506 }
12507 }
12508
12509 /* This function is mapped across the sections and remembers the offset and
12510 size of each of the DWP version 2 debugging sections that we are interested
12511 in. This is split into a separate function because we don't know if we
12512 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12513
12514 static void
12515 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12516 {
12517 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12518 const struct dwop_section_names *names = &dwop_section_names;
12519 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12520
12521 /* Record the ELF section number for later lookup: this is what the
12522 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12523 gdb_assert (elf_section_nr < dwp_file->num_sections);
12524 dwp_file->elf_sections[elf_section_nr] = sectp;
12525
12526 /* Look for specific sections that we need. */
12527 if (section_is_p (sectp->name, &names->abbrev_dwo))
12528 {
12529 dwp_file->sections.abbrev.s.section = sectp;
12530 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12531 }
12532 else if (section_is_p (sectp->name, &names->info_dwo))
12533 {
12534 dwp_file->sections.info.s.section = sectp;
12535 dwp_file->sections.info.size = bfd_section_size (sectp);
12536 }
12537 else if (section_is_p (sectp->name, &names->line_dwo))
12538 {
12539 dwp_file->sections.line.s.section = sectp;
12540 dwp_file->sections.line.size = bfd_section_size (sectp);
12541 }
12542 else if (section_is_p (sectp->name, &names->loc_dwo))
12543 {
12544 dwp_file->sections.loc.s.section = sectp;
12545 dwp_file->sections.loc.size = bfd_section_size (sectp);
12546 }
12547 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12548 {
12549 dwp_file->sections.macinfo.s.section = sectp;
12550 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12551 }
12552 else if (section_is_p (sectp->name, &names->macro_dwo))
12553 {
12554 dwp_file->sections.macro.s.section = sectp;
12555 dwp_file->sections.macro.size = bfd_section_size (sectp);
12556 }
12557 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12558 {
12559 dwp_file->sections.str_offsets.s.section = sectp;
12560 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12561 }
12562 else if (section_is_p (sectp->name, &names->types_dwo))
12563 {
12564 dwp_file->sections.types.s.section = sectp;
12565 dwp_file->sections.types.size = bfd_section_size (sectp);
12566 }
12567 }
12568
12569 /* Hash function for dwp_file loaded CUs/TUs. */
12570
12571 static hashval_t
12572 hash_dwp_loaded_cutus (const void *item)
12573 {
12574 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12575
12576 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12577 return dwo_unit->signature;
12578 }
12579
12580 /* Equality function for dwp_file loaded CUs/TUs. */
12581
12582 static int
12583 eq_dwp_loaded_cutus (const void *a, const void *b)
12584 {
12585 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12586 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12587
12588 return dua->signature == dub->signature;
12589 }
12590
12591 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12592
12593 static htab_up
12594 allocate_dwp_loaded_cutus_table ()
12595 {
12596 return htab_up (htab_create_alloc (3,
12597 hash_dwp_loaded_cutus,
12598 eq_dwp_loaded_cutus,
12599 NULL, xcalloc, xfree));
12600 }
12601
12602 /* Try to open DWP file FILE_NAME.
12603 The result is the bfd handle of the file.
12604 If there is a problem finding or opening the file, return NULL.
12605 Upon success, the canonicalized path of the file is stored in the bfd,
12606 same as symfile_bfd_open. */
12607
12608 static gdb_bfd_ref_ptr
12609 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
12610 {
12611 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
12612 1 /*is_dwp*/,
12613 1 /*search_cwd*/));
12614 if (abfd != NULL)
12615 return abfd;
12616
12617 /* Work around upstream bug 15652.
12618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12619 [Whether that's a "bug" is debatable, but it is getting in our way.]
12620 We have no real idea where the dwp file is, because gdb's realpath-ing
12621 of the executable's path may have discarded the needed info.
12622 [IWBN if the dwp file name was recorded in the executable, akin to
12623 .gnu_debuglink, but that doesn't exist yet.]
12624 Strip the directory from FILE_NAME and search again. */
12625 if (*debug_file_directory != '\0')
12626 {
12627 /* Don't implicitly search the current directory here.
12628 If the user wants to search "." to handle this case,
12629 it must be added to debug-file-directory. */
12630 return try_open_dwop_file (per_objfile, lbasename (file_name),
12631 1 /*is_dwp*/,
12632 0 /*search_cwd*/);
12633 }
12634
12635 return NULL;
12636 }
12637
12638 /* Initialize the use of the DWP file for the current objfile.
12639 By convention the name of the DWP file is ${objfile}.dwp.
12640 The result is NULL if it can't be found. */
12641
12642 static std::unique_ptr<struct dwp_file>
12643 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
12644 {
12645 struct objfile *objfile = per_objfile->objfile;
12646
12647 /* Try to find first .dwp for the binary file before any symbolic links
12648 resolving. */
12649
12650 /* If the objfile is a debug file, find the name of the real binary
12651 file and get the name of dwp file from there. */
12652 std::string dwp_name;
12653 if (objfile->separate_debug_objfile_backlink != NULL)
12654 {
12655 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12656 const char *backlink_basename = lbasename (backlink->original_name);
12657
12658 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12659 }
12660 else
12661 dwp_name = objfile->original_name;
12662
12663 dwp_name += ".dwp";
12664
12665 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
12666 if (dbfd == NULL
12667 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12668 {
12669 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12670 dwp_name = objfile_name (objfile);
12671 dwp_name += ".dwp";
12672 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
12673 }
12674
12675 if (dbfd == NULL)
12676 {
12677 if (dwarf_read_debug)
12678 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12679 return std::unique_ptr<dwp_file> ();
12680 }
12681
12682 const char *name = bfd_get_filename (dbfd.get ());
12683 std::unique_ptr<struct dwp_file> dwp_file
12684 (new struct dwp_file (name, std::move (dbfd)));
12685
12686 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12687 dwp_file->elf_sections =
12688 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
12689 dwp_file->num_sections, asection *);
12690
12691 bfd_map_over_sections (dwp_file->dbfd.get (),
12692 dwarf2_locate_common_dwp_sections,
12693 dwp_file.get ());
12694
12695 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
12696
12697 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
12698
12699 /* The DWP file version is stored in the hash table. Oh well. */
12700 if (dwp_file->cus && dwp_file->tus
12701 && dwp_file->cus->version != dwp_file->tus->version)
12702 {
12703 /* Technically speaking, we should try to limp along, but this is
12704 pretty bizarre. We use pulongest here because that's the established
12705 portability solution (e.g, we cannot use %u for uint32_t). */
12706 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12707 " TU version %s [in DWP file %s]"),
12708 pulongest (dwp_file->cus->version),
12709 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12710 }
12711
12712 if (dwp_file->cus)
12713 dwp_file->version = dwp_file->cus->version;
12714 else if (dwp_file->tus)
12715 dwp_file->version = dwp_file->tus->version;
12716 else
12717 dwp_file->version = 2;
12718
12719 if (dwp_file->version == 2)
12720 bfd_map_over_sections (dwp_file->dbfd.get (),
12721 dwarf2_locate_v2_dwp_sections,
12722 dwp_file.get ());
12723
12724 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12725 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12726
12727 if (dwarf_read_debug)
12728 {
12729 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12730 fprintf_unfiltered (gdb_stdlog,
12731 " %s CUs, %s TUs\n",
12732 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12733 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12734 }
12735
12736 return dwp_file;
12737 }
12738
12739 /* Wrapper around open_and_init_dwp_file, only open it once. */
12740
12741 static struct dwp_file *
12742 get_dwp_file (dwarf2_per_objfile *per_objfile)
12743 {
12744 if (!per_objfile->per_bfd->dwp_checked)
12745 {
12746 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
12747 per_objfile->per_bfd->dwp_checked = 1;
12748 }
12749 return per_objfile->per_bfd->dwp_file.get ();
12750 }
12751
12752 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12753 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12754 or in the DWP file for the objfile, referenced by THIS_UNIT.
12755 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12756 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12757
12758 This is called, for example, when wanting to read a variable with a
12759 complex location. Therefore we don't want to do file i/o for every call.
12760 Therefore we don't want to look for a DWO file on every call.
12761 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12762 then we check if we've already seen DWO_NAME, and only THEN do we check
12763 for a DWO file.
12764
12765 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12766 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12767
12768 static struct dwo_unit *
12769 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12770 ULONGEST signature, int is_debug_types)
12771 {
12772 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12773 struct objfile *objfile = per_objfile->objfile;
12774 const char *kind = is_debug_types ? "TU" : "CU";
12775 void **dwo_file_slot;
12776 struct dwo_file *dwo_file;
12777 struct dwp_file *dwp_file;
12778
12779 /* First see if there's a DWP file.
12780 If we have a DWP file but didn't find the DWO inside it, don't
12781 look for the original DWO file. It makes gdb behave differently
12782 depending on whether one is debugging in the build tree. */
12783
12784 dwp_file = get_dwp_file (per_objfile);
12785 if (dwp_file != NULL)
12786 {
12787 const struct dwp_hash_table *dwp_htab =
12788 is_debug_types ? dwp_file->tus : dwp_file->cus;
12789
12790 if (dwp_htab != NULL)
12791 {
12792 struct dwo_unit *dwo_cutu =
12793 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
12794 is_debug_types);
12795
12796 if (dwo_cutu != NULL)
12797 {
12798 if (dwarf_read_debug)
12799 {
12800 fprintf_unfiltered (gdb_stdlog,
12801 "Virtual DWO %s %s found: @%s\n",
12802 kind, hex_string (signature),
12803 host_address_to_string (dwo_cutu));
12804 }
12805 return dwo_cutu;
12806 }
12807 }
12808 }
12809 else
12810 {
12811 /* No DWP file, look for the DWO file. */
12812
12813 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
12814 if (*dwo_file_slot == NULL)
12815 {
12816 /* Read in the file and build a table of the CUs/TUs it contains. */
12817 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
12818 }
12819 /* NOTE: This will be NULL if unable to open the file. */
12820 dwo_file = (struct dwo_file *) *dwo_file_slot;
12821
12822 if (dwo_file != NULL)
12823 {
12824 struct dwo_unit *dwo_cutu = NULL;
12825
12826 if (is_debug_types && dwo_file->tus)
12827 {
12828 struct dwo_unit find_dwo_cutu;
12829
12830 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12831 find_dwo_cutu.signature = signature;
12832 dwo_cutu
12833 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12834 &find_dwo_cutu);
12835 }
12836 else if (!is_debug_types && dwo_file->cus)
12837 {
12838 struct dwo_unit find_dwo_cutu;
12839
12840 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12841 find_dwo_cutu.signature = signature;
12842 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12843 &find_dwo_cutu);
12844 }
12845
12846 if (dwo_cutu != NULL)
12847 {
12848 if (dwarf_read_debug)
12849 {
12850 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12851 kind, dwo_name, hex_string (signature),
12852 host_address_to_string (dwo_cutu));
12853 }
12854 return dwo_cutu;
12855 }
12856 }
12857 }
12858
12859 /* We didn't find it. This could mean a dwo_id mismatch, or
12860 someone deleted the DWO/DWP file, or the search path isn't set up
12861 correctly to find the file. */
12862
12863 if (dwarf_read_debug)
12864 {
12865 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12866 kind, dwo_name, hex_string (signature));
12867 }
12868
12869 /* This is a warning and not a complaint because it can be caused by
12870 pilot error (e.g., user accidentally deleting the DWO). */
12871 {
12872 /* Print the name of the DWP file if we looked there, helps the user
12873 better diagnose the problem. */
12874 std::string dwp_text;
12875
12876 if (dwp_file != NULL)
12877 dwp_text = string_printf (" [in DWP file %s]",
12878 lbasename (dwp_file->name));
12879
12880 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12881 " [in module %s]"),
12882 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
12883 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
12884 }
12885 return NULL;
12886 }
12887
12888 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12889 See lookup_dwo_cutu_unit for details. */
12890
12891 static struct dwo_unit *
12892 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12893 ULONGEST signature)
12894 {
12895 gdb_assert (!cu->per_cu->is_debug_types);
12896
12897 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
12898 }
12899
12900 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12901 See lookup_dwo_cutu_unit for details. */
12902
12903 static struct dwo_unit *
12904 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
12905 {
12906 gdb_assert (cu->per_cu->is_debug_types);
12907
12908 signatured_type *sig_type = (signatured_type *) cu->per_cu;
12909
12910 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
12911 }
12912
12913 /* Traversal function for queue_and_load_all_dwo_tus. */
12914
12915 static int
12916 queue_and_load_dwo_tu (void **slot, void *info)
12917 {
12918 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12919 dwarf2_cu *cu = (dwarf2_cu *) info;
12920 ULONGEST signature = dwo_unit->signature;
12921 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
12922
12923 if (sig_type != NULL)
12924 {
12925 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12926
12927 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12928 a real dependency of PER_CU on SIG_TYPE. That is detected later
12929 while processing PER_CU. */
12930 if (maybe_queue_comp_unit (NULL, sig_cu, cu->per_objfile, cu->language))
12931 load_full_type_unit (sig_cu, cu->per_objfile);
12932 cu->per_cu->imported_symtabs_push (sig_cu);
12933 }
12934
12935 return 1;
12936 }
12937
12938 /* Queue all TUs contained in the DWO of CU to be read in.
12939 The DWO may have the only definition of the type, though it may not be
12940 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12941 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12942
12943 static void
12944 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
12945 {
12946 struct dwo_unit *dwo_unit;
12947 struct dwo_file *dwo_file;
12948
12949 gdb_assert (cu != nullptr);
12950 gdb_assert (!cu->per_cu->is_debug_types);
12951 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
12952
12953 dwo_unit = cu->dwo_unit;
12954 gdb_assert (dwo_unit != NULL);
12955
12956 dwo_file = dwo_unit->dwo_file;
12957 if (dwo_file->tus != NULL)
12958 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
12959 }
12960
12961 /* Read in various DIEs. */
12962
12963 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12964 Inherit only the children of the DW_AT_abstract_origin DIE not being
12965 already referenced by DW_AT_abstract_origin from the children of the
12966 current DIE. */
12967
12968 static void
12969 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12970 {
12971 struct die_info *child_die;
12972 sect_offset *offsetp;
12973 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12974 struct die_info *origin_die;
12975 /* Iterator of the ORIGIN_DIE children. */
12976 struct die_info *origin_child_die;
12977 struct attribute *attr;
12978 struct dwarf2_cu *origin_cu;
12979 struct pending **origin_previous_list_in_scope;
12980
12981 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12982 if (!attr)
12983 return;
12984
12985 /* Note that following die references may follow to a die in a
12986 different cu. */
12987
12988 origin_cu = cu;
12989 origin_die = follow_die_ref (die, attr, &origin_cu);
12990
12991 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12992 symbols in. */
12993 origin_previous_list_in_scope = origin_cu->list_in_scope;
12994 origin_cu->list_in_scope = cu->list_in_scope;
12995
12996 if (die->tag != origin_die->tag
12997 && !(die->tag == DW_TAG_inlined_subroutine
12998 && origin_die->tag == DW_TAG_subprogram))
12999 complaint (_("DIE %s and its abstract origin %s have different tags"),
13000 sect_offset_str (die->sect_off),
13001 sect_offset_str (origin_die->sect_off));
13002
13003 std::vector<sect_offset> offsets;
13004
13005 for (child_die = die->child;
13006 child_die && child_die->tag;
13007 child_die = child_die->sibling)
13008 {
13009 struct die_info *child_origin_die;
13010 struct dwarf2_cu *child_origin_cu;
13011
13012 /* We are trying to process concrete instance entries:
13013 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13014 it's not relevant to our analysis here. i.e. detecting DIEs that are
13015 present in the abstract instance but not referenced in the concrete
13016 one. */
13017 if (child_die->tag == DW_TAG_call_site
13018 || child_die->tag == DW_TAG_GNU_call_site)
13019 continue;
13020
13021 /* For each CHILD_DIE, find the corresponding child of
13022 ORIGIN_DIE. If there is more than one layer of
13023 DW_AT_abstract_origin, follow them all; there shouldn't be,
13024 but GCC versions at least through 4.4 generate this (GCC PR
13025 40573). */
13026 child_origin_die = child_die;
13027 child_origin_cu = cu;
13028 while (1)
13029 {
13030 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13031 child_origin_cu);
13032 if (attr == NULL)
13033 break;
13034 child_origin_die = follow_die_ref (child_origin_die, attr,
13035 &child_origin_cu);
13036 }
13037
13038 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13039 counterpart may exist. */
13040 if (child_origin_die != child_die)
13041 {
13042 if (child_die->tag != child_origin_die->tag
13043 && !(child_die->tag == DW_TAG_inlined_subroutine
13044 && child_origin_die->tag == DW_TAG_subprogram))
13045 complaint (_("Child DIE %s and its abstract origin %s have "
13046 "different tags"),
13047 sect_offset_str (child_die->sect_off),
13048 sect_offset_str (child_origin_die->sect_off));
13049 if (child_origin_die->parent != origin_die)
13050 complaint (_("Child DIE %s and its abstract origin %s have "
13051 "different parents"),
13052 sect_offset_str (child_die->sect_off),
13053 sect_offset_str (child_origin_die->sect_off));
13054 else
13055 offsets.push_back (child_origin_die->sect_off);
13056 }
13057 }
13058 std::sort (offsets.begin (), offsets.end ());
13059 sect_offset *offsets_end = offsets.data () + offsets.size ();
13060 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13061 if (offsetp[-1] == *offsetp)
13062 complaint (_("Multiple children of DIE %s refer "
13063 "to DIE %s as their abstract origin"),
13064 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13065
13066 offsetp = offsets.data ();
13067 origin_child_die = origin_die->child;
13068 while (origin_child_die && origin_child_die->tag)
13069 {
13070 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13071 while (offsetp < offsets_end
13072 && *offsetp < origin_child_die->sect_off)
13073 offsetp++;
13074 if (offsetp >= offsets_end
13075 || *offsetp > origin_child_die->sect_off)
13076 {
13077 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13078 Check whether we're already processing ORIGIN_CHILD_DIE.
13079 This can happen with mutually referenced abstract_origins.
13080 PR 16581. */
13081 if (!origin_child_die->in_process)
13082 process_die (origin_child_die, origin_cu);
13083 }
13084 origin_child_die = origin_child_die->sibling;
13085 }
13086 origin_cu->list_in_scope = origin_previous_list_in_scope;
13087
13088 if (cu != origin_cu)
13089 compute_delayed_physnames (origin_cu);
13090 }
13091
13092 static void
13093 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13094 {
13095 struct objfile *objfile = cu->per_objfile->objfile;
13096 struct gdbarch *gdbarch = objfile->arch ();
13097 struct context_stack *newobj;
13098 CORE_ADDR lowpc;
13099 CORE_ADDR highpc;
13100 struct die_info *child_die;
13101 struct attribute *attr, *call_line, *call_file;
13102 const char *name;
13103 CORE_ADDR baseaddr;
13104 struct block *block;
13105 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13106 std::vector<struct symbol *> template_args;
13107 struct template_symbol *templ_func = NULL;
13108
13109 if (inlined_func)
13110 {
13111 /* If we do not have call site information, we can't show the
13112 caller of this inlined function. That's too confusing, so
13113 only use the scope for local variables. */
13114 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13115 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13116 if (call_line == NULL || call_file == NULL)
13117 {
13118 read_lexical_block_scope (die, cu);
13119 return;
13120 }
13121 }
13122
13123 baseaddr = objfile->text_section_offset ();
13124
13125 name = dwarf2_name (die, cu);
13126
13127 /* Ignore functions with missing or empty names. These are actually
13128 illegal according to the DWARF standard. */
13129 if (name == NULL)
13130 {
13131 complaint (_("missing name for subprogram DIE at %s"),
13132 sect_offset_str (die->sect_off));
13133 return;
13134 }
13135
13136 /* Ignore functions with missing or invalid low and high pc attributes. */
13137 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13138 <= PC_BOUNDS_INVALID)
13139 {
13140 attr = dwarf2_attr (die, DW_AT_external, cu);
13141 if (!attr || !DW_UNSND (attr))
13142 complaint (_("cannot get low and high bounds "
13143 "for subprogram DIE at %s"),
13144 sect_offset_str (die->sect_off));
13145 return;
13146 }
13147
13148 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13149 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13150
13151 /* If we have any template arguments, then we must allocate a
13152 different sort of symbol. */
13153 for (child_die = die->child; child_die; child_die = child_die->sibling)
13154 {
13155 if (child_die->tag == DW_TAG_template_type_param
13156 || child_die->tag == DW_TAG_template_value_param)
13157 {
13158 templ_func = new (&objfile->objfile_obstack) template_symbol;
13159 templ_func->subclass = SYMBOL_TEMPLATE;
13160 break;
13161 }
13162 }
13163
13164 newobj = cu->get_builder ()->push_context (0, lowpc);
13165 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13166 (struct symbol *) templ_func);
13167
13168 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13169 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13170 cu->language);
13171
13172 /* If there is a location expression for DW_AT_frame_base, record
13173 it. */
13174 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13175 if (attr != nullptr)
13176 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13177
13178 /* If there is a location for the static link, record it. */
13179 newobj->static_link = NULL;
13180 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13181 if (attr != nullptr)
13182 {
13183 newobj->static_link
13184 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13185 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13186 cu->addr_type ());
13187 }
13188
13189 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13190
13191 if (die->child != NULL)
13192 {
13193 child_die = die->child;
13194 while (child_die && child_die->tag)
13195 {
13196 if (child_die->tag == DW_TAG_template_type_param
13197 || child_die->tag == DW_TAG_template_value_param)
13198 {
13199 struct symbol *arg = new_symbol (child_die, NULL, cu);
13200
13201 if (arg != NULL)
13202 template_args.push_back (arg);
13203 }
13204 else
13205 process_die (child_die, cu);
13206 child_die = child_die->sibling;
13207 }
13208 }
13209
13210 inherit_abstract_dies (die, cu);
13211
13212 /* If we have a DW_AT_specification, we might need to import using
13213 directives from the context of the specification DIE. See the
13214 comment in determine_prefix. */
13215 if (cu->language == language_cplus
13216 && dwarf2_attr (die, DW_AT_specification, cu))
13217 {
13218 struct dwarf2_cu *spec_cu = cu;
13219 struct die_info *spec_die = die_specification (die, &spec_cu);
13220
13221 while (spec_die)
13222 {
13223 child_die = spec_die->child;
13224 while (child_die && child_die->tag)
13225 {
13226 if (child_die->tag == DW_TAG_imported_module)
13227 process_die (child_die, spec_cu);
13228 child_die = child_die->sibling;
13229 }
13230
13231 /* In some cases, GCC generates specification DIEs that
13232 themselves contain DW_AT_specification attributes. */
13233 spec_die = die_specification (spec_die, &spec_cu);
13234 }
13235 }
13236
13237 struct context_stack cstk = cu->get_builder ()->pop_context ();
13238 /* Make a block for the local symbols within. */
13239 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13240 cstk.static_link, lowpc, highpc);
13241
13242 /* For C++, set the block's scope. */
13243 if ((cu->language == language_cplus
13244 || cu->language == language_fortran
13245 || cu->language == language_d
13246 || cu->language == language_rust)
13247 && cu->processing_has_namespace_info)
13248 block_set_scope (block, determine_prefix (die, cu),
13249 &objfile->objfile_obstack);
13250
13251 /* If we have address ranges, record them. */
13252 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13253
13254 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13255
13256 /* Attach template arguments to function. */
13257 if (!template_args.empty ())
13258 {
13259 gdb_assert (templ_func != NULL);
13260
13261 templ_func->n_template_arguments = template_args.size ();
13262 templ_func->template_arguments
13263 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13264 templ_func->n_template_arguments);
13265 memcpy (templ_func->template_arguments,
13266 template_args.data (),
13267 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13268
13269 /* Make sure that the symtab is set on the new symbols. Even
13270 though they don't appear in this symtab directly, other parts
13271 of gdb assume that symbols do, and this is reasonably
13272 true. */
13273 for (symbol *sym : template_args)
13274 symbol_set_symtab (sym, symbol_symtab (templ_func));
13275 }
13276
13277 /* In C++, we can have functions nested inside functions (e.g., when
13278 a function declares a class that has methods). This means that
13279 when we finish processing a function scope, we may need to go
13280 back to building a containing block's symbol lists. */
13281 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13282 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13283
13284 /* If we've finished processing a top-level function, subsequent
13285 symbols go in the file symbol list. */
13286 if (cu->get_builder ()->outermost_context_p ())
13287 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13288 }
13289
13290 /* Process all the DIES contained within a lexical block scope. Start
13291 a new scope, process the dies, and then close the scope. */
13292
13293 static void
13294 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13295 {
13296 struct objfile *objfile = cu->per_objfile->objfile;
13297 struct gdbarch *gdbarch = objfile->arch ();
13298 CORE_ADDR lowpc, highpc;
13299 struct die_info *child_die;
13300 CORE_ADDR baseaddr;
13301
13302 baseaddr = objfile->text_section_offset ();
13303
13304 /* Ignore blocks with missing or invalid low and high pc attributes. */
13305 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13306 as multiple lexical blocks? Handling children in a sane way would
13307 be nasty. Might be easier to properly extend generic blocks to
13308 describe ranges. */
13309 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13310 {
13311 case PC_BOUNDS_NOT_PRESENT:
13312 /* DW_TAG_lexical_block has no attributes, process its children as if
13313 there was no wrapping by that DW_TAG_lexical_block.
13314 GCC does no longer produces such DWARF since GCC r224161. */
13315 for (child_die = die->child;
13316 child_die != NULL && child_die->tag;
13317 child_die = child_die->sibling)
13318 {
13319 /* We might already be processing this DIE. This can happen
13320 in an unusual circumstance -- where a subroutine A
13321 appears lexically in another subroutine B, but A actually
13322 inlines B. The recursion is broken here, rather than in
13323 inherit_abstract_dies, because it seems better to simply
13324 drop concrete children here. */
13325 if (!child_die->in_process)
13326 process_die (child_die, cu);
13327 }
13328 return;
13329 case PC_BOUNDS_INVALID:
13330 return;
13331 }
13332 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13333 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13334
13335 cu->get_builder ()->push_context (0, lowpc);
13336 if (die->child != NULL)
13337 {
13338 child_die = die->child;
13339 while (child_die && child_die->tag)
13340 {
13341 process_die (child_die, cu);
13342 child_die = child_die->sibling;
13343 }
13344 }
13345 inherit_abstract_dies (die, cu);
13346 struct context_stack cstk = cu->get_builder ()->pop_context ();
13347
13348 if (*cu->get_builder ()->get_local_symbols () != NULL
13349 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13350 {
13351 struct block *block
13352 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13353 cstk.start_addr, highpc);
13354
13355 /* Note that recording ranges after traversing children, as we
13356 do here, means that recording a parent's ranges entails
13357 walking across all its children's ranges as they appear in
13358 the address map, which is quadratic behavior.
13359
13360 It would be nicer to record the parent's ranges before
13361 traversing its children, simply overriding whatever you find
13362 there. But since we don't even decide whether to create a
13363 block until after we've traversed its children, that's hard
13364 to do. */
13365 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13366 }
13367 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13368 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13369 }
13370
13371 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13372
13373 static void
13374 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13375 {
13376 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13377 struct objfile *objfile = per_objfile->objfile;
13378 struct gdbarch *gdbarch = objfile->arch ();
13379 CORE_ADDR pc, baseaddr;
13380 struct attribute *attr;
13381 struct call_site *call_site, call_site_local;
13382 void **slot;
13383 int nparams;
13384 struct die_info *child_die;
13385
13386 baseaddr = objfile->text_section_offset ();
13387
13388 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13389 if (attr == NULL)
13390 {
13391 /* This was a pre-DWARF-5 GNU extension alias
13392 for DW_AT_call_return_pc. */
13393 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13394 }
13395 if (!attr)
13396 {
13397 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13398 "DIE %s [in module %s]"),
13399 sect_offset_str (die->sect_off), objfile_name (objfile));
13400 return;
13401 }
13402 pc = attr->value_as_address () + baseaddr;
13403 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13404
13405 if (cu->call_site_htab == NULL)
13406 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13407 NULL, &objfile->objfile_obstack,
13408 hashtab_obstack_allocate, NULL);
13409 call_site_local.pc = pc;
13410 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13411 if (*slot != NULL)
13412 {
13413 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13414 "DIE %s [in module %s]"),
13415 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13416 objfile_name (objfile));
13417 return;
13418 }
13419
13420 /* Count parameters at the caller. */
13421
13422 nparams = 0;
13423 for (child_die = die->child; child_die && child_die->tag;
13424 child_die = child_die->sibling)
13425 {
13426 if (child_die->tag != DW_TAG_call_site_parameter
13427 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13428 {
13429 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13430 "DW_TAG_call_site child DIE %s [in module %s]"),
13431 child_die->tag, sect_offset_str (child_die->sect_off),
13432 objfile_name (objfile));
13433 continue;
13434 }
13435
13436 nparams++;
13437 }
13438
13439 call_site
13440 = ((struct call_site *)
13441 obstack_alloc (&objfile->objfile_obstack,
13442 sizeof (*call_site)
13443 + (sizeof (*call_site->parameter) * (nparams - 1))));
13444 *slot = call_site;
13445 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13446 call_site->pc = pc;
13447
13448 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13449 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13450 {
13451 struct die_info *func_die;
13452
13453 /* Skip also over DW_TAG_inlined_subroutine. */
13454 for (func_die = die->parent;
13455 func_die && func_die->tag != DW_TAG_subprogram
13456 && func_die->tag != DW_TAG_subroutine_type;
13457 func_die = func_die->parent);
13458
13459 /* DW_AT_call_all_calls is a superset
13460 of DW_AT_call_all_tail_calls. */
13461 if (func_die
13462 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13463 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13464 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13465 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13466 {
13467 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13468 not complete. But keep CALL_SITE for look ups via call_site_htab,
13469 both the initial caller containing the real return address PC and
13470 the final callee containing the current PC of a chain of tail
13471 calls do not need to have the tail call list complete. But any
13472 function candidate for a virtual tail call frame searched via
13473 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13474 determined unambiguously. */
13475 }
13476 else
13477 {
13478 struct type *func_type = NULL;
13479
13480 if (func_die)
13481 func_type = get_die_type (func_die, cu);
13482 if (func_type != NULL)
13483 {
13484 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13485
13486 /* Enlist this call site to the function. */
13487 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13488 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13489 }
13490 else
13491 complaint (_("Cannot find function owning DW_TAG_call_site "
13492 "DIE %s [in module %s]"),
13493 sect_offset_str (die->sect_off), objfile_name (objfile));
13494 }
13495 }
13496
13497 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13498 if (attr == NULL)
13499 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13500 if (attr == NULL)
13501 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13502 if (attr == NULL)
13503 {
13504 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13505 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13506 }
13507 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13508 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13509 /* Keep NULL DWARF_BLOCK. */;
13510 else if (attr->form_is_block ())
13511 {
13512 struct dwarf2_locexpr_baton *dlbaton;
13513
13514 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13515 dlbaton->data = DW_BLOCK (attr)->data;
13516 dlbaton->size = DW_BLOCK (attr)->size;
13517 dlbaton->per_objfile = per_objfile;
13518 dlbaton->per_cu = cu->per_cu;
13519
13520 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13521 }
13522 else if (attr->form_is_ref ())
13523 {
13524 struct dwarf2_cu *target_cu = cu;
13525 struct die_info *target_die;
13526
13527 target_die = follow_die_ref (die, attr, &target_cu);
13528 gdb_assert (target_cu->per_objfile->objfile == objfile);
13529 if (die_is_declaration (target_die, target_cu))
13530 {
13531 const char *target_physname;
13532
13533 /* Prefer the mangled name; otherwise compute the demangled one. */
13534 target_physname = dw2_linkage_name (target_die, target_cu);
13535 if (target_physname == NULL)
13536 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13537 if (target_physname == NULL)
13538 complaint (_("DW_AT_call_target target DIE has invalid "
13539 "physname, for referencing DIE %s [in module %s]"),
13540 sect_offset_str (die->sect_off), objfile_name (objfile));
13541 else
13542 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13543 }
13544 else
13545 {
13546 CORE_ADDR lowpc;
13547
13548 /* DW_AT_entry_pc should be preferred. */
13549 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13550 <= PC_BOUNDS_INVALID)
13551 complaint (_("DW_AT_call_target target DIE has invalid "
13552 "low pc, for referencing DIE %s [in module %s]"),
13553 sect_offset_str (die->sect_off), objfile_name (objfile));
13554 else
13555 {
13556 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13557 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13558 }
13559 }
13560 }
13561 else
13562 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13563 "block nor reference, for DIE %s [in module %s]"),
13564 sect_offset_str (die->sect_off), objfile_name (objfile));
13565
13566 call_site->per_cu = cu->per_cu;
13567 call_site->per_objfile = per_objfile;
13568
13569 for (child_die = die->child;
13570 child_die && child_die->tag;
13571 child_die = child_die->sibling)
13572 {
13573 struct call_site_parameter *parameter;
13574 struct attribute *loc, *origin;
13575
13576 if (child_die->tag != DW_TAG_call_site_parameter
13577 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13578 {
13579 /* Already printed the complaint above. */
13580 continue;
13581 }
13582
13583 gdb_assert (call_site->parameter_count < nparams);
13584 parameter = &call_site->parameter[call_site->parameter_count];
13585
13586 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13587 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13588 register is contained in DW_AT_call_value. */
13589
13590 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13591 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13592 if (origin == NULL)
13593 {
13594 /* This was a pre-DWARF-5 GNU extension alias
13595 for DW_AT_call_parameter. */
13596 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13597 }
13598 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13599 {
13600 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13601
13602 sect_offset sect_off = origin->get_ref_die_offset ();
13603 if (!cu->header.offset_in_cu_p (sect_off))
13604 {
13605 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13606 binding can be done only inside one CU. Such referenced DIE
13607 therefore cannot be even moved to DW_TAG_partial_unit. */
13608 complaint (_("DW_AT_call_parameter offset is not in CU for "
13609 "DW_TAG_call_site child DIE %s [in module %s]"),
13610 sect_offset_str (child_die->sect_off),
13611 objfile_name (objfile));
13612 continue;
13613 }
13614 parameter->u.param_cu_off
13615 = (cu_offset) (sect_off - cu->header.sect_off);
13616 }
13617 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13618 {
13619 complaint (_("No DW_FORM_block* DW_AT_location for "
13620 "DW_TAG_call_site child DIE %s [in module %s]"),
13621 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13622 continue;
13623 }
13624 else
13625 {
13626 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13627 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13628 if (parameter->u.dwarf_reg != -1)
13629 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13630 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13631 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13632 &parameter->u.fb_offset))
13633 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13634 else
13635 {
13636 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13637 "for DW_FORM_block* DW_AT_location is supported for "
13638 "DW_TAG_call_site child DIE %s "
13639 "[in module %s]"),
13640 sect_offset_str (child_die->sect_off),
13641 objfile_name (objfile));
13642 continue;
13643 }
13644 }
13645
13646 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13647 if (attr == NULL)
13648 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13649 if (attr == NULL || !attr->form_is_block ())
13650 {
13651 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13652 "DW_TAG_call_site child DIE %s [in module %s]"),
13653 sect_offset_str (child_die->sect_off),
13654 objfile_name (objfile));
13655 continue;
13656 }
13657 parameter->value = DW_BLOCK (attr)->data;
13658 parameter->value_size = DW_BLOCK (attr)->size;
13659
13660 /* Parameters are not pre-cleared by memset above. */
13661 parameter->data_value = NULL;
13662 parameter->data_value_size = 0;
13663 call_site->parameter_count++;
13664
13665 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13666 if (attr == NULL)
13667 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13668 if (attr != nullptr)
13669 {
13670 if (!attr->form_is_block ())
13671 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13672 "DW_TAG_call_site child DIE %s [in module %s]"),
13673 sect_offset_str (child_die->sect_off),
13674 objfile_name (objfile));
13675 else
13676 {
13677 parameter->data_value = DW_BLOCK (attr)->data;
13678 parameter->data_value_size = DW_BLOCK (attr)->size;
13679 }
13680 }
13681 }
13682 }
13683
13684 /* Helper function for read_variable. If DIE represents a virtual
13685 table, then return the type of the concrete object that is
13686 associated with the virtual table. Otherwise, return NULL. */
13687
13688 static struct type *
13689 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13690 {
13691 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13692 if (attr == NULL)
13693 return NULL;
13694
13695 /* Find the type DIE. */
13696 struct die_info *type_die = NULL;
13697 struct dwarf2_cu *type_cu = cu;
13698
13699 if (attr->form_is_ref ())
13700 type_die = follow_die_ref (die, attr, &type_cu);
13701 if (type_die == NULL)
13702 return NULL;
13703
13704 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13705 return NULL;
13706 return die_containing_type (type_die, type_cu);
13707 }
13708
13709 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13710
13711 static void
13712 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13713 {
13714 struct rust_vtable_symbol *storage = NULL;
13715
13716 if (cu->language == language_rust)
13717 {
13718 struct type *containing_type = rust_containing_type (die, cu);
13719
13720 if (containing_type != NULL)
13721 {
13722 struct objfile *objfile = cu->per_objfile->objfile;
13723
13724 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13725 storage->concrete_type = containing_type;
13726 storage->subclass = SYMBOL_RUST_VTABLE;
13727 }
13728 }
13729
13730 struct symbol *res = new_symbol (die, NULL, cu, storage);
13731 struct attribute *abstract_origin
13732 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13733 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13734 if (res == NULL && loc && abstract_origin)
13735 {
13736 /* We have a variable without a name, but with a location and an abstract
13737 origin. This may be a concrete instance of an abstract variable
13738 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13739 later. */
13740 struct dwarf2_cu *origin_cu = cu;
13741 struct die_info *origin_die
13742 = follow_die_ref (die, abstract_origin, &origin_cu);
13743 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13744 per_objfile->per_bfd->abstract_to_concrete
13745 [origin_die->sect_off].push_back (die->sect_off);
13746 }
13747 }
13748
13749 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13750 reading .debug_rnglists.
13751 Callback's type should be:
13752 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13753 Return true if the attributes are present and valid, otherwise,
13754 return false. */
13755
13756 template <typename Callback>
13757 static bool
13758 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13759 Callback &&callback)
13760 {
13761 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13762 struct objfile *objfile = per_objfile->objfile;
13763 bfd *obfd = objfile->obfd;
13764 /* Base address selection entry. */
13765 gdb::optional<CORE_ADDR> base;
13766 const gdb_byte *buffer;
13767 CORE_ADDR baseaddr;
13768 bool overflow = false;
13769
13770 base = cu->base_address;
13771
13772 per_objfile->per_bfd->rnglists.read (objfile);
13773 if (offset >= per_objfile->per_bfd->rnglists.size)
13774 {
13775 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13776 offset);
13777 return false;
13778 }
13779 buffer = per_objfile->per_bfd->rnglists.buffer + offset;
13780
13781 baseaddr = objfile->text_section_offset ();
13782
13783 while (1)
13784 {
13785 /* Initialize it due to a false compiler warning. */
13786 CORE_ADDR range_beginning = 0, range_end = 0;
13787 const gdb_byte *buf_end = (per_objfile->per_bfd->rnglists.buffer
13788 + per_objfile->per_bfd->rnglists.size);
13789 unsigned int bytes_read;
13790
13791 if (buffer == buf_end)
13792 {
13793 overflow = true;
13794 break;
13795 }
13796 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13797 switch (rlet)
13798 {
13799 case DW_RLE_end_of_list:
13800 break;
13801 case DW_RLE_base_address:
13802 if (buffer + cu->header.addr_size > buf_end)
13803 {
13804 overflow = true;
13805 break;
13806 }
13807 base = cu->header.read_address (obfd, buffer, &bytes_read);
13808 buffer += bytes_read;
13809 break;
13810 case DW_RLE_start_length:
13811 if (buffer + cu->header.addr_size > buf_end)
13812 {
13813 overflow = true;
13814 break;
13815 }
13816 range_beginning = cu->header.read_address (obfd, buffer,
13817 &bytes_read);
13818 buffer += bytes_read;
13819 range_end = (range_beginning
13820 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13821 buffer += bytes_read;
13822 if (buffer > buf_end)
13823 {
13824 overflow = true;
13825 break;
13826 }
13827 break;
13828 case DW_RLE_offset_pair:
13829 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13830 buffer += bytes_read;
13831 if (buffer > buf_end)
13832 {
13833 overflow = true;
13834 break;
13835 }
13836 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13837 buffer += bytes_read;
13838 if (buffer > buf_end)
13839 {
13840 overflow = true;
13841 break;
13842 }
13843 break;
13844 case DW_RLE_start_end:
13845 if (buffer + 2 * cu->header.addr_size > buf_end)
13846 {
13847 overflow = true;
13848 break;
13849 }
13850 range_beginning = cu->header.read_address (obfd, buffer,
13851 &bytes_read);
13852 buffer += bytes_read;
13853 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13854 buffer += bytes_read;
13855 break;
13856 default:
13857 complaint (_("Invalid .debug_rnglists data (no base address)"));
13858 return false;
13859 }
13860 if (rlet == DW_RLE_end_of_list || overflow)
13861 break;
13862 if (rlet == DW_RLE_base_address)
13863 continue;
13864
13865 if (!base.has_value ())
13866 {
13867 /* We have no valid base address for the ranges
13868 data. */
13869 complaint (_("Invalid .debug_rnglists data (no base address)"));
13870 return false;
13871 }
13872
13873 if (range_beginning > range_end)
13874 {
13875 /* Inverted range entries are invalid. */
13876 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13877 return false;
13878 }
13879
13880 /* Empty range entries have no effect. */
13881 if (range_beginning == range_end)
13882 continue;
13883
13884 range_beginning += *base;
13885 range_end += *base;
13886
13887 /* A not-uncommon case of bad debug info.
13888 Don't pollute the addrmap with bad data. */
13889 if (range_beginning + baseaddr == 0
13890 && !per_objfile->per_bfd->has_section_at_zero)
13891 {
13892 complaint (_(".debug_rnglists entry has start address of zero"
13893 " [in module %s]"), objfile_name (objfile));
13894 continue;
13895 }
13896
13897 callback (range_beginning, range_end);
13898 }
13899
13900 if (overflow)
13901 {
13902 complaint (_("Offset %d is not terminated "
13903 "for DW_AT_ranges attribute"),
13904 offset);
13905 return false;
13906 }
13907
13908 return true;
13909 }
13910
13911 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13912 Callback's type should be:
13913 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13914 Return 1 if the attributes are present and valid, otherwise, return 0. */
13915
13916 template <typename Callback>
13917 static int
13918 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13919 Callback &&callback)
13920 {
13921 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13922 struct objfile *objfile = per_objfile->objfile;
13923 struct comp_unit_head *cu_header = &cu->header;
13924 bfd *obfd = objfile->obfd;
13925 unsigned int addr_size = cu_header->addr_size;
13926 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13927 /* Base address selection entry. */
13928 gdb::optional<CORE_ADDR> base;
13929 unsigned int dummy;
13930 const gdb_byte *buffer;
13931 CORE_ADDR baseaddr;
13932
13933 if (cu_header->version >= 5)
13934 return dwarf2_rnglists_process (offset, cu, callback);
13935
13936 base = cu->base_address;
13937
13938 per_objfile->per_bfd->ranges.read (objfile);
13939 if (offset >= per_objfile->per_bfd->ranges.size)
13940 {
13941 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13942 offset);
13943 return 0;
13944 }
13945 buffer = per_objfile->per_bfd->ranges.buffer + offset;
13946
13947 baseaddr = objfile->text_section_offset ();
13948
13949 while (1)
13950 {
13951 CORE_ADDR range_beginning, range_end;
13952
13953 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13954 buffer += addr_size;
13955 range_end = cu->header.read_address (obfd, buffer, &dummy);
13956 buffer += addr_size;
13957 offset += 2 * addr_size;
13958
13959 /* An end of list marker is a pair of zero addresses. */
13960 if (range_beginning == 0 && range_end == 0)
13961 /* Found the end of list entry. */
13962 break;
13963
13964 /* Each base address selection entry is a pair of 2 values.
13965 The first is the largest possible address, the second is
13966 the base address. Check for a base address here. */
13967 if ((range_beginning & mask) == mask)
13968 {
13969 /* If we found the largest possible address, then we already
13970 have the base address in range_end. */
13971 base = range_end;
13972 continue;
13973 }
13974
13975 if (!base.has_value ())
13976 {
13977 /* We have no valid base address for the ranges
13978 data. */
13979 complaint (_("Invalid .debug_ranges data (no base address)"));
13980 return 0;
13981 }
13982
13983 if (range_beginning > range_end)
13984 {
13985 /* Inverted range entries are invalid. */
13986 complaint (_("Invalid .debug_ranges data (inverted range)"));
13987 return 0;
13988 }
13989
13990 /* Empty range entries have no effect. */
13991 if (range_beginning == range_end)
13992 continue;
13993
13994 range_beginning += *base;
13995 range_end += *base;
13996
13997 /* A not-uncommon case of bad debug info.
13998 Don't pollute the addrmap with bad data. */
13999 if (range_beginning + baseaddr == 0
14000 && !per_objfile->per_bfd->has_section_at_zero)
14001 {
14002 complaint (_(".debug_ranges entry has start address of zero"
14003 " [in module %s]"), objfile_name (objfile));
14004 continue;
14005 }
14006
14007 callback (range_beginning, range_end);
14008 }
14009
14010 return 1;
14011 }
14012
14013 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14014 Return 1 if the attributes are present and valid, otherwise, return 0.
14015 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14016
14017 static int
14018 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14019 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14020 dwarf2_psymtab *ranges_pst)
14021 {
14022 struct objfile *objfile = cu->per_objfile->objfile;
14023 struct gdbarch *gdbarch = objfile->arch ();
14024 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14025 int low_set = 0;
14026 CORE_ADDR low = 0;
14027 CORE_ADDR high = 0;
14028 int retval;
14029
14030 retval = dwarf2_ranges_process (offset, cu,
14031 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14032 {
14033 if (ranges_pst != NULL)
14034 {
14035 CORE_ADDR lowpc;
14036 CORE_ADDR highpc;
14037
14038 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14039 range_beginning + baseaddr)
14040 - baseaddr);
14041 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14042 range_end + baseaddr)
14043 - baseaddr);
14044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14045 lowpc, highpc - 1, ranges_pst);
14046 }
14047
14048 /* FIXME: This is recording everything as a low-high
14049 segment of consecutive addresses. We should have a
14050 data structure for discontiguous block ranges
14051 instead. */
14052 if (! low_set)
14053 {
14054 low = range_beginning;
14055 high = range_end;
14056 low_set = 1;
14057 }
14058 else
14059 {
14060 if (range_beginning < low)
14061 low = range_beginning;
14062 if (range_end > high)
14063 high = range_end;
14064 }
14065 });
14066 if (!retval)
14067 return 0;
14068
14069 if (! low_set)
14070 /* If the first entry is an end-of-list marker, the range
14071 describes an empty scope, i.e. no instructions. */
14072 return 0;
14073
14074 if (low_return)
14075 *low_return = low;
14076 if (high_return)
14077 *high_return = high;
14078 return 1;
14079 }
14080
14081 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14082 definition for the return value. *LOWPC and *HIGHPC are set iff
14083 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14084
14085 static enum pc_bounds_kind
14086 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14087 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14088 dwarf2_psymtab *pst)
14089 {
14090 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14091 struct attribute *attr;
14092 struct attribute *attr_high;
14093 CORE_ADDR low = 0;
14094 CORE_ADDR high = 0;
14095 enum pc_bounds_kind ret;
14096
14097 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14098 if (attr_high)
14099 {
14100 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14101 if (attr != nullptr)
14102 {
14103 low = attr->value_as_address ();
14104 high = attr_high->value_as_address ();
14105 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14106 high += low;
14107 }
14108 else
14109 /* Found high w/o low attribute. */
14110 return PC_BOUNDS_INVALID;
14111
14112 /* Found consecutive range of addresses. */
14113 ret = PC_BOUNDS_HIGH_LOW;
14114 }
14115 else
14116 {
14117 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14118 if (attr != NULL)
14119 {
14120 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14121 We take advantage of the fact that DW_AT_ranges does not appear
14122 in DW_TAG_compile_unit of DWO files. */
14123 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14124 unsigned int ranges_offset = (DW_UNSND (attr)
14125 + (need_ranges_base
14126 ? cu->ranges_base
14127 : 0));
14128
14129 /* Value of the DW_AT_ranges attribute is the offset in the
14130 .debug_ranges section. */
14131 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14132 return PC_BOUNDS_INVALID;
14133 /* Found discontinuous range of addresses. */
14134 ret = PC_BOUNDS_RANGES;
14135 }
14136 else
14137 return PC_BOUNDS_NOT_PRESENT;
14138 }
14139
14140 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14141 if (high <= low)
14142 return PC_BOUNDS_INVALID;
14143
14144 /* When using the GNU linker, .gnu.linkonce. sections are used to
14145 eliminate duplicate copies of functions and vtables and such.
14146 The linker will arbitrarily choose one and discard the others.
14147 The AT_*_pc values for such functions refer to local labels in
14148 these sections. If the section from that file was discarded, the
14149 labels are not in the output, so the relocs get a value of 0.
14150 If this is a discarded function, mark the pc bounds as invalid,
14151 so that GDB will ignore it. */
14152 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14153 return PC_BOUNDS_INVALID;
14154
14155 *lowpc = low;
14156 if (highpc)
14157 *highpc = high;
14158 return ret;
14159 }
14160
14161 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14162 its low and high PC addresses. Do nothing if these addresses could not
14163 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14164 and HIGHPC to the high address if greater than HIGHPC. */
14165
14166 static void
14167 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14168 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14169 struct dwarf2_cu *cu)
14170 {
14171 CORE_ADDR low, high;
14172 struct die_info *child = die->child;
14173
14174 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14175 {
14176 *lowpc = std::min (*lowpc, low);
14177 *highpc = std::max (*highpc, high);
14178 }
14179
14180 /* If the language does not allow nested subprograms (either inside
14181 subprograms or lexical blocks), we're done. */
14182 if (cu->language != language_ada)
14183 return;
14184
14185 /* Check all the children of the given DIE. If it contains nested
14186 subprograms, then check their pc bounds. Likewise, we need to
14187 check lexical blocks as well, as they may also contain subprogram
14188 definitions. */
14189 while (child && child->tag)
14190 {
14191 if (child->tag == DW_TAG_subprogram
14192 || child->tag == DW_TAG_lexical_block)
14193 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14194 child = child->sibling;
14195 }
14196 }
14197
14198 /* Get the low and high pc's represented by the scope DIE, and store
14199 them in *LOWPC and *HIGHPC. If the correct values can't be
14200 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14201
14202 static void
14203 get_scope_pc_bounds (struct die_info *die,
14204 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14205 struct dwarf2_cu *cu)
14206 {
14207 CORE_ADDR best_low = (CORE_ADDR) -1;
14208 CORE_ADDR best_high = (CORE_ADDR) 0;
14209 CORE_ADDR current_low, current_high;
14210
14211 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14212 >= PC_BOUNDS_RANGES)
14213 {
14214 best_low = current_low;
14215 best_high = current_high;
14216 }
14217 else
14218 {
14219 struct die_info *child = die->child;
14220
14221 while (child && child->tag)
14222 {
14223 switch (child->tag) {
14224 case DW_TAG_subprogram:
14225 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14226 break;
14227 case DW_TAG_namespace:
14228 case DW_TAG_module:
14229 /* FIXME: carlton/2004-01-16: Should we do this for
14230 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14231 that current GCC's always emit the DIEs corresponding
14232 to definitions of methods of classes as children of a
14233 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14234 the DIEs giving the declarations, which could be
14235 anywhere). But I don't see any reason why the
14236 standards says that they have to be there. */
14237 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14238
14239 if (current_low != ((CORE_ADDR) -1))
14240 {
14241 best_low = std::min (best_low, current_low);
14242 best_high = std::max (best_high, current_high);
14243 }
14244 break;
14245 default:
14246 /* Ignore. */
14247 break;
14248 }
14249
14250 child = child->sibling;
14251 }
14252 }
14253
14254 *lowpc = best_low;
14255 *highpc = best_high;
14256 }
14257
14258 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14259 in DIE. */
14260
14261 static void
14262 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14263 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14264 {
14265 struct objfile *objfile = cu->per_objfile->objfile;
14266 struct gdbarch *gdbarch = objfile->arch ();
14267 struct attribute *attr;
14268 struct attribute *attr_high;
14269
14270 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14271 if (attr_high)
14272 {
14273 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14274 if (attr != nullptr)
14275 {
14276 CORE_ADDR low = attr->value_as_address ();
14277 CORE_ADDR high = attr_high->value_as_address ();
14278
14279 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14280 high += low;
14281
14282 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14283 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14284 cu->get_builder ()->record_block_range (block, low, high - 1);
14285 }
14286 }
14287
14288 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14289 if (attr != nullptr)
14290 {
14291 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14292 We take advantage of the fact that DW_AT_ranges does not appear
14293 in DW_TAG_compile_unit of DWO files. */
14294 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14295
14296 /* The value of the DW_AT_ranges attribute is the offset of the
14297 address range list in the .debug_ranges section. */
14298 unsigned long offset = (DW_UNSND (attr)
14299 + (need_ranges_base ? cu->ranges_base : 0));
14300
14301 std::vector<blockrange> blockvec;
14302 dwarf2_ranges_process (offset, cu,
14303 [&] (CORE_ADDR start, CORE_ADDR end)
14304 {
14305 start += baseaddr;
14306 end += baseaddr;
14307 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14308 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14309 cu->get_builder ()->record_block_range (block, start, end - 1);
14310 blockvec.emplace_back (start, end);
14311 });
14312
14313 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14314 }
14315 }
14316
14317 /* Check whether the producer field indicates either of GCC < 4.6, or the
14318 Intel C/C++ compiler, and cache the result in CU. */
14319
14320 static void
14321 check_producer (struct dwarf2_cu *cu)
14322 {
14323 int major, minor;
14324
14325 if (cu->producer == NULL)
14326 {
14327 /* For unknown compilers expect their behavior is DWARF version
14328 compliant.
14329
14330 GCC started to support .debug_types sections by -gdwarf-4 since
14331 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14332 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14333 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14334 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14335 }
14336 else if (producer_is_gcc (cu->producer, &major, &minor))
14337 {
14338 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14339 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14340 }
14341 else if (producer_is_icc (cu->producer, &major, &minor))
14342 {
14343 cu->producer_is_icc = true;
14344 cu->producer_is_icc_lt_14 = major < 14;
14345 }
14346 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14347 cu->producer_is_codewarrior = true;
14348 else
14349 {
14350 /* For other non-GCC compilers, expect their behavior is DWARF version
14351 compliant. */
14352 }
14353
14354 cu->checked_producer = true;
14355 }
14356
14357 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14358 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14359 during 4.6.0 experimental. */
14360
14361 static bool
14362 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14363 {
14364 if (!cu->checked_producer)
14365 check_producer (cu);
14366
14367 return cu->producer_is_gxx_lt_4_6;
14368 }
14369
14370
14371 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14372 with incorrect is_stmt attributes. */
14373
14374 static bool
14375 producer_is_codewarrior (struct dwarf2_cu *cu)
14376 {
14377 if (!cu->checked_producer)
14378 check_producer (cu);
14379
14380 return cu->producer_is_codewarrior;
14381 }
14382
14383 /* Return the default accessibility type if it is not overridden by
14384 DW_AT_accessibility. */
14385
14386 static enum dwarf_access_attribute
14387 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14388 {
14389 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14390 {
14391 /* The default DWARF 2 accessibility for members is public, the default
14392 accessibility for inheritance is private. */
14393
14394 if (die->tag != DW_TAG_inheritance)
14395 return DW_ACCESS_public;
14396 else
14397 return DW_ACCESS_private;
14398 }
14399 else
14400 {
14401 /* DWARF 3+ defines the default accessibility a different way. The same
14402 rules apply now for DW_TAG_inheritance as for the members and it only
14403 depends on the container kind. */
14404
14405 if (die->parent->tag == DW_TAG_class_type)
14406 return DW_ACCESS_private;
14407 else
14408 return DW_ACCESS_public;
14409 }
14410 }
14411
14412 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14413 offset. If the attribute was not found return 0, otherwise return
14414 1. If it was found but could not properly be handled, set *OFFSET
14415 to 0. */
14416
14417 static int
14418 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14419 LONGEST *offset)
14420 {
14421 struct attribute *attr;
14422
14423 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14424 if (attr != NULL)
14425 {
14426 *offset = 0;
14427
14428 /* Note that we do not check for a section offset first here.
14429 This is because DW_AT_data_member_location is new in DWARF 4,
14430 so if we see it, we can assume that a constant form is really
14431 a constant and not a section offset. */
14432 if (attr->form_is_constant ())
14433 *offset = attr->constant_value (0);
14434 else if (attr->form_is_section_offset ())
14435 dwarf2_complex_location_expr_complaint ();
14436 else if (attr->form_is_block ())
14437 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14438 else
14439 dwarf2_complex_location_expr_complaint ();
14440
14441 return 1;
14442 }
14443
14444 return 0;
14445 }
14446
14447 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14448
14449 static void
14450 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14451 struct field *field)
14452 {
14453 struct attribute *attr;
14454
14455 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14456 if (attr != NULL)
14457 {
14458 if (attr->form_is_constant ())
14459 {
14460 LONGEST offset = attr->constant_value (0);
14461 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14462 }
14463 else if (attr->form_is_section_offset ())
14464 dwarf2_complex_location_expr_complaint ();
14465 else if (attr->form_is_block ())
14466 {
14467 bool handled;
14468 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14469 if (handled)
14470 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14471 else
14472 {
14473 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14474 struct objfile *objfile = per_objfile->objfile;
14475 struct dwarf2_locexpr_baton *dlbaton
14476 = XOBNEW (&objfile->objfile_obstack,
14477 struct dwarf2_locexpr_baton);
14478 dlbaton->data = DW_BLOCK (attr)->data;
14479 dlbaton->size = DW_BLOCK (attr)->size;
14480 /* When using this baton, we want to compute the address
14481 of the field, not the value. This is why
14482 is_reference is set to false here. */
14483 dlbaton->is_reference = false;
14484 dlbaton->per_objfile = per_objfile;
14485 dlbaton->per_cu = cu->per_cu;
14486
14487 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14488 }
14489 }
14490 else
14491 dwarf2_complex_location_expr_complaint ();
14492 }
14493 }
14494
14495 /* Add an aggregate field to the field list. */
14496
14497 static void
14498 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14499 struct dwarf2_cu *cu)
14500 {
14501 struct objfile *objfile = cu->per_objfile->objfile;
14502 struct gdbarch *gdbarch = objfile->arch ();
14503 struct nextfield *new_field;
14504 struct attribute *attr;
14505 struct field *fp;
14506 const char *fieldname = "";
14507
14508 if (die->tag == DW_TAG_inheritance)
14509 {
14510 fip->baseclasses.emplace_back ();
14511 new_field = &fip->baseclasses.back ();
14512 }
14513 else
14514 {
14515 fip->fields.emplace_back ();
14516 new_field = &fip->fields.back ();
14517 }
14518
14519 new_field->offset = die->sect_off;
14520
14521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14522 if (attr != nullptr)
14523 new_field->accessibility = DW_UNSND (attr);
14524 else
14525 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14526 if (new_field->accessibility != DW_ACCESS_public)
14527 fip->non_public_fields = 1;
14528
14529 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14530 if (attr != nullptr)
14531 new_field->virtuality = DW_UNSND (attr);
14532 else
14533 new_field->virtuality = DW_VIRTUALITY_none;
14534
14535 fp = &new_field->field;
14536
14537 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14538 {
14539 /* Data member other than a C++ static data member. */
14540
14541 /* Get type of field. */
14542 fp->set_type (die_type (die, cu));
14543
14544 SET_FIELD_BITPOS (*fp, 0);
14545
14546 /* Get bit size of field (zero if none). */
14547 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14548 if (attr != nullptr)
14549 {
14550 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14551 }
14552 else
14553 {
14554 FIELD_BITSIZE (*fp) = 0;
14555 }
14556
14557 /* Get bit offset of field. */
14558 handle_data_member_location (die, cu, fp);
14559 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14560 if (attr != nullptr)
14561 {
14562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14563 {
14564 /* For big endian bits, the DW_AT_bit_offset gives the
14565 additional bit offset from the MSB of the containing
14566 anonymous object to the MSB of the field. We don't
14567 have to do anything special since we don't need to
14568 know the size of the anonymous object. */
14569 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14570 }
14571 else
14572 {
14573 /* For little endian bits, compute the bit offset to the
14574 MSB of the anonymous object, subtract off the number of
14575 bits from the MSB of the field to the MSB of the
14576 object, and then subtract off the number of bits of
14577 the field itself. The result is the bit offset of
14578 the LSB of the field. */
14579 int anonymous_size;
14580 int bit_offset = DW_UNSND (attr);
14581
14582 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14583 if (attr != nullptr)
14584 {
14585 /* The size of the anonymous object containing
14586 the bit field is explicit, so use the
14587 indicated size (in bytes). */
14588 anonymous_size = DW_UNSND (attr);
14589 }
14590 else
14591 {
14592 /* The size of the anonymous object containing
14593 the bit field must be inferred from the type
14594 attribute of the data member containing the
14595 bit field. */
14596 anonymous_size = TYPE_LENGTH (fp->type ());
14597 }
14598 SET_FIELD_BITPOS (*fp,
14599 (FIELD_BITPOS (*fp)
14600 + anonymous_size * bits_per_byte
14601 - bit_offset - FIELD_BITSIZE (*fp)));
14602 }
14603 }
14604 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14605 if (attr != NULL)
14606 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14607 + attr->constant_value (0)));
14608
14609 /* Get name of field. */
14610 fieldname = dwarf2_name (die, cu);
14611 if (fieldname == NULL)
14612 fieldname = "";
14613
14614 /* The name is already allocated along with this objfile, so we don't
14615 need to duplicate it for the type. */
14616 fp->name = fieldname;
14617
14618 /* Change accessibility for artificial fields (e.g. virtual table
14619 pointer or virtual base class pointer) to private. */
14620 if (dwarf2_attr (die, DW_AT_artificial, cu))
14621 {
14622 FIELD_ARTIFICIAL (*fp) = 1;
14623 new_field->accessibility = DW_ACCESS_private;
14624 fip->non_public_fields = 1;
14625 }
14626 }
14627 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14628 {
14629 /* C++ static member. */
14630
14631 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14632 is a declaration, but all versions of G++ as of this writing
14633 (so through at least 3.2.1) incorrectly generate
14634 DW_TAG_variable tags. */
14635
14636 const char *physname;
14637
14638 /* Get name of field. */
14639 fieldname = dwarf2_name (die, cu);
14640 if (fieldname == NULL)
14641 return;
14642
14643 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14644 if (attr
14645 /* Only create a symbol if this is an external value.
14646 new_symbol checks this and puts the value in the global symbol
14647 table, which we want. If it is not external, new_symbol
14648 will try to put the value in cu->list_in_scope which is wrong. */
14649 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14650 {
14651 /* A static const member, not much different than an enum as far as
14652 we're concerned, except that we can support more types. */
14653 new_symbol (die, NULL, cu);
14654 }
14655
14656 /* Get physical name. */
14657 physname = dwarf2_physname (fieldname, die, cu);
14658
14659 /* The name is already allocated along with this objfile, so we don't
14660 need to duplicate it for the type. */
14661 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14662 fp->set_type (die_type (die, cu));
14663 FIELD_NAME (*fp) = fieldname;
14664 }
14665 else if (die->tag == DW_TAG_inheritance)
14666 {
14667 /* C++ base class field. */
14668 handle_data_member_location (die, cu, fp);
14669 FIELD_BITSIZE (*fp) = 0;
14670 fp->set_type (die_type (die, cu));
14671 FIELD_NAME (*fp) = fp->type ()->name ();
14672 }
14673 else
14674 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14675 }
14676
14677 /* Can the type given by DIE define another type? */
14678
14679 static bool
14680 type_can_define_types (const struct die_info *die)
14681 {
14682 switch (die->tag)
14683 {
14684 case DW_TAG_typedef:
14685 case DW_TAG_class_type:
14686 case DW_TAG_structure_type:
14687 case DW_TAG_union_type:
14688 case DW_TAG_enumeration_type:
14689 return true;
14690
14691 default:
14692 return false;
14693 }
14694 }
14695
14696 /* Add a type definition defined in the scope of the FIP's class. */
14697
14698 static void
14699 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14700 struct dwarf2_cu *cu)
14701 {
14702 struct decl_field fp;
14703 memset (&fp, 0, sizeof (fp));
14704
14705 gdb_assert (type_can_define_types (die));
14706
14707 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14708 fp.name = dwarf2_name (die, cu);
14709 fp.type = read_type_die (die, cu);
14710
14711 /* Save accessibility. */
14712 enum dwarf_access_attribute accessibility;
14713 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14714 if (attr != NULL)
14715 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14716 else
14717 accessibility = dwarf2_default_access_attribute (die, cu);
14718 switch (accessibility)
14719 {
14720 case DW_ACCESS_public:
14721 /* The assumed value if neither private nor protected. */
14722 break;
14723 case DW_ACCESS_private:
14724 fp.is_private = 1;
14725 break;
14726 case DW_ACCESS_protected:
14727 fp.is_protected = 1;
14728 break;
14729 default:
14730 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14731 }
14732
14733 if (die->tag == DW_TAG_typedef)
14734 fip->typedef_field_list.push_back (fp);
14735 else
14736 fip->nested_types_list.push_back (fp);
14737 }
14738
14739 /* A convenience typedef that's used when finding the discriminant
14740 field for a variant part. */
14741 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14742 offset_map_type;
14743
14744 /* Compute the discriminant range for a given variant. OBSTACK is
14745 where the results will be stored. VARIANT is the variant to
14746 process. IS_UNSIGNED indicates whether the discriminant is signed
14747 or unsigned. */
14748
14749 static const gdb::array_view<discriminant_range>
14750 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14751 bool is_unsigned)
14752 {
14753 std::vector<discriminant_range> ranges;
14754
14755 if (variant.default_branch)
14756 return {};
14757
14758 if (variant.discr_list_data == nullptr)
14759 {
14760 discriminant_range r
14761 = {variant.discriminant_value, variant.discriminant_value};
14762 ranges.push_back (r);
14763 }
14764 else
14765 {
14766 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14767 variant.discr_list_data->size);
14768 while (!data.empty ())
14769 {
14770 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14771 {
14772 complaint (_("invalid discriminant marker: %d"), data[0]);
14773 break;
14774 }
14775 bool is_range = data[0] == DW_DSC_range;
14776 data = data.slice (1);
14777
14778 ULONGEST low, high;
14779 unsigned int bytes_read;
14780
14781 if (data.empty ())
14782 {
14783 complaint (_("DW_AT_discr_list missing low value"));
14784 break;
14785 }
14786 if (is_unsigned)
14787 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14788 else
14789 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14790 &bytes_read);
14791 data = data.slice (bytes_read);
14792
14793 if (is_range)
14794 {
14795 if (data.empty ())
14796 {
14797 complaint (_("DW_AT_discr_list missing high value"));
14798 break;
14799 }
14800 if (is_unsigned)
14801 high = read_unsigned_leb128 (nullptr, data.data (),
14802 &bytes_read);
14803 else
14804 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14805 &bytes_read);
14806 data = data.slice (bytes_read);
14807 }
14808 else
14809 high = low;
14810
14811 ranges.push_back ({ low, high });
14812 }
14813 }
14814
14815 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14816 ranges.size ());
14817 std::copy (ranges.begin (), ranges.end (), result);
14818 return gdb::array_view<discriminant_range> (result, ranges.size ());
14819 }
14820
14821 static const gdb::array_view<variant_part> create_variant_parts
14822 (struct obstack *obstack,
14823 const offset_map_type &offset_map,
14824 struct field_info *fi,
14825 const std::vector<variant_part_builder> &variant_parts);
14826
14827 /* Fill in a "struct variant" for a given variant field. RESULT is
14828 the variant to fill in. OBSTACK is where any needed allocations
14829 will be done. OFFSET_MAP holds the mapping from section offsets to
14830 fields for the type. FI describes the fields of the type we're
14831 processing. FIELD is the variant field we're converting. */
14832
14833 static void
14834 create_one_variant (variant &result, struct obstack *obstack,
14835 const offset_map_type &offset_map,
14836 struct field_info *fi, const variant_field &field)
14837 {
14838 result.discriminants = convert_variant_range (obstack, field, false);
14839 result.first_field = field.first_field + fi->baseclasses.size ();
14840 result.last_field = field.last_field + fi->baseclasses.size ();
14841 result.parts = create_variant_parts (obstack, offset_map, fi,
14842 field.variant_parts);
14843 }
14844
14845 /* Fill in a "struct variant_part" for a given variant part. RESULT
14846 is the variant part to fill in. OBSTACK is where any needed
14847 allocations will be done. OFFSET_MAP holds the mapping from
14848 section offsets to fields for the type. FI describes the fields of
14849 the type we're processing. BUILDER is the variant part to be
14850 converted. */
14851
14852 static void
14853 create_one_variant_part (variant_part &result,
14854 struct obstack *obstack,
14855 const offset_map_type &offset_map,
14856 struct field_info *fi,
14857 const variant_part_builder &builder)
14858 {
14859 auto iter = offset_map.find (builder.discriminant_offset);
14860 if (iter == offset_map.end ())
14861 {
14862 result.discriminant_index = -1;
14863 /* Doesn't matter. */
14864 result.is_unsigned = false;
14865 }
14866 else
14867 {
14868 result.discriminant_index = iter->second;
14869 result.is_unsigned
14870 = TYPE_UNSIGNED (fi->fields[result.discriminant_index].field.type ());
14871 }
14872
14873 size_t n = builder.variants.size ();
14874 variant *output = new (obstack) variant[n];
14875 for (size_t i = 0; i < n; ++i)
14876 create_one_variant (output[i], obstack, offset_map, fi,
14877 builder.variants[i]);
14878
14879 result.variants = gdb::array_view<variant> (output, n);
14880 }
14881
14882 /* Create a vector of variant parts that can be attached to a type.
14883 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14884 holds the mapping from section offsets to fields for the type. FI
14885 describes the fields of the type we're processing. VARIANT_PARTS
14886 is the vector to convert. */
14887
14888 static const gdb::array_view<variant_part>
14889 create_variant_parts (struct obstack *obstack,
14890 const offset_map_type &offset_map,
14891 struct field_info *fi,
14892 const std::vector<variant_part_builder> &variant_parts)
14893 {
14894 if (variant_parts.empty ())
14895 return {};
14896
14897 size_t n = variant_parts.size ();
14898 variant_part *result = new (obstack) variant_part[n];
14899 for (size_t i = 0; i < n; ++i)
14900 create_one_variant_part (result[i], obstack, offset_map, fi,
14901 variant_parts[i]);
14902
14903 return gdb::array_view<variant_part> (result, n);
14904 }
14905
14906 /* Compute the variant part vector for FIP, attaching it to TYPE when
14907 done. */
14908
14909 static void
14910 add_variant_property (struct field_info *fip, struct type *type,
14911 struct dwarf2_cu *cu)
14912 {
14913 /* Map section offsets of fields to their field index. Note the
14914 field index here does not take the number of baseclasses into
14915 account. */
14916 offset_map_type offset_map;
14917 for (int i = 0; i < fip->fields.size (); ++i)
14918 offset_map[fip->fields[i].offset] = i;
14919
14920 struct objfile *objfile = cu->per_objfile->objfile;
14921 gdb::array_view<variant_part> parts
14922 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14923 fip->variant_parts);
14924
14925 struct dynamic_prop prop;
14926 prop.kind = PROP_VARIANT_PARTS;
14927 prop.data.variant_parts
14928 = ((gdb::array_view<variant_part> *)
14929 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14930
14931 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14932 }
14933
14934 /* Create the vector of fields, and attach it to the type. */
14935
14936 static void
14937 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14938 struct dwarf2_cu *cu)
14939 {
14940 int nfields = fip->nfields ();
14941
14942 /* Record the field count, allocate space for the array of fields,
14943 and create blank accessibility bitfields if necessary. */
14944 type->set_num_fields (nfields);
14945 type->set_fields
14946 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14947
14948 if (fip->non_public_fields && cu->language != language_ada)
14949 {
14950 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14951
14952 TYPE_FIELD_PRIVATE_BITS (type) =
14953 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14954 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14955
14956 TYPE_FIELD_PROTECTED_BITS (type) =
14957 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14958 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14959
14960 TYPE_FIELD_IGNORE_BITS (type) =
14961 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14962 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14963 }
14964
14965 /* If the type has baseclasses, allocate and clear a bit vector for
14966 TYPE_FIELD_VIRTUAL_BITS. */
14967 if (!fip->baseclasses.empty () && cu->language != language_ada)
14968 {
14969 int num_bytes = B_BYTES (fip->baseclasses.size ());
14970 unsigned char *pointer;
14971
14972 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14973 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14974 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14975 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14976 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14977 }
14978
14979 if (!fip->variant_parts.empty ())
14980 add_variant_property (fip, type, cu);
14981
14982 /* Copy the saved-up fields into the field vector. */
14983 for (int i = 0; i < nfields; ++i)
14984 {
14985 struct nextfield &field
14986 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14987 : fip->fields[i - fip->baseclasses.size ()]);
14988
14989 type->field (i) = field.field;
14990 switch (field.accessibility)
14991 {
14992 case DW_ACCESS_private:
14993 if (cu->language != language_ada)
14994 SET_TYPE_FIELD_PRIVATE (type, i);
14995 break;
14996
14997 case DW_ACCESS_protected:
14998 if (cu->language != language_ada)
14999 SET_TYPE_FIELD_PROTECTED (type, i);
15000 break;
15001
15002 case DW_ACCESS_public:
15003 break;
15004
15005 default:
15006 /* Unknown accessibility. Complain and treat it as public. */
15007 {
15008 complaint (_("unsupported accessibility %d"),
15009 field.accessibility);
15010 }
15011 break;
15012 }
15013 if (i < fip->baseclasses.size ())
15014 {
15015 switch (field.virtuality)
15016 {
15017 case DW_VIRTUALITY_virtual:
15018 case DW_VIRTUALITY_pure_virtual:
15019 if (cu->language == language_ada)
15020 error (_("unexpected virtuality in component of Ada type"));
15021 SET_TYPE_FIELD_VIRTUAL (type, i);
15022 break;
15023 }
15024 }
15025 }
15026 }
15027
15028 /* Return true if this member function is a constructor, false
15029 otherwise. */
15030
15031 static int
15032 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15033 {
15034 const char *fieldname;
15035 const char *type_name;
15036 int len;
15037
15038 if (die->parent == NULL)
15039 return 0;
15040
15041 if (die->parent->tag != DW_TAG_structure_type
15042 && die->parent->tag != DW_TAG_union_type
15043 && die->parent->tag != DW_TAG_class_type)
15044 return 0;
15045
15046 fieldname = dwarf2_name (die, cu);
15047 type_name = dwarf2_name (die->parent, cu);
15048 if (fieldname == NULL || type_name == NULL)
15049 return 0;
15050
15051 len = strlen (fieldname);
15052 return (strncmp (fieldname, type_name, len) == 0
15053 && (type_name[len] == '\0' || type_name[len] == '<'));
15054 }
15055
15056 /* Check if the given VALUE is a recognized enum
15057 dwarf_defaulted_attribute constant according to DWARF5 spec,
15058 Table 7.24. */
15059
15060 static bool
15061 is_valid_DW_AT_defaulted (ULONGEST value)
15062 {
15063 switch (value)
15064 {
15065 case DW_DEFAULTED_no:
15066 case DW_DEFAULTED_in_class:
15067 case DW_DEFAULTED_out_of_class:
15068 return true;
15069 }
15070
15071 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15072 return false;
15073 }
15074
15075 /* Add a member function to the proper fieldlist. */
15076
15077 static void
15078 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15079 struct type *type, struct dwarf2_cu *cu)
15080 {
15081 struct objfile *objfile = cu->per_objfile->objfile;
15082 struct attribute *attr;
15083 int i;
15084 struct fnfieldlist *flp = nullptr;
15085 struct fn_field *fnp;
15086 const char *fieldname;
15087 struct type *this_type;
15088 enum dwarf_access_attribute accessibility;
15089
15090 if (cu->language == language_ada)
15091 error (_("unexpected member function in Ada type"));
15092
15093 /* Get name of member function. */
15094 fieldname = dwarf2_name (die, cu);
15095 if (fieldname == NULL)
15096 return;
15097
15098 /* Look up member function name in fieldlist. */
15099 for (i = 0; i < fip->fnfieldlists.size (); i++)
15100 {
15101 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15102 {
15103 flp = &fip->fnfieldlists[i];
15104 break;
15105 }
15106 }
15107
15108 /* Create a new fnfieldlist if necessary. */
15109 if (flp == nullptr)
15110 {
15111 fip->fnfieldlists.emplace_back ();
15112 flp = &fip->fnfieldlists.back ();
15113 flp->name = fieldname;
15114 i = fip->fnfieldlists.size () - 1;
15115 }
15116
15117 /* Create a new member function field and add it to the vector of
15118 fnfieldlists. */
15119 flp->fnfields.emplace_back ();
15120 fnp = &flp->fnfields.back ();
15121
15122 /* Delay processing of the physname until later. */
15123 if (cu->language == language_cplus)
15124 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15125 die, cu);
15126 else
15127 {
15128 const char *physname = dwarf2_physname (fieldname, die, cu);
15129 fnp->physname = physname ? physname : "";
15130 }
15131
15132 fnp->type = alloc_type (objfile);
15133 this_type = read_type_die (die, cu);
15134 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15135 {
15136 int nparams = this_type->num_fields ();
15137
15138 /* TYPE is the domain of this method, and THIS_TYPE is the type
15139 of the method itself (TYPE_CODE_METHOD). */
15140 smash_to_method_type (fnp->type, type,
15141 TYPE_TARGET_TYPE (this_type),
15142 this_type->fields (),
15143 this_type->num_fields (),
15144 TYPE_VARARGS (this_type));
15145
15146 /* Handle static member functions.
15147 Dwarf2 has no clean way to discern C++ static and non-static
15148 member functions. G++ helps GDB by marking the first
15149 parameter for non-static member functions (which is the this
15150 pointer) as artificial. We obtain this information from
15151 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15152 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15153 fnp->voffset = VOFFSET_STATIC;
15154 }
15155 else
15156 complaint (_("member function type missing for '%s'"),
15157 dwarf2_full_name (fieldname, die, cu));
15158
15159 /* Get fcontext from DW_AT_containing_type if present. */
15160 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15161 fnp->fcontext = die_containing_type (die, cu);
15162
15163 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15164 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15165
15166 /* Get accessibility. */
15167 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15168 if (attr != nullptr)
15169 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15170 else
15171 accessibility = dwarf2_default_access_attribute (die, cu);
15172 switch (accessibility)
15173 {
15174 case DW_ACCESS_private:
15175 fnp->is_private = 1;
15176 break;
15177 case DW_ACCESS_protected:
15178 fnp->is_protected = 1;
15179 break;
15180 }
15181
15182 /* Check for artificial methods. */
15183 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15184 if (attr && DW_UNSND (attr) != 0)
15185 fnp->is_artificial = 1;
15186
15187 /* Check for defaulted methods. */
15188 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15189 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15190 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15191
15192 /* Check for deleted methods. */
15193 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15194 if (attr != nullptr && DW_UNSND (attr) != 0)
15195 fnp->is_deleted = 1;
15196
15197 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15198
15199 /* Get index in virtual function table if it is a virtual member
15200 function. For older versions of GCC, this is an offset in the
15201 appropriate virtual table, as specified by DW_AT_containing_type.
15202 For everyone else, it is an expression to be evaluated relative
15203 to the object address. */
15204
15205 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15206 if (attr != nullptr)
15207 {
15208 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15209 {
15210 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15211 {
15212 /* Old-style GCC. */
15213 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15214 }
15215 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15216 || (DW_BLOCK (attr)->size > 1
15217 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15218 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15219 {
15220 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15221 if ((fnp->voffset % cu->header.addr_size) != 0)
15222 dwarf2_complex_location_expr_complaint ();
15223 else
15224 fnp->voffset /= cu->header.addr_size;
15225 fnp->voffset += 2;
15226 }
15227 else
15228 dwarf2_complex_location_expr_complaint ();
15229
15230 if (!fnp->fcontext)
15231 {
15232 /* If there is no `this' field and no DW_AT_containing_type,
15233 we cannot actually find a base class context for the
15234 vtable! */
15235 if (this_type->num_fields () == 0
15236 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15237 {
15238 complaint (_("cannot determine context for virtual member "
15239 "function \"%s\" (offset %s)"),
15240 fieldname, sect_offset_str (die->sect_off));
15241 }
15242 else
15243 {
15244 fnp->fcontext
15245 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15246 }
15247 }
15248 }
15249 else if (attr->form_is_section_offset ())
15250 {
15251 dwarf2_complex_location_expr_complaint ();
15252 }
15253 else
15254 {
15255 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15256 fieldname);
15257 }
15258 }
15259 else
15260 {
15261 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15262 if (attr && DW_UNSND (attr))
15263 {
15264 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15265 complaint (_("Member function \"%s\" (offset %s) is virtual "
15266 "but the vtable offset is not specified"),
15267 fieldname, sect_offset_str (die->sect_off));
15268 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15269 TYPE_CPLUS_DYNAMIC (type) = 1;
15270 }
15271 }
15272 }
15273
15274 /* Create the vector of member function fields, and attach it to the type. */
15275
15276 static void
15277 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15278 struct dwarf2_cu *cu)
15279 {
15280 if (cu->language == language_ada)
15281 error (_("unexpected member functions in Ada type"));
15282
15283 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15284 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15285 TYPE_ALLOC (type,
15286 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15287
15288 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15289 {
15290 struct fnfieldlist &nf = fip->fnfieldlists[i];
15291 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15292
15293 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15294 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15295 fn_flp->fn_fields = (struct fn_field *)
15296 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15297
15298 for (int k = 0; k < nf.fnfields.size (); ++k)
15299 fn_flp->fn_fields[k] = nf.fnfields[k];
15300 }
15301
15302 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15303 }
15304
15305 /* Returns non-zero if NAME is the name of a vtable member in CU's
15306 language, zero otherwise. */
15307 static int
15308 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15309 {
15310 static const char vptr[] = "_vptr";
15311
15312 /* Look for the C++ form of the vtable. */
15313 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15314 return 1;
15315
15316 return 0;
15317 }
15318
15319 /* GCC outputs unnamed structures that are really pointers to member
15320 functions, with the ABI-specified layout. If TYPE describes
15321 such a structure, smash it into a member function type.
15322
15323 GCC shouldn't do this; it should just output pointer to member DIEs.
15324 This is GCC PR debug/28767. */
15325
15326 static void
15327 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15328 {
15329 struct type *pfn_type, *self_type, *new_type;
15330
15331 /* Check for a structure with no name and two children. */
15332 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15333 return;
15334
15335 /* Check for __pfn and __delta members. */
15336 if (TYPE_FIELD_NAME (type, 0) == NULL
15337 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15338 || TYPE_FIELD_NAME (type, 1) == NULL
15339 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15340 return;
15341
15342 /* Find the type of the method. */
15343 pfn_type = TYPE_FIELD_TYPE (type, 0);
15344 if (pfn_type == NULL
15345 || pfn_type->code () != TYPE_CODE_PTR
15346 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15347 return;
15348
15349 /* Look for the "this" argument. */
15350 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15351 if (pfn_type->num_fields () == 0
15352 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15353 || TYPE_FIELD_TYPE (pfn_type, 0)->code () != TYPE_CODE_PTR)
15354 return;
15355
15356 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15357 new_type = alloc_type (objfile);
15358 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15359 pfn_type->fields (), pfn_type->num_fields (),
15360 TYPE_VARARGS (pfn_type));
15361 smash_to_methodptr_type (type, new_type);
15362 }
15363
15364 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15365 appropriate error checking and issuing complaints if there is a
15366 problem. */
15367
15368 static ULONGEST
15369 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15370 {
15371 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15372
15373 if (attr == nullptr)
15374 return 0;
15375
15376 if (!attr->form_is_constant ())
15377 {
15378 complaint (_("DW_AT_alignment must have constant form"
15379 " - DIE at %s [in module %s]"),
15380 sect_offset_str (die->sect_off),
15381 objfile_name (cu->per_objfile->objfile));
15382 return 0;
15383 }
15384
15385 ULONGEST align;
15386 if (attr->form == DW_FORM_sdata)
15387 {
15388 LONGEST val = DW_SND (attr);
15389 if (val < 0)
15390 {
15391 complaint (_("DW_AT_alignment value must not be negative"
15392 " - DIE at %s [in module %s]"),
15393 sect_offset_str (die->sect_off),
15394 objfile_name (cu->per_objfile->objfile));
15395 return 0;
15396 }
15397 align = val;
15398 }
15399 else
15400 align = DW_UNSND (attr);
15401
15402 if (align == 0)
15403 {
15404 complaint (_("DW_AT_alignment value must not be zero"
15405 " - DIE at %s [in module %s]"),
15406 sect_offset_str (die->sect_off),
15407 objfile_name (cu->per_objfile->objfile));
15408 return 0;
15409 }
15410 if ((align & (align - 1)) != 0)
15411 {
15412 complaint (_("DW_AT_alignment value must be a power of 2"
15413 " - DIE at %s [in module %s]"),
15414 sect_offset_str (die->sect_off),
15415 objfile_name (cu->per_objfile->objfile));
15416 return 0;
15417 }
15418
15419 return align;
15420 }
15421
15422 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15423 the alignment for TYPE. */
15424
15425 static void
15426 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15427 struct type *type)
15428 {
15429 if (!set_type_align (type, get_alignment (cu, die)))
15430 complaint (_("DW_AT_alignment value too large"
15431 " - DIE at %s [in module %s]"),
15432 sect_offset_str (die->sect_off),
15433 objfile_name (cu->per_objfile->objfile));
15434 }
15435
15436 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15437 constant for a type, according to DWARF5 spec, Table 5.5. */
15438
15439 static bool
15440 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15441 {
15442 switch (value)
15443 {
15444 case DW_CC_normal:
15445 case DW_CC_pass_by_reference:
15446 case DW_CC_pass_by_value:
15447 return true;
15448
15449 default:
15450 complaint (_("unrecognized DW_AT_calling_convention value "
15451 "(%s) for a type"), pulongest (value));
15452 return false;
15453 }
15454 }
15455
15456 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15457 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15458 also according to GNU-specific values (see include/dwarf2.h). */
15459
15460 static bool
15461 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15462 {
15463 switch (value)
15464 {
15465 case DW_CC_normal:
15466 case DW_CC_program:
15467 case DW_CC_nocall:
15468 return true;
15469
15470 case DW_CC_GNU_renesas_sh:
15471 case DW_CC_GNU_borland_fastcall_i386:
15472 case DW_CC_GDB_IBM_OpenCL:
15473 return true;
15474
15475 default:
15476 complaint (_("unrecognized DW_AT_calling_convention value "
15477 "(%s) for a subroutine"), pulongest (value));
15478 return false;
15479 }
15480 }
15481
15482 /* Called when we find the DIE that starts a structure or union scope
15483 (definition) to create a type for the structure or union. Fill in
15484 the type's name and general properties; the members will not be
15485 processed until process_structure_scope. A symbol table entry for
15486 the type will also not be done until process_structure_scope (assuming
15487 the type has a name).
15488
15489 NOTE: we need to call these functions regardless of whether or not the
15490 DIE has a DW_AT_name attribute, since it might be an anonymous
15491 structure or union. This gets the type entered into our set of
15492 user defined types. */
15493
15494 static struct type *
15495 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15496 {
15497 struct objfile *objfile = cu->per_objfile->objfile;
15498 struct type *type;
15499 struct attribute *attr;
15500 const char *name;
15501
15502 /* If the definition of this type lives in .debug_types, read that type.
15503 Don't follow DW_AT_specification though, that will take us back up
15504 the chain and we want to go down. */
15505 attr = die->attr (DW_AT_signature);
15506 if (attr != nullptr)
15507 {
15508 type = get_DW_AT_signature_type (die, attr, cu);
15509
15510 /* The type's CU may not be the same as CU.
15511 Ensure TYPE is recorded with CU in die_type_hash. */
15512 return set_die_type (die, type, cu);
15513 }
15514
15515 type = alloc_type (objfile);
15516 INIT_CPLUS_SPECIFIC (type);
15517
15518 name = dwarf2_name (die, cu);
15519 if (name != NULL)
15520 {
15521 if (cu->language == language_cplus
15522 || cu->language == language_d
15523 || cu->language == language_rust)
15524 {
15525 const char *full_name = dwarf2_full_name (name, die, cu);
15526
15527 /* dwarf2_full_name might have already finished building the DIE's
15528 type. If so, there is no need to continue. */
15529 if (get_die_type (die, cu) != NULL)
15530 return get_die_type (die, cu);
15531
15532 type->set_name (full_name);
15533 }
15534 else
15535 {
15536 /* The name is already allocated along with this objfile, so
15537 we don't need to duplicate it for the type. */
15538 type->set_name (name);
15539 }
15540 }
15541
15542 if (die->tag == DW_TAG_structure_type)
15543 {
15544 type->set_code (TYPE_CODE_STRUCT);
15545 }
15546 else if (die->tag == DW_TAG_union_type)
15547 {
15548 type->set_code (TYPE_CODE_UNION);
15549 }
15550 else
15551 {
15552 type->set_code (TYPE_CODE_STRUCT);
15553 }
15554
15555 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15556 TYPE_DECLARED_CLASS (type) = 1;
15557
15558 /* Store the calling convention in the type if it's available in
15559 the die. Otherwise the calling convention remains set to
15560 the default value DW_CC_normal. */
15561 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15562 if (attr != nullptr
15563 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15564 {
15565 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15566 TYPE_CPLUS_CALLING_CONVENTION (type)
15567 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15568 }
15569
15570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15571 if (attr != nullptr)
15572 {
15573 if (attr->form_is_constant ())
15574 TYPE_LENGTH (type) = DW_UNSND (attr);
15575 else
15576 {
15577 struct dynamic_prop prop;
15578 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
15579 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15580 TYPE_LENGTH (type) = 0;
15581 }
15582 }
15583 else
15584 {
15585 TYPE_LENGTH (type) = 0;
15586 }
15587
15588 maybe_set_alignment (cu, die, type);
15589
15590 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15591 {
15592 /* ICC<14 does not output the required DW_AT_declaration on
15593 incomplete types, but gives them a size of zero. */
15594 TYPE_STUB (type) = 1;
15595 }
15596 else
15597 TYPE_STUB_SUPPORTED (type) = 1;
15598
15599 if (die_is_declaration (die, cu))
15600 TYPE_STUB (type) = 1;
15601 else if (attr == NULL && die->child == NULL
15602 && producer_is_realview (cu->producer))
15603 /* RealView does not output the required DW_AT_declaration
15604 on incomplete types. */
15605 TYPE_STUB (type) = 1;
15606
15607 /* We need to add the type field to the die immediately so we don't
15608 infinitely recurse when dealing with pointers to the structure
15609 type within the structure itself. */
15610 set_die_type (die, type, cu);
15611
15612 /* set_die_type should be already done. */
15613 set_descriptive_type (type, die, cu);
15614
15615 return type;
15616 }
15617
15618 static void handle_struct_member_die
15619 (struct die_info *child_die,
15620 struct type *type,
15621 struct field_info *fi,
15622 std::vector<struct symbol *> *template_args,
15623 struct dwarf2_cu *cu);
15624
15625 /* A helper for handle_struct_member_die that handles
15626 DW_TAG_variant_part. */
15627
15628 static void
15629 handle_variant_part (struct die_info *die, struct type *type,
15630 struct field_info *fi,
15631 std::vector<struct symbol *> *template_args,
15632 struct dwarf2_cu *cu)
15633 {
15634 variant_part_builder *new_part;
15635 if (fi->current_variant_part == nullptr)
15636 {
15637 fi->variant_parts.emplace_back ();
15638 new_part = &fi->variant_parts.back ();
15639 }
15640 else if (!fi->current_variant_part->processing_variant)
15641 {
15642 complaint (_("nested DW_TAG_variant_part seen "
15643 "- DIE at %s [in module %s]"),
15644 sect_offset_str (die->sect_off),
15645 objfile_name (cu->per_objfile->objfile));
15646 return;
15647 }
15648 else
15649 {
15650 variant_field &current = fi->current_variant_part->variants.back ();
15651 current.variant_parts.emplace_back ();
15652 new_part = &current.variant_parts.back ();
15653 }
15654
15655 /* When we recurse, we want callees to add to this new variant
15656 part. */
15657 scoped_restore save_current_variant_part
15658 = make_scoped_restore (&fi->current_variant_part, new_part);
15659
15660 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15661 if (discr == NULL)
15662 {
15663 /* It's a univariant form, an extension we support. */
15664 }
15665 else if (discr->form_is_ref ())
15666 {
15667 struct dwarf2_cu *target_cu = cu;
15668 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15669
15670 new_part->discriminant_offset = target_die->sect_off;
15671 }
15672 else
15673 {
15674 complaint (_("DW_AT_discr does not have DIE reference form"
15675 " - DIE at %s [in module %s]"),
15676 sect_offset_str (die->sect_off),
15677 objfile_name (cu->per_objfile->objfile));
15678 }
15679
15680 for (die_info *child_die = die->child;
15681 child_die != NULL;
15682 child_die = child_die->sibling)
15683 handle_struct_member_die (child_die, type, fi, template_args, cu);
15684 }
15685
15686 /* A helper for handle_struct_member_die that handles
15687 DW_TAG_variant. */
15688
15689 static void
15690 handle_variant (struct die_info *die, struct type *type,
15691 struct field_info *fi,
15692 std::vector<struct symbol *> *template_args,
15693 struct dwarf2_cu *cu)
15694 {
15695 if (fi->current_variant_part == nullptr)
15696 {
15697 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15698 "- DIE at %s [in module %s]"),
15699 sect_offset_str (die->sect_off),
15700 objfile_name (cu->per_objfile->objfile));
15701 return;
15702 }
15703 if (fi->current_variant_part->processing_variant)
15704 {
15705 complaint (_("nested DW_TAG_variant seen "
15706 "- DIE at %s [in module %s]"),
15707 sect_offset_str (die->sect_off),
15708 objfile_name (cu->per_objfile->objfile));
15709 return;
15710 }
15711
15712 scoped_restore save_processing_variant
15713 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15714 true);
15715
15716 fi->current_variant_part->variants.emplace_back ();
15717 variant_field &variant = fi->current_variant_part->variants.back ();
15718 variant.first_field = fi->fields.size ();
15719
15720 /* In a variant we want to get the discriminant and also add a
15721 field for our sole member child. */
15722 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15723 if (discr == nullptr)
15724 {
15725 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15726 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15727 variant.default_branch = true;
15728 else
15729 variant.discr_list_data = DW_BLOCK (discr);
15730 }
15731 else
15732 variant.discriminant_value = DW_UNSND (discr);
15733
15734 for (die_info *variant_child = die->child;
15735 variant_child != NULL;
15736 variant_child = variant_child->sibling)
15737 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15738
15739 variant.last_field = fi->fields.size ();
15740 }
15741
15742 /* A helper for process_structure_scope that handles a single member
15743 DIE. */
15744
15745 static void
15746 handle_struct_member_die (struct die_info *child_die, struct type *type,
15747 struct field_info *fi,
15748 std::vector<struct symbol *> *template_args,
15749 struct dwarf2_cu *cu)
15750 {
15751 if (child_die->tag == DW_TAG_member
15752 || child_die->tag == DW_TAG_variable)
15753 {
15754 /* NOTE: carlton/2002-11-05: A C++ static data member
15755 should be a DW_TAG_member that is a declaration, but
15756 all versions of G++ as of this writing (so through at
15757 least 3.2.1) incorrectly generate DW_TAG_variable
15758 tags for them instead. */
15759 dwarf2_add_field (fi, child_die, cu);
15760 }
15761 else if (child_die->tag == DW_TAG_subprogram)
15762 {
15763 /* Rust doesn't have member functions in the C++ sense.
15764 However, it does emit ordinary functions as children
15765 of a struct DIE. */
15766 if (cu->language == language_rust)
15767 read_func_scope (child_die, cu);
15768 else
15769 {
15770 /* C++ member function. */
15771 dwarf2_add_member_fn (fi, child_die, type, cu);
15772 }
15773 }
15774 else if (child_die->tag == DW_TAG_inheritance)
15775 {
15776 /* C++ base class field. */
15777 dwarf2_add_field (fi, child_die, cu);
15778 }
15779 else if (type_can_define_types (child_die))
15780 dwarf2_add_type_defn (fi, child_die, cu);
15781 else if (child_die->tag == DW_TAG_template_type_param
15782 || child_die->tag == DW_TAG_template_value_param)
15783 {
15784 struct symbol *arg = new_symbol (child_die, NULL, cu);
15785
15786 if (arg != NULL)
15787 template_args->push_back (arg);
15788 }
15789 else if (child_die->tag == DW_TAG_variant_part)
15790 handle_variant_part (child_die, type, fi, template_args, cu);
15791 else if (child_die->tag == DW_TAG_variant)
15792 handle_variant (child_die, type, fi, template_args, cu);
15793 }
15794
15795 /* Finish creating a structure or union type, including filling in
15796 its members and creating a symbol for it. */
15797
15798 static void
15799 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15800 {
15801 struct objfile *objfile = cu->per_objfile->objfile;
15802 struct die_info *child_die;
15803 struct type *type;
15804
15805 type = get_die_type (die, cu);
15806 if (type == NULL)
15807 type = read_structure_type (die, cu);
15808
15809 bool has_template_parameters = false;
15810 if (die->child != NULL && ! die_is_declaration (die, cu))
15811 {
15812 struct field_info fi;
15813 std::vector<struct symbol *> template_args;
15814
15815 child_die = die->child;
15816
15817 while (child_die && child_die->tag)
15818 {
15819 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15820 child_die = child_die->sibling;
15821 }
15822
15823 /* Attach template arguments to type. */
15824 if (!template_args.empty ())
15825 {
15826 has_template_parameters = true;
15827 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15828 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15829 TYPE_TEMPLATE_ARGUMENTS (type)
15830 = XOBNEWVEC (&objfile->objfile_obstack,
15831 struct symbol *,
15832 TYPE_N_TEMPLATE_ARGUMENTS (type));
15833 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15834 template_args.data (),
15835 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15836 * sizeof (struct symbol *)));
15837 }
15838
15839 /* Attach fields and member functions to the type. */
15840 if (fi.nfields () > 0)
15841 dwarf2_attach_fields_to_type (&fi, type, cu);
15842 if (!fi.fnfieldlists.empty ())
15843 {
15844 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15845
15846 /* Get the type which refers to the base class (possibly this
15847 class itself) which contains the vtable pointer for the current
15848 class from the DW_AT_containing_type attribute. This use of
15849 DW_AT_containing_type is a GNU extension. */
15850
15851 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15852 {
15853 struct type *t = die_containing_type (die, cu);
15854
15855 set_type_vptr_basetype (type, t);
15856 if (type == t)
15857 {
15858 int i;
15859
15860 /* Our own class provides vtbl ptr. */
15861 for (i = t->num_fields () - 1;
15862 i >= TYPE_N_BASECLASSES (t);
15863 --i)
15864 {
15865 const char *fieldname = TYPE_FIELD_NAME (t, i);
15866
15867 if (is_vtable_name (fieldname, cu))
15868 {
15869 set_type_vptr_fieldno (type, i);
15870 break;
15871 }
15872 }
15873
15874 /* Complain if virtual function table field not found. */
15875 if (i < TYPE_N_BASECLASSES (t))
15876 complaint (_("virtual function table pointer "
15877 "not found when defining class '%s'"),
15878 type->name () ? type->name () : "");
15879 }
15880 else
15881 {
15882 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15883 }
15884 }
15885 else if (cu->producer
15886 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15887 {
15888 /* The IBM XLC compiler does not provide direct indication
15889 of the containing type, but the vtable pointer is
15890 always named __vfp. */
15891
15892 int i;
15893
15894 for (i = type->num_fields () - 1;
15895 i >= TYPE_N_BASECLASSES (type);
15896 --i)
15897 {
15898 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15899 {
15900 set_type_vptr_fieldno (type, i);
15901 set_type_vptr_basetype (type, type);
15902 break;
15903 }
15904 }
15905 }
15906 }
15907
15908 /* Copy fi.typedef_field_list linked list elements content into the
15909 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15910 if (!fi.typedef_field_list.empty ())
15911 {
15912 int count = fi.typedef_field_list.size ();
15913
15914 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15915 TYPE_TYPEDEF_FIELD_ARRAY (type)
15916 = ((struct decl_field *)
15917 TYPE_ALLOC (type,
15918 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15919 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15920
15921 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15922 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15923 }
15924
15925 /* Copy fi.nested_types_list linked list elements content into the
15926 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15927 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15928 {
15929 int count = fi.nested_types_list.size ();
15930
15931 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15932 TYPE_NESTED_TYPES_ARRAY (type)
15933 = ((struct decl_field *)
15934 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15935 TYPE_NESTED_TYPES_COUNT (type) = count;
15936
15937 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15938 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15939 }
15940 }
15941
15942 quirk_gcc_member_function_pointer (type, objfile);
15943 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15944 cu->rust_unions.push_back (type);
15945
15946 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15947 snapshots) has been known to create a die giving a declaration
15948 for a class that has, as a child, a die giving a definition for a
15949 nested class. So we have to process our children even if the
15950 current die is a declaration. Normally, of course, a declaration
15951 won't have any children at all. */
15952
15953 child_die = die->child;
15954
15955 while (child_die != NULL && child_die->tag)
15956 {
15957 if (child_die->tag == DW_TAG_member
15958 || child_die->tag == DW_TAG_variable
15959 || child_die->tag == DW_TAG_inheritance
15960 || child_die->tag == DW_TAG_template_value_param
15961 || child_die->tag == DW_TAG_template_type_param)
15962 {
15963 /* Do nothing. */
15964 }
15965 else
15966 process_die (child_die, cu);
15967
15968 child_die = child_die->sibling;
15969 }
15970
15971 /* Do not consider external references. According to the DWARF standard,
15972 these DIEs are identified by the fact that they have no byte_size
15973 attribute, and a declaration attribute. */
15974 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15975 || !die_is_declaration (die, cu)
15976 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15977 {
15978 struct symbol *sym = new_symbol (die, type, cu);
15979
15980 if (has_template_parameters)
15981 {
15982 struct symtab *symtab;
15983 if (sym != nullptr)
15984 symtab = symbol_symtab (sym);
15985 else if (cu->line_header != nullptr)
15986 {
15987 /* Any related symtab will do. */
15988 symtab
15989 = cu->line_header->file_names ()[0].symtab;
15990 }
15991 else
15992 {
15993 symtab = nullptr;
15994 complaint (_("could not find suitable "
15995 "symtab for template parameter"
15996 " - DIE at %s [in module %s]"),
15997 sect_offset_str (die->sect_off),
15998 objfile_name (objfile));
15999 }
16000
16001 if (symtab != nullptr)
16002 {
16003 /* Make sure that the symtab is set on the new symbols.
16004 Even though they don't appear in this symtab directly,
16005 other parts of gdb assume that symbols do, and this is
16006 reasonably true. */
16007 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16008 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16009 }
16010 }
16011 }
16012 }
16013
16014 /* Assuming DIE is an enumeration type, and TYPE is its associated
16015 type, update TYPE using some information only available in DIE's
16016 children. In particular, the fields are computed. */
16017
16018 static void
16019 update_enumeration_type_from_children (struct die_info *die,
16020 struct type *type,
16021 struct dwarf2_cu *cu)
16022 {
16023 struct die_info *child_die;
16024 int unsigned_enum = 1;
16025 int flag_enum = 1;
16026
16027 auto_obstack obstack;
16028 std::vector<struct field> fields;
16029
16030 for (child_die = die->child;
16031 child_die != NULL && child_die->tag;
16032 child_die = child_die->sibling)
16033 {
16034 struct attribute *attr;
16035 LONGEST value;
16036 const gdb_byte *bytes;
16037 struct dwarf2_locexpr_baton *baton;
16038 const char *name;
16039
16040 if (child_die->tag != DW_TAG_enumerator)
16041 continue;
16042
16043 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16044 if (attr == NULL)
16045 continue;
16046
16047 name = dwarf2_name (child_die, cu);
16048 if (name == NULL)
16049 name = "<anonymous enumerator>";
16050
16051 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16052 &value, &bytes, &baton);
16053 if (value < 0)
16054 {
16055 unsigned_enum = 0;
16056 flag_enum = 0;
16057 }
16058 else
16059 {
16060 if (count_one_bits_ll (value) >= 2)
16061 flag_enum = 0;
16062 }
16063
16064 fields.emplace_back ();
16065 struct field &field = fields.back ();
16066 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16067 SET_FIELD_ENUMVAL (field, value);
16068 }
16069
16070 if (!fields.empty ())
16071 {
16072 type->set_num_fields (fields.size ());
16073 type->set_fields
16074 ((struct field *)
16075 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16076 memcpy (type->fields (), fields.data (),
16077 sizeof (struct field) * fields.size ());
16078 }
16079
16080 if (unsigned_enum)
16081 TYPE_UNSIGNED (type) = 1;
16082 if (flag_enum)
16083 TYPE_FLAG_ENUM (type) = 1;
16084 }
16085
16086 /* Given a DW_AT_enumeration_type die, set its type. We do not
16087 complete the type's fields yet, or create any symbols. */
16088
16089 static struct type *
16090 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16091 {
16092 struct objfile *objfile = cu->per_objfile->objfile;
16093 struct type *type;
16094 struct attribute *attr;
16095 const char *name;
16096
16097 /* If the definition of this type lives in .debug_types, read that type.
16098 Don't follow DW_AT_specification though, that will take us back up
16099 the chain and we want to go down. */
16100 attr = die->attr (DW_AT_signature);
16101 if (attr != nullptr)
16102 {
16103 type = get_DW_AT_signature_type (die, attr, cu);
16104
16105 /* The type's CU may not be the same as CU.
16106 Ensure TYPE is recorded with CU in die_type_hash. */
16107 return set_die_type (die, type, cu);
16108 }
16109
16110 type = alloc_type (objfile);
16111
16112 type->set_code (TYPE_CODE_ENUM);
16113 name = dwarf2_full_name (NULL, die, cu);
16114 if (name != NULL)
16115 type->set_name (name);
16116
16117 attr = dwarf2_attr (die, DW_AT_type, cu);
16118 if (attr != NULL)
16119 {
16120 struct type *underlying_type = die_type (die, cu);
16121
16122 TYPE_TARGET_TYPE (type) = underlying_type;
16123 }
16124
16125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16126 if (attr != nullptr)
16127 {
16128 TYPE_LENGTH (type) = DW_UNSND (attr);
16129 }
16130 else
16131 {
16132 TYPE_LENGTH (type) = 0;
16133 }
16134
16135 maybe_set_alignment (cu, die, type);
16136
16137 /* The enumeration DIE can be incomplete. In Ada, any type can be
16138 declared as private in the package spec, and then defined only
16139 inside the package body. Such types are known as Taft Amendment
16140 Types. When another package uses such a type, an incomplete DIE
16141 may be generated by the compiler. */
16142 if (die_is_declaration (die, cu))
16143 TYPE_STUB (type) = 1;
16144
16145 /* If this type has an underlying type that is not a stub, then we
16146 may use its attributes. We always use the "unsigned" attribute
16147 in this situation, because ordinarily we guess whether the type
16148 is unsigned -- but the guess can be wrong and the underlying type
16149 can tell us the reality. However, we defer to a local size
16150 attribute if one exists, because this lets the compiler override
16151 the underlying type if needed. */
16152 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16153 {
16154 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16155 underlying_type = check_typedef (underlying_type);
16156 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
16157 if (TYPE_LENGTH (type) == 0)
16158 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16159 if (TYPE_RAW_ALIGN (type) == 0
16160 && TYPE_RAW_ALIGN (underlying_type) != 0)
16161 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16162 }
16163
16164 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16165
16166 set_die_type (die, type, cu);
16167
16168 /* Finish the creation of this type by using the enum's children.
16169 Note that, as usual, this must come after set_die_type to avoid
16170 infinite recursion when trying to compute the names of the
16171 enumerators. */
16172 update_enumeration_type_from_children (die, type, cu);
16173
16174 return type;
16175 }
16176
16177 /* Given a pointer to a die which begins an enumeration, process all
16178 the dies that define the members of the enumeration, and create the
16179 symbol for the enumeration type.
16180
16181 NOTE: We reverse the order of the element list. */
16182
16183 static void
16184 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16185 {
16186 struct type *this_type;
16187
16188 this_type = get_die_type (die, cu);
16189 if (this_type == NULL)
16190 this_type = read_enumeration_type (die, cu);
16191
16192 if (die->child != NULL)
16193 {
16194 struct die_info *child_die;
16195 const char *name;
16196
16197 child_die = die->child;
16198 while (child_die && child_die->tag)
16199 {
16200 if (child_die->tag != DW_TAG_enumerator)
16201 {
16202 process_die (child_die, cu);
16203 }
16204 else
16205 {
16206 name = dwarf2_name (child_die, cu);
16207 if (name)
16208 new_symbol (child_die, this_type, cu);
16209 }
16210
16211 child_die = child_die->sibling;
16212 }
16213 }
16214
16215 /* If we are reading an enum from a .debug_types unit, and the enum
16216 is a declaration, and the enum is not the signatured type in the
16217 unit, then we do not want to add a symbol for it. Adding a
16218 symbol would in some cases obscure the true definition of the
16219 enum, giving users an incomplete type when the definition is
16220 actually available. Note that we do not want to do this for all
16221 enums which are just declarations, because C++0x allows forward
16222 enum declarations. */
16223 if (cu->per_cu->is_debug_types
16224 && die_is_declaration (die, cu))
16225 {
16226 struct signatured_type *sig_type;
16227
16228 sig_type = (struct signatured_type *) cu->per_cu;
16229 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16230 if (sig_type->type_offset_in_section != die->sect_off)
16231 return;
16232 }
16233
16234 new_symbol (die, this_type, cu);
16235 }
16236
16237 /* Extract all information from a DW_TAG_array_type DIE and put it in
16238 the DIE's type field. For now, this only handles one dimensional
16239 arrays. */
16240
16241 static struct type *
16242 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16243 {
16244 struct objfile *objfile = cu->per_objfile->objfile;
16245 struct die_info *child_die;
16246 struct type *type;
16247 struct type *element_type, *range_type, *index_type;
16248 struct attribute *attr;
16249 const char *name;
16250 struct dynamic_prop *byte_stride_prop = NULL;
16251 unsigned int bit_stride = 0;
16252
16253 element_type = die_type (die, cu);
16254
16255 /* The die_type call above may have already set the type for this DIE. */
16256 type = get_die_type (die, cu);
16257 if (type)
16258 return type;
16259
16260 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16261 if (attr != NULL)
16262 {
16263 int stride_ok;
16264 struct type *prop_type = cu->addr_sized_int_type (false);
16265
16266 byte_stride_prop
16267 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16268 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16269 prop_type);
16270 if (!stride_ok)
16271 {
16272 complaint (_("unable to read array DW_AT_byte_stride "
16273 " - DIE at %s [in module %s]"),
16274 sect_offset_str (die->sect_off),
16275 objfile_name (cu->per_objfile->objfile));
16276 /* Ignore this attribute. We will likely not be able to print
16277 arrays of this type correctly, but there is little we can do
16278 to help if we cannot read the attribute's value. */
16279 byte_stride_prop = NULL;
16280 }
16281 }
16282
16283 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16284 if (attr != NULL)
16285 bit_stride = DW_UNSND (attr);
16286
16287 /* Irix 6.2 native cc creates array types without children for
16288 arrays with unspecified length. */
16289 if (die->child == NULL)
16290 {
16291 index_type = objfile_type (objfile)->builtin_int;
16292 range_type = create_static_range_type (NULL, index_type, 0, -1);
16293 type = create_array_type_with_stride (NULL, element_type, range_type,
16294 byte_stride_prop, bit_stride);
16295 return set_die_type (die, type, cu);
16296 }
16297
16298 std::vector<struct type *> range_types;
16299 child_die = die->child;
16300 while (child_die && child_die->tag)
16301 {
16302 if (child_die->tag == DW_TAG_subrange_type)
16303 {
16304 struct type *child_type = read_type_die (child_die, cu);
16305
16306 if (child_type != NULL)
16307 {
16308 /* The range type was succesfully read. Save it for the
16309 array type creation. */
16310 range_types.push_back (child_type);
16311 }
16312 }
16313 child_die = child_die->sibling;
16314 }
16315
16316 /* Dwarf2 dimensions are output from left to right, create the
16317 necessary array types in backwards order. */
16318
16319 type = element_type;
16320
16321 if (read_array_order (die, cu) == DW_ORD_col_major)
16322 {
16323 int i = 0;
16324
16325 while (i < range_types.size ())
16326 type = create_array_type_with_stride (NULL, type, range_types[i++],
16327 byte_stride_prop, bit_stride);
16328 }
16329 else
16330 {
16331 size_t ndim = range_types.size ();
16332 while (ndim-- > 0)
16333 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16334 byte_stride_prop, bit_stride);
16335 }
16336
16337 /* Understand Dwarf2 support for vector types (like they occur on
16338 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16339 array type. This is not part of the Dwarf2/3 standard yet, but a
16340 custom vendor extension. The main difference between a regular
16341 array and the vector variant is that vectors are passed by value
16342 to functions. */
16343 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16344 if (attr != nullptr)
16345 make_vector_type (type);
16346
16347 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16348 implementation may choose to implement triple vectors using this
16349 attribute. */
16350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16351 if (attr != nullptr)
16352 {
16353 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16354 TYPE_LENGTH (type) = DW_UNSND (attr);
16355 else
16356 complaint (_("DW_AT_byte_size for array type smaller "
16357 "than the total size of elements"));
16358 }
16359
16360 name = dwarf2_name (die, cu);
16361 if (name)
16362 type->set_name (name);
16363
16364 maybe_set_alignment (cu, die, type);
16365
16366 /* Install the type in the die. */
16367 set_die_type (die, type, cu);
16368
16369 /* set_die_type should be already done. */
16370 set_descriptive_type (type, die, cu);
16371
16372 return type;
16373 }
16374
16375 static enum dwarf_array_dim_ordering
16376 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16377 {
16378 struct attribute *attr;
16379
16380 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16381
16382 if (attr != nullptr)
16383 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16384
16385 /* GNU F77 is a special case, as at 08/2004 array type info is the
16386 opposite order to the dwarf2 specification, but data is still
16387 laid out as per normal fortran.
16388
16389 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16390 version checking. */
16391
16392 if (cu->language == language_fortran
16393 && cu->producer && strstr (cu->producer, "GNU F77"))
16394 {
16395 return DW_ORD_row_major;
16396 }
16397
16398 switch (cu->language_defn->la_array_ordering)
16399 {
16400 case array_column_major:
16401 return DW_ORD_col_major;
16402 case array_row_major:
16403 default:
16404 return DW_ORD_row_major;
16405 };
16406 }
16407
16408 /* Extract all information from a DW_TAG_set_type DIE and put it in
16409 the DIE's type field. */
16410
16411 static struct type *
16412 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16413 {
16414 struct type *domain_type, *set_type;
16415 struct attribute *attr;
16416
16417 domain_type = die_type (die, cu);
16418
16419 /* The die_type call above may have already set the type for this DIE. */
16420 set_type = get_die_type (die, cu);
16421 if (set_type)
16422 return set_type;
16423
16424 set_type = create_set_type (NULL, domain_type);
16425
16426 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16427 if (attr != nullptr)
16428 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16429
16430 maybe_set_alignment (cu, die, set_type);
16431
16432 return set_die_type (die, set_type, cu);
16433 }
16434
16435 /* A helper for read_common_block that creates a locexpr baton.
16436 SYM is the symbol which we are marking as computed.
16437 COMMON_DIE is the DIE for the common block.
16438 COMMON_LOC is the location expression attribute for the common
16439 block itself.
16440 MEMBER_LOC is the location expression attribute for the particular
16441 member of the common block that we are processing.
16442 CU is the CU from which the above come. */
16443
16444 static void
16445 mark_common_block_symbol_computed (struct symbol *sym,
16446 struct die_info *common_die,
16447 struct attribute *common_loc,
16448 struct attribute *member_loc,
16449 struct dwarf2_cu *cu)
16450 {
16451 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16452 struct objfile *objfile = per_objfile->objfile;
16453 struct dwarf2_locexpr_baton *baton;
16454 gdb_byte *ptr;
16455 unsigned int cu_off;
16456 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16457 LONGEST offset = 0;
16458
16459 gdb_assert (common_loc && member_loc);
16460 gdb_assert (common_loc->form_is_block ());
16461 gdb_assert (member_loc->form_is_block ()
16462 || member_loc->form_is_constant ());
16463
16464 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16465 baton->per_objfile = per_objfile;
16466 baton->per_cu = cu->per_cu;
16467 gdb_assert (baton->per_cu);
16468
16469 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16470
16471 if (member_loc->form_is_constant ())
16472 {
16473 offset = member_loc->constant_value (0);
16474 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16475 }
16476 else
16477 baton->size += DW_BLOCK (member_loc)->size;
16478
16479 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16480 baton->data = ptr;
16481
16482 *ptr++ = DW_OP_call4;
16483 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16484 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16485 ptr += 4;
16486
16487 if (member_loc->form_is_constant ())
16488 {
16489 *ptr++ = DW_OP_addr;
16490 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16491 ptr += cu->header.addr_size;
16492 }
16493 else
16494 {
16495 /* We have to copy the data here, because DW_OP_call4 will only
16496 use a DW_AT_location attribute. */
16497 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16498 ptr += DW_BLOCK (member_loc)->size;
16499 }
16500
16501 *ptr++ = DW_OP_plus;
16502 gdb_assert (ptr - baton->data == baton->size);
16503
16504 SYMBOL_LOCATION_BATON (sym) = baton;
16505 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16506 }
16507
16508 /* Create appropriate locally-scoped variables for all the
16509 DW_TAG_common_block entries. Also create a struct common_block
16510 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16511 is used to separate the common blocks name namespace from regular
16512 variable names. */
16513
16514 static void
16515 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16516 {
16517 struct attribute *attr;
16518
16519 attr = dwarf2_attr (die, DW_AT_location, cu);
16520 if (attr != nullptr)
16521 {
16522 /* Support the .debug_loc offsets. */
16523 if (attr->form_is_block ())
16524 {
16525 /* Ok. */
16526 }
16527 else if (attr->form_is_section_offset ())
16528 {
16529 dwarf2_complex_location_expr_complaint ();
16530 attr = NULL;
16531 }
16532 else
16533 {
16534 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16535 "common block member");
16536 attr = NULL;
16537 }
16538 }
16539
16540 if (die->child != NULL)
16541 {
16542 struct objfile *objfile = cu->per_objfile->objfile;
16543 struct die_info *child_die;
16544 size_t n_entries = 0, size;
16545 struct common_block *common_block;
16546 struct symbol *sym;
16547
16548 for (child_die = die->child;
16549 child_die && child_die->tag;
16550 child_die = child_die->sibling)
16551 ++n_entries;
16552
16553 size = (sizeof (struct common_block)
16554 + (n_entries - 1) * sizeof (struct symbol *));
16555 common_block
16556 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16557 size);
16558 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16559 common_block->n_entries = 0;
16560
16561 for (child_die = die->child;
16562 child_die && child_die->tag;
16563 child_die = child_die->sibling)
16564 {
16565 /* Create the symbol in the DW_TAG_common_block block in the current
16566 symbol scope. */
16567 sym = new_symbol (child_die, NULL, cu);
16568 if (sym != NULL)
16569 {
16570 struct attribute *member_loc;
16571
16572 common_block->contents[common_block->n_entries++] = sym;
16573
16574 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16575 cu);
16576 if (member_loc)
16577 {
16578 /* GDB has handled this for a long time, but it is
16579 not specified by DWARF. It seems to have been
16580 emitted by gfortran at least as recently as:
16581 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16582 complaint (_("Variable in common block has "
16583 "DW_AT_data_member_location "
16584 "- DIE at %s [in module %s]"),
16585 sect_offset_str (child_die->sect_off),
16586 objfile_name (objfile));
16587
16588 if (member_loc->form_is_section_offset ())
16589 dwarf2_complex_location_expr_complaint ();
16590 else if (member_loc->form_is_constant ()
16591 || member_loc->form_is_block ())
16592 {
16593 if (attr != nullptr)
16594 mark_common_block_symbol_computed (sym, die, attr,
16595 member_loc, cu);
16596 }
16597 else
16598 dwarf2_complex_location_expr_complaint ();
16599 }
16600 }
16601 }
16602
16603 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16604 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16605 }
16606 }
16607
16608 /* Create a type for a C++ namespace. */
16609
16610 static struct type *
16611 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16612 {
16613 struct objfile *objfile = cu->per_objfile->objfile;
16614 const char *previous_prefix, *name;
16615 int is_anonymous;
16616 struct type *type;
16617
16618 /* For extensions, reuse the type of the original namespace. */
16619 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16620 {
16621 struct die_info *ext_die;
16622 struct dwarf2_cu *ext_cu = cu;
16623
16624 ext_die = dwarf2_extension (die, &ext_cu);
16625 type = read_type_die (ext_die, ext_cu);
16626
16627 /* EXT_CU may not be the same as CU.
16628 Ensure TYPE is recorded with CU in die_type_hash. */
16629 return set_die_type (die, type, cu);
16630 }
16631
16632 name = namespace_name (die, &is_anonymous, cu);
16633
16634 /* Now build the name of the current namespace. */
16635
16636 previous_prefix = determine_prefix (die, cu);
16637 if (previous_prefix[0] != '\0')
16638 name = typename_concat (&objfile->objfile_obstack,
16639 previous_prefix, name, 0, cu);
16640
16641 /* Create the type. */
16642 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16643
16644 return set_die_type (die, type, cu);
16645 }
16646
16647 /* Read a namespace scope. */
16648
16649 static void
16650 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16651 {
16652 struct objfile *objfile = cu->per_objfile->objfile;
16653 int is_anonymous;
16654
16655 /* Add a symbol associated to this if we haven't seen the namespace
16656 before. Also, add a using directive if it's an anonymous
16657 namespace. */
16658
16659 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16660 {
16661 struct type *type;
16662
16663 type = read_type_die (die, cu);
16664 new_symbol (die, type, cu);
16665
16666 namespace_name (die, &is_anonymous, cu);
16667 if (is_anonymous)
16668 {
16669 const char *previous_prefix = determine_prefix (die, cu);
16670
16671 std::vector<const char *> excludes;
16672 add_using_directive (using_directives (cu),
16673 previous_prefix, type->name (), NULL,
16674 NULL, excludes, 0, &objfile->objfile_obstack);
16675 }
16676 }
16677
16678 if (die->child != NULL)
16679 {
16680 struct die_info *child_die = die->child;
16681
16682 while (child_die && child_die->tag)
16683 {
16684 process_die (child_die, cu);
16685 child_die = child_die->sibling;
16686 }
16687 }
16688 }
16689
16690 /* Read a Fortran module as type. This DIE can be only a declaration used for
16691 imported module. Still we need that type as local Fortran "use ... only"
16692 declaration imports depend on the created type in determine_prefix. */
16693
16694 static struct type *
16695 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16696 {
16697 struct objfile *objfile = cu->per_objfile->objfile;
16698 const char *module_name;
16699 struct type *type;
16700
16701 module_name = dwarf2_name (die, cu);
16702 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16703
16704 return set_die_type (die, type, cu);
16705 }
16706
16707 /* Read a Fortran module. */
16708
16709 static void
16710 read_module (struct die_info *die, struct dwarf2_cu *cu)
16711 {
16712 struct die_info *child_die = die->child;
16713 struct type *type;
16714
16715 type = read_type_die (die, cu);
16716 new_symbol (die, type, cu);
16717
16718 while (child_die && child_die->tag)
16719 {
16720 process_die (child_die, cu);
16721 child_die = child_die->sibling;
16722 }
16723 }
16724
16725 /* Return the name of the namespace represented by DIE. Set
16726 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16727 namespace. */
16728
16729 static const char *
16730 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16731 {
16732 struct die_info *current_die;
16733 const char *name = NULL;
16734
16735 /* Loop through the extensions until we find a name. */
16736
16737 for (current_die = die;
16738 current_die != NULL;
16739 current_die = dwarf2_extension (die, &cu))
16740 {
16741 /* We don't use dwarf2_name here so that we can detect the absence
16742 of a name -> anonymous namespace. */
16743 name = dwarf2_string_attr (die, DW_AT_name, cu);
16744
16745 if (name != NULL)
16746 break;
16747 }
16748
16749 /* Is it an anonymous namespace? */
16750
16751 *is_anonymous = (name == NULL);
16752 if (*is_anonymous)
16753 name = CP_ANONYMOUS_NAMESPACE_STR;
16754
16755 return name;
16756 }
16757
16758 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16759 the user defined type vector. */
16760
16761 static struct type *
16762 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16763 {
16764 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
16765 struct comp_unit_head *cu_header = &cu->header;
16766 struct type *type;
16767 struct attribute *attr_byte_size;
16768 struct attribute *attr_address_class;
16769 int byte_size, addr_class;
16770 struct type *target_type;
16771
16772 target_type = die_type (die, cu);
16773
16774 /* The die_type call above may have already set the type for this DIE. */
16775 type = get_die_type (die, cu);
16776 if (type)
16777 return type;
16778
16779 type = lookup_pointer_type (target_type);
16780
16781 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16782 if (attr_byte_size)
16783 byte_size = DW_UNSND (attr_byte_size);
16784 else
16785 byte_size = cu_header->addr_size;
16786
16787 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16788 if (attr_address_class)
16789 addr_class = DW_UNSND (attr_address_class);
16790 else
16791 addr_class = DW_ADDR_none;
16792
16793 ULONGEST alignment = get_alignment (cu, die);
16794
16795 /* If the pointer size, alignment, or address class is different
16796 than the default, create a type variant marked as such and set
16797 the length accordingly. */
16798 if (TYPE_LENGTH (type) != byte_size
16799 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16800 && alignment != TYPE_RAW_ALIGN (type))
16801 || addr_class != DW_ADDR_none)
16802 {
16803 if (gdbarch_address_class_type_flags_p (gdbarch))
16804 {
16805 int type_flags;
16806
16807 type_flags = gdbarch_address_class_type_flags
16808 (gdbarch, byte_size, addr_class);
16809 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16810 == 0);
16811 type = make_type_with_address_space (type, type_flags);
16812 }
16813 else if (TYPE_LENGTH (type) != byte_size)
16814 {
16815 complaint (_("invalid pointer size %d"), byte_size);
16816 }
16817 else if (TYPE_RAW_ALIGN (type) != alignment)
16818 {
16819 complaint (_("Invalid DW_AT_alignment"
16820 " - DIE at %s [in module %s]"),
16821 sect_offset_str (die->sect_off),
16822 objfile_name (cu->per_objfile->objfile));
16823 }
16824 else
16825 {
16826 /* Should we also complain about unhandled address classes? */
16827 }
16828 }
16829
16830 TYPE_LENGTH (type) = byte_size;
16831 set_type_align (type, alignment);
16832 return set_die_type (die, type, cu);
16833 }
16834
16835 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16836 the user defined type vector. */
16837
16838 static struct type *
16839 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16840 {
16841 struct type *type;
16842 struct type *to_type;
16843 struct type *domain;
16844
16845 to_type = die_type (die, cu);
16846 domain = die_containing_type (die, cu);
16847
16848 /* The calls above may have already set the type for this DIE. */
16849 type = get_die_type (die, cu);
16850 if (type)
16851 return type;
16852
16853 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
16854 type = lookup_methodptr_type (to_type);
16855 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
16856 {
16857 struct type *new_type = alloc_type (cu->per_objfile->objfile);
16858
16859 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16860 to_type->fields (), to_type->num_fields (),
16861 TYPE_VARARGS (to_type));
16862 type = lookup_methodptr_type (new_type);
16863 }
16864 else
16865 type = lookup_memberptr_type (to_type, domain);
16866
16867 return set_die_type (die, type, cu);
16868 }
16869
16870 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16871 the user defined type vector. */
16872
16873 static struct type *
16874 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16875 enum type_code refcode)
16876 {
16877 struct comp_unit_head *cu_header = &cu->header;
16878 struct type *type, *target_type;
16879 struct attribute *attr;
16880
16881 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16882
16883 target_type = die_type (die, cu);
16884
16885 /* The die_type call above may have already set the type for this DIE. */
16886 type = get_die_type (die, cu);
16887 if (type)
16888 return type;
16889
16890 type = lookup_reference_type (target_type, refcode);
16891 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16892 if (attr != nullptr)
16893 {
16894 TYPE_LENGTH (type) = DW_UNSND (attr);
16895 }
16896 else
16897 {
16898 TYPE_LENGTH (type) = cu_header->addr_size;
16899 }
16900 maybe_set_alignment (cu, die, type);
16901 return set_die_type (die, type, cu);
16902 }
16903
16904 /* Add the given cv-qualifiers to the element type of the array. GCC
16905 outputs DWARF type qualifiers that apply to an array, not the
16906 element type. But GDB relies on the array element type to carry
16907 the cv-qualifiers. This mimics section 6.7.3 of the C99
16908 specification. */
16909
16910 static struct type *
16911 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16912 struct type *base_type, int cnst, int voltl)
16913 {
16914 struct type *el_type, *inner_array;
16915
16916 base_type = copy_type (base_type);
16917 inner_array = base_type;
16918
16919 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
16920 {
16921 TYPE_TARGET_TYPE (inner_array) =
16922 copy_type (TYPE_TARGET_TYPE (inner_array));
16923 inner_array = TYPE_TARGET_TYPE (inner_array);
16924 }
16925
16926 el_type = TYPE_TARGET_TYPE (inner_array);
16927 cnst |= TYPE_CONST (el_type);
16928 voltl |= TYPE_VOLATILE (el_type);
16929 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16930
16931 return set_die_type (die, base_type, cu);
16932 }
16933
16934 static struct type *
16935 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16936 {
16937 struct type *base_type, *cv_type;
16938
16939 base_type = die_type (die, cu);
16940
16941 /* The die_type call above may have already set the type for this DIE. */
16942 cv_type = get_die_type (die, cu);
16943 if (cv_type)
16944 return cv_type;
16945
16946 /* In case the const qualifier is applied to an array type, the element type
16947 is so qualified, not the array type (section 6.7.3 of C99). */
16948 if (base_type->code () == TYPE_CODE_ARRAY)
16949 return add_array_cv_type (die, cu, base_type, 1, 0);
16950
16951 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16952 return set_die_type (die, cv_type, cu);
16953 }
16954
16955 static struct type *
16956 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16957 {
16958 struct type *base_type, *cv_type;
16959
16960 base_type = die_type (die, cu);
16961
16962 /* The die_type call above may have already set the type for this DIE. */
16963 cv_type = get_die_type (die, cu);
16964 if (cv_type)
16965 return cv_type;
16966
16967 /* In case the volatile qualifier is applied to an array type, the
16968 element type is so qualified, not the array type (section 6.7.3
16969 of C99). */
16970 if (base_type->code () == TYPE_CODE_ARRAY)
16971 return add_array_cv_type (die, cu, base_type, 0, 1);
16972
16973 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16974 return set_die_type (die, cv_type, cu);
16975 }
16976
16977 /* Handle DW_TAG_restrict_type. */
16978
16979 static struct type *
16980 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16981 {
16982 struct type *base_type, *cv_type;
16983
16984 base_type = die_type (die, cu);
16985
16986 /* The die_type call above may have already set the type for this DIE. */
16987 cv_type = get_die_type (die, cu);
16988 if (cv_type)
16989 return cv_type;
16990
16991 cv_type = make_restrict_type (base_type);
16992 return set_die_type (die, cv_type, cu);
16993 }
16994
16995 /* Handle DW_TAG_atomic_type. */
16996
16997 static struct type *
16998 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16999 {
17000 struct type *base_type, *cv_type;
17001
17002 base_type = die_type (die, cu);
17003
17004 /* The die_type call above may have already set the type for this DIE. */
17005 cv_type = get_die_type (die, cu);
17006 if (cv_type)
17007 return cv_type;
17008
17009 cv_type = make_atomic_type (base_type);
17010 return set_die_type (die, cv_type, cu);
17011 }
17012
17013 /* Extract all information from a DW_TAG_string_type DIE and add to
17014 the user defined type vector. It isn't really a user defined type,
17015 but it behaves like one, with other DIE's using an AT_user_def_type
17016 attribute to reference it. */
17017
17018 static struct type *
17019 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17020 {
17021 struct objfile *objfile = cu->per_objfile->objfile;
17022 struct gdbarch *gdbarch = objfile->arch ();
17023 struct type *type, *range_type, *index_type, *char_type;
17024 struct attribute *attr;
17025 struct dynamic_prop prop;
17026 bool length_is_constant = true;
17027 LONGEST length;
17028
17029 /* There are a couple of places where bit sizes might be made use of
17030 when parsing a DW_TAG_string_type, however, no producer that we know
17031 of make use of these. Handling bit sizes that are a multiple of the
17032 byte size is easy enough, but what about other bit sizes? Lets deal
17033 with that problem when we have to. Warn about these attributes being
17034 unsupported, then parse the type and ignore them like we always
17035 have. */
17036 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17037 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17038 {
17039 static bool warning_printed = false;
17040 if (!warning_printed)
17041 {
17042 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17043 "currently supported on DW_TAG_string_type."));
17044 warning_printed = true;
17045 }
17046 }
17047
17048 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17049 if (attr != nullptr && !attr->form_is_constant ())
17050 {
17051 /* The string length describes the location at which the length of
17052 the string can be found. The size of the length field can be
17053 specified with one of the attributes below. */
17054 struct type *prop_type;
17055 struct attribute *len
17056 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17057 if (len == nullptr)
17058 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17059 if (len != nullptr && len->form_is_constant ())
17060 {
17061 /* Pass 0 as the default as we know this attribute is constant
17062 and the default value will not be returned. */
17063 LONGEST sz = len->constant_value (0);
17064 prop_type = cu->per_objfile->int_type (sz, true);
17065 }
17066 else
17067 {
17068 /* If the size is not specified then we assume it is the size of
17069 an address on this target. */
17070 prop_type = cu->addr_sized_int_type (true);
17071 }
17072
17073 /* Convert the attribute into a dynamic property. */
17074 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17075 length = 1;
17076 else
17077 length_is_constant = false;
17078 }
17079 else if (attr != nullptr)
17080 {
17081 /* This DW_AT_string_length just contains the length with no
17082 indirection. There's no need to create a dynamic property in this
17083 case. Pass 0 for the default value as we know it will not be
17084 returned in this case. */
17085 length = attr->constant_value (0);
17086 }
17087 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17088 {
17089 /* We don't currently support non-constant byte sizes for strings. */
17090 length = attr->constant_value (1);
17091 }
17092 else
17093 {
17094 /* Use 1 as a fallback length if we have nothing else. */
17095 length = 1;
17096 }
17097
17098 index_type = objfile_type (objfile)->builtin_int;
17099 if (length_is_constant)
17100 range_type = create_static_range_type (NULL, index_type, 1, length);
17101 else
17102 {
17103 struct dynamic_prop low_bound;
17104
17105 low_bound.kind = PROP_CONST;
17106 low_bound.data.const_val = 1;
17107 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17108 }
17109 char_type = language_string_char_type (cu->language_defn, gdbarch);
17110 type = create_string_type (NULL, char_type, range_type);
17111
17112 return set_die_type (die, type, cu);
17113 }
17114
17115 /* Assuming that DIE corresponds to a function, returns nonzero
17116 if the function is prototyped. */
17117
17118 static int
17119 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17120 {
17121 struct attribute *attr;
17122
17123 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17124 if (attr && (DW_UNSND (attr) != 0))
17125 return 1;
17126
17127 /* The DWARF standard implies that the DW_AT_prototyped attribute
17128 is only meaningful for C, but the concept also extends to other
17129 languages that allow unprototyped functions (Eg: Objective C).
17130 For all other languages, assume that functions are always
17131 prototyped. */
17132 if (cu->language != language_c
17133 && cu->language != language_objc
17134 && cu->language != language_opencl)
17135 return 1;
17136
17137 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17138 prototyped and unprototyped functions; default to prototyped,
17139 since that is more common in modern code (and RealView warns
17140 about unprototyped functions). */
17141 if (producer_is_realview (cu->producer))
17142 return 1;
17143
17144 return 0;
17145 }
17146
17147 /* Handle DIES due to C code like:
17148
17149 struct foo
17150 {
17151 int (*funcp)(int a, long l);
17152 int b;
17153 };
17154
17155 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17156
17157 static struct type *
17158 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17159 {
17160 struct objfile *objfile = cu->per_objfile->objfile;
17161 struct type *type; /* Type that this function returns. */
17162 struct type *ftype; /* Function that returns above type. */
17163 struct attribute *attr;
17164
17165 type = die_type (die, cu);
17166
17167 /* The die_type call above may have already set the type for this DIE. */
17168 ftype = get_die_type (die, cu);
17169 if (ftype)
17170 return ftype;
17171
17172 ftype = lookup_function_type (type);
17173
17174 if (prototyped_function_p (die, cu))
17175 TYPE_PROTOTYPED (ftype) = 1;
17176
17177 /* Store the calling convention in the type if it's available in
17178 the subroutine die. Otherwise set the calling convention to
17179 the default value DW_CC_normal. */
17180 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17181 if (attr != nullptr
17182 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17183 TYPE_CALLING_CONVENTION (ftype)
17184 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17185 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17186 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17187 else
17188 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17189
17190 /* Record whether the function returns normally to its caller or not
17191 if the DWARF producer set that information. */
17192 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17193 if (attr && (DW_UNSND (attr) != 0))
17194 TYPE_NO_RETURN (ftype) = 1;
17195
17196 /* We need to add the subroutine type to the die immediately so
17197 we don't infinitely recurse when dealing with parameters
17198 declared as the same subroutine type. */
17199 set_die_type (die, ftype, cu);
17200
17201 if (die->child != NULL)
17202 {
17203 struct type *void_type = objfile_type (objfile)->builtin_void;
17204 struct die_info *child_die;
17205 int nparams, iparams;
17206
17207 /* Count the number of parameters.
17208 FIXME: GDB currently ignores vararg functions, but knows about
17209 vararg member functions. */
17210 nparams = 0;
17211 child_die = die->child;
17212 while (child_die && child_die->tag)
17213 {
17214 if (child_die->tag == DW_TAG_formal_parameter)
17215 nparams++;
17216 else if (child_die->tag == DW_TAG_unspecified_parameters)
17217 TYPE_VARARGS (ftype) = 1;
17218 child_die = child_die->sibling;
17219 }
17220
17221 /* Allocate storage for parameters and fill them in. */
17222 ftype->set_num_fields (nparams);
17223 ftype->set_fields
17224 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17225
17226 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17227 even if we error out during the parameters reading below. */
17228 for (iparams = 0; iparams < nparams; iparams++)
17229 ftype->field (iparams).set_type (void_type);
17230
17231 iparams = 0;
17232 child_die = die->child;
17233 while (child_die && child_die->tag)
17234 {
17235 if (child_die->tag == DW_TAG_formal_parameter)
17236 {
17237 struct type *arg_type;
17238
17239 /* DWARF version 2 has no clean way to discern C++
17240 static and non-static member functions. G++ helps
17241 GDB by marking the first parameter for non-static
17242 member functions (which is the this pointer) as
17243 artificial. We pass this information to
17244 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17245
17246 DWARF version 3 added DW_AT_object_pointer, which GCC
17247 4.5 does not yet generate. */
17248 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17249 if (attr != nullptr)
17250 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17251 else
17252 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17253 arg_type = die_type (child_die, cu);
17254
17255 /* RealView does not mark THIS as const, which the testsuite
17256 expects. GCC marks THIS as const in method definitions,
17257 but not in the class specifications (GCC PR 43053). */
17258 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17259 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17260 {
17261 int is_this = 0;
17262 struct dwarf2_cu *arg_cu = cu;
17263 const char *name = dwarf2_name (child_die, cu);
17264
17265 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17266 if (attr != nullptr)
17267 {
17268 /* If the compiler emits this, use it. */
17269 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17270 is_this = 1;
17271 }
17272 else if (name && strcmp (name, "this") == 0)
17273 /* Function definitions will have the argument names. */
17274 is_this = 1;
17275 else if (name == NULL && iparams == 0)
17276 /* Declarations may not have the names, so like
17277 elsewhere in GDB, assume an artificial first
17278 argument is "this". */
17279 is_this = 1;
17280
17281 if (is_this)
17282 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17283 arg_type, 0);
17284 }
17285
17286 ftype->field (iparams).set_type (arg_type);
17287 iparams++;
17288 }
17289 child_die = child_die->sibling;
17290 }
17291 }
17292
17293 return ftype;
17294 }
17295
17296 static struct type *
17297 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17298 {
17299 struct objfile *objfile = cu->per_objfile->objfile;
17300 const char *name = NULL;
17301 struct type *this_type, *target_type;
17302
17303 name = dwarf2_full_name (NULL, die, cu);
17304 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17305 TYPE_TARGET_STUB (this_type) = 1;
17306 set_die_type (die, this_type, cu);
17307 target_type = die_type (die, cu);
17308 if (target_type != this_type)
17309 TYPE_TARGET_TYPE (this_type) = target_type;
17310 else
17311 {
17312 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17313 spec and cause infinite loops in GDB. */
17314 complaint (_("Self-referential DW_TAG_typedef "
17315 "- DIE at %s [in module %s]"),
17316 sect_offset_str (die->sect_off), objfile_name (objfile));
17317 TYPE_TARGET_TYPE (this_type) = NULL;
17318 }
17319 if (name == NULL)
17320 {
17321 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17322 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17323 Handle these by just returning the target type, rather than
17324 constructing an anonymous typedef type and trying to handle this
17325 elsewhere. */
17326 set_die_type (die, target_type, cu);
17327 return target_type;
17328 }
17329 return this_type;
17330 }
17331
17332 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17333 (which may be different from NAME) to the architecture back-end to allow
17334 it to guess the correct format if necessary. */
17335
17336 static struct type *
17337 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17338 const char *name_hint, enum bfd_endian byte_order)
17339 {
17340 struct gdbarch *gdbarch = objfile->arch ();
17341 const struct floatformat **format;
17342 struct type *type;
17343
17344 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17345 if (format)
17346 type = init_float_type (objfile, bits, name, format, byte_order);
17347 else
17348 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17349
17350 return type;
17351 }
17352
17353 /* Allocate an integer type of size BITS and name NAME. */
17354
17355 static struct type *
17356 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17357 int bits, int unsigned_p, const char *name)
17358 {
17359 struct type *type;
17360
17361 /* Versions of Intel's C Compiler generate an integer type called "void"
17362 instead of using DW_TAG_unspecified_type. This has been seen on
17363 at least versions 14, 17, and 18. */
17364 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17365 && strcmp (name, "void") == 0)
17366 type = objfile_type (objfile)->builtin_void;
17367 else
17368 type = init_integer_type (objfile, bits, unsigned_p, name);
17369
17370 return type;
17371 }
17372
17373 /* Initialise and return a floating point type of size BITS suitable for
17374 use as a component of a complex number. The NAME_HINT is passed through
17375 when initialising the floating point type and is the name of the complex
17376 type.
17377
17378 As DWARF doesn't currently provide an explicit name for the components
17379 of a complex number, but it can be helpful to have these components
17380 named, we try to select a suitable name based on the size of the
17381 component. */
17382 static struct type *
17383 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17384 struct objfile *objfile,
17385 int bits, const char *name_hint,
17386 enum bfd_endian byte_order)
17387 {
17388 gdbarch *gdbarch = objfile->arch ();
17389 struct type *tt = nullptr;
17390
17391 /* Try to find a suitable floating point builtin type of size BITS.
17392 We're going to use the name of this type as the name for the complex
17393 target type that we are about to create. */
17394 switch (cu->language)
17395 {
17396 case language_fortran:
17397 switch (bits)
17398 {
17399 case 32:
17400 tt = builtin_f_type (gdbarch)->builtin_real;
17401 break;
17402 case 64:
17403 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17404 break;
17405 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17406 case 128:
17407 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17408 break;
17409 }
17410 break;
17411 default:
17412 switch (bits)
17413 {
17414 case 32:
17415 tt = builtin_type (gdbarch)->builtin_float;
17416 break;
17417 case 64:
17418 tt = builtin_type (gdbarch)->builtin_double;
17419 break;
17420 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17421 case 128:
17422 tt = builtin_type (gdbarch)->builtin_long_double;
17423 break;
17424 }
17425 break;
17426 }
17427
17428 /* If the type we found doesn't match the size we were looking for, then
17429 pretend we didn't find a type at all, the complex target type we
17430 create will then be nameless. */
17431 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17432 tt = nullptr;
17433
17434 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17435 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17436 }
17437
17438 /* Find a representation of a given base type and install
17439 it in the TYPE field of the die. */
17440
17441 static struct type *
17442 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17443 {
17444 struct objfile *objfile = cu->per_objfile->objfile;
17445 struct type *type;
17446 struct attribute *attr;
17447 int encoding = 0, bits = 0;
17448 const char *name;
17449 gdbarch *arch;
17450
17451 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17452 if (attr != nullptr)
17453 encoding = DW_UNSND (attr);
17454 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17455 if (attr != nullptr)
17456 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17457 name = dwarf2_name (die, cu);
17458 if (!name)
17459 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17460
17461 arch = objfile->arch ();
17462 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17463
17464 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17465 if (attr)
17466 {
17467 int endianity = DW_UNSND (attr);
17468
17469 switch (endianity)
17470 {
17471 case DW_END_big:
17472 byte_order = BFD_ENDIAN_BIG;
17473 break;
17474 case DW_END_little:
17475 byte_order = BFD_ENDIAN_LITTLE;
17476 break;
17477 default:
17478 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17479 break;
17480 }
17481 }
17482
17483 switch (encoding)
17484 {
17485 case DW_ATE_address:
17486 /* Turn DW_ATE_address into a void * pointer. */
17487 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17488 type = init_pointer_type (objfile, bits, name, type);
17489 break;
17490 case DW_ATE_boolean:
17491 type = init_boolean_type (objfile, bits, 1, name);
17492 break;
17493 case DW_ATE_complex_float:
17494 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17495 byte_order);
17496 if (type->code () == TYPE_CODE_ERROR)
17497 {
17498 if (name == nullptr)
17499 {
17500 struct obstack *obstack
17501 = &cu->per_objfile->objfile->objfile_obstack;
17502 name = obconcat (obstack, "_Complex ", type->name (),
17503 nullptr);
17504 }
17505 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17506 }
17507 else
17508 type = init_complex_type (name, type);
17509 break;
17510 case DW_ATE_decimal_float:
17511 type = init_decfloat_type (objfile, bits, name);
17512 break;
17513 case DW_ATE_float:
17514 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17515 break;
17516 case DW_ATE_signed:
17517 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17518 break;
17519 case DW_ATE_unsigned:
17520 if (cu->language == language_fortran
17521 && name
17522 && startswith (name, "character("))
17523 type = init_character_type (objfile, bits, 1, name);
17524 else
17525 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17526 break;
17527 case DW_ATE_signed_char:
17528 if (cu->language == language_ada || cu->language == language_m2
17529 || cu->language == language_pascal
17530 || cu->language == language_fortran)
17531 type = init_character_type (objfile, bits, 0, name);
17532 else
17533 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17534 break;
17535 case DW_ATE_unsigned_char:
17536 if (cu->language == language_ada || cu->language == language_m2
17537 || cu->language == language_pascal
17538 || cu->language == language_fortran
17539 || cu->language == language_rust)
17540 type = init_character_type (objfile, bits, 1, name);
17541 else
17542 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17543 break;
17544 case DW_ATE_UTF:
17545 {
17546 if (bits == 16)
17547 type = builtin_type (arch)->builtin_char16;
17548 else if (bits == 32)
17549 type = builtin_type (arch)->builtin_char32;
17550 else
17551 {
17552 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17553 bits);
17554 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17555 }
17556 return set_die_type (die, type, cu);
17557 }
17558 break;
17559
17560 default:
17561 complaint (_("unsupported DW_AT_encoding: '%s'"),
17562 dwarf_type_encoding_name (encoding));
17563 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17564 break;
17565 }
17566
17567 if (name && strcmp (name, "char") == 0)
17568 TYPE_NOSIGN (type) = 1;
17569
17570 maybe_set_alignment (cu, die, type);
17571
17572 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17573
17574 return set_die_type (die, type, cu);
17575 }
17576
17577 /* Parse dwarf attribute if it's a block, reference or constant and put the
17578 resulting value of the attribute into struct bound_prop.
17579 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17580
17581 static int
17582 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17583 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17584 struct type *default_type)
17585 {
17586 struct dwarf2_property_baton *baton;
17587 dwarf2_per_objfile *per_objfile = cu->per_objfile;
17588 struct objfile *objfile = per_objfile->objfile;
17589 struct obstack *obstack = &objfile->objfile_obstack;
17590
17591 gdb_assert (default_type != NULL);
17592
17593 if (attr == NULL || prop == NULL)
17594 return 0;
17595
17596 if (attr->form_is_block ())
17597 {
17598 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17599 baton->property_type = default_type;
17600 baton->locexpr.per_cu = cu->per_cu;
17601 baton->locexpr.per_objfile = per_objfile;
17602 baton->locexpr.size = DW_BLOCK (attr)->size;
17603 baton->locexpr.data = DW_BLOCK (attr)->data;
17604 switch (attr->name)
17605 {
17606 case DW_AT_string_length:
17607 baton->locexpr.is_reference = true;
17608 break;
17609 default:
17610 baton->locexpr.is_reference = false;
17611 break;
17612 }
17613 prop->data.baton = baton;
17614 prop->kind = PROP_LOCEXPR;
17615 gdb_assert (prop->data.baton != NULL);
17616 }
17617 else if (attr->form_is_ref ())
17618 {
17619 struct dwarf2_cu *target_cu = cu;
17620 struct die_info *target_die;
17621 struct attribute *target_attr;
17622
17623 target_die = follow_die_ref (die, attr, &target_cu);
17624 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17625 if (target_attr == NULL)
17626 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17627 target_cu);
17628 if (target_attr == NULL)
17629 return 0;
17630
17631 switch (target_attr->name)
17632 {
17633 case DW_AT_location:
17634 if (target_attr->form_is_section_offset ())
17635 {
17636 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17637 baton->property_type = die_type (target_die, target_cu);
17638 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17639 prop->data.baton = baton;
17640 prop->kind = PROP_LOCLIST;
17641 gdb_assert (prop->data.baton != NULL);
17642 }
17643 else if (target_attr->form_is_block ())
17644 {
17645 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17646 baton->property_type = die_type (target_die, target_cu);
17647 baton->locexpr.per_cu = cu->per_cu;
17648 baton->locexpr.per_objfile = per_objfile;
17649 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17650 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17651 baton->locexpr.is_reference = true;
17652 prop->data.baton = baton;
17653 prop->kind = PROP_LOCEXPR;
17654 gdb_assert (prop->data.baton != NULL);
17655 }
17656 else
17657 {
17658 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17659 "dynamic property");
17660 return 0;
17661 }
17662 break;
17663 case DW_AT_data_member_location:
17664 {
17665 LONGEST offset;
17666
17667 if (!handle_data_member_location (target_die, target_cu,
17668 &offset))
17669 return 0;
17670
17671 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17672 baton->property_type = read_type_die (target_die->parent,
17673 target_cu);
17674 baton->offset_info.offset = offset;
17675 baton->offset_info.type = die_type (target_die, target_cu);
17676 prop->data.baton = baton;
17677 prop->kind = PROP_ADDR_OFFSET;
17678 break;
17679 }
17680 }
17681 }
17682 else if (attr->form_is_constant ())
17683 {
17684 prop->data.const_val = attr->constant_value (0);
17685 prop->kind = PROP_CONST;
17686 }
17687 else
17688 {
17689 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17690 dwarf2_name (die, cu));
17691 return 0;
17692 }
17693
17694 return 1;
17695 }
17696
17697 /* See read.h. */
17698
17699 struct type *
17700 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
17701 {
17702 struct type *int_type;
17703
17704 /* Helper macro to examine the various builtin types. */
17705 #define TRY_TYPE(F) \
17706 int_type = (unsigned_p \
17707 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17708 : objfile_type (objfile)->builtin_ ## F); \
17709 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17710 return int_type
17711
17712 TRY_TYPE (char);
17713 TRY_TYPE (short);
17714 TRY_TYPE (int);
17715 TRY_TYPE (long);
17716 TRY_TYPE (long_long);
17717
17718 #undef TRY_TYPE
17719
17720 gdb_assert_not_reached ("unable to find suitable integer type");
17721 }
17722
17723 /* See read.h. */
17724
17725 struct type *
17726 dwarf2_cu::addr_sized_int_type (bool unsigned_p) const
17727 {
17728 int addr_size = this->per_cu->addr_size ();
17729 return this->per_objfile->int_type (addr_size, unsigned_p);
17730 }
17731
17732 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17733 present (which is valid) then compute the default type based on the
17734 compilation units address size. */
17735
17736 static struct type *
17737 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17738 {
17739 struct type *index_type = die_type (die, cu);
17740
17741 /* Dwarf-2 specifications explicitly allows to create subrange types
17742 without specifying a base type.
17743 In that case, the base type must be set to the type of
17744 the lower bound, upper bound or count, in that order, if any of these
17745 three attributes references an object that has a type.
17746 If no base type is found, the Dwarf-2 specifications say that
17747 a signed integer type of size equal to the size of an address should
17748 be used.
17749 For the following C code: `extern char gdb_int [];'
17750 GCC produces an empty range DIE.
17751 FIXME: muller/2010-05-28: Possible references to object for low bound,
17752 high bound or count are not yet handled by this code. */
17753 if (index_type->code () == TYPE_CODE_VOID)
17754 index_type = cu->addr_sized_int_type (false);
17755
17756 return index_type;
17757 }
17758
17759 /* Read the given DW_AT_subrange DIE. */
17760
17761 static struct type *
17762 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17763 {
17764 struct type *base_type, *orig_base_type;
17765 struct type *range_type;
17766 struct attribute *attr;
17767 struct dynamic_prop low, high;
17768 int low_default_is_valid;
17769 int high_bound_is_count = 0;
17770 const char *name;
17771 ULONGEST negative_mask;
17772
17773 orig_base_type = read_subrange_index_type (die, cu);
17774
17775 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17776 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17777 creating the range type, but we use the result of check_typedef
17778 when examining properties of the type. */
17779 base_type = check_typedef (orig_base_type);
17780
17781 /* The die_type call above may have already set the type for this DIE. */
17782 range_type = get_die_type (die, cu);
17783 if (range_type)
17784 return range_type;
17785
17786 low.kind = PROP_CONST;
17787 high.kind = PROP_CONST;
17788 high.data.const_val = 0;
17789
17790 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17791 omitting DW_AT_lower_bound. */
17792 switch (cu->language)
17793 {
17794 case language_c:
17795 case language_cplus:
17796 low.data.const_val = 0;
17797 low_default_is_valid = 1;
17798 break;
17799 case language_fortran:
17800 low.data.const_val = 1;
17801 low_default_is_valid = 1;
17802 break;
17803 case language_d:
17804 case language_objc:
17805 case language_rust:
17806 low.data.const_val = 0;
17807 low_default_is_valid = (cu->header.version >= 4);
17808 break;
17809 case language_ada:
17810 case language_m2:
17811 case language_pascal:
17812 low.data.const_val = 1;
17813 low_default_is_valid = (cu->header.version >= 4);
17814 break;
17815 default:
17816 low.data.const_val = 0;
17817 low_default_is_valid = 0;
17818 break;
17819 }
17820
17821 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17822 if (attr != nullptr)
17823 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17824 else if (!low_default_is_valid)
17825 complaint (_("Missing DW_AT_lower_bound "
17826 "- DIE at %s [in module %s]"),
17827 sect_offset_str (die->sect_off),
17828 objfile_name (cu->per_objfile->objfile));
17829
17830 struct attribute *attr_ub, *attr_count;
17831 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17832 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17833 {
17834 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17835 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17836 {
17837 /* If bounds are constant do the final calculation here. */
17838 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17839 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17840 else
17841 high_bound_is_count = 1;
17842 }
17843 else
17844 {
17845 if (attr_ub != NULL)
17846 complaint (_("Unresolved DW_AT_upper_bound "
17847 "- DIE at %s [in module %s]"),
17848 sect_offset_str (die->sect_off),
17849 objfile_name (cu->per_objfile->objfile));
17850 if (attr_count != NULL)
17851 complaint (_("Unresolved DW_AT_count "
17852 "- DIE at %s [in module %s]"),
17853 sect_offset_str (die->sect_off),
17854 objfile_name (cu->per_objfile->objfile));
17855 }
17856 }
17857
17858 LONGEST bias = 0;
17859 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17860 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17861 bias = bias_attr->constant_value (0);
17862
17863 /* Normally, the DWARF producers are expected to use a signed
17864 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17865 But this is unfortunately not always the case, as witnessed
17866 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17867 is used instead. To work around that ambiguity, we treat
17868 the bounds as signed, and thus sign-extend their values, when
17869 the base type is signed. */
17870 negative_mask =
17871 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17872 if (low.kind == PROP_CONST
17873 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17874 low.data.const_val |= negative_mask;
17875 if (high.kind == PROP_CONST
17876 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17877 high.data.const_val |= negative_mask;
17878
17879 /* Check for bit and byte strides. */
17880 struct dynamic_prop byte_stride_prop;
17881 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17882 if (attr_byte_stride != nullptr)
17883 {
17884 struct type *prop_type = cu->addr_sized_int_type (false);
17885 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17886 prop_type);
17887 }
17888
17889 struct dynamic_prop bit_stride_prop;
17890 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17891 if (attr_bit_stride != nullptr)
17892 {
17893 /* It only makes sense to have either a bit or byte stride. */
17894 if (attr_byte_stride != nullptr)
17895 {
17896 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17897 "- DIE at %s [in module %s]"),
17898 sect_offset_str (die->sect_off),
17899 objfile_name (cu->per_objfile->objfile));
17900 attr_bit_stride = nullptr;
17901 }
17902 else
17903 {
17904 struct type *prop_type = cu->addr_sized_int_type (false);
17905 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17906 prop_type);
17907 }
17908 }
17909
17910 if (attr_byte_stride != nullptr
17911 || attr_bit_stride != nullptr)
17912 {
17913 bool byte_stride_p = (attr_byte_stride != nullptr);
17914 struct dynamic_prop *stride
17915 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17916
17917 range_type
17918 = create_range_type_with_stride (NULL, orig_base_type, &low,
17919 &high, bias, stride, byte_stride_p);
17920 }
17921 else
17922 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17923
17924 if (high_bound_is_count)
17925 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17926
17927 /* Ada expects an empty array on no boundary attributes. */
17928 if (attr == NULL && cu->language != language_ada)
17929 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17930
17931 name = dwarf2_name (die, cu);
17932 if (name)
17933 range_type->set_name (name);
17934
17935 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17936 if (attr != nullptr)
17937 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17938
17939 maybe_set_alignment (cu, die, range_type);
17940
17941 set_die_type (die, range_type, cu);
17942
17943 /* set_die_type should be already done. */
17944 set_descriptive_type (range_type, die, cu);
17945
17946 return range_type;
17947 }
17948
17949 static struct type *
17950 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17951 {
17952 struct type *type;
17953
17954 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
17955 type->set_name (dwarf2_name (die, cu));
17956
17957 /* In Ada, an unspecified type is typically used when the description
17958 of the type is deferred to a different unit. When encountering
17959 such a type, we treat it as a stub, and try to resolve it later on,
17960 when needed. */
17961 if (cu->language == language_ada)
17962 TYPE_STUB (type) = 1;
17963
17964 return set_die_type (die, type, cu);
17965 }
17966
17967 /* Read a single die and all its descendents. Set the die's sibling
17968 field to NULL; set other fields in the die correctly, and set all
17969 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17970 location of the info_ptr after reading all of those dies. PARENT
17971 is the parent of the die in question. */
17972
17973 static struct die_info *
17974 read_die_and_children (const struct die_reader_specs *reader,
17975 const gdb_byte *info_ptr,
17976 const gdb_byte **new_info_ptr,
17977 struct die_info *parent)
17978 {
17979 struct die_info *die;
17980 const gdb_byte *cur_ptr;
17981
17982 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17983 if (die == NULL)
17984 {
17985 *new_info_ptr = cur_ptr;
17986 return NULL;
17987 }
17988 store_in_ref_table (die, reader->cu);
17989
17990 if (die->has_children)
17991 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17992 else
17993 {
17994 die->child = NULL;
17995 *new_info_ptr = cur_ptr;
17996 }
17997
17998 die->sibling = NULL;
17999 die->parent = parent;
18000 return die;
18001 }
18002
18003 /* Read a die, all of its descendents, and all of its siblings; set
18004 all of the fields of all of the dies correctly. Arguments are as
18005 in read_die_and_children. */
18006
18007 static struct die_info *
18008 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18009 const gdb_byte *info_ptr,
18010 const gdb_byte **new_info_ptr,
18011 struct die_info *parent)
18012 {
18013 struct die_info *first_die, *last_sibling;
18014 const gdb_byte *cur_ptr;
18015
18016 cur_ptr = info_ptr;
18017 first_die = last_sibling = NULL;
18018
18019 while (1)
18020 {
18021 struct die_info *die
18022 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18023
18024 if (die == NULL)
18025 {
18026 *new_info_ptr = cur_ptr;
18027 return first_die;
18028 }
18029
18030 if (!first_die)
18031 first_die = die;
18032 else
18033 last_sibling->sibling = die;
18034
18035 last_sibling = die;
18036 }
18037 }
18038
18039 /* Read a die, all of its descendents, and all of its siblings; set
18040 all of the fields of all of the dies correctly. Arguments are as
18041 in read_die_and_children.
18042 This the main entry point for reading a DIE and all its children. */
18043
18044 static struct die_info *
18045 read_die_and_siblings (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18049 {
18050 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18051 new_info_ptr, parent);
18052
18053 if (dwarf_die_debug)
18054 {
18055 fprintf_unfiltered (gdb_stdlog,
18056 "Read die from %s@0x%x of %s:\n",
18057 reader->die_section->get_name (),
18058 (unsigned) (info_ptr - reader->die_section->buffer),
18059 bfd_get_filename (reader->abfd));
18060 dump_die (die, dwarf_die_debug);
18061 }
18062
18063 return die;
18064 }
18065
18066 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18067 attributes.
18068 The caller is responsible for filling in the extra attributes
18069 and updating (*DIEP)->num_attrs.
18070 Set DIEP to point to a newly allocated die with its information,
18071 except for its child, sibling, and parent fields. */
18072
18073 static const gdb_byte *
18074 read_full_die_1 (const struct die_reader_specs *reader,
18075 struct die_info **diep, const gdb_byte *info_ptr,
18076 int num_extra_attrs)
18077 {
18078 unsigned int abbrev_number, bytes_read, i;
18079 struct abbrev_info *abbrev;
18080 struct die_info *die;
18081 struct dwarf2_cu *cu = reader->cu;
18082 bfd *abfd = reader->abfd;
18083
18084 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18085 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18086 info_ptr += bytes_read;
18087 if (!abbrev_number)
18088 {
18089 *diep = NULL;
18090 return info_ptr;
18091 }
18092
18093 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18094 if (!abbrev)
18095 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18096 abbrev_number,
18097 bfd_get_filename (abfd));
18098
18099 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18100 die->sect_off = sect_off;
18101 die->tag = abbrev->tag;
18102 die->abbrev = abbrev_number;
18103 die->has_children = abbrev->has_children;
18104
18105 /* Make the result usable.
18106 The caller needs to update num_attrs after adding the extra
18107 attributes. */
18108 die->num_attrs = abbrev->num_attrs;
18109
18110 std::vector<int> indexes_that_need_reprocess;
18111 for (i = 0; i < abbrev->num_attrs; ++i)
18112 {
18113 bool need_reprocess;
18114 info_ptr =
18115 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18116 info_ptr, &need_reprocess);
18117 if (need_reprocess)
18118 indexes_that_need_reprocess.push_back (i);
18119 }
18120
18121 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18122 if (attr != nullptr)
18123 cu->str_offsets_base = DW_UNSND (attr);
18124
18125 attr = die->attr (DW_AT_loclists_base);
18126 if (attr != nullptr)
18127 cu->loclist_base = DW_UNSND (attr);
18128
18129 auto maybe_addr_base = die->addr_base ();
18130 if (maybe_addr_base.has_value ())
18131 cu->addr_base = *maybe_addr_base;
18132 for (int index : indexes_that_need_reprocess)
18133 read_attribute_reprocess (reader, &die->attrs[index]);
18134 *diep = die;
18135 return info_ptr;
18136 }
18137
18138 /* Read a die and all its attributes.
18139 Set DIEP to point to a newly allocated die with its information,
18140 except for its child, sibling, and parent fields. */
18141
18142 static const gdb_byte *
18143 read_full_die (const struct die_reader_specs *reader,
18144 struct die_info **diep, const gdb_byte *info_ptr)
18145 {
18146 const gdb_byte *result;
18147
18148 result = read_full_die_1 (reader, diep, info_ptr, 0);
18149
18150 if (dwarf_die_debug)
18151 {
18152 fprintf_unfiltered (gdb_stdlog,
18153 "Read die from %s@0x%x of %s:\n",
18154 reader->die_section->get_name (),
18155 (unsigned) (info_ptr - reader->die_section->buffer),
18156 bfd_get_filename (reader->abfd));
18157 dump_die (*diep, dwarf_die_debug);
18158 }
18159
18160 return result;
18161 }
18162 \f
18163
18164 /* Returns nonzero if TAG represents a type that we might generate a partial
18165 symbol for. */
18166
18167 static int
18168 is_type_tag_for_partial (int tag)
18169 {
18170 switch (tag)
18171 {
18172 #if 0
18173 /* Some types that would be reasonable to generate partial symbols for,
18174 that we don't at present. */
18175 case DW_TAG_array_type:
18176 case DW_TAG_file_type:
18177 case DW_TAG_ptr_to_member_type:
18178 case DW_TAG_set_type:
18179 case DW_TAG_string_type:
18180 case DW_TAG_subroutine_type:
18181 #endif
18182 case DW_TAG_base_type:
18183 case DW_TAG_class_type:
18184 case DW_TAG_interface_type:
18185 case DW_TAG_enumeration_type:
18186 case DW_TAG_structure_type:
18187 case DW_TAG_subrange_type:
18188 case DW_TAG_typedef:
18189 case DW_TAG_union_type:
18190 return 1;
18191 default:
18192 return 0;
18193 }
18194 }
18195
18196 /* Load all DIEs that are interesting for partial symbols into memory. */
18197
18198 static struct partial_die_info *
18199 load_partial_dies (const struct die_reader_specs *reader,
18200 const gdb_byte *info_ptr, int building_psymtab)
18201 {
18202 struct dwarf2_cu *cu = reader->cu;
18203 struct objfile *objfile = cu->per_objfile->objfile;
18204 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18205 unsigned int bytes_read;
18206 unsigned int load_all = 0;
18207 int nesting_level = 1;
18208
18209 parent_die = NULL;
18210 last_die = NULL;
18211
18212 gdb_assert (cu->per_cu != NULL);
18213 if (cu->per_cu->load_all_dies)
18214 load_all = 1;
18215
18216 cu->partial_dies
18217 = htab_create_alloc_ex (cu->header.length / 12,
18218 partial_die_hash,
18219 partial_die_eq,
18220 NULL,
18221 &cu->comp_unit_obstack,
18222 hashtab_obstack_allocate,
18223 dummy_obstack_deallocate);
18224
18225 while (1)
18226 {
18227 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18228
18229 /* A NULL abbrev means the end of a series of children. */
18230 if (abbrev == NULL)
18231 {
18232 if (--nesting_level == 0)
18233 return first_die;
18234
18235 info_ptr += bytes_read;
18236 last_die = parent_die;
18237 parent_die = parent_die->die_parent;
18238 continue;
18239 }
18240
18241 /* Check for template arguments. We never save these; if
18242 they're seen, we just mark the parent, and go on our way. */
18243 if (parent_die != NULL
18244 && cu->language == language_cplus
18245 && (abbrev->tag == DW_TAG_template_type_param
18246 || abbrev->tag == DW_TAG_template_value_param))
18247 {
18248 parent_die->has_template_arguments = 1;
18249
18250 if (!load_all)
18251 {
18252 /* We don't need a partial DIE for the template argument. */
18253 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18254 continue;
18255 }
18256 }
18257
18258 /* We only recurse into c++ subprograms looking for template arguments.
18259 Skip their other children. */
18260 if (!load_all
18261 && cu->language == language_cplus
18262 && parent_die != NULL
18263 && parent_die->tag == DW_TAG_subprogram
18264 && abbrev->tag != DW_TAG_inlined_subroutine)
18265 {
18266 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18267 continue;
18268 }
18269
18270 /* Check whether this DIE is interesting enough to save. Normally
18271 we would not be interested in members here, but there may be
18272 later variables referencing them via DW_AT_specification (for
18273 static members). */
18274 if (!load_all
18275 && !is_type_tag_for_partial (abbrev->tag)
18276 && abbrev->tag != DW_TAG_constant
18277 && abbrev->tag != DW_TAG_enumerator
18278 && abbrev->tag != DW_TAG_subprogram
18279 && abbrev->tag != DW_TAG_inlined_subroutine
18280 && abbrev->tag != DW_TAG_lexical_block
18281 && abbrev->tag != DW_TAG_variable
18282 && abbrev->tag != DW_TAG_namespace
18283 && abbrev->tag != DW_TAG_module
18284 && abbrev->tag != DW_TAG_member
18285 && abbrev->tag != DW_TAG_imported_unit
18286 && abbrev->tag != DW_TAG_imported_declaration)
18287 {
18288 /* Otherwise we skip to the next sibling, if any. */
18289 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18290 continue;
18291 }
18292
18293 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18294 abbrev);
18295
18296 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18297
18298 /* This two-pass algorithm for processing partial symbols has a
18299 high cost in cache pressure. Thus, handle some simple cases
18300 here which cover the majority of C partial symbols. DIEs
18301 which neither have specification tags in them, nor could have
18302 specification tags elsewhere pointing at them, can simply be
18303 processed and discarded.
18304
18305 This segment is also optional; scan_partial_symbols and
18306 add_partial_symbol will handle these DIEs if we chain
18307 them in normally. When compilers which do not emit large
18308 quantities of duplicate debug information are more common,
18309 this code can probably be removed. */
18310
18311 /* Any complete simple types at the top level (pretty much all
18312 of them, for a language without namespaces), can be processed
18313 directly. */
18314 if (parent_die == NULL
18315 && pdi.has_specification == 0
18316 && pdi.is_declaration == 0
18317 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18318 || pdi.tag == DW_TAG_base_type
18319 || pdi.tag == DW_TAG_subrange_type))
18320 {
18321 if (building_psymtab && pdi.raw_name != NULL)
18322 add_partial_symbol (&pdi, cu);
18323
18324 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18325 continue;
18326 }
18327
18328 /* The exception for DW_TAG_typedef with has_children above is
18329 a workaround of GCC PR debug/47510. In the case of this complaint
18330 type_name_or_error will error on such types later.
18331
18332 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18333 it could not find the child DIEs referenced later, this is checked
18334 above. In correct DWARF DW_TAG_typedef should have no children. */
18335
18336 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18337 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18338 "- DIE at %s [in module %s]"),
18339 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18340
18341 /* If we're at the second level, and we're an enumerator, and
18342 our parent has no specification (meaning possibly lives in a
18343 namespace elsewhere), then we can add the partial symbol now
18344 instead of queueing it. */
18345 if (pdi.tag == DW_TAG_enumerator
18346 && parent_die != NULL
18347 && parent_die->die_parent == NULL
18348 && parent_die->tag == DW_TAG_enumeration_type
18349 && parent_die->has_specification == 0)
18350 {
18351 if (pdi.raw_name == NULL)
18352 complaint (_("malformed enumerator DIE ignored"));
18353 else if (building_psymtab)
18354 add_partial_symbol (&pdi, cu);
18355
18356 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18357 continue;
18358 }
18359
18360 struct partial_die_info *part_die
18361 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18362
18363 /* We'll save this DIE so link it in. */
18364 part_die->die_parent = parent_die;
18365 part_die->die_sibling = NULL;
18366 part_die->die_child = NULL;
18367
18368 if (last_die && last_die == parent_die)
18369 last_die->die_child = part_die;
18370 else if (last_die)
18371 last_die->die_sibling = part_die;
18372
18373 last_die = part_die;
18374
18375 if (first_die == NULL)
18376 first_die = part_die;
18377
18378 /* Maybe add the DIE to the hash table. Not all DIEs that we
18379 find interesting need to be in the hash table, because we
18380 also have the parent/sibling/child chains; only those that we
18381 might refer to by offset later during partial symbol reading.
18382
18383 For now this means things that might have be the target of a
18384 DW_AT_specification, DW_AT_abstract_origin, or
18385 DW_AT_extension. DW_AT_extension will refer only to
18386 namespaces; DW_AT_abstract_origin refers to functions (and
18387 many things under the function DIE, but we do not recurse
18388 into function DIEs during partial symbol reading) and
18389 possibly variables as well; DW_AT_specification refers to
18390 declarations. Declarations ought to have the DW_AT_declaration
18391 flag. It happens that GCC forgets to put it in sometimes, but
18392 only for functions, not for types.
18393
18394 Adding more things than necessary to the hash table is harmless
18395 except for the performance cost. Adding too few will result in
18396 wasted time in find_partial_die, when we reread the compilation
18397 unit with load_all_dies set. */
18398
18399 if (load_all
18400 || abbrev->tag == DW_TAG_constant
18401 || abbrev->tag == DW_TAG_subprogram
18402 || abbrev->tag == DW_TAG_variable
18403 || abbrev->tag == DW_TAG_namespace
18404 || part_die->is_declaration)
18405 {
18406 void **slot;
18407
18408 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18409 to_underlying (part_die->sect_off),
18410 INSERT);
18411 *slot = part_die;
18412 }
18413
18414 /* For some DIEs we want to follow their children (if any). For C
18415 we have no reason to follow the children of structures; for other
18416 languages we have to, so that we can get at method physnames
18417 to infer fully qualified class names, for DW_AT_specification,
18418 and for C++ template arguments. For C++, we also look one level
18419 inside functions to find template arguments (if the name of the
18420 function does not already contain the template arguments).
18421
18422 For Ada and Fortran, we need to scan the children of subprograms
18423 and lexical blocks as well because these languages allow the
18424 definition of nested entities that could be interesting for the
18425 debugger, such as nested subprograms for instance. */
18426 if (last_die->has_children
18427 && (load_all
18428 || last_die->tag == DW_TAG_namespace
18429 || last_die->tag == DW_TAG_module
18430 || last_die->tag == DW_TAG_enumeration_type
18431 || (cu->language == language_cplus
18432 && last_die->tag == DW_TAG_subprogram
18433 && (last_die->raw_name == NULL
18434 || strchr (last_die->raw_name, '<') == NULL))
18435 || (cu->language != language_c
18436 && (last_die->tag == DW_TAG_class_type
18437 || last_die->tag == DW_TAG_interface_type
18438 || last_die->tag == DW_TAG_structure_type
18439 || last_die->tag == DW_TAG_union_type))
18440 || ((cu->language == language_ada
18441 || cu->language == language_fortran)
18442 && (last_die->tag == DW_TAG_subprogram
18443 || last_die->tag == DW_TAG_lexical_block))))
18444 {
18445 nesting_level++;
18446 parent_die = last_die;
18447 continue;
18448 }
18449
18450 /* Otherwise we skip to the next sibling, if any. */
18451 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18452
18453 /* Back to the top, do it again. */
18454 }
18455 }
18456
18457 partial_die_info::partial_die_info (sect_offset sect_off_,
18458 struct abbrev_info *abbrev)
18459 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18460 {
18461 }
18462
18463 /* See class definition. */
18464
18465 const char *
18466 partial_die_info::name (dwarf2_cu *cu)
18467 {
18468 if (!canonical_name && raw_name != nullptr)
18469 {
18470 struct objfile *objfile = cu->per_objfile->objfile;
18471 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
18472 canonical_name = 1;
18473 }
18474
18475 return raw_name;
18476 }
18477
18478 /* Read a minimal amount of information into the minimal die structure.
18479 INFO_PTR should point just after the initial uleb128 of a DIE. */
18480
18481 const gdb_byte *
18482 partial_die_info::read (const struct die_reader_specs *reader,
18483 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18484 {
18485 struct dwarf2_cu *cu = reader->cu;
18486 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18487 unsigned int i;
18488 int has_low_pc_attr = 0;
18489 int has_high_pc_attr = 0;
18490 int high_pc_relative = 0;
18491
18492 for (i = 0; i < abbrev.num_attrs; ++i)
18493 {
18494 attribute attr;
18495 bool need_reprocess;
18496 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18497 info_ptr, &need_reprocess);
18498 /* String and address offsets that need to do the reprocessing have
18499 already been read at this point, so there is no need to wait until
18500 the loop terminates to do the reprocessing. */
18501 if (need_reprocess)
18502 read_attribute_reprocess (reader, &attr);
18503 /* Store the data if it is of an attribute we want to keep in a
18504 partial symbol table. */
18505 switch (attr.name)
18506 {
18507 case DW_AT_name:
18508 switch (tag)
18509 {
18510 case DW_TAG_compile_unit:
18511 case DW_TAG_partial_unit:
18512 case DW_TAG_type_unit:
18513 /* Compilation units have a DW_AT_name that is a filename, not
18514 a source language identifier. */
18515 case DW_TAG_enumeration_type:
18516 case DW_TAG_enumerator:
18517 /* These tags always have simple identifiers already; no need
18518 to canonicalize them. */
18519 canonical_name = 1;
18520 raw_name = DW_STRING (&attr);
18521 break;
18522 default:
18523 canonical_name = 0;
18524 raw_name = DW_STRING (&attr);
18525 break;
18526 }
18527 break;
18528 case DW_AT_linkage_name:
18529 case DW_AT_MIPS_linkage_name:
18530 /* Note that both forms of linkage name might appear. We
18531 assume they will be the same, and we only store the last
18532 one we see. */
18533 linkage_name = attr.value_as_string ();
18534 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18535 See https://github.com/rust-lang/rust/issues/32925. */
18536 if (cu->language == language_rust && linkage_name != NULL
18537 && strchr (linkage_name, '{') != NULL)
18538 linkage_name = NULL;
18539 break;
18540 case DW_AT_low_pc:
18541 has_low_pc_attr = 1;
18542 lowpc = attr.value_as_address ();
18543 break;
18544 case DW_AT_high_pc:
18545 has_high_pc_attr = 1;
18546 highpc = attr.value_as_address ();
18547 if (cu->header.version >= 4 && attr.form_is_constant ())
18548 high_pc_relative = 1;
18549 break;
18550 case DW_AT_location:
18551 /* Support the .debug_loc offsets. */
18552 if (attr.form_is_block ())
18553 {
18554 d.locdesc = DW_BLOCK (&attr);
18555 }
18556 else if (attr.form_is_section_offset ())
18557 {
18558 dwarf2_complex_location_expr_complaint ();
18559 }
18560 else
18561 {
18562 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18563 "partial symbol information");
18564 }
18565 break;
18566 case DW_AT_external:
18567 is_external = DW_UNSND (&attr);
18568 break;
18569 case DW_AT_declaration:
18570 is_declaration = DW_UNSND (&attr);
18571 break;
18572 case DW_AT_type:
18573 has_type = 1;
18574 break;
18575 case DW_AT_abstract_origin:
18576 case DW_AT_specification:
18577 case DW_AT_extension:
18578 has_specification = 1;
18579 spec_offset = attr.get_ref_die_offset ();
18580 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18581 || cu->per_cu->is_dwz);
18582 break;
18583 case DW_AT_sibling:
18584 /* Ignore absolute siblings, they might point outside of
18585 the current compile unit. */
18586 if (attr.form == DW_FORM_ref_addr)
18587 complaint (_("ignoring absolute DW_AT_sibling"));
18588 else
18589 {
18590 const gdb_byte *buffer = reader->buffer;
18591 sect_offset off = attr.get_ref_die_offset ();
18592 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18593
18594 if (sibling_ptr < info_ptr)
18595 complaint (_("DW_AT_sibling points backwards"));
18596 else if (sibling_ptr > reader->buffer_end)
18597 reader->die_section->overflow_complaint ();
18598 else
18599 sibling = sibling_ptr;
18600 }
18601 break;
18602 case DW_AT_byte_size:
18603 has_byte_size = 1;
18604 break;
18605 case DW_AT_const_value:
18606 has_const_value = 1;
18607 break;
18608 case DW_AT_calling_convention:
18609 /* DWARF doesn't provide a way to identify a program's source-level
18610 entry point. DW_AT_calling_convention attributes are only meant
18611 to describe functions' calling conventions.
18612
18613 However, because it's a necessary piece of information in
18614 Fortran, and before DWARF 4 DW_CC_program was the only
18615 piece of debugging information whose definition refers to
18616 a 'main program' at all, several compilers marked Fortran
18617 main programs with DW_CC_program --- even when those
18618 functions use the standard calling conventions.
18619
18620 Although DWARF now specifies a way to provide this
18621 information, we support this practice for backward
18622 compatibility. */
18623 if (DW_UNSND (&attr) == DW_CC_program
18624 && cu->language == language_fortran)
18625 main_subprogram = 1;
18626 break;
18627 case DW_AT_inline:
18628 if (DW_UNSND (&attr) == DW_INL_inlined
18629 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18630 may_be_inlined = 1;
18631 break;
18632
18633 case DW_AT_import:
18634 if (tag == DW_TAG_imported_unit)
18635 {
18636 d.sect_off = attr.get_ref_die_offset ();
18637 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18638 || cu->per_cu->is_dwz);
18639 }
18640 break;
18641
18642 case DW_AT_main_subprogram:
18643 main_subprogram = DW_UNSND (&attr);
18644 break;
18645
18646 case DW_AT_ranges:
18647 {
18648 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18649 but that requires a full DIE, so instead we just
18650 reimplement it. */
18651 int need_ranges_base = tag != DW_TAG_compile_unit;
18652 unsigned int ranges_offset = (DW_UNSND (&attr)
18653 + (need_ranges_base
18654 ? cu->ranges_base
18655 : 0));
18656
18657 /* Value of the DW_AT_ranges attribute is the offset in the
18658 .debug_ranges section. */
18659 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18660 nullptr))
18661 has_pc_info = 1;
18662 }
18663 break;
18664
18665 default:
18666 break;
18667 }
18668 }
18669
18670 /* For Ada, if both the name and the linkage name appear, we prefer
18671 the latter. This lets "catch exception" work better, regardless
18672 of the order in which the name and linkage name were emitted.
18673 Really, though, this is just a workaround for the fact that gdb
18674 doesn't store both the name and the linkage name. */
18675 if (cu->language == language_ada && linkage_name != nullptr)
18676 raw_name = linkage_name;
18677
18678 if (high_pc_relative)
18679 highpc += lowpc;
18680
18681 if (has_low_pc_attr && has_high_pc_attr)
18682 {
18683 /* When using the GNU linker, .gnu.linkonce. sections are used to
18684 eliminate duplicate copies of functions and vtables and such.
18685 The linker will arbitrarily choose one and discard the others.
18686 The AT_*_pc values for such functions refer to local labels in
18687 these sections. If the section from that file was discarded, the
18688 labels are not in the output, so the relocs get a value of 0.
18689 If this is a discarded function, mark the pc bounds as invalid,
18690 so that GDB will ignore it. */
18691 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
18692 {
18693 struct objfile *objfile = per_objfile->objfile;
18694 struct gdbarch *gdbarch = objfile->arch ();
18695
18696 complaint (_("DW_AT_low_pc %s is zero "
18697 "for DIE at %s [in module %s]"),
18698 paddress (gdbarch, lowpc),
18699 sect_offset_str (sect_off),
18700 objfile_name (objfile));
18701 }
18702 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18703 else if (lowpc >= highpc)
18704 {
18705 struct objfile *objfile = per_objfile->objfile;
18706 struct gdbarch *gdbarch = objfile->arch ();
18707
18708 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18709 "for DIE at %s [in module %s]"),
18710 paddress (gdbarch, lowpc),
18711 paddress (gdbarch, highpc),
18712 sect_offset_str (sect_off),
18713 objfile_name (objfile));
18714 }
18715 else
18716 has_pc_info = 1;
18717 }
18718
18719 return info_ptr;
18720 }
18721
18722 /* Find a cached partial DIE at OFFSET in CU. */
18723
18724 struct partial_die_info *
18725 dwarf2_cu::find_partial_die (sect_offset sect_off)
18726 {
18727 struct partial_die_info *lookup_die = NULL;
18728 struct partial_die_info part_die (sect_off);
18729
18730 lookup_die = ((struct partial_die_info *)
18731 htab_find_with_hash (partial_dies, &part_die,
18732 to_underlying (sect_off)));
18733
18734 return lookup_die;
18735 }
18736
18737 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18738 except in the case of .debug_types DIEs which do not reference
18739 outside their CU (they do however referencing other types via
18740 DW_FORM_ref_sig8). */
18741
18742 static const struct cu_partial_die_info
18743 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18744 {
18745 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18746 struct objfile *objfile = per_objfile->objfile;
18747 struct partial_die_info *pd = NULL;
18748
18749 if (offset_in_dwz == cu->per_cu->is_dwz
18750 && cu->header.offset_in_cu_p (sect_off))
18751 {
18752 pd = cu->find_partial_die (sect_off);
18753 if (pd != NULL)
18754 return { cu, pd };
18755 /* We missed recording what we needed.
18756 Load all dies and try again. */
18757 }
18758 else
18759 {
18760 /* TUs don't reference other CUs/TUs (except via type signatures). */
18761 if (cu->per_cu->is_debug_types)
18762 {
18763 error (_("Dwarf Error: Type Unit at offset %s contains"
18764 " external reference to offset %s [in module %s].\n"),
18765 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18766 bfd_get_filename (objfile->obfd));
18767 }
18768 dwarf2_per_cu_data *per_cu
18769 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18770 per_objfile);
18771
18772 cu = per_objfile->get_cu (per_cu);
18773 if (cu == NULL || cu->partial_dies == NULL)
18774 load_partial_comp_unit (per_cu, per_objfile, nullptr);
18775
18776 cu = per_objfile->get_cu (per_cu);
18777
18778 cu->last_used = 0;
18779 pd = cu->find_partial_die (sect_off);
18780 }
18781
18782 /* If we didn't find it, and not all dies have been loaded,
18783 load them all and try again. */
18784
18785 if (pd == NULL && cu->per_cu->load_all_dies == 0)
18786 {
18787 cu->per_cu->load_all_dies = 1;
18788
18789 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18790 THIS_CU->cu may already be in use. So we can't just free it and
18791 replace its DIEs with the ones we read in. Instead, we leave those
18792 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18793 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18794 set. */
18795 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
18796
18797 pd = cu->find_partial_die (sect_off);
18798 }
18799
18800 if (pd == NULL)
18801 internal_error (__FILE__, __LINE__,
18802 _("could not find partial DIE %s "
18803 "in cache [from module %s]\n"),
18804 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18805 return { cu, pd };
18806 }
18807
18808 /* See if we can figure out if the class lives in a namespace. We do
18809 this by looking for a member function; its demangled name will
18810 contain namespace info, if there is any. */
18811
18812 static void
18813 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18814 struct dwarf2_cu *cu)
18815 {
18816 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18817 what template types look like, because the demangler
18818 frequently doesn't give the same name as the debug info. We
18819 could fix this by only using the demangled name to get the
18820 prefix (but see comment in read_structure_type). */
18821
18822 struct partial_die_info *real_pdi;
18823 struct partial_die_info *child_pdi;
18824
18825 /* If this DIE (this DIE's specification, if any) has a parent, then
18826 we should not do this. We'll prepend the parent's fully qualified
18827 name when we create the partial symbol. */
18828
18829 real_pdi = struct_pdi;
18830 while (real_pdi->has_specification)
18831 {
18832 auto res = find_partial_die (real_pdi->spec_offset,
18833 real_pdi->spec_is_dwz, cu);
18834 real_pdi = res.pdi;
18835 cu = res.cu;
18836 }
18837
18838 if (real_pdi->die_parent != NULL)
18839 return;
18840
18841 for (child_pdi = struct_pdi->die_child;
18842 child_pdi != NULL;
18843 child_pdi = child_pdi->die_sibling)
18844 {
18845 if (child_pdi->tag == DW_TAG_subprogram
18846 && child_pdi->linkage_name != NULL)
18847 {
18848 gdb::unique_xmalloc_ptr<char> actual_class_name
18849 (language_class_name_from_physname (cu->language_defn,
18850 child_pdi->linkage_name));
18851 if (actual_class_name != NULL)
18852 {
18853 struct objfile *objfile = cu->per_objfile->objfile;
18854 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
18855 struct_pdi->canonical_name = 1;
18856 }
18857 break;
18858 }
18859 }
18860 }
18861
18862 /* Return true if a DIE with TAG may have the DW_AT_const_value
18863 attribute. */
18864
18865 static bool
18866 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18867 {
18868 switch (tag)
18869 {
18870 case DW_TAG_constant:
18871 case DW_TAG_enumerator:
18872 case DW_TAG_formal_parameter:
18873 case DW_TAG_template_value_param:
18874 case DW_TAG_variable:
18875 return true;
18876 }
18877
18878 return false;
18879 }
18880
18881 void
18882 partial_die_info::fixup (struct dwarf2_cu *cu)
18883 {
18884 /* Once we've fixed up a die, there's no point in doing so again.
18885 This also avoids a memory leak if we were to call
18886 guess_partial_die_structure_name multiple times. */
18887 if (fixup_called)
18888 return;
18889
18890 /* If we found a reference attribute and the DIE has no name, try
18891 to find a name in the referred to DIE. */
18892
18893 if (raw_name == NULL && has_specification)
18894 {
18895 struct partial_die_info *spec_die;
18896
18897 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18898 spec_die = res.pdi;
18899 cu = res.cu;
18900
18901 spec_die->fixup (cu);
18902
18903 if (spec_die->raw_name)
18904 {
18905 raw_name = spec_die->raw_name;
18906 canonical_name = spec_die->canonical_name;
18907
18908 /* Copy DW_AT_external attribute if it is set. */
18909 if (spec_die->is_external)
18910 is_external = spec_die->is_external;
18911 }
18912 }
18913
18914 if (!has_const_value && has_specification
18915 && can_have_DW_AT_const_value_p (tag))
18916 {
18917 struct partial_die_info *spec_die;
18918
18919 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18920 spec_die = res.pdi;
18921 cu = res.cu;
18922
18923 spec_die->fixup (cu);
18924
18925 if (spec_die->has_const_value)
18926 {
18927 /* Copy DW_AT_const_value attribute if it is set. */
18928 has_const_value = spec_die->has_const_value;
18929 }
18930 }
18931
18932 /* Set default names for some unnamed DIEs. */
18933
18934 if (raw_name == NULL && tag == DW_TAG_namespace)
18935 {
18936 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
18937 canonical_name = 1;
18938 }
18939
18940 /* If there is no parent die to provide a namespace, and there are
18941 children, see if we can determine the namespace from their linkage
18942 name. */
18943 if (cu->language == language_cplus
18944 && !cu->per_objfile->per_bfd->types.empty ()
18945 && die_parent == NULL
18946 && has_children
18947 && (tag == DW_TAG_class_type
18948 || tag == DW_TAG_structure_type
18949 || tag == DW_TAG_union_type))
18950 guess_partial_die_structure_name (this, cu);
18951
18952 /* GCC might emit a nameless struct or union that has a linkage
18953 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18954 if (raw_name == NULL
18955 && (tag == DW_TAG_class_type
18956 || tag == DW_TAG_interface_type
18957 || tag == DW_TAG_structure_type
18958 || tag == DW_TAG_union_type)
18959 && linkage_name != NULL)
18960 {
18961 gdb::unique_xmalloc_ptr<char> demangled
18962 (gdb_demangle (linkage_name, DMGL_TYPES));
18963 if (demangled != nullptr)
18964 {
18965 const char *base;
18966
18967 /* Strip any leading namespaces/classes, keep only the base name.
18968 DW_AT_name for named DIEs does not contain the prefixes. */
18969 base = strrchr (demangled.get (), ':');
18970 if (base && base > demangled.get () && base[-1] == ':')
18971 base++;
18972 else
18973 base = demangled.get ();
18974
18975 struct objfile *objfile = cu->per_objfile->objfile;
18976 raw_name = objfile->intern (base);
18977 canonical_name = 1;
18978 }
18979 }
18980
18981 fixup_called = 1;
18982 }
18983
18984 /* Read the .debug_loclists header contents from the given SECTION in the
18985 HEADER. */
18986 static void
18987 read_loclist_header (struct loclist_header *header,
18988 struct dwarf2_section_info *section)
18989 {
18990 unsigned int bytes_read;
18991 bfd *abfd = section->get_bfd_owner ();
18992 const gdb_byte *info_ptr = section->buffer;
18993 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18994 info_ptr += bytes_read;
18995 header->version = read_2_bytes (abfd, info_ptr);
18996 info_ptr += 2;
18997 header->addr_size = read_1_byte (abfd, info_ptr);
18998 info_ptr += 1;
18999 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19000 info_ptr += 1;
19001 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19002 }
19003
19004 /* Return the DW_AT_loclists_base value for the CU. */
19005 static ULONGEST
19006 lookup_loclist_base (struct dwarf2_cu *cu)
19007 {
19008 /* For the .dwo unit, the loclist_base points to the first offset following
19009 the header. The header consists of the following entities-
19010 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19011 bit format)
19012 2. version (2 bytes)
19013 3. address size (1 byte)
19014 4. segment selector size (1 byte)
19015 5. offset entry count (4 bytes)
19016 These sizes are derived as per the DWARFv5 standard. */
19017 if (cu->dwo_unit != nullptr)
19018 {
19019 if (cu->header.initial_length_size == 4)
19020 return LOCLIST_HEADER_SIZE32;
19021 return LOCLIST_HEADER_SIZE64;
19022 }
19023 return cu->loclist_base;
19024 }
19025
19026 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19027 array of offsets in the .debug_loclists section. */
19028 static CORE_ADDR
19029 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19030 {
19031 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19032 struct objfile *objfile = per_objfile->objfile;
19033 bfd *abfd = objfile->obfd;
19034 ULONGEST loclist_base = lookup_loclist_base (cu);
19035 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19036
19037 section->read (objfile);
19038 if (section->buffer == NULL)
19039 complaint (_("DW_FORM_loclistx used without .debug_loclists "
19040 "section [in module %s]"), objfile_name (objfile));
19041 struct loclist_header header;
19042 read_loclist_header (&header, section);
19043 if (loclist_index >= header.offset_entry_count)
19044 complaint (_("DW_FORM_loclistx pointing outside of "
19045 ".debug_loclists offset array [in module %s]"),
19046 objfile_name (objfile));
19047 if (loclist_base + loclist_index * cu->header.offset_size
19048 >= section->size)
19049 complaint (_("DW_FORM_loclistx pointing outside of "
19050 ".debug_loclists section [in module %s]"),
19051 objfile_name (objfile));
19052 const gdb_byte *info_ptr
19053 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
19054
19055 if (cu->header.offset_size == 4)
19056 return bfd_get_32 (abfd, info_ptr) + loclist_base;
19057 else
19058 return bfd_get_64 (abfd, info_ptr) + loclist_base;
19059 }
19060
19061 /* Process the attributes that had to be skipped in the first round. These
19062 attributes are the ones that need str_offsets_base or addr_base attributes.
19063 They could not have been processed in the first round, because at the time
19064 the values of str_offsets_base or addr_base may not have been known. */
19065 static void
19066 read_attribute_reprocess (const struct die_reader_specs *reader,
19067 struct attribute *attr)
19068 {
19069 struct dwarf2_cu *cu = reader->cu;
19070 switch (attr->form)
19071 {
19072 case DW_FORM_addrx:
19073 case DW_FORM_GNU_addr_index:
19074 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
19075 break;
19076 case DW_FORM_loclistx:
19077 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
19078 break;
19079 case DW_FORM_strx:
19080 case DW_FORM_strx1:
19081 case DW_FORM_strx2:
19082 case DW_FORM_strx3:
19083 case DW_FORM_strx4:
19084 case DW_FORM_GNU_str_index:
19085 {
19086 unsigned int str_index = DW_UNSND (attr);
19087 if (reader->dwo_file != NULL)
19088 {
19089 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
19090 DW_STRING_IS_CANONICAL (attr) = 0;
19091 }
19092 else
19093 {
19094 DW_STRING (attr) = read_stub_str_index (cu, str_index);
19095 DW_STRING_IS_CANONICAL (attr) = 0;
19096 }
19097 break;
19098 }
19099 default:
19100 gdb_assert_not_reached (_("Unexpected DWARF form."));
19101 }
19102 }
19103
19104 /* Read an attribute value described by an attribute form. */
19105
19106 static const gdb_byte *
19107 read_attribute_value (const struct die_reader_specs *reader,
19108 struct attribute *attr, unsigned form,
19109 LONGEST implicit_const, const gdb_byte *info_ptr,
19110 bool *need_reprocess)
19111 {
19112 struct dwarf2_cu *cu = reader->cu;
19113 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19114 struct objfile *objfile = per_objfile->objfile;
19115 bfd *abfd = reader->abfd;
19116 struct comp_unit_head *cu_header = &cu->header;
19117 unsigned int bytes_read;
19118 struct dwarf_block *blk;
19119 *need_reprocess = false;
19120
19121 attr->form = (enum dwarf_form) form;
19122 switch (form)
19123 {
19124 case DW_FORM_ref_addr:
19125 if (cu->header.version == 2)
19126 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
19127 &bytes_read);
19128 else
19129 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
19130 &bytes_read);
19131 info_ptr += bytes_read;
19132 break;
19133 case DW_FORM_GNU_ref_alt:
19134 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19135 info_ptr += bytes_read;
19136 break;
19137 case DW_FORM_addr:
19138 {
19139 struct gdbarch *gdbarch = objfile->arch ();
19140 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
19141 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19142 info_ptr += bytes_read;
19143 }
19144 break;
19145 case DW_FORM_block2:
19146 blk = dwarf_alloc_block (cu);
19147 blk->size = read_2_bytes (abfd, info_ptr);
19148 info_ptr += 2;
19149 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19150 info_ptr += blk->size;
19151 DW_BLOCK (attr) = blk;
19152 break;
19153 case DW_FORM_block4:
19154 blk = dwarf_alloc_block (cu);
19155 blk->size = read_4_bytes (abfd, info_ptr);
19156 info_ptr += 4;
19157 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19158 info_ptr += blk->size;
19159 DW_BLOCK (attr) = blk;
19160 break;
19161 case DW_FORM_data2:
19162 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19163 info_ptr += 2;
19164 break;
19165 case DW_FORM_data4:
19166 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19167 info_ptr += 4;
19168 break;
19169 case DW_FORM_data8:
19170 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19171 info_ptr += 8;
19172 break;
19173 case DW_FORM_data16:
19174 blk = dwarf_alloc_block (cu);
19175 blk->size = 16;
19176 blk->data = read_n_bytes (abfd, info_ptr, 16);
19177 info_ptr += 16;
19178 DW_BLOCK (attr) = blk;
19179 break;
19180 case DW_FORM_sec_offset:
19181 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19182 info_ptr += bytes_read;
19183 break;
19184 case DW_FORM_loclistx:
19185 {
19186 *need_reprocess = true;
19187 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19188 info_ptr += bytes_read;
19189 }
19190 break;
19191 case DW_FORM_string:
19192 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19193 DW_STRING_IS_CANONICAL (attr) = 0;
19194 info_ptr += bytes_read;
19195 break;
19196 case DW_FORM_strp:
19197 if (!cu->per_cu->is_dwz)
19198 {
19199 DW_STRING (attr) = read_indirect_string (per_objfile,
19200 abfd, info_ptr, cu_header,
19201 &bytes_read);
19202 DW_STRING_IS_CANONICAL (attr) = 0;
19203 info_ptr += bytes_read;
19204 break;
19205 }
19206 /* FALLTHROUGH */
19207 case DW_FORM_line_strp:
19208 if (!cu->per_cu->is_dwz)
19209 {
19210 DW_STRING (attr) = per_objfile->read_line_string (info_ptr, cu_header,
19211 &bytes_read);
19212 DW_STRING_IS_CANONICAL (attr) = 0;
19213 info_ptr += bytes_read;
19214 break;
19215 }
19216 /* FALLTHROUGH */
19217 case DW_FORM_GNU_strp_alt:
19218 {
19219 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
19220 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19221 &bytes_read);
19222
19223 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
19224 DW_STRING_IS_CANONICAL (attr) = 0;
19225 info_ptr += bytes_read;
19226 }
19227 break;
19228 case DW_FORM_exprloc:
19229 case DW_FORM_block:
19230 blk = dwarf_alloc_block (cu);
19231 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19232 info_ptr += bytes_read;
19233 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19234 info_ptr += blk->size;
19235 DW_BLOCK (attr) = blk;
19236 break;
19237 case DW_FORM_block1:
19238 blk = dwarf_alloc_block (cu);
19239 blk->size = read_1_byte (abfd, info_ptr);
19240 info_ptr += 1;
19241 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19242 info_ptr += blk->size;
19243 DW_BLOCK (attr) = blk;
19244 break;
19245 case DW_FORM_data1:
19246 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19247 info_ptr += 1;
19248 break;
19249 case DW_FORM_flag:
19250 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19251 info_ptr += 1;
19252 break;
19253 case DW_FORM_flag_present:
19254 DW_UNSND (attr) = 1;
19255 break;
19256 case DW_FORM_sdata:
19257 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19258 info_ptr += bytes_read;
19259 break;
19260 case DW_FORM_udata:
19261 case DW_FORM_rnglistx:
19262 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 break;
19265 case DW_FORM_ref1:
19266 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19267 + read_1_byte (abfd, info_ptr));
19268 info_ptr += 1;
19269 break;
19270 case DW_FORM_ref2:
19271 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19272 + read_2_bytes (abfd, info_ptr));
19273 info_ptr += 2;
19274 break;
19275 case DW_FORM_ref4:
19276 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19277 + read_4_bytes (abfd, info_ptr));
19278 info_ptr += 4;
19279 break;
19280 case DW_FORM_ref8:
19281 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19282 + read_8_bytes (abfd, info_ptr));
19283 info_ptr += 8;
19284 break;
19285 case DW_FORM_ref_sig8:
19286 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19287 info_ptr += 8;
19288 break;
19289 case DW_FORM_ref_udata:
19290 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19291 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19292 info_ptr += bytes_read;
19293 break;
19294 case DW_FORM_indirect:
19295 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19296 info_ptr += bytes_read;
19297 if (form == DW_FORM_implicit_const)
19298 {
19299 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19300 info_ptr += bytes_read;
19301 }
19302 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19303 info_ptr, need_reprocess);
19304 break;
19305 case DW_FORM_implicit_const:
19306 DW_SND (attr) = implicit_const;
19307 break;
19308 case DW_FORM_addrx:
19309 case DW_FORM_GNU_addr_index:
19310 *need_reprocess = true;
19311 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19312 info_ptr += bytes_read;
19313 break;
19314 case DW_FORM_strx:
19315 case DW_FORM_strx1:
19316 case DW_FORM_strx2:
19317 case DW_FORM_strx3:
19318 case DW_FORM_strx4:
19319 case DW_FORM_GNU_str_index:
19320 {
19321 ULONGEST str_index;
19322 if (form == DW_FORM_strx1)
19323 {
19324 str_index = read_1_byte (abfd, info_ptr);
19325 info_ptr += 1;
19326 }
19327 else if (form == DW_FORM_strx2)
19328 {
19329 str_index = read_2_bytes (abfd, info_ptr);
19330 info_ptr += 2;
19331 }
19332 else if (form == DW_FORM_strx3)
19333 {
19334 str_index = read_3_bytes (abfd, info_ptr);
19335 info_ptr += 3;
19336 }
19337 else if (form == DW_FORM_strx4)
19338 {
19339 str_index = read_4_bytes (abfd, info_ptr);
19340 info_ptr += 4;
19341 }
19342 else
19343 {
19344 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19345 info_ptr += bytes_read;
19346 }
19347 *need_reprocess = true;
19348 DW_UNSND (attr) = str_index;
19349 }
19350 break;
19351 default:
19352 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19353 dwarf_form_name (form),
19354 bfd_get_filename (abfd));
19355 }
19356
19357 /* Super hack. */
19358 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19359 attr->form = DW_FORM_GNU_ref_alt;
19360
19361 /* We have seen instances where the compiler tried to emit a byte
19362 size attribute of -1 which ended up being encoded as an unsigned
19363 0xffffffff. Although 0xffffffff is technically a valid size value,
19364 an object of this size seems pretty unlikely so we can relatively
19365 safely treat these cases as if the size attribute was invalid and
19366 treat them as zero by default. */
19367 if (attr->name == DW_AT_byte_size
19368 && form == DW_FORM_data4
19369 && DW_UNSND (attr) >= 0xffffffff)
19370 {
19371 complaint
19372 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19373 hex_string (DW_UNSND (attr)));
19374 DW_UNSND (attr) = 0;
19375 }
19376
19377 return info_ptr;
19378 }
19379
19380 /* Read an attribute described by an abbreviated attribute. */
19381
19382 static const gdb_byte *
19383 read_attribute (const struct die_reader_specs *reader,
19384 struct attribute *attr, struct attr_abbrev *abbrev,
19385 const gdb_byte *info_ptr, bool *need_reprocess)
19386 {
19387 attr->name = abbrev->name;
19388 return read_attribute_value (reader, attr, abbrev->form,
19389 abbrev->implicit_const, info_ptr,
19390 need_reprocess);
19391 }
19392
19393 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19394
19395 static const char *
19396 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
19397 LONGEST str_offset)
19398 {
19399 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
19400 str_offset, "DW_FORM_strp");
19401 }
19402
19403 /* Return pointer to string at .debug_str offset as read from BUF.
19404 BUF is assumed to be in a compilation unit described by CU_HEADER.
19405 Return *BYTES_READ_PTR count of bytes read from BUF. */
19406
19407 static const char *
19408 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
19409 const gdb_byte *buf,
19410 const struct comp_unit_head *cu_header,
19411 unsigned int *bytes_read_ptr)
19412 {
19413 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19414
19415 return read_indirect_string_at_offset (per_objfile, str_offset);
19416 }
19417
19418 /* See read.h. */
19419
19420 const char *
19421 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19422 const struct comp_unit_head *cu_header,
19423 unsigned int *bytes_read_ptr)
19424 {
19425 bfd *abfd = objfile->obfd;
19426 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19427
19428 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19429 }
19430
19431 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19432 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19433 ADDR_SIZE is the size of addresses from the CU header. */
19434
19435 static CORE_ADDR
19436 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
19437 gdb::optional<ULONGEST> addr_base, int addr_size)
19438 {
19439 struct objfile *objfile = per_objfile->objfile;
19440 bfd *abfd = objfile->obfd;
19441 const gdb_byte *info_ptr;
19442 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19443
19444 per_objfile->per_bfd->addr.read (objfile);
19445 if (per_objfile->per_bfd->addr.buffer == NULL)
19446 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19447 objfile_name (objfile));
19448 if (addr_base_or_zero + addr_index * addr_size
19449 >= per_objfile->per_bfd->addr.size)
19450 error (_("DW_FORM_addr_index pointing outside of "
19451 ".debug_addr section [in module %s]"),
19452 objfile_name (objfile));
19453 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
19454 + addr_index * addr_size);
19455 if (addr_size == 4)
19456 return bfd_get_32 (abfd, info_ptr);
19457 else
19458 return bfd_get_64 (abfd, info_ptr);
19459 }
19460
19461 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19462
19463 static CORE_ADDR
19464 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19465 {
19466 return read_addr_index_1 (cu->per_objfile, addr_index,
19467 cu->addr_base, cu->header.addr_size);
19468 }
19469
19470 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19471
19472 static CORE_ADDR
19473 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19474 unsigned int *bytes_read)
19475 {
19476 bfd *abfd = cu->per_objfile->objfile->obfd;
19477 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19478
19479 return read_addr_index (cu, addr_index);
19480 }
19481
19482 /* See read.h. */
19483
19484 CORE_ADDR
19485 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
19486 dwarf2_per_objfile *per_objfile,
19487 unsigned int addr_index)
19488 {
19489 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
19490 gdb::optional<ULONGEST> addr_base;
19491 int addr_size;
19492
19493 /* We need addr_base and addr_size.
19494 If we don't have PER_CU->cu, we have to get it.
19495 Nasty, but the alternative is storing the needed info in PER_CU,
19496 which at this point doesn't seem justified: it's not clear how frequently
19497 it would get used and it would increase the size of every PER_CU.
19498 Entry points like dwarf2_per_cu_addr_size do a similar thing
19499 so we're not in uncharted territory here.
19500 Alas we need to be a bit more complicated as addr_base is contained
19501 in the DIE.
19502
19503 We don't need to read the entire CU(/TU).
19504 We just need the header and top level die.
19505
19506 IWBN to use the aging mechanism to let us lazily later discard the CU.
19507 For now we skip this optimization. */
19508
19509 if (cu != NULL)
19510 {
19511 addr_base = cu->addr_base;
19512 addr_size = cu->header.addr_size;
19513 }
19514 else
19515 {
19516 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
19517 addr_base = reader.cu->addr_base;
19518 addr_size = reader.cu->header.addr_size;
19519 }
19520
19521 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
19522 }
19523
19524 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19525 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19526 DWO file. */
19527
19528 static const char *
19529 read_str_index (struct dwarf2_cu *cu,
19530 struct dwarf2_section_info *str_section,
19531 struct dwarf2_section_info *str_offsets_section,
19532 ULONGEST str_offsets_base, ULONGEST str_index)
19533 {
19534 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19535 struct objfile *objfile = per_objfile->objfile;
19536 const char *objf_name = objfile_name (objfile);
19537 bfd *abfd = objfile->obfd;
19538 const gdb_byte *info_ptr;
19539 ULONGEST str_offset;
19540 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19541
19542 str_section->read (objfile);
19543 str_offsets_section->read (objfile);
19544 if (str_section->buffer == NULL)
19545 error (_("%s used without %s section"
19546 " in CU at offset %s [in module %s]"),
19547 form_name, str_section->get_name (),
19548 sect_offset_str (cu->header.sect_off), objf_name);
19549 if (str_offsets_section->buffer == NULL)
19550 error (_("%s used without %s section"
19551 " in CU at offset %s [in module %s]"),
19552 form_name, str_section->get_name (),
19553 sect_offset_str (cu->header.sect_off), objf_name);
19554 info_ptr = (str_offsets_section->buffer
19555 + str_offsets_base
19556 + str_index * cu->header.offset_size);
19557 if (cu->header.offset_size == 4)
19558 str_offset = bfd_get_32 (abfd, info_ptr);
19559 else
19560 str_offset = bfd_get_64 (abfd, info_ptr);
19561 if (str_offset >= str_section->size)
19562 error (_("Offset from %s pointing outside of"
19563 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19564 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19565 return (const char *) (str_section->buffer + str_offset);
19566 }
19567
19568 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19569
19570 static const char *
19571 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19572 {
19573 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19574 ? reader->cu->header.addr_size : 0;
19575 return read_str_index (reader->cu,
19576 &reader->dwo_file->sections.str,
19577 &reader->dwo_file->sections.str_offsets,
19578 str_offsets_base, str_index);
19579 }
19580
19581 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19582
19583 static const char *
19584 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19585 {
19586 struct objfile *objfile = cu->per_objfile->objfile;
19587 const char *objf_name = objfile_name (objfile);
19588 static const char form_name[] = "DW_FORM_GNU_str_index";
19589 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19590
19591 if (!cu->str_offsets_base.has_value ())
19592 error (_("%s used in Fission stub without %s"
19593 " in CU at offset 0x%lx [in module %s]"),
19594 form_name, str_offsets_attr_name,
19595 (long) cu->header.offset_size, objf_name);
19596
19597 return read_str_index (cu,
19598 &cu->per_objfile->per_bfd->str,
19599 &cu->per_objfile->per_bfd->str_offsets,
19600 *cu->str_offsets_base, str_index);
19601 }
19602
19603 /* Return the length of an LEB128 number in BUF. */
19604
19605 static int
19606 leb128_size (const gdb_byte *buf)
19607 {
19608 const gdb_byte *begin = buf;
19609 gdb_byte byte;
19610
19611 while (1)
19612 {
19613 byte = *buf++;
19614 if ((byte & 128) == 0)
19615 return buf - begin;
19616 }
19617 }
19618
19619 static void
19620 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19621 {
19622 switch (lang)
19623 {
19624 case DW_LANG_C89:
19625 case DW_LANG_C99:
19626 case DW_LANG_C11:
19627 case DW_LANG_C:
19628 case DW_LANG_UPC:
19629 cu->language = language_c;
19630 break;
19631 case DW_LANG_Java:
19632 case DW_LANG_C_plus_plus:
19633 case DW_LANG_C_plus_plus_11:
19634 case DW_LANG_C_plus_plus_14:
19635 cu->language = language_cplus;
19636 break;
19637 case DW_LANG_D:
19638 cu->language = language_d;
19639 break;
19640 case DW_LANG_Fortran77:
19641 case DW_LANG_Fortran90:
19642 case DW_LANG_Fortran95:
19643 case DW_LANG_Fortran03:
19644 case DW_LANG_Fortran08:
19645 cu->language = language_fortran;
19646 break;
19647 case DW_LANG_Go:
19648 cu->language = language_go;
19649 break;
19650 case DW_LANG_Mips_Assembler:
19651 cu->language = language_asm;
19652 break;
19653 case DW_LANG_Ada83:
19654 case DW_LANG_Ada95:
19655 cu->language = language_ada;
19656 break;
19657 case DW_LANG_Modula2:
19658 cu->language = language_m2;
19659 break;
19660 case DW_LANG_Pascal83:
19661 cu->language = language_pascal;
19662 break;
19663 case DW_LANG_ObjC:
19664 cu->language = language_objc;
19665 break;
19666 case DW_LANG_Rust:
19667 case DW_LANG_Rust_old:
19668 cu->language = language_rust;
19669 break;
19670 case DW_LANG_Cobol74:
19671 case DW_LANG_Cobol85:
19672 default:
19673 cu->language = language_minimal;
19674 break;
19675 }
19676 cu->language_defn = language_def (cu->language);
19677 }
19678
19679 /* Return the named attribute or NULL if not there. */
19680
19681 static struct attribute *
19682 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19683 {
19684 for (;;)
19685 {
19686 unsigned int i;
19687 struct attribute *spec = NULL;
19688
19689 for (i = 0; i < die->num_attrs; ++i)
19690 {
19691 if (die->attrs[i].name == name)
19692 return &die->attrs[i];
19693 if (die->attrs[i].name == DW_AT_specification
19694 || die->attrs[i].name == DW_AT_abstract_origin)
19695 spec = &die->attrs[i];
19696 }
19697
19698 if (!spec)
19699 break;
19700
19701 die = follow_die_ref (die, spec, &cu);
19702 }
19703
19704 return NULL;
19705 }
19706
19707 /* Return the string associated with a string-typed attribute, or NULL if it
19708 is either not found or is of an incorrect type. */
19709
19710 static const char *
19711 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19712 {
19713 struct attribute *attr;
19714 const char *str = NULL;
19715
19716 attr = dwarf2_attr (die, name, cu);
19717
19718 if (attr != NULL)
19719 {
19720 str = attr->value_as_string ();
19721 if (str == nullptr)
19722 complaint (_("string type expected for attribute %s for "
19723 "DIE at %s in module %s"),
19724 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19725 objfile_name (cu->per_objfile->objfile));
19726 }
19727
19728 return str;
19729 }
19730
19731 /* Return the dwo name or NULL if not present. If present, it is in either
19732 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19733 static const char *
19734 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19735 {
19736 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19737 if (dwo_name == nullptr)
19738 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19739 return dwo_name;
19740 }
19741
19742 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19743 and holds a non-zero value. This function should only be used for
19744 DW_FORM_flag or DW_FORM_flag_present attributes. */
19745
19746 static int
19747 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19748 {
19749 struct attribute *attr = dwarf2_attr (die, name, cu);
19750
19751 return (attr && DW_UNSND (attr));
19752 }
19753
19754 static int
19755 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19756 {
19757 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19758 which value is non-zero. However, we have to be careful with
19759 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19760 (via dwarf2_flag_true_p) follows this attribute. So we may
19761 end up accidently finding a declaration attribute that belongs
19762 to a different DIE referenced by the specification attribute,
19763 even though the given DIE does not have a declaration attribute. */
19764 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19765 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19766 }
19767
19768 /* Return the die giving the specification for DIE, if there is
19769 one. *SPEC_CU is the CU containing DIE on input, and the CU
19770 containing the return value on output. If there is no
19771 specification, but there is an abstract origin, that is
19772 returned. */
19773
19774 static struct die_info *
19775 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19776 {
19777 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19778 *spec_cu);
19779
19780 if (spec_attr == NULL)
19781 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19782
19783 if (spec_attr == NULL)
19784 return NULL;
19785 else
19786 return follow_die_ref (die, spec_attr, spec_cu);
19787 }
19788
19789 /* Stub for free_line_header to match void * callback types. */
19790
19791 static void
19792 free_line_header_voidp (void *arg)
19793 {
19794 struct line_header *lh = (struct line_header *) arg;
19795
19796 delete lh;
19797 }
19798
19799 /* A convenience function to find the proper .debug_line section for a CU. */
19800
19801 static struct dwarf2_section_info *
19802 get_debug_line_section (struct dwarf2_cu *cu)
19803 {
19804 struct dwarf2_section_info *section;
19805 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19806
19807 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19808 DWO file. */
19809 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19810 section = &cu->dwo_unit->dwo_file->sections.line;
19811 else if (cu->per_cu->is_dwz)
19812 {
19813 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
19814
19815 section = &dwz->line;
19816 }
19817 else
19818 section = &per_objfile->per_bfd->line;
19819
19820 return section;
19821 }
19822
19823 /* Read the statement program header starting at OFFSET in
19824 .debug_line, or .debug_line.dwo. Return a pointer
19825 to a struct line_header, allocated using xmalloc.
19826 Returns NULL if there is a problem reading the header, e.g., if it
19827 has a version we don't understand.
19828
19829 NOTE: the strings in the include directory and file name tables of
19830 the returned object point into the dwarf line section buffer,
19831 and must not be freed. */
19832
19833 static line_header_up
19834 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19835 {
19836 struct dwarf2_section_info *section;
19837 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19838
19839 section = get_debug_line_section (cu);
19840 section->read (per_objfile->objfile);
19841 if (section->buffer == NULL)
19842 {
19843 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19844 complaint (_("missing .debug_line.dwo section"));
19845 else
19846 complaint (_("missing .debug_line section"));
19847 return 0;
19848 }
19849
19850 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19851 per_objfile, section, &cu->header);
19852 }
19853
19854 /* Subroutine of dwarf_decode_lines to simplify it.
19855 Return the file name of the psymtab for the given file_entry.
19856 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19857 If space for the result is malloc'd, *NAME_HOLDER will be set.
19858 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19859
19860 static const char *
19861 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19862 const dwarf2_psymtab *pst,
19863 const char *comp_dir,
19864 gdb::unique_xmalloc_ptr<char> *name_holder)
19865 {
19866 const char *include_name = fe.name;
19867 const char *include_name_to_compare = include_name;
19868 const char *pst_filename;
19869 int file_is_pst;
19870
19871 const char *dir_name = fe.include_dir (lh);
19872
19873 gdb::unique_xmalloc_ptr<char> hold_compare;
19874 if (!IS_ABSOLUTE_PATH (include_name)
19875 && (dir_name != NULL || comp_dir != NULL))
19876 {
19877 /* Avoid creating a duplicate psymtab for PST.
19878 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19879 Before we do the comparison, however, we need to account
19880 for DIR_NAME and COMP_DIR.
19881 First prepend dir_name (if non-NULL). If we still don't
19882 have an absolute path prepend comp_dir (if non-NULL).
19883 However, the directory we record in the include-file's
19884 psymtab does not contain COMP_DIR (to match the
19885 corresponding symtab(s)).
19886
19887 Example:
19888
19889 bash$ cd /tmp
19890 bash$ gcc -g ./hello.c
19891 include_name = "hello.c"
19892 dir_name = "."
19893 DW_AT_comp_dir = comp_dir = "/tmp"
19894 DW_AT_name = "./hello.c"
19895
19896 */
19897
19898 if (dir_name != NULL)
19899 {
19900 name_holder->reset (concat (dir_name, SLASH_STRING,
19901 include_name, (char *) NULL));
19902 include_name = name_holder->get ();
19903 include_name_to_compare = include_name;
19904 }
19905 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19906 {
19907 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19908 include_name, (char *) NULL));
19909 include_name_to_compare = hold_compare.get ();
19910 }
19911 }
19912
19913 pst_filename = pst->filename;
19914 gdb::unique_xmalloc_ptr<char> copied_name;
19915 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19916 {
19917 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19918 pst_filename, (char *) NULL));
19919 pst_filename = copied_name.get ();
19920 }
19921
19922 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19923
19924 if (file_is_pst)
19925 return NULL;
19926 return include_name;
19927 }
19928
19929 /* State machine to track the state of the line number program. */
19930
19931 class lnp_state_machine
19932 {
19933 public:
19934 /* Initialize a machine state for the start of a line number
19935 program. */
19936 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19937 bool record_lines_p);
19938
19939 file_entry *current_file ()
19940 {
19941 /* lh->file_names is 0-based, but the file name numbers in the
19942 statement program are 1-based. */
19943 return m_line_header->file_name_at (m_file);
19944 }
19945
19946 /* Record the line in the state machine. END_SEQUENCE is true if
19947 we're processing the end of a sequence. */
19948 void record_line (bool end_sequence);
19949
19950 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19951 nop-out rest of the lines in this sequence. */
19952 void check_line_address (struct dwarf2_cu *cu,
19953 const gdb_byte *line_ptr,
19954 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19955
19956 void handle_set_discriminator (unsigned int discriminator)
19957 {
19958 m_discriminator = discriminator;
19959 m_line_has_non_zero_discriminator |= discriminator != 0;
19960 }
19961
19962 /* Handle DW_LNE_set_address. */
19963 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19964 {
19965 m_op_index = 0;
19966 address += baseaddr;
19967 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19968 }
19969
19970 /* Handle DW_LNS_advance_pc. */
19971 void handle_advance_pc (CORE_ADDR adjust);
19972
19973 /* Handle a special opcode. */
19974 void handle_special_opcode (unsigned char op_code);
19975
19976 /* Handle DW_LNS_advance_line. */
19977 void handle_advance_line (int line_delta)
19978 {
19979 advance_line (line_delta);
19980 }
19981
19982 /* Handle DW_LNS_set_file. */
19983 void handle_set_file (file_name_index file);
19984
19985 /* Handle DW_LNS_negate_stmt. */
19986 void handle_negate_stmt ()
19987 {
19988 m_is_stmt = !m_is_stmt;
19989 }
19990
19991 /* Handle DW_LNS_const_add_pc. */
19992 void handle_const_add_pc ();
19993
19994 /* Handle DW_LNS_fixed_advance_pc. */
19995 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19996 {
19997 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19998 m_op_index = 0;
19999 }
20000
20001 /* Handle DW_LNS_copy. */
20002 void handle_copy ()
20003 {
20004 record_line (false);
20005 m_discriminator = 0;
20006 }
20007
20008 /* Handle DW_LNE_end_sequence. */
20009 void handle_end_sequence ()
20010 {
20011 m_currently_recording_lines = true;
20012 }
20013
20014 private:
20015 /* Advance the line by LINE_DELTA. */
20016 void advance_line (int line_delta)
20017 {
20018 m_line += line_delta;
20019
20020 if (line_delta != 0)
20021 m_line_has_non_zero_discriminator = m_discriminator != 0;
20022 }
20023
20024 struct dwarf2_cu *m_cu;
20025
20026 gdbarch *m_gdbarch;
20027
20028 /* True if we're recording lines.
20029 Otherwise we're building partial symtabs and are just interested in
20030 finding include files mentioned by the line number program. */
20031 bool m_record_lines_p;
20032
20033 /* The line number header. */
20034 line_header *m_line_header;
20035
20036 /* These are part of the standard DWARF line number state machine,
20037 and initialized according to the DWARF spec. */
20038
20039 unsigned char m_op_index = 0;
20040 /* The line table index of the current file. */
20041 file_name_index m_file = 1;
20042 unsigned int m_line = 1;
20043
20044 /* These are initialized in the constructor. */
20045
20046 CORE_ADDR m_address;
20047 bool m_is_stmt;
20048 unsigned int m_discriminator;
20049
20050 /* Additional bits of state we need to track. */
20051
20052 /* The last file that we called dwarf2_start_subfile for.
20053 This is only used for TLLs. */
20054 unsigned int m_last_file = 0;
20055 /* The last file a line number was recorded for. */
20056 struct subfile *m_last_subfile = NULL;
20057
20058 /* The address of the last line entry. */
20059 CORE_ADDR m_last_address;
20060
20061 /* Set to true when a previous line at the same address (using
20062 m_last_address) had m_is_stmt true. This is reset to false when a
20063 line entry at a new address (m_address different to m_last_address) is
20064 processed. */
20065 bool m_stmt_at_address = false;
20066
20067 /* When true, record the lines we decode. */
20068 bool m_currently_recording_lines = false;
20069
20070 /* The last line number that was recorded, used to coalesce
20071 consecutive entries for the same line. This can happen, for
20072 example, when discriminators are present. PR 17276. */
20073 unsigned int m_last_line = 0;
20074 bool m_line_has_non_zero_discriminator = false;
20075 };
20076
20077 void
20078 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20079 {
20080 CORE_ADDR addr_adj = (((m_op_index + adjust)
20081 / m_line_header->maximum_ops_per_instruction)
20082 * m_line_header->minimum_instruction_length);
20083 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20084 m_op_index = ((m_op_index + adjust)
20085 % m_line_header->maximum_ops_per_instruction);
20086 }
20087
20088 void
20089 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20090 {
20091 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20092 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20093 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20094 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20095 / m_line_header->maximum_ops_per_instruction)
20096 * m_line_header->minimum_instruction_length);
20097 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20098 m_op_index = ((m_op_index + adj_opcode_d)
20099 % m_line_header->maximum_ops_per_instruction);
20100
20101 int line_delta = m_line_header->line_base + adj_opcode_r;
20102 advance_line (line_delta);
20103 record_line (false);
20104 m_discriminator = 0;
20105 }
20106
20107 void
20108 lnp_state_machine::handle_set_file (file_name_index file)
20109 {
20110 m_file = file;
20111
20112 const file_entry *fe = current_file ();
20113 if (fe == NULL)
20114 dwarf2_debug_line_missing_file_complaint ();
20115 else if (m_record_lines_p)
20116 {
20117 const char *dir = fe->include_dir (m_line_header);
20118
20119 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20120 m_line_has_non_zero_discriminator = m_discriminator != 0;
20121 dwarf2_start_subfile (m_cu, fe->name, dir);
20122 }
20123 }
20124
20125 void
20126 lnp_state_machine::handle_const_add_pc ()
20127 {
20128 CORE_ADDR adjust
20129 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20130
20131 CORE_ADDR addr_adj
20132 = (((m_op_index + adjust)
20133 / m_line_header->maximum_ops_per_instruction)
20134 * m_line_header->minimum_instruction_length);
20135
20136 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20137 m_op_index = ((m_op_index + adjust)
20138 % m_line_header->maximum_ops_per_instruction);
20139 }
20140
20141 /* Return non-zero if we should add LINE to the line number table.
20142 LINE is the line to add, LAST_LINE is the last line that was added,
20143 LAST_SUBFILE is the subfile for LAST_LINE.
20144 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20145 had a non-zero discriminator.
20146
20147 We have to be careful in the presence of discriminators.
20148 E.g., for this line:
20149
20150 for (i = 0; i < 100000; i++);
20151
20152 clang can emit four line number entries for that one line,
20153 each with a different discriminator.
20154 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20155
20156 However, we want gdb to coalesce all four entries into one.
20157 Otherwise the user could stepi into the middle of the line and
20158 gdb would get confused about whether the pc really was in the
20159 middle of the line.
20160
20161 Things are further complicated by the fact that two consecutive
20162 line number entries for the same line is a heuristic used by gcc
20163 to denote the end of the prologue. So we can't just discard duplicate
20164 entries, we have to be selective about it. The heuristic we use is
20165 that we only collapse consecutive entries for the same line if at least
20166 one of those entries has a non-zero discriminator. PR 17276.
20167
20168 Note: Addresses in the line number state machine can never go backwards
20169 within one sequence, thus this coalescing is ok. */
20170
20171 static int
20172 dwarf_record_line_p (struct dwarf2_cu *cu,
20173 unsigned int line, unsigned int last_line,
20174 int line_has_non_zero_discriminator,
20175 struct subfile *last_subfile)
20176 {
20177 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20178 return 1;
20179 if (line != last_line)
20180 return 1;
20181 /* Same line for the same file that we've seen already.
20182 As a last check, for pr 17276, only record the line if the line
20183 has never had a non-zero discriminator. */
20184 if (!line_has_non_zero_discriminator)
20185 return 1;
20186 return 0;
20187 }
20188
20189 /* Use the CU's builder to record line number LINE beginning at
20190 address ADDRESS in the line table of subfile SUBFILE. */
20191
20192 static void
20193 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20194 unsigned int line, CORE_ADDR address, bool is_stmt,
20195 struct dwarf2_cu *cu)
20196 {
20197 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20198
20199 if (dwarf_line_debug)
20200 {
20201 fprintf_unfiltered (gdb_stdlog,
20202 "Recording line %u, file %s, address %s\n",
20203 line, lbasename (subfile->name),
20204 paddress (gdbarch, address));
20205 }
20206
20207 if (cu != nullptr)
20208 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20209 }
20210
20211 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20212 Mark the end of a set of line number records.
20213 The arguments are the same as for dwarf_record_line_1.
20214 If SUBFILE is NULL the request is ignored. */
20215
20216 static void
20217 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20218 CORE_ADDR address, struct dwarf2_cu *cu)
20219 {
20220 if (subfile == NULL)
20221 return;
20222
20223 if (dwarf_line_debug)
20224 {
20225 fprintf_unfiltered (gdb_stdlog,
20226 "Finishing current line, file %s, address %s\n",
20227 lbasename (subfile->name),
20228 paddress (gdbarch, address));
20229 }
20230
20231 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20232 }
20233
20234 void
20235 lnp_state_machine::record_line (bool end_sequence)
20236 {
20237 if (dwarf_line_debug)
20238 {
20239 fprintf_unfiltered (gdb_stdlog,
20240 "Processing actual line %u: file %u,"
20241 " address %s, is_stmt %u, discrim %u%s\n",
20242 m_line, m_file,
20243 paddress (m_gdbarch, m_address),
20244 m_is_stmt, m_discriminator,
20245 (end_sequence ? "\t(end sequence)" : ""));
20246 }
20247
20248 file_entry *fe = current_file ();
20249
20250 if (fe == NULL)
20251 dwarf2_debug_line_missing_file_complaint ();
20252 /* For now we ignore lines not starting on an instruction boundary.
20253 But not when processing end_sequence for compatibility with the
20254 previous version of the code. */
20255 else if (m_op_index == 0 || end_sequence)
20256 {
20257 fe->included_p = 1;
20258 if (m_record_lines_p)
20259 {
20260 /* When we switch files we insert an end maker in the first file,
20261 switch to the second file and add a new line entry. The
20262 problem is that the end marker inserted in the first file will
20263 discard any previous line entries at the same address. If the
20264 line entries in the first file are marked as is-stmt, while
20265 the new line in the second file is non-stmt, then this means
20266 the end marker will discard is-stmt lines so we can have a
20267 non-stmt line. This means that there are less addresses at
20268 which the user can insert a breakpoint.
20269
20270 To improve this we track the last address in m_last_address,
20271 and whether we have seen an is-stmt at this address. Then
20272 when switching files, if we have seen a stmt at the current
20273 address, and we are switching to create a non-stmt line, then
20274 discard the new line. */
20275 bool file_changed
20276 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
20277 bool ignore_this_line
20278 = (file_changed && !end_sequence && m_last_address == m_address
20279 && !m_is_stmt && m_stmt_at_address);
20280
20281 if ((file_changed && !ignore_this_line) || end_sequence)
20282 {
20283 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20284 m_currently_recording_lines ? m_cu : nullptr);
20285 }
20286
20287 if (!end_sequence && !ignore_this_line)
20288 {
20289 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20290
20291 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20292 m_line_has_non_zero_discriminator,
20293 m_last_subfile))
20294 {
20295 buildsym_compunit *builder = m_cu->get_builder ();
20296 dwarf_record_line_1 (m_gdbarch,
20297 builder->get_current_subfile (),
20298 m_line, m_address, is_stmt,
20299 m_currently_recording_lines ? m_cu : nullptr);
20300 }
20301 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20302 m_last_line = m_line;
20303 }
20304 }
20305 }
20306
20307 /* Track whether we have seen any m_is_stmt true at m_address in case we
20308 have multiple line table entries all at m_address. */
20309 if (m_last_address != m_address)
20310 {
20311 m_stmt_at_address = false;
20312 m_last_address = m_address;
20313 }
20314 m_stmt_at_address |= m_is_stmt;
20315 }
20316
20317 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20318 line_header *lh, bool record_lines_p)
20319 {
20320 m_cu = cu;
20321 m_gdbarch = arch;
20322 m_record_lines_p = record_lines_p;
20323 m_line_header = lh;
20324
20325 m_currently_recording_lines = true;
20326
20327 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20328 was a line entry for it so that the backend has a chance to adjust it
20329 and also record it in case it needs it. This is currently used by MIPS
20330 code, cf. `mips_adjust_dwarf2_line'. */
20331 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20332 m_is_stmt = lh->default_is_stmt;
20333 m_discriminator = 0;
20334
20335 m_last_address = m_address;
20336 m_stmt_at_address = false;
20337 }
20338
20339 void
20340 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20341 const gdb_byte *line_ptr,
20342 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20343 {
20344 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20345 the pc range of the CU. However, we restrict the test to only ADDRESS
20346 values of zero to preserve GDB's previous behaviour which is to handle
20347 the specific case of a function being GC'd by the linker. */
20348
20349 if (address == 0 && address < unrelocated_lowpc)
20350 {
20351 /* This line table is for a function which has been
20352 GCd by the linker. Ignore it. PR gdb/12528 */
20353
20354 struct objfile *objfile = cu->per_objfile->objfile;
20355 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20356
20357 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20358 line_offset, objfile_name (objfile));
20359 m_currently_recording_lines = false;
20360 /* Note: m_currently_recording_lines is left as false until we see
20361 DW_LNE_end_sequence. */
20362 }
20363 }
20364
20365 /* Subroutine of dwarf_decode_lines to simplify it.
20366 Process the line number information in LH.
20367 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20368 program in order to set included_p for every referenced header. */
20369
20370 static void
20371 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20372 const int decode_for_pst_p, CORE_ADDR lowpc)
20373 {
20374 const gdb_byte *line_ptr, *extended_end;
20375 const gdb_byte *line_end;
20376 unsigned int bytes_read, extended_len;
20377 unsigned char op_code, extended_op;
20378 CORE_ADDR baseaddr;
20379 struct objfile *objfile = cu->per_objfile->objfile;
20380 bfd *abfd = objfile->obfd;
20381 struct gdbarch *gdbarch = objfile->arch ();
20382 /* True if we're recording line info (as opposed to building partial
20383 symtabs and just interested in finding include files mentioned by
20384 the line number program). */
20385 bool record_lines_p = !decode_for_pst_p;
20386
20387 baseaddr = objfile->text_section_offset ();
20388
20389 line_ptr = lh->statement_program_start;
20390 line_end = lh->statement_program_end;
20391
20392 /* Read the statement sequences until there's nothing left. */
20393 while (line_ptr < line_end)
20394 {
20395 /* The DWARF line number program state machine. Reset the state
20396 machine at the start of each sequence. */
20397 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20398 bool end_sequence = false;
20399
20400 if (record_lines_p)
20401 {
20402 /* Start a subfile for the current file of the state
20403 machine. */
20404 const file_entry *fe = state_machine.current_file ();
20405
20406 if (fe != NULL)
20407 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20408 }
20409
20410 /* Decode the table. */
20411 while (line_ptr < line_end && !end_sequence)
20412 {
20413 op_code = read_1_byte (abfd, line_ptr);
20414 line_ptr += 1;
20415
20416 if (op_code >= lh->opcode_base)
20417 {
20418 /* Special opcode. */
20419 state_machine.handle_special_opcode (op_code);
20420 }
20421 else switch (op_code)
20422 {
20423 case DW_LNS_extended_op:
20424 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20425 &bytes_read);
20426 line_ptr += bytes_read;
20427 extended_end = line_ptr + extended_len;
20428 extended_op = read_1_byte (abfd, line_ptr);
20429 line_ptr += 1;
20430 switch (extended_op)
20431 {
20432 case DW_LNE_end_sequence:
20433 state_machine.handle_end_sequence ();
20434 end_sequence = true;
20435 break;
20436 case DW_LNE_set_address:
20437 {
20438 CORE_ADDR address
20439 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20440 line_ptr += bytes_read;
20441
20442 state_machine.check_line_address (cu, line_ptr,
20443 lowpc - baseaddr, address);
20444 state_machine.handle_set_address (baseaddr, address);
20445 }
20446 break;
20447 case DW_LNE_define_file:
20448 {
20449 const char *cur_file;
20450 unsigned int mod_time, length;
20451 dir_index dindex;
20452
20453 cur_file = read_direct_string (abfd, line_ptr,
20454 &bytes_read);
20455 line_ptr += bytes_read;
20456 dindex = (dir_index)
20457 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20458 line_ptr += bytes_read;
20459 mod_time =
20460 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20461 line_ptr += bytes_read;
20462 length =
20463 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20464 line_ptr += bytes_read;
20465 lh->add_file_name (cur_file, dindex, mod_time, length);
20466 }
20467 break;
20468 case DW_LNE_set_discriminator:
20469 {
20470 /* The discriminator is not interesting to the
20471 debugger; just ignore it. We still need to
20472 check its value though:
20473 if there are consecutive entries for the same
20474 (non-prologue) line we want to coalesce them.
20475 PR 17276. */
20476 unsigned int discr
20477 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20478 line_ptr += bytes_read;
20479
20480 state_machine.handle_set_discriminator (discr);
20481 }
20482 break;
20483 default:
20484 complaint (_("mangled .debug_line section"));
20485 return;
20486 }
20487 /* Make sure that we parsed the extended op correctly. If e.g.
20488 we expected a different address size than the producer used,
20489 we may have read the wrong number of bytes. */
20490 if (line_ptr != extended_end)
20491 {
20492 complaint (_("mangled .debug_line section"));
20493 return;
20494 }
20495 break;
20496 case DW_LNS_copy:
20497 state_machine.handle_copy ();
20498 break;
20499 case DW_LNS_advance_pc:
20500 {
20501 CORE_ADDR adjust
20502 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20503 line_ptr += bytes_read;
20504
20505 state_machine.handle_advance_pc (adjust);
20506 }
20507 break;
20508 case DW_LNS_advance_line:
20509 {
20510 int line_delta
20511 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20512 line_ptr += bytes_read;
20513
20514 state_machine.handle_advance_line (line_delta);
20515 }
20516 break;
20517 case DW_LNS_set_file:
20518 {
20519 file_name_index file
20520 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20521 &bytes_read);
20522 line_ptr += bytes_read;
20523
20524 state_machine.handle_set_file (file);
20525 }
20526 break;
20527 case DW_LNS_set_column:
20528 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20529 line_ptr += bytes_read;
20530 break;
20531 case DW_LNS_negate_stmt:
20532 state_machine.handle_negate_stmt ();
20533 break;
20534 case DW_LNS_set_basic_block:
20535 break;
20536 /* Add to the address register of the state machine the
20537 address increment value corresponding to special opcode
20538 255. I.e., this value is scaled by the minimum
20539 instruction length since special opcode 255 would have
20540 scaled the increment. */
20541 case DW_LNS_const_add_pc:
20542 state_machine.handle_const_add_pc ();
20543 break;
20544 case DW_LNS_fixed_advance_pc:
20545 {
20546 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20547 line_ptr += 2;
20548
20549 state_machine.handle_fixed_advance_pc (addr_adj);
20550 }
20551 break;
20552 default:
20553 {
20554 /* Unknown standard opcode, ignore it. */
20555 int i;
20556
20557 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20558 {
20559 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20560 line_ptr += bytes_read;
20561 }
20562 }
20563 }
20564 }
20565
20566 if (!end_sequence)
20567 dwarf2_debug_line_missing_end_sequence_complaint ();
20568
20569 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20570 in which case we still finish recording the last line). */
20571 state_machine.record_line (true);
20572 }
20573 }
20574
20575 /* Decode the Line Number Program (LNP) for the given line_header
20576 structure and CU. The actual information extracted and the type
20577 of structures created from the LNP depends on the value of PST.
20578
20579 1. If PST is NULL, then this procedure uses the data from the program
20580 to create all necessary symbol tables, and their linetables.
20581
20582 2. If PST is not NULL, this procedure reads the program to determine
20583 the list of files included by the unit represented by PST, and
20584 builds all the associated partial symbol tables.
20585
20586 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20587 It is used for relative paths in the line table.
20588 NOTE: When processing partial symtabs (pst != NULL),
20589 comp_dir == pst->dirname.
20590
20591 NOTE: It is important that psymtabs have the same file name (via strcmp)
20592 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20593 symtab we don't use it in the name of the psymtabs we create.
20594 E.g. expand_line_sal requires this when finding psymtabs to expand.
20595 A good testcase for this is mb-inline.exp.
20596
20597 LOWPC is the lowest address in CU (or 0 if not known).
20598
20599 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20600 for its PC<->lines mapping information. Otherwise only the filename
20601 table is read in. */
20602
20603 static void
20604 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20605 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20606 CORE_ADDR lowpc, int decode_mapping)
20607 {
20608 struct objfile *objfile = cu->per_objfile->objfile;
20609 const int decode_for_pst_p = (pst != NULL);
20610
20611 if (decode_mapping)
20612 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20613
20614 if (decode_for_pst_p)
20615 {
20616 /* Now that we're done scanning the Line Header Program, we can
20617 create the psymtab of each included file. */
20618 for (auto &file_entry : lh->file_names ())
20619 if (file_entry.included_p == 1)
20620 {
20621 gdb::unique_xmalloc_ptr<char> name_holder;
20622 const char *include_name =
20623 psymtab_include_file_name (lh, file_entry, pst,
20624 comp_dir, &name_holder);
20625 if (include_name != NULL)
20626 dwarf2_create_include_psymtab (include_name, pst, objfile);
20627 }
20628 }
20629 else
20630 {
20631 /* Make sure a symtab is created for every file, even files
20632 which contain only variables (i.e. no code with associated
20633 line numbers). */
20634 buildsym_compunit *builder = cu->get_builder ();
20635 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20636
20637 for (auto &fe : lh->file_names ())
20638 {
20639 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20640 if (builder->get_current_subfile ()->symtab == NULL)
20641 {
20642 builder->get_current_subfile ()->symtab
20643 = allocate_symtab (cust,
20644 builder->get_current_subfile ()->name);
20645 }
20646 fe.symtab = builder->get_current_subfile ()->symtab;
20647 }
20648 }
20649 }
20650
20651 /* Start a subfile for DWARF. FILENAME is the name of the file and
20652 DIRNAME the name of the source directory which contains FILENAME
20653 or NULL if not known.
20654 This routine tries to keep line numbers from identical absolute and
20655 relative file names in a common subfile.
20656
20657 Using the `list' example from the GDB testsuite, which resides in
20658 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20659 of /srcdir/list0.c yields the following debugging information for list0.c:
20660
20661 DW_AT_name: /srcdir/list0.c
20662 DW_AT_comp_dir: /compdir
20663 files.files[0].name: list0.h
20664 files.files[0].dir: /srcdir
20665 files.files[1].name: list0.c
20666 files.files[1].dir: /srcdir
20667
20668 The line number information for list0.c has to end up in a single
20669 subfile, so that `break /srcdir/list0.c:1' works as expected.
20670 start_subfile will ensure that this happens provided that we pass the
20671 concatenation of files.files[1].dir and files.files[1].name as the
20672 subfile's name. */
20673
20674 static void
20675 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20676 const char *dirname)
20677 {
20678 gdb::unique_xmalloc_ptr<char> copy;
20679
20680 /* In order not to lose the line information directory,
20681 we concatenate it to the filename when it makes sense.
20682 Note that the Dwarf3 standard says (speaking of filenames in line
20683 information): ``The directory index is ignored for file names
20684 that represent full path names''. Thus ignoring dirname in the
20685 `else' branch below isn't an issue. */
20686
20687 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20688 {
20689 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20690 filename = copy.get ();
20691 }
20692
20693 cu->get_builder ()->start_subfile (filename);
20694 }
20695
20696 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20697 buildsym_compunit constructor. */
20698
20699 struct compunit_symtab *
20700 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20701 CORE_ADDR low_pc)
20702 {
20703 gdb_assert (m_builder == nullptr);
20704
20705 m_builder.reset (new struct buildsym_compunit
20706 (this->per_objfile->objfile,
20707 name, comp_dir, language, low_pc));
20708
20709 list_in_scope = get_builder ()->get_file_symbols ();
20710
20711 get_builder ()->record_debugformat ("DWARF 2");
20712 get_builder ()->record_producer (producer);
20713
20714 processing_has_namespace_info = false;
20715
20716 return get_builder ()->get_compunit_symtab ();
20717 }
20718
20719 static void
20720 var_decode_location (struct attribute *attr, struct symbol *sym,
20721 struct dwarf2_cu *cu)
20722 {
20723 struct objfile *objfile = cu->per_objfile->objfile;
20724 struct comp_unit_head *cu_header = &cu->header;
20725
20726 /* NOTE drow/2003-01-30: There used to be a comment and some special
20727 code here to turn a symbol with DW_AT_external and a
20728 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20729 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20730 with some versions of binutils) where shared libraries could have
20731 relocations against symbols in their debug information - the
20732 minimal symbol would have the right address, but the debug info
20733 would not. It's no longer necessary, because we will explicitly
20734 apply relocations when we read in the debug information now. */
20735
20736 /* A DW_AT_location attribute with no contents indicates that a
20737 variable has been optimized away. */
20738 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20739 {
20740 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20741 return;
20742 }
20743
20744 /* Handle one degenerate form of location expression specially, to
20745 preserve GDB's previous behavior when section offsets are
20746 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20747 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20748
20749 if (attr->form_is_block ()
20750 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20751 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20752 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20753 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20754 && (DW_BLOCK (attr)->size
20755 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20756 {
20757 unsigned int dummy;
20758
20759 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20760 SET_SYMBOL_VALUE_ADDRESS
20761 (sym, cu->header.read_address (objfile->obfd,
20762 DW_BLOCK (attr)->data + 1,
20763 &dummy));
20764 else
20765 SET_SYMBOL_VALUE_ADDRESS
20766 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20767 &dummy));
20768 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20769 fixup_symbol_section (sym, objfile);
20770 SET_SYMBOL_VALUE_ADDRESS
20771 (sym,
20772 SYMBOL_VALUE_ADDRESS (sym)
20773 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20774 return;
20775 }
20776
20777 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20778 expression evaluator, and use LOC_COMPUTED only when necessary
20779 (i.e. when the value of a register or memory location is
20780 referenced, or a thread-local block, etc.). Then again, it might
20781 not be worthwhile. I'm assuming that it isn't unless performance
20782 or memory numbers show me otherwise. */
20783
20784 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20785
20786 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20787 cu->has_loclist = true;
20788 }
20789
20790 /* Given a pointer to a DWARF information entry, figure out if we need
20791 to make a symbol table entry for it, and if so, create a new entry
20792 and return a pointer to it.
20793 If TYPE is NULL, determine symbol type from the die, otherwise
20794 used the passed type.
20795 If SPACE is not NULL, use it to hold the new symbol. If it is
20796 NULL, allocate a new symbol on the objfile's obstack. */
20797
20798 static struct symbol *
20799 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20800 struct symbol *space)
20801 {
20802 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20803 struct objfile *objfile = per_objfile->objfile;
20804 struct gdbarch *gdbarch = objfile->arch ();
20805 struct symbol *sym = NULL;
20806 const char *name;
20807 struct attribute *attr = NULL;
20808 struct attribute *attr2 = NULL;
20809 CORE_ADDR baseaddr;
20810 struct pending **list_to_add = NULL;
20811
20812 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20813
20814 baseaddr = objfile->text_section_offset ();
20815
20816 name = dwarf2_name (die, cu);
20817 if (name)
20818 {
20819 int suppress_add = 0;
20820
20821 if (space)
20822 sym = space;
20823 else
20824 sym = new (&objfile->objfile_obstack) symbol;
20825 OBJSTAT (objfile, n_syms++);
20826
20827 /* Cache this symbol's name and the name's demangled form (if any). */
20828 sym->set_language (cu->language, &objfile->objfile_obstack);
20829 /* Fortran does not have mangling standard and the mangling does differ
20830 between gfortran, iFort etc. */
20831 const char *physname
20832 = (cu->language == language_fortran
20833 ? dwarf2_full_name (name, die, cu)
20834 : dwarf2_physname (name, die, cu));
20835 const char *linkagename = dw2_linkage_name (die, cu);
20836
20837 if (linkagename == nullptr || cu->language == language_ada)
20838 sym->set_linkage_name (physname);
20839 else
20840 {
20841 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20842 sym->set_linkage_name (linkagename);
20843 }
20844
20845 /* Default assumptions.
20846 Use the passed type or decode it from the die. */
20847 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20848 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20849 if (type != NULL)
20850 SYMBOL_TYPE (sym) = type;
20851 else
20852 SYMBOL_TYPE (sym) = die_type (die, cu);
20853 attr = dwarf2_attr (die,
20854 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20855 cu);
20856 if (attr != nullptr)
20857 {
20858 SYMBOL_LINE (sym) = DW_UNSND (attr);
20859 }
20860
20861 attr = dwarf2_attr (die,
20862 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20863 cu);
20864 if (attr != nullptr)
20865 {
20866 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20867 struct file_entry *fe;
20868
20869 if (cu->line_header != NULL)
20870 fe = cu->line_header->file_name_at (file_index);
20871 else
20872 fe = NULL;
20873
20874 if (fe == NULL)
20875 complaint (_("file index out of range"));
20876 else
20877 symbol_set_symtab (sym, fe->symtab);
20878 }
20879
20880 switch (die->tag)
20881 {
20882 case DW_TAG_label:
20883 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20884 if (attr != nullptr)
20885 {
20886 CORE_ADDR addr;
20887
20888 addr = attr->value_as_address ();
20889 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20890 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20891 }
20892 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20893 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20894 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20895 add_symbol_to_list (sym, cu->list_in_scope);
20896 break;
20897 case DW_TAG_subprogram:
20898 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20899 finish_block. */
20900 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20902 if ((attr2 && (DW_UNSND (attr2) != 0))
20903 || cu->language == language_ada
20904 || cu->language == language_fortran)
20905 {
20906 /* Subprograms marked external are stored as a global symbol.
20907 Ada and Fortran subprograms, whether marked external or
20908 not, are always stored as a global symbol, because we want
20909 to be able to access them globally. For instance, we want
20910 to be able to break on a nested subprogram without having
20911 to specify the context. */
20912 list_to_add = cu->get_builder ()->get_global_symbols ();
20913 }
20914 else
20915 {
20916 list_to_add = cu->list_in_scope;
20917 }
20918 break;
20919 case DW_TAG_inlined_subroutine:
20920 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20921 finish_block. */
20922 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20923 SYMBOL_INLINED (sym) = 1;
20924 list_to_add = cu->list_in_scope;
20925 break;
20926 case DW_TAG_template_value_param:
20927 suppress_add = 1;
20928 /* Fall through. */
20929 case DW_TAG_constant:
20930 case DW_TAG_variable:
20931 case DW_TAG_member:
20932 /* Compilation with minimal debug info may result in
20933 variables with missing type entries. Change the
20934 misleading `void' type to something sensible. */
20935 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
20936 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20937
20938 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20939 /* In the case of DW_TAG_member, we should only be called for
20940 static const members. */
20941 if (die->tag == DW_TAG_member)
20942 {
20943 /* dwarf2_add_field uses die_is_declaration,
20944 so we do the same. */
20945 gdb_assert (die_is_declaration (die, cu));
20946 gdb_assert (attr);
20947 }
20948 if (attr != nullptr)
20949 {
20950 dwarf2_const_value (attr, sym, cu);
20951 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20952 if (!suppress_add)
20953 {
20954 if (attr2 && (DW_UNSND (attr2) != 0))
20955 list_to_add = cu->get_builder ()->get_global_symbols ();
20956 else
20957 list_to_add = cu->list_in_scope;
20958 }
20959 break;
20960 }
20961 attr = dwarf2_attr (die, DW_AT_location, cu);
20962 if (attr != nullptr)
20963 {
20964 var_decode_location (attr, sym, cu);
20965 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20966
20967 /* Fortran explicitly imports any global symbols to the local
20968 scope by DW_TAG_common_block. */
20969 if (cu->language == language_fortran && die->parent
20970 && die->parent->tag == DW_TAG_common_block)
20971 attr2 = NULL;
20972
20973 if (SYMBOL_CLASS (sym) == LOC_STATIC
20974 && SYMBOL_VALUE_ADDRESS (sym) == 0
20975 && !per_objfile->per_bfd->has_section_at_zero)
20976 {
20977 /* When a static variable is eliminated by the linker,
20978 the corresponding debug information is not stripped
20979 out, but the variable address is set to null;
20980 do not add such variables into symbol table. */
20981 }
20982 else if (attr2 && (DW_UNSND (attr2) != 0))
20983 {
20984 if (SYMBOL_CLASS (sym) == LOC_STATIC
20985 && (objfile->flags & OBJF_MAINLINE) == 0
20986 && per_objfile->per_bfd->can_copy)
20987 {
20988 /* A global static variable might be subject to
20989 copy relocation. We first check for a local
20990 minsym, though, because maybe the symbol was
20991 marked hidden, in which case this would not
20992 apply. */
20993 bound_minimal_symbol found
20994 = (lookup_minimal_symbol_linkage
20995 (sym->linkage_name (), objfile));
20996 if (found.minsym != nullptr)
20997 sym->maybe_copied = 1;
20998 }
20999
21000 /* A variable with DW_AT_external is never static,
21001 but it may be block-scoped. */
21002 list_to_add
21003 = ((cu->list_in_scope
21004 == cu->get_builder ()->get_file_symbols ())
21005 ? cu->get_builder ()->get_global_symbols ()
21006 : cu->list_in_scope);
21007 }
21008 else
21009 list_to_add = cu->list_in_scope;
21010 }
21011 else
21012 {
21013 /* We do not know the address of this symbol.
21014 If it is an external symbol and we have type information
21015 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21016 The address of the variable will then be determined from
21017 the minimal symbol table whenever the variable is
21018 referenced. */
21019 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21020
21021 /* Fortran explicitly imports any global symbols to the local
21022 scope by DW_TAG_common_block. */
21023 if (cu->language == language_fortran && die->parent
21024 && die->parent->tag == DW_TAG_common_block)
21025 {
21026 /* SYMBOL_CLASS doesn't matter here because
21027 read_common_block is going to reset it. */
21028 if (!suppress_add)
21029 list_to_add = cu->list_in_scope;
21030 }
21031 else if (attr2 && (DW_UNSND (attr2) != 0)
21032 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21033 {
21034 /* A variable with DW_AT_external is never static, but it
21035 may be block-scoped. */
21036 list_to_add
21037 = ((cu->list_in_scope
21038 == cu->get_builder ()->get_file_symbols ())
21039 ? cu->get_builder ()->get_global_symbols ()
21040 : cu->list_in_scope);
21041
21042 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21043 }
21044 else if (!die_is_declaration (die, cu))
21045 {
21046 /* Use the default LOC_OPTIMIZED_OUT class. */
21047 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21048 if (!suppress_add)
21049 list_to_add = cu->list_in_scope;
21050 }
21051 }
21052 break;
21053 case DW_TAG_formal_parameter:
21054 {
21055 /* If we are inside a function, mark this as an argument. If
21056 not, we might be looking at an argument to an inlined function
21057 when we do not have enough information to show inlined frames;
21058 pretend it's a local variable in that case so that the user can
21059 still see it. */
21060 struct context_stack *curr
21061 = cu->get_builder ()->get_current_context_stack ();
21062 if (curr != nullptr && curr->name != nullptr)
21063 SYMBOL_IS_ARGUMENT (sym) = 1;
21064 attr = dwarf2_attr (die, DW_AT_location, cu);
21065 if (attr != nullptr)
21066 {
21067 var_decode_location (attr, sym, cu);
21068 }
21069 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21070 if (attr != nullptr)
21071 {
21072 dwarf2_const_value (attr, sym, cu);
21073 }
21074
21075 list_to_add = cu->list_in_scope;
21076 }
21077 break;
21078 case DW_TAG_unspecified_parameters:
21079 /* From varargs functions; gdb doesn't seem to have any
21080 interest in this information, so just ignore it for now.
21081 (FIXME?) */
21082 break;
21083 case DW_TAG_template_type_param:
21084 suppress_add = 1;
21085 /* Fall through. */
21086 case DW_TAG_class_type:
21087 case DW_TAG_interface_type:
21088 case DW_TAG_structure_type:
21089 case DW_TAG_union_type:
21090 case DW_TAG_set_type:
21091 case DW_TAG_enumeration_type:
21092 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21093 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21094
21095 {
21096 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21097 really ever be static objects: otherwise, if you try
21098 to, say, break of a class's method and you're in a file
21099 which doesn't mention that class, it won't work unless
21100 the check for all static symbols in lookup_symbol_aux
21101 saves you. See the OtherFileClass tests in
21102 gdb.c++/namespace.exp. */
21103
21104 if (!suppress_add)
21105 {
21106 buildsym_compunit *builder = cu->get_builder ();
21107 list_to_add
21108 = (cu->list_in_scope == builder->get_file_symbols ()
21109 && cu->language == language_cplus
21110 ? builder->get_global_symbols ()
21111 : cu->list_in_scope);
21112
21113 /* The semantics of C++ state that "struct foo {
21114 ... }" also defines a typedef for "foo". */
21115 if (cu->language == language_cplus
21116 || cu->language == language_ada
21117 || cu->language == language_d
21118 || cu->language == language_rust)
21119 {
21120 /* The symbol's name is already allocated along
21121 with this objfile, so we don't need to
21122 duplicate it for the type. */
21123 if (SYMBOL_TYPE (sym)->name () == 0)
21124 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21125 }
21126 }
21127 }
21128 break;
21129 case DW_TAG_typedef:
21130 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21132 list_to_add = cu->list_in_scope;
21133 break;
21134 case DW_TAG_base_type:
21135 case DW_TAG_subrange_type:
21136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21137 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21138 list_to_add = cu->list_in_scope;
21139 break;
21140 case DW_TAG_enumerator:
21141 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21142 if (attr != nullptr)
21143 {
21144 dwarf2_const_value (attr, sym, cu);
21145 }
21146 {
21147 /* NOTE: carlton/2003-11-10: See comment above in the
21148 DW_TAG_class_type, etc. block. */
21149
21150 list_to_add
21151 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21152 && cu->language == language_cplus
21153 ? cu->get_builder ()->get_global_symbols ()
21154 : cu->list_in_scope);
21155 }
21156 break;
21157 case DW_TAG_imported_declaration:
21158 case DW_TAG_namespace:
21159 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21160 list_to_add = cu->get_builder ()->get_global_symbols ();
21161 break;
21162 case DW_TAG_module:
21163 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21164 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21165 list_to_add = cu->get_builder ()->get_global_symbols ();
21166 break;
21167 case DW_TAG_common_block:
21168 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21169 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21170 add_symbol_to_list (sym, cu->list_in_scope);
21171 break;
21172 default:
21173 /* Not a tag we recognize. Hopefully we aren't processing
21174 trash data, but since we must specifically ignore things
21175 we don't recognize, there is nothing else we should do at
21176 this point. */
21177 complaint (_("unsupported tag: '%s'"),
21178 dwarf_tag_name (die->tag));
21179 break;
21180 }
21181
21182 if (suppress_add)
21183 {
21184 sym->hash_next = objfile->template_symbols;
21185 objfile->template_symbols = sym;
21186 list_to_add = NULL;
21187 }
21188
21189 if (list_to_add != NULL)
21190 add_symbol_to_list (sym, list_to_add);
21191
21192 /* For the benefit of old versions of GCC, check for anonymous
21193 namespaces based on the demangled name. */
21194 if (!cu->processing_has_namespace_info
21195 && cu->language == language_cplus)
21196 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21197 }
21198 return (sym);
21199 }
21200
21201 /* Given an attr with a DW_FORM_dataN value in host byte order,
21202 zero-extend it as appropriate for the symbol's type. The DWARF
21203 standard (v4) is not entirely clear about the meaning of using
21204 DW_FORM_dataN for a constant with a signed type, where the type is
21205 wider than the data. The conclusion of a discussion on the DWARF
21206 list was that this is unspecified. We choose to always zero-extend
21207 because that is the interpretation long in use by GCC. */
21208
21209 static gdb_byte *
21210 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21211 struct dwarf2_cu *cu, LONGEST *value, int bits)
21212 {
21213 struct objfile *objfile = cu->per_objfile->objfile;
21214 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21215 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21216 LONGEST l = DW_UNSND (attr);
21217
21218 if (bits < sizeof (*value) * 8)
21219 {
21220 l &= ((LONGEST) 1 << bits) - 1;
21221 *value = l;
21222 }
21223 else if (bits == sizeof (*value) * 8)
21224 *value = l;
21225 else
21226 {
21227 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21228 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21229 return bytes;
21230 }
21231
21232 return NULL;
21233 }
21234
21235 /* Read a constant value from an attribute. Either set *VALUE, or if
21236 the value does not fit in *VALUE, set *BYTES - either already
21237 allocated on the objfile obstack, or newly allocated on OBSTACK,
21238 or, set *BATON, if we translated the constant to a location
21239 expression. */
21240
21241 static void
21242 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21243 const char *name, struct obstack *obstack,
21244 struct dwarf2_cu *cu,
21245 LONGEST *value, const gdb_byte **bytes,
21246 struct dwarf2_locexpr_baton **baton)
21247 {
21248 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21249 struct objfile *objfile = per_objfile->objfile;
21250 struct comp_unit_head *cu_header = &cu->header;
21251 struct dwarf_block *blk;
21252 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21253 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21254
21255 *value = 0;
21256 *bytes = NULL;
21257 *baton = NULL;
21258
21259 switch (attr->form)
21260 {
21261 case DW_FORM_addr:
21262 case DW_FORM_addrx:
21263 case DW_FORM_GNU_addr_index:
21264 {
21265 gdb_byte *data;
21266
21267 if (TYPE_LENGTH (type) != cu_header->addr_size)
21268 dwarf2_const_value_length_mismatch_complaint (name,
21269 cu_header->addr_size,
21270 TYPE_LENGTH (type));
21271 /* Symbols of this form are reasonably rare, so we just
21272 piggyback on the existing location code rather than writing
21273 a new implementation of symbol_computed_ops. */
21274 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21275 (*baton)->per_objfile = per_objfile;
21276 (*baton)->per_cu = cu->per_cu;
21277 gdb_assert ((*baton)->per_cu);
21278
21279 (*baton)->size = 2 + cu_header->addr_size;
21280 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21281 (*baton)->data = data;
21282
21283 data[0] = DW_OP_addr;
21284 store_unsigned_integer (&data[1], cu_header->addr_size,
21285 byte_order, DW_ADDR (attr));
21286 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21287 }
21288 break;
21289 case DW_FORM_string:
21290 case DW_FORM_strp:
21291 case DW_FORM_strx:
21292 case DW_FORM_GNU_str_index:
21293 case DW_FORM_GNU_strp_alt:
21294 /* DW_STRING is already allocated on the objfile obstack, point
21295 directly to it. */
21296 *bytes = (const gdb_byte *) DW_STRING (attr);
21297 break;
21298 case DW_FORM_block1:
21299 case DW_FORM_block2:
21300 case DW_FORM_block4:
21301 case DW_FORM_block:
21302 case DW_FORM_exprloc:
21303 case DW_FORM_data16:
21304 blk = DW_BLOCK (attr);
21305 if (TYPE_LENGTH (type) != blk->size)
21306 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21307 TYPE_LENGTH (type));
21308 *bytes = blk->data;
21309 break;
21310
21311 /* The DW_AT_const_value attributes are supposed to carry the
21312 symbol's value "represented as it would be on the target
21313 architecture." By the time we get here, it's already been
21314 converted to host endianness, so we just need to sign- or
21315 zero-extend it as appropriate. */
21316 case DW_FORM_data1:
21317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21318 break;
21319 case DW_FORM_data2:
21320 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21321 break;
21322 case DW_FORM_data4:
21323 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21324 break;
21325 case DW_FORM_data8:
21326 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21327 break;
21328
21329 case DW_FORM_sdata:
21330 case DW_FORM_implicit_const:
21331 *value = DW_SND (attr);
21332 break;
21333
21334 case DW_FORM_udata:
21335 *value = DW_UNSND (attr);
21336 break;
21337
21338 default:
21339 complaint (_("unsupported const value attribute form: '%s'"),
21340 dwarf_form_name (attr->form));
21341 *value = 0;
21342 break;
21343 }
21344 }
21345
21346
21347 /* Copy constant value from an attribute to a symbol. */
21348
21349 static void
21350 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21351 struct dwarf2_cu *cu)
21352 {
21353 struct objfile *objfile = cu->per_objfile->objfile;
21354 LONGEST value;
21355 const gdb_byte *bytes;
21356 struct dwarf2_locexpr_baton *baton;
21357
21358 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21359 sym->print_name (),
21360 &objfile->objfile_obstack, cu,
21361 &value, &bytes, &baton);
21362
21363 if (baton != NULL)
21364 {
21365 SYMBOL_LOCATION_BATON (sym) = baton;
21366 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21367 }
21368 else if (bytes != NULL)
21369 {
21370 SYMBOL_VALUE_BYTES (sym) = bytes;
21371 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21372 }
21373 else
21374 {
21375 SYMBOL_VALUE (sym) = value;
21376 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21377 }
21378 }
21379
21380 /* Return the type of the die in question using its DW_AT_type attribute. */
21381
21382 static struct type *
21383 die_type (struct die_info *die, struct dwarf2_cu *cu)
21384 {
21385 struct attribute *type_attr;
21386
21387 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21388 if (!type_attr)
21389 {
21390 struct objfile *objfile = cu->per_objfile->objfile;
21391 /* A missing DW_AT_type represents a void type. */
21392 return objfile_type (objfile)->builtin_void;
21393 }
21394
21395 return lookup_die_type (die, type_attr, cu);
21396 }
21397
21398 /* True iff CU's producer generates GNAT Ada auxiliary information
21399 that allows to find parallel types through that information instead
21400 of having to do expensive parallel lookups by type name. */
21401
21402 static int
21403 need_gnat_info (struct dwarf2_cu *cu)
21404 {
21405 /* Assume that the Ada compiler was GNAT, which always produces
21406 the auxiliary information. */
21407 return (cu->language == language_ada);
21408 }
21409
21410 /* Return the auxiliary type of the die in question using its
21411 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21412 attribute is not present. */
21413
21414 static struct type *
21415 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21416 {
21417 struct attribute *type_attr;
21418
21419 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21420 if (!type_attr)
21421 return NULL;
21422
21423 return lookup_die_type (die, type_attr, cu);
21424 }
21425
21426 /* If DIE has a descriptive_type attribute, then set the TYPE's
21427 descriptive type accordingly. */
21428
21429 static void
21430 set_descriptive_type (struct type *type, struct die_info *die,
21431 struct dwarf2_cu *cu)
21432 {
21433 struct type *descriptive_type = die_descriptive_type (die, cu);
21434
21435 if (descriptive_type)
21436 {
21437 ALLOCATE_GNAT_AUX_TYPE (type);
21438 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21439 }
21440 }
21441
21442 /* Return the containing type of the die in question using its
21443 DW_AT_containing_type attribute. */
21444
21445 static struct type *
21446 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21447 {
21448 struct attribute *type_attr;
21449 struct objfile *objfile = cu->per_objfile->objfile;
21450
21451 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21452 if (!type_attr)
21453 error (_("Dwarf Error: Problem turning containing type into gdb type "
21454 "[in module %s]"), objfile_name (objfile));
21455
21456 return lookup_die_type (die, type_attr, cu);
21457 }
21458
21459 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21460
21461 static struct type *
21462 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21463 {
21464 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21465 struct objfile *objfile = per_objfile->objfile;
21466 char *saved;
21467
21468 std::string message
21469 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21470 objfile_name (objfile),
21471 sect_offset_str (cu->header.sect_off),
21472 sect_offset_str (die->sect_off));
21473 saved = obstack_strdup (&objfile->objfile_obstack, message);
21474
21475 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21476 }
21477
21478 /* Look up the type of DIE in CU using its type attribute ATTR.
21479 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21480 DW_AT_containing_type.
21481 If there is no type substitute an error marker. */
21482
21483 static struct type *
21484 lookup_die_type (struct die_info *die, const struct attribute *attr,
21485 struct dwarf2_cu *cu)
21486 {
21487 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21488 struct objfile *objfile = per_objfile->objfile;
21489 struct type *this_type;
21490
21491 gdb_assert (attr->name == DW_AT_type
21492 || attr->name == DW_AT_GNAT_descriptive_type
21493 || attr->name == DW_AT_containing_type);
21494
21495 /* First see if we have it cached. */
21496
21497 if (attr->form == DW_FORM_GNU_ref_alt)
21498 {
21499 struct dwarf2_per_cu_data *per_cu;
21500 sect_offset sect_off = attr->get_ref_die_offset ();
21501
21502 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
21503 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
21504 }
21505 else if (attr->form_is_ref ())
21506 {
21507 sect_offset sect_off = attr->get_ref_die_offset ();
21508
21509 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
21510 }
21511 else if (attr->form == DW_FORM_ref_sig8)
21512 {
21513 ULONGEST signature = DW_SIGNATURE (attr);
21514
21515 return get_signatured_type (die, signature, cu);
21516 }
21517 else
21518 {
21519 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21520 " at %s [in module %s]"),
21521 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21522 objfile_name (objfile));
21523 return build_error_marker_type (cu, die);
21524 }
21525
21526 /* If not cached we need to read it in. */
21527
21528 if (this_type == NULL)
21529 {
21530 struct die_info *type_die = NULL;
21531 struct dwarf2_cu *type_cu = cu;
21532
21533 if (attr->form_is_ref ())
21534 type_die = follow_die_ref (die, attr, &type_cu);
21535 if (type_die == NULL)
21536 return build_error_marker_type (cu, die);
21537 /* If we find the type now, it's probably because the type came
21538 from an inter-CU reference and the type's CU got expanded before
21539 ours. */
21540 this_type = read_type_die (type_die, type_cu);
21541 }
21542
21543 /* If we still don't have a type use an error marker. */
21544
21545 if (this_type == NULL)
21546 return build_error_marker_type (cu, die);
21547
21548 return this_type;
21549 }
21550
21551 /* Return the type in DIE, CU.
21552 Returns NULL for invalid types.
21553
21554 This first does a lookup in die_type_hash,
21555 and only reads the die in if necessary.
21556
21557 NOTE: This can be called when reading in partial or full symbols. */
21558
21559 static struct type *
21560 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21561 {
21562 struct type *this_type;
21563
21564 this_type = get_die_type (die, cu);
21565 if (this_type)
21566 return this_type;
21567
21568 return read_type_die_1 (die, cu);
21569 }
21570
21571 /* Read the type in DIE, CU.
21572 Returns NULL for invalid types. */
21573
21574 static struct type *
21575 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21576 {
21577 struct type *this_type = NULL;
21578
21579 switch (die->tag)
21580 {
21581 case DW_TAG_class_type:
21582 case DW_TAG_interface_type:
21583 case DW_TAG_structure_type:
21584 case DW_TAG_union_type:
21585 this_type = read_structure_type (die, cu);
21586 break;
21587 case DW_TAG_enumeration_type:
21588 this_type = read_enumeration_type (die, cu);
21589 break;
21590 case DW_TAG_subprogram:
21591 case DW_TAG_subroutine_type:
21592 case DW_TAG_inlined_subroutine:
21593 this_type = read_subroutine_type (die, cu);
21594 break;
21595 case DW_TAG_array_type:
21596 this_type = read_array_type (die, cu);
21597 break;
21598 case DW_TAG_set_type:
21599 this_type = read_set_type (die, cu);
21600 break;
21601 case DW_TAG_pointer_type:
21602 this_type = read_tag_pointer_type (die, cu);
21603 break;
21604 case DW_TAG_ptr_to_member_type:
21605 this_type = read_tag_ptr_to_member_type (die, cu);
21606 break;
21607 case DW_TAG_reference_type:
21608 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21609 break;
21610 case DW_TAG_rvalue_reference_type:
21611 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21612 break;
21613 case DW_TAG_const_type:
21614 this_type = read_tag_const_type (die, cu);
21615 break;
21616 case DW_TAG_volatile_type:
21617 this_type = read_tag_volatile_type (die, cu);
21618 break;
21619 case DW_TAG_restrict_type:
21620 this_type = read_tag_restrict_type (die, cu);
21621 break;
21622 case DW_TAG_string_type:
21623 this_type = read_tag_string_type (die, cu);
21624 break;
21625 case DW_TAG_typedef:
21626 this_type = read_typedef (die, cu);
21627 break;
21628 case DW_TAG_subrange_type:
21629 this_type = read_subrange_type (die, cu);
21630 break;
21631 case DW_TAG_base_type:
21632 this_type = read_base_type (die, cu);
21633 break;
21634 case DW_TAG_unspecified_type:
21635 this_type = read_unspecified_type (die, cu);
21636 break;
21637 case DW_TAG_namespace:
21638 this_type = read_namespace_type (die, cu);
21639 break;
21640 case DW_TAG_module:
21641 this_type = read_module_type (die, cu);
21642 break;
21643 case DW_TAG_atomic_type:
21644 this_type = read_tag_atomic_type (die, cu);
21645 break;
21646 default:
21647 complaint (_("unexpected tag in read_type_die: '%s'"),
21648 dwarf_tag_name (die->tag));
21649 break;
21650 }
21651
21652 return this_type;
21653 }
21654
21655 /* See if we can figure out if the class lives in a namespace. We do
21656 this by looking for a member function; its demangled name will
21657 contain namespace info, if there is any.
21658 Return the computed name or NULL.
21659 Space for the result is allocated on the objfile's obstack.
21660 This is the full-die version of guess_partial_die_structure_name.
21661 In this case we know DIE has no useful parent. */
21662
21663 static const char *
21664 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21665 {
21666 struct die_info *spec_die;
21667 struct dwarf2_cu *spec_cu;
21668 struct die_info *child;
21669 struct objfile *objfile = cu->per_objfile->objfile;
21670
21671 spec_cu = cu;
21672 spec_die = die_specification (die, &spec_cu);
21673 if (spec_die != NULL)
21674 {
21675 die = spec_die;
21676 cu = spec_cu;
21677 }
21678
21679 for (child = die->child;
21680 child != NULL;
21681 child = child->sibling)
21682 {
21683 if (child->tag == DW_TAG_subprogram)
21684 {
21685 const char *linkage_name = dw2_linkage_name (child, cu);
21686
21687 if (linkage_name != NULL)
21688 {
21689 gdb::unique_xmalloc_ptr<char> actual_name
21690 (language_class_name_from_physname (cu->language_defn,
21691 linkage_name));
21692 const char *name = NULL;
21693
21694 if (actual_name != NULL)
21695 {
21696 const char *die_name = dwarf2_name (die, cu);
21697
21698 if (die_name != NULL
21699 && strcmp (die_name, actual_name.get ()) != 0)
21700 {
21701 /* Strip off the class name from the full name.
21702 We want the prefix. */
21703 int die_name_len = strlen (die_name);
21704 int actual_name_len = strlen (actual_name.get ());
21705 const char *ptr = actual_name.get ();
21706
21707 /* Test for '::' as a sanity check. */
21708 if (actual_name_len > die_name_len + 2
21709 && ptr[actual_name_len - die_name_len - 1] == ':')
21710 name = obstack_strndup (
21711 &objfile->per_bfd->storage_obstack,
21712 ptr, actual_name_len - die_name_len - 2);
21713 }
21714 }
21715 return name;
21716 }
21717 }
21718 }
21719
21720 return NULL;
21721 }
21722
21723 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21724 prefix part in such case. See
21725 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21726
21727 static const char *
21728 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21729 {
21730 struct attribute *attr;
21731 const char *base;
21732
21733 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21734 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21735 return NULL;
21736
21737 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21738 return NULL;
21739
21740 attr = dw2_linkage_name_attr (die, cu);
21741 if (attr == NULL || DW_STRING (attr) == NULL)
21742 return NULL;
21743
21744 /* dwarf2_name had to be already called. */
21745 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21746
21747 /* Strip the base name, keep any leading namespaces/classes. */
21748 base = strrchr (DW_STRING (attr), ':');
21749 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21750 return "";
21751
21752 struct objfile *objfile = cu->per_objfile->objfile;
21753 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21754 DW_STRING (attr),
21755 &base[-1] - DW_STRING (attr));
21756 }
21757
21758 /* Return the name of the namespace/class that DIE is defined within,
21759 or "" if we can't tell. The caller should not xfree the result.
21760
21761 For example, if we're within the method foo() in the following
21762 code:
21763
21764 namespace N {
21765 class C {
21766 void foo () {
21767 }
21768 };
21769 }
21770
21771 then determine_prefix on foo's die will return "N::C". */
21772
21773 static const char *
21774 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21775 {
21776 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21777 struct die_info *parent, *spec_die;
21778 struct dwarf2_cu *spec_cu;
21779 struct type *parent_type;
21780 const char *retval;
21781
21782 if (cu->language != language_cplus
21783 && cu->language != language_fortran && cu->language != language_d
21784 && cu->language != language_rust)
21785 return "";
21786
21787 retval = anonymous_struct_prefix (die, cu);
21788 if (retval)
21789 return retval;
21790
21791 /* We have to be careful in the presence of DW_AT_specification.
21792 For example, with GCC 3.4, given the code
21793
21794 namespace N {
21795 void foo() {
21796 // Definition of N::foo.
21797 }
21798 }
21799
21800 then we'll have a tree of DIEs like this:
21801
21802 1: DW_TAG_compile_unit
21803 2: DW_TAG_namespace // N
21804 3: DW_TAG_subprogram // declaration of N::foo
21805 4: DW_TAG_subprogram // definition of N::foo
21806 DW_AT_specification // refers to die #3
21807
21808 Thus, when processing die #4, we have to pretend that we're in
21809 the context of its DW_AT_specification, namely the contex of die
21810 #3. */
21811 spec_cu = cu;
21812 spec_die = die_specification (die, &spec_cu);
21813 if (spec_die == NULL)
21814 parent = die->parent;
21815 else
21816 {
21817 parent = spec_die->parent;
21818 cu = spec_cu;
21819 }
21820
21821 if (parent == NULL)
21822 return "";
21823 else if (parent->building_fullname)
21824 {
21825 const char *name;
21826 const char *parent_name;
21827
21828 /* It has been seen on RealView 2.2 built binaries,
21829 DW_TAG_template_type_param types actually _defined_ as
21830 children of the parent class:
21831
21832 enum E {};
21833 template class <class Enum> Class{};
21834 Class<enum E> class_e;
21835
21836 1: DW_TAG_class_type (Class)
21837 2: DW_TAG_enumeration_type (E)
21838 3: DW_TAG_enumerator (enum1:0)
21839 3: DW_TAG_enumerator (enum2:1)
21840 ...
21841 2: DW_TAG_template_type_param
21842 DW_AT_type DW_FORM_ref_udata (E)
21843
21844 Besides being broken debug info, it can put GDB into an
21845 infinite loop. Consider:
21846
21847 When we're building the full name for Class<E>, we'll start
21848 at Class, and go look over its template type parameters,
21849 finding E. We'll then try to build the full name of E, and
21850 reach here. We're now trying to build the full name of E,
21851 and look over the parent DIE for containing scope. In the
21852 broken case, if we followed the parent DIE of E, we'd again
21853 find Class, and once again go look at its template type
21854 arguments, etc., etc. Simply don't consider such parent die
21855 as source-level parent of this die (it can't be, the language
21856 doesn't allow it), and break the loop here. */
21857 name = dwarf2_name (die, cu);
21858 parent_name = dwarf2_name (parent, cu);
21859 complaint (_("template param type '%s' defined within parent '%s'"),
21860 name ? name : "<unknown>",
21861 parent_name ? parent_name : "<unknown>");
21862 return "";
21863 }
21864 else
21865 switch (parent->tag)
21866 {
21867 case DW_TAG_namespace:
21868 parent_type = read_type_die (parent, cu);
21869 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21870 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21871 Work around this problem here. */
21872 if (cu->language == language_cplus
21873 && strcmp (parent_type->name (), "::") == 0)
21874 return "";
21875 /* We give a name to even anonymous namespaces. */
21876 return parent_type->name ();
21877 case DW_TAG_class_type:
21878 case DW_TAG_interface_type:
21879 case DW_TAG_structure_type:
21880 case DW_TAG_union_type:
21881 case DW_TAG_module:
21882 parent_type = read_type_die (parent, cu);
21883 if (parent_type->name () != NULL)
21884 return parent_type->name ();
21885 else
21886 /* An anonymous structure is only allowed non-static data
21887 members; no typedefs, no member functions, et cetera.
21888 So it does not need a prefix. */
21889 return "";
21890 case DW_TAG_compile_unit:
21891 case DW_TAG_partial_unit:
21892 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21893 if (cu->language == language_cplus
21894 && !per_objfile->per_bfd->types.empty ()
21895 && die->child != NULL
21896 && (die->tag == DW_TAG_class_type
21897 || die->tag == DW_TAG_structure_type
21898 || die->tag == DW_TAG_union_type))
21899 {
21900 const char *name = guess_full_die_structure_name (die, cu);
21901 if (name != NULL)
21902 return name;
21903 }
21904 return "";
21905 case DW_TAG_subprogram:
21906 /* Nested subroutines in Fortran get a prefix with the name
21907 of the parent's subroutine. */
21908 if (cu->language == language_fortran)
21909 {
21910 if ((die->tag == DW_TAG_subprogram)
21911 && (dwarf2_name (parent, cu) != NULL))
21912 return dwarf2_name (parent, cu);
21913 }
21914 return determine_prefix (parent, cu);
21915 case DW_TAG_enumeration_type:
21916 parent_type = read_type_die (parent, cu);
21917 if (TYPE_DECLARED_CLASS (parent_type))
21918 {
21919 if (parent_type->name () != NULL)
21920 return parent_type->name ();
21921 return "";
21922 }
21923 /* Fall through. */
21924 default:
21925 return determine_prefix (parent, cu);
21926 }
21927 }
21928
21929 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21930 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21931 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21932 an obconcat, otherwise allocate storage for the result. The CU argument is
21933 used to determine the language and hence, the appropriate separator. */
21934
21935 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21936
21937 static char *
21938 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21939 int physname, struct dwarf2_cu *cu)
21940 {
21941 const char *lead = "";
21942 const char *sep;
21943
21944 if (suffix == NULL || suffix[0] == '\0'
21945 || prefix == NULL || prefix[0] == '\0')
21946 sep = "";
21947 else if (cu->language == language_d)
21948 {
21949 /* For D, the 'main' function could be defined in any module, but it
21950 should never be prefixed. */
21951 if (strcmp (suffix, "D main") == 0)
21952 {
21953 prefix = "";
21954 sep = "";
21955 }
21956 else
21957 sep = ".";
21958 }
21959 else if (cu->language == language_fortran && physname)
21960 {
21961 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21962 DW_AT_MIPS_linkage_name is preferred and used instead. */
21963
21964 lead = "__";
21965 sep = "_MOD_";
21966 }
21967 else
21968 sep = "::";
21969
21970 if (prefix == NULL)
21971 prefix = "";
21972 if (suffix == NULL)
21973 suffix = "";
21974
21975 if (obs == NULL)
21976 {
21977 char *retval
21978 = ((char *)
21979 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21980
21981 strcpy (retval, lead);
21982 strcat (retval, prefix);
21983 strcat (retval, sep);
21984 strcat (retval, suffix);
21985 return retval;
21986 }
21987 else
21988 {
21989 /* We have an obstack. */
21990 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21991 }
21992 }
21993
21994 /* Get name of a die, return NULL if not found. */
21995
21996 static const char *
21997 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21998 struct objfile *objfile)
21999 {
22000 if (name && cu->language == language_cplus)
22001 {
22002 gdb::unique_xmalloc_ptr<char> canon_name
22003 = cp_canonicalize_string (name);
22004
22005 if (canon_name != nullptr)
22006 name = objfile->intern (canon_name.get ());
22007 }
22008
22009 return name;
22010 }
22011
22012 /* Get name of a die, return NULL if not found.
22013 Anonymous namespaces are converted to their magic string. */
22014
22015 static const char *
22016 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22017 {
22018 struct attribute *attr;
22019 struct objfile *objfile = cu->per_objfile->objfile;
22020
22021 attr = dwarf2_attr (die, DW_AT_name, cu);
22022 if ((!attr || !DW_STRING (attr))
22023 && die->tag != DW_TAG_namespace
22024 && die->tag != DW_TAG_class_type
22025 && die->tag != DW_TAG_interface_type
22026 && die->tag != DW_TAG_structure_type
22027 && die->tag != DW_TAG_union_type)
22028 return NULL;
22029
22030 switch (die->tag)
22031 {
22032 case DW_TAG_compile_unit:
22033 case DW_TAG_partial_unit:
22034 /* Compilation units have a DW_AT_name that is a filename, not
22035 a source language identifier. */
22036 case DW_TAG_enumeration_type:
22037 case DW_TAG_enumerator:
22038 /* These tags always have simple identifiers already; no need
22039 to canonicalize them. */
22040 return DW_STRING (attr);
22041
22042 case DW_TAG_namespace:
22043 if (attr != NULL && DW_STRING (attr) != NULL)
22044 return DW_STRING (attr);
22045 return CP_ANONYMOUS_NAMESPACE_STR;
22046
22047 case DW_TAG_class_type:
22048 case DW_TAG_interface_type:
22049 case DW_TAG_structure_type:
22050 case DW_TAG_union_type:
22051 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22052 structures or unions. These were of the form "._%d" in GCC 4.1,
22053 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22054 and GCC 4.4. We work around this problem by ignoring these. */
22055 if (attr && DW_STRING (attr)
22056 && (startswith (DW_STRING (attr), "._")
22057 || startswith (DW_STRING (attr), "<anonymous")))
22058 return NULL;
22059
22060 /* GCC might emit a nameless typedef that has a linkage name. See
22061 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22062 if (!attr || DW_STRING (attr) == NULL)
22063 {
22064 attr = dw2_linkage_name_attr (die, cu);
22065 if (attr == NULL || DW_STRING (attr) == NULL)
22066 return NULL;
22067
22068 /* Avoid demangling DW_STRING (attr) the second time on a second
22069 call for the same DIE. */
22070 if (!DW_STRING_IS_CANONICAL (attr))
22071 {
22072 gdb::unique_xmalloc_ptr<char> demangled
22073 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
22074 if (demangled == nullptr)
22075 return nullptr;
22076
22077 DW_STRING (attr) = objfile->intern (demangled.get ());
22078 DW_STRING_IS_CANONICAL (attr) = 1;
22079 }
22080
22081 /* Strip any leading namespaces/classes, keep only the base name.
22082 DW_AT_name for named DIEs does not contain the prefixes. */
22083 const char *base = strrchr (DW_STRING (attr), ':');
22084 if (base && base > DW_STRING (attr) && base[-1] == ':')
22085 return &base[1];
22086 else
22087 return DW_STRING (attr);
22088 }
22089 break;
22090
22091 default:
22092 break;
22093 }
22094
22095 if (!DW_STRING_IS_CANONICAL (attr))
22096 {
22097 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22098 objfile);
22099 DW_STRING_IS_CANONICAL (attr) = 1;
22100 }
22101 return DW_STRING (attr);
22102 }
22103
22104 /* Return the die that this die in an extension of, or NULL if there
22105 is none. *EXT_CU is the CU containing DIE on input, and the CU
22106 containing the return value on output. */
22107
22108 static struct die_info *
22109 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22110 {
22111 struct attribute *attr;
22112
22113 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22114 if (attr == NULL)
22115 return NULL;
22116
22117 return follow_die_ref (die, attr, ext_cu);
22118 }
22119
22120 static void
22121 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22122 {
22123 unsigned int i;
22124
22125 print_spaces (indent, f);
22126 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22127 dwarf_tag_name (die->tag), die->abbrev,
22128 sect_offset_str (die->sect_off));
22129
22130 if (die->parent != NULL)
22131 {
22132 print_spaces (indent, f);
22133 fprintf_unfiltered (f, " parent at offset: %s\n",
22134 sect_offset_str (die->parent->sect_off));
22135 }
22136
22137 print_spaces (indent, f);
22138 fprintf_unfiltered (f, " has children: %s\n",
22139 dwarf_bool_name (die->child != NULL));
22140
22141 print_spaces (indent, f);
22142 fprintf_unfiltered (f, " attributes:\n");
22143
22144 for (i = 0; i < die->num_attrs; ++i)
22145 {
22146 print_spaces (indent, f);
22147 fprintf_unfiltered (f, " %s (%s) ",
22148 dwarf_attr_name (die->attrs[i].name),
22149 dwarf_form_name (die->attrs[i].form));
22150
22151 switch (die->attrs[i].form)
22152 {
22153 case DW_FORM_addr:
22154 case DW_FORM_addrx:
22155 case DW_FORM_GNU_addr_index:
22156 fprintf_unfiltered (f, "address: ");
22157 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22158 break;
22159 case DW_FORM_block2:
22160 case DW_FORM_block4:
22161 case DW_FORM_block:
22162 case DW_FORM_block1:
22163 fprintf_unfiltered (f, "block: size %s",
22164 pulongest (DW_BLOCK (&die->attrs[i])->size));
22165 break;
22166 case DW_FORM_exprloc:
22167 fprintf_unfiltered (f, "expression: size %s",
22168 pulongest (DW_BLOCK (&die->attrs[i])->size));
22169 break;
22170 case DW_FORM_data16:
22171 fprintf_unfiltered (f, "constant of 16 bytes");
22172 break;
22173 case DW_FORM_ref_addr:
22174 fprintf_unfiltered (f, "ref address: ");
22175 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22176 break;
22177 case DW_FORM_GNU_ref_alt:
22178 fprintf_unfiltered (f, "alt ref address: ");
22179 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22180 break;
22181 case DW_FORM_ref1:
22182 case DW_FORM_ref2:
22183 case DW_FORM_ref4:
22184 case DW_FORM_ref8:
22185 case DW_FORM_ref_udata:
22186 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22187 (long) (DW_UNSND (&die->attrs[i])));
22188 break;
22189 case DW_FORM_data1:
22190 case DW_FORM_data2:
22191 case DW_FORM_data4:
22192 case DW_FORM_data8:
22193 case DW_FORM_udata:
22194 case DW_FORM_sdata:
22195 fprintf_unfiltered (f, "constant: %s",
22196 pulongest (DW_UNSND (&die->attrs[i])));
22197 break;
22198 case DW_FORM_sec_offset:
22199 fprintf_unfiltered (f, "section offset: %s",
22200 pulongest (DW_UNSND (&die->attrs[i])));
22201 break;
22202 case DW_FORM_ref_sig8:
22203 fprintf_unfiltered (f, "signature: %s",
22204 hex_string (DW_SIGNATURE (&die->attrs[i])));
22205 break;
22206 case DW_FORM_string:
22207 case DW_FORM_strp:
22208 case DW_FORM_line_strp:
22209 case DW_FORM_strx:
22210 case DW_FORM_GNU_str_index:
22211 case DW_FORM_GNU_strp_alt:
22212 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22213 DW_STRING (&die->attrs[i])
22214 ? DW_STRING (&die->attrs[i]) : "",
22215 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22216 break;
22217 case DW_FORM_flag:
22218 if (DW_UNSND (&die->attrs[i]))
22219 fprintf_unfiltered (f, "flag: TRUE");
22220 else
22221 fprintf_unfiltered (f, "flag: FALSE");
22222 break;
22223 case DW_FORM_flag_present:
22224 fprintf_unfiltered (f, "flag: TRUE");
22225 break;
22226 case DW_FORM_indirect:
22227 /* The reader will have reduced the indirect form to
22228 the "base form" so this form should not occur. */
22229 fprintf_unfiltered (f,
22230 "unexpected attribute form: DW_FORM_indirect");
22231 break;
22232 case DW_FORM_implicit_const:
22233 fprintf_unfiltered (f, "constant: %s",
22234 plongest (DW_SND (&die->attrs[i])));
22235 break;
22236 default:
22237 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22238 die->attrs[i].form);
22239 break;
22240 }
22241 fprintf_unfiltered (f, "\n");
22242 }
22243 }
22244
22245 static void
22246 dump_die_for_error (struct die_info *die)
22247 {
22248 dump_die_shallow (gdb_stderr, 0, die);
22249 }
22250
22251 static void
22252 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22253 {
22254 int indent = level * 4;
22255
22256 gdb_assert (die != NULL);
22257
22258 if (level >= max_level)
22259 return;
22260
22261 dump_die_shallow (f, indent, die);
22262
22263 if (die->child != NULL)
22264 {
22265 print_spaces (indent, f);
22266 fprintf_unfiltered (f, " Children:");
22267 if (level + 1 < max_level)
22268 {
22269 fprintf_unfiltered (f, "\n");
22270 dump_die_1 (f, level + 1, max_level, die->child);
22271 }
22272 else
22273 {
22274 fprintf_unfiltered (f,
22275 " [not printed, max nesting level reached]\n");
22276 }
22277 }
22278
22279 if (die->sibling != NULL && level > 0)
22280 {
22281 dump_die_1 (f, level, max_level, die->sibling);
22282 }
22283 }
22284
22285 /* This is called from the pdie macro in gdbinit.in.
22286 It's not static so gcc will keep a copy callable from gdb. */
22287
22288 void
22289 dump_die (struct die_info *die, int max_level)
22290 {
22291 dump_die_1 (gdb_stdlog, 0, max_level, die);
22292 }
22293
22294 static void
22295 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22296 {
22297 void **slot;
22298
22299 slot = htab_find_slot_with_hash (cu->die_hash, die,
22300 to_underlying (die->sect_off),
22301 INSERT);
22302
22303 *slot = die;
22304 }
22305
22306 /* Follow reference or signature attribute ATTR of SRC_DIE.
22307 On entry *REF_CU is the CU of SRC_DIE.
22308 On exit *REF_CU is the CU of the result. */
22309
22310 static struct die_info *
22311 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22312 struct dwarf2_cu **ref_cu)
22313 {
22314 struct die_info *die;
22315
22316 if (attr->form_is_ref ())
22317 die = follow_die_ref (src_die, attr, ref_cu);
22318 else if (attr->form == DW_FORM_ref_sig8)
22319 die = follow_die_sig (src_die, attr, ref_cu);
22320 else
22321 {
22322 dump_die_for_error (src_die);
22323 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22324 objfile_name ((*ref_cu)->per_objfile->objfile));
22325 }
22326
22327 return die;
22328 }
22329
22330 /* Follow reference OFFSET.
22331 On entry *REF_CU is the CU of the source die referencing OFFSET.
22332 On exit *REF_CU is the CU of the result.
22333 Returns NULL if OFFSET is invalid. */
22334
22335 static struct die_info *
22336 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22337 struct dwarf2_cu **ref_cu)
22338 {
22339 struct die_info temp_die;
22340 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22341 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22342
22343 gdb_assert (cu->per_cu != NULL);
22344
22345 target_cu = cu;
22346
22347 if (cu->per_cu->is_debug_types)
22348 {
22349 /* .debug_types CUs cannot reference anything outside their CU.
22350 If they need to, they have to reference a signatured type via
22351 DW_FORM_ref_sig8. */
22352 if (!cu->header.offset_in_cu_p (sect_off))
22353 return NULL;
22354 }
22355 else if (offset_in_dwz != cu->per_cu->is_dwz
22356 || !cu->header.offset_in_cu_p (sect_off))
22357 {
22358 struct dwarf2_per_cu_data *per_cu;
22359
22360 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22361 per_objfile);
22362
22363 /* If necessary, add it to the queue and load its DIEs. */
22364 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
22365 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
22366
22367 target_cu = per_objfile->get_cu (per_cu);
22368 }
22369 else if (cu->dies == NULL)
22370 {
22371 /* We're loading full DIEs during partial symbol reading. */
22372 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
22373 load_full_comp_unit (cu->per_cu, per_objfile, false, language_minimal);
22374 }
22375
22376 *ref_cu = target_cu;
22377 temp_die.sect_off = sect_off;
22378
22379 if (target_cu != cu)
22380 target_cu->ancestor = cu;
22381
22382 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22383 &temp_die,
22384 to_underlying (sect_off));
22385 }
22386
22387 /* Follow reference attribute ATTR of SRC_DIE.
22388 On entry *REF_CU is the CU of SRC_DIE.
22389 On exit *REF_CU is the CU of the result. */
22390
22391 static struct die_info *
22392 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22393 struct dwarf2_cu **ref_cu)
22394 {
22395 sect_offset sect_off = attr->get_ref_die_offset ();
22396 struct dwarf2_cu *cu = *ref_cu;
22397 struct die_info *die;
22398
22399 die = follow_die_offset (sect_off,
22400 (attr->form == DW_FORM_GNU_ref_alt
22401 || cu->per_cu->is_dwz),
22402 ref_cu);
22403 if (!die)
22404 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22405 "at %s [in module %s]"),
22406 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22407 objfile_name (cu->per_objfile->objfile));
22408
22409 return die;
22410 }
22411
22412 /* See read.h. */
22413
22414 struct dwarf2_locexpr_baton
22415 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22416 dwarf2_per_cu_data *per_cu,
22417 dwarf2_per_objfile *per_objfile,
22418 CORE_ADDR (*get_frame_pc) (void *baton),
22419 void *baton, bool resolve_abstract_p)
22420 {
22421 struct die_info *die;
22422 struct attribute *attr;
22423 struct dwarf2_locexpr_baton retval;
22424 struct objfile *objfile = per_objfile->objfile;
22425
22426 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
22427 if (cu == nullptr)
22428 cu = load_cu (per_cu, per_objfile, false);
22429
22430 if (cu == nullptr)
22431 {
22432 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22433 Instead just throw an error, not much else we can do. */
22434 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22435 sect_offset_str (sect_off), objfile_name (objfile));
22436 }
22437
22438 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22439 if (!die)
22440 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22441 sect_offset_str (sect_off), objfile_name (objfile));
22442
22443 attr = dwarf2_attr (die, DW_AT_location, cu);
22444 if (!attr && resolve_abstract_p
22445 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
22446 != per_objfile->per_bfd->abstract_to_concrete.end ()))
22447 {
22448 CORE_ADDR pc = (*get_frame_pc) (baton);
22449 CORE_ADDR baseaddr = objfile->text_section_offset ();
22450 struct gdbarch *gdbarch = objfile->arch ();
22451
22452 for (const auto &cand_off
22453 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
22454 {
22455 struct dwarf2_cu *cand_cu = cu;
22456 struct die_info *cand
22457 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22458 if (!cand
22459 || !cand->parent
22460 || cand->parent->tag != DW_TAG_subprogram)
22461 continue;
22462
22463 CORE_ADDR pc_low, pc_high;
22464 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22465 if (pc_low == ((CORE_ADDR) -1))
22466 continue;
22467 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22468 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22469 if (!(pc_low <= pc && pc < pc_high))
22470 continue;
22471
22472 die = cand;
22473 attr = dwarf2_attr (die, DW_AT_location, cu);
22474 break;
22475 }
22476 }
22477
22478 if (!attr)
22479 {
22480 /* DWARF: "If there is no such attribute, then there is no effect.".
22481 DATA is ignored if SIZE is 0. */
22482
22483 retval.data = NULL;
22484 retval.size = 0;
22485 }
22486 else if (attr->form_is_section_offset ())
22487 {
22488 struct dwarf2_loclist_baton loclist_baton;
22489 CORE_ADDR pc = (*get_frame_pc) (baton);
22490 size_t size;
22491
22492 fill_in_loclist_baton (cu, &loclist_baton, attr);
22493
22494 retval.data = dwarf2_find_location_expression (&loclist_baton,
22495 &size, pc);
22496 retval.size = size;
22497 }
22498 else
22499 {
22500 if (!attr->form_is_block ())
22501 error (_("Dwarf Error: DIE at %s referenced in module %s "
22502 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22503 sect_offset_str (sect_off), objfile_name (objfile));
22504
22505 retval.data = DW_BLOCK (attr)->data;
22506 retval.size = DW_BLOCK (attr)->size;
22507 }
22508 retval.per_objfile = per_objfile;
22509 retval.per_cu = cu->per_cu;
22510
22511 per_objfile->age_comp_units ();
22512
22513 return retval;
22514 }
22515
22516 /* See read.h. */
22517
22518 struct dwarf2_locexpr_baton
22519 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22520 dwarf2_per_cu_data *per_cu,
22521 dwarf2_per_objfile *per_objfile,
22522 CORE_ADDR (*get_frame_pc) (void *baton),
22523 void *baton)
22524 {
22525 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22526
22527 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
22528 get_frame_pc, baton);
22529 }
22530
22531 /* Write a constant of a given type as target-ordered bytes into
22532 OBSTACK. */
22533
22534 static const gdb_byte *
22535 write_constant_as_bytes (struct obstack *obstack,
22536 enum bfd_endian byte_order,
22537 struct type *type,
22538 ULONGEST value,
22539 LONGEST *len)
22540 {
22541 gdb_byte *result;
22542
22543 *len = TYPE_LENGTH (type);
22544 result = (gdb_byte *) obstack_alloc (obstack, *len);
22545 store_unsigned_integer (result, *len, byte_order, value);
22546
22547 return result;
22548 }
22549
22550 /* See read.h. */
22551
22552 const gdb_byte *
22553 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22554 dwarf2_per_cu_data *per_cu,
22555 dwarf2_per_objfile *per_objfile,
22556 obstack *obstack,
22557 LONGEST *len)
22558 {
22559 struct die_info *die;
22560 struct attribute *attr;
22561 const gdb_byte *result = NULL;
22562 struct type *type;
22563 LONGEST value;
22564 enum bfd_endian byte_order;
22565 struct objfile *objfile = per_objfile->objfile;
22566
22567 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
22568 if (cu == nullptr)
22569 cu = load_cu (per_cu, per_objfile, false);
22570
22571 if (cu == nullptr)
22572 {
22573 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22574 Instead just throw an error, not much else we can do. */
22575 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22576 sect_offset_str (sect_off), objfile_name (objfile));
22577 }
22578
22579 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22580 if (!die)
22581 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22582 sect_offset_str (sect_off), objfile_name (objfile));
22583
22584 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22585 if (attr == NULL)
22586 return NULL;
22587
22588 byte_order = (bfd_big_endian (objfile->obfd)
22589 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22590
22591 switch (attr->form)
22592 {
22593 case DW_FORM_addr:
22594 case DW_FORM_addrx:
22595 case DW_FORM_GNU_addr_index:
22596 {
22597 gdb_byte *tem;
22598
22599 *len = cu->header.addr_size;
22600 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22601 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22602 result = tem;
22603 }
22604 break;
22605 case DW_FORM_string:
22606 case DW_FORM_strp:
22607 case DW_FORM_strx:
22608 case DW_FORM_GNU_str_index:
22609 case DW_FORM_GNU_strp_alt:
22610 /* DW_STRING is already allocated on the objfile obstack, point
22611 directly to it. */
22612 result = (const gdb_byte *) DW_STRING (attr);
22613 *len = strlen (DW_STRING (attr));
22614 break;
22615 case DW_FORM_block1:
22616 case DW_FORM_block2:
22617 case DW_FORM_block4:
22618 case DW_FORM_block:
22619 case DW_FORM_exprloc:
22620 case DW_FORM_data16:
22621 result = DW_BLOCK (attr)->data;
22622 *len = DW_BLOCK (attr)->size;
22623 break;
22624
22625 /* The DW_AT_const_value attributes are supposed to carry the
22626 symbol's value "represented as it would be on the target
22627 architecture." By the time we get here, it's already been
22628 converted to host endianness, so we just need to sign- or
22629 zero-extend it as appropriate. */
22630 case DW_FORM_data1:
22631 type = die_type (die, cu);
22632 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22633 if (result == NULL)
22634 result = write_constant_as_bytes (obstack, byte_order,
22635 type, value, len);
22636 break;
22637 case DW_FORM_data2:
22638 type = die_type (die, cu);
22639 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22640 if (result == NULL)
22641 result = write_constant_as_bytes (obstack, byte_order,
22642 type, value, len);
22643 break;
22644 case DW_FORM_data4:
22645 type = die_type (die, cu);
22646 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22647 if (result == NULL)
22648 result = write_constant_as_bytes (obstack, byte_order,
22649 type, value, len);
22650 break;
22651 case DW_FORM_data8:
22652 type = die_type (die, cu);
22653 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22654 if (result == NULL)
22655 result = write_constant_as_bytes (obstack, byte_order,
22656 type, value, len);
22657 break;
22658
22659 case DW_FORM_sdata:
22660 case DW_FORM_implicit_const:
22661 type = die_type (die, cu);
22662 result = write_constant_as_bytes (obstack, byte_order,
22663 type, DW_SND (attr), len);
22664 break;
22665
22666 case DW_FORM_udata:
22667 type = die_type (die, cu);
22668 result = write_constant_as_bytes (obstack, byte_order,
22669 type, DW_UNSND (attr), len);
22670 break;
22671
22672 default:
22673 complaint (_("unsupported const value attribute form: '%s'"),
22674 dwarf_form_name (attr->form));
22675 break;
22676 }
22677
22678 return result;
22679 }
22680
22681 /* See read.h. */
22682
22683 struct type *
22684 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22685 dwarf2_per_cu_data *per_cu,
22686 dwarf2_per_objfile *per_objfile)
22687 {
22688 struct die_info *die;
22689
22690 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
22691 if (cu == nullptr)
22692 cu = load_cu (per_cu, per_objfile, false);
22693
22694 if (cu == nullptr)
22695 return nullptr;
22696
22697 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22698 if (!die)
22699 return NULL;
22700
22701 return die_type (die, cu);
22702 }
22703
22704 /* See read.h. */
22705
22706 struct type *
22707 dwarf2_get_die_type (cu_offset die_offset,
22708 dwarf2_per_cu_data *per_cu,
22709 dwarf2_per_objfile *per_objfile)
22710 {
22711 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22712 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
22713 }
22714
22715 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22716 On entry *REF_CU is the CU of SRC_DIE.
22717 On exit *REF_CU is the CU of the result.
22718 Returns NULL if the referenced DIE isn't found. */
22719
22720 static struct die_info *
22721 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22722 struct dwarf2_cu **ref_cu)
22723 {
22724 struct die_info temp_die;
22725 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22726 struct die_info *die;
22727 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
22728
22729
22730 /* While it might be nice to assert sig_type->type == NULL here,
22731 we can get here for DW_AT_imported_declaration where we need
22732 the DIE not the type. */
22733
22734 /* If necessary, add it to the queue and load its DIEs. */
22735
22736 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, per_objfile,
22737 language_minimal))
22738 read_signatured_type (sig_type, per_objfile);
22739
22740 sig_cu = per_objfile->get_cu (&sig_type->per_cu);
22741 gdb_assert (sig_cu != NULL);
22742 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22743 temp_die.sect_off = sig_type->type_offset_in_section;
22744 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22745 to_underlying (temp_die.sect_off));
22746 if (die)
22747 {
22748 /* For .gdb_index version 7 keep track of included TUs.
22749 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22750 if (per_objfile->per_bfd->index_table != NULL
22751 && per_objfile->per_bfd->index_table->version <= 7)
22752 {
22753 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22754 }
22755
22756 *ref_cu = sig_cu;
22757 if (sig_cu != cu)
22758 sig_cu->ancestor = cu;
22759
22760 return die;
22761 }
22762
22763 return NULL;
22764 }
22765
22766 /* Follow signatured type referenced by ATTR in SRC_DIE.
22767 On entry *REF_CU is the CU of SRC_DIE.
22768 On exit *REF_CU is the CU of the result.
22769 The result is the DIE of the type.
22770 If the referenced type cannot be found an error is thrown. */
22771
22772 static struct die_info *
22773 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22774 struct dwarf2_cu **ref_cu)
22775 {
22776 ULONGEST signature = DW_SIGNATURE (attr);
22777 struct signatured_type *sig_type;
22778 struct die_info *die;
22779
22780 gdb_assert (attr->form == DW_FORM_ref_sig8);
22781
22782 sig_type = lookup_signatured_type (*ref_cu, signature);
22783 /* sig_type will be NULL if the signatured type is missing from
22784 the debug info. */
22785 if (sig_type == NULL)
22786 {
22787 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22788 " from DIE at %s [in module %s]"),
22789 hex_string (signature), sect_offset_str (src_die->sect_off),
22790 objfile_name ((*ref_cu)->per_objfile->objfile));
22791 }
22792
22793 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22794 if (die == NULL)
22795 {
22796 dump_die_for_error (src_die);
22797 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22798 " from DIE at %s [in module %s]"),
22799 hex_string (signature), sect_offset_str (src_die->sect_off),
22800 objfile_name ((*ref_cu)->per_objfile->objfile));
22801 }
22802
22803 return die;
22804 }
22805
22806 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22807 reading in and processing the type unit if necessary. */
22808
22809 static struct type *
22810 get_signatured_type (struct die_info *die, ULONGEST signature,
22811 struct dwarf2_cu *cu)
22812 {
22813 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22814 struct signatured_type *sig_type;
22815 struct dwarf2_cu *type_cu;
22816 struct die_info *type_die;
22817 struct type *type;
22818
22819 sig_type = lookup_signatured_type (cu, signature);
22820 /* sig_type will be NULL if the signatured type is missing from
22821 the debug info. */
22822 if (sig_type == NULL)
22823 {
22824 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22825 " from DIE at %s [in module %s]"),
22826 hex_string (signature), sect_offset_str (die->sect_off),
22827 objfile_name (per_objfile->objfile));
22828 return build_error_marker_type (cu, die);
22829 }
22830
22831 /* If we already know the type we're done. */
22832 type = per_objfile->get_type_for_signatured_type (sig_type);
22833 if (type != nullptr)
22834 return type;
22835
22836 type_cu = cu;
22837 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22838 if (type_die != NULL)
22839 {
22840 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22841 is created. This is important, for example, because for c++ classes
22842 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22843 type = read_type_die (type_die, type_cu);
22844 if (type == NULL)
22845 {
22846 complaint (_("Dwarf Error: Cannot build signatured type %s"
22847 " referenced from DIE at %s [in module %s]"),
22848 hex_string (signature), sect_offset_str (die->sect_off),
22849 objfile_name (per_objfile->objfile));
22850 type = build_error_marker_type (cu, die);
22851 }
22852 }
22853 else
22854 {
22855 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22856 " from DIE at %s [in module %s]"),
22857 hex_string (signature), sect_offset_str (die->sect_off),
22858 objfile_name (per_objfile->objfile));
22859 type = build_error_marker_type (cu, die);
22860 }
22861
22862 per_objfile->set_type_for_signatured_type (sig_type, type);
22863
22864 return type;
22865 }
22866
22867 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22868 reading in and processing the type unit if necessary. */
22869
22870 static struct type *
22871 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22872 struct dwarf2_cu *cu) /* ARI: editCase function */
22873 {
22874 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22875 if (attr->form_is_ref ())
22876 {
22877 struct dwarf2_cu *type_cu = cu;
22878 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22879
22880 return read_type_die (type_die, type_cu);
22881 }
22882 else if (attr->form == DW_FORM_ref_sig8)
22883 {
22884 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22885 }
22886 else
22887 {
22888 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22889
22890 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22891 " at %s [in module %s]"),
22892 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22893 objfile_name (per_objfile->objfile));
22894 return build_error_marker_type (cu, die);
22895 }
22896 }
22897
22898 /* Load the DIEs associated with type unit PER_CU into memory. */
22899
22900 static void
22901 load_full_type_unit (dwarf2_per_cu_data *per_cu,
22902 dwarf2_per_objfile *per_objfile)
22903 {
22904 struct signatured_type *sig_type;
22905
22906 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22907 gdb_assert (! per_cu->type_unit_group_p ());
22908
22909 /* We have the per_cu, but we need the signatured_type.
22910 Fortunately this is an easy translation. */
22911 gdb_assert (per_cu->is_debug_types);
22912 sig_type = (struct signatured_type *) per_cu;
22913
22914 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
22915
22916 read_signatured_type (sig_type, per_objfile);
22917
22918 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
22919 }
22920
22921 /* Read in a signatured type and build its CU and DIEs.
22922 If the type is a stub for the real type in a DWO file,
22923 read in the real type from the DWO file as well. */
22924
22925 static void
22926 read_signatured_type (signatured_type *sig_type,
22927 dwarf2_per_objfile *per_objfile)
22928 {
22929 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22930
22931 gdb_assert (per_cu->is_debug_types);
22932 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
22933
22934 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
22935
22936 if (!reader.dummy_p)
22937 {
22938 struct dwarf2_cu *cu = reader.cu;
22939 const gdb_byte *info_ptr = reader.info_ptr;
22940
22941 gdb_assert (cu->die_hash == NULL);
22942 cu->die_hash =
22943 htab_create_alloc_ex (cu->header.length / 12,
22944 die_hash,
22945 die_eq,
22946 NULL,
22947 &cu->comp_unit_obstack,
22948 hashtab_obstack_allocate,
22949 dummy_obstack_deallocate);
22950
22951 if (reader.comp_unit_die->has_children)
22952 reader.comp_unit_die->child
22953 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22954 reader.comp_unit_die);
22955 cu->dies = reader.comp_unit_die;
22956 /* comp_unit_die is not stored in die_hash, no need. */
22957
22958 /* We try not to read any attributes in this function, because
22959 not all CUs needed for references have been loaded yet, and
22960 symbol table processing isn't initialized. But we have to
22961 set the CU language, or we won't be able to build types
22962 correctly. Similarly, if we do not read the producer, we can
22963 not apply producer-specific interpretation. */
22964 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22965
22966 reader.keep ();
22967 }
22968
22969 sig_type->per_cu.tu_read = 1;
22970 }
22971
22972 /* Decode simple location descriptions.
22973 Given a pointer to a dwarf block that defines a location, compute
22974 the location and return the value. If COMPUTED is non-null, it is
22975 set to true to indicate that decoding was successful, and false
22976 otherwise. If COMPUTED is null, then this function may emit a
22977 complaint. */
22978
22979 static CORE_ADDR
22980 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22981 {
22982 struct objfile *objfile = cu->per_objfile->objfile;
22983 size_t i;
22984 size_t size = blk->size;
22985 const gdb_byte *data = blk->data;
22986 CORE_ADDR stack[64];
22987 int stacki;
22988 unsigned int bytes_read, unsnd;
22989 gdb_byte op;
22990
22991 if (computed != nullptr)
22992 *computed = false;
22993
22994 i = 0;
22995 stacki = 0;
22996 stack[stacki] = 0;
22997 stack[++stacki] = 0;
22998
22999 while (i < size)
23000 {
23001 op = data[i++];
23002 switch (op)
23003 {
23004 case DW_OP_lit0:
23005 case DW_OP_lit1:
23006 case DW_OP_lit2:
23007 case DW_OP_lit3:
23008 case DW_OP_lit4:
23009 case DW_OP_lit5:
23010 case DW_OP_lit6:
23011 case DW_OP_lit7:
23012 case DW_OP_lit8:
23013 case DW_OP_lit9:
23014 case DW_OP_lit10:
23015 case DW_OP_lit11:
23016 case DW_OP_lit12:
23017 case DW_OP_lit13:
23018 case DW_OP_lit14:
23019 case DW_OP_lit15:
23020 case DW_OP_lit16:
23021 case DW_OP_lit17:
23022 case DW_OP_lit18:
23023 case DW_OP_lit19:
23024 case DW_OP_lit20:
23025 case DW_OP_lit21:
23026 case DW_OP_lit22:
23027 case DW_OP_lit23:
23028 case DW_OP_lit24:
23029 case DW_OP_lit25:
23030 case DW_OP_lit26:
23031 case DW_OP_lit27:
23032 case DW_OP_lit28:
23033 case DW_OP_lit29:
23034 case DW_OP_lit30:
23035 case DW_OP_lit31:
23036 stack[++stacki] = op - DW_OP_lit0;
23037 break;
23038
23039 case DW_OP_reg0:
23040 case DW_OP_reg1:
23041 case DW_OP_reg2:
23042 case DW_OP_reg3:
23043 case DW_OP_reg4:
23044 case DW_OP_reg5:
23045 case DW_OP_reg6:
23046 case DW_OP_reg7:
23047 case DW_OP_reg8:
23048 case DW_OP_reg9:
23049 case DW_OP_reg10:
23050 case DW_OP_reg11:
23051 case DW_OP_reg12:
23052 case DW_OP_reg13:
23053 case DW_OP_reg14:
23054 case DW_OP_reg15:
23055 case DW_OP_reg16:
23056 case DW_OP_reg17:
23057 case DW_OP_reg18:
23058 case DW_OP_reg19:
23059 case DW_OP_reg20:
23060 case DW_OP_reg21:
23061 case DW_OP_reg22:
23062 case DW_OP_reg23:
23063 case DW_OP_reg24:
23064 case DW_OP_reg25:
23065 case DW_OP_reg26:
23066 case DW_OP_reg27:
23067 case DW_OP_reg28:
23068 case DW_OP_reg29:
23069 case DW_OP_reg30:
23070 case DW_OP_reg31:
23071 stack[++stacki] = op - DW_OP_reg0;
23072 if (i < size)
23073 {
23074 if (computed == nullptr)
23075 dwarf2_complex_location_expr_complaint ();
23076 else
23077 return 0;
23078 }
23079 break;
23080
23081 case DW_OP_regx:
23082 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23083 i += bytes_read;
23084 stack[++stacki] = unsnd;
23085 if (i < size)
23086 {
23087 if (computed == nullptr)
23088 dwarf2_complex_location_expr_complaint ();
23089 else
23090 return 0;
23091 }
23092 break;
23093
23094 case DW_OP_addr:
23095 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
23096 &bytes_read);
23097 i += bytes_read;
23098 break;
23099
23100 case DW_OP_const1u:
23101 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23102 i += 1;
23103 break;
23104
23105 case DW_OP_const1s:
23106 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23107 i += 1;
23108 break;
23109
23110 case DW_OP_const2u:
23111 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23112 i += 2;
23113 break;
23114
23115 case DW_OP_const2s:
23116 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23117 i += 2;
23118 break;
23119
23120 case DW_OP_const4u:
23121 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23122 i += 4;
23123 break;
23124
23125 case DW_OP_const4s:
23126 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23127 i += 4;
23128 break;
23129
23130 case DW_OP_const8u:
23131 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23132 i += 8;
23133 break;
23134
23135 case DW_OP_constu:
23136 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23137 &bytes_read);
23138 i += bytes_read;
23139 break;
23140
23141 case DW_OP_consts:
23142 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23143 i += bytes_read;
23144 break;
23145
23146 case DW_OP_dup:
23147 stack[stacki + 1] = stack[stacki];
23148 stacki++;
23149 break;
23150
23151 case DW_OP_plus:
23152 stack[stacki - 1] += stack[stacki];
23153 stacki--;
23154 break;
23155
23156 case DW_OP_plus_uconst:
23157 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23158 &bytes_read);
23159 i += bytes_read;
23160 break;
23161
23162 case DW_OP_minus:
23163 stack[stacki - 1] -= stack[stacki];
23164 stacki--;
23165 break;
23166
23167 case DW_OP_deref:
23168 /* If we're not the last op, then we definitely can't encode
23169 this using GDB's address_class enum. This is valid for partial
23170 global symbols, although the variable's address will be bogus
23171 in the psymtab. */
23172 if (i < size)
23173 {
23174 if (computed == nullptr)
23175 dwarf2_complex_location_expr_complaint ();
23176 else
23177 return 0;
23178 }
23179 break;
23180
23181 case DW_OP_GNU_push_tls_address:
23182 case DW_OP_form_tls_address:
23183 /* The top of the stack has the offset from the beginning
23184 of the thread control block at which the variable is located. */
23185 /* Nothing should follow this operator, so the top of stack would
23186 be returned. */
23187 /* This is valid for partial global symbols, but the variable's
23188 address will be bogus in the psymtab. Make it always at least
23189 non-zero to not look as a variable garbage collected by linker
23190 which have DW_OP_addr 0. */
23191 if (i < size)
23192 {
23193 if (computed == nullptr)
23194 dwarf2_complex_location_expr_complaint ();
23195 else
23196 return 0;
23197 }
23198 stack[stacki]++;
23199 break;
23200
23201 case DW_OP_GNU_uninit:
23202 if (computed != nullptr)
23203 return 0;
23204 break;
23205
23206 case DW_OP_addrx:
23207 case DW_OP_GNU_addr_index:
23208 case DW_OP_GNU_const_index:
23209 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23210 &bytes_read);
23211 i += bytes_read;
23212 break;
23213
23214 default:
23215 if (computed == nullptr)
23216 {
23217 const char *name = get_DW_OP_name (op);
23218
23219 if (name)
23220 complaint (_("unsupported stack op: '%s'"),
23221 name);
23222 else
23223 complaint (_("unsupported stack op: '%02x'"),
23224 op);
23225 }
23226
23227 return (stack[stacki]);
23228 }
23229
23230 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23231 outside of the allocated space. Also enforce minimum>0. */
23232 if (stacki >= ARRAY_SIZE (stack) - 1)
23233 {
23234 if (computed == nullptr)
23235 complaint (_("location description stack overflow"));
23236 return 0;
23237 }
23238
23239 if (stacki <= 0)
23240 {
23241 if (computed == nullptr)
23242 complaint (_("location description stack underflow"));
23243 return 0;
23244 }
23245 }
23246
23247 if (computed != nullptr)
23248 *computed = true;
23249 return (stack[stacki]);
23250 }
23251
23252 /* memory allocation interface */
23253
23254 static struct dwarf_block *
23255 dwarf_alloc_block (struct dwarf2_cu *cu)
23256 {
23257 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23258 }
23259
23260 static struct die_info *
23261 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23262 {
23263 struct die_info *die;
23264 size_t size = sizeof (struct die_info);
23265
23266 if (num_attrs > 1)
23267 size += (num_attrs - 1) * sizeof (struct attribute);
23268
23269 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23270 memset (die, 0, sizeof (struct die_info));
23271 return (die);
23272 }
23273
23274 \f
23275
23276 /* Macro support. */
23277
23278 /* An overload of dwarf_decode_macros that finds the correct section
23279 and ensures it is read in before calling the other overload. */
23280
23281 static void
23282 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23283 int section_is_gnu)
23284 {
23285 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23286 struct objfile *objfile = per_objfile->objfile;
23287 const struct line_header *lh = cu->line_header;
23288 unsigned int offset_size = cu->header.offset_size;
23289 struct dwarf2_section_info *section;
23290 const char *section_name;
23291
23292 if (cu->dwo_unit != nullptr)
23293 {
23294 if (section_is_gnu)
23295 {
23296 section = &cu->dwo_unit->dwo_file->sections.macro;
23297 section_name = ".debug_macro.dwo";
23298 }
23299 else
23300 {
23301 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23302 section_name = ".debug_macinfo.dwo";
23303 }
23304 }
23305 else
23306 {
23307 if (section_is_gnu)
23308 {
23309 section = &per_objfile->per_bfd->macro;
23310 section_name = ".debug_macro";
23311 }
23312 else
23313 {
23314 section = &per_objfile->per_bfd->macinfo;
23315 section_name = ".debug_macinfo";
23316 }
23317 }
23318
23319 section->read (objfile);
23320 if (section->buffer == nullptr)
23321 {
23322 complaint (_("missing %s section"), section_name);
23323 return;
23324 }
23325
23326 buildsym_compunit *builder = cu->get_builder ();
23327
23328 dwarf_decode_macros (per_objfile, builder, section, lh,
23329 offset_size, offset, section_is_gnu);
23330 }
23331
23332 /* Return the .debug_loc section to use for CU.
23333 For DWO files use .debug_loc.dwo. */
23334
23335 static struct dwarf2_section_info *
23336 cu_debug_loc_section (struct dwarf2_cu *cu)
23337 {
23338 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23339
23340 if (cu->dwo_unit)
23341 {
23342 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23343
23344 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23345 }
23346 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
23347 : &per_objfile->per_bfd->loc);
23348 }
23349
23350 /* A helper function that fills in a dwarf2_loclist_baton. */
23351
23352 static void
23353 fill_in_loclist_baton (struct dwarf2_cu *cu,
23354 struct dwarf2_loclist_baton *baton,
23355 const struct attribute *attr)
23356 {
23357 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23358 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23359
23360 section->read (per_objfile->objfile);
23361
23362 baton->per_objfile = per_objfile;
23363 baton->per_cu = cu->per_cu;
23364 gdb_assert (baton->per_cu);
23365 /* We don't know how long the location list is, but make sure we
23366 don't run off the edge of the section. */
23367 baton->size = section->size - DW_UNSND (attr);
23368 baton->data = section->buffer + DW_UNSND (attr);
23369 if (cu->base_address.has_value ())
23370 baton->base_address = *cu->base_address;
23371 else
23372 baton->base_address = 0;
23373 baton->from_dwo = cu->dwo_unit != NULL;
23374 }
23375
23376 static void
23377 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23378 struct dwarf2_cu *cu, int is_block)
23379 {
23380 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23381 struct objfile *objfile = per_objfile->objfile;
23382 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23383
23384 if (attr->form_is_section_offset ()
23385 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23386 the section. If so, fall through to the complaint in the
23387 other branch. */
23388 && DW_UNSND (attr) < section->get_size (objfile))
23389 {
23390 struct dwarf2_loclist_baton *baton;
23391
23392 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23393
23394 fill_in_loclist_baton (cu, baton, attr);
23395
23396 if (!cu->base_address.has_value ())
23397 complaint (_("Location list used without "
23398 "specifying the CU base address."));
23399
23400 SYMBOL_ACLASS_INDEX (sym) = (is_block
23401 ? dwarf2_loclist_block_index
23402 : dwarf2_loclist_index);
23403 SYMBOL_LOCATION_BATON (sym) = baton;
23404 }
23405 else
23406 {
23407 struct dwarf2_locexpr_baton *baton;
23408
23409 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23410 baton->per_objfile = per_objfile;
23411 baton->per_cu = cu->per_cu;
23412 gdb_assert (baton->per_cu);
23413
23414 if (attr->form_is_block ())
23415 {
23416 /* Note that we're just copying the block's data pointer
23417 here, not the actual data. We're still pointing into the
23418 info_buffer for SYM's objfile; right now we never release
23419 that buffer, but when we do clean up properly this may
23420 need to change. */
23421 baton->size = DW_BLOCK (attr)->size;
23422 baton->data = DW_BLOCK (attr)->data;
23423 }
23424 else
23425 {
23426 dwarf2_invalid_attrib_class_complaint ("location description",
23427 sym->natural_name ());
23428 baton->size = 0;
23429 }
23430
23431 SYMBOL_ACLASS_INDEX (sym) = (is_block
23432 ? dwarf2_locexpr_block_index
23433 : dwarf2_locexpr_index);
23434 SYMBOL_LOCATION_BATON (sym) = baton;
23435 }
23436 }
23437
23438 /* See read.h. */
23439
23440 const comp_unit_head *
23441 dwarf2_per_cu_data::get_header () const
23442 {
23443 if (!m_header_read_in)
23444 {
23445 const gdb_byte *info_ptr
23446 = this->section->buffer + to_underlying (this->sect_off);
23447
23448 memset (&m_header, 0, sizeof (m_header));
23449
23450 read_comp_unit_head (&m_header, info_ptr, this->section,
23451 rcuh_kind::COMPILE);
23452 }
23453
23454 return &m_header;
23455 }
23456
23457 /* See read.h. */
23458
23459 int
23460 dwarf2_per_cu_data::addr_size () const
23461 {
23462 return this->get_header ()->addr_size;
23463 }
23464
23465 /* See read.h. */
23466
23467 int
23468 dwarf2_per_cu_data::offset_size () const
23469 {
23470 return this->get_header ()->offset_size;
23471 }
23472
23473 /* See read.h. */
23474
23475 int
23476 dwarf2_per_cu_data::ref_addr_size () const
23477 {
23478 const comp_unit_head *header = this->get_header ();
23479
23480 if (header->version == 2)
23481 return header->addr_size;
23482 else
23483 return header->offset_size;
23484 }
23485
23486 /* See read.h. */
23487
23488 struct type *
23489 dwarf2_cu::addr_type () const
23490 {
23491 struct objfile *objfile = this->per_objfile->objfile;
23492 struct type *void_type = objfile_type (objfile)->builtin_void;
23493 struct type *addr_type = lookup_pointer_type (void_type);
23494 int addr_size = this->per_cu->addr_size ();
23495
23496 if (TYPE_LENGTH (addr_type) == addr_size)
23497 return addr_type;
23498
23499 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23500 return addr_type;
23501 }
23502
23503 /* A helper function for dwarf2_find_containing_comp_unit that returns
23504 the index of the result, and that searches a vector. It will
23505 return a result even if the offset in question does not actually
23506 occur in any CU. This is separate so that it can be unit
23507 tested. */
23508
23509 static int
23510 dwarf2_find_containing_comp_unit
23511 (sect_offset sect_off,
23512 unsigned int offset_in_dwz,
23513 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23514 {
23515 int low, high;
23516
23517 low = 0;
23518 high = all_comp_units.size () - 1;
23519 while (high > low)
23520 {
23521 struct dwarf2_per_cu_data *mid_cu;
23522 int mid = low + (high - low) / 2;
23523
23524 mid_cu = all_comp_units[mid];
23525 if (mid_cu->is_dwz > offset_in_dwz
23526 || (mid_cu->is_dwz == offset_in_dwz
23527 && mid_cu->sect_off + mid_cu->length > sect_off))
23528 high = mid;
23529 else
23530 low = mid + 1;
23531 }
23532 gdb_assert (low == high);
23533 return low;
23534 }
23535
23536 /* Locate the .debug_info compilation unit from CU's objfile which contains
23537 the DIE at OFFSET. Raises an error on failure. */
23538
23539 static struct dwarf2_per_cu_data *
23540 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23541 unsigned int offset_in_dwz,
23542 dwarf2_per_objfile *per_objfile)
23543 {
23544 int low = dwarf2_find_containing_comp_unit
23545 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
23546 dwarf2_per_cu_data *this_cu = per_objfile->per_bfd->all_comp_units[low];
23547
23548 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23549 {
23550 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23551 error (_("Dwarf Error: could not find partial DIE containing "
23552 "offset %s [in module %s]"),
23553 sect_offset_str (sect_off),
23554 bfd_get_filename (per_objfile->objfile->obfd));
23555
23556 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
23557 <= sect_off);
23558 return per_objfile->per_bfd->all_comp_units[low-1];
23559 }
23560 else
23561 {
23562 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
23563 && sect_off >= this_cu->sect_off + this_cu->length)
23564 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23565 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23566 return this_cu;
23567 }
23568 }
23569
23570 #if GDB_SELF_TEST
23571
23572 namespace selftests {
23573 namespace find_containing_comp_unit {
23574
23575 static void
23576 run_test ()
23577 {
23578 struct dwarf2_per_cu_data one {};
23579 struct dwarf2_per_cu_data two {};
23580 struct dwarf2_per_cu_data three {};
23581 struct dwarf2_per_cu_data four {};
23582
23583 one.length = 5;
23584 two.sect_off = sect_offset (one.length);
23585 two.length = 7;
23586
23587 three.length = 5;
23588 three.is_dwz = 1;
23589 four.sect_off = sect_offset (three.length);
23590 four.length = 7;
23591 four.is_dwz = 1;
23592
23593 std::vector<dwarf2_per_cu_data *> units;
23594 units.push_back (&one);
23595 units.push_back (&two);
23596 units.push_back (&three);
23597 units.push_back (&four);
23598
23599 int result;
23600
23601 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23602 SELF_CHECK (units[result] == &one);
23603 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23604 SELF_CHECK (units[result] == &one);
23605 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23606 SELF_CHECK (units[result] == &two);
23607
23608 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23609 SELF_CHECK (units[result] == &three);
23610 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23611 SELF_CHECK (units[result] == &three);
23612 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23613 SELF_CHECK (units[result] == &four);
23614 }
23615
23616 }
23617 }
23618
23619 #endif /* GDB_SELF_TEST */
23620
23621 /* Initialize dwarf2_cu to read PER_CU, in the context of PER_OBJFILE. */
23622
23623 dwarf2_cu::dwarf2_cu (dwarf2_per_cu_data *per_cu,
23624 dwarf2_per_objfile *per_objfile)
23625 : per_cu (per_cu),
23626 per_objfile (per_objfile),
23627 mark (false),
23628 has_loclist (false),
23629 checked_producer (false),
23630 producer_is_gxx_lt_4_6 (false),
23631 producer_is_gcc_lt_4_3 (false),
23632 producer_is_icc (false),
23633 producer_is_icc_lt_14 (false),
23634 producer_is_codewarrior (false),
23635 processing_has_namespace_info (false)
23636 {
23637 }
23638
23639 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23640
23641 static void
23642 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23643 enum language pretend_language)
23644 {
23645 struct attribute *attr;
23646
23647 /* Set the language we're debugging. */
23648 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23649 if (attr != nullptr)
23650 set_cu_language (DW_UNSND (attr), cu);
23651 else
23652 {
23653 cu->language = pretend_language;
23654 cu->language_defn = language_def (cu->language);
23655 }
23656
23657 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23658 }
23659
23660 /* See read.h. */
23661
23662 dwarf2_cu *
23663 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
23664 {
23665 auto it = m_dwarf2_cus.find (per_cu);
23666 if (it == m_dwarf2_cus.end ())
23667 return nullptr;
23668
23669 return it->second;
23670 }
23671
23672 /* See read.h. */
23673
23674 void
23675 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
23676 {
23677 gdb_assert (this->get_cu (per_cu) == nullptr);
23678
23679 m_dwarf2_cus[per_cu] = cu;
23680 }
23681
23682 /* See read.h. */
23683
23684 void
23685 dwarf2_per_objfile::age_comp_units ()
23686 {
23687 /* Start by clearing all marks. */
23688 for (auto pair : m_dwarf2_cus)
23689 pair.second->mark = false;
23690
23691 /* Traverse all CUs, mark them and their dependencies if used recently
23692 enough. */
23693 for (auto pair : m_dwarf2_cus)
23694 {
23695 dwarf2_cu *cu = pair.second;
23696
23697 cu->last_used++;
23698 if (cu->last_used <= dwarf_max_cache_age)
23699 dwarf2_mark (cu);
23700 }
23701
23702 /* Delete all CUs still not marked. */
23703 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
23704 {
23705 dwarf2_cu *cu = it->second;
23706
23707 if (!cu->mark)
23708 {
23709 delete cu;
23710 it = m_dwarf2_cus.erase (it);
23711 }
23712 else
23713 it++;
23714 }
23715 }
23716
23717 /* See read.h. */
23718
23719 void
23720 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
23721 {
23722 auto it = m_dwarf2_cus.find (per_cu);
23723 if (it == m_dwarf2_cus.end ())
23724 return;
23725
23726 delete it->second;
23727
23728 m_dwarf2_cus.erase (it);
23729 }
23730
23731 dwarf2_per_objfile::~dwarf2_per_objfile ()
23732 {
23733 remove_all_cus ();
23734 }
23735
23736 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23737 We store these in a hash table separate from the DIEs, and preserve them
23738 when the DIEs are flushed out of cache.
23739
23740 The CU "per_cu" pointer is needed because offset alone is not enough to
23741 uniquely identify the type. A file may have multiple .debug_types sections,
23742 or the type may come from a DWO file. Furthermore, while it's more logical
23743 to use per_cu->section+offset, with Fission the section with the data is in
23744 the DWO file but we don't know that section at the point we need it.
23745 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23746 because we can enter the lookup routine, get_die_type_at_offset, from
23747 outside this file, and thus won't necessarily have PER_CU->cu.
23748 Fortunately, PER_CU is stable for the life of the objfile. */
23749
23750 struct dwarf2_per_cu_offset_and_type
23751 {
23752 const struct dwarf2_per_cu_data *per_cu;
23753 sect_offset sect_off;
23754 struct type *type;
23755 };
23756
23757 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23758
23759 static hashval_t
23760 per_cu_offset_and_type_hash (const void *item)
23761 {
23762 const struct dwarf2_per_cu_offset_and_type *ofs
23763 = (const struct dwarf2_per_cu_offset_and_type *) item;
23764
23765 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23766 }
23767
23768 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23769
23770 static int
23771 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23772 {
23773 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23774 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23775 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23776 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23777
23778 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23779 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23780 }
23781
23782 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23783 table if necessary. For convenience, return TYPE.
23784
23785 The DIEs reading must have careful ordering to:
23786 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23787 reading current DIE.
23788 * Not trying to dereference contents of still incompletely read in types
23789 while reading in other DIEs.
23790 * Enable referencing still incompletely read in types just by a pointer to
23791 the type without accessing its fields.
23792
23793 Therefore caller should follow these rules:
23794 * Try to fetch any prerequisite types we may need to build this DIE type
23795 before building the type and calling set_die_type.
23796 * After building type call set_die_type for current DIE as soon as
23797 possible before fetching more types to complete the current type.
23798 * Make the type as complete as possible before fetching more types. */
23799
23800 static struct type *
23801 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23802 {
23803 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23804 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23805 struct objfile *objfile = per_objfile->objfile;
23806 struct attribute *attr;
23807 struct dynamic_prop prop;
23808
23809 /* For Ada types, make sure that the gnat-specific data is always
23810 initialized (if not already set). There are a few types where
23811 we should not be doing so, because the type-specific area is
23812 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23813 where the type-specific area is used to store the floatformat).
23814 But this is not a problem, because the gnat-specific information
23815 is actually not needed for these types. */
23816 if (need_gnat_info (cu)
23817 && type->code () != TYPE_CODE_FUNC
23818 && type->code () != TYPE_CODE_FLT
23819 && type->code () != TYPE_CODE_METHODPTR
23820 && type->code () != TYPE_CODE_MEMBERPTR
23821 && type->code () != TYPE_CODE_METHOD
23822 && !HAVE_GNAT_AUX_INFO (type))
23823 INIT_GNAT_SPECIFIC (type);
23824
23825 /* Read DW_AT_allocated and set in type. */
23826 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23827 if (attr != NULL && attr->form_is_block ())
23828 {
23829 struct type *prop_type = cu->addr_sized_int_type (false);
23830 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23831 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
23832 }
23833 else if (attr != NULL)
23834 {
23835 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23836 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23837 sect_offset_str (die->sect_off));
23838 }
23839
23840 /* Read DW_AT_associated and set in type. */
23841 attr = dwarf2_attr (die, DW_AT_associated, cu);
23842 if (attr != NULL && attr->form_is_block ())
23843 {
23844 struct type *prop_type = cu->addr_sized_int_type (false);
23845 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23846 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
23847 }
23848 else if (attr != NULL)
23849 {
23850 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23851 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23852 sect_offset_str (die->sect_off));
23853 }
23854
23855 /* Read DW_AT_data_location and set in type. */
23856 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23857 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
23858 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
23859
23860 if (per_objfile->die_type_hash == NULL)
23861 per_objfile->die_type_hash
23862 = htab_up (htab_create_alloc (127,
23863 per_cu_offset_and_type_hash,
23864 per_cu_offset_and_type_eq,
23865 NULL, xcalloc, xfree));
23866
23867 ofs.per_cu = cu->per_cu;
23868 ofs.sect_off = die->sect_off;
23869 ofs.type = type;
23870 slot = (struct dwarf2_per_cu_offset_and_type **)
23871 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
23872 if (*slot)
23873 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23874 sect_offset_str (die->sect_off));
23875 *slot = XOBNEW (&objfile->objfile_obstack,
23876 struct dwarf2_per_cu_offset_and_type);
23877 **slot = ofs;
23878 return type;
23879 }
23880
23881 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23882 or return NULL if the die does not have a saved type. */
23883
23884 static struct type *
23885 get_die_type_at_offset (sect_offset sect_off,
23886 dwarf2_per_cu_data *per_cu,
23887 dwarf2_per_objfile *per_objfile)
23888 {
23889 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23890
23891 if (per_objfile->die_type_hash == NULL)
23892 return NULL;
23893
23894 ofs.per_cu = per_cu;
23895 ofs.sect_off = sect_off;
23896 slot = ((struct dwarf2_per_cu_offset_and_type *)
23897 htab_find (per_objfile->die_type_hash.get (), &ofs));
23898 if (slot)
23899 return slot->type;
23900 else
23901 return NULL;
23902 }
23903
23904 /* Look up the type for DIE in CU in die_type_hash,
23905 or return NULL if DIE does not have a saved type. */
23906
23907 static struct type *
23908 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23909 {
23910 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
23911 }
23912
23913 /* Add a dependence relationship from CU to REF_PER_CU. */
23914
23915 static void
23916 dwarf2_add_dependence (struct dwarf2_cu *cu,
23917 struct dwarf2_per_cu_data *ref_per_cu)
23918 {
23919 void **slot;
23920
23921 if (cu->dependencies == NULL)
23922 cu->dependencies
23923 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23924 NULL, &cu->comp_unit_obstack,
23925 hashtab_obstack_allocate,
23926 dummy_obstack_deallocate);
23927
23928 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23929 if (*slot == NULL)
23930 *slot = ref_per_cu;
23931 }
23932
23933 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23934 Set the mark field in every compilation unit in the
23935 cache that we must keep because we are keeping CU.
23936
23937 DATA is the dwarf2_per_objfile object in which to look up CUs. */
23938
23939 static int
23940 dwarf2_mark_helper (void **slot, void *data)
23941 {
23942 dwarf2_per_cu_data *per_cu = (dwarf2_per_cu_data *) *slot;
23943 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) data;
23944 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23945
23946 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23947 reading of the chain. As such dependencies remain valid it is not much
23948 useful to track and undo them during QUIT cleanups. */
23949 if (cu == nullptr)
23950 return 1;
23951
23952 if (cu->mark)
23953 return 1;
23954
23955 cu->mark = true;
23956
23957 if (cu->dependencies != nullptr)
23958 htab_traverse (cu->dependencies, dwarf2_mark_helper, per_objfile);
23959
23960 return 1;
23961 }
23962
23963 /* Set the mark field in CU and in every other compilation unit in the
23964 cache that we must keep because we are keeping CU. */
23965
23966 static void
23967 dwarf2_mark (struct dwarf2_cu *cu)
23968 {
23969 if (cu->mark)
23970 return;
23971
23972 cu->mark = true;
23973
23974 if (cu->dependencies != nullptr)
23975 htab_traverse (cu->dependencies, dwarf2_mark_helper, cu->per_objfile);
23976 }
23977
23978 /* Trivial hash function for partial_die_info: the hash value of a DIE
23979 is its offset in .debug_info for this objfile. */
23980
23981 static hashval_t
23982 partial_die_hash (const void *item)
23983 {
23984 const struct partial_die_info *part_die
23985 = (const struct partial_die_info *) item;
23986
23987 return to_underlying (part_die->sect_off);
23988 }
23989
23990 /* Trivial comparison function for partial_die_info structures: two DIEs
23991 are equal if they have the same offset. */
23992
23993 static int
23994 partial_die_eq (const void *item_lhs, const void *item_rhs)
23995 {
23996 const struct partial_die_info *part_die_lhs
23997 = (const struct partial_die_info *) item_lhs;
23998 const struct partial_die_info *part_die_rhs
23999 = (const struct partial_die_info *) item_rhs;
24000
24001 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24002 }
24003
24004 struct cmd_list_element *set_dwarf_cmdlist;
24005 struct cmd_list_element *show_dwarf_cmdlist;
24006
24007 static void
24008 show_check_physname (struct ui_file *file, int from_tty,
24009 struct cmd_list_element *c, const char *value)
24010 {
24011 fprintf_filtered (file,
24012 _("Whether to check \"physname\" is %s.\n"),
24013 value);
24014 }
24015
24016 void _initialize_dwarf2_read ();
24017 void
24018 _initialize_dwarf2_read ()
24019 {
24020 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24021 Set DWARF specific variables.\n\
24022 Configure DWARF variables such as the cache size."),
24023 &set_dwarf_cmdlist, "maintenance set dwarf ",
24024 0/*allow-unknown*/, &maintenance_set_cmdlist);
24025
24026 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24027 Show DWARF specific variables.\n\
24028 Show DWARF variables such as the cache size."),
24029 &show_dwarf_cmdlist, "maintenance show dwarf ",
24030 0/*allow-unknown*/, &maintenance_show_cmdlist);
24031
24032 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24033 &dwarf_max_cache_age, _("\
24034 Set the upper bound on the age of cached DWARF compilation units."), _("\
24035 Show the upper bound on the age of cached DWARF compilation units."), _("\
24036 A higher limit means that cached compilation units will be stored\n\
24037 in memory longer, and more total memory will be used. Zero disables\n\
24038 caching, which can slow down startup."),
24039 NULL,
24040 show_dwarf_max_cache_age,
24041 &set_dwarf_cmdlist,
24042 &show_dwarf_cmdlist);
24043
24044 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24045 Set debugging of the DWARF reader."), _("\
24046 Show debugging of the DWARF reader."), _("\
24047 When enabled (non-zero), debugging messages are printed during DWARF\n\
24048 reading and symtab expansion. A value of 1 (one) provides basic\n\
24049 information. A value greater than 1 provides more verbose information."),
24050 NULL,
24051 NULL,
24052 &setdebuglist, &showdebuglist);
24053
24054 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24055 Set debugging of the DWARF DIE reader."), _("\
24056 Show debugging of the DWARF DIE reader."), _("\
24057 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24058 The value is the maximum depth to print."),
24059 NULL,
24060 NULL,
24061 &setdebuglist, &showdebuglist);
24062
24063 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24064 Set debugging of the dwarf line reader."), _("\
24065 Show debugging of the dwarf line reader."), _("\
24066 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24067 A value of 1 (one) provides basic information.\n\
24068 A value greater than 1 provides more verbose information."),
24069 NULL,
24070 NULL,
24071 &setdebuglist, &showdebuglist);
24072
24073 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24074 Set cross-checking of \"physname\" code against demangler."), _("\
24075 Show cross-checking of \"physname\" code against demangler."), _("\
24076 When enabled, GDB's internal \"physname\" code is checked against\n\
24077 the demangler."),
24078 NULL, show_check_physname,
24079 &setdebuglist, &showdebuglist);
24080
24081 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24082 no_class, &use_deprecated_index_sections, _("\
24083 Set whether to use deprecated gdb_index sections."), _("\
24084 Show whether to use deprecated gdb_index sections."), _("\
24085 When enabled, deprecated .gdb_index sections are used anyway.\n\
24086 Normally they are ignored either because of a missing feature or\n\
24087 performance issue.\n\
24088 Warning: This option must be enabled before gdb reads the file."),
24089 NULL,
24090 NULL,
24091 &setlist, &showlist);
24092
24093 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24094 &dwarf2_locexpr_funcs);
24095 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24096 &dwarf2_loclist_funcs);
24097
24098 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24099 &dwarf2_block_frame_base_locexpr_funcs);
24100 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24101 &dwarf2_block_frame_base_loclist_funcs);
24102
24103 #if GDB_SELF_TEST
24104 selftests::register_test ("dw2_expand_symtabs_matching",
24105 selftests::dw2_expand_symtabs_matching::run_test);
24106 selftests::register_test ("dwarf2_find_containing_comp_unit",
24107 selftests::find_containing_comp_unit::run_test);
24108 #endif
24109 }
This page took 0.540803 seconds and 4 git commands to generate.